This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Hidden-charm and bottom tetra- and pentaquarks with strangeness in the hadro-quarkonium and compact tetraquark models

J. Ferretti jacopo.j.ferretti@jyu.fi Center for Theoretical Physics, Sloane Physics Laboratory, Yale University, New Haven, Connecticut 06520-8120, USA Department of Physics, University of Jyväskylä, P.O. Box 35 (YFL), 40014 Jyväskylä, Finland    E. Santopinto elena.santopinto@ge.infn.it Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Genova, Via Dodecaneso 33, 16146 Genova, Italy
Abstract

In two recent papers, we used the hadro-quarkonium model to study the properties of hidden-charm and bottom tetraquarks and pentaquarks. Here, we extend the previous results and calculate the masses of heavy-quarkonium-kaon/hyperon systems. We also compute the spectrum of hidden-charm and bottom tetraquarks with strangeness in the compact tetraquark (diquark-antidiquark) model. If heavy-light exotic systems with non-null strangeness content were to be observed experimentally, it might be possible to distinguish among the large variety of available theoretical pictures for tetra- and pentaquark states and, possibly, rule out those which are not compatible with the data.

I Introduction

Multiquark states are baryons/mesons which cannot be described in terms of qqqqqq/qq¯q\bar{q} degrees of freedom only. They include XYZXYZ suspected tetraquarks, like the X(3872)X(3872) [now χc1(3872)\chi_{\rm c1}(3872)] Choi:2003ue ; Acosta:2003zx ; Abazov:2004kp and X(4274)X(4274) [also known as χc1(4274)\chi_{\rm c1}(4274)] Aaltonen:2011at ; Aaij:2016iza , and pentaquark states. The latter were recently discovered by LHCb in ΛbJ/ψΛ\Lambda_{\rm b}\rightarrow J/\psi\Lambda^{*} and ΛbPc+K(J/ψp)K\Lambda_{\rm b}\rightarrow P_{\rm c}^{+}K^{-}\rightarrow(J/\psi p)K^{-} decays Aaij:2015tga ; Aaij:2019vzc . The structure of XYZXYZ tetraquarks and PcP_{\rm c} pentaquarks is still unclear. This is why there are several alternative models to explain their properties. For a review, see Refs. Chen:2016qju ; Ali:2017jda ; Olsen:2017bmm ; Guo:2017jvc . To distinguish among the different pictures (molecular model, diquark model, unquenched quark model, …) one should compare their theoretical predictions for the spectrum, decay amplitudes, production cross-sections, and so on, with the experimental data.

A clean way to discriminate among the previous theoretical interpretations for suspected XYZXYZ tetraquarks was suggested in Ref. Voloshin:2019 . There, Voloshin pointed out that if ZcZ_{\rm c} resonances exist then, because of the SU(3)f symmetry, one may also expect the emergence of their strange partners, ZcsZ_{\rm cs} Voloshin:2019 . The author also argued that the one-pion-exchange interaction of the meson-meson molecular model is impossible between strange and nonstrange heavy mesons, like BB and BsB_{\rm s} Voloshin:2019 . Hidden-charm and bottom mesons with strangeness are also forbidden in the context of the Unquenched Quark Model (UQM) formalism. Indeed, one cannot dress heavy quarkonium QQ¯Q\bar{Q} states with Qs¯nQ¯Q\bar{s}-n\bar{Q} or Qn¯sQ¯Q\bar{n}-s\bar{Q} higher Fock components (where n=un=u or dd) by creating a light nn¯n\bar{n} or ss¯s\bar{s} pair with vacuum quantum numbers. Therefore, hidden-charm and bottom tetraquark states with non-null strangeness content cannot take place neither in the UQM Heikkila:1983wd ; Pennington:2007xr ; Danilkin:2010cc ; Ortega:2012rs ; Ferretti:2013faa ; Ferretti:2014xqa ; Ferretti:2013vua ; Achasov:2015oia ; Kang:2016jxw ; Lu:2016mbb ; Ferretti:2018tco nor in the molecular model Tornqvist:1993ng ; Hanhart:2007yq ; Baru:2011rs ; Valderrama:2012jv ; Aceti:2012cb ; Guo:2013sya interpretations.

Refer to caption
Refer to caption
Figure 1: Schematic representation of heavy-light hadro-quarkonium (right) and compact tetraquark (left) states.

On the contrary, these exotic configurations are expected (if above threshold) both in the compact tetraquark Jaffe:1976ih ; SilvestreBrac:1993ss ; Brink:1998as ; Maiani:2004vq ; Barnea:2006sd ; Santopinto:2006my ; Ebert:2008wm ; Deng:2014gqa ; Zhao:2014qva ; Lu:2016cwr ; Anwar:2017toa ; Anwar:2018sol ; Esposito:2018cwh ; Bedolla:2019zwg ; Yang:2019itm and hadro-quarkonium Eides:2015dtr ; Perevalova:2016dln ; Alberti:2016dru ; Anwar:2018bpu ; Dubynskiy:2008mq ; Guo:2008zg ; Voloshin:2013dpa ; Wang:2013kra ; Brambilla:2015rqa ; Ferretti:2018kzy ; Panteleeva:2018ijz ; Voloshin:2019 models. See Fig. 1. In light of this, the experimental observation of XYZXYZ states with non-null strangeness content would make it possible to rule out a few possible theoretical interpretations for tetraquarks. Voloshin did not compute the spectrum of ZcsZ_{\rm cs} states, but only discussed phenomenological indications for the emergence of those states Voloshin:2019 . The study of their spectrum and that of their pentaquark counterparts is thus the subject of the present manuscript.

Here, we extend the hadro-quarkonium model findings of Refs. Ferretti:2018kzy ; Anwar:2018bpu and calculate the spectrum of hidden-charm and bottom tetraquarks and pentaquarks with strangeness. The hadro-quarkonium picture was developed to explain the experimental observation of heavy-light tetraquark candidates characterized by peculiar properties Dubynskiy:2008mq ; Voloshin:2007dx . Firstly, these exotics are supposed not to be particularly close to a specific heavy-light meson-meson threshold, unlike D0D¯0D^{0}\bar{D}^{*0} in the X(3872)X(3872) case. Secondly, such states may decay into heavy quarkonia plus one or more light mesons, like ηc+η\eta_{\rm c}+\eta. Even though it was meant for the description of tetraquarks, the hadro-quarkonium model can be easily extended to the baryon sector to study pentaquarks Anwar:2018bpu ; Eides:2015dtr .

We also compute the masses of heavy-light tetraquarks with non-null strangeness content in the compact tetraquark model of Refs. Anwar:2017toa ; Anwar:2018sol ; Bedolla:2019zwg . In the compact tetraquark model, heavy-light qQq¯Q¯qQ\bar{q}\bar{Q} states are modeled as the bound states of a diquark, qQqQ, antidiquark, q¯Q¯\bar{q}\bar{Q}, pair. The diquark constituents are treated as inert against internal spatial excitations. Their binding is the consequence of one-gluon-exchange forces and their relative dynamics can be described in terms of a relative coordinate 𝐫rel\bf r_{\rm rel}. The calculation of the spectrum of compact pentaquark configurations in the diquark model is more difficult than that of compact tetraquarks because one has to deal with a three-body problem instead of a two-body one; moreover, one also has to consider both diquark-diquark and diquark-antiquark interactions. This is why here we do not provide results for compact (diquark-diquark-antiquark) pentaquarks, which will be the subject of a subsequent paper.

Our predictions for strange hidden-charm and bottom tetraquarks and, especially, those for PcP_{\rm c} and PbP_{\rm b} pentaquarks with non-null strangeness content may soon be tested by LHCb.

II Hadro-quarkonium model

The possible existence of binding mechanisms of charmonium states in light-quark matter was discussed long ago Brodsky:1989jd ; Kaidalov:1992hd ; Sibirtsev:2005ex in terms of the interaction of charmonium inside nuclei. The idea of hadro-charmonium (hadro-quarkonium) bound states resembles the previous one.

Hadro-quarkonia are heavy-light tetra- or pentaquark configurations, where a compact QQ¯Q\bar{Q} state (with Q=cQ=c or bb), labelled as ψ\psi in the following, is embedded in light hadronic matter, =\mathcal{H}= qqqqqq or qq¯q\bar{q} (where q=u,dq=u,d or ss) Eides:2015dtr ; Perevalova:2016dln ; Alberti:2016dru ; Anwar:2018bpu ; Dubynskiy:2008mq ; Guo:2008zg ; Voloshin:2013dpa ; Wang:2013kra ; Brambilla:2015rqa ; Ferretti:2018kzy ; Panteleeva:2018ijz ; Voloshin:2019 . The heavy and light constituents, ψ\psi and \mathcal{H}, develop an attractive force, which is the result of multiple-gluon exchange between them. Such interaction, HeffH_{\rm eff}, can be written in terms of the multipole expansion in QCD QCDME . In particular, if one considers as leading term the E1E1 interaction with chromo-electric fields 𝐄{\bf E} and 𝐄{\bf E}^{\prime} Dubynskiy:2008mq ; Kaidalov:1992hd , one gets the effective Hamiltonian

Heff=12αψψ𝐄𝐄 ,H_{\rm eff}=-\frac{1}{2}\alpha_{\psi\psi^{\prime}}{\bf E}\cdot{\bf E}^{\prime}\mbox{ }, (1)

where αψψ\alpha_{\psi\psi^{\prime}} is the so-called heavy quarkonium chromo-electric polarizability. By making use of additional approximations, HeffH_{\rm eff} can be further reduced to a simple square-well potential Dubynskiy:2008mq ; Ferretti:2018kzy ; Anwar:2018bpu ,

Vhq(r)={2παψψM3R3forr<R0forr>R ,V_{\rm hq}(r)=\left\{\begin{array}[]{ccc}-\frac{2\pi\alpha_{\psi\psi}M_{\mathcal{H}}}{3R_{\mathcal{H}}^{3}}&\mbox{for}&r<R_{\mathcal{H}}\\ 0&\mbox{for}&r>R_{\mathcal{H}}\end{array}\right.\mbox{ }, (2)

where R=RR_{\mathcal{H}}=R_{\mathcal{B}} or RR_{\mathcal{M}} is the light baryon/meson radius. Eq. (2) can be plugged into a Schrödinger equation and solved for light hadron-heavy quarkonium systems.

Refer to caption
Figure 2: Hidden-flavor transition ψ1ψ2+h\psi_{1}\rightarrow\psi_{2}+h in the QCD multipole expansion. Here, ψ1\psi_{1} and ψ2\psi_{2} are the initial and final charmonium states, hh light hadron(s). The two vertices are those of the multipole gluon emission, MGEMGE, and hadronization, HH. Picture from Ref. Ferretti:2018kzy ; Elsevier Copyright.

There are four quantities to be given as input in the calculation. They are the masses MψM_{\psi} and MM_{\mathcal{H}}, the radius RR_{\mathcal{H}}, and the diagonal chromo-electric polarizability, αψψ\alpha_{\psi\psi}. See Table 1.

Parameter Value Parameter Value
αψψ(1P)cc¯\alpha_{\psi\psi}(1P)_{c\bar{c}} 11 GeV-3 αψψ(2S)cc¯\alpha_{\psi\psi}(2S)_{c\bar{c}} 18 GeV-3
αψψ(1)(1P)bb¯\alpha_{\psi\psi}^{(1)}(1P)_{b\bar{b}} 14 GeV-3 αψψ(1)(2S)bb¯\alpha_{\psi\psi}^{(1)}(2S)_{b\bar{b}} 23 GeV-3
αψψ(2)(1P)bb¯\alpha_{\psi\psi}^{(2)}(1P)_{b\bar{b}} 21 GeV-3 αψψ(2)(2S)bb¯\alpha_{\psi\psi}^{(2)}(2S)_{b\bar{b}} 33 GeV-3
RΣR_{\Sigma} 0.863 fm RΞR_{\Xi} 0.841 fm
RKR_{K} 0.560 fm RKR_{K^{*}} 0.729 fm
Table 1: Hadro-quarkonium model. Input values and parameters.

The values of MψM_{\psi} and MM_{\mathcal{H}} are extracted from the PDG Tanabashi:2018oca .

In principle, non-diagonal quarkonium chromo-electric polarizabilities, αψψ\alpha_{\psi\psi^{\prime}}, can be fitted to the data by considering ψψ+h\psi\rightarrow\psi^{\prime}+h hadronic transitions Voloshin:2007dx ; Chen:2019gty ; see Fig. 2. However, no experimental information can be used to estimate the αψψ\alpha_{\psi\psi}’s. Therefore, the diagonal chromo-electric polarizabilities, αψψ(n)\alpha_{\psi\psi}(n\ell), where nn and \ell are the radial quantum number and orbital angular momentum of ψ\psi, respectively, have to be extracted from the phenomenology. In the case of charmonia, we consider Anwar:2018bpu : αψψ(1P)cc¯=11 GeV3\alpha_{\psi\psi}(1P)_{c\bar{c}}=11\mbox{ GeV}^{-3} and αψψ(2S)cc¯=18 GeV3\alpha_{\psi\psi}(2S)_{c\bar{c}}=18\mbox{ GeV}^{-3}. In the case of bottomonia, we make use of two sets of values for the chromo-electric polarizabilities. They are Anwar:2018bpu : αψψ(1)(1P)bb¯=14 GeV3\alpha_{\psi\psi}^{(1)}(1P)_{b\bar{b}}=14\mbox{ GeV}^{-3} and αψψ(1)(2S)bb¯=23 GeV3\alpha_{\psi\psi}^{(1)}(2S)_{b\bar{b}}=23\mbox{ GeV}^{-3}; αψψ(2)(1P)bb¯=21 GeV3\alpha_{\psi\psi}^{(2)}(1P)_{b\bar{b}}=21\mbox{ GeV}^{-3} and αψψ(2)(2S)bb¯=33 GeV3\alpha_{\psi\psi}^{(2)}(2S)_{b\bar{b}}=33\mbox{ GeV}^{-3}. We also need the strange mesons’ and hyperons’ radii. While for the kaon we can use the well-established value of the K±K^{\pm} charge radius reported on the PDG Tanabashi:2018oca , RK=0.560±0.031R_{K}=0.560\pm 0.031 fm, in the Σ\Sigma, Ξ\Xi and KK^{*} cases the situation is different111The values of the proton and kaon radii reported by the PDG Tanabashi:2018oca can be regarded as reliable, because they are the result of the average over several measurements. On the contrary, the value of the Σ\Sigma^{-} radius from the PDG is the outcome of a single experiment; moreover, there is no available data for the charge radius of the Σ+\Sigma^{+}. This is why here we do not extract RΣR_{\Sigma} from the PDG.. Indeed, due to the lack of well-established experimental data, we are forced to extract RΣR_{\Sigma}, RΞR_{\Xi} and RKR_{K^{*}} from phenomenological estimates. For example, see Refs. Ledwig:2006gw ; Kubis:1999xb ; Buchmann:2002et ; Carrillo-Serrano:2016igi ; Godfrey:1985xj . Following Ref. Ledwig:2006gw , we have: RΣ=12(RΣ++RΣ)=0.863R_{\Sigma}=\frac{1}{2}\left(R_{\Sigma^{+}}+R_{\Sigma^{-}}\right)=0.863 fm; RΞ=0.841R_{\Xi}=0.841 fm. The K(892)K^{*}(892)’s radius is calculated in the relativized quark model for mesons of Ref. Godfrey:1985xj : RK=0.729R_{K^{*}}=0.729 fm.

Finally, the hadro-quarkonium quantum numbers are obtained by combining those of the hadrons ψ\mathcal{\psi} and \mathcal{H},

|Φhq=|(Lψ,Sψ)Jψ;(L,S)J;(Jhq,hq)JtotP .\left|\Phi_{\rm hq}\right\rangle=\left|(L_{\psi},S_{\psi})J_{\psi};(L_{\mathcal{H}},S_{\mathcal{H}})J_{\mathcal{H}};(J_{\rm hq},\ell_{\rm hq})J_{\rm tot}^{P}\right\rangle\mbox{ }. (3)

Here, 𝐉hq=𝐉ψ+𝐉{\bf J}_{\rm hq}={\bf J}_{\psi}+{\bf J}_{\mathcal{H}}, the hadro-quarkonium parity is P=(1)hqP=(-1)^{\ell_{\rm hq}} PψPP_{\psi}P_{\mathcal{H}}, and hq\ell_{\rm hq} is the relative angular momentum between ψ\psi and \mathcal{H}. From now on, unless explicitly indicated, we assume that hq=0\ell_{\rm hq}=0.

Composition Quark content αψψ(n)\alpha_{\psi\psi}(n\ell) [GeV-3] JtotPJ_{\rm tot}^{P} Mass (Binding) [MeV]
χc0(1P)Σ\chi_{\rm c0}(1P)\otimes\Sigma nnscc¯nnsc\bar{c} 11 12+\frac{1}{2}^{+} 4440 (166-166)
ηc(2S)Σ\eta_{\rm c}(2S)\otimes\Sigma nnscc¯nnsc\bar{c} 18 12\frac{1}{2}^{-} 4474 (355-355)
ψ(2S)Σ\psi(2S)\otimes\Sigma nnscc¯nnsc\bar{c} 18 12\frac{1}{2}^{-} or 32\frac{3}{2}^{-} 4522 (355-355)
χc1(1P)Σ\chi_{\rm c1}(1P)\otimes\Sigma nnscc¯nnsc\bar{c} 11 12+\frac{1}{2}^{+} or 32+\frac{3}{2}^{+} 4535 (166-166)
hc(1P)Σh_{\rm c}(1P)\otimes\Sigma nnscc¯nnsc\bar{c} 11 12+\frac{1}{2}^{+} or 32+\frac{3}{2}^{+} 4550 (167-167)
χc2(1P)Σ\chi_{\rm c2}(1P)\otimes\Sigma nnscc¯nnsc\bar{c} 11 32+\frac{3}{2}^{+} or 52+\frac{5}{2}^{+} 4580 (167-167)
[ηc(2S)Σ]hq=1\left[\eta_{\rm c}(2S)\otimes\Sigma\right]_{\ell_{\rm hq}=1} nnscc¯nnsc\bar{c} 18 12+\frac{1}{2}^{+} or 32+\frac{3}{2}^{+} 4653 (175-175)
[ψ(2S)Σ]hq=1\left[\psi(2S)\otimes\Sigma\right]_{\ell_{\rm hq}=1} nnscc¯nnsc\bar{c} 18 12+\frac{1}{2}^{+}, 32+\frac{3}{2}^{+} or 52+\frac{5}{2}^{+} 4701 (176-176)
ηc(2S)Ξ\eta_{\rm c}(2S)\otimes\Xi nsscc¯nssc\bar{c} 18 12\frac{1}{2}^{-} 4500 (459-459); 4955 (5-5)
χc0(1P)Ξ\chi_{\rm c0}(1P)\otimes\Xi nsscc¯nssc\bar{c} 11 12+\frac{1}{2}^{+} 4510 (226-226)
ψ(2S)Ξ\psi(2S)\otimes\Xi nsscc¯nssc\bar{c} 18 12\frac{1}{2}^{-} or 32\frac{3}{2}^{-} 4548 (460-460); 5002 (5-5)
χc1(1P)Ξ\chi_{\rm c1}(1P)\otimes\Xi nsscc¯nssc\bar{c} 11 12+\frac{1}{2}^{+} or 32+\frac{3}{2}^{+} 4605 (227-227)
hc(1P)Ξh_{\rm c}(1P)\otimes\Xi nsscc¯nssc\bar{c} 11 12+\frac{1}{2}^{+} or 32+\frac{3}{2}^{+} 4620 (227-227)
χc2(1P)Ξ\chi_{\rm c2}(1P)\otimes\Xi nsscc¯nssc\bar{c} 11 32+\frac{3}{2}^{+} or 52+\frac{5}{2}^{+} 4650 (228-228)
[ηc(2S)Ξ]hq=1\left[\eta_{\rm c}(2S)\otimes\Xi\right]_{\ell_{\rm hq}=1} nsscc¯nssc\bar{c} 18 12+\frac{1}{2}^{+} or 32+\frac{3}{2}^{+} 4685 (274-274)
[ψ(2S)Ξ]hq=1\left[\psi(2S)\otimes\Xi\right]_{\ell_{\rm hq}=1} nsscc¯nssc\bar{c} 18 12+\frac{1}{2}^{+}, 32+\frac{3}{2}^{+} or 52+\frac{5}{2}^{+} 4733 (275-275)
Table 2: Hadro-quarkonium model predictions for charmonium-Σ\Sigma and Ξ\Xi bound states. The pentaquark binding energies and masses (5th column) are calculated with the values of the chromo-electric polarizabilities αψψ(n)\alpha_{\psi\psi}(n\ell) (3rd column). Here, n=un=u or dd. The bound states are SS-wave configurations (i.e. hq=0\ell_{\rm hq}=0), except where explicitly indicated. In some cases, the VhqV_{\rm hq} potential well is deep enough to give rise to a heavy-quarkonium-baryon bound state and its radial excitation. In this instance, the masses of both the ground-state and excited hadro-quarkonium configurations are reported in the fifth column.
Composition Quark content αψψ(n)\alpha_{\psi\psi}(n\ell) [GeV-3] JtotPJ_{\rm tot}^{P} Mass (Binding) [MeV]
ηb(2S)Σ\eta_{\rm b}(2S)\otimes\Sigma nnsbb¯nnsb\bar{b} 23 12\frac{1}{2}^{-} 10671 (519-519); 11118 (72-72)
Υ(2S)Σ\Upsilon(2S)\otimes\Sigma nnsbb¯nnsb\bar{b} 23 12\frac{1}{2}^{-} or 32\frac{3}{2}^{-} 10695 (519-519); 11142 (72-72)
χb0(1P)Σ\chi_{\rm b0}(1P)\otimes\Sigma nnsbb¯nnsb\bar{b} 14 12+\frac{1}{2}^{+} 10784 (267-267)
χb1(1P)Σ\chi_{\rm b1}(1P)\otimes\Sigma nnsbb¯nnsb\bar{b} 14 12+\frac{1}{2}^{+} or 32+\frac{3}{2}^{+} 10817 (267-267)
hb(1P)Σh_{\rm b}(1P)\otimes\Sigma nnsbb¯nnsb\bar{b} 14 12+\frac{1}{2}^{+} or 32+\frac{3}{2}^{+} 10824 (267-267)
χb2(1P)Σ\chi_{\rm b2}(1P)\otimes\Sigma nnsbb¯nnsb\bar{b} 14 32+\frac{3}{2}^{+} or 52+\frac{5}{2}^{+} 10836 (267-267)
[ηb(2S)Σ]hq=1\left[\eta_{\rm b}(2S)\otimes\Sigma\right]_{\ell_{\rm hq}=1} nnsbb¯nnsb\bar{b} 23 12+\frac{1}{2}^{+} or 32+\frac{3}{2}^{+} 10840 (350-350)
[Υ(2S)Σ]hq=1\left[\Upsilon(2S)\otimes\Sigma\right]_{\ell_{\rm hq}=1} nnsbb¯nnsb\bar{b} 23 12+\frac{1}{2}^{+}, 32+\frac{3}{2}^{+} or 52+\frac{5}{2}^{+} 10864 (350-350)
ηb(2S)Σ\eta_{\rm b}(2S)\otimes\Sigma nnsbb¯nnsb\bar{b} 33 12\frac{1}{2}^{-} 10383 (807-807); 10885 (305-305)
Υ(2S)Σ\Upsilon(2S)\otimes\Sigma nnsbb¯nnsb\bar{b} 33 12\frac{1}{2}^{-} or 32\frac{3}{2}^{-} 10407 (808-808); 10909 (306-306)
[ηb(2S)Σ]hq=1\left[\eta_{\rm b}(2S)\otimes\Sigma\right]_{\ell_{\rm hq}=1} nnsbb¯nnsb\bar{b} 33 12+\frac{1}{2}^{+} or 32+\frac{3}{2}^{+} 10564 (626-626); 11175 (15-15)
[Υ(2S)Σ]hq=1\left[\Upsilon(2S)\otimes\Sigma\right]_{\ell_{\rm hq}=1} nnsbb¯nnsb\bar{b} 33 12+\frac{1}{2}^{+}, 32+\frac{3}{2}^{+} or 52+\frac{5}{2}^{+} 10588 (626-626); 11199 (15-15)
χb0(1P)Σ\chi_{\rm b0}(1P)\otimes\Sigma nnsbb¯nnsb\bar{b} 21 12+\frac{1}{2}^{+} 10588 (462)-462); 11016 (34-34)
χb1(1P)Σ\chi_{\rm b1}(1P)\otimes\Sigma nnsbb¯nnsb\bar{b} 21 12+\frac{1}{2}^{+} or 32+\frac{3}{2}^{+} 10622 (462-462); 11049 (34-34)
hb(1P)Σh_{\rm b}(1P)\otimes\Sigma nnsbb¯nnsb\bar{b} 21 12+\frac{1}{2}^{+} or 32+\frac{3}{2}^{+} 10628 (462-462); 11056 (34-34)
χb2(1P)Σ\chi_{\rm b2}(1P)\otimes\Sigma nnsbb¯nnsb\bar{b} 21 32+\frac{3}{2}^{+} or 52+\frac{5}{2}^{+} 10641 (462-462); 11069 (34-34)
ηb(2S)Ξ\eta_{\rm b}(2S)\otimes\Xi nssbb¯nssb\bar{b} 23 12\frac{1}{2}^{-} 10664 (657-657); 11126 (194-194)
Υ(2S)Ξ\Upsilon(2S)\otimes\Xi nssbb¯nssb\bar{b} 23 12\frac{1}{2}^{-} or 32\frac{3}{2}^{-} 10688 (657-657); 11150 (195-195)
χb0(1P)Ξ\chi_{\rm b0}(1P)\otimes\Xi nssbb¯nssb\bar{b} 14 12+\frac{1}{2}^{+} 10832 (349-349)
[ηb(2S)Ξ]hq=1\left[\eta_{\rm b}(2S)\otimes\Xi\right]_{\ell_{\rm hq}=1} nssbb¯nssb\bar{b} 23 12+\frac{1}{2}^{+} or 32+\frac{3}{2}^{+} 10833 (488-488)
[Υ(2S)Ξ]hq=1\left[\Upsilon(2S)\otimes\Xi\right]_{\ell_{\rm hq}=1} nssbb¯nssb\bar{b} 23 12+\frac{1}{2}^{+}, 32+\frac{3}{2}^{+} or 52+\frac{5}{2}^{+} 10857 (488-488)
χb1(1P)Ξ\chi_{\rm b1}(1P)\otimes\Xi nssbb¯nssb\bar{b} 14 12+\frac{1}{2}^{+} or 32+\frac{3}{2}^{+} 10865 (349-349)
hb(1P)Ξh_{\rm b}(1P)\otimes\Xi nssbb¯nssb\bar{b} 14 12+\frac{1}{2}^{+} or 32+\frac{3}{2}^{+} 10872 (349-349)
χb2(1P)Ξ\chi_{\rm b2}(1P)\otimes\Xi nssbb¯nssb\bar{b} 14 32+\frac{3}{2}^{+} or 52+\frac{5}{2}^{+} 10885 (349-349)
ηb(2S)Ξ\eta_{\rm b}(2S)\otimes\Xi nssbb¯nssb\bar{b} 33 12\frac{1}{2}^{-} 10315 (1006-1006); 10818 (502-502)
Υ(2S)Ξ\Upsilon(2S)\otimes\Xi nssbb¯nssb\bar{b} 33 12\frac{1}{2}^{-} or 32\frac{3}{2}^{-} 10339 (1006-1006); 10842 (503-503)
[ηb(2S)Ξ]hq=1\left[\eta_{\rm b}(2S)\otimes\Xi\right]_{\ell_{\rm hq}=1} nssbb¯nssb\bar{b} 33 12+\frac{1}{2}^{+} or 32+\frac{3}{2}^{+} 10495 (826-826); 11137 (183-183)
[Υ(2S)Ξ]hq=1\left[\Upsilon(2S)\otimes\Xi\right]_{\ell_{\rm hq}=1} nssbb¯nssb\bar{b} 33 12+\frac{1}{2}^{+}, 32+\frac{3}{2}^{+} or 52+\frac{5}{2}^{+} 10519 (826-826); 11161 (184-184)
χb0(1P)Ξ\chi_{\rm b0}(1P)\otimes\Xi nssbb¯nssb\bar{b} 21 12+\frac{1}{2}^{+} 10593 (588-588); 11044 (138-138)
χb1(1P)Ξ\chi_{\rm b1}(1P)\otimes\Xi nssbb¯nssb\bar{b} 21 12+\frac{1}{2}^{+} or 32+\frac{3}{2}^{+} 10627 (588-588); 11077 (138-138)
hb(1P)Ξh_{\rm b}(1P)\otimes\Xi nssbb¯nssb\bar{b} 21 12+\frac{1}{2}^{+} or 32+\frac{3}{2}^{+} 10633 (588-588); 11083 (138-138)
χb2(1P)Ξ\chi_{\rm b2}(1P)\otimes\Xi nssbb¯nssb\bar{b} 21 32+\frac{3}{2}^{+} or 52+\frac{5}{2}^{+} 10646 (588-588); 11096 (138-138)
Table 3: As Table 2, but for bottomonium-Σ\Sigma and Ξ\Xi bound states.

III Spectra of strange hidden-charm and bottom tetra- and pentaquarks in the hadro-quarkonium model

In this section, we discuss our results for the spectrum of heavy quarkonium-strange hadron bound states.

The binding energies are computed in the hadro-quarkonium model of Sec. II and Refs. Anwar:2018bpu ; Ferretti:2018kzy ; Dubynskiy:2008mq by solving the two-body eigenvalue problem of Eq. (2) via a finite differences algorithm (Feynman-Lectures, , Vol. 3, Sec. 16-6). As a check, the same results are also obtained by means of a numerical code based on the Multhopp method; see (Richard, , Sec. 2.4). The values of the heavy quarkonium chromo-electric polarizabilities and light hadron radii used here are given in Table 1.

III.1 Hidden-charm and hidden-bottom pentaquarks with strangeness in the hadro-quarkonium model

The first step of our investigation is the study of heavy quarkonium-hyperon bound states. Our findings are enlisted in Tables 2 and 3.

It is worth noting that: I) According to our predictions, heavy-quarkonium-hyperon states may be deeply bound; II) In some cases, the VhqV_{\rm hq} potential well is deep enough to give rise to a heavy-quarkonium-baryon bound state and its radial excitation; III) Our results show a strong dependence on the hyperon’s radius, RR_{\mathcal{B}}. See Eq. (2). The theoretical predictions for RR_{\mathcal{B}}’s are highly model dependent and span a relatively wide range Ledwig:2006gw ; Kubis:1999xb ; Buchmann:2002et ; Carrillo-Serrano:2016igi . However, the use of different values of the hyperon’s radius does not change our first conclusion qualitatively. As an example, we consider the ηc(2S)Σ\eta_{\rm c}(2S)\otimes\Sigma state. If we extract the value of the Σ\Sigma radius from Ref. Carrillo-Serrano:2016igi , RΣ=12(RΣ++RΣ)=0.91R_{\Sigma}=\frac{1}{2}\left(R_{\Sigma^{+}}+R_{\Sigma^{-}}\right)=0.91 fm, we get a binding energy Bηc(2S)Σ=294B_{\eta_{\rm c}(2S)\otimes\Sigma}=-294 MeV; if we use the experimental value Tanabashi:2018oca , RΣ=RΣ=0.780R_{\Sigma}=R_{\Sigma^{-}}=0.780 fm, we obtain Bηc(2S)Σ=492B_{\eta_{\rm c}(2S)\otimes\Sigma}=-492 MeV. The previous results can be compared to our prediction from Table 2, Bηc(2S)Σ=355B_{\eta_{\rm c}(2S)\otimes\Sigma}=-355 MeV, calculated with RΣ=12(RΣ++RΣ)=0.863R_{\Sigma}=\frac{1}{2}\left(R_{\Sigma^{+}}+R_{\Sigma^{-}}\right)=0.863 fm Ledwig:2006gw ; IV) In bottomonium-hyperon configurations, the presence of a heavier (nonrelativistic) bb¯b\bar{b} pair is expected to make the hadro-bottomonium system more stable than the hadro-charmonium one due to kinetic energy suppression. This is why the strange hidden-bottom pentaquarks are more tightly bound than their hidden-charm counterparts; V) If we consider the second set of values for the bottomonium chromo-electric polarizabilities of Table 1, we get bottomonium-Σ\Sigma bound states characterized by very large binding energies. The hadro-quarkonium picture may break down in these specific cases. Thus, one may have to consider the possibility of a mixing between hadro-quarkonium and compact five-quark components:

H=(HhqVmixingVmixingHcompact) .H=\left(\begin{array}[]{cc}H_{\rm hq}&V_{\rm mixing}\\ V_{\rm mixing}&H_{\rm compact}\end{array}\right)\mbox{ }. (4)

Here, Hhq=Vhq+ThqH_{\rm hq}=V_{\rm hq}+T_{\rm hq} is the hadro-quarkonium Hamiltonian, with ThqT_{\rm hq} being the ψ\psi\mathcal{H} relative kinetic energy and VhqV_{\rm hq} the potential of Eq. (2); HcompactH_{\rm compact} is an effective Hamiltonian, which describes a compact five-quark system; VmixingV_{\rm mixing} is an off-diagonal interaction, which mixes hadro-quarkonium and compact five-quark components.

Composition Quark content αψψ(n)\alpha_{\psi\psi}(n\ell) [GeV-3] JtotPJ_{\rm tot}^{P} Mass (Binding) [MeV]
χc0(1P)K\chi_{\rm c0}(1P)\otimes K ns¯cc¯n\bar{s}c\bar{c} (sn¯cc¯s\bar{n}c\bar{c}) 11 00^{-} 3886 (22-22)
ηc(2S)K\eta_{\rm c}(2S)\otimes K ns¯cc¯n\bar{s}c\bar{c} (sn¯cc¯s\bar{n}c\bar{c}) 18 0+0^{+} 3948 (183-183)
χc1(1P)K\chi_{\rm c1}(1P)\otimes K ns¯cc¯n\bar{s}c\bar{c} (sn¯cc¯s\bar{n}c\bar{c}) 11 11^{-} 3981 (23-23)
ψ(2S)K\psi(2S)\otimes K ns¯cc¯n\bar{s}c\bar{c} (sn¯cc¯s\bar{n}c\bar{c}) 18 1+1^{+} 3996 (184-184)
hc(1P)Kh_{\rm c}(1P)\otimes K ns¯cc¯n\bar{s}c\bar{c} (sn¯cc¯s\bar{n}c\bar{c}) 11 11^{-} 3996 (23-23)
χc2(1P)K\chi_{\rm c2}(1P)\otimes K ns¯cc¯n\bar{s}c\bar{c} (sn¯cc¯s\bar{n}c\bar{c}) 11 22^{-} 4027 (23-23)
χc0(1P)K\chi_{\rm c0}(1P)\otimes K^{*} ns¯cc¯n\bar{s}c\bar{c} (sn¯cc¯s\bar{n}c\bar{c}) 11 11^{-} 4155 (151-151)
ηc(2S)K\eta_{\rm c}(2S)\otimes K^{*} ns¯cc¯n\bar{s}c\bar{c} (sn¯cc¯s\bar{n}c\bar{c}) 18 1+1^{+} 4159 (370-370)
ψ(2S)K\psi(2S)\otimes K^{*} ns¯cc¯n\bar{s}c\bar{c} (sn¯cc¯s\bar{n}c\bar{c}) 18 0+,1+,2+0^{+},1^{+},2^{+} 4207 (371-371)
χc1(1P)K\chi_{\rm c1}(1P)\otimes K^{*} ns¯cc¯n\bar{s}c\bar{c} (sn¯cc¯s\bar{n}c\bar{c}) 11 0,1,20^{-},1^{-},2^{-} 4250 (152-152)
hc(1P)Kh_{\rm c}(1P)\otimes K^{*} ns¯cc¯n\bar{s}c\bar{c} (sn¯cc¯s\bar{n}c\bar{c}) 11 0,1,20^{-},1^{-},2^{-} 4265 (153-153)
χc2(1P)K\chi_{\rm c2}(1P)\otimes K^{*} ns¯cc¯n\bar{s}c\bar{c} (sn¯cc¯s\bar{n}c\bar{c}) 11 1,2,31^{-},2^{-},3^{-} 4295 (153-153)
[ηc(2S)K]hq=1\left[\eta_{\rm c}(2S)\otimes K^{*}\right]_{\ell_{\rm hq}=1} ns¯cc¯n\bar{s}c\bar{c} (sn¯cc¯s\bar{n}c\bar{c}) 18 0,1,20^{-},1^{-},2^{-} 4436 (93-93)
[ψ(2S)K]hq=1\left[\psi(2S)\otimes K^{*}\right]_{\ell_{\rm hq}=1} ns¯cc¯n\bar{s}c\bar{c} (sn¯cc¯s\bar{n}c\bar{c}) 18 0,1,2,30^{-},1^{-},2^{-},3^{-} 4484 (94-94)
Table 4: As Table 2, but for charmonium-KK and K(892)K^{*}(892) bound states.
Composition Quark content αψψ(n)\alpha_{\psi\psi}(n\ell) [GeV-3] JtotPJ_{\rm tot}^{P} Mass (Binding) [MeV]
ηb(2S)K\eta_{\rm b}(2S)\otimes K ns¯bb¯n\bar{s}b\bar{b} (sn¯bb¯s\bar{n}b\bar{b}) 23 0+0^{+} 10121 (372-372)
Υ(2S)K\Upsilon(2S)\otimes K ns¯bb¯n\bar{s}b\bar{b} (sn¯bb¯s\bar{n}b\bar{b}) 23 1+1^{+} 10145 (372-372)
χb0(1P)K\chi_{\rm b0}(1P)\otimes K ns¯bb¯n\bar{s}b\bar{b} (sn¯bb¯s\bar{n}b\bar{b}) 14 00^{-} 10254 (99-99)
χb1(1P)K\chi_{\rm b1}(1P)\otimes K ns¯bb¯n\bar{s}b\bar{b} (sn¯bb¯s\bar{n}b\bar{b}) 14 11^{-} 10288 (99-99)
hb(1P)Kh_{\rm b}(1P)\otimes K ns¯bb¯n\bar{s}b\bar{b} (sn¯bb¯s\bar{n}b\bar{b}) 14 11^{-} 10294 (99-99)
χb2(1P)K\chi_{\rm b2}(1P)\otimes K ns¯bb¯n\bar{s}b\bar{b} (sn¯bb¯s\bar{n}b\bar{b}) 14 22^{-} 10307 (99-99)
ηb(2S)K\eta_{\rm b}(2S)\otimes K ns¯bb¯n\bar{s}b\bar{b} (sn¯bb¯s\bar{n}b\bar{b}) 33 0+0^{+} 9755 (738-738)
Υ(2S)K\Upsilon(2S)\otimes K ns¯bb¯n\bar{s}b\bar{b} (sn¯bb¯s\bar{n}b\bar{b}) 33 1+1^{+} 9779 (738-738)
χb0(1P)K\chi_{\rm b0}(1P)\otimes K ns¯bb¯n\bar{s}b\bar{b} (sn¯bb¯s\bar{n}b\bar{b}) 21 00^{-} 10049 (305-305)
χb1(1P)K\chi_{\rm b1}(1P)\otimes K ns¯bb¯n\bar{s}b\bar{b} (sn¯bb¯s\bar{n}b\bar{b}) 21 11^{-} 10082 (305-305)
hb(1P)Kh_{\rm b}(1P)\otimes K ns¯bb¯n\bar{s}b\bar{b} (sn¯bb¯s\bar{n}b\bar{b}) 21 11^{-} 10088 (305-305)
χb2(1P)K\chi_{\rm b2}(1P)\otimes K ns¯bb¯n\bar{s}b\bar{b} (sn¯bb¯s\bar{n}b\bar{b}) 21 22^{-} 10101 (305-305)
[ηb(2S)K]hq=1\left[\eta_{\rm b}(2S)\otimes K\right]_{\ell_{\rm hq}=1} ns¯bb¯n\bar{s}b\bar{b} (sn¯bb¯s\bar{n}b\bar{b}) 33 11^{-} 10425 (68-68)
[Υ(2S)K]hq=1\left[\Upsilon(2S)\otimes K\right]_{\ell_{\rm hq}=1} ns¯bb¯n\bar{s}b\bar{b} (sn¯bb¯s\bar{n}b\bar{b}) 33 00^{-}, 11^{-} or 22^{-} 10449 (68-68)
ηb(2S)K\eta_{\rm b}(2S)\otimes K^{*} ns¯bb¯n\bar{s}b\bar{b} (sn¯bb¯s\bar{n}b\bar{b}) 23 1+1^{+} 10323 (568-568)
Υ(2S)K\Upsilon(2S)\otimes K^{*} ns¯bb¯n\bar{s}b\bar{b} (sn¯bb¯s\bar{n}b\bar{b}) 23 0+,1+,2+0^{+},1^{+},2^{+} 10347 (568-568)
χb0(1P)K\chi_{\rm b0}(1P)\otimes K^{*} ns¯bb¯n\bar{s}b\bar{b} (sn¯bb¯s\bar{n}b\bar{b}) 14 11^{-} 10484 (267-267)
χb1(1P)K\chi_{\rm b1}(1P)\otimes K^{*} ns¯bb¯n\bar{s}b\bar{b} (sn¯bb¯s\bar{n}b\bar{b}) 14 0,1,20^{-},1^{-},2^{-} 10517 (267-267)
hb(1P)Kh_{\rm b}(1P)\otimes K^{*} ns¯bb¯n\bar{s}b\bar{b} (sn¯bb¯s\bar{n}b\bar{b}) 14 0,1,20^{-},1^{-},2^{-} 10524 (267-267)
χb2(1P)K\chi_{\rm b2}(1P)\otimes K^{*} ns¯bb¯n\bar{s}b\bar{b} (sn¯bb¯s\bar{n}b\bar{b}) 14 1,2,31^{-},2^{-},3^{-} 10536 (267-267)
[ηb(2S)K]hq=1\left[\eta_{\rm b}(2S)\otimes K^{*}\right]_{\ell_{\rm hq}=1} ns¯bb¯n\bar{s}b\bar{b} (sn¯bb¯s\bar{n}b\bar{b}) 23 0,1,20^{-},1^{-},2^{-} 10604 (286-286)
[Υ(2S)K]hq=1\left[\Upsilon(2S)\otimes K^{*}\right]_{\ell_{\rm hq}=1} ns¯bb¯n\bar{s}b\bar{b} (sn¯bb¯s\bar{n}b\bar{b}) 23 0,1,2,30^{-},1^{-},2^{-},3^{-} 10629 (286-286)
[χb0(1P)K]hq=1\left[\chi_{\rm b0}(1P)\otimes K^{*}\right]_{\ell_{\rm hq}=1} ns¯bb¯n\bar{s}b\bar{b} (sn¯bb¯s\bar{n}b\bar{b}) 14 0+,1+,2+0^{+},1^{+},2^{+} 10711 (40-40)
[χb1(1P)K]hq=1\left[\chi_{\rm b1}(1P)\otimes K^{*}\right]_{\ell_{\rm hq}=1} ns¯bb¯n\bar{s}b\bar{b} (sn¯bb¯s\bar{n}b\bar{b}) 14 0+,1+,2+,3+0^{+},1^{+},2^{+},3^{+} 10745 (40-40)
[hb(1P)K]hq=1\left[h_{\rm b}(1P)\otimes K^{*}\right]_{\ell_{\rm hq}=1} ns¯bb¯n\bar{s}b\bar{b} (sn¯bb¯s\bar{n}b\bar{b}) 14 0+,1+,2+,3+0^{+},1^{+},2^{+},3^{+} 10751 (40-40)
[χb2(1P)K]hq=1\left[\chi_{\rm b2}(1P)\otimes K^{*}\right]_{\ell_{\rm hq}=1} ns¯bb¯n\bar{s}b\bar{b} (sn¯bb¯s\bar{n}b\bar{b}) 14 0+,1+,2+,3+,4+0^{+},1^{+},2^{+},3^{+},4^{+} 10764 (40-40)
ηb(2S)K\eta_{\rm b}(2S)\otimes K^{*} ns¯bb¯n\bar{s}b\bar{b} (sn¯bb¯s\bar{n}b\bar{b}) 33 1+1^{+} 9974 (917-917); 10786 (105-105)
Υ(2S)K\Upsilon(2S)\otimes K^{*} ns¯bb¯n\bar{s}b\bar{b} (sn¯bb¯s\bar{n}b\bar{b}) 33 0+,1+,2+0^{+},1^{+},2^{+} 9998 (917-917); 10810 (105-105)
χb0(1P)K\chi_{\rm b0}(1P)\otimes K^{*} ns¯bb¯n\bar{s}b\bar{b} (sn¯bb¯s\bar{n}b\bar{b}) 21 11^{-} 10252 (499-499)
[ηb(2S)K]hq=1\left[\eta_{\rm b}(2S)\otimes K^{*}\right]_{\ell_{\rm hq}=1} ns¯bb¯n\bar{s}b\bar{b} (sn¯bb¯s\bar{n}b\bar{b}) 33 0,1,20^{-},1^{-},2^{-} 10284 (607-607)
χb1(1P)K\chi_{\rm b1}(1P)\otimes K^{*} ns¯bb¯n\bar{s}b\bar{b} (sn¯bb¯s\bar{n}b\bar{b}) 21 0,1,20^{-},1^{-},2^{-} 10285 (499-499)
hb(1P)Kh_{\rm b}(1P)\otimes K^{*} ns¯bb¯n\bar{s}b\bar{b} (sn¯bb¯s\bar{n}b\bar{b}) 21 0,1,20^{-},1^{-},2^{-} 10292 (499-499)
χb2(1P)K\chi_{\rm b2}(1P)\otimes K^{*} ns¯bb¯n\bar{s}b\bar{b} (sn¯bb¯s\bar{n}b\bar{b}) 21 1,2,31^{-},2^{-},3^{-} 10305 (499-499)
[Υ(2S)K]hq=1\left[\Upsilon(2S)\otimes K^{*}\right]_{\ell_{\rm hq}=1} ns¯bb¯n\bar{s}b\bar{b} (sn¯bb¯s\bar{n}b\bar{b}) 33 0,1,2,30^{-},1^{-},2^{-},3^{-} 10308 (607-607)
[χb0(1P)K]hq=1\left[\chi_{\rm b0}(1P)\otimes K^{*}\right]_{\ell_{\rm hq}=1} ns¯bb¯n\bar{s}b\bar{b} (sn¯bb¯s\bar{n}b\bar{b}) 21 0+,1+,2+0^{+},1^{+},2^{+} 10525 (226-226)
[χb1(1P)K]hq=1\left[\chi_{\rm b1}(1P)\otimes K^{*}\right]_{\ell_{\rm hq}=1} ns¯bb¯n\bar{s}b\bar{b} (sn¯bb¯s\bar{n}b\bar{b}) 21 0+,1+,2+,3+0^{+},1^{+},2^{+},3^{+} 10558 (226-226)
[hb(1P)K]hq=1\left[h_{\rm b}(1P)\otimes K^{*}\right]_{\ell_{\rm hq}=1} ns¯bb¯n\bar{s}b\bar{b} (sn¯bb¯s\bar{n}b\bar{b}) 21 0+,1+,2+,3+0^{+},1^{+},2^{+},3^{+} 10565 (226-226)
[χb2(1P)K]hq=1\left[\chi_{\rm b2}(1P)\otimes K^{*}\right]_{\ell_{\rm hq}=1} ns¯bb¯n\bar{s}b\bar{b} (sn¯bb¯s\bar{n}b\bar{b}) 21 0+,1+,2+,3+,4+0^{+},1^{+},2^{+},3^{+},4^{+} 10578 (226-226)
Table 5: As Table 2, but for bottomonium-KK and K(892)K^{*}(892) bound states.

III.2 Hidden-charm and hidden-bottom tetraquarks with strangeness in the hadro-quarkonium model

As a second step, we study heavy quarkonium-kaon and KK^{*} configurations. Our findings are enlisted in Tables 4 and 5.

Heavy quarkonium-kaon bound states show similar features as the heavy-light pentaquarks of Sec. III.1. In particular, one can notice that: I) The hadro-quarkonium interaction, Eq. (2), may determine the emergence of deeply-bound charmonium-kaon tetraquark configurations; II) Even more stable configurations are the bottomonium-kaon ones; III) In both previous cases, if one substitutes the kaon with the KK^{*}, one obtains extremely stable systems. As discussed in Sec. III.1, a more realistic description of ψK\psi K^{*} systems may be accomplished by making use of the Hamiltonian (4), where one also takes mixing effects between hadro-quarkonium and compact tetraquark components into account. Compact heavy-light tetraquarks have been extensively studied. For example, see the potential model calculations of Refs. Ebert:2008wm ; Lu:2016cwr ; Anwar:2018sol ; Bedolla:2019zwg ; Yang:2019itm and Secs. IV and V.

The quality of the approximation of neglecting mixing effects between the heavy, ψ\psi, and the light, \mathcal{H}, hadron components in the hadro-charmonium states of Table 4 can be evaluated by calculating the wave function overlap of the previous components at the hadro-quarkonium center

Poverlap=0Rd3r Ψψ(𝐫)Ψ(𝐫) .P_{\rm overlap}=\int_{0}^{R_{\mathcal{H}}}d^{3}r\mbox{ }\Psi_{\psi}({\bf r})\Psi_{\mathcal{H}}({\bf r})\mbox{ }. (5)

Here, RR_{\mathcal{H}} is the light hadron’s radius and Ψψ(𝐫)\Psi_{\psi}({\bf r}) and Ψ(𝐫)\Psi_{\mathcal{H}}({\bf r}) are the wave functions of the heavy and light hadro-quarkonium constituents, respectively, extracted from the relativized QM Godfrey:1985xj . If we restrict to the case of kaon-charmonium bound states, the heavy and light hadro-quarkonium’s constituents can only be 1P1P or 2S2S charmonia (heavy component) and 1S1S KK or KK^{*} mesons (light component); see Table IV.

We consider two different examples, χc0(1P)K\chi_{\rm c0}(1P)\otimes K and ηc(2S)K\eta_{\rm c}(2S)\otimes K. All the other combinations of heavy and light mesons are analogous to the previous ones, because we expect the radial wave functions of all the other χc(1P)\chi_{\rm c}(1P) states to be very similar to that of the χc0(1P)\chi_{\rm c0}(1P), namely Ψχc0(1P)(r)Ψhc(1P)(r)Ψχc1(1P)(r)Ψχc2(1P)(r)\Psi_{\chi_{\rm c0}(1P)}(r)\simeq\Psi_{h_{\rm c}(1P)}(r)\simeq\Psi_{\chi_{\rm c1}(1P)}(r)\simeq\Psi_{\chi_{\rm c2}(1P)}(r); analogously, we expect that Ψψ(2S)(r)Ψηc(2S)(r)\Psi_{\psi(2S)}(r)\simeq\Psi_{\eta_{\rm c}(2S)}(r) and ΨK(r)ΨK(r)\Psi_{K}(r)\simeq\Psi_{K^{*}}(r). By calculating the overlap integral of Eq. (5), we get Poverlap[χc0(1P)K]=0P_{\rm overlap}[\chi_{\rm c0}(1P)\otimes K]=0 and Poverlap[ηc(2S)K]=0.01P_{\rm overlap}[\eta_{\rm c}(2S)\otimes K]=0.01.

In conclusion, the previous test would indicate that in χc0(1P)K\chi_{\rm c0}(1P)\otimes K and ηc(2S)K\eta_{\rm c}(2S)\otimes K bound states the approximations we considered are acceptable ones and that there should be no substantial mixing among the heavy and light components.

IV Relativized Diquark Model

We describe tetraquarks as color-antitriplet (3¯c\bar{3}_{c}) diquark and color-triplet (3c3_{c}) antidiquark (𝒟𝒟¯\mathcal{D}\bar{\mathcal{D}}) bound states. We also assume the constituents, 𝒟\mathcal{D} and 𝒟¯\bar{\mathcal{D}}, to be inert against internal spatial excitations Anselmino:1992vg ; Santopinto:2004hw ; Ferretti:2011zz ; Santopinto:2014opa . Consequently, the internal dynamics of the 𝒟𝒟¯\mathcal{D}\bar{\mathcal{D}} system can be described by means of a single relative coordinate 𝐫rel\bf{r}_{\rm rel} with conjugate momentum 𝐪rel{\bf q}_{\rm rel}.

The Hamiltonian of the system is given by Anwar:2017toa ; Anwar:2018sol ; Bedolla:2019zwg

REL\displaystyle\mathcal{H}^{\rm REL} =T+V(𝐫rel),\displaystyle=T+V({\bf r}_{\rm rel})\,, (6a)
T\displaystyle T =𝐪rel2+m𝒟a2+𝐪rel2+m𝒟¯b2,\displaystyle=\sqrt{{\mathbf{q}}_{\rm rel}^{2}+m_{{\mathcal{D}}_{a}}^{2}}+\sqrt{{\mathbf{q}}_{\rm rel}^{2}+m_{\bar{\mathcal{D}}_{b}}^{2}}, (6b)

where the potential

V(rrel)=βrrel+G(rrel)+2𝐒Da𝐒D¯b3m𝒟am𝒟¯b 2G(rrel)13m𝒟am𝒟¯b(3𝐒𝒟ar^rel 𝐒𝒟¯br^rel𝐒𝒟a𝐒𝒟¯b)×(2rrel21rrelrrel)G(rrel)+ΔE ,\begin{array}[]{rcl}V(r_{\rm rel})&=&\beta r_{\rm rel}+G(r_{\rm rel})+\frac{2{\bf S}_{D_{a}}\cdot{\bf S}_{\bar{D}_{b}}}{3m_{{\mathcal{D}}_{a}}m_{{\bar{\mathcal{D}}}_{b}}}\mbox{ }\nabla^{2}G(r_{\rm rel})-\frac{1}{3m_{{\mathcal{D}}_{a}}m_{\bar{\mathcal{D}}_{b}}}\left(3{\bf S}_{{\mathcal{D}}_{a}}\cdot\hat{r}_{\rm rel}\mbox{ }{\bf S}_{\bar{\mathcal{D}}_{b}}\cdot\hat{r}_{\rm rel}-{\bf S}_{{\mathcal{D}}_{a}}\cdot{\bf S}_{\bar{\mathcal{D}}_{b}}\right)\\ &\times&\left(\frac{\partial^{2}}{\partial r_{\rm rel}^{2}}-\frac{1}{r_{\rm rel}}\frac{\partial}{\partial r_{\rm rel}}\right)G(r_{\rm rel})+\Delta E\mbox{ },\end{array} (7)

is the sum of linear-confinement and one-gluon exchange (OGE) terms Celmaster:1977vh ; Godfrey:1985xj ; Capstick:1986bm ; Anwar:2018sol . The Coulomb-like part is Godfrey:1985xj ; Capstick:1986bm

G(rrel)=4αs(rrel)3rrel=k4αk3rrel Erf(τ𝒟a𝒟¯bkrrel) ,G(r_{\rm rel})=-\frac{4\alpha_{\rm s}(r_{\rm rel})}{3r_{\rm rel}}=-\sum_{k}\frac{4\alpha_{k}}{3r_{\rm rel}}\mbox{ Erf}(\tau_{{\mathcal{D}}_{a}\bar{\mathcal{D}}_{b}k}\,r_{\rm rel})\mbox{ }, (8)

where Erf is the error function and Godfrey:1985xj ; Capstick:1986bm

τ𝒟a𝒟¯bk=γkσ𝒟a𝒟¯bσ𝒟a𝒟¯b2+γk2 ;  σ𝒟a𝒟¯b=12σ02[1+(4m𝒟am𝒟¯b(m𝒟a+m𝒟¯b)2)4]+s2(2m𝒟am𝒟¯bm𝒟a+m𝒟¯b)2 .\tau_{{\mathcal{D}}_{a}\bar{\mathcal{D}}_{b}\,k}=\frac{\gamma_{k}\sigma_{{\mathcal{D}}_{a}\bar{\mathcal{D}}_{b}}}{\sqrt{\sigma_{{\mathcal{D}}_{a}\bar{\mathcal{D}}_{b}}^{2}+\gamma_{k}^{2}}}\mbox{ };\mbox{ }\mbox{ }\sigma_{{\mathcal{D}}_{a}\bar{\mathcal{D}}_{b}}=\sqrt{\frac{1}{2}\sigma_{0}^{2}\left[1+\left(\frac{4m_{{\mathcal{D}}_{a}}m_{\bar{\mathcal{D}}_{b}}}{(m_{{\mathcal{D}}_{a}}+m_{\bar{\mathcal{D}}_{b}})^{2}}\right)^{4}\right]+s^{2}\left(\frac{2m_{{\mathcal{D}}_{a}}m_{\bar{\mathcal{D}}_{b}}}{m_{{\mathcal{D}}_{a}}+m_{\bar{\mathcal{D}}_{b}}}\right)^{2}}\mbox{ }. (9)

The model parameters are listed in Table 6. The strength of the linear confining interaction, β\beta, and the value of the constant, ΔE\Delta E, in Eq. (7) are taken from (Anwar:2018sol, , Table I); the values of the parameters αk\alpha_{k} and γk\gamma_{k} (k=1,2,3k=1,2,3), σ0\sigma_{0} and ss are extracted from Refs. Godfrey:1985xj ; Capstick:1986bm . The masses of the scalar and axial-vector diquarks cncn, cscs, bnbn and bsbs, are taken from Refs. Anwar:2018sol ; Bedolla:2019zwg ; Ferretti:2019zyh .

Therefore, the results we report below are parameter-free predictions. The present model was previously used to calculate the spectrum of hidden-charm Anwar:2018sol and fully-heavy tetraquarks Anwar:2017toa ; Bedolla:2019zwg .

Parameter Value Parameter Value
α1\alpha_{1} 0.25 γ1\gamma_{1} 2.53 fm-1
α2\alpha_{2} 0.15 γ2\gamma_{2} 8.01 fm-1
α3\alpha_{3} 0.20 γ3\gamma_{3} 80.1 fm-1
σ0\sigma_{0} 9.29 fm-1 ss 1.55
β\beta 3.90 fm-2 ΔE\Delta E 370-370 MeV
McnscM_{cn}^{\rm sc} 1933 MeV McnavM_{cn}^{\rm av} 2250 MeV
McsscM_{cs}^{\rm sc} 2229 MeV McsavM_{cs}^{\rm av} 2264 MeV
MbnscM_{bn}^{\rm sc} 5451 MeV MbnavM_{bn}^{\rm av} 5465 MeV
MbsscM_{bs}^{\rm sc} 5572 MeV MbsavM_{bs}^{\rm av} 5585 MeV
Table 6: Parameters of the Hamiltonian (6). Here n=un=u or dd and the superscripts “sc” and “av” indicate scalar and axial-vector diquarks, respectively.
𝐜𝐬𝐜¯𝐧¯\bf cs\bar{c}\bar{n}
JPCJ^{PC} N[(SD,SD¯)S,L]JN[(S_{D},S_{\bar{D}})S,L]J EthE^{\rm th} [MeV] JPCJ^{PC} N[(SD,SD¯)S,L]JN[(S_{D},S_{\bar{D}})S,L]J EthE^{\rm th} [MeV] JPCJ^{PC} N[(SD,SD¯)S,L]JN[(S_{D},S_{\bar{D}})S,L]J EthE^{\rm th} [MeV]
0++0^{++} 1[(1,1)0,0]01[(1,1)0,0]0 3657 1++1^{++} 1[(1,0)1,0]11[(1,0)1,0]1 4016 0+0^{-+} 1[(1,0)1,1]01[(1,0)1,1]0 4396
0++0^{++} 1[(0,0)0,0]01[(0,0)0,0]0 3852 1++1^{++} 2[(1,0)1,0]12[(1,0)1,0]1 4544 0+0^{-+} 1[(1,1)1,1]01[(1,1)1,1]0 4580
0++0^{++} 2[(0,0)0,0]02[(0,0)0,0]0 4383 1++1^{++} 1[(1,0)1,2]11[(1,0)1,2]1 4658 0+0^{-+} 2[(1,0)1,1]02[(1,0)1,1]0 4783
0++0^{++} 2[(1,1)0,0]02[(1,1)0,0]0 4496 1++1^{++} 1[(1,1)2,2]11[(1,1)2,2]1 4825 0+0^{-+} 2[(1,1)1,1]02[(1,1)1,1]0 4960
0++0^{++} 3[(0,0)0,0]03[(0,0)0,0]0 4747 1++1^{++} 3[(1,0)1,0]13[(1,0)1,0]1 4906 0+0^{-+} 3[(1,0)1,1]03[(1,0)1,1]0 5093
0++0^{++} 1[(1,1)2,2]01[(1,1)2,2]0 4830 1++1^{++} 2[(1,0)1,2]12[(1,0)1,2]1 4982 0+0^{-+} 3[(1,1)1,1]03[(1,1)1,1]0 5265
0++0^{++} 3[(1,1)0,0]03[(1,1)0,0]0 4913 1++1^{++} 2[(1,1)2,2]12[(1,1)2,2]1 5147
0++0^{++} 2[(1,1)2,2]02[(1,1)2,2]0 5151 1++1^{++} 3[(1,0)1,2]13[(1,0)1,2]1 5261
0++0^{++} 3[(1,1)2,2]03[(1,1)2,2]0 5427 1++1^{++} 3[(1,1)2,2]13[(1,1)2,2]1 5423
11^{--} 1[(0,0)0,1]11[(0,0)0,1]1 4234 2++2^{++} 1[(1,1)2,0]21[(1,1)2,0]2 4232 1+1^{+-} 1[(1,0)1,0]11[(1,0)1,0]1 4016
11^{--} 1[(1,0)1,1]11[(1,0)1,1]1 4396 2++2^{++} 1[(0,0)0,2]21[(0,0)0,2]2 4497 1+1^{+-} 1[(1,1)1,0]11[(1,1)1,0]1 4061
11^{--} 1[(1,1)0,1]11[(1,1)0,1]1 4558 2++2^{++} 2[(1,1)2,0]22[(1,1)2,0]2 4739 1+1^{+-} 2[(1,0)1,0]12[(1,0)1,0]1 4544
11^{--} 1[(1,1)2,1]11[(1,1)2,1]1 4583 2++2^{++} 1[(1,1)2,2]21[(1,1)2,2]2 4818 1+1^{+-} 2[(1,1)1,0]12[(1,1)1,0]1 4637
11^{--} 2[(0,0)0,1]12[(0,0)0,1]1 4622 2++2^{++} 1[(1,1)0,2]21[(1,1)0,2]2 4819 1+1^{+-} 1[(1,0)1,2]11[(1,0)1,2]1 4658
11^{--} 2[(1,0)1,1]12[(1,0)1,1]1 4783 2++2^{++} 2[(0,0)0,2]22[(0,0)0,2]2 4824 1+1^{+-} 1[(1,1)1,2]11[(1,1)1,2]1 4822
11^{--} 2[(1,1)0,1]12[(1,1)0,1]1 4942 2++2^{++} 3[(1,1)2,0]23[(1,1)2,0]2 5092 1+1^{+-} 3[(1,0)1,0]13[(1,0)1,0]1 4906
11^{--} 2[(1,1)2,1]12[(1,1)2,1]1 4962 2++2^{++} 3[(0,0)0,2]23[(0,0)0,2]2 5105 1+1^{+-} 2[(1,0)1,2]12[(1,0)1,2]1 4982
11^{--} 3[(0,0)0,1]13[(0,0)0,1]1 4935 2++2^{++} 2[(1,1)0,2]22[(1,1)0,2]2 5140 1+1^{+-} 3[(1,1)1,0]13[(1,1)1,0]1 5010
11^{--} 3[(1,0)1,1]13[(1,0)1,1]1 5093 2++2^{++} 2[(1,1)2,2]22[(1,1)2,2]2 5140 1+1^{+-} 2[(1,1)1,2]12[(1,1)1,2]1 5144
11^{--} 3[(1,1)0,1]13[(1,1)0,1]1 5250 2++2^{++} 3[(1,1)0,2]23[(1,1)0,2]2 5416 1+1^{+-} 3[(1,0)1,2]13[(1,0)1,2]1 5261
11^{--} 3[(1,1)2,1]13[(1,1)2,1]1 5268 2++2^{++} 3[(1,1)2,2]23[(1,1)2,2]2 5416 1+1^{+-} 3[(1,1)1,2]13[(1,1)1,2]1 5420
00^{--} 1[(1,0)1,1]01[(1,0)1,1]0 4396
00^{--} 2[(1,0)1,1]02[(1,0)1,1]0 4783
00^{--} 3[(1,0)1,1]03[(1,0)1,1]0 5093
Table 7: Masses of csc¯n¯cs\bar{c}\bar{n} (cnc¯s¯cn\bar{c}\bar{s}) tetraquarks, obtained by solving the eigenvalue problem of Eq. (6). We report states up to the second radial excitation. They are labelled thus: NN is the radial quantum number; SDS_{\rm D}, SD¯S_{\bar{\rm D}} are the spin of the diquark and antidiquark, respectively, coupled to the total spin of the meson, SS; the latter is coupled to the orbital angular momentum, LL, to get the total angular momentum of the tetraquark, JJ. In the case of scalar-axial-vector diquark configurations, there are two possible ways of combining diquarks to get a tetraquark with strangeness 𝒮=±1\mathcal{S}=\pm 1. They are [cn]{c¯s¯}[cn]\{\bar{c}\bar{s}\} and [cs]{c¯n¯}[cs]\{\bar{c}\bar{n}\}, where the diquarks in square brackets are scalar and those in curly brackets are axial-vector. In these cases, the values of the tetraquark masses shown are the average of the energies corresponding to the previous [cn]{c¯s¯}[cn]\{\bar{c}\bar{s}\} and [cs]{c¯n¯}[cs]\{\bar{c}\bar{n}\} spin-flavor configurations.

V Masses of csc¯n¯cs\bar{c}\bar{n} and bsb¯n¯bs\bar{b}\bar{n} states in the compact tetraquark model

Below, we provide results for the ground-state masses and the spectrum of strange hidden-charm (csc¯n¯cs\bar{c}\bar{n} and cnc¯s¯cn\bar{c}\bar{s}) and bottom (bsb¯n¯bs\bar{b}\bar{n} and bnb¯s¯bn\bar{b}\bar{s}) tetraquarks in the compact tetraquark model of Refs. Anwar:2017toa ; Anwar:2018sol ; Bedolla:2019zwg and Sec. IV.

The tetraquark masses are obtained by solving the eigenvalue problem of Eq. (6) by means of a numerical variational procedure, based on harmonic oscillator trial wave functions. This variational method was previously applied to meson and baryon spectroscopy Ferretti:2011zz ; Santopinto:2014opa ; Bedolla:2019zwg ; Anwar:2017toa ; Anwar:2018sol .

V.1 Ground-state energies of csc¯n¯cs\bar{c}\bar{n} and bsb¯n¯bs\bar{b}\bar{n} tetraquarks

Our starting point is the calculation of the ground-state masses of csc¯n¯cs\bar{c}\bar{n} (cnc¯s¯cn\bar{c}\bar{s}) and bsb¯n¯bs\bar{b}\bar{n} (bnb¯s¯bn\bar{b}\bar{s}) tetraquark configurations.

In the first case, we obtain

Mcsc¯n¯gs={3.85 GeV (sc-sc configuration)3.66 GeV (av-av configuration) ,M_{cs\bar{c}\bar{n}}^{\rm gs}=\left\{\begin{array}[]{rl}3.85\mbox{ GeV }&(\mbox{sc-sc configuration})\\ 3.66\mbox{ GeV }&(\mbox{av-av configuration})\end{array}\right.\mbox{ }, (10)

where the notations “sc” and “av” indicate scalar and axial-vector diquarks, respectively. The previous values have be compared with the experimental energy of the DD¯sD\bar{D}_{\rm s} threshold, 3.843.84 GeV Tanabashi:2018oca . It is interesting to observe that the av-av csc¯n¯cs\bar{c}\bar{n} tetraquark ground-state is around 200 MeV below the lowest energy hadro-charmonium ηcK\eta_{\rm c}\otimes K state of Table 4, which lies at an energy of 3886 MeV.

In the second case, we get

Mbsb¯n¯gs={10.41 GeV (sc-sc configuration)10.23 GeV (av-av configuration) ,M_{bs\bar{b}\bar{n}}^{\rm gs}=\left\{\begin{array}[]{rl}10.41\mbox{ GeV }&(\mbox{sc-sc configuration})\\ 10.23\mbox{ GeV }&(\mbox{av-av configuration})\end{array}\right.\mbox{ }, (11)

to be compared with the BB¯sB\bar{B}_{\rm s} threshold energy, 10.6510.65 GeV Tanabashi:2018oca . Contrary to the csc¯n¯cs\bar{c}\bar{n} case, the av-av bsb¯n¯bs\bar{b}\bar{n} tetraquark ground-state is above the lowest energy hadro-bottomonium ηbK\eta_{\rm b}\otimes K state of Table 5, which lies at an energy between 9.76 and 10.12 GeV depending on the input value of the chromo-electric polarizability.

According to the previous results, strange hidden-charm and bottom tetraquarks may be bound. However, due to the largeness of the theoretical uncertainties on the bsb¯n¯bs\bar{b}\bar{n} and, especially, csc¯n¯cs\bar{c}\bar{n} ground-state tetraquark masses, it is difficult to draw a definitive conclusion.

V.2 Spectra of csc¯n¯cs\bar{c}\bar{n} and bsb¯n¯bs\bar{b}\bar{n} tetraquarks

After discussing the possible emergence of csc¯n¯cs\bar{c}\bar{n} and bsb¯n¯bs\bar{b}\bar{n} tetraquarks and their ground-state energies, the next step is to calculate the spectrum predicted by the Hamiltonian of Eq. (6) with the model parameters of Table 6. In Tables 7 and 8 we report the masses of csc¯n¯cs\bar{c}\bar{n} (cnc¯s¯cn\bar{c}\bar{s}) and bsb¯n¯bs\bar{b}\bar{n} (bnb¯s¯bn\bar{b}\bar{s}) compact tetraquarks, where n=un=u or dd, up to the second radial excitations.

As discussed in Ref. Bedolla:2019zwg , these type of predictions may serve as benchmarks for other analyses with the goal of identifying model-dependent artifacts and develop a perspective on those predictions which might only be weakly sensitive to model details. Moreover, given the possibility that J=0++J=0^{++} tetraquarks may be more difficult to access experimentally than 11^{--} resonances, our predictions for J0J\neq 0 states may be useful in the experimental search for csc¯n¯cs\bar{c}\bar{n} and bsb¯n¯bs\bar{b}\bar{n} tetraquark states.

The calculation of the spectrum is only the first step of a wider analysis, with the aim of understanding the possible formation and stability of compact tetraquark states. The following steps include the calculation of tetraquark decay amplitudes, production cross-sections, and the study of their production mechanisms. When compared to the same observables calculated within other interpretations for XYZXYZ states (like the meson-meson molecular model, the hadro-quarkonium model and the UQM) and the experimental data, it will be possible to distinguish among the different interpretations and possibly rule out those which are not compatible with the experimental resuls.

In conclusion, even though the experimental search for strange hidden-charm and bottom tetraquarks may be challenging, the observation of these systems may be extremely useful to understand the quark structure of XYZXYZ exotic mesons.

𝐛𝐬𝐛¯𝐧¯\bf bs\bar{b}\bar{n}
JPCJ^{PC} N[(SD,SD¯)S,L]JN[(S_{D},S_{\bar{D}})S,L]J EthE^{\rm th} [MeV] JPCJ^{PC} N[(SD,SD¯)S,L]JN[(S_{D},S_{\bar{D}})S,L]J EthE^{\rm th} [MeV] JPCJ^{PC} N[(SD,SD¯)S,L]JN[(S_{D},S_{\bar{D}})S,L]J EthE^{\rm th} [MeV]
0++0^{++} 1[(1,1)0,0]01[(1,1)0,0]0 10234 1++1^{++} 1[(1,0)1,0]11[(1,0)1,0]1 10420 0+0^{-+} 1[(1,0)1,1]01[(1,0)1,1]0 10804
0++0^{++} 1[(0,0)0,0]01[(0,0)0,0]0 10407 1++1^{++} 2[(1,0)1,0]12[(1,0)1,0]1 10922 0+0^{-+} 1[(1,1)1,1]01[(1,1)1,1]0 10827
0++0^{++} 2[(1,1)0,0]02[(1,1)0,0]0 10848 1++1^{++} 1[(1,0)1,2]11[(1,0)1,2]1 11039 0+0^{-+} 2[(1,0)1,1]02[(1,0)1,1]0 11139
0++0^{++} 2[(0,0)0,0]02[(0,0)0,0]0 10909 1++1^{++} 1[(1,1)2,2]11[(1,1)2,2]1 11054 0+0^{-+} 2[(1,1)1,1]02[(1,1)1,1]0 11159
0++0^{++} 1[(1,1)2,2]01[(1,1)2,2]0 11056 1++1^{++} 3[(1,0)1,0]13[(1,0)1,0]1 11235 0+0^{-+} 3[(1,0)1,1]03[(1,0)1,1]0 11398
0++0^{++} 3[(1,1)0,0]03[(1,1)0,0]0 11185 1++1^{++} 2[(1,0)1,2]12[(1,0)1,2]1 11311 0+0^{-+} 3[(1,1)1,1]03[(1,1)1,1]0 11418
0++0^{++} 3[(0,0)0,0]03[(0,0)0,0]0 11222 1++1^{++} 2[(1,1)2,2]12[(1,1)2,2]1 11326
0++0^{++} 2[(1,1)2,2]02[(1,1)2,2]0 11328 1++1^{++} 3[(1,0)1,2]13[(1,0)1,2]1 11539
0++0^{++} 3[(1,1)2,2]03[(1,1)2,2]0 11556 1++1^{++} 3[(1,1)2,2]13[(1,1)2,2]1 11554
11^{--} 1[(0,0)0,1]11[(0,0)0,1]1 10790 2++2^{++} 1[(1,1)2,0]21[(1,1)2,0]2 10467 1+1^{+-} 1[(1,1)1,0]11[(1,1)1,0]1 10373
11^{--} 1[(1,0)1,1]11[(1,0)1,1]1 10804 2++2^{++} 2[(1,1)2,0]22[(1,1)2,0]2 10952 1+1^{+-} 1[(1,0)1,0]11[(1,0)1,0]1 10420
11^{--} 1[(1,1)0,1]11[(1,1)0,1]1 10816 2++2^{++} 1[(0,0)0,2]21[(0,0)0,2]2 11025 1+1^{+-} 2[(1,1)1,0]12[(1,1)1,0]1 10906
11^{--} 1[(1,1)2,1]11[(1,1)2,1]1 10828 2++2^{++} 1[(1,1)0,2]21[(1,1)0,2]2 11051 1+1^{+-} 2[(1,0)1,0]12[(1,0)1,0]1 10922
11^{--} 2[(0,0)0,1]12[(0,0)0,1]1 11125 2++2^{++} 1[(1,1)2,2]21[(1,1)2,2]2 11051 1+1^{+-} 1[(1,0)1,2]11[(1,0)1,2]1 11039
11^{--} 2[(1,0)1,1]12[(1,0)1,1]1 11139 2++2^{++} 3[(1,1)2,0]23[(1,1)2,0]2 11261 1+1^{+-} 1[(1,1)1,2]11[(1,1)1,2]1 11053
11^{--} 2[(1,1)0,1]12[(1,1)0,1]1 11151 2++2^{++} 2[(0,0)0,2]22[(0,0)0,2]2 11297 1+1^{+-} 3[(1,1)1,0]13[(1,1)1,0]1 11226
11^{--} 2[(1,1)2,1]12[(1,1)2,1]1 11160 2++2^{++} 2[(1,1)0,2]22[(1,1)0,2]2 11323 1+1^{+-} 3[(1,0)1,0]13[(1,0)1,0]1 11235
11^{--} 3[(0,0)0,1]13[(0,0)0,1]1 11385 2++2^{++} 2[(1,1)2,2]22[(1,1)2,2]2 11323 1+1^{+-} 2[(1,0)1,2]12[(1,0)1,2]1 11311
11^{--} 3[(1,0)1,1]13[(1,0)1,1]1 11398 2++2^{++} 3[(0,0)0,2]23[(0,0)0,2]2 11526 1+1^{+-} 2[(1,1)1,2]12[(1,1)1,2]1 11325
11^{--} 3[(1,1)0,1]13[(1,1)0,1]1 11411 2++2^{++} 3[(1,1)0,2]23[(1,1)0,2]2 11552 1+1^{+-} 3[(1,0)1,2]13[(1,0)1,2]1 11539
11^{--} 3[(1,1)2,1]13[(1,1)2,1]1 11418 2++2^{++} 3[(1,1)2,2]23[(1,1)2,2]2 11552 1+1^{+-} 3[(1,1)1,2]13[(1,1)1,2]1 11553
00^{--} 1[(1,0)1,1]01[(1,0)1,1]0 10804
00^{--} 2[(1,0)1,1]02[(1,0)1,1]0 11139
00^{--} 3[(1,0)1,1]03[(1,0)1,1]0 11398
Table 8: As Table 7, but for bsb¯n¯bs\bar{b}\bar{n} (bnb¯s¯bn\bar{b}\bar{s}) states.

VI Conclusion

We calculated the spectrum of strange hidden-charm and bottom tetraquarks both in the hadro-quarkonium model of Refs. Anwar:2018bpu ; Ferretti:2018kzy ; Dubynskiy:2008mq and the compact tetraquark model of Refs. Anwar:2017toa ; Anwar:2018sol ; Bedolla:2019zwg . We also computed that of hidden-charm and bottom pentaquarks in the hadro-quarkonium model. In particular, we discussed the possible emergence of ηb,c(2S)\eta_{\rm b,c}(2S)-, ψ(2S)\psi(2S)-, Υ(2S)\Upsilon(2S)-, and χb,c(1P)\chi_{\rm b,c}(1P)-hyperon/kaon bound states and the possible formation of csc¯n¯cs\bar{c}\bar{n} and bsb¯n¯bs\bar{b}\bar{n} tetraquarks as diquark-antidiquark bound states.

Our results suggest that: I) strange hadro-quarkonium systems may be strongly bound. On the other hand, if the heavy quarkonium- (ψ\psi) light hadron (\mathcal{H}) binding energies become too large, the hadro-quarkonium picture may break down. As a consequence, the ψ\psi and \mathcal{H} components may overlap, and a compact four/five-quark system could be realized rather than a ψ\psi-\mathcal{H} bound state; II) both csc¯n¯cs\bar{c}\bar{n} and bsb¯n¯bs\bar{b}\bar{n} compact tetraquarks may be bound, even though bsb¯n¯bs\bar{b}\bar{n} configurations are more likely to manifest; III) in the case of csc¯n¯cs\bar{c}\bar{n} configurations, the compact tetraquark ground-state is around 200 MeV below the lowest energy hadro-charmonium state, ηcK\eta_{\rm c}\otimes K. On the contrary, in the bsb¯n¯bs\bar{b}\bar{n} case the compact tetraquark ground-state is above the lowest energy hadro-bottomonium configuration, ηbK\eta_{\rm b}\otimes K; IV) by combining the conclusions discussed at points I) and II), we suggest the experimentalists to look for strange tetra- and pentaquark configurations with hidden-bottom. They should be more stable than their hidden-charm counterparts due to kinetic energy suppression; thus, there is a higher probability of observing them.

Finally, as pointed out in Ref. Voloshin:2019 , the meson-meson molecular model cannot be used to describe heavy-light tetraquarks with non-null strangeness content. The reason is that one-pion-exchange cannot take place between strange and nonstrange heavy mesons, like BB and BsB_{\rm s}. Hidden-charm and bottom mesons with strangeness are also forbidden in the context of the Unquenched Quark Model (UQM) formalism. Indeed, one cannot dress heavy quarkonium QQ¯Q\bar{Q} states with Qs¯nQ¯Q\bar{s}-n\bar{Q} or Qn¯sQ¯Q\bar{n}-s\bar{Q} higher Fock components (where n=un=u or dd) by creating a light nn¯n\bar{n} or ss¯s\bar{s} pair with vacuum quantum numbers. Tetraquarks with non-null strangeness content can only take place either in the compact tetraquark or hadroquarkonium models. Therefore, a possible way to discriminate between the compact tetraquark and hadro-quarkonium models on one side and the molecular model and UQM interpretations on the other is the experimental search for strange hidden-charm and bottom four-quark states.

Our predictions for PcP_{\rm c} and PbP_{\rm b} pentaquarks with non-null strangeness content may be soon be tested by LHCb.

Acknowledgements.
This work was supported by the U.S. Department of Energy (Grant No. DE-FG-02-91ER-40608) and the Academy of Finland, Project No. 320062.

References

  • (1) S. K. Choi et al. [Belle Collaboration], Phys. Rev. Lett.  91, 262001 (2003).
  • (2) D. Acosta et al. [CDF Collaboration], Phys. Rev. Lett.  93, 072001 (2004).
  • (3) V. M. Abazov et al. [D0 Collaboration], Phys. Rev. Lett.  93, 162002 (2004).
  • (4) R. Aaij et al. [LHCb Collaboration], Phys. Rev. Lett.  118, 022003 (2017); Phys. Rev. D 95, 012002 (2017).
  • (5) T. Aaltonen et al. [CDF Collaboration], Mod. Phys. Lett. A 32, 1750139 (2017).
  • (6) R. Aaij et al. [LHCb Collaboration], Phys. Rev. Lett.  115, 072001 (2015).
  • (7) R. Aaij et al. [LHCb Collaboration], Phys. Rev. Lett.  122, 222001 (2019).
  • (8) H. X. Chen, W. Chen, X. Liu and S. L. Zhu, Phys. Rept.  639, 1 (2016).
  • (9) A. Ali, J. S. Lange and S. Stone, Prog. Part. Nucl. Phys.  97, 123 (2017).
  • (10) S. L. Olsen, T. Skwarnicki and D. Zieminska, Rev. Mod. Phys.  90, 015003 (2018).
  • (11) F. K. Guo, C. Hanhart, U. G. Meißner, Q. Wang, Q. Zhao and B. S. Zou, Rev. Mod. Phys.  90, 015004 (2018).
  • (12) M. B. Voloshin, Phys. Lett. B 798, 135022 (2019).
  • (13) K. Heikkila, S. Ono and N. A. Tornqvist, Phys. Rev. D 29, 110 (1984) Erratum: [Phys. Rev. D 29, 2136 (1984)].
  • (14) M. R. Pennington and D. J. Wilson, Phys. Rev. D 76, 077502 (2007).
  • (15) I. V. Danilkin and Y. A. Simonov, Phys. Rev. Lett.  105, 102002 (2010).
  • (16) P. G. Ortega, J. Segovia, D. R. Entem and F. Fernandez, Phys. Rev. D 81, 054023 (2010); P. G. Ortega, D. R. Entem and F. Fernandez, J. Phys. G 40, 065107 (2013).
  • (17) J. Ferretti, G. Galatà and E. Santopinto, Phys. Rev. C 88, 015207 (2013).
  • (18) J. Ferretti, G. Galatà and E. Santopinto, Phys. Rev. D 90, 054010 (2014).
  • (19) J. Ferretti and E. Santopinto, Phys. Rev. D 90, 094022 (2014).
  • (20) N. N. Achasov and E. V. Rogozina, Mod. Phys. Lett. A 30, 1550181 (2015).
  • (21) X. W. Kang and J. A. Oller, Eur. Phys. J. C 77, 399 (2017).
  • (22) Y. Lu, M. N. Anwar and B. S. Zou, Phys. Rev. D 94, 034021 (2016); M. N. Anwar, Y. Lu and B. S. Zou, Phys. Rev. D 99, 094005 (2019).
  • (23) J. Ferretti and E. Santopinto, Phys. Lett. B 789, 550 (2019); J. Ferretti, E. Santopinto, M. N. Anwar and Y. Lu, Quark structure of the χc(3P)\chi_{\rm c}(3P) and X(4274)X(4274) resonances and their strong and radiative decays, arXiv:2002.09401.
  • (24) N. A. Törnqvist, Z. Phys. C 61, 525 (1994); Phys. Lett. B 590, 209 (2004).
  • (25) C. Hanhart, Y. S. Kalashnikova, A. E. Kudryavtsev and A. V. Nefediev, Phys. Rev. D 76, 034007 (2007).
  • (26) V. Baru, A. A. Filin, C. Hanhart, Y. S. Kalashnikova, A. E. Kudryavtsev, and A. V. Nefediev, Phys. Rev. D 84, 074029 (2011).
  • (27) M. P. Valderrama, Phys. Rev. D 85, 114037 (2012).
  • (28) F. Aceti, R. Molina and E. Oset, Phys. Rev. D 86, 113007 (2012).
  • (29) F. K. Guo, C. Hidalgo-Duque, J. Nieves and M. P. Valderrama, Phys. Rev. D 88, 054007 (2013).
  • (30) R. L. Jaffe, Phys. Rev. D 15, 281 (1977).
  • (31) B. Silvestre-Brac and C. Semay, Z. Phys. C 57, 273 (1993).
  • (32) D. M. Brink and F. Stancu, Phys. Rev. D 57, 6778 (1998).
  • (33) L. Maiani, F. Piccinini, A. D. Polosa and V. Riquer, Phys. Rev. D 71, 014028 (2005).
  • (34) N. Barnea, J. Vijande and A. Valcarce, Phys. Rev. D 73, 054004 (2006).
  • (35) E. Santopinto and G. Galatà, Phys. Rev. C 75, 045206 (2007).
  • (36) D. Ebert, R. N. Faustov, V. O. Galkin and W. Lucha, Phys. Rev. D 76, 114015 (2007); D. Ebert, R. N. Faustov and V. O. Galkin, Phys. Atom. Nucl.  72, 184 (2009).
  • (37) C. Deng, J. Ping and F. Wang, Phys. Rev. D 90, 054009 (2014).
  • (38) L. Zhao, W. Z. Deng and S. L. Zhu, Phys. Rev. D 90, 094031 (2014).
  • (39) Q. F. Lü and Y. B. Dong, Phys. Rev. D 94, 074007 (2016).
  • (40) M. N. Anwar, J. Ferretti, F. K. Guo, E. Santopinto and B. S. Zou, Eur. Phys. J. C 78, 647 (2018).
  • (41) A. Esposito and A. D. Polosa, Eur. Phys. J. C 78, 782 (2018).
  • (42) M. N. Anwar, J. Ferretti and E. Santopinto, Phys. Rev. D 98, 094015 (2018).
  • (43) G. Yang, J. Ping and J. Segovia, Doubly-heavy tetraquarks, arXiv:1911.00215.
  • (44) M. A. Bedolla, J. Ferretti, C. D. Roberts and E. Santopinto, Spectrum of fully-heavy tetraquarks from a diquark+antidiquark perspective, arXiv:1911.00960.
  • (45) F. K. Guo, C. Hanhart and U. G. Meißner, Phys. Lett. B 665, 26 (2008); Phys. Rev. Lett.  102, 242004 (2009).
  • (46) S. Dubynskiy and M. B. Voloshin, Phys. Lett. B 666, 344 (2008).
  • (47) M. B. Voloshin, Phys. Rev. D 87, 091501 (2013); X. Li and M. B. Voloshin, Mod. Phys. Lett. A 29, 1450060 (2014).
  • (48) Q. Wang, M. Cleven, F. K. Guo, C. Hanhart, U. G. Meißner, X. G. Wu and Q. Zhao, Phys. Rev. D 89, 034001 (2014); M. Cleven, F. K. Guo, C. Hanhart, Q. Wang and Q. Zhao, Phys. Rev. D 92, 014005 (2015).
  • (49) N. Brambilla, G. Krein, J. Tarrús Castellà and A. Vairo, Phys. Rev. D 93, 054002 (2016).
  • (50) M. I. Eides, V. Y. Petrov and M. V. Polyakov, Phys. Rev. D 93, 054039 (2016); Eur. Phys. J. C 78, 36 (2018); New LHCb pentaquarks as hadrocharmonium states, arXiv:1904.11616.
  • (51) I. A. Perevalova, M. V. Polyakov and P. Schweitzer, Phys. Rev. D 94, 054024 (2016).
  • (52) M. Alberti, G. S. Bali, S. Collins, F. Knechtli, G. Moir and W. Söldner, Phys. Rev. D 95, 074501 (2017).
  • (53) J. Ferretti, Phys. Lett. B 782, 702 (2018).
  • (54) J. Ferretti, E. Santopinto, M. Naeem Anwar and M. A. Bedolla, Phys. Lett. B 789, 562 (2019).
  • (55) J. Y. Panteleeva, I. A. Perevalova, M. V. Polyakov and P. Schweitzer, Phys. Rev. C 99, 045206 (2019).
  • (56) M. B. Voloshin, Prog. Part. Nucl. Phys.  61, 455 (2008).
  • (57) S. J. Brodsky, I. A. Schmidt and G. F. de Teramond, Phys. Rev. Lett.  64, 1011 (1990).
  • (58) A. B. Kaidalov and P. E. Volkovitsky, Phys. Rev. Lett.  69, 3155 (1992).
  • (59) A. Sibirtsev and M. B. Voloshin, Phys. Rev. D 71, 076005 (2005).
  • (60) K. Gottfried, Phys. Rev. Lett.  40, 598 (1978); M. B. Voloshin, Nucl. Phys. B 154, 365 (1979); T. M. Yan, Phys. Rev. D 22, 1652 (1980).
  • (61) M. Tanabashi et al. [Particle Data Group], Phys. Rev. D 98, 030001 (2018).
  • (62) Y. H. Chen and F. K. Guo, Phys. Rev. D 100, 054035 (2019).
  • (63) S. Godfrey and N. Isgur, Phys. Rev. D 32, 189 (1985).
  • (64) B. Kubis, T. R. Hemmert and U. G. Meißner, Phys. Lett. B 456, 240 (1999).
  • (65) A. J. Buchmann and R. F. Lebed, Phys. Rev. D 67, 016002 (2003).
  • (66) T. Ledwig, H. C. Kim, A. J. Silva and K. Goeke, Phys. Rev. D 74, 054005 (2006).
  • (67) M. E. Carrillo-Serrano, W. Bentz, I. C. Cloët and A. W. Thomas, Phys. Lett. B 759, 178 (2016).
  • (68) R. P. Feynman, R. B. Leighton and M. L. Sands, The Feynman Lectures on Physics, Addison-Wesley Pub. Co. (1963-1965).
  • (69) J.-M. Richard, Phys. Rep. 212, 1 (1992).
  • (70) M. Anselmino, E. Predazzi, S. Ekelin, S. Fredriksson and D. B. Lichtenberg, Rev. Mod. Phys. 65, 1199 (1993).
  • (71) E. Santopinto, Phys. Rev. C 72, 022201 (2005).
  • (72) J. Ferretti, A. Vassallo and E. Santopinto, Phys. Rev. C 83, 065204 (2011).
  • (73) E. Santopinto and J. Ferretti, Phys. Rev. C 92, 025202 (2015).
  • (74) W. Celmaster, H. Georgi and M. Machacek, Phys. Rev. D 17, 879 (1978).
  • (75) S. Capstick and N. Isgur, Phys. Rev. D 34, 2809 (1986).
  • (76) J. Ferretti, Few Body Syst.  60, 17 (2019).