This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Present address: ]Department of Physics, Columbia University, New York, NY, USA

Hidden Quantum Hall Stripes in AlxGa1-xAs/Al0.24Ga0.76As Quantum Wells

X. Fu School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA    Yi Huang (黄奕) School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA    Q. Shi [    B. I. Shklovskii School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA    M. A. Zudov zudov001@umn.edu School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA    G. C. Gardner Microsoft Quantum Lab Purdue, Purdue University, West Lafayette, Indiana 47907, USA Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA    M. J. Manfra Microsoft Quantum Lab Purdue, Purdue University, West Lafayette, Indiana 47907, USA Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, USA School of Electrical and Computer Engineering and School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, USA
(July 27, 2025)
Abstract

We report on transport signatures of hidden quantum Hall stripe (hQHS) phases in high (N>2N>2) half-filled Landau levels of AlxGa1-xAs/Al0.24Ga0.76As quantum wells with varying Al mole fraction x<103x<10^{-3}. Residing between the conventional stripe phases (lower NN) and the isotropic liquid phases (higher NN), where resistivity decreases as 1/N1/N, these hQHS phases exhibit isotropic and NN-independent resistivity. Using the experimental phase diagram we establish that the stripe phases are more robust than theoretically predicted, calling for improved theoretical treatment. We also show that, unlike conventional stripe phases, the hQHS phases do not occur in ultrahigh mobility GaAs quantum wells, but are likely to be found in other systems.

Discovery of the integer quantum Hall effect in Si (von Klitzing et al., 1980) has paved the way to observations of many exotic phenomena in two-dimensional (2D) electron and hole systems. Two prime examples are the fractional quantum Hall effect (Tsui et al., 1982) and quantum Hall stripes (QHSs) Koulakov et al. (1996); Fogler et al. (1996); Moessner and Chalker (1996); Lilly et al. (1999a); Du et al. (1999). While fractional quantum Hall effects have been realized in many systems, including GaAs (Tsui et al., 1982), Si (Nelson et al., 1992; Kott et al., 2014), AlAs (De Poortere et al., 2002), GaN (Manfra et al., 2002), graphene (Du et al., 2009; Bolotin et al., 2009), CdTe (Piot et al., 2010), ZnO (Tsukazaki et al., 2010), Ge (Shi et al., 2015), and InAs (Ma et al., 2017), exploration of the QHS physics remains limited to GaAs (not, a).

Forming due to a peculiar boxlike screened Coulomb potential, QHSs can be viewed as charge density waves consisting of stripes with alternating integer filling factors ν\nu, e.g., ν=4\nu=4 and ν=5\nu=5 (not, b). In experiments, QHSs are manifested by giant resistivity anisotropies (ρxxρyy\rho_{xx}\gg\rho_{yy}) in N2N\geq 2 half-filled Landau levels. Appearance of these anisotropies in macroscopic samples is attributed to a mysterious symmetry-breaking field Fil (2000); Koduvayur et al. (2011); Sodemann and MacDonald (2013); Pollanen et al. (2015), which nearly always aligns QHSs along the y^110\hat{y}\equiv\left<110\right> crystal axis of GaAs (not, c). While a sufficiently low disorder is necessary for the QHS formation, the absence of QHSs in systems beyond GaAs might simply be due to the lack of symmetry-breaking fields (not, d). Indeed, electron bubble phases Koulakov et al. (1996); Fogler et al. (1996); Moessner and Chalker (1996); Cooper et al. (1999); Eisenstein et al. (2002); Lewis et al. (2002); Deng et al. (2012); Rossokhaty et al. (2016); Friess et al. (2017); Bennaceur et al. (2018); Friess et al. (2018); Fu et al. (2019); Ro et al. (2019), which are close relatives of QHSs, have already been identified in graphene (Chen et al., 2019).

In this Letter, we report observation of transport signatures of the recently predicted (Huang et al., 2020) hidden QHS (hQHS) phases in a series of AlxGa1-xAs/Al0.24Ga0.76As quantum wells with x<103x<10^{-3}. In contrast to the ordinary QHS phases, the hQHS phases are characterized by isotropic resistivity (ρxx=ρyy=ρ\rho_{xx}=\rho_{yy}=\rho) that is independent of ν\nu, unlike the isotropic liquid phases in which ρν1\rho\propto\nu^{-1}. These unique properties make these phases detectable without symmetry-breaking fields, thereby opening an avenue to study stripe physics in systems beyond GaAs. The wide variation of mobilities in our samples allows us to construct an experimental phase diagram in the conductivity-filling factor plane. Its comparison to theoretical predictions (Huang et al., 2020) yields the electron quantum lifetimes and the stripe density of states. The latter turns out to be lower than predicted by original the Hartree-Fock theory (Koulakov et al., 1996; Fogler et al., 1996), calling for further theoretical input. We confirm this finding by a complementary experiment on an ultrahigh mobility GaAs quantum well, where we also show that, in this sample, the hQHS phase yields to the QHS phase in agreement with the theory.

Before presenting our experimental data, we briefly summarize the physics behind the hQHS phases (Huang et al., 2020). The resistance anisotropies in the ordinary QHS phase emerge due to different diffusion mechanisms along and perpendicular to the stripes (MacDonald and Fisher, 2000; von Oppen et al., 2000; Sammon et al., 2019). In this picture, an electron drifts a distance LyL_{y} along the yy-oriented stripe edge in an xx-directed internal electric field until it is scattered by impurities to one of the adjacent stripe edges located at a distance Lx=Λ/22RcL_{x}=\Lambda/2\approx\sqrt{2}R_{\mbox{\scriptsize{c}}} (Koulakov et al., 1996; Fogler et al., 1996), where Λ\Lambda is the stripe period and RcR_{\mbox{\scriptsize{c}}} is the cyclotron radius. When LyLxL_{y}\gg L_{x}, the diffusion coefficient in the y^\hat{y} direction is much larger that in the x^\hat{x} direction, which leads to anisotropic conductivity, σyyσxx\sigma_{yy}\gg\sigma_{xx}, and resistivity, ρxxρyy\rho_{xx}\gg\rho_{yy}. Since Lyν1L_{y}\propto\nu^{-1} and LxνL_{x}\propto\nu (Sammon et al., 2019), the anisotropy decreases with ν\nu and eventually vanishes at some ν=ν1\nu=\nu_{1}. At larger ν\nu, the drift contribution to the diffusion along stripes can be neglected, and LyL_{y}, like LxL_{x}, is determined entirely by the impurity scattering. For isotropic scattering, it is easy to show (not, e) that Ly=2RcL_{y}=\sqrt{2}R_{\mbox{\scriptsize{c}}} which coincides with LxL_{x}. As a result, the QHS phase yields to the hQHS phase in which the resistivity is isotropic and ν\nu independent (since the stripe density of states does not vary with ν\nu). The hQHS phase persists until the stripe structure is destroyed by disorder at ν=ν2\nu=\nu_{2} and the ground state becomes an isotropic liquid with ρxx=ρyyν1\rho_{xx}=\rho_{yy}\propto\nu^{-1}, as predicted by Ando and Uemura (Ando and Uemura, 1974) and experimentally confirmed by Coleridge, Zawadski, and Sachrajda (CZS) (Coleridge et al., 1994).

For the hQHS phase to exist and be detected, it should span a sizable range of the filling factors Δν=ν2max{ν1,9/2}1\Delta\nu=\nu_{2}-\max\{\nu_{1},9/2\}\gg 1. The range Δν\Delta\nu depends sensitively on both transport τ1\tau^{-1} and quantum τq1\tau_{\rm q}^{-1} scattering rates, which control ν1\nu_{1} and ν2\nu_{2}, respectively (Huang et al., 2020). As we will see, ultrahigh mobility GaAs quantum wells do not support the hQHS phase as ν1ν2\nu_{1}\approx\nu_{2} in these samples. On the other hand, adding the correct small amount of Al (not, f) to the GaAs well greatly expands Δν\Delta\nu, as it affects ν1\nu_{1} to a much greater extent than it does ν2\nu_{2}. This happens because Al acts as a short-range disorder, which contributes equally to transport τ1\tau^{-1} and quantum τq1\tau_{\rm q}^{-1} scattering rates, and because τq/τ1\tau_{\rm q}/\tau\ll 1 at x=0x=0.

Table 1: Sample ID, Al mole fraction xx, electron density nen_{e}, mobility μ\mu, and Drude conductivity, in units of e2/he^{2}/h, σ~0=hneμ/e\tilde{\sigma}_{0}=hn_{e}\mu/e at zero magnetic field (B=0B=0).
Sample ID xx nen_{e} (101110^{11} cm-2) μ\mu (10610^{6} cm2/Vs) σ~0\tilde{\sigma}_{0} (10310^{3})
A 0.00057 3.0 6.5 8.0
B 0.00082 2.9 4.1 4.9
C 0.0078 2.7 1.2 1.3

Apart from different xx, all our AlxGa1-xAs quantum wells share an identical heterostructure design Gardner et al. (2013). Electrons are supplied by Si doping in narrow GaAs wells surrounded by narrow AlAs layers and placed at a setback distance of 7575 nm from each side of the 30-nm-wide AlxGa1-xAs well hosting the 2D electrons. Parameters of samples A, B, and C such as Al mole fraction xx, electron density nen_{e}, mobility μ\mu, and Drude conductivity σ~0=hneμ/e\tilde{\sigma}_{0}=hn_{e}\mu/e in units of e2/he^{2}/h at zero magnetic field (B=0B=0) are listed in Table 1. The samples are approximately 4 mm squares with eight indium contacts positioned at the corners and at the midsides. Longitudinal resistances RxxR_{xx} and RyyR_{yy} were measured in sweeping magnetic fields using a four-terminal, low-frequency (a few Hz) lock-in technique at a temperature T25T\approx 25 mK at which the resistances are nearly temperature independent. The current was sent along either the x^11¯0\hat{x}\equiv\left<1\bar{1}0\right> or y^110\hat{y}\equiv\left<110\right> direction using the midside contacts, and the voltage was measured between contacts along the edge. To account for anisotropies due to nonideal geometry, RxxR_{xx} or RyyR_{yy} was multiplied by a factor (typically 1.1\lesssim 1.1) that was chosen to make Rxx=RyyR_{xx}=R_{yy} in the low field regime.

In Fig. 1, we present longitudinal resistances RxxR_{xx} and RyyR_{yy} as a function of filling factor ν\nu measured in sample B. At low half-integer filling factors (ν=9/2\nu=9/2, 11/211/2, and 13/213/2) the data reveal conventional QHS phases, as evidenced by Rxx>RyyR_{xx}>R_{yy}. At high half-integer filling factors (ν>25/2\nu>25/2) we identify the CZS phase in which RxxRyyν1R_{xx}\approx R_{yy}\propto\nu^{-1} (cf. dash-dotted line). At intermediate half-integer filling factors, ν=15/2,,23/2\nu=15/2,...,23/2, one readily confirms both characteristic features of the hQHS phase; indeed, the data show that two longitudinal resistances are practically the same (RxxRyyR_{xx}\approx R_{yy}) and are independent of ν\nu (cf. dashed line). From Fig. 1, we can easily identify the characteristic filling factors ν17\nu_{1}\approx 7 and ν212.5\nu_{2}\approx 12.5 which mark the crossovers from the QHS to the hQHS phase and from the hQHS to the CZS phase, respectively.

In a similar manner, we have obtained ν1\nu_{1} and ν2\nu_{2} for sample A and ν2\nu_{2} for sample C (which does not support the QHS phase due to higher Al mole fraction xx), which we then use to construct the experimental phase diagram shown in Fig. 2. We start by adding points representing the dimensionless Drude conductivity σ~0\tilde{\sigma}_{0} for samples A, B, C (see Table 1) and the corresponding filling factors ν1\nu_{1} (solid circles) and ν2\nu_{2} (solid squares). To connect these data points we use the theoretical boundaries of the hQHS phase (Huang et al., 2020). The lower boundary ν=ν1\nu=\nu_{1}, separating the QHS and the hQHS phases, is given by (Huang et al., 2020)

ν1σ~0α,\nu_{1}\simeq\frac{\sqrt{\tilde{\sigma}_{0}}}{\alpha}\,, (1)

where α\alpha (not, g) is the QHS density of states in units of the density of states per spin at B=0B=0, g0=m/2π2g_{0}=m^{\star}/2\pi\hbar^{2}. This boundary can be obtained by either matching the parameter-free geometric average of the resistivities in the QHS phase ρxxρyy=(h/e2)/(2ν2+1/2)(h/e2)/2ν2\sqrt{\rho_{xx}\rho_{yy}}=(h/e^{2})/(2\nu^{2}+1/2)\approx(h/e^{2})/2\nu^{2} (MacDonald and Fisher, 2000; Sammon et al., 2019) and the resistivity in the hQHS phase (Huang et al., 2020),

ρ~hQHShe2α22σ~0,\tilde{\rho}_{\rm hQHS}\equiv\frac{h}{e^{2}}\frac{\alpha^{2}}{2\tilde{\sigma}_{0}}\,, (2)

or, equivalently, by setting the resistivity anisotropy ratio to unity, ρxx/ρyy(σ~0/α2ν2)2=1\rho_{xx}/\rho_{yy}\approx(\tilde{\sigma}_{0}/\alpha^{2}\nu^{2})^{2}=1 (Sammon et al., 2019; Huang et al., 2020).

Refer to caption
Figure 1: Longitudinal resistances RxxR_{xx} (solid line) and RyyR_{yy} (dotted line) as a function of the filling factor ν\nu measured in sample B. Gap centers between spin-resolved Landau levels are labeled by N=2,3,N=2,3,..., at the top axis (ν=2N+1\nu=2N+1). The conventional QHS phase (Rxx>RyyR_{xx}>R_{yy}) and the CZS phase (RxxRyyν1R_{xx}\approx R_{yy}\propto\nu^{-1}) occur at half-integer ν=9/2,11/2,13/2\nu=9/2,11/2,13/2 and at ν=27/2,29/2,\nu=27/2,29/2,..., respectively. The hQHS phase is identified at intermediate half-integer filling factors, ν=15/2,.,25/2\nu=15/2,....,25/2, where the resistance is isotropic and ν\nu independent. The characteristic ν0\nu^{0} (ν1\nu^{-1}) dependence of the isotropic resistance in the hQHS (CZS) phase is marked by dashed (dash-dotted) line.
Refer to caption
Figure 2: A diagram in the (ν,σ0)(\nu,\sigma_{0}) plane showing QHS, hQHS, and CZS phases. Solid lines represent crossovers between phases, Eq. (1) [left(upper) line] and Eq. (3) [right(lower) line]. Solid circles (solid squares) represent experimental ν1\nu_{1} (ν2\nu_{2}) and horizontal dotted lines mark σ~0\tilde{\sigma}_{0} for samples A-C (Gardner et al., 2013). Open circles (squares) are additional data from a study conducted in a different context that conform to our present findings (Shi, 2017).

The higher boundary ν=ν2\nu=\nu_{2} marks the crossover from the hQHS to the CZS phase and is represented by

ν2σ~0α2τqτ.\nu_{2}\simeq\frac{\tilde{\sigma}_{0}}{\alpha^{2}}\frac{\tau_{\rm q}}{\tau}\,. (3)

This boundary can be obtained by equating α\alpha and the density of states at the center of the Landau level in CZS phase, in units of the density of states at B=0B=0, ωcτq\sqrt{\omega_{\mbox{\scriptsize{c}}}\tau_{\rm q}} (Raikh and Shahbazyan, 1993; Mirlin et al., 1996) or by matching ρhQHS\rho_{\rm hQHS} and the resistivity in the CZS phase (Coleridge et al., 1994),

ρCZShe21ντq/2τ(τq/2τ)2+1he21ντq2τ.\rho_{\rm CZS}\equiv\frac{h}{e^{2}}\frac{1}{\nu}\frac{\tau_{\rm q}/2\tau}{(\tau_{\rm q}/2\tau)^{2}+1}\approx\frac{h}{e^{2}}\frac{1}{\nu}\frac{\tau_{\rm q}}{2\tau}\,. (4)

We thus see that for a given carrier density, as mentioned above, ν2\nu_{2} and ν1\nu_{1} are controlled by τ\tau and τq\tau_{\rm q}, respectively. Strictly speaking, Eqs. (1), (3) are not sharp boundaries but rather gradual crossovers between corresponding phases.

With the help of Eq. (1) and experimental values of ν1\nu_{1} in samples A and B, we estimate α11\alpha\approx 11, which is smaller than the theoretical estimate of α18\alpha\simeq 18 (Sammon et al., 2019; not, g). We then parameterize scattering rates τ1\tau^{-1} and τq1\tau_{\rm q}^{-1} as

τ1=τ01+κx,τq1=τq01+κx,\tau^{-1}=\tau_{0}^{-1}+\kappa x\,,~~~\tau_{\rm q}^{-1}=\tau_{\rm q0}^{-1}+\kappa x\,, (5)

where xx is the Al mole fraction, κ24\kappa\approx 24 ns-1 per % Al (Gardner et al., 2013), and τ013\tau_{0}^{-1}\approx 3 ns-1 (Gardner et al., 2013) is the transport scattering rate in the limit of x0x\rightarrow 0. To find the remaining parameter τq01\tau_{\rm q0}^{-1}, which is the quantum scattering rate in the limit of x0x\rightarrow 0, we use experimental ν2\nu_{2} values and notice that Eqs. (1), (3) yield τq/τν2/ν12\tau_{\rm q}/\tau\simeq\nu_{2}/\nu_{1}^{2}. Using Eq. (5) we then obtain an estimate for τq00.05\tau_{\rm q0}\simeq 0.05 ns which is in good agreement with τq\tau_{\rm q} values found from low BB experiments (Shi et al., 2016a, 2017a; Zudov et al., 2017) on microwave-induced (Zudov et al., 2001; Ye et al., 2001; Dmitriev et al., 2012) and Hall-field-induced (Yang et al., 2002; Zhang et al., 2007; Vavilov et al., 2007) resistance oscillations in GaAs quantum wells.

We next use ne=3×1011n_{e}=3\times 10^{11} cm-2 and m=0.06m0m^{\star}=0.06\,m_{0} (Coleridge et al., 1996; Tan et al., 2005; Hatke et al., 2013; Shchepetilnikov et al., 2017; Fu et al., 2017) to compute the phase boundaries, Eqs. (1), (3), which are shown in Fig. 2 by solid lines. Both lines pass in close proximity to the experimentally obtained ν1\nu_{1} (solid circles) and ν2\nu_{2} (solid squares) from all samples, showing excellent agreement between theory (Huang et al., 2020) and experiment. Finally, we add data points (open circles and squares) from three other AlxGa1-xAs/Al0.24Ga0.76As quantum wells that were investigated in a different context (Shi, 2017). These points are also in agreement with the theory and the present experiment.

Having confirmed the existence of the hQHS phases in AlxGa1-xAs/Al0.24Ga0.76As quantum wells, we next examine the possibility for these phases to exist in ultrahigh mobility GaAs quantum wells (without alloy disorder). In such samples, the lower boundary ν1\nu_{1}, Eq. (1), might approach and even merge with the higher boundary ν2\nu_{2}, Eq. (3), eliminating the hQHS phase as a result. To test this scenario, we revisit the data obtained from sample A of Ref. Sammon et al., 2019 with σ~03.4×104\tilde{\sigma}_{0}\approx 3.4\times 10^{4}, much higher than in samples used in the present study. As illustrated in Fig. 3, showing ρxx\rho_{xx} (solid triangles) and ρyy\rho_{yy} (open triangles) (not, h) as a function of the filling factor ν\nu, the QHS anisotropy in this sample collapses at ν120\nu_{1}\approx 20. Using Eq. (1), we can then estimate α=σ~0/ν19\alpha=\sqrt{\tilde{\sigma}_{0}}/\nu_{1}\approx 9 (not, i). With τq0.05\tau_{\rm q}\simeq 0.05 ns, Eq. (3) gives ν221\nu_{2}\approx 21, which is very close to ν120\nu_{1}\approx 20. Indeed, the data in Fig. 3 show that the QHS phase crosses over directly to the CZS phase, bypassing the intermediate hQHS phase.

Refer to caption
Figure 3: ρxx\rho_{xx} (solid triangles) and ρyy\rho_{yy} (open triangles) (not, h)) as a function of filling factor ν\nu for sample A of Ref. Sammon et al., 2019. Lines are computed using theoretical expressions, marked by equation numbers.

In the QHS phase, the easy resistivity is ν\nu independent and is described by ρyy=ρhQHS\rho_{yy}=\rho_{\rm hQHS}, Eq. (2), while the hard resisitivty exhibits clear ν4\nu^{-4} dependence and follows (Huang et al., 2020)

ρxxhe2σ~02α2ν4.\rho_{xx}\simeq\frac{h}{e^{2}}\frac{\tilde{\sigma}_{0}}{2\alpha^{2}\nu^{4}}\,. (6)

However, the agreement between theory and experiment breaks down at ν<νd8\nu<\nu_{\rm d}\approx 8, where one observes significant deviations leading to the reduction of the anisotropy. While the nature of such reduction is unclear, it becomes more pronounced upon further cooling and might reflect a crossover to another competing ground state (Qian et al., 2017; Fu et al., 2020). We can account for the observed anisotropy reduction at lower filling factors assuming that the QHS phase has a finite concentration of dislocations separated by an average distance Ld=βΛ/2L_{\rm d}=\beta\Lambda/2 along stripes, where β\beta is a numerical factor. Scattering of drifting electrons by these dislocations limits their drift length by LdLyL_{\rm d}\ll L_{y} and the resistivities calculated in Refs. Sammon et al., 2019, Huang et al., 2020 need to be modified to (not, j, k)

ρxx=he2β2ν2,\rho_{xx}=\frac{h}{e^{2}}\frac{\beta}{2\nu^{2}}\,, (7)
ρyy=he212βν2.\rho_{yy}=\frac{h}{e^{2}}\frac{1}{2\beta\nu^{2}}\,. (8)

Equations (7), (8) are plotted as dashed lines in Fig. 3. Equating Eq. (7) to Eq. (6) [or Eq. (8) to Eq. (2)], we find that the crossover to the dislocation limited transport happens at

νdν1β.\nu_{\rm d}\equiv\frac{\nu_{1}}{\sqrt{\beta}}\,. (9)

With νd8\nu_{\rm d}\simeq 8 and ν120\nu_{1}\simeq 20 we find β=(ν1/νd)26.3\beta=(\nu_{1}/\nu_{\rm d})^{2}\simeq 6.3. This value does not seem unreasonable and correctly accounts for the saturation of the anisotropy, ρxx/ρyy=β240\rho_{xx}/\rho_{yy}=\beta^{2}\approx 40 (Sammon et al., 2019).

Refer to caption
Figure 4: A diagram in the (τq/τ,σ0/α2)(\tau_{\rm q}/\tau,\sigma_{0}/\alpha^{2}) plane showing four regions marked by detectable phases. Circles are experimental data points from all four samples studied.

Our experimental findings in AlxGa1-xAs quantum wells (Fig. 2) and in a clean GaAs quantum well (Fig. 3) can be unified in a phase diagram shown in Fig. 4 which treats σ0/α2\sigma_{0}/\alpha^{2} and τq/τ\tau_{\rm q}/\tau as independent parameters. Here, the QHS phase is observed above the horizontal line corresponding to ν1=9/2\nu_{1}=9/2. To detect the hQHS phase, one should satisfy both ν2ν1>1\nu_{2}-\nu_{1}>1 and ν2>11/2\nu_{2}>11/2, since at least two half-integer filling factors are needed to establish the ν\nu independence of the resistance (not, l). As a result, the most favorable conditions for the hQHS phase are realized at the top-right corner of the diagram. However, as demonstrated by our experiments on AlxGa1-xAs quantum wells, the hQHS can be detected at modest mobilities provided that the ratio τq/τ\tau_{\rm q}/\tau is sufficiently high. On the other hand, this ratio is much smaller in clean GaAs quantum wells, which makes the hQHS detection difficult in such systems despite their high mobility. The phase diagram shown in Fig. 4 provides a a road map for future experiments aiming to detect the hQHS phases.

In summary, we have observed hidden quantum Hall stripe (hQHS) phases (Huang et al., 2020) forming near half-integer filling factors of AlxGa1-xAs/Al0.24Ga0.76As quantum wells with varying xx. These phases reside between the conventional stripe phases and the isotropic liquid phases and are characterized by isotropic resistivity that is not sensitive to the filling factor. Analysis of the experimental phase diagram reveals that the QHS density of states is smaller than predicted by the Hartree-Fock theory (Koulakov et al., 1996; Fogler et al., 1996), calling for improved theory. The unique transport characteristics of the hQHS phases should allow exploration of the stripe physics in 2D systems that, unlike GaAs, lack symmetry-breaking fields. On the other hand, ultrahigh mobility GaAs quantum wells favor conventional QHSs over hQHSs due to a shrinking filling factor range where the hQHS phases can form.

Acknowledgements.
We thank G. Jones, T. Murphy, and A. Bangura for technical support. Calculations by Y.H. were supported primarily by the National Science Foundation through the University of Minnesota MRSEC under Award Number Nos. DMR-1420013 and DMR-2011401. Experiments by X.F., Q.S., and M.Z. were supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under Award DE-SC0002567. Growth of quantum wells at Purdue University was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under Award DE-SC0006671. X.F. acknowledges the University of Minnesota Doctoral Dissertation Fellowship. A portion of this work was performed at the National High Magnetic Field Laboratory, which is supported by National Science Foundation Cooperative Agreement Nos. DMR-1157490 and DMR-1644779, and the State of Florida.

References

  • von Klitzing et al. (1980) K. von Klitzing, G. Dorda, and M. Pepper, New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance, Phys. Rev. Lett. 45, 494 (1980).
  • Tsui et al. (1982) D. C. Tsui, H. L. Stormer, and A. C. Gossard, Two-Dimensional Magnetotransport in the Extreme Quantum Limit, Phys. Rev. Lett. 48, 1559 (1982).
  • Koulakov et al. (1996) A. A. Koulakov, M. M. Fogler, and B. I. Shklovskii, Charge density wave in two-dimensional electron liquid in weak magnetic field, Phys. Rev. Lett. 76, 499 (1996).
  • Fogler et al. (1996) M. M. Fogler, A. A. Koulakov, and B. I. Shklovskii, Ground state of a two-dimensional electron liquid in a weak magnetic field, Phys. Rev. B 54, 1853 (1996).
  • Moessner and Chalker (1996) R. Moessner and J. T. Chalker, Exact results for interacting electrons in high Landau levels, Phys. Rev. B 54, 5006 (1996).
  • Lilly et al. (1999a) M. P. Lilly, K. B. Cooper, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, Evidence for an Anisotropic State of Two-Dimensional Electrons in High Landau Levels, Phys. Rev. Lett. 82, 394 (1999a).
  • Du et al. (1999) R. R. Du, D. C. Tsui, H. L. Stormer, L. N. Pfeiffer, K. W. Baldwin, and K. W. West, Strongly anisotropic transport in higher two-dimensional Landau levels, Solid State Commun. 109, 389 (1999).
  • Nelson et al. (1992) S. F. Nelson, K. Ismail, J. J. Nocera, F. F. Fang, E. E. Mendez, J. O. Chu, and B. S. Meyerson, Observation of the fractional quantum Hall effect in Si/SiGe heterostructures, Appl. Phys. Lett. 61, 64 (1992).
  • Kott et al. (2014) T. M. Kott, B. Hu, S. H. Brown, and B. E. Kane, Valley-degenerate two-dimensional electrons in the lowest Landau level, Phys. Rev. B 89, 041107(R) (2014).
  • De Poortere et al. (2002) E. P. De Poortere, Y. P. Shkolnikov, E. Tutuc, S. J. Papadakis, M. Shayegan, E. Palm, and T. Murphy, Enhanced electron mobility and high order fractional quantum Hall states in AlAs quantum wells, Appl. Phys. Lett. 80, 1583 (2002).
  • Manfra et al. (2002) M. J. Manfra, N. G. Weimann, J. W. P. Hsu, L. N. Pfeiffer, K. W. West, S. Syed, H. L. Stormer, W. Pan, D. V. Lang, S. N. G. Chu, et al., High mobility AlGaN/GaN heterostructures grown by plasma-assisted molecular beam epitaxy on semi-insulating GaN templates prepared by hydride vapor phase epitaxy, J. Appl. Phys. 92, 338 (2002).
  • Du et al. (2009) X. Du, I. Skachko, F. Duerr, A. Luican, and E. Y. Andrei, Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene, Nature 462, 192 (2009).
  • Bolotin et al. (2009) K. I. Bolotin, F. Ghahari, M. D. Shulman, H. L. Stormer, and P. Kim, Observation of the fractional quantum Hall effect in graphene, Nature 462, 196 (2009).
  • Piot et al. (2010) B. A. Piot, J. Kunc, M. Potemski, D. K. Maude, C. Betthausen, A. Vogl, D. Weiss, G. Karczewski, and T. Wojtowicz, Fractional quantum Hall effect in CdTe, Phys. Rev. B 82, 081307(R) (2010).
  • Tsukazaki et al. (2010) A. Tsukazaki, S. Akasaka, K. Nakahara, Y. Ohno, H. Ohno, D. Maryenko, A. Ohtomo, and M. Kawasaki, Observation of the fractional quantum Hall effect in an oxide, Nature Mat. 9, 889 (2010).
  • Shi et al. (2015) Q. Shi, M. A. Zudov, C. Morrison, and M. Myronov, Spinless composite fermions in an ultrahigh-quality strained Ge quantum well, Phys. Rev. B 91, 241303(R) (2015).
  • Ma et al. (2017) M. K. Ma, M. S. Hossain, K. A. Villegas Rosales, H. Deng, T. Tschirky, W. Wegscheider, and M. Shayegan, Observation of fractional quantum Hall effect in an InAs quantum well, Phys. Rev. B 96, 241301(R) (2017).
  • not (a) Apart from QHSs in GaAs, electron nematic states were identified in Sr3Ru2O7 (Borzi et al., 2007), high-TC superconductors (Daou et al., 2010; Chu et al., 2010), URu2Si2 (Okazaki et al., 2011), WSe2/WS2 (Jin et al., 2020), and twisted bilayer graphene (Cao et al., 2020).
  • not (b) Considering thermal and quantum fluctuations, several electron liquid crystal-like phases have also been proposed (Fradkin and Kivelson, 1999).
  • Fil (2000) D. V. Fil, Piezoelectric mechanism for the orientation of stripe structures in two-dimensional electron systems, Low Temp. Phys. 26, 581 (2000).
  • Koduvayur et al. (2011) S. P. Koduvayur, Y. Lyanda-Geller, S. Khlebnikov, G. Csáthy, M. J. Manfra, L. N. Pfeiffer, K. W. West, and L. P. Rokhinson, Effect of Strain on Stripe Phases in the Quantum Hall Regime, Phys. Rev. Lett. 106, 016804 (2011).
  • Sodemann and MacDonald (2013) I. Sodemann and A. H. MacDonald, Theory of Native Orientational Pinning in Quantum Hall Nematics, arXiv:1307.5489 (2013).
  • Pollanen et al. (2015) J. Pollanen, K. B. Cooper, S. Brandsen, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, Heterostructure symmetry and the orientation of the quantum Hall nematic phases, Phys. Rev. B 92, 115410 (2015).
  • not (c) QHSs were found to align along the 11¯0\left<1\bar{1}0\right> direction in a tunable density heterostructure insulated gate field effect transistor at densities nen_{e} between 3×10113\times 10^{11} cm-2 and 4.6×10114.6\times 10^{11} cm-2 (Zhu et al., 2002) and in single heterointerface devices with ne2×1011n_{e}\simeq 2\times 10^{11} cm-2 and cap thickness exceeding 1 μ\mum (Pollanen et al., 2015).
  • not (d) Indeed, anisotropies emerging under the in-plane magnetic field, which is known to provide symmetry breaking (Pan et al., 1999; Lilly et al., 1999b; Jungwirth et al., 1999; Stanescu et al., 2000; Zhu et al., 2009; Shi et al., 2016b, 2017b), have been observed in ZnO (Falson et al., 2018) and AlAs (Hossain et al., 2018).
  • Cooper et al. (1999) K. B. Cooper, M. P. Lilly, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, Insulating phases of two-dimensional electrons in high Landau levels: Observation of sharp thresholds to conduction, Phys. Rev. B 60, R11285 (1999).
  • Eisenstein et al. (2002) J. P. Eisenstein, K. B. Cooper, L. N. Pfeiffer, and K. W. West, Insulating and Fractional Quantum Hall States in the First Excited Landau Level, Phys. Rev. Lett. 88, 076801 (2002).
  • Lewis et al. (2002) R. M. Lewis, P. D. Ye, L. W. Engel, D. C. Tsui, L. N. Pfeiffer, and K. W. West, Microwave Resonance of the Bubble Phases in 1/4 and 3/4 Filled High Landau Levels, Phys. Rev. Lett. 89, 136804 (2002).
  • Deng et al. (2012) N. Deng, A. Kumar, M. J. Manfra, L. N. Pfeiffer, K. W. West, and G. A. Csáthy, Collective Nature of the Reentrant Integer Quantum Hall States in the Second Landau Level, Phys. Rev. Lett. 108, 086803 (2012).
  • Rossokhaty et al. (2016) A. V. Rossokhaty, Y. Baum, J. A. Folk, J. D. Watson, G. C. Gardner, and M. J. Manfra, Electron-Hole Asymmetric Chiral Breakdown of Reentrant Quantum Hall States, Phys. Rev. Lett. 117, 166805 (2016).
  • Friess et al. (2017) B. Friess, Y. Peng, B. Rosenow, F. von Oppen, V. Umansky, K. von Klitzing, and J. H. Smet, Negative permittivity in bubble and stripe phases, Nature Phys. 13, 1124 (2017).
  • Bennaceur et al. (2018) K. Bennaceur, C. Lupien, B. Reulet, G. Gervais, L. N. Pfeiffer, and K. W. West, Competing Charge Density Waves Probed by Nonlinear Transport and Noise in the Second and Third Landau Levels, Phys. Rev. Lett. 120, 136801 (2018).
  • Friess et al. (2018) B. Friess, V. Umansky, K. von Klitzing, and J. H. Smet, Current Flow in the Bubble and Stripe Phases, Phys. Rev. Lett. 120, 137603 (2018).
  • Fu et al. (2019) X. Fu, Q. Shi, M. A. Zudov, G. C. Gardner, J. D. Watson, and M. J. Manfra, Two- and three-electron bubbles in AlxGa1xAs{\mathrm{Al}}_{x}{\mathrm{Ga}}_{1-x}\mathrm{As}/Al0.24Ga0.76As{\mathrm{Al}}_{0.24}{\mathrm{Ga}}_{0.76}\mathrm{As} quantum wells, Phys. Rev. B 99, 161402(R) (2019).
  • Ro et al. (2019) D. Ro, N. Deng, J. D. Watson, M. J. Manfra, L. N. Pfeiffer, K. W. West, and G. A. Csáthy, Electron bubbles and the structure of the orbital wave function, Phys. Rev. B 99, 201111(R) (2019).
  • Chen et al. (2019) S. Chen, R. Ribeiro-Palau, K. Yang, K. Watanabe, T. Taniguchi, J. Hone, M. O. Goerbig, and C. R. Dean, Competing Fractional Quantum Hall and Electron Solid Phases in Graphene, Phys. Rev. Lett. 122, 026802 (2019).
  • Huang et al. (2020) Y. Huang, M. Sammon, M. A. Zudov, and B. I. Shklovskii, Isotropically conducting (hidden) quantum Hall stripe phases in a two-dimensional electron gas, Phys. Rev. B 101, 161302(R) (2020).
  • MacDonald and Fisher (2000) A. H. MacDonald and M. P. A. Fisher, Quantum theory of quantum Hall smectics, Phys. Rev. B 61, 5724 (2000).
  • von Oppen et al. (2000) F. von Oppen, B. I. Halperin, and A. Stern, Conductivity Tensor of Striped Quantum Hall Phases, Phys. Rev. Lett. 84, 2937 (2000).
  • Sammon et al. (2019) M. Sammon, X. Fu, Y. Huang, M. A. Zudov, B. I. Shklovskii, G. C. Gardner, J. D. Watson, M. J. Manfra, K. W. Baldwin, L. N. Pfeiffer, et al., Resistivity anisotropy of quantum Hall stripe phases, Phys. Rev. B 100, 241303(R) (2019).
  • not (e) The mean free path along stripes limited by isotropic impurity scattering can be calculated using Ly2=(1/2π)02π𝑑θ(2Rccosθ)2=2Rc2L_{y}^{2}=(1/2\pi)\int_{0}^{2\pi}d\theta(2R_{c}\cos\theta)^{2}=2R_{c}^{2}.
  • Ando and Uemura (1974) T. Ando and Y. Uemura, Theory of Quantum Transport in a Two-Dimensional Electron System under Magnetic Fields. I. Characteristics of Level Broadening and Transport under Strong Fields, J. Phys. Soc. Jpn. 36, 959 (1974).
  • Coleridge et al. (1994) P. T. Coleridge, P. Zawadzki, and A. S. Sachrajda, Peak values of resistivity in high-mobility quantum-Hall-effect samples, Phys. Rev. B 49, 10798 (1994).
  • not (f) Our estimates show that Δν\Delta\nu reaches a maximum of 6 at x0.1x\approx 0.1 %.
  • Gardner et al. (2013) G. C. Gardner, J. D. Watson, S. Mondal, N. Deng, G. A. Csáthy, and M. J. Manfra, Growth and electrical characterization of Al0.24Ga0.76As/AlxGa1-xAs/ Al0.24Ga0.76As modulation-doped quantum wells with extremely low x, Appl. Phys. Lett. 102, 252103 (2013).
  • not (g) In general, α\alpha should be modified by a factor 2γ\sqrt{2\gamma}, where γ\gamma is a parameter depending on the nature of scattering (Sammon et al., 2019). In samples without alloy disorder, γ\gamma decreases with N1/N2N_{1}/N_{2} where N1N_{1} (N2N_{2}) is the concentration of Coulomb impurities in the barrier (quantum well), starting from γ0.43\gamma\approx 0.43 at N1=N2N_{1}=N_{2} (Sammon et al., 2019), whereas in samples where scattering is dominated by alloy disorder γ0.53\gamma\approx 0.53 (Huang et al., 2020). While we estimate γ0.4\gamma\approx 0.4 in our samples A and B, we will assume γ=0.5\gamma=0.5 for simplicity.
  • Shi (2017) Q. Shi, Magnetotransport in quantum Hall systems at high Landau levels, Ph.D. thesis, University of Minnesota, 2017.
  • Raikh and Shahbazyan (1993) M. E. Raikh and T. V. Shahbazyan, High Landau levels in a smooth random potential for two-dimensional electrons, Phys. Rev. B 47, 1522 (1993).
  • Mirlin et al. (1996) A. D. Mirlin, E. Altshuler, and P. Wölfle, Quasiclassical approach to impurity effect on magnetooscillations in 2D metals, Ann. Phys. (N.Y.) 508, 281 (1996).
  • Shi et al. (2016a) Q. Shi, S. A. Studenikin, M. A. Zudov, K. W. Baldwin, L. N. Pfeiffer, and K. W. West, Microwave photoresistance in an ultra-high-quality GaAs quantum well, Phys. Rev. B 93, 121305(R) (2016a).
  • Shi et al. (2017a) Q. Shi, M. A. Zudov, I. A. Dmitriev, K. W. Baldwin, L. N. Pfeiffer, and K. W. West, Fine structure of high-power microwave-induced resistance oscillations, Phys. Rev. B 95, 041403(R) (2017a).
  • Zudov et al. (2017) M. A. Zudov, I. A. Dmitriev, B. Friess, Q. Shi, V. Umansky, K. von Klitzing, and J. Smet, Hall field-induced resistance oscillations in a tunable-density GaAs quantum well, Phys. Rev. B 96, 121301(R) (2017).
  • Zudov et al. (2001) M. A. Zudov, R. R. Du, J. A. Simmons, and J. L. Reno, Shubnikov–de Haas-like oscillations in millimeterwave photoconductivity in a high-mobility two-dimensional electron gas, Phys. Rev. B 64, 201311(R) (2001).
  • Ye et al. (2001) P. D. Ye, L. W. Engel, D. C. Tsui, J. A. Simmons, J. R. Wendt, G. A. Vawter, and J. L. Reno, Giant microwave photoresistance of two-dimensional electron gas, Appl. Phys. Lett. 79, 2193 (2001).
  • Dmitriev et al. (2012) I. A. Dmitriev, A. D. Mirlin, D. G. Polyakov, and M. A. Zudov, Nonequilibrium phenomena in high Landau levels, Rev. Mod. Phys. 84, 1709 (2012).
  • Yang et al. (2002) C. L. Yang, J. Zhang, R. R. Du, J. A. Simmons, and J. L. Reno, Zener Tunneling Between Landau Orbits in a High-Mobility Two-Dimensional Electron Gas, Phys. Rev. Lett. 89, 076801 (2002).
  • Zhang et al. (2007) W. Zhang, H.-S. Chiang, M. A. Zudov, L. N. Pfeiffer, and K. W. West, Magnetotransport in a two-dimensional electron system in dc electric fields, Phys. Rev. B 75, 041304(R) (2007).
  • Vavilov et al. (2007) M. G. Vavilov, I. L. Aleiner, and L. I. Glazman, Nonlinear resistivity of a two-dimensional electron gas in a magnetic field, Phys. Rev. B 76, 115331 (2007).
  • Coleridge et al. (1996) P. Coleridge, M. Hayne, P. Zawadzki, and A. Sachrajda, Effective masses in high-mobility 2D electron gas structures, Surf. Sci. 361, 560 (1996).
  • Tan et al. (2005) Y.-W. Tan, J. Zhu, H. L. Stormer, L. N. Pfeiffer, K. W. Baldwin, and K. W. West, Measurements of the Density-Dependent Many-Body Electron Mass in Two Dimensional GaAs/AlGaAs Heterostructures, Phys. Rev. Lett. 94, 016405 (2005).
  • Hatke et al. (2013) A. T. Hatke, M. A. Zudov, J. D. Watson, M. J. Manfra, L. N. Pfeiffer, and K. W. West, Evidence for effective mass reduction in GaAs/AlGaAs quantum wells, Phys. Rev. B 87, 161307(R) (2013).
  • Shchepetilnikov et al. (2017) A. V. Shchepetilnikov, D. D. Frolov, Y. A. Nefyodov, I. V. Kukushkin, and S. Schmult, Renormalization of the effective mass deduced from the period of microwave-induced resistance oscillations in GaAs/AlGaAs heterostructures, Phys. Rev. B 95, 161305(R) (2017).
  • Fu et al. (2017) X. Fu, Q. A. Ebner, Q. Shi, M. A. Zudov, Q. Qian, J. D. Watson, and M. J. Manfra, Microwave-induced resistance oscillations in a back-gated GaAs quantum well, Phys. Rev. B 95, 235415 (2017).
  • not (h) The resistivities represented by ,\blacktriangle,\vartriangle (,\blacktriangledown,\triangledown) were obtained from RxxR_{xx} and RyyR_{yy} (Simon, 1999) (RxxR_{xx} and theoretical resistivity product MacDonald and Fisher (2000); von Oppen et al. (2000)); see Ref. Sammon et al., 2019 for details.
  • not (i) The analysis of the anisotropy ratio in this sample (Sammon et al., 2019) with theoretical value of α=18\alpha=18 leads to γ0.15\gamma\approx 0.15 (see also Ref. not, g) and a ratio of concentrations of Coulomb impurities in the spacer N1N_{1} to that in the quantum well N2N_{2}, N1/N260N_{1}/N_{2}\simeq 60, much larger than N1/N210N_{1}/N_{2}\simeq 10 estimated in Ref. Sammon et al., 2018. Our present experiments, however, suggest lower value of α\alpha, leading to larger γ\gamma and restoring the agreement with Ref. Sammon et al., 2018. Larger γ\gamma can also result from interface roughness scattering, which was not theoretically considered in Ref. Sammon et al., 2018.
  • Qian et al. (2017) Q. Qian, J. Nakamura, S. Fallahi, G. C. Gardner, and M. J. Manfra, Possible nematic to smectic phase transition in a two-dimensional electron gas at half-filling, Nature Commun. 8, 1536 (2017).
  • Fu et al. (2020) X. Fu, Q. Shi, M. A. Zudov, G. C. Gardner, J. D. Watson, M. J. Manfra, K. W. Baldwin, L. N. Pfeiffer, and K. W. West, Anomalous Nematic States in High Half-filled Landau Levels, Phys. Rev. Lett. 124, 067601 (2020).
  • not (j) With i,j=x,y(ij)i,j=x,y\ (i\neq j), the resistivity in units of h/e2h/e^{2} is ρ~iiσ~jjν2\tilde{\rho}_{ii}\simeq\tilde{\sigma}_{jj}\nu^{-2}, where σ~jj=Lj/2Li\tilde{\sigma}_{jj}=L_{j}/2L_{i} and LiL_{i} (LjL_{j}) is the mean free path along the ii (jj) direction. Without dislocations, Lyν1L_{y}\propto\nu^{-1}, LxνL_{x}\propto\nu, and ρ~xxν4\tilde{\rho}_{xx}\propto\nu^{-4}, while ρ~yyν0\tilde{\rho}_{yy}\propto\nu^{0}. With dislocations, LyLxνL_{y}\propto L_{x}\propto\nu, i.e., σ~jjν0\tilde{\sigma}_{jj}\propto\nu^{0}, and ρ~xxρ~yyν2\tilde{\rho}_{xx}\propto\tilde{\rho}_{yy}\propto\nu^{-2}.
  • not (k) Eqs (7) and (8) can be obtained via replacement of hopping time of electrons between neighboring stripes 2τB2\tau_{B} by Ld/vL_{\rm d}/v, where vv is the drift velocity of electron along the stripe.
  • not (l) The approximate condition for the hQHS phase detection is σ~0>α2(τ/τq)max{τ/τq,11/2}\tilde{\sigma}_{0}>\alpha^{2}(\tau/\tau_{\rm q})\max\{\tau/\tau_{\rm q},11/2\}.
  • Borzi et al. (2007) R. A. Borzi, S. A. Grigera, J. Farrell, R. S. Perry, S. J. S. Lister, S. L. Lee, D. A. Tennant, Y. Maeno, and A. P. Mackenzie, Formation of a Nematic Fluid at High Fields in Sr3Ru2O7, Science 315, 214 (2007).
  • Daou et al. (2010) R. Daou, J. Chang, D. LeBoeuf, O. Cyr-Choiniere, F. Laliberte, N. Doiron-Leyraud, B. J. Ramshaw, R. Liang, D. A. Bonn, W. N. Hardy, et al., Broken rotational symmetry in the pseudogap phase of a high-Tc superconductor, Nature 463, 519 (2010).
  • Chu et al. (2010) J.-H. Chu, J. G. Analytis, K. De Greve, P. L. McMahon, Z. Islam, Y. Yamamoto, and I. R. Fisher, In-Plane Resistivity Anisotropy in an Underdoped Iron Arsenide Superconductor, Science 329, 824 (2010).
  • Okazaki et al. (2011) R. Okazaki, T. Shibauchi, H. J. Shi, Y. Haga, T. D. Matsuda, E. Yamamoto, Y. Onuki, H. Ikeda, and Y. Matsuda, Rotational Symmetry Breaking in the Hidden-Order Phase of URu2Si2, Science 331, 439 (2011).
  • Jin et al. (2020) C. Jin, Z. Tao, T. Li, Y. Xu, Y. Tang, J. Zhu, S. Liu, K. Watanabe, T. Taniguchi, J. C. Hone, et al., Stripe phases in WSe2/WS2 moire´\acute{e} superlattices, arXiv:2007.12068.
  • Cao et al. (2020) Y. Cao, D. Rodan-Legrain, J. M. Park, F. N. Yuan, K. Watanabe, T. Taniguchi, R. M. Fernandes, L. Fu, and P. Jarillo-Herrero, Nematicity and Competing Orders in Superconducting Magic-Angle Graphene, arXiv:2004.04148.
  • Fradkin and Kivelson (1999) E. Fradkin and S. A. Kivelson, Liquid-crystal phases of quantum Hall systems, Phys. Rev. B 59, 8065 (1999).
  • Zhu et al. (2002) J. Zhu, W. Pan, H. L. Stormer, L. N. Pfeiffer, and K. W. West, Density-Induced Interchange of Anisotropy Axes at Half-Filled High Landau Levels, Phys. Rev. Lett. 88, 116803 (2002).
  • Pan et al. (1999) W. Pan, R. R. Du, H. L. Stormer, D. C. Tsui, L. N. Pfeiffer, K. W. Baldwin, and K. W. West, Strongly Anisotropic Electronic Transport at Landau Level Filling Factor under a Tilted Magnetic Field, Phys. Rev. Lett. 83, 820 (1999).
  • Lilly et al. (1999b) M. P. Lilly, K. B. Cooper, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, Anisotropic States of Two-Dimensional Electron Systems in High Landau Levels: Effect of an In-Plane Magnetic Field, Phys. Rev. Lett. 83, 824 (1999b).
  • Jungwirth et al. (1999) T. Jungwirth, A. H. MacDonald, L. Smrčka, and S. M. Girvin, Field-tilt anisotropy energy in quantum Hall stripe states, Phys. Rev. B 60, 15574 (1999).
  • Stanescu et al. (2000) T. D. Stanescu, I. Martin, and P. Phillips, Finite-Temperature Density Instability at High Landau Level Occupancy, Phys. Rev. Lett. 84, 1288 (2000).
  • Zhu et al. (2009) H. Zhu, G. Sambandamurthy, L. W. Engel, D. C. Tsui, L. N. Pfeiffer, and K. W. West, Pinning Mode Resonances of 2D Electron Stripe Phases: Effect of an In-Plane Magnetic Field, Phys. Rev. Lett. 102, 136804 (2009).
  • Shi et al. (2016b) Q. Shi, M. A. Zudov, J. D. Watson, G. C. Gardner, and M. J. Manfra, Evidence for a new symmetry breaking mechanism reorienting quantum Hall nematics, Phys. Rev. B 93, 121411(R) (2016b).
  • Shi et al. (2017b) Q. Shi, M. A. Zudov, Q. Qian, J. D. Watson, and M. J. Manfra, Effect of density on quantum Hall stripe orientation in tilted magnetic fields, Phys. Rev. B 95, 161303(R) (2017b).
  • Falson et al. (2018) J. Falson, D. Tabrea, D. Zhang, I. Sodemann, Y. Kozuka, A. Tsukazaki, M. Kawasaki, K. von Klitzing, and J. H. Smet, A cascade of phase transitions in an orbitally mixed half-filled Landau level, Science Advances 4 (2018).
  • Hossain et al. (2018) M. S. Hossain, M. A. Mueed, M. K. Ma, Y. J. Chung, L. N. Pfeiffer, K. W. West, K. W. Baldwin, and M. Shayegan, Anomalous coupling between magnetic and nematic orders in quantum Hall systems, Phys. Rev. B 98, 081109(R) (2018).
  • Simon (1999) S. H. Simon, Comment on “Evidence for an Anisotropic State of Two-Dimensional Electrons in High Landau Levels”, Phys. Rev. Lett. 83, 4223 (1999).
  • Sammon et al. (2018) M. Sammon, M. A. Zudov, and B. I. Shklovskii, Mobility and quantum mobility of modern GaAs/AlGaAs heterostructures, Phys. Rev. Materials 2, 064604 (2018).