This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

{NoHyper}
\thankstext

[\star]t1Corresponding Editors: clicdp-higgs-paper-editors@cern.ch \thankstext[\dagger]deceasedDeceased \thankstext[a]now:BonnNow at University of Bonn, Bonn, Germany \thankstext[b]also:BonnAlso at University of Bonn, Bonn, Germany \thankstext[c]now:XFELNow at European XFEL GmbH, Hamburg, Germany \thankstext[d]also:ViennaAlso at Vienna University of Technology, Vienna, Austria \thankstext[e]now:PSINow at Paul Scherrer Institute, Villigen, Switzerland \thankstext[f]now:PNNLNow at Pacific Northwest National Laboratory, Richland, Washington, USA \thankstext[g]now:WuppertalNow at University of Wuppertal, Wuppertal, Germany

11institutetext: Raymond & Beverly Sackler School of Physics & Astronomy, Tel Aviv University, Tel Aviv, Israel 22institutetext: Pontificia Universidad Católica de Chile, Santiago, Chile 33institutetext: National Scientific and Educational Centre of Particle and High Energy Physics, Belarusian State University, Minsk, Belarus 44institutetext: CERN, Geneva, Switzerland 55institutetext: Monash University, Melbourne, Australia 66institutetext: Département de Physique Nucléaire et Corpusculaire (DPNC), Université de Genève, Geneva, Switzerland 77institutetext: Argonne National Laboratory, Argonne, USA 88institutetext: Laboratoire d’Annecy-le-Vieux de Physique des Particules, Annecy-le-Vieux, France 99institutetext: University of Melbourne, Melbourne, Australia 1010institutetext: IFIC, CSIC-University of Valencia, Valencia, Spain 1111institutetext: Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia 1212institutetext: University of Liverpool, Liverpool, United Kingdom 1313institutetext: Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Cracow, Poland 1414institutetext: Oxford University, Oxford, United Kingdom 1515institutetext: The Henryk Niewodniczański Institute of Nuclear Physics Polish Academy of Sciences , Cracow, Poland 1616institutetext: Department of Physics and Technology, University of Bergen, Bergen, Norway 1717institutetext: Institute of Space Science, Bucharest, Romania 1818institutetext: Max-Planck-Institut für Physik, Munich, Germany 1919institutetext: DESY, Hamburg, Germany 2020institutetext: University of Bristol, Bristol, United Kingdom 2121institutetext: Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom 2222institutetext: University of Edinburgh, Edinburgh, United Kingdom 2323institutetext: School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom 2424institutetext: Faculty of Physics, University of Warsaw, Poland 2525institutetext: Institute of Physics of the Academy of Sciences of the Czech Republic, Prague, Czech Republic 2626institutetext: IFCA, CSIC-University of Cantabria, Santander, Spain 2727institutetext: Karlsruher Institut für Technologie (KIT), Institut für Prozessdatenverarbeitung und Elektronik (IPE), Karlsruhe, Germany 2828institutetext: University of Glasgow, Glasgow, United Kingdom 2929institutetext: University of Barcelona, Barcelona, Spain 3030institutetext: Aarhus University, Aarhus, Denmark 3131institutetext: Physics Department, University of Michigan, Ann Arbor, Michigan, USA

Higgs Physics at the CLIC Electron-Positron Linear Collider

H. Abramowicz\thanksrefinst:TelAviv    A. Abusleme\thanksrefinst:Santiago    K. Afanaciev\thanksrefinst:Minsk    N. Alipour Tehrani\thanksrefinst:CERN    C. Balázs\thanksrefinst:Monash    Y. Benhammou\thanksrefinst:TelAviv    M. Benoit\thanksrefinst:Geneva    B. Bilki\thanksrefinst:Argonne    J.-J. Blaising\thanksrefinst:Annecy    M.J. Boland\thanksrefinst:Melbourne    M. Boronat\thanksrefinst:Valencia    O. Borysov\thanksrefinst:TelAviv    I. Božović-Jelisavčić\thanksrefinst:Belgrade    M. Buckland\thanksrefinst:Liverpool    S. Bugiel\thanksrefinst:AGH-UST-Cracow    P.N. Burrows\thanksrefinst:Oxford    T.K. Charles\thanksrefinst:Monash    W. Daniluk\thanksrefinst:IFJPAN-Cracow    D. Dannheim\thanksrefinst:CERN    R. Dasgupta\thanksrefinst:AGH-UST-Cracow    M. Demarteau\thanksrefinst:Argonne    M.A. Díaz Gutierrez\thanksrefinst:Santiago    G. Eigen\thanksrefinst:Bergen    K. Elsener\thanksrefinst:CERN    U. Felzmann\thanksrefinst:Melbourne    M. Firlej\thanksrefinst:AGH-UST-Cracow    E. Firu\thanksrefinst:Bucharest    T. Fiutowski\thanksrefinst:AGH-UST-Cracow    J. Fuster\thanksrefinst:Valencia    M. Gabriel\thanksrefinst:Munich    F. Gaede\thanksrefinst:CERN,inst:DESY    I. García\thanksrefinst:Valencia    V. Ghenescu\thanksrefinst:Bucharest    J. Goldstein\thanksrefinst:Bristol    S. Green\thanksrefinst:Cambridge    C. Grefe\thanksrefinst:CERN, now:Bonn, t1    M. Hauschild\thanksrefinst:CERN    C. Hawkes\thanksrefinst:Birmingham    D. Hynds\thanksrefinst:CERN    M. Idzik\thanksrefinst:AGH-UST-Cracow    G. Kačarević\thanksrefinst:Belgrade    J. Kalinowski\thanksrefinst:Warsaw    S. Kananov\thanksrefinst:TelAviv    W. Klempt\thanksrefinst:CERN    M. Kopec\thanksrefinst:AGH-UST-Cracow    M. Krawczyk\thanksrefinst:Warsaw    B. Krupa\thanksrefinst:IFJPAN-Cracow    M. Kucharczyk\thanksrefinst:IFJPAN-Cracow    S. Kulis\thanksrefinst:CERN    T. Laštovička\thanksrefinst:Prague    T. Lesiak\thanksrefinst:IFJPAN-Cracow    A. Levy\thanksrefinst:TelAviv    I. Levy\thanksrefinst:TelAviv    L. Linssen\thanksrefinst:CERN    S. Lukić\thanksrefinst:Belgrade, t1    A.A. Maier\thanksrefinst:CERN    V. Makarenko\thanksrefinst:Minsk    J.S. Marshall\thanksrefinst:Cambridge    V.J. Martin\thanksrefinst:Edinburgh    K. Mei\thanksrefinst:Cambridge    G. Milutinović-Dumbelović\thanksrefinst:Belgrade    J. Moroń\thanksrefinst:AGH-UST-Cracow    A. Moszczyński\thanksrefinst:IFJPAN-Cracow    D. Moya\thanksrefinst:Santander    R.M. Münker\thanksrefinst:CERN, also:Bonn    A. Münnich\thanksrefinst:CERN, now:XFEL    A.T. Neagu\thanksrefinst:Bucharest    N. Nikiforou\thanksrefinst:CERN    K. Nikolopoulos\thanksrefinst:Birmingham    A. Nürnberg\thanksrefinst:CERN    M. Pandurović\thanksrefinst:Belgrade    B. Pawlik\thanksrefinst:IFJPAN-Cracow    E. Perez Codina\thanksrefinst:CERN    I. Peric\thanksrefinst:Karlsruhe    M. Petric\thanksrefinst:CERN    F. Pitters\thanksrefinst:CERN, also:Vienna    S.G. Poss\thanksrefinst:CERN    T. Preda\thanksrefinst:Bucharest    D. Protopopescu\thanksrefinst:Glasgow    R. Rassool\thanksrefinst:Melbourne    S. Redford\thanksrefinst:CERN, now:PSI, t1    J. Repond\thanksrefinst:Argonne    A. Robson\thanksrefinst:Glasgow    P. Roloff\thanksrefinst:CERN, t1    E. Ros\thanksrefinst:Valencia    O. Rosenblat\thanksrefinst:TelAviv    A. Ruiz-Jimeno\thanksrefinst:Santander    A. Sailer\thanksrefinst:CERN    D. Schlatter\thanksrefinst:CERN    D. Schulte\thanksrefinst:CERN    N. Shumeiko\thanksrefinst:Minsk, deceased    E. Sicking\thanksrefinst:CERN    F. Simon\thanksrefinst:Munich, t1    R. Simoniello\thanksrefinst:CERN    P. Sopicki\thanksrefinst:IFJPAN-Cracow    S. Stapnes\thanksrefinst:CERN    R. Ström\thanksrefinst:CERN    J. Strube\thanksrefinst:CERN, now:PNNL    K.P. Świentek\thanksrefinst:AGH-UST-Cracow    M. Szalay\thanksrefinst:Munich    M. Tesař\thanksrefinst:Munich    M.A. Thomson\thanksrefinst:Cambridge, t1    J. Trenado\thanksrefinst:Barcelona    U.I. Uggerhøj\thanksrefinst:Aarhus    N. van der Kolk\thanksrefinst:Munich    E. van der Kraaij\thanksrefinst:Bergen    M. Vicente Barreto Pinto\thanksrefinst:Geneva    I. Vila\thanksrefinst:Santander    M. Vogel Gonzalez\thanksrefinst:Santiago, now:Wuppertal    M. Vos\thanksrefinst:Valencia    J. Vossebeld\thanksrefinst:Liverpool    M. Watson\thanksrefinst:Birmingham    N. Watson\thanksrefinst:Birmingham    M.A. Weber\thanksrefinst:CERN    H. Weerts\thanksrefinst:Argonne    J.D. Wells\thanksrefinst:Michigan    L. Weuste\thanksrefinst:Munich    A. Winter\thanksrefinst:Birmingham    T. Wojtoń\thanksrefinst:IFJPAN-Cracow    L. Xia\thanksrefinst:Argonne    B. Xu\thanksrefinst:Cambridge    A.F. Żarnecki\thanksrefinst:Warsaw    L. Zawiejski\thanksrefinst:IFJPAN-Cracow    I.-S. Zgura\thanksrefinst:Bucharest
(Received: date / Accepted: date)
Abstract

The Compact Linear Collider (CLIC) is an option for a future e+e\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}} collider operating at centre-of-mass energies up to 3TeV3\,\text{TeV}, providing sensitivity to a wide range of new physics phenomena and precision physics measurements at the energy frontier. This paper is the first comprehensive presentation of the Higgs physics reach of CLIC operating at three energy stages: s=350GeV\sqrt{s}=350\,\text{GeV}, 1.4TeV1.4\,\text{TeV}, and 3TeV3\,\text{TeV}. The initial stage of operation allows the study of Higgs boson production in Higgsstrahlung (e+eZH\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{Z}}}\mathup{{{H}}}) and WW\mathup{{{W}}}\mathup{{{W}}}-fusion (e+eH¯ee\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}), resulting in precise measurements of the production cross sections, the Higgs total decay width ΓH\Gamma_{\mathup{{{H}}}}, and model-independent determinations of the Higgs couplings. Operation at s>1TeV\sqrt{s}>1\,\text{TeV} provides high-statistics samples of Higgs bosons produced through WW\mathup{{{W}}}\mathup{{{W}}}-fusion, enabling tight constraints on the Higgs boson couplings. Studies of the rarer processes e+ett¯H\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{t}}}\mathup{{\overline{{\mathup{{{t}}}}}}}\mathup{{{H}}} and e+eHH¯ee\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{H}}}\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}} allow measurements of the top Yukawa coupling and the Higgs boson self-coupling. This paper presents detailed studies of the precision achievable with Higgs measurements at CLIC and describes the interpretation of these measurements in a global fit.

journal: Eur. Phys. J. C

1 Introduction

The discovery of a Higgs boson Aad:2012tfa ; Chatrchyan:2012xdj at the Large Hadron Collider (LHC) provided confirmation of the electroweak symmetry breaking mechanism higgs:englert ; higgs:HiggsA ; higgs:HiggsB ; higgs:KibbleA ; higgs:HiggsC ; higgs:KibbleB of the Standard Model (SM). However, it is not yet known if the observed Higgs boson is the fundamental scalar of the SM or is either a more complex object or part of an extended Higgs sector. Precise studies of the properties of the Higgs boson at the LHC and future colliders are essential to understand its true nature.

The Compact Linear Collider (CLIC) is a mature option for a future multi-TeV high-luminosity linear e+e\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}} collider that is currently under development at CERN. It is based on a novel two-beam acceleration technique providing accelerating gradients of 100 MV/m. Recent implementation studies for CLIC have converged towards a staged approach. In this scheme, CLIC provides high-luminosity e+e\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}} collisions at centre-of-mass energies from a few hundred GeV up to 3 TeV. The ability of CLIC to collide e+e\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}} up to multi-TeV energy scales is unique. For the current study, the nominal centre-of-mass energy of the first energy stage is s=350GeV\sqrt{s}=350\,\text{GeV}. At this centre-of-mass energy, the Higgsstrahlung and WW\mathup{{{W}}}\mathup{{{W}}}-fusion processes have significant cross sections, providing access to precise measurement of the absolute values of the Higgs boson couplings to both fermions and bosons. Another advantage of operating CLIC at s350GeV\sqrt{s}\approx 350\,\text{GeV} is that it enables a programme of precision top quark physics, including a scan of the tt¯\mathup{{{t}}}\mathup{{\overline{{\mathup{{{t}}}}}}} cross section close to the production threshold. In practice, the centre-of-mass energy of the second stage of CLIC operation will be motivated by both the machine design and results from the LHC. In this paper, it is assumed that the second CLIC energy stage has s=1.4TeV\sqrt{s}=1.4\,\text{TeV} and that the ultimate CLIC centre-of-mass energy is 3TeV3\,\text{TeV}. In addition to direct and indirect searches for Beyond the Standard Model (BSM) phenomena, these higher energy stages of operation provide a rich potential for Higgs physics beyond that accessible at lower energies, such as the direct measurement of the top Yukawa coupling and a direct probe of the Higgs potential through the measurement of the Higgs self-coupling. Furthermore, rare Higgs boson decays become accessible due to the higher integrated luminosities at higher energies and the increasing cross section for Higgs production in WW\mathup{{{W}}}\mathup{{{W}}}-fusion. The proposed staged approach spans around twenty years of running.

The following sections describe the experimental conditions at CLIC, an overview of Higgs production at CLIC, and the Monte Carlo samples, detector simulation, and event reconstruction used for the subsequent studies. Thereafter, Higgs production at s=350GeV\sqrt{s}=350\,\text{GeV}, Higgs production in WW\mathup{{{W}}}\mathup{{{W}}}-fusion at s>1TeV\sqrt{s}>1\,\text{TeV}, Higgs production in ZZ\mathup{{{Z}}}\mathup{{{Z}}}-fusion, the measurement of the top Yukawa coupling, double Higgs production, and measurements of the Higgs boson mass are presented. The paper concludes with a discussion of the measurement precisions on the Higgs couplings obtained in a combined fit to the expected CLIC results, and the systematic uncertainties associated with the measurements.

The detailed study of the CLIC potential for Higgs physics presented here supersedes earlier preliminary estimates CLIC_snowmass13 . The work is carried out by the CLIC Detector and Physics (CLICdp) collaboration.

2 Experimental Environment at CLIC

The experimental environment at CLIC is characterised by challenging conditions imposed by the CLIC accelerator technology, by detector concepts optimised for the precise reconstruction of complex final states in the multi-TeV energy range, and by the operation in several energy stages to maximise the physics potential.

2.1 Accelerator and Beam Conditions

The CLIC accelerator design is based on a two-beam acceleration scheme. It uses a high-intensity drive beam to efficiently generate radio frequency (RF) power at 12 GHz. The RF power is used to accelerate the main particle beam that runs parallel to the drive beam. CLIC uses normal-conducting accelerator structures, operated at room temperature. These structures permit high accelerating gradients, while the short pulse duration discussed below limits ohmic losses to tolerable levels. The initial drive beams and the main electron/positron beams are generated in the central complex and are then injected at the ends of the two linac arms. The feasibility of the CLIC accelerator has been demonstrated through prototyping, simulations and large-scale tests, as described in the Conceptual Design Report CLICCDR_vol1 . In particular, the two-beam acceleration at gradients exceeding 100 MV/m has been demonstrated in the CLIC test facility, CTF3. High luminosities are achievable by very small beam emittances, which are generated in the injector complex and maintained during transport to the interaction point.

CLIC will be operated with a bunch train repetition rate of 50 Hz. Each bunch train consists of 312 individual bunches, with 0.5 ns between bunch crossings at the interaction point. The average number of hard e+e\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}} interactions in a single bunch train crossing is much less than one. However, for CLIC operation at s>1TeV\sqrt{s}>1\,\text{TeV}, the highly-focussed intense beams lead to significant beamstrahlung (radiation of photons from electrons/positrons in the electric field of the other beam). Beamstrahlung results in high rates of incoherent electron–positron pairs and low-Q2Q^{2} tt-channel multi-peripheral hadron\mathup{}\mathup{}\to\text{hadron} events, where Q2Q^{2} is the negative of the four-momentum squared of the virtual space-like photon. In addition, the energy loss through beamstrahlung generates a long lower-energy tail to the luminosity spectrum that extends well below the nominal centre-of-mass energy, as shown in Figure 1. Both the CLIC detector design and the event reconstruction techniques employed are optimised to mitigate the influence of these backgrounds, which are most severe at the higher CLIC energies; this is discussed further in Section 4.2.

Refer to caption
Figure 1: The luminosity spectrum for CLIC operating at s=3TeV\sqrt{s}=3\,\text{TeV}, where s\sqrt{s^{\prime}} is the effective centre-of-mass energy after beamstrahlung and initial state radiation CLIC_PhysDet_CDR .

The baseline machine design allows for up to ±\pm80 % longitudinal electron spin-polarisation by using GaAs-type cathodes CLICCDR_vol1 ; and provisions have been made to allow positron polarisation as an upgrade option. Most studies presented in this paper are performed for zero beam polarisation and are subsequently scaled to account for the increased cross sections with left-handed polarisation for the electron beam.

2.2 Detectors at CLIC

Refer to caption

a)Refer to captionb)

Figure 2: Longitudinal cross section of the top right quadrant of the CLIC_ILD (a) and CLIC_SiD (b) detector concepts.

The detector concepts used for the CLIC physics studies, described here and elsewhere CLIC_PhysDet_CDR , are based on the SiD Aihara:2009ad ; ilctdrvol4:2013 and ILD ildloi:2009 ; ilctdrvol4:2013 detector concepts for the International Linear Collider (ILC). They were initially adapted for the CLIC 3TeV3\,\text{TeV} operation, which constitutes the most challenging environment for the detectors in view of the high beam-induced background levels. For most sub-detector systems, the 3TeV3\,\text{TeV} detector design is suitable at all energy stages, the only exception being the inner tracking detectors and the vertex detector, where the lower backgrounds at s=350GeV\sqrt{s}=350\,\text{GeV} enable detectors to be deployed with a smaller inner radius.

The key performance parameters of the CLIC detector concepts with respect to the Higgs programme are:

  • excellent track-momentum resolution of σpT/pT22105\sigma_{p_{T}}/p_{T}^{2}\lesssim 2\cdot 10^{-5} GeV1\text{GeV}^{-1}, required for a precise reconstruction of leptonic Z\mathup{{{Z}}} decays in ZH\mathup{{{Z}}}\mathup{{{H}}} events;

  • precise impact parameter resolution, defined by a5ma\lesssim 5\,\upmu\text{m} and b15mGeVb\lesssim 15\,\upmu\text{m}\,\text{GeV} in σd02=a2+b2/(p2sin3θ)\sigma_{d_{0}}^{2}=a^{2}+b^{2}/(p^{2}\sin^{3}\theta) to provide accurate vertex reconstruction, enabling flavour tagging with clean b\mathup{{{b}}}-, c\mathup{{{c}}}- and light-quark jet separation;

  • jet-energy resolution σE/E3.5%\sigma_{E}/E\lesssim 3.5\,\% for light-quark jet energies in the range 100GeV100\,\text{GeV} to 1TeV1\,\text{TeV}, required for the reconstruction of hadronic Z\mathup{{{Z}}} decays in ZH\mathup{{{Z}}}\mathup{{{H}}} events and the separation of Zqq¯\mathup{{{Z}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}} and Hqq¯\mathup{{{H}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}} based on the reconstructed di-jet invariant mass;

  • detector coverage for electrons extending to very low angles with respect to the beam axis, to maximise background rejection for WW\mathup{{{W}}}\mathup{{{W}}}-fusion events.

The main design driver for the CLIC (and ILC) detector concepts is the required jet-energy resolution. As a result, the CLIC detector concepts CLIC_PhysDet_CDR , CLIC_SiD and CLIC_ILD, are based on fine-grained electromagnetic and hadronic calorimeters (ECAL and HCAL), optimised for particle-flow reconstruction techniques. In the particle-flow approach, the aim is to reconstruct the individual final-state particles within a jet using information from the tracking detectors combined with that from the highly granular calorimeters thomson:pandora ; Marshall2013153 ; ALEPH:pflow ; CMS:pflow . In addition, particle-flow event reconstruction provides a powerful tool for the rejection of beam-induced backgrounds CLIC_PhysDet_CDR . The CLIC detector concepts employ strong central solenoid magnets, located outside the HCAL, providing an axial magnetic field of 5 T in CLIC_SiD and 4 T in CLIC_ILD. The CLIC_SiD concept employs central silicon-strip tracking detectors, whereas CLIC_ILD assumes a large central gaseous Time Projection Chamber. In both concepts, the central tracking system is augmented with silicon-based inner tracking detectors. The two detector concepts are shown schematically in Figure 2 and are described in detail in CLIC_PhysDet_CDR .

2.3 Assumed Staged Running Scenario

The studies presented in this paper are based on a scenario in which CLIC runs at three energy stages. The first stage is at s=350GeV\sqrt{s}=350\,\text{GeV}, around the top-pair production threshold. The second stage is at s=1.4TeV\sqrt{s}=1.4\,\text{TeV}; this energy is chosen because it can be reached with a single CLIC drive-beam complex. The third stage is at s=3TeV\sqrt{s}=3\,\text{TeV}; the ultimate energy of CLIC. At each stage, four to five years of running with a fully commissioned accelerator is foreseen, providing integrated luminosities of 500fb1500\,\text{fb}^{-1}, 1.5ab11.5\,\text{ab}^{-1} and 2ab12\,\text{ab}^{-1} at 350GeV350\,\text{GeV}, 1.4TeV1.4\,\text{TeV} and 3TeV3\,\text{TeV}, respectivelyiiiAs a result of this paper and other studies, a slightly different staging scenario for CLIC, with a first stage at s=380GeV\sqrt{s}=380\,\text{GeV} to include precise measurements of top quark properties as a probe for BSM physics, and the next stage at 1.5 TeV, has recently been adopted and will be used for future studies staging_baseline_yellow_report .. Cross sections and integrated luminosities for the three stages are summarised in Table 1.

3 Overview of Higgs Production at CLIC

A high-energy e+e\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}} collider such as CLIC provides an experimental environment that allows the study of Higgs boson properties with high precision. The evolution of the leading-order e+e\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}} Higgs production cross sections with centre-of-mass energy, as computed using the Whizard 1.95 Kilian:2007gr program, is shown in Figure 3 for a Higgs boson mass of 126GeV126\,\text{GeV} Agashe:2014kda .

Refer to caption
Figure 3: Cross section as a function of centre-of-mass energy for the main Higgs production processes at an e+e\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}} collider for a Higgs mass of mH=126GeVm_{\mathup{{{H}}}}=126\,\text{GeV}. The values shown correspond to unpolarised beams and do not include the effect of beamstrahlung.

The Feynman diagrams for the three highest cross section Higgs production processes at CLIC are shown in Figure 4. At s350GeV\sqrt{s}\approx 350\,\text{GeV}, the Higgsstrahlung process (e+eZH\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{Z}}}\mathup{{{H}}}) has the largest cross section, but the WW\mathup{{{W}}}\mathup{{{W}}}-fusion process (e+eH¯ee\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}) is also significant. The combined study of these two processes probes the Higgs boson properties (width and branching ratios) in a model-independent manner. In the higher energy stages of CLIC operation (s=1.4TeV\sqrt{s}=1.4\,\text{TeV} and 3TeV3\,\text{TeV}), Higgs production is dominated by the WW\mathup{{{W}}}\mathup{{{W}}}-fusion process, with the ZZ\mathup{{{Z}}}\mathup{{{Z}}}-fusion process (e+eHe+e\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{H}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}) also becoming significant. Here the increased WW\mathup{{{W}}}\mathup{{{W}}}-fusion cross section, combined with the high luminosity of CLIC, results in large data samples, allowing precise 𝒪(1%){\cal{O}}(1\,\%) measurements of the couplings of the Higgs boson to both fermions and gauge bosons. In addition to the main Higgs production channels, rarer processes such as e+ett¯H\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{t}}}\mathup{{\overline{{\mathup{{{t}}}}}}}\mathup{{{H}}} and e+eHH¯ee\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{H}}}\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}, provide access to the top Yukawa coupling and the Higgs trilinear self-coupling. Feynman diagrams for these processes are shown in Figure 5. In all cases, the Higgs production cross sections can be increased with polarised electron (and positron) beams as discussed in Section 3.2.

{fmffile}

higgs_production/eezh {fmfgraph*}(25,20) a)\fmfstraight\fmflefti1,i2 \fmfrighto1,o2 \fmflabele\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}i1 \fmflabele+\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}i2 \fmflabelZ\mathup{{{Z}}}o2 \fmflabelH\mathup{{{H}}}o1 \fmfphoton,tension=1.0,label=Z\mathup{{{Z}}}v1,v2 \fmffermion,tension=1.0i1,v1,i2 \fmfphoton,tension=1.0o2,v2 \fmfdashes,tension=1.0v2,o1 \fmfdotv1 \fmfdotv2      {fmffile}higgs_production/eevvh {fmfgraph*}(25,20) b)\fmfstraight\fmflefti1,i2 \fmfrighto1,oh,o2 \fmflabele\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}i1 \fmflabele+\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}i2 \fmflabel¯e\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}o2 \fmflabelH\mathup{{{H}}}oh \fmflabele\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}o1 \fmffermion, tension=2.0i1,v1 \fmffermion, tension=1.0v1,o1 \fmffermion, tension=1.0o2,v2 \fmffermion, tension=2.0v2,i2 \fmfphoton, lab.side=right,lab.dist=1.5,label=W\mathup{{{W}}},tension=1.0v1,vh \fmfphoton, lab.side=right, lab.dist=1.5,label=W\mathup{{{W}}},tension=1.0vh,v2 \fmfdashes, tension=1.0vh,oh \fmfdotvh

{fmffile}higgs_production/eeeeh {fmfgraph*}(25,20) c)\fmfstraight\fmflefti1,i2 \fmfrighto1,oh,o2 \fmflabele\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}i1 \fmflabele+\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}i2 \fmflabele+\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}o2 \fmflabelH\mathup{{{H}}}oh \fmflabele\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}o1 \fmffermion, tension=2.0i1,v1 \fmffermion, tension=1.0v1,o1 \fmffermion, tension=1.0o2,v2 \fmffermion, tension=2.0v2,i2 \fmfphoton, lab.side=right,lab.dist=1.5,label=Z\mathup{{{Z}}},tension=1.0v1,vh \fmfphoton, lab.side=right, lab.dist=1.5,label=Z\mathup{{{Z}}},tension=1.0vh,v2 \fmfdashes, tension=1.0vh,oh \fmfdotvh

Figure 4: Leading-order Feynman diagrams of the highest cross section Higgs production processes at CLIC; Higgsstrahlung (a), WW\mathup{{{W}}}\mathup{{{W}}}-fusion (b) and ZZ\mathup{{{Z}}}\mathup{{{Z}}}-fusion (c).
{fmffile}

higgs_production/eetth {fmfgraph*}(25,20) a)\fmfstraight\fmflefti1,i2 \fmfrighto1,oh,o2 \fmflabele\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}i1 \fmflabele+\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}i2 \fmflabelt\mathup{{{t}}}o2 \fmflabelH\mathup{{{H}}}oh \fmflabelt¯\mathup{{\overline{{\mathup{{{t}}}}}}}o1 \fmfphoton,label=Z\mathup{{{Z}}},tension=2.0v1,v2 \fmffermion,tension=1.0i1,v1,i2 \fmfphantom,tension=1.0o1,v2,o2 \fmffreeze\fmffermion,tension=1.0o1,v2 \fmffermion,tension=1.0v2,vh,o2 \fmfdashes,tension=0.0vh,oh \fmfdotvh      {fmffile}higgs_production/eevvhh {fmfgraph*}(25,20) b)\fmflefti1,i2 \fmfrighto1,oh1,oh2,o2 \fmflabele\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}i1 \fmflabele+\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}i2 \fmflabel¯e\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}o2 \fmflabelH\mathup{{{H}}}oh1 \fmflabelH\mathup{{{H}}}oh2 \fmflabele\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}o1 \fmffermion, tension=2.0i1,v1 \fmffermion, tension=1.0v1,o1 \fmffermion, tension=1.0o2,v2 \fmffermion, tension=2.0v2,i2 \fmfphoton, label=W\mathup{{{W}}},label.dist=1.5,tension=1.0v1,vh \fmfphoton, label=W\mathup{{{W}}},label.dist=1.5,tension=1.0v2,vh \fmfdashes, label=H\mathup{{{H}}}, label.dist=1.5,tension=2.0vh,vh1 \fmfdashes, tension=1.0oh1,vh1,oh2 \fmfdotvh1

Figure 5: Feynman diagrams of the leading-order processes at CLIC involving (a) the top Yukawa coupling gHttg_{\mathup{{{H}}}\mathup{{{t}}}\mathup{{{t}}}}, and (b) the Higgs boson trilinear self-coupling λ\lambda.

Table 1 lists the expected numbers of ZH\mathup{{{Z}}}\mathup{{{H}}}, H¯ee\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}} and He+e\mathup{{{H}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}} events for the three main CLIC centre-of-mass energy stages. These numbers account for the effect of beamstrahlung and initial state radiation (ISR), which result in a tail in the distribution of the effective centre-of-mass energy s\sqrt{s^{\prime}}. The impact of beamstrahlung on the expected numbers of events is mostly small. For example, it results in an approximately 10%10\,\% reduction in the numbers of H¯ee\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}} events at s>1TeV\sqrt{s}>1\,\text{TeV} (compared to the beam spectrum with ISR alone), because the cross section rises relatively slowly with s\sqrt{s}. The reduction of the effective centre-of-mass energies due to ISR and beamstrahlung increases the ZH\mathup{{{Z}}}\mathup{{{H}}} cross section at s=1.4TeV\sqrt{s}=1.4\,\text{TeV} and 3TeV3\,\text{TeV}.

The polar angle distributions for single Higgs production obtained using Whizard 1.95 Kilian:2007gr for the CLIC centre-of-mass energies are shown in Figure 6. Most Higgs bosons produced at s=350GeV\sqrt{s}=350\,\text{GeV} can be reconstructed in the central parts of the detectors while Higgs bosons produced in the WW\mathup{{{W}}}\mathup{{{W}}}-fusion process and their decay products tend towards the beam axis with increasing energy. Hence good detectors capabilities in the forward regions are crucial at s=1.4TeV\sqrt{s}=1.4\,\text{TeV} and 3TeV3\,\text{TeV}.

s=\sqrt{s}= 350 GeV 1.4 TeV 3 TeV
dds𝑑s\int\frac{d\mathcal{L}}{ds^{\prime}}ds^{\prime} 500 fb1\text{fb}^{-1} 1.5 ab1\text{ab}^{-1} 2 ab1\text{ab}^{-1}
σ(e+eZH)\sigma(\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{Z}}}\mathup{{{H}}}) 133 fb 8 fb 2 fb
σ(e+eH¯e)e\sigma(\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}) 34 fb 276 fb 477 fb
σ(e+eHe+e)\sigma(\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{H}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}) 7 fb 28 fb 48 fb
No. ZH\mathup{{{Z}}}\mathup{{{H}}} events 68,000 20,000 11,000
No. H¯ee\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}} events 17,000 370,000 830,000
No. He+e\mathup{{{H}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}} events 3,700 37,000 84,000
Table 1: Leading-order, unpolarised cross sections for Higgsstrahlung, WW\mathup{{{W}}}\mathup{{{W}}}-fusion, and ZZ\mathup{{{Z}}}\mathup{{{Z}}}-fusion processes for mH=126GeVm_{\mathup{{{H}}}}=126\,\text{GeV} at the three centre-of-mass energies discussed in this paper. s\sqrt{s^{\prime}} is the effective centre-of-mass energy of the e+e\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}} collision. The presented cross sections include the effects of ISR but exclude the effects of beamstrahlung. Also given are numbers of expected events, including the effects of ISR and the CLIC beamstrahlung spectrum. The presented cross sections and event numbers do not include possible enhancements from polarised beams.
Refer to caption
Figure 6: Polar angle distributions for single Higgs events at s=350GeV\sqrt{s}=350\,\text{GeV}, 1.4TeV1.4\,\text{TeV} and 3TeV3\,\text{TeV}, including the effects of the CLIC beamstrahlung spectrum and ISR. The distributions are normalised to unity.

A SM Higgs boson with mass of mH=126GeVm_{\mathup{{{H}}}}=126\,\text{GeV} has a wide range of decay modes, as listed in Table 2, providing the possibility to test the SM predictions for the couplings of the Higgs to both gauge bosons and to fermions Dittmaier:2012vm . All the modes listed in Table 2 are accessible at CLIC.

Decay mode Branching ratio
Hbb¯\mathup{{{H}}}\to\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}} 56.1 %
HWW\mathup{{{H}}}\to\mathup{{{W}}}\mathup{{{W}}}^{*} 23.1 %
Hgg\mathup{{{H}}}\to\mathup{{{g}}}\mathup{{{g}}} 8.5 %
H+\mathup{{{H}}}\to\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}} 6.2 %
Hcc¯\mathup{{{H}}}\to\mathup{{{c}}}\mathup{{\overline{{\mathup{{{c}}}}}}} 2.8 %
HZZ\mathup{{{H}}}\to\mathup{{{Z}}}\mathup{{{Z}}}^{*} 2.9 %
H\mathup{{{H}}}\to\mathup{}\mathup{} 0.23 %
HZ\mathup{{{H}}}\to\mathup{{{Z}}}\mathup{} 0.16 %
H+\mathup{{{H}}}\to\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}} 0.021 %
ΓH\Gamma_{\mathup{{{H}}}} 4.2 MeV
Table 2: The investigated SM Higgs decay modes and their branching ratios as well as the total Higgs width for mH=126GeVm_{\mathup{{{H}}}}=126\,\text{GeV} Dittmaier:2012vm .

3.1 Motivation for s=350\sqrt{s}=350 GeV CLIC Operation

The choice of the CLIC energy stages is motivated by the desire to pursue a programme of precision Higgs physics and to operate the machine above 1TeV1\,\text{TeV} at the earliest possible time; no CLIC operation is foreseen below the top-pair production threshold.

From the Higgs physics perspective, operation at energies much below 1TeV1\,\text{TeV} is motivated by the direct and model-independent measurement of the coupling of the Higgs boson to the Z\mathup{{{Z}}}, which can be obtained from the recoil mass distribution in ZHe+eH\mathup{{{Z}}}\mathup{{{H}}}\to\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\mathup{{{H}}}, ZHH+\mathup{{{Z}}}\mathup{{{H}}}\to\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}}\mathup{{{H}}} and ZHqq¯H\mathup{{{Z}}}\mathup{{{H}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{H}}} production (see Section 5.1.1 and Section 5.1.2). These measurements play a central role in the determination of the Higgs couplings at an e+e\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}} collider.

However, from a Higgs physics perspective, there is no advantage to running CLIC at around s=250GeV\sqrt{s}=250\,\text{GeV} where the ZH\mathup{{{Z}}}\mathup{{{H}}} production cross section is larger, compared to running at s=350GeV\sqrt{s}=350\,\text{GeV}. Firstly, the reduction in cross section at s=350GeV\sqrt{s}=350\,\text{GeV} is compensated, in part, by the increased instantaneous luminosity achievable at a higher centre-of-mass energy. The instantaneous luminosity scales approximately linearly with the centre-of-mass energy, γe{\cal{L}}\propto\gamma_{\mathup{{{e}}}}, where γe\gamma_{\mathup{{{e}}}} is the Lorentz factor for the beam electrons/positrons. For this reason, the precision on the coupling gHZZg_{\mathup{{{H}}}\mathup{{{Z}}}\mathup{{{Z}}}} at 350GeV350\,\text{GeV} is comparable to that achievable at 250GeV250\,\text{GeV} for the same period of operation. Secondly, the additional boost of the Z\mathup{{{Z}}} and H\mathup{{{H}}} at s=350GeV\sqrt{s}=350\,\text{GeV} provides greater separation between the final-state jets from Z\mathup{{{Z}}} and H\mathup{{{H}}} decays. Consequently, the measurements of σ(ZH)×BR(HX)\sigma(\mathup{{{Z}}}\mathup{{{H}}})\times BR(\mathup{{{H}}}\to X) are more precise at s=350GeV\sqrt{s}=350\,\text{GeV}. Thirdly, and most importantly, operation of CLIC at s350GeV\sqrt{s}\approx 350\,\text{GeV} provides access to the e+eH¯ee\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}} fusion process; this improves the precision with which the total decay width ΓH\Gamma_{\mathup{{{H}}}} can be determined at CLIC. For the above reasons, the preferred option for the first stage of CLIC operation is s350GeV\sqrt{s}\approx 350\,\text{GeV}.

Another advantage of s350GeV\sqrt{s}\approx 350\,\text{GeV} is that detailed studies of the top-pair production process can be performed in the initial stage of CLIC operation. Finally, the Higgs boson mass can be measured at s=350GeV\sqrt{s}=350\,\text{GeV} with similar precision as at s=250GeV\sqrt{s}=250\,\text{GeV}.

3.2 Impact of Beam Polarisation

The majority of CLIC Higgs physics studies presented in this paper are performed assuming unpolarised e+\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}} and e\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}} beams. However, in the baseline CLIC design, the electron beam can be polarised up to ±80%\pm 80\,\%. There is also the possibility of positron polarisation at a lower level, although positron polarisation is not part of the baseline CLIC design. For an electron polarisation of PP_{-} and positron polarisation of P+P_{+}, the relative fractions of collisions in the different helicity states are:

eeR:R+14(1+P)(1+P+)\displaystyle\mathup{{{\mathup{{{e}}}}}{}_{\scriptstyle{R}}^{\scriptstyle{-}}}\mathup{{{\mathup{{{e}}}}}{}_{\scriptstyle{R}}^{\scriptstyle{+}}}\,:\,\ \mbox{$\frac{1}{4}$}(1+P_{-})(1+P_{+}) ,eeR:L+14(1+P)(1P+),\displaystyle\ \ \text{,}\ \ \mathup{{{\mathup{{{e}}}}}{}_{\scriptstyle{R}}^{\scriptstyle{-}}}\mathup{{{\mathup{{{e}}}}}{}_{\scriptstyle{L}}^{\scriptstyle{+}}}:\ \mbox{$\frac{1}{4}$}(1+P_{-})(1-P_{+})\,,
eeL:R+14(1P)(1+P+)\displaystyle\mathup{{{\mathup{{{e}}}}}{}_{\scriptstyle{L}}^{\scriptstyle{-}}}\mathup{{{\mathup{{{e}}}}}{}_{\scriptstyle{R}}^{\scriptstyle{+}}}\,:\,\ \mbox{$\frac{1}{4}$}(1-P_{-})(1+P_{+}) ,eeL:L+14(1P)(1P+).\displaystyle\ \ \text{,}\ \ \mathup{{{\mathup{{{e}}}}}{}_{\scriptstyle{L}}^{\scriptstyle{-}}}\mathup{{{\mathup{{{e}}}}}{}_{\scriptstyle{L}}^{\scriptstyle{+}}}:\ \mbox{$\frac{1}{4}$}(1-P_{-})(1-P_{+})\,.

By selecting different beam polarisations it is possible to enhance/suppress different physical processes. The chiral nature of the weak coupling to fermions results in significant possible enhancements in WW\mathup{{{W}}}\mathup{{{W}}}-fusion Higgs production, as indicated in Table 3. The potential gains for the ss-channel Higgsstrahlung process, e+eZH\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{Z}}}\mathup{{{H}}}, are less significant, and the dependence of the e+eHe+e\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{H}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}} cross section on beam polarisation is even smaller. In practice, the balance between operation with different beam polarisations will depend on the CLIC physics programme taken as a whole, including the searches for and potential measurements of BSM particle production.

Polarisation Scaling factor
P(e):P(e+)P(\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}):P(\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}) e+eZH\!\!\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\!\to\mathup{{{Z}}}\mathup{{{H}}}\!\! e+eH¯ee\!\!\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\!\to\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\!\! e+eHe+e\!\!\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\!\to\mathup{{{H}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\!\!
unpolarised 1.00 1.00 1.00
80%: 0%-80\,\%\,:\phantom{+3}\,0\,\% 1.12 1.80 1.12
80%:+30%-80\,\%\,:\,+30\,\% 1.40 2.34 1.17
80%:30%-80\,\%\,:\,-30\,\% 0.83 1.26 1.07
+80%: 0%+80\,\%\,:\phantom{+3}\,0\,\% 0.88 0.20 0.88
+80%:+30%+80\,\%\,:\,+30\,\% 0.69 0.26 0.92
+80%:30%+80\,\%\,:\,-30\,\% 1.08 0.14 0.84
Table 3: The dependence of the event rates for the ss-channel e+eZH\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{Z}}}\mathup{{{H}}} process and the pure tt-channel e+eH¯ee\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}} and e+eHe+e\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{H}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}} processes for several example beam polarisations. The scale factors assume an effective weak mixing angle given by sin2θWeff=0.23146\sin^{2}\theta_{\mathup{{{W}}}}^{\text{eff}}=0.23146 Beringer:1900zz . The numbers are approximate as they do not account for interference between e+eZH¯eHe\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\!\to\mathup{{{Z}}}\mathup{{{H}}}\!\to\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{{H}}} and e+eH¯ee\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\!\to\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}.

3.3 Overview of Higgs Measurements at 𝒔=𝟑𝟓𝟎\boldmath\sqrt{s}=350 GeV

The Higgsstrahlung process, e+eZH\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{Z}}}\mathup{{{H}}}, provides an opportunity to study the couplings of the Higgs boson in an essentially model-independent manner. Such a model-independent measurement is unique to a lepton collider. Higgsstrahlung events can be selected based solely on the measurement of the four-momentum of the Z\mathup{{{Z}}} boson through its decay products, while the invariant mass of the system recoiling against the Z\mathup{{{Z}}} boson peaks at mHm_{\mathup{{{H}}}}. The most distinct event topologies occur for Ze+e\mathup{{{Z}}}\to\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}} and Z+\mathup{{{Z}}}\to\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}} decays, which can be identified by requiring that the di-lepton invariant mass is consistent with mZm_{\mathup{{{Z}}}} (see Section 5.1.1). SM background cross sections are relatively low. A slightly less clean, but more precise, measurement is obtained from the recoil mass analysis for Zqq¯\mathup{{{Z}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}} decays (see Section 5.1.2).

Recoil-mass studies provide an absolute measurement of the total ZH\mathup{{{Z}}}\mathup{{{H}}} production cross section and a model-independent measurement of the coupling of the Higgs to the Z\mathup{{{Z}}} boson, gHZZg_{\mathup{{{H}}}\mathup{{{Z}}}\mathup{{{Z}}}}. The combination of the leptonic and hadronic decay channels allows gHZZg_{\mathup{{{H}}}\mathup{{{Z}}}\mathup{{{Z}}}} to be determined with a precision of 0.8%0.8\,\%. In addition, the recoil mass from Zqq¯\mathup{{{Z}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}} decays provides a direct search for possible Higgs decays to invisible final states, and can be used to constrain the invisible decay width of the Higgs, Γinvis\Gamma_{\text{invis}}.

By identifying the individual final states for different Higgs decay modes, precise measurements of the Higgs boson branching fractions can be made. Because of the high flavour tagging efficiencies CLIC_PhysDet_CDR achievable at CLIC, the Hbb¯\mathup{{{H}}}\to\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}} and Hcc¯\mathup{{{H}}}\to\mathup{{{c}}}\mathup{{\overline{{\mathup{{{c}}}}}}} decays can be cleanly separated. Neglecting the Higgs decays into light quarks, the branching ratio of Hgg\mathup{{{H}}}\to\mathup{{{g}}}\mathup{{{g}}} can also be inferred and H+\mathup{{{H}}}\to\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}} decays can be identified.

Although the cross section is lower, the tt-channel WW\mathup{{{W}}}\mathup{{{W}}}-fusion process e+eH¯ee\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}} is an important part of the CLIC Higgs physics programme at s350GeV\sqrt{s}\approx 350\,\text{GeV}. Because the visible final state consists of the Higgs boson decay products alone, the direct reconstruction of the invariant mass of the Higgs boson or its decay products plays a central role in the event selection. The combination of Higgs production and decay data from Higgsstrahlung and WW\mathup{{{W}}}\mathup{{{W}}}-fusion processes provides a model-independent extraction of Higgs couplings.

3.3.1 Extraction of Higgs Couplings

At the LHC, only the ratios of the Higgs boson couplings can be inferred from the data in a model-independent way.

In contrast, at an electron-positron collider such as CLIC, absolute measurements of the couplings to the Higgs boson can be determined using the total e+eZH\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{Z}}}\mathup{{{H}}} cross section determined from recoil mass analyses. This allows the coupling of the Higgs boson to the Z\mathup{{{Z}}} to be determined with a precision of better than 1%1\,\% in an essentially model-independent manner. Once the coupling to the Z\mathup{{{Z}}} is known, the Higgs coupling to the W\mathup{{{W}}} can be determined from, for example, the ratios of Higgsstrahlung to WW\mathup{{{W}}}\mathup{{{W}}}-fusion cross sections:

σ(e+eZH)×BR(Hbb¯)σ(e+e¯eHe)×BR(Hbb¯)(gHZZgHWW)2.\frac{\sigma(\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{Z}}}\mathup{{{H}}})\times BR(\mathup{{{H}}}\to\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}})}{\sigma{(\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{{H}}})}\times BR(\mathup{{{H}}}\to\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}})}\propto\left(\frac{g_{\mathup{{{H}}}\mathup{{{Z}}}\mathup{{{Z}}}}}{g_{\mathup{{{H}}}\mathup{{{W}}}\mathup{{{W}}}}}\right)^{2}\,.

Knowledge of the Higgs total decay width, extracted from the data, allows absolute measurements of the other Higgs couplings.

For a Higgs boson mass of around 126GeV126\,\text{GeV}, the total Higgs decay width in the SM (ΓH\Gamma_{\mathup{{{H}}}}) is less than 5MeV5\,\text{MeV} and cannot be measured directly at an e+e\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}} linear collider. However, as the absolute couplings of the Higgs boson to the Z\mathup{{{Z}}} and W\mathup{{{W}}} can be determined, the total decay width of the Higgs boson can be determined from HWW\mathup{{{H}}}\to\mathup{{{W}}}\mathup{{{W}}}^{*} or HZZ\mathup{{{H}}}\to\mathup{{{Z}}}\mathup{{{Z}}}^{*} decays. For example, the measurement of the Higgs decay to WW\mathup{{{W}}}\mathup{{{W}}}^{*} in the WW\mathup{{{W}}}\mathup{{{W}}}-fusion process determines:

σ(H¯e)e×BR(HWW)gHWW4ΓH,\sigma(\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}})\times BR(\mathup{{{H}}}\to\mathup{{{W}}}\mathup{{{W}}}^{*})\propto\frac{g^{4}_{\mathup{{{H}}}\mathup{{{W}}}\mathup{{{W}}}}}{\Gamma_{\mathup{{{H}}}}}\,,

and thus the total width can be determined utilising the model-independent measurement of gHWWg_{\mathup{{{H}}}\mathup{{{W}}}\mathup{{{W}}}}. In practice, a fit (see Section 12) is performed to all of the experimental measurements involving the Higgs boson couplings.

3.4 Overview of Higgs Measurements at 𝒔>𝟏\sqrt{s}>1 TeV

For CLIC operation above 1TeV1\,\text{TeV}, the large number of Higgs bosons produced in the WW\mathup{{{W}}}\mathup{{{W}}}-fusion process allow relative couplings of the Higgs boson to the W\mathup{{{W}}} and Z\mathup{{{Z}}} bosons to be determined at the 𝒪(1%){\cal{O}}(1\,\%) level. These measurements provide a strong test of the SM prediction for:

gHWW/gHZZ=cos2θW,g_{\mathup{{{H}}}\mathup{{{W}}}\mathup{{{W}}}}/g_{\mathup{{{H}}}\mathup{{{Z}}}\mathup{{{Z}}}}=\cos^{2}\theta_{\mathrm{W}},

where θW\theta_{\mathrm{W}} is the weak-mixing angle. Furthermore, the exclusive Higgs decay modes can be studied with significantly higher precision than at s=350GeV\sqrt{s}=350\,\text{GeV}. For example, CLIC operating at 3TeV3\,\text{TeV} yields a statistical precision of 2%2\,\% on the ratio gHcc/gHbbg_{\mathup{{{H}}}\mathup{{{c}}}\mathup{{{c}}}}/g_{\mathup{{{H}}}\mathup{{{b}}}\mathup{{{b}}}}, providing a direct comparison of the SM coupling predictions for up-type and down-type quarks. In the context of the model-independent measurements of the Higgs branching ratios, the measurement of σ(H¯e)e×BR(HWW)\sigma(\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}})\times BR(\mathup{{{H}}}\to\mathup{{{W}}}\mathup{{{W}}}^{*}) is particularly important. For CLIC operation at s1.4TeV\sqrt{s}\approx 1.4\,\text{TeV}, the large number of events allows this cross section to be determined with a precision of 1%1\,\% (see Section 6.3). When combined with the measurements at s350GeV\sqrt{s}\approx 350\,\text{GeV}, this places a strong constraint on ΓH\Gamma_{\mathup{{{H}}}}.

Although the WW\mathup{{{W}}}\mathup{{{W}}}-fusion process has the largest cross section for Higgs production above 1TeV1\,\text{TeV}, other processes are also important. For example, measurements of the ZZ\mathup{{{Z}}}\mathup{{{Z}}}-fusion process provide further constraints on the gHZZg_{\mathup{{{H}}}\mathup{{{Z}}}\mathup{{{Z}}}} coupling. Moreover, CLIC operation at s=1.4TeV\sqrt{s}=1.4\,\text{TeV} enables a determination of the top Yukawa coupling from the process e+ett¯HbW+b¯WH\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{t}}}\mathup{{\overline{{\mathup{{{t}}}}}}}\mathup{{{H}}}\to\mathup{{{b}}}\mathup{{{W}}}^{+}\mathup{{\overline{{\mathup{{{b}}}}}}}\mathup{{{W}}}^{-}\mathup{{{H}}} with a precision of 4.2%4.2\,\% (see Section 8). Finally, the self-coupling of the Higgs boson at the HHH\mathup{{{H}}}\mathup{{{H}}}\mathup{{{H}}} vertex is measurable in 1.4TeV1.4\,\text{TeV} and 3TeV3\,\text{TeV} operation.

In the SM, the Higgs boson originates from a doublet of complex scalar fields ϕ\phi described by the potential:

V(ϕ)=μ2ϕϕ+λ(ϕϕ)2,V(\phi)=\mu^{2}\phi^{\dagger}\phi+\lambda(\phi^{\dagger}\phi)^{2}\,,

where μ\mu and λ\lambda are the parameters of the Higgs potential, with μ2<0\mu^{2}<0 and λ>0\lambda>0. The measurement of the strength of the Higgs self-coupling provides direct access to the coupling λ\lambda assumed in the Higgs mechanism. For mHm_{\mathup{{{H}}}} of around 126GeV126\,\text{GeV}, the measurement of the Higgs boson self-coupling at the LHC will be extremely challenging, even with 3000fb13000\,\text{fb}^{-1} of data (see for example Dawson:2013bba ). At a linear collider, the trilinear Higgs self-coupling can be measured through the e+eZHH\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{Z}}}\mathup{{{H}}}\mathup{{{H}}} and e+eHH¯ee\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{H}}}\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}} processes. The e+eZHH\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{Z}}}\mathup{{{H}}}\mathup{{{H}}} process at s=500GeV\sqrt{s}=500\,\text{GeV} has been studied in the context of the ILC, where the results show that a very large integrated luminosity is required ILCPhysicsDBD . However for s1TeV\sqrt{s}\geq 1\,\text{TeV}, the sensitivity for the process e+eHH¯ee\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{H}}}\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}} increases with increasing centre-of-mass energy and the measurement of the Higgs boson self-coupling (see Section 9) forms a central part of the CLIC Higgs physics programme. Ultimately a precision of approximately 20%20\,\% on λ\lambda can be achieved.

4 Event Generation, Detector Simulation and Reconstruction

The results presented in this paper are based on detailed Monte Carlo (MC) simulation studies including the generation of a complete set of relevant SM background processes, Geant4 Agostinelli2003 ; Allison2006 based simulations of the CLIC detector concepts, and a full reconstruction of the simulated events.

4.1 Event Generation

Because of the presence of beamstrahlung photons in the colliding electron and positron beams, it is necessary to generate MC event samples for e+e\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}, e+\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{}, e\mathup{}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}, and interactions. The main physics backgrounds, with up to six particles in the final state, are generated using the Whizard 1.95 Kilian:2007gr program. In all cases the expected energy spectra for the CLIC beams, including the effects from beamstrahlung and the intrinsic machine energy spread, are used for the initial-state electrons, positrons and beamstrahlung photons. In addition, low-Q2Q^{2} processes with quasi-real photons are described using the Weizsäcker-Williams approximation as implemented in Whizard. The process of fragmentation and hadronisation is simulated using Pythia 6.4 Sjostrand2006 with a parameter set tuned to OPAL e+e\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}} data recorded at LEP Alexander:1995bk (see CLIC_PhysDet_CDR for details). The decays of leptons are simulated using Tauola tauola . The mass of the Higgs boson is taken to be 126GeV126\,\text{GeV}iiiiiiA Higgs boson of 125GeV125\,\text{GeV} is used in the process e+ett¯H\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{t}}}\mathup{{\overline{{\mathup{{{t}}}}}}}\mathup{{{H}}}. and the decays of the Higgs boson are simulated using Pythia with the branching fractions listed in Dittmaier:2012vm . The events from the different Higgs production channels are simulated separately. The background samples do not include Higgs processes. MC samples for the measurement of the top Yukawa coupling measurement (see Section 8) with eight final-state fermions are obtained using the PhysSim gen:physsim package; again Pythia is used for fragmentation, hadronisation and the Higgs boson decays.

4.2 Simulation and Reconstruction

The Geant4 detector simulation toolkits Mokka Mokka and Slic Graf:2006ei are used to simulate the detector response to the generated events in the CLIC_ILD and CLIC_SiD concepts, respectively. The QGSP_BERT physics list is used to model the hadronic interactions of particles in the detectors. The digitisation, namely the translation of the raw simulated energy deposits into detector signals, and the event reconstruction are performed using the Marlin MarlinLCCD and org.lcsim Graf:2011zzc software packages. Particle flow reconstruction is performed using PandoraPFA thomson:pandora ; Marshall2013153 ; Marshall:2015rfa .

Vertex reconstruction and heavy flavour tagging are performed using the LcfiPlus program Suehara:2015ura . This consists of a topological vertex finder that reconstructs secondary interactions, and a multivariate classifier that combines several jet-related variables such as track impact parameter significance, decay length, number of tracks in vertices, and vertex masses, to tag bottom, charm, and light-quark jets. The detailed training of the multivariate classifiers for the flavour tagging is performed separately for each centre-of-mass energy and each final state of interest.

Because of the 0.5 ns bunch spacing in the CLIC beams, the pile-up of beam-induced backgrounds can affect the event reconstruction and needs to be accounted for. Realistic levels of pile-up from the most important beam-induced background, the hadrons\mathup{}\mathup{}\to\text{hadrons} process, are included in all the simulated event samples to ensure that the impact on the event reconstruction is correctly modelled. The hadrons\mathup{}\mathup{}\to\text{hadrons} events are simulated separately and a randomly chosen subset, corresponding to 60 bunch crossings, is superimposed on the physics event before the digitisation step LCD:overlay . 60 bunch crossings is equivalent to 30 ns, which is much longer than the assumed offline event reconstruction window of 10 ns around the hard physics event, so this is a good approximation CLIC_PhysDet_CDR . For the s=350GeV\sqrt{s}=350\,\text{GeV} samples, where the background rates are lower, 300 bunch crossings are overlaid on the physics event. The impact of the background is small at s=350GeV\sqrt{s}=350\,\text{GeV}, and is most significant at s=3TeV\sqrt{s}=3\,\text{TeV}, where approximately 1.2TeV1.2\,\text{TeV} of energy is deposited in the calorimeters in a time window of 10 ns. A dedicated reconstruction algorithm identifies and removes approximately 90%90\,\% of these out-of-time background particles using criteria based on the reconstructed transverse momentum pTp_{\mathrm{T}} of the particles and the calorimeter cluster time. A more detailed description can be found in CLIC_PhysDet_CDR .

Jet finding is performed on the objects reconstructed by particle flow, using the FastJet Fastjet package. Because of the presence of pile-up from hadrons\mathup{}\mathup{}\to\text{hadrons}, it was found that the Durham Catani:1991hj algorithm employed at LEP is not optimal for CLIC studies. Instead, the hadron-collider inspired ktk_{t} algorithm Catani:1993hr ; Ellis:1993tq , with the distance parameter RR based on Δη\Delta\eta and Δϕ\Delta\phi, is found to give better performance since it increases distances in the forward region, thus reducing the clustering of the (predominantly low transverse momentum) background particles together with those from the hard e+e\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}} interaction. Instead, particles that are found by the ktk_{t} algorithm to be closer to the beam axis than to any other particles, and that are thus likely to have originated from beam-beam backgrounds, are removed from the event. As a result of using the RR-based ktk_{t} algorithm, the impact of the pile-up from hadrons\mathup{}\mathup{}\to\text{hadrons} is largely mitigated, even without the timing and momentum cuts described above. Further details are given in CLIC_PhysDet_CDR . The choice of RR is optimised separately for different analyses. In many of the following studies, events are forced into a particular NN-jet topology. The variable yijy_{ij} is the smallest ktk_{t} distance when combining jj jets to i=(j1)i=(j-1) jets. These resolution parameters are widely used in a number of event selections, allowing events to be categorised into topologically different final states. In several studies it is found to be advantageous first to apply the ktk_{t} algorithm to reduce the beam-beam backgrounds, and then to use only the remaining objects as input to the Durham algorithm.

To recover the effect of bremsstrahlung photons radiated from reconstructed leptons, all photons in a cone around the flight direction of a lepton candidate are added to its four-momentum. The impact of the bremsstrahlung recovery on the reconstruction of the Ze+e\mathup{{{Z}}}\to\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}} decays is illustrated in Figure 7. The bremsstrahlung effect leads to a tail at lower values in the Z\mathup{{{Z}}} candidate invariant mass distribution. This loss can be recovered by the procedure described above. It is also visible that a too large opening angle of the recovery cone leads to a tail at higher masses; typically, an opening angle of 33^{\circ} is chosen.

Refer to caption
Figure 7: Reconstructed invariant mass of Ze+e\mathup{{{Z}}}\to\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}} candidates in e+eZHZWW\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{Z}}}\mathup{{{H}}}\to\mathup{{{Z}}}\mathup{{{W}}}\mathup{{{W}}}^{\ast} events at s=350GeV\sqrt{s}=350\,\text{GeV}. Bremsstrahlung photons in cones of different opening angles around the electron direction are recovered as described in the text. All distributions are normalised to unity.

The event simulation and reconstruction of the large data samples used in this study was performed using the iLCDirac Grefe:2014sca ; Tsaregorodtsev:2008zz grid production tools.

5 Higgs Production at s=\sqrt{s}=350 GeV

The study of the Higgsstrahlung process is central to the precision Higgs physics programme at any future high-energy electron-positron collider Thomson:2015jda . This section presents studies of e+eZH\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{Z}}}\mathup{{{H}}} at s=350GeV\sqrt{s}=350\,\text{GeV} with a focus on model-independent measurements of ZH\mathup{{{Z}}}\mathup{{{H}}} production from the kinematic properties of the Z\mathup{{{Z}}} decay products. Complementary information obtained from Higgs production through WW-fusion at s=350GeV\sqrt{s}=350\,\text{GeV} is also presented. All analyses at s=350GeV\sqrt{s}=350\,\text{GeV} described in this paper use the CLIC_ILD detector model.

5.1 Recoil Mass Measurements of e+eZH\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{Z}}}\mathup{{{H}}}

In the process e+eZH\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{Z}}}\mathup{{{H}}}, it is possible to identify efficiently Ze+e\mathup{{{Z}}}\to\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}} and Z+\mathup{{{Z}}}\to\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}} decays with a selection efficiency that is essentially independent of the H\mathup{{{H}}} decay mode. The four-momentum of the (Higgs boson) system recoiling against the Z\mathup{{{Z}}} can be obtained from Erec=sEZE_{rec}=\sqrt{s}-E_{\mathup{{{Z}}}} and prec=pZ\vec{p}_{rec}=-\vec{p}_{\mathup{{{Z}}}}, and the recoil mass, mrecm_{\mathrm{rec}}, peaks sharply around mHm_{\mathup{{{H}}}}. The recoil mass analysis for leptonic decays of the Z\mathup{{{Z}}} is described in Section 5.1.1. While these measurements provide a clean model-independent probe of ZH\mathup{{{Z}}}\mathup{{{H}}} production, they are limited by the relatively small leptonic branching ratios of the Z\mathup{{{Z}}}. Studies of ZH\mathup{{{Z}}}\mathup{{{H}}} production with Zqq¯\mathup{{{Z}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}} are inherently less clean, but are statistically more powerful. Despite the challenges related to the reconstruction of hadronic Z\mathup{{{Z}}} decays in the presence of various Higgs decay modes, a precise and nearly model-independent probe of ZH\mathup{{{Z}}}\mathup{{{H}}} production can be obtained by analysing the recoil mass in hadronic Z\mathup{{{Z}}} decays, as detailed in Section 5.1.2. When all these measurements are taken together, a model-independent measurement of the gHZZg_{\mathup{{{H}}}\mathup{{{Z}}}\mathup{{{Z}}}} coupling constant with a precision of <1%<1\,\% can be inferred Thomson:2015jda .

5.1.1 Leptonic Decays: Ze+e\mathup{{{Z}}}\to\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}} and Z+\mathup{{{Z}}}\to\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}}

The signature for e+eZH\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{Z}}}\mathup{{{H}}} production with Ze+e\mathup{{{Z}}}\to\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}} or Z+\mathup{{{Z}}}\to\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}} is a pair of oppositely charged high-pTp_{\mathrm{T}} leptons, with an invariant mass consistent with that of the Z\mathup{{{Z}}} boson, mllmZm_{\mathup{{{l}}}\mathup{{{l}}}}\approx m_{\mathup{{{Z}}}}, and a recoil mass, calculated from the four-momenta of the leptons alone, consistent with the Higgs mass, mrecmHm_{\mathrm{rec}}\approx m_{\mathup{{{H}}}} LCD:recoil_leptonic . Backgrounds from two-fermion final states e+el+l\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{\mathup{{{l}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{l}}}}}^{\scriptstyle{-}}} (l=e,,\mathup{{{l}}}=\mathup{{{e}}},\mathup{},\mathup{}) are trivial to remove. The dominant backgrounds are from four-fermion processes with final states consisting of a pair of oppositely-charged leptons and any other possible fermion pair. For both the X+\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}}X and e+eX\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}X channels, the total four-fermion background cross section is approximately one thousand times greater than the signal cross section.

The event selection employs preselection cuts and a multivariate analysis. The preselection requires at least one negatively and one positively charged lepton of the lepton flavour of interest (muons or electrons) with an invariant mass loosely consistent with the mass of the Z\mathup{{{Z}}} boson, 40GeV<mll<126GeV40\,\text{GeV}\ <m_{\mathup{{{l}}}\mathup{{{l}}}}<126\,\text{GeV}. For signal events, the lepton identification efficiencies are 99%99\,\% for muons and 90%90\,\% for electrons. Backgrounds from two-fermion processes are essentially eliminated by requiring that the di-lepton system has pT>60GeVp_{\mathrm{T}}>60\,\text{GeV}. Four-fermion backgrounds are suppressed by requiring 95GeV<mrec<290GeV95\,\text{GeV}\ <m_{\mathrm{rec}}<290\,\text{GeV}. The lower bound suppresses e+eZZ\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{Z}}}\mathup{{{Z}}} production. The upper bound is significantly greater than the Higgs boson mass, to allow for the possibility of ZH\mathup{{{Z}}}\mathup{{{H}}} production with ISR or significant beamstrahlung, which, in the recoil mass analysis, results in a tail to the recoil mass distribution, as it is the mass of the H\mathup{{{H}}}\mathup{} system that is estimated.

Events passing the preselection cuts are categorised using a multivariate analysis of seven discriminating variables: the transverse momentum (pTp_{\mathrm{T}}) and invariant mass (mllm_{\mathup{{{l}}}\mathup{{{l}}}}) of the candidate Z\mathup{{{Z}}}; the cosine of the polar angle (|cosθ|)(|\cos\theta|) of the candidate Z\mathup{{{Z}}}; the acollinearity and acoplanarity of the leptons; the imbalance between the transverse momenta of the two selected leptons (pT1pT2)({p_{\mathrm{T}}}_{1}-{p_{\mathrm{T}}}_{2}); and the transverse momentum of the highest energy photon in the event. The event selection employs a Boosted Decision Tree (BDT) as implemented in TmvaTMVA:2010 . The resulting selection efficiencies are summarised in Table 4. For both final states, the number of selected background events is less than twice the number of selected signal events. The impact of the background is reduced using a fit to the recoil mass distribution.

Process σ/fb\sigma/\text{fb} εpresel\varepsilon_{\text{presel}} εBDT\varepsilon_{\text{BDT}} NBDTN_{\text{BDT}}
ZH;Z+\mathup{{{Z}}}\mathup{{{H}}};\mathup{{{Z}}}\to\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}} 4.6 84 % 65 % 1253
f+f¯\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}}\text{f}\overline{\text{f}} 4750 0.8 % 10 % 1905
ZH;Ze+e\mathup{{{Z}}}\mathup{{{H}}};\mathup{{{Z}}}\to\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}} 4.6 73 % 51 % 858
e+eff¯\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\text{f}\overline{\text{f}} 4847 1.2 % 5.4 % 1558
Table 4: Preselection and selection efficiencies for the ZH\mathup{{{Z}}}\mathup{{{H}}} signal and most important background processes in the leptonic recoil mass analysis. The numbers of events correspond to 500 fb1\text{fb}^{-1} at s=350GeV\sqrt{s}=350\,\text{GeV}.
Refer to caption
Refer to caption
Figure 8: Reconstructed recoil mass distributions of e+eZH\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{Z}}}\mathup{{{H}}} events at s=350GeV\sqrt{s}=350\,\text{GeV}, where ZHX+\mathup{{{Z}}}\mathup{{{H}}}\to\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}}X (a) and ZHe+eX\mathup{{{Z}}}\mathup{{{H}}}\to\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}X with bremsstrahlung recovery (b). All distributions are normalised to an integrated luminosity of 500fb1500\,\text{fb}^{-1}.

A fit to the recoil mass distribution of the selected events (in both the Ze+e\mathup{{{Z}}}\to\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}} and Z+\mathup{{{Z}}}\to\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}} channels) is used to extract measurements of the ZH\mathup{{{Z}}}\mathup{{{H}}} production cross section and the Higgs boson mass. The shape of the background contribution is parameterised using a fourth order polynomial and the shape of the signal distribution is modelled using Simplified Kernel Estimation Cranmer:2000du ; CranmerKDE ; OPALKDE that provides a description of the ZH\mathup{{{Z}}}\mathup{{{H}}} recoil mass distribution in which the Higgs mass can subsequently be varied. The accuracy with which the Higgs mass and the number of signal events (and hence the ZH\mathup{{{Z}}}\mathup{{{H}}} production cross section) can be measured, is determined using 1000 simulated test data samples. Each test sample was created by adding the high statistics selected signal sample (scaled to the correct normalisation) to the smooth fourth-order polynomial background, then applying Poisson fluctuations to individual bins to create a representative 500fb1500\,\text{fb}^{-1} data sample. Each of the 1000 simulated data samples created in this way is fitted allowing the Higgs mass, the signal normalisation and the background normalisation to vary. Figure 8a displays the results of fitting a typical test sample for the X+\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}}X channel, while Figure 8b displays the results for the e+eX\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}X channel. In the e+eX\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}X channel fits are performed with, and without, applying an algorithm to recover bremsstrahlung photons. The resulting measurement precisions for the ZH\mathup{{{Z}}}\mathup{{{H}}} cross section and the Higgs boson mass are summarised in Table 5. In the e+eX\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}X channel, the bremsstrahlung recovery leads to a moderate improvement on the expected precision for the cross section measurement and a similar degradation in the expected precision for the mass determination, because it significantly increases the number of events in the peak of the recoil mass distribution, but also increases the width of this peak. For an integrated luminosity of 500fb1500\,\text{fb}^{-1} at s=350GeV\sqrt{s}=350\,\text{GeV}, the combined precision on the Higgs boson mass is:

Δ(mH)=110MeV,\displaystyle\Delta(m_{\mathup{{{H}}}})=110\,\text{MeV},

and the combined precision on the ZH\mathup{{{Z}}}\mathup{{{H}}} cross section is:

Δσ(ZH)σ(ZH)\displaystyle\frac{\Delta{\sigma(\mathup{{{Z}}}\mathup{{{H}}})}}{\sigma(\mathup{{{Z}}}\mathup{{{H}}})} =3.8%.\displaystyle=3.8\,\%\,.

The expected precision with (without) bremsstrahlung recovery in the e+eX\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}X channel was used in the combination for the cross section (mass).

Channel Quantity Precision
X+\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}}X mHm_{\mathup{{{H}}}} 122 MeV
σ(ZH)\sigma(\mathup{{{Z}}}\mathup{{{H}}}) 4.72 %
e+eX\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}X mHm_{\mathup{{{H}}}} 278 MeV
σ(ZH)\sigma(\mathup{{{Z}}}\mathup{{{H}}}) 7.21 %
 e+eX\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}X mHm_{\mathup{{{H}}}} 359 MeV
+ bremsstrahlung recovery σ(ZH)\sigma(\mathup{{{Z}}}\mathup{{{H}}}) 6.60 %
Table 5: Summary of measurement precisions from the leptonic recoil mass analyses in the X+\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}}X and e+eX\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}X channels for an integrated luminosity of 500fb1500\,\text{fb}^{-1} at 350GeV350\,\text{GeV}.

5.1.2 Hadronic Decays: Zqq¯\mathup{{{Z}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}

In the process e+eZH\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{Z}}}\mathup{{{H}}}, it is possible to cleanly identify Ze+e\mathup{{{Z}}}\to\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}} and Z+\mathup{{{Z}}}\to\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}} decays regardless of the decay mode of the Higgs boson and, consequently, the selection efficiency is almost independent of the Higgs decay mode. In contrast, for Zqq¯\mathup{{{Z}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}} decays, the selection efficiency shows a stronger dependence on the Higgs decay mode Thomson:2015jda . For example, e+e(Zqq¯)(Hbb¯)\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to(\mathup{{{Z}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}})(\mathup{{{H}}}\to\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}}) events consist of four jets and the reconstruction of the Z\mathup{{{Z}}} boson is complicated by ambiguities in associations of particles with jets and the three-fold ambiguity in associating four jets with the hadronic decays of the Z\mathup{{{Z}}} and H\mathup{{{H}}}. For this reason, it is much more difficult to construct a selection based only on the reconstructed Zqq¯\mathup{{{Z}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}} decay that has a selection efficiency independent of the Higgs decay mode. The strategy adopted is to first reject events consistent with a number of clear background topologies using the information from the whole event; and then to identify e+e(Zqq¯)H\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to(\mathup{{{Z}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}})\mathup{{{H}}} events solely based on the properties from the candidate Zqq¯\mathup{{{Z}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}} decay.

The (Zqq¯)H(\mathup{{{Z}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}})\mathup{{{H}}} event selection proceeds in three separate stages. In the first stage, to allow for possible BSM invisible Higgs decay modes, events are divided into candidate visible Higgs decays and candidate invisible Higgs decays, in both cases produced along with a Zqq¯\mathup{{{Z}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}. Events are categorised as potential visible Higgs decays if they are not compatible with a clear two-jet topology:

  • log10(y23)>2.0\log_{10}(y_{23})>-2.0 or log10(y34)>3.0\log_{10}(y_{34})>-3.0 .

All other events are considered as candidates for an invisible Higgs decay analysis, based on that described in Section 5.1.3, although with looser requirements to make the overall analysis more inclusive.

Preselection cuts then reduce the backgrounds from large cross section processes such as e+eqq¯\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}} and e+eqq¯qq¯\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}. The preselection variables are formed by forcing each event into three, four and five jets. In each case, the best candidate for being a hadronically decaying Z\mathup{{{Z}}} boson is chosen as the jet pair giving the di-jet invariant mass (mqq¯m_{\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}}) closest to mZm_{\mathup{{{Z}}}}, considering only jets with more than three charged particles. The invariant mass of the system recoiling against the Z\mathup{{{Z}}} boson candidate, mrecm_{\mathrm{rec}}, is calculated assuming Erec=sEqq¯E_{\text{rec}}=\sqrt{s}-E_{\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}} and prec=pqq¯\vec{p}_{\text{rec}}=-\vec{p}_{\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}}. In addition, the invariant mass of all the visible particles not originating from the candidate Zqq¯\mathup{{{Z}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}} decay, mvism_{\mathrm{vis}}, is calculated. It is important to note that mvism_{\mathrm{vis}} is only used to reject specific background topologies in the preselection and is not used in the main selection as it depends strongly on the type of Higgs decay. The preselection cuts are:

  • 70GeV<mqq¯<110GeV70\,\text{GeV}<m_{\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}}<110\,\text{GeV} and 80GeV<mrec<200GeV80\,\text{GeV}<m_{\mathrm{rec}}<200\,\text{GeV};

  • the background from e+eqq¯\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}} is suppressed by removing events with overall pT<20GeVp_{\mathrm{T}}<20\,\text{GeV} and either |cosθmis|>0.90|\cos\theta_{\text{mis}}|>0.90 or log10(y34)>2.5\log_{10}(y_{34})>-2.5, where θmis\theta_{\text{mis}} is the polar angle of the missing momentum vector;

  • events with little missing transverse momentum (pT<20GeVp_{\mathrm{T}}<20\,\text{GeV}) are forced into four jets and are rejected if the reconstructed di-jet invariant masses (and particle types) are consistent with the expectations for e+eqq¯ll\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{l}}}\mathup{{{l}}}, e+eZZqq¯qq¯\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{Z}}}\mathup{{{Z}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}, e+eWWqq¯qq¯\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{W}}}\mathup{{{W}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}.

The final step in the event selection is a multivariate analysis. In order not to bias the event selection efficiencies for different Higgs decay modes, only variables related to the candidate Zqq¯\mathup{{{Z}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}} decay are used in the selection. Forcing the event into four jets is the right approach for (Zqq¯)H(\mathup{{{Z}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}})\mathup{{{H}}} events where the Higgs decays to two-body final states, but not necessarily for final states such as HWWqq¯qq¯\mathup{{{H}}}\to\mathup{{{W}}}\mathup{{{W}}}^{*}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}, where there is the chance that one of the jets from the WW\mathup{{{W}}}\mathup{{{W}}}^{*} decay will be merged with one of the jets from the Zqq¯\mathup{{{Z}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}, potentially biasing the selection against HWW\mathup{{{H}}}\to\mathup{{{W}}}\mathup{{{W}}}^{*} decays. To mitigate this effect, the Z\mathup{{{Z}}} candidate for the event selection can either be formed from the four-jet topology as described above, or can be formed from a jet pair after forcing the event into a five-jet topology. The latter case is only used when log10(y45)>3.5\log_{10}(y_{45})>-3.5 and the five-jet reconstruction gives better Z\mathup{{{Z}}} and H\mathup{{{H}}} candidates than the four-jet reconstruction. Attempting to reconstruct events in the six-jet topology is not found to improve the overall analyses. Having chosen the best Z\mathup{{{Z}}} candidate in the event (from either the four-jet or five-jet reconstruction), it is used to form variables for the multivariate selection; information about the remainder of the event is not used.

A relative likelihood selection is used to classify all events passing the preselection cuts. Two event categories are considered: the e+eZHqq¯H\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{Z}}}\mathup{{{H}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{H}}} signal and all non-Higgs background processes. The relative likelihood for an event being signal is defined as:

=LsignalLsignal+Lback,{\cal{L}}=\frac{L_{\text{signal}}}{L_{\text{signal}}+L_{\text{back}}}\,,

where the individual absolute likelihood LL for each event type is estimated from normalised probability distributions, Pi(xi)P_{i}(x_{i}), of the discriminating variables xix_{i} for that event type:

L=σpresel×iNPi(xi),L=\sigma_{\text{presel}}\times\prod_{i}^{N}P_{i}(x_{i})\,,

where σpresel\sigma_{\text{presel}} is the cross section after the preselection cuts. The discriminating variables used, all of which are based on the candidate Zqq¯\mathup{{{Z}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}} decay, are: the 2D distribution of mqq¯m_{\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}} and mrecm_{\mathrm{rec}}; the polar angle of the Z\mathup{{{Z}}} candidate, |cosθZ||\cos\theta_{\mathup{{{Z}}}}|; and the modulus of angle of jets from the Z\mathup{{{Z}}} decay relative to its direction after boosting into its rest frame, |cosθq||\cos\theta_{\mathup{{{q}}}}|. The clearest separation between signal and background is obtained from mqq¯m_{\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}} and the recoil mass mrecm_{\mathrm{rec}}, as shown in Figure 9 for events passing the preselection. The signal is clearly peaked at mqq¯mZm_{\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}}\approx m_{\mathup{{{Z}}}} and mrecmHm_{\mathrm{rec}}\approx m_{\mathup{{{H}}}}. The use of 2D mass distributions accounts for the most significant correlations between the likelihood variables.

Refer to caption
Refer to caption
Figure 9: Reconstructed di-jet invariant mass versus reconstructed recoil mass distributions for ZHqq¯X\mathup{{{Z}}}\mathup{{{H}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}X candidate events at s=350GeV\sqrt{s}=350\,\text{GeV}, showing ZH\mathup{{{Z}}}\mathup{{{H}}} signal events (a) and all background processes (b). In both cases the plots show all events passing the preselection.

In this high-statistics limit, the fractional error on the number of signal events (where the Higgs decays to visible final states), sviss_{\text{vis}}, given a background bb is:

Δsvissvis=svis+bsvis,\frac{\Delta s_{\text{vis}}}{s_{\text{vis}}}=\frac{\sqrt{s_{\text{vis}}+b}}{s_{\text{vis}}}\,,

and this is minimised with the selection requirement >0.65{\cal{L}}>0.65. The selection efficiencies and expected numbers of events for the signal dominated region, >0.65{\cal{L}}>0.65, are listed in Table 6, corresponding to a fractional error on the number of signal events of 1.9%1.9\,\%. By fitting the shape of the likelihood distribution to signal and background contributions, this uncertainty is reduced to:

Δsvissvis=1.7%.\frac{\Delta s_{\text{vis}}}{s_{\text{vis}}}=1.7\,\%\,.

This is an example of a measurement for which it will be particularly important to tune the background modelling using high-statistics processes.

Process σ/fb\sigma/\text{fb} εpresel\varepsilon_{\text{presel}} ε>0.65\varepsilon_{{\cal{L}}>0.65} N>0.65N_{{\cal{L}}>0.65}
qq¯\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}} 25200 0.4 % 17 % 8525
qq¯l\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{l}}}\mathup{} 5910 11 % 1.7 % 5767
qq¯qq¯\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}} 5850 3.8 % 13 % 14142
qq¯ll\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{l}}}\mathup{{{l}}} 1700 1.5 % 15 % 1961
qq¯¯\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{}\mathup{{\overline{{\upnu}}}} 325 0.6 % 6.2 % 60
H¯ee\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}} 52 2.5 % 9.2 % 60
ZH\mathup{{{Z}}}\mathup{{{H}}}; Zqq¯\mathup{{{Z}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}} 93 42.0 % 54 % 10568
Table 6: Summary of the (Zqq¯)(Hvis.)(\mathup{{{Z}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}})(\mathup{{{H}}}\to\text{vis.}) event selection at s=350GeV\sqrt{s}=350\,\text{GeV}, giving the raw cross sections, preselection efficiency, overall selection efficiency for a likelihood cut of >0.65{\cal{L}}>0.65 and the expected numbers of events passing the event selection for an integrated luminosity of 500fb1500\,\text{fb}^{-1}.

5.1.3 Invisible Higgs Decays

The above recoil mass analysis of leptonic decays of the Z\mathup{{{Z}}} boson in e+eZH\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{Z}}}\mathup{{{H}}} events provides a measurement of the Higgsstrahlung cross section, independent of the Higgs boson decay model. The recoil mass technique can also be used to search for BSM decay modes of the Higgs boson into long-lived neutral “invisible” final states Thomson:2015jda . At an e+e\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}} collider, a search for invisible Higgs decays is possible by identification of e+eZH\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{Z}}}\mathup{{{H}}} events with a visible Zqq¯\mathup{{{Z}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}} decay and missing energy. Such events would typically produce a clear two-jet topology with invariant mass consistent with mZm_{\mathup{{{Z}}}}, significant missing energy and a recoil mass corresponding to the Higgs mass. Higgsstrahlung events with leptonic Z\mathup{{{Z}}} decays, which have a much smaller branching ratio, are not included in the current analysis.

To identify candidate invisible Higgs decays, a loose preselection is imposed requiring: i) a clear two-jet topology, defined by log10(y23)<2.0\log_{10}(y_{23})<-2.0 and log10(y34)<3.0\log_{10}(y_{34})<-3.0, using the minimal ktk_{t} distances discussed in Section 4.2; ii) a di-jet invariant mass consistent with mZm_{\mathup{{{Z}}}}, 84GeV<mqq¯<104GeV84\,\text{GeV}<m_{\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}}<104\,\text{GeV}; and iii) the reconstructed momentum of the candidate Z\mathup{{{Z}}} boson pointing away from the beam direction, |cosθZ|<0.7|\cos\theta_{\mathup{{{Z}}}}|<0.7. After the preselection, a BDT multivariate analysis technique is applied using the Tmva package TMVA:2010 to further separate the invisible Higgs signal from the SM background. In addition to mqq¯m_{\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}}, |cosθZ||\cos\theta_{\mathup{{{Z}}}}| and log10(y23)\log_{10}(y_{23}), four other discriminating variables are employed: mrecm_{\mathrm{rec}}, the recoil mass of the invisible system recoiling against the observed Z\mathup{{{Z}}} boson; |cosθq||\cos\theta_{\mathup{{{q}}}}|, the decay angle of one of the quarks in the Z\mathup{{{Z}}} rest frame, relative to the direction of flight of the Z\mathup{{{Z}}} boson; pTp_{\mathrm{T}}, the magnitude of the transverse momentum of the Z\mathup{{{Z}}} boson; and EvisE_{\mathrm{vis}}, the visible energy in the event. As an example, Figure 10 shows the recoil mass distribution for the simulated invisible Higgs decays and the total SM background. The reconstructed recoil mass for events with invisible Higgs decays peaks near mHm_{\mathup{{{H}}}}. The cut applied on the BDT output is chosen to minimise the statistical uncertainty on the cross section for invisible Higgs decays.

Refer to caption
Figure 10: Reconstructed recoil mass distributions of e+eZH\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{Z}}}\mathup{{{H}}} events at s=350GeV\sqrt{s}=350\,\text{GeV}, showing the Hinvis.\mathup{{{H}}}\to\text{invis.} signal, assuming BR(Hinvis.)=100%BR(\mathup{{{H}}}\to\text{invis.})=100\,\%, and SM backgrounds as stacked histograms. The distributions are normalised to an integrated luminosity of 500fb1500\,\text{fb}^{-1}.

In the case where the branching ratio to BSM invisible final states is zero (or very small), the uncertainty on the invisible branching ratio is determined by the statistical fluctuations on the background after the event selection:

ΔBR(Hinvis.)=bs(100%),\Delta BR(\mathup{{{H}}}\to\text{invis.})=\frac{\sqrt{b}}{s(100\,\%)}\,,

where bb is the expected number of selected SM background events and s(100%)s(100\,\%) is the expected number of selected Higgsstrahlung events assuming all Higgs bosons decay invisibly, i.e. BR(Hinvis.)=100%BR(\mathup{{{H}}}\to\text{invis.})=100\,\%. Table 7 summarises the invisible Higgs decay event selection; the dominant background processes arise from the final states qq¯l\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{l}}}\mathup{} and qq¯¯\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{}\mathup{{\overline{{\upnu}}}}. The resulting one sigma uncertainty on BR(Hinvis.)BR(\mathup{{{H}}}\to\text{invis.}) is 0.57 % (in the case where the invisible Higgs branching ratio is small) and the corresponding 90 % C.L. upper limit (500 fb1\text{fb}^{-1} at s\sqrt{s} =350 GeV) on the invisible Higgs branching ratio in the modified frequentist approach Read00 is:

BR(Hinvis.)<0.97%at 90%C.L.BR(\mathup{{{H}}}\to\text{invis.})<0.97\,\%\ \ \ \text{at}\ 90\,\%\ \text{C.L.}

It should be noted that the SM Higgs decay chain HZZ¯¯\mathup{{{H}}}\to\mathup{{{Z}}}\mathup{{{Z}}}^{*}\to\mathup{}\mathup{{\overline{{\upnu}}}}\mathup{}\mathup{{\overline{{\upnu}}}} has a combined branching ratio of 0.1 % and is not measurable.

Process σ/fb\sigma/\text{fb} εpresel\varepsilon_{\text{presel}} εBDT>0.088\varepsilon_{\text{BDT}>0.088} NBDT>0.088N_{\text{BDT}>0.088}
qq¯l\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{l}}}\mathup{} 5910 0.68 % 4.5 % 900
qq¯¯\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{}\mathup{{\overline{{\upnu}}}} 325 17 % 8.9 % 2414
ZH\mathup{{{Z}}}\mathup{{{H}}} (SM decays) 93.4 0.2 % 23 % 21
Hinvis.\mathup{{{H}}}\to\text{invis.} 41 % 51 % 9956
Table 7: Summary of the invisible Higgs decay event selection at s=350GeV\sqrt{s}=350\,\text{GeV}, giving the raw cross sections, preselection efficiency, selection efficiency for a BDT cut of BDT>0.088\text{BDT}>0.088, and the expected numbers of events passing the event selection for an integrated luminosity of 500fb1500\,\text{fb}^{-1}. For the invisible Higgs decay signal the number of selected events corresponds to a BRBR of 100 %. Contributions from all other backgrounds are found to be negligibly small.

5.1.4 Model-Independent ZH\mathup{{{Z}}}\mathup{{{H}}} Cross Section

By combining the two analyses for ZH\mathup{{{Z}}}\mathup{{{H}}} production where Zqq¯\mathup{{{Z}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}} and the Higgs decays either to invisible final states (see Section 5.1.3) or to visible final states (see Section 5.1.2), it is possible to determine the absolute cross section for e+e\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}} ZH\to\mathup{{{Z}}}\mathup{{{H}}} in an essentially model-independent manner:

σ(ZH)=σvis+σinvisBR(Zqq¯).\sigma(\mathup{{{Z}}}\mathup{{{H}}})=\frac{\sigma_{\text{vis}}+\sigma_{\text{invis}}}{BR(\mathup{{{Z}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}})}\,.

Here a slightly modified version of the invisible Higgs analysis is employed. With the exception of the cuts on y23y_{23} and y34y_{34}, the invisible Higgs analysis employs the same preselection as for the visible Higgs analysis and a likelihood multivariate discriminant is used.

Since the fractional uncertainties on the total cross section from the visible and invisible cross sections are 1.7%1.7\,\% and 0.6%0.6\,\% respectively, the fractional uncertainty on the total cross section will be (at most) the quadrature sum of the two fractional uncertainties, namely 1.8%1.8\,\%. This measurement is only truly model-independent if the overall selection efficiencies are independent of the Higgs decay mode. For all final state topologies, the combined (visible + invisible) selection efficiency lies is the range 1926%19-26\,\% regardless of the Higgs decay mode, covering a very wide range of event topologies. To assess the level of model independence, the Higgs decay modes in the MC samples are modified and the total (visible + invisible) cross section is extracted assuming the SM Higgs branching ratio. Table 8 shows the resulting biases in the extracted total cross section for the case when a BR(HX)BR(HX)+0.05BR(\mathup{{{H}}}\to X)\to BR(\mathup{{{H}}}\to X)+0.05. Even for these very large modifications of the Higgs branching ratios over a wide range of final-state topologies – including the extreme cases highlighted at the bottom of Table 8 such as HWWqq¯qq¯\mathup{{{H}}}\to\mathup{{{W}}}\mathup{{{W}}}^{*}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}, which has six jets in the final state, and HWW\mathup{{{H}}}\to\mathup{{{W}}}\mathup{{{W}}}^{*}\to\mathup{}\mathup{}\mathup{}\mathup{}, which has a lot of missing energy – the resulting biases in the extracted total ZH\mathup{{{Z}}}\mathup{{{H}}} cross section are less than 1%1\,\% (compared to the 1.8%1.8\,\% statistical uncertainty). However, such large deviations would have significant observable effects on exclusive Higgs branching ratio analyses (at both LHC and CLIC) and it is concluded that the analysis gives an effectively model-independent measurement of the (Zqq¯)H(\mathup{{{Z}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}})\mathup{{{H}}} cross section.

Decay mode Δ\Delta(BRBR) σvis+σinvis\sigma^{\text{vis}}+\sigma^{\text{invis}} Bias
Hinvis\mathup{{{H}}}\to\text{invis} +5%+5\,\% 0.01%-0.01\,\%
Hqq¯\mathup{{{H}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}} +5%+5\,\% +0.05%+0.05\,\%
HWW\mathup{{{H}}}\to\mathup{{{W}}}\mathup{{{W}}}^{*} +5%+5\,\% 0.18%-0.18\,\%
HZZ\mathup{{{H}}}\to\mathup{{{Z}}}\mathup{{{Z}}}^{*} +5%+5\,\% 0.30%-0.30\,\%
H+\mathup{{{H}}}\to\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}} +5%+5\,\% +0.60%+0.60\,\%
H\mathup{{{H}}}\to\mathup{}\mathup{} +5%+5\,\% +0.79%+0.79\,\%
HZ\mathup{{{H}}}\to\mathup{{{Z}}}\mathup{} +5%+5\,\% 0.74%-0.74\,\%
HWWqq¯qq¯\mathup{{{H}}}\to\mathup{{{W}}}\mathup{{{W}}}^{*}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}} +5%+5\,\% 0.49%-0.49\,\%
HWWqq¯l\mathup{{{H}}}\to\mathup{{{W}}}\mathup{{{W}}}^{*}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{l}}}\mathup{} +5%+5\,\% +0.10%+0.10\,\%
HWW\mathup{{{H}}}\to\mathup{{{W}}}\mathup{{{W}}}^{*}\to\mathup{}\mathup{}\mathup{}\mathup{} +5%+5\,\% 0.98%-0.98\,\%
Table 8: Biases in the extracted H(Zqq¯)\mathup{{{H}}}(\mathup{{{Z}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}) cross section if the Higgs branching ratio to a specific final state is increased by 5 %, i.e. BR(HX)BR(HX)+0.05BR(\mathup{{{H}}}\to X)\to BR(\mathup{{{H}}}\to X)+0.05.

Combining the model-independent measurements of the ZH\mathup{{{Z}}}\mathup{{{H}}} cross section from Zl+l\mathup{{{Z}}}\to\mathup{{{\mathup{{{l}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{l}}}}}^{\scriptstyle{-}}} and Zqq¯\mathup{{{Z}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}} gives an absolute measurement of the ZH\mathup{{{Z}}}\mathup{{{H}}} cross section with a precision of:

Δσ(ZH)σ(ZH)=1.65%,\frac{\Delta\sigma({\mathup{{{Z}}}\mathup{{{H}}}})}{\sigma(\mathup{{{Z}}}\mathup{{{H}}})}=1.65\,\%\,,

and, consequently, the absolute coupling of the H\mathup{{{H}}} boson to the Z\mathup{{{Z}}} boson is determined to:

ΔgHZZgHZZ=0.8%.\frac{\Delta g_{\mathup{{{H}}}\mathup{{{Z}}}\mathup{{{Z}}}}}{g_{\mathup{{{H}}}\mathup{{{Z}}}\mathup{{{Z}}}}}=0.8\,\%\,.

The hadronic recoil mass analysis was repeated for collision energies of s=250GeV\sqrt{s}=250\,\text{GeV} and s=420GeV\sqrt{s}=420\,\text{GeV} Thomson:2015jda . Compared with s=350GeV\sqrt{s}=350\,\text{GeV}, the sensitivity is significantly worse in both cases.

5.2 Exclusive Higgs Branching Ratio Measurements at s=350GeV\sqrt{s}=350\,\text{GeV}

The previous section described inclusive measurements of the e+eZH\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{Z}}}\mathup{{{H}}} production cross section, which provide a model-independent determination of the coupling at the HZZ\mathup{{{H}}}\mathup{{{Z}}}\mathup{{{Z}}} vertex. In contrast, measurements of Higgs production and decay to exclusive final states provide a determination of the product σ(ZH)×BR(HX)\sigma(\mathup{{{Z}}}\mathup{{{H}}})\times BR(\mathup{{{H}}}\to X), where XX is a particular final state. This section focuses on the exclusive measurements of the Higgs decay branching ratios at s=350GeV\sqrt{s}=350\,\text{GeV}. Higgs boson decays to bb¯\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}}, cc¯\mathup{{{c}}}\mathup{{\overline{{\mathup{{{c}}}}}}} and gg\mathup{{{g}}}\mathup{{{g}}} are studied in Section 5.2.1. The measurement of H+\mathup{{{H}}}\to\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}} decays is described in Section 5.2.2, and the HWW\mathup{{{H}}}\to\mathup{{{W}}}\mathup{{{W}}}^{\ast} decay mode is described in Section 5.2.3.

5.2.1 Hbb¯,cc¯\mathup{{{H}}}\to\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}},~\mathup{{{c}}}\mathup{{\overline{{\mathup{{{c}}}}}}} and gg\mathup{{{g}}}\mathup{{{g}}}

As can be seen from Table 1, at s=350GeV\sqrt{s}=350\,\text{GeV} the cross section for e+eZH\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{Z}}}\mathup{{{H}}} (Higgsstrahlung) is approximately four times greater than the e+eH¯ee\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}} (mostly WW\mathup{{{W}}}\mathup{{{W}}}-fusion) cross section for unpolarised beams (or approximately a factor 2.5 with 80%-80\,\% electron beam polarisation). For Higgsstrahlung, the signature of Hbb¯,cc¯,gg\mathup{{{H}}}\to\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}},\mathup{{{c}}}\mathup{{\overline{{\mathup{{{c}}}}}}},\mathup{{{g}}}\mathup{{{g}}} events depends on the Z\mathup{{{Z}}} decay mode.

Process σ\sigma/fb ϵBDT\epsilon_{\text{BDT}}, classified as NBDTN_{\text{BDT}}, classified as
H¯\mathup{{{H}}}\mathup{}\mathup{{\overline{{\upnu}}}} Hqq¯\mathup{{{H}}}\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}} H¯\mathup{{{H}}}\mathup{}\mathup{{\overline{{\upnu}}}} Hqq¯\mathup{{{H}}}\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}
e+eH¯;Hbb¯\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{H}}}\mathup{}\mathup{{\overline{{\upnu}}}};\mathup{{{H}}}\to\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}} 28.9 55 % 0 % 8000 0
e+eH¯;Hcc¯\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{H}}}\mathup{}\mathup{{\overline{{\upnu}}}};\mathup{{{H}}}\to\mathup{{{c}}}\mathup{{\overline{{\mathup{{{c}}}}}}} 1.46 51 % 0 % 372 0
e+eH¯;Hgg\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{H}}}\mathup{}\mathup{{\overline{{\upnu}}}};\mathup{{{H}}}\to\mathup{{{g}}}\mathup{{{g}}} 4.37 58 % 0 % 1270 0
e+eH¯;Hother\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{H}}}\mathup{}\mathup{{\overline{{\upnu}}}};\mathup{{{H}}}\to\text{other} 16.8 6.1 % 0 % 513 0
e+eHqq¯;Hbb¯\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{H}}}\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}};\mathup{{{H}}}\to\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}} 52.3 0 % 42 % 0 11100
e+eHqq¯;Hcc¯\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{H}}}\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}};\mathup{{{H}}}\to\mathup{{{c}}}\mathup{{\overline{{\mathup{{{c}}}}}}} 2.64 0 % 33 % 0 434
e+eHqq¯;Hgg\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{H}}}\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}};\mathup{{{H}}}\to\mathup{{{g}}}\mathup{{{g}}} 7.92 0 % 37 % 0 1480
e+eHqq¯;Hother\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{H}}}\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}};\mathup{{{H}}}\to\text{other} 30.5 0.12 % 13 % 20 1920
e+eqq¯¯\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{}\mathup{{\overline{{\upnu}}}} 325 1.3 % 0 % 2110 0
e+eqq¯l\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{l}}}\mathup{} 5910 0.07 % 0.002 % 2090 60
e+eqq¯ll\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{l}}}\mathup{{{l}}} 1700 0.012 % 0.01 % 104 89
e+eqq¯qq¯\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}} 5530 0.001 % 0.36 % 30 9990
e+eqq¯\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}} 24400 0.01 % 0.093 % 1230 11400
Table 9: Summary of the expected numbers of events for the different Higgs and non-Higgs final states passing the hadronic Higgs decay signal selection for 500fb1500\,\text{fb}^{-1} at s=350GeV\sqrt{s}=350\,\text{GeV} (unpolarised beams). No preselection is applied in this analysis.

To maximise the statistical power of the Hbb¯,cc¯,gg\mathup{{{H}}}\to\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}},\mathup{{{c}}}\mathup{{\overline{{\mathup{{{c}}}}}}},\mathup{{{g}}}\mathup{{{g}}} branching ratio measurements, two topologies are considered: four jets, and two jets plus missing momentum (from the unobserved neutrinos). The impact of Higgsstrahlung events with leptonic Z\mathup{{{Z}}} decays is found to be negligible. The jets plus missing momentum final state contains approximately equal contributions from Higgsstrahlung and WW\mathup{{{W}}}\mathup{{{W}}}-fusion events, although the event kinematics are very different. All events are initially reconstructed assuming both topologies; at a later stage of the event selection, events are assigned to either Hqq¯\mathup{{{H}}}\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}, H¯\mathup{{{H}}}\mathup{}\mathup{{\overline{{\upnu}}}}, or background. To minimize the impact of ISR on the jet reconstruction, photons with a reconstructed energy higher than 15GeV15\,\text{GeV} are removed from the events first.

The hadronic final states are reconstructed using the Durham algorithm. For the four-jet topology, the most probable Z\mathup{{{Z}}} and Higgs boson candidates are selected by choosing the jet combination that minimises:

χ2=(mijmH)2/σH2+(mklmZ)2/σZ2,\chi^{2}=(m_{ij}-m_{\mathup{{{H}}}})^{2}/\sigma^{2}_{\mathup{{{H}}}}+(m_{kl}-m_{\mathup{{{Z}}}})^{2}/\sigma^{2}_{\mathup{{{Z}}}}\,,

where mijm_{ij} and mklm_{kl} are the invariant masses of the jet pairs used to reconstruct the Higgs and Z\mathup{{{Z}}} boson candidates, respectively, and σH,Z\sigma_{\mathup{{{H}}},\mathup{{{Z}}}} are the estimated invariant mass resolutions for Higgs and Z\mathup{{{Z}}} boson candidates. In the case of the two jets plus missing energy final state, either from ZH\mathup{{{Z}}}\mathup{{{H}}} with Z¯\mathup{{{Z}}}\to\mathup{}\mathup{{\overline{{\upnu}}}} or from H¯\mathup{{{H}}}\mathup{}\mathup{{\overline{{\upnu}}}}, the event is clustered into two jets forming the H\mathup{{{H}}} candidate.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 11: bb¯\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}} likelihood versus cc¯\mathup{{{c}}}\mathup{{\overline{{\mathup{{{c}}}}}}} likelihood distributions for e+eZH\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{Z}}}\mathup{{{H}}} events at s=350GeV\sqrt{s}=350\,\text{GeV}, for (a) all events and for the different event classes: (b) Hbb¯\mathup{{{H}}}\to\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}}, (c) Hcc¯\mathup{{{H}}}\to\mathup{{{c}}}\mathup{{\overline{{\mathup{{{c}}}}}}}, (d) Hgg\mathup{{{H}}}\to\mathup{{{g}}}\mathup{{{g}}}, background from (e) other Higgs decays and (f) non-Higgs SM background. All distributions are normalised to an integrated luminosity of 500fb1500\,\text{fb}^{-1}.

To help veto backgrounds with leptonic final states, isolated electrons or muons with E>10GeVE>10\,\text{GeV} are identified with the additional requirement that there should be less than 20GeV20\,\text{GeV} of energy from other particles within a cone with an opening angle of 2020^{\circ} around the lepton direction. All events are then classified by gradient boost decision trees employing reconstructed kinematic variables from each of the two event topology hypotheses described above. The variables used include jet energies, event shape variables (such as thrust and sphericity), the masses of H\mathup{{{H}}} and Z\mathup{{{Z}}} candidates, their decay angles and transverse momenta, and the number of isolated leptons in the final state. The total number of variables is about 50, which is larger than in other studies presented in this paper, because each event is reconstructed assuming two different final state configurations and information from the H\mathup{{{H}}} candidate decay can be included here, in contrast with the recoil mass analyses described in Section 5.1.

Two separate BDT classifiers are used, one for each signal final state (Hqq¯\mathup{{{H}}}\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}} and H¯\mathup{{{H}}}\mathup{}\mathup{{\overline{{\upnu}}}}), irrespective of the nature of the hadronic Higgs decay mode. Two-fermion (qq¯\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}) and four-fermion (qq¯¯\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{}\mathup{{\overline{{\upnu}}}}, qq¯l\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{l}}}\mathup{}, qq¯ll\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{l}}}\mathup{{{l}}} and qq¯qq¯\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}) final states and other Higgs decay modes are taken as background for both classifiers. In addition, the other signal mode is included in the background for a given classifier. The training is performed using a dedicated training sample, simultaneously training both classifiers. At this point, no flavour tagging information is used.

Each event is evaluated with both classifiers. An event is only accepted if exactly one of the signal classifiers is above a positive threshold and the other classifier is below a corresponding negative threshold. The event is then tagged as a candidate for the corresponding signal process. If none of the classifiers passes the selection threshold, the event is considered as background and is rejected from the analysis. The number of events for which both signal classifiers are above the positive threshold is negligible. Table 9 summarises the classification of all events into the two signal categories, with event numbers based on an integrated luminosity of 500fb1500\,\text{fb}^{-1}.

The second stage of the analysis is to measure the contributions of the hadronic Higgs decays into the Hbb¯\mathup{{{H}}}\to\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}}, Hcc¯\mathup{{{H}}}\to\mathup{{{c}}}\mathup{{\overline{{\mathup{{{c}}}}}}} and Hgg\mathup{{{H}}}\to\mathup{{{g}}}\mathup{{{g}}} exclusive final states, separated into the two production modes Higgsstrahlung and WW\mathup{{{W}}}\mathup{{{W}}}-fusion. This is achieved by a multi-dimensional template fit using flavour tagging information and, in the case of the H¯\mathup{{{H}}}\mathup{}\mathup{{\overline{{\upnu}}}} final state, the transverse momentum of the Higgs candidate.

The jets forming the Higgs candidate are classified with the LcfiPlus flavour tagging package. Each jet pair is assigned a bb¯\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}} likelihood and a cc¯\mathup{{{c}}}\mathup{{\overline{{\mathup{{{c}}}}}}} likelihood:

bb¯likelihood=b1b2b1b2+(1b1)(1b2),\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}}~\text{likelihood}=\frac{b_{1}b_{2}}{b_{1}b_{2}+(1-b_{1})(1-b_{2})},
cc¯likelihood=c1c2c1c2+(1c1)(1c2),\mathup{{{c}}}\mathup{{\overline{{\mathup{{{c}}}}}}}~\text{likelihood}=\frac{c_{1}c_{2}}{c_{1}c_{2}+(1-c_{1})(1-c_{2})},

where b1b_{1} and b2b_{2} (c1c_{1} and c2c_{2}) are the b-tag (c-tag) values obtained for the two jets forming the Higgs candidate.

The resulting two-dimensional distributions of the bb¯\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}} and cc¯\mathup{{{c}}}\mathup{{\overline{{\mathup{{{c}}}}}}} likelihoods in Hqq¯\mathup{{{H}}}\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}} events are shown in Figure 11, where separation between the different event categories can be seen. These distributions form the templates used to determine the contribution of the different signal categories for the Hqq¯\mathup{{{H}}}\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}} final states.

Signal and background templates are also obtained for the H¯\mathup{{{H}}}\mathup{}\mathup{{\overline{{\upnu}}}} final state. As H¯\mathup{{{H}}}\mathup{}\mathup{{\overline{{\upnu}}}} has roughly equal contributions from the Higgsstrahlung and the WW\mathup{{{W}}}\mathup{{{W}}}-fusion process, separation into the two production processes is required, in addition to separation into the different signal and background final states. This is achieved by adding the transverse momentum of the Higgs candidate to the templates as a third dimension. This exploits the fact that the transverse momentum of the Higgs candidate is substantially different for Higgsstrahlung and WW\mathup{{{W}}}\mathup{{{W}}}-fusion events, as illustrated in Figure 12 for events with a high bb¯\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}} likelihood, which provides a high signal purity.

Refer to caption
Figure 12: Reconstructed Higgs candidate transverse momentum distributions for selected H¯\mathup{{{H}}}\mathup{}\mathup{{\overline{{\upnu}}}} events at s=350GeV\sqrt{s}=350\,\text{GeV}, showing the contributions from Higgsstrahlung, WW\mathup{{{W}}}\mathup{{{W}}}-fusion and non-Higgs background. The distributions are normalised to an integrated luminosity of 500fb1500\,\text{fb}^{-1}.

Contributions from events with Hbb¯\mathup{{{H}}}\to\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}}, Hcc¯\mathup{{{H}}}\to\mathup{{{c}}}\mathup{{\overline{{\mathup{{{c}}}}}}} and Hgg\mathup{{{H}}}\to\mathup{{{g}}}\mathup{{{g}}} decays, separated by production mode, are extracted in a template fit maximizing the combined likelihood of the Hqq¯\mathup{{{H}}}\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}} and H¯\mathup{{{H}}}\mathup{}\mathup{{\overline{{\upnu}}}} templates. It is assumed that the contributions from other Higgs decay modes are determined from independent measurements and therefore these contributions are fixed in the fit.

The results of the above analysis are summarised in Table 10, giving the statistical uncertainties of the various σ×BR\sigma\times BR measurements. Since the parameters in this analysis are determined in a combined extraction from overlapping distributions, the results are correlated. In particular the Higgsstrahlung and WW\mathup{{{W}}}\mathup{{{W}}}-fusion results for the same final states show sizeable anti-correlations, as large as 38%-38\% for the cases of Hcc¯\mathup{{{H}}}\to\mathup{{{c}}}\mathup{{\overline{{\mathup{{{c}}}}}}} and Hgg\mathup{{{H}}}\to\mathup{{{g}}}\mathup{{{g}}}. These correlations are taken into account in the global fits described in Section 12.

Decay Statistical uncertainty
Higgsstrahlung WW\mathup{{{W}}}\mathup{{{W}}}-fusion
Hbb¯\mathup{{{H}}}\to\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}} 0.86 % 1.9 %
Hcc¯\mathup{{{H}}}\to\mathup{{{c}}}\mathup{{\overline{{\mathup{{{c}}}}}}} 14 % 26 %
Hgg\mathup{{{H}}}\to\mathup{{{g}}}\mathup{{{g}}} 6.1 % 10 %
Table 10: Summary of statistical uncertainties for events with a Hbb¯\mathup{{{H}}}\to\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}}, Hcc¯\mathup{{{H}}}\to\mathup{{{c}}}\mathup{{\overline{{\mathup{{{c}}}}}}} or Hgg\mathup{{{H}}}\to\mathup{{{g}}}\mathup{{{g}}} decay, where the Higgs boson is produced by Higgsstrahlung or WW-fusion, at s=350GeV\sqrt{s}=350\,\text{GeV} derived from the template fit as described in the text. All numbers correspond to an integrated luminosity of 500fb1500\,\text{fb}^{-1}.

5.2.2 H+\mathup{{{H}}}\to\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}}

Because of the neutrino(s) produced in decays, the signature for H+\mathup{{{H}}}\to\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}} is less distinct than that for other decay modes. The invariant mass of the visible decay products of the +\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}} system will be less than mHm_{\mathup{{{H}}}}, and it is difficult to identify H+\mathup{{{H}}}\to\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}} decays from the WW\mathup{{{W}}}\mathup{{{W}}}-fusion process or from Higgsstrahlung events where Z¯\mathup{{{Z}}}\to\mathup{}\mathup{{\overline{{\upnu}}}}. For this reason, the product of σ(ZH)×BR(H)+\sigma(\mathup{{{Z}}}\mathup{{{H}}})\times BR(\mathup{{{H}}}\to\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}}) is only determined for the case of hadronic Z\mathup{{{Z}}} decays at s=350GeV\sqrt{s}=350\,\text{GeV}. In this analysis only hadronic decays are considered, so the experimental signature is two hadronic jets from Zqq¯\mathup{{{Z}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}} and two isolated low-multiplicity narrow jets from the two tau decays LCD:tautau_350 . Candidate leptons are identified using the TauFinder algorithm LCDnote_TauFinder , which is a seeded-cone based jet-clustering algorithm. The algorithm was optimised to distinguish the tau lepton decay products from hadronic gluon or quark jets. Tau cones are seeded from single tracks (pT>5GeVp_{\mathrm{T}}>5\,\text{GeV}). The seeds are used to define narrow cones of 0.050.05 rad. The cones are required to contain either one or three charged particles (from one- and three-prong tau decays) and further rejection of background from hadronic jets is implemented using cuts on isolation-related variables. Tau cones which contain identified electrons or muons are rejected and only the hadronic one- and three-prong decays are retained. The identification efficiency for hadronic tau decays is found to be 73%73\,\% and the fake rate to mistake a quark for a is 5%5\,\%. The fake rate is relatively high, but is acceptable as the background from final states with quarks can be suppressed using global event properties.

Events with two identified hadronic tau candidates (with opposite net charge) are considered as H+\mathup{{{H}}}\to\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}} decays. Further separation of the signal and background events is achieved using a BDT classifier based on the properties of the tau candidates and global event properties. Seventeen discriminating variables are used as BDT inputs, including the thrust and oblateness of the quark and tau systems, and masses, transverse momenta, and angles in the events. A full list is given in LCD:tautau_350 . The resulting BDT distributions for the signal and the backgrounds are shown in Figure 13. Events passing a cut on the BDT output maximising the significance of the measurement are selected. The cross sections and numbers of selected events for the signal and the dominant background processes are listed in Table 11. The contribution from background processes with photons in the initial state is negligible after the event selection. A template fit to the BDT output distributions leads to:

Δ[σ(ZH)×BR(H)+]σ(ZH)×BR(H)+=6.2%.\displaystyle\frac{\Delta[\sigma(\mathup{{{Z}}}\mathup{{{H}}})\times BR(\mathup{{{H}}}\to\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}})]}{\sigma(\mathup{{{Z}}}\mathup{{{H}}})\times BR(\mathup{{{H}}}\to\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}})}=6.2\,\%\,.
Process σ/fb\sigma/\text{fb} εpresel\varepsilon_{\text{presel}} εBDT\varepsilon_{\text{BDT}} NBDTN_{\text{BDT}}
e+eZH;\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{Z}}}\mathup{{{H}}}; 5.8 18 % 59 % 312
Zqq¯,H+\mathup{{{Z}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}},\mathup{{{H}}}\to\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}}
e+eZH;\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{Z}}}\mathup{{{H}}}; 4.6 15 % 2.6 % 9
Z,+HX\mathup{{{Z}}}\to\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}},\mathup{{{H}}}\to X
e+eqq(non-Higgs)\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{q}}}\mathup{{{q}}}\mathup{}\mathup{}(\text{non-Higgs}) 70 10 % 3.3 % 117
e+eqq\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{q}}}\mathup{{{q}}}\mathup{}\mathup{}\mathup{}\mathup{} 1.6 9.7 % 5.1 % 4
e+eqq¯qq¯\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}} 5850 0.13 % 0.54 % 21
Table 11: Cross sections and numbers of preselected and selected events with BDT > 0.08 (see Figure 13) for e+eZH(Zqq¯,H)+\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{Z}}}\mathup{{{H}}}(\mathup{{{Z}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}},\mathup{{{H}}}\to\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}}) signal events and the dominant backgrounds at s=350GeV\sqrt{s}=350\,\text{GeV} assuming an integrated luminosity of 500fb1500\,\text{fb}^{-1}.
Refer to caption
Figure 13: BDT classifier distributions for H+\mathup{{{H}}}\to\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}} events at s=350GeV\sqrt{s}=350\,\text{GeV}, showing the signal and main backgrounds as stacked histograms. The distributions are normalised to an integrated luminosity of 500fb1500\,\text{fb}^{-1}.

5.2.3 HWW\mathup{{{H}}}\to\mathup{{{W}}}\mathup{{{W}}}^{\ast}

In case the Higgs boson decays to a pair of W\mathup{{{W}}} bosons, only the fully hadronic channel, HWWqq¯qq¯\mathup{{{H}}}\to\mathup{{{W}}}\mathup{{{W}}}^{\ast}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}, allows the reconstruction of the Higgs invariant mass. Two final states in e+eZH\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{Z}}}\mathup{{{H}}} events have been studied depending on the Z\mathup{{{Z}}} boson decay mode: Zl+l\mathup{{{Z}}}\to\mathup{{{\mathup{{{l}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{l}}}}}^{\scriptstyle{-}}}, where l\mathup{{{l}}} is an electron or muon, and Zqq¯\mathup{{{Z}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}.

First, isolated electrons and muons from Z\mathup{{{Z}}} decays are identified. Photons in a cone with an opening angle of 33^{\circ} around the lepton candidates are added to their four-momentum as described in Section 4.2.

If a leptonic Z\mathup{{{Z}}} candidate is found, four jets are reconstructed from all particles not originating from the Z\mathup{{{Z}}} decay. The jets are paired, with the pair that gives the mass closest to the W\mathup{{{W}}} boson mass being taken as one W\mathup{{{W}}} boson candidate, and the other pair taken as the W\mathup{{{W}}}^{\ast}. The events are considered further if the invariant mass of the Z\mathup{{{Z}}} boson candidate is in the range between 7070 and 110GeV110\,\text{GeV} and at least 20 particles are reconstructed.

In events without a leptonic Z\mathup{{{Z}}} candidate, six jets are reconstructed. The jets are grouped into W\mathup{{{W}}}, Z\mathup{{{Z}}} and Higgs boson candidates by minimising:

χ2=(mijmW)2σW2+(mklmZ)2σZ2+(mijmnmH)2σH2,\chi^{2}=\frac{(m_{ij}-m_{\mathup{{{W}}}})^{2}}{\sigma_{\mathup{{{W}}}}^{2}}+\frac{(m_{kl}-m_{\mathup{{{Z}}}})^{2}}{\sigma_{\mathup{{{Z}}}}^{2}}+\frac{(m_{ijmn}-m_{\mathup{{{H}}}})^{2}}{\sigma_{\mathup{{{H}}}}^{2}},

where mijm_{ij} is the invariant mass of the jet pair used to reconstruct the W\mathup{{{W}}} candidate, mklm_{kl} is the invariant mass of the jet pair used to reconstruct the Z\mathup{{{Z}}} candidate, mijmnm_{ijmn} is the invariant mass of the four jets used to reconstruct the Higgs candidate and σW,Z,H\sigma_{\mathup{{{W}}},\mathup{{{Z}}},\mathup{{{H}}}} are the estimated invariant mass resolutions for W\mathup{{{W}}}, Z\mathup{{{Z}}} and Higgs boson candidates. The preselection cuts for this final state are:

  • invariant mass of the Z\mathup{{{Z}}} candidate greater than 40GeV40\,\text{GeV};

  • at least 50 reconstructed particles;

  • event thrust of less than 0.95;

  • no jet with a b-tag probability of more than 0.95;

  • topology of the hadronic system consistent with six jets: log10(y12)>2.0\log_{10}(y_{12})>-2.0, log10(y23)>2.6\log_{10}(y_{23})>-2.6, log10(y34)>3.0\log_{10}(y_{34})>-3.0, log10(y45)>3.5\log_{10}(y_{45})>-3.5 and log10(y56)>4.0\log_{10}(y_{56})>-4.0.

Process σ/fb\sigma/\text{fb} εpresel\varepsilon_{\text{presel}} εBDT\varepsilon_{\text{BDT}} NBDTN_{\text{BDT}}
e+eZH;Ze+e;\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{Z}}}\mathup{{{H}}};\mathup{{{Z}}}\to\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}; 0.45 80 % 53 % 95
HWWqq¯qq¯\ \mathup{{{H}}}\to\mathup{{{W}}}\mathup{{{W}}}^{\ast}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}
e+eZH;Ze+e;\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{Z}}}\mathup{{{H}}};\mathup{{{Z}}}\to\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}; 4.1 69 % 3.4 % 48
Hother\ \mathup{{{H}}}\to\textnormal{other}
e+eqq¯ll\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{l}}}\mathup{{{l}}} 1700 3.6 % 0.24 % 75
e+eWWZ\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{W}}}\mathup{{{W}}}\mathup{{{Z}}} 10 3.1 % 5.9 % 9
e+eZH;Z;+\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{Z}}}\mathup{{{H}}};\mathup{{{Z}}}\to\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}}; 0.45 87 % 65 % 125
HWWqq¯qq¯\ \mathup{{{H}}}\to\mathup{{{W}}}\mathup{{{W}}}^{\ast}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}
e+eZH;Z;+\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{Z}}}\mathup{{{H}}};\mathup{{{Z}}}\to\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}}; 4.1 69 % 5.2 % 74
Hother\ \mathup{{{H}}}\to\textnormal{other}
e+eqq¯ll\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{l}}}\mathup{{{l}}} 1700 1.7 % 0.35 % 51
e+eWWZ\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{W}}}\mathup{{{W}}}\mathup{{{Z}}} 10 2.6 % 7.1 % 9
e+eZH;Zqq¯;\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{Z}}}\mathup{{{H}}};\mathup{{{Z}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}; 9.2 71 % 41 % 1328
HWWqq¯qq¯\ \mathup{{{H}}}\to\mathup{{{W}}}\mathup{{{W}}}^{\ast}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}
e+eZH;Zqq¯;\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{Z}}}\mathup{{{H}}};\mathup{{{Z}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}; 84 17 % 10 % 730
Hother\ \mathup{{{H}}}\to\textnormal{other}
e+eqq¯qq¯\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}} 5850 18 % 0.54 % 2849
e+ett¯\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{t}}}\mathup{{\overline{{\mathup{{{t}}}}}}} 450 19 % 2.5 % 1071
e+eWWZ\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{W}}}\mathup{{{W}}}\mathup{{{Z}}} 10 20 % 18 % 179
Table 12: Preselection and selection efficiencies for the ZH\mathup{{{Z}}}\mathup{{{H}}} signal and most important background processes of the HWW\mathup{{{H}}}\to\mathup{{{W}}}\mathup{{{W}}}^{\ast} analysis in all three considered Z\mathup{{{Z}}} decay channels. The numbers assume an integrated luminosity of 500fb1500\,\text{fb}^{-1} at s=350GeV\sqrt{s}=350\,\text{GeV}.

For both final states, BDT classifiers are used to suppress the backgrounds further. The event selection for the signal processes and the most relevant background samples is summarised in Table 12. The expected precisions for the measurement of the investigated processes are summarised in Table 13. The best precision is achieved using the Zqq¯\mathup{{{Z}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}} decay due to its large branching ratio compared to leptonic decays. The selection of Ze+e\mathup{{{Z}}}\to\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}} events is more difficult compared to Z+\mathup{{{Z}}}\to\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}} events because the e+eqq¯ll\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{l}}}\mathup{{{l}}} background sample contains more events with electron pairs than events with muon pairs. Hence the precision achieved using Z+\mathup{{{Z}}}\to\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}} decays is somewhat better compared to that obtained using Ze+e\mathup{{{Z}}}\to\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}} decays. The combined precision for an integrated luminosity of 500 fb1\text{fb}^{-1} is:

Δ[σ(ZH)×BR(HWW)]σ(ZH)×BR(HWW)=5.1%,\frac{\Delta[\sigma(\mathup{{{Z}}}\mathup{{{H}}})\times BR(\mathup{{{H}}}\to\mathup{{{W}}}\mathup{{{W}}}^{*})]}{\sigma(\mathup{{{Z}}}\mathup{{{H}}})\times BR(\mathup{{{H}}}\to\mathup{{{W}}}\mathup{{{W}}}^{*})}=5.1\,\%\,,

which is dominated by the final state with hadronic Z\mathup{{{Z}}} boson decays.

Process Stat. uncertainty
e+eZH;Ze+e;HWWqq¯qq¯\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{Z}}}\mathup{{{H}}};\mathup{{{Z}}}\to\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}};\mathup{{{H}}}\to\mathup{{{W}}}\mathup{{{W}}}^{\ast}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}} 16 %
e+eZH;Z;+HWWqq¯qq¯\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{Z}}}\mathup{{{H}}};\mathup{{{Z}}}\to\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}};\mathup{{{H}}}\to\mathup{{{W}}}\mathup{{{W}}}^{\ast}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}} 13 %
e+eZH;Zqq¯;HWWqq¯qq¯\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{Z}}}\mathup{{{H}}};\mathup{{{Z}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}};\mathup{{{H}}}\to\mathup{{{W}}}\mathup{{{W}}}^{\ast}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}} 5.9 %
Table 13: Statistical precisions for the listed processes at s=350GeV\sqrt{s}=350\,\text{GeV} for an integrated luminosity of 500fb1500\,\text{fb}^{-1}.

6 WW-fusion at s>1TeV\sqrt{s}>1\,\text{TeV}

This section presents measurements of Higgs decays from the WW\mathup{{{W}}}\mathup{{{W}}}-fusion process at CLIC with centre-of-mass energies of 1.4 TeV and 3 TeV. The Higgs self-coupling measurement, which is also accessed in WW\mathup{{{W}}}\mathup{{{W}}}-fusion production, is discussed in Section 9. The cross section of the Higgs production via the vector boson fusion process e+eH¯ee\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}} scales with log(s)\log(s) and becomes the dominating Higgs production process in e+e\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}} collisions with s>500GeV\sqrt{s}>500\,\text{GeV}. The respective cross sections for e+eH¯ee\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}} at s=1.4TeV\sqrt{s}=1.4\,\text{TeV} and 3 TeV are approximately 244 fb and 415 fb, respectively, including the effects of the CLIC beamstrahlung spectrum and ISR. The relatively large cross sections at the higher energies allow the Higgs decay modes to be probed with high statistical precision and provide access to rarer Higgs decays, such as H+\mathup{{{H}}}\to\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}}.

Since WW\mathup{{{W}}}\mathup{{{W}}}-fusion e+eH¯ee\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}} proceeds through the tt-channel, the Higgs boson is typically boosted along the beam direction and the presence of neutrinos in the final state can result in significant missing pTp_{\mathrm{T}}. Because of the missing transverse and longitudinal momentum, the experimental signatures for H¯ee\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}} production are relatively well separated from most SM backgrounds. At s=350\sqrt{s}=350\,GeV, the main SM background processes are two- and four-fermion production, e+e2f\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to 2f and e+e4f\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to 4f. At higher energies, backgrounds from and e±\mathup{}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{\pm}}} hard interactions become increasingly relevant for measurements of Higgs boson production in WW\mathup{{{W}}}\mathup{{{W}}}-fusion. Additionally, pile-up of relatively soft hadrons\mathup{}\mathup{}\to\text{hadrons} events with the primary interaction occurs. However, this background of relatively low-pTp_{\mathrm{T}} particles is largely mitigated through the timing cuts and jet finding strategy outlined in Section 4.

6.1 Hbb¯,cc¯,gg\mathup{{{H}}}\to\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}},\mathup{{{c}}}\mathup{{\overline{{\mathup{{{c}}}}}}},\mathup{{{g}}}\mathup{{{g}}}

The physics potential for the measurement of hadronic Higgs decays at the centre-of-mass energies of 1.4 TeV and 3 TeV was studied using the CLIC_SiD detector model. The signatures for Hbb¯\mathup{{{H}}}\to\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}}, Hcc¯\mathup{{{H}}}\to\mathup{{{c}}}\mathup{{\overline{{\mathup{{{c}}}}}}} and Hgg\mathup{{{H}}}\to\mathup{{{g}}}\mathup{{{g}}} decays in e+eH¯ee\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}} events are two jets and missing energy. Flavour tagging information from LcfiPlus is used to separate the investigated Higgs boson decay modes in the selected event sample. The invariant mass of the reconstructed di-jet system provides rejection against background processes, e.g. hadronic Z\mathup{{{Z}}} boson decays.

At both centre-of-mass energies, an invariant mass of the di-jet system in the range from 6060 to 160GeV160\,\text{GeV} and a distance between both jets in the ηϕ\eta-\phi plane of less than 4 are required. The energy sum of the two jets must exceed 75 GeV and a missing momentum of at least 20 GeV is required. The efficiencies of these preselection cuts on the signal and dominant background samples are listed in Table 14 and Table 15 for the centre-of-mass energies of 1.4 and 3 TeV, respectively.

Process σ/fb\sigma/\text{fb} εpresel\varepsilon_{\text{presel}} εBDT\varepsilon_{\text{BDT}} NBDTN_{\text{BDT}}
e+eH¯e;eHbb¯\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}};\mathup{{{H}}}\to\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}} 137 85 % 38 % 65400
e+eH¯e;eHcc¯\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}};\mathup{{{H}}}\to\mathup{{{c}}}\mathup{{\overline{{\mathup{{{c}}}}}}} 6.9 87 % 42 % 3790
e+eH¯e;eHgg\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}};\mathup{{{H}}}\to\mathup{{{g}}}\mathup{{{g}}} 20.7 82 % 40 % 10100
e+eqq¯¯\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{}\mathup{{\overline{{\upnu}}}} 788 76 % 2.1 % 18500
e+eqq¯l\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{l}}}\mathup{} 4310 40 % 0.91 % 23600
e±qq¯e\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{\pm}}}\mathup{}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{e}}} 16600 14 % 0.54 % 18500
e±qq¯\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{\pm}}}\mathup{}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{} 29300 60 % 0.64 % 170000
qq¯\mathup{}\mathup{}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}} 76600 4.2 % 0.47 % 22200
Table 14: Preselection and selection efficiencies for the signal and most important background processes in the Hbb¯\mathup{{{H}}}\to\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}}, Hcc¯\mathup{{{H}}}\to\mathup{{{c}}}\mathup{{\overline{{\mathup{{{c}}}}}}} and Hgg\mathup{{{H}}}\to\mathup{{{g}}}\mathup{{{g}}} analysis. The numbers of events correspond to 1.5 ab1\text{ab}^{-1} at s=1.4TeV\sqrt{s}=1.4\,\text{TeV}.
Process σ/fb\sigma/\text{fb} εpresel\varepsilon_{\text{presel}} εBDT\varepsilon_{\text{BDT}} NBDTN_{\text{BDT}}
e+eH¯e;eHbb¯\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}};\mathup{{{H}}}\to\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}} 233 74 % 35 % 120000
e+eH¯e;eHcc¯\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}};\mathup{{{H}}}\to\mathup{{{c}}}\mathup{{\overline{{\mathup{{{c}}}}}}} 11.7 75 % 36 % 6380
e+eH¯e;eHgg\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}};\mathup{{{H}}}\to\mathup{{{g}}}\mathup{{{g}}} 35.2 69 % 35 % 16800
e+eqq¯¯\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{}\mathup{{\overline{{\upnu}}}} 1300 67 % 2.7 % 47400
e+eqq¯e\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{e}}}\mathup{} 5260 45 % 1.1 % 52200
e±qq¯e\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{\pm}}}\mathup{}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{e}}} 20500 13 % 2.3 % 118000
e±qq¯\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{\pm}}}\mathup{}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{} 46400 46 % 0.92 % 394000
qq¯\mathup{}\mathup{}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}} 92200 7.0 % 1.6 % 207000
Table 15: Preselection and selection efficiencies for the signal and most important background processes in the Hbb¯\mathup{{{H}}}\to\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}}, Hcc¯\mathup{{{H}}}\to\mathup{{{c}}}\mathup{{\overline{{\mathup{{{c}}}}}}} and Hgg\mathup{{{H}}}\to\mathup{{{g}}}\mathup{{{g}}} analysis. The numbers of events correspond to 2 ab1\text{ab}^{-1} at s=3TeV\sqrt{s}=3\,\text{TeV}.

The backgrounds are suppressed further using a single BDT at each energy. The samples of signal events used to train these classifiers consist of equal amounts of Hbb¯\mathup{{{H}}}\to\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}}, Hcc¯\mathup{{{H}}}\to\mathup{{{c}}}\mathup{{\overline{{\mathup{{{c}}}}}}}, and Hgg\mathup{{{H}}}\to\mathup{{{g}}}\mathup{{{g}}} events, while the different processes in the background sample were normalised according to their respective cross sections. No flavour tagging information is used in the event selection. This leads to classifiers with similar selection efficiencies for events with the different signal Higgs decays.

The fractions of signal events with Hbb¯\mathup{{{H}}}\to\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}}, Hcc¯\mathup{{{H}}}\to\mathup{{{c}}}\mathup{{\overline{{\mathup{{{c}}}}}}} and Hgg\mathup{{{H}}}\to\mathup{{{g}}}\mathup{{{g}}} decays in the selected event samples are extracted from the two-dimensional distributions of the bb¯\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}} versus cc¯\mathup{{{c}}}\mathup{{\overline{{\mathup{{{c}}}}}}} likelihood variables for the two reconstructed jets as defined in Section 5.2. The normalisations of the backgrounds from other Higgs decays and non-Higgs events are fixed and expected to be provided by other measurements. The results of these fits are shown in Table 16 and Table 17 at 1.4 and 3 TeV, respectively.

The expected precisions obtained at 1.4 and 3 TeV are similar although the number of signal events is about twice as large at 3 TeV compared to 1.4 TeV. The main reasons for this are that the jet reconstruction and flavour tagging are more challenging at 3 TeV, since the jets from the Higgs decay tend more towards the beam axis, and the impact of the beam-induced backgrounds is larger compared to 1.4 TeV. In addition, the cross sections for the most important background processes rise with s\sqrt{s} (see Table 14 and Table 15).

Process Statistical uncertainty
e+eH¯e;eHbb¯\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}};\mathup{{{H}}}\to\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}} 0.4 %
e+eH¯e;eHcc¯\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}};\mathup{{{H}}}\to\mathup{{{c}}}\mathup{{\overline{{\mathup{{{c}}}}}}} 6.1 %
e+eH¯e;eHgg\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}};\mathup{{{H}}}\to\mathup{{{g}}}\mathup{{{g}}} 5.0 %
Table 16: Statistical precisions for the listed processes from the fit described in the text at s=1.4TeV\sqrt{s}=1.4\,\text{TeV} for an integrated luminosity of 1.5 ab1\text{ab}^{-1}.
Process Statistical uncertainty
e+eH¯e;eHbb¯\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}};\mathup{{{H}}}\to\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}} 0.3 %
e+eH¯e;eHcc¯\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}};\mathup{{{H}}}\to\mathup{{{c}}}\mathup{{\overline{{\mathup{{{c}}}}}}} 6.9 %
e+eH¯e;eHgg\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}};\mathup{{{H}}}\to\mathup{{{g}}}\mathup{{{g}}} 4.3 %
Table 17: Statistical precisions for the listed processes from the fit described in the text at s=3TeV\sqrt{s}=3\,\text{TeV} for an integrated luminosity of 2 ab1\text{ab}^{-1}.

6.2 H+\mathup{{{H}}}\to\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}}

The sensitivity for the measurement of σ(e+eH¯e)e×BR(H)+\sigma(\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}})\times BR(\mathup{{{H}}}\to\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}}) at CLIC has been studied using the CLIC_ILD detector model at centre-of-mass energies of 1.4 TeV and 3 TeV LCD:tautau_1400 . For a SM Higgs with a mass of 126 GeV, BR(H)+=6.2%BR(\mathup{{{H}}}\to\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}})=6.2\,\%, resulting in an effective signal cross section of 15.0 fb at s=1.4TeV\sqrt{s}=1.4\,\text{TeV} and 25.5 fb at s=3TeV\sqrt{s}=3\,\text{TeV}.

The experimental signature is two relatively high-momentum narrow jets from the two tau decays and significant missing transverse and longitudinal momenta. A typical event display is shown in Figure 14. The analysis is restricted to hadronic decays, which are identified using the TauFinder algorithm, as described in Section 5.2.2. The TauFinder algorithm parameters were tuned using the H+\mathup{{{H}}}\to\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}} signal events and e+eqq¯¯\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{}\mathup{{\overline{{\upnu}}}} background events. The working point has a selection efficiency of 70 % (60 %) with a quark jet fake rate of 7 % (9 %) at s=1.4TeV\sqrt{s}=1.4\,\text{TeV} (s=3TeV\sqrt{s}=3\,\text{TeV}). All relevant SM backgrounds are taken into account, including and e±\mathup{}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{\pm}}} collisions. The most significant backgrounds are e+e¯+\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}}\mathup{}\mathup{{\overline{{\upnu}}}}, e±e±+\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{\pm}}}\mathup{}\to\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{\pm}}} and ¯+\mathup{}\mathup{}\to\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}}\mathup{}\mathup{{\overline{{\upnu}}}}. The latter two processes become increasingly important at higher s\sqrt{s}, due to the increasing number of beamstrahlung photons. Backgrounds from Higgs decays other than H+\mathup{{{H}}}\to\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}} are expected to be negligible Kawada:2015wea .

Process σ/fb\sigma/\text{fb} εpresel\varepsilon_{\text{presel}} εBDT\varepsilon_{\text{BDT}} NBDTN_{\text{BDT}}
e+eH¯e;eH+\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}};\mathup{{{H}}}\to\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}} 15.0 9.3 % 39 % 814
e+e¯+\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}}\mathup{}\mathup{{\overline{{\upnu}}}} 38.5 5.0 % 18 % 528
e±e±+\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{\pm}}}\mathup{}\to\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{\pm}}} 2140 1.9 % 0.075 % 45
(¯orll+)+\mathup{}\mathup{}\to\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}}(\mathup{}\mathup{{\overline{{\upnu}}}}~\textnormal{or}~\mathup{{{\mathup{{{l}}}}}^{\scriptstyle{-}}}\mathup{{{\mathup{{{l}}}}}^{\scriptstyle{+}}}) 86.7 2.7 % 2.3 % 79
Table 18: Preselection and selection efficiencies for the signal and most important background processes in the H+\mathup{{{H}}}\to\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}} analysis. The numbers of events correspond to 1.5 ab1\text{ab}^{-1} at s=1.4TeV\sqrt{s}=1.4\,\text{TeV}. The cross sections for the backgrounds include cuts on the kinematic properties of the tau lepton pair applied at generator level. The preselection efficiencies include the reconstruction of two hadronic tau lepton decays per event.
Process σ/fb\sigma/\text{fb} εpresel\varepsilon_{\text{presel}} εBDT\varepsilon_{\text{BDT}} NBDTN_{\text{BDT}}
e+eH¯e;eH+\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}};\mathup{{{H}}}\to\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}} 25.5 6.7 % 23 % 787
e+e¯+\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}}\mathup{}\mathup{{\overline{{\upnu}}}} 39.2 5.7 % 11 % 498
e±e±+\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{\pm}}}\mathup{}\to\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{\pm}}} 2393 2.0 % 0.26 % 246
(¯orll+)+\mathup{}\mathup{}\to\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}}(\mathup{}\mathup{{\overline{{\upnu}}}}~\textnormal{or}~\mathup{{{\mathup{{{l}}}}}^{\scriptstyle{-}}}\mathup{{{\mathup{{{l}}}}}^{\scriptstyle{+}}}) 158 2.0 % 0.14 % 9
Table 19: Preselection and selection efficiencies for the signal and most important background processes in the H+\mathup{{{H}}}\to\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}} analysis. The numbers of events correspond to 2 ab1\text{ab}^{-1} at s=3TeV\sqrt{s}=3\,\text{TeV}. The cross sections for the backgrounds include cuts on the kinematic properties of the tau lepton pair applied at generator level. The preselection efficiencies include the reconstruction of two hadronic tau lepton decays per event.

The event preselection requires two identified leptons, both of which must be within the polar angle range 15<θ()<16515^{\circ}<\theta(\mathup{})<165^{\circ} and have pT()>25GeVp_{\mathrm{T}}(\mathup{})>25\,\text{GeV}. To reject back-to-back or nearby tau leptons, the angle between the two tau candidates must satisfy 29<Δθ()<17729^{\circ}<\Delta\theta(\mathup{}\mathup{})<177^{\circ}. The visible invariant mass m()m(\mathup{}\mathup{}) and the visible transverse mass mT()m_{\text{T}}(\mathup{}\mathup{}) of the two tau candidates must satisfy 45GeV<m()<130GeV45\,\text{GeV}<m(\mathup{}\mathup{})<130\,\text{GeV} and mT()<20GeVm_{\text{T}}(\mathup{}\mathup{})<20\,\text{GeV}. Finally the event thrust must be less than 0.99.

Events passing the preselection are classified as either signal or SM background using a BDT classifier. The kinematic variables used in the classifier are m()m(\mathup{}\mathup{}), mT()m_{\text{T}}(\mathup{}\mathup{}), event shape variables (such as thrust and oblateness), the missing pTp_{\mathrm{T}}, the polar angle of the missing momentum vector |cosθmiss||\cos\theta_{\text{miss}}| and the total reconstructed energy excluding the Higgs candidate. The event selection for the signal and the most relevant background processes is summarised in Table 18 for s=1.4TeV\sqrt{s}=1.4\,\text{TeV} and in Table 19 for s=3TeV\sqrt{s}=3\,\text{TeV}. Rather than applying a simple cut, the full BDT shape information is used in a template fit. The resulting statistical uncertainties for 1.5ab11.5\,\text{ab}^{-1} at s=1.4TeV\sqrt{s}=1.4\,\text{TeV} and 2.0ab12.0\,\text{ab}^{-1} at s=3TeV\sqrt{s}=3\,\text{TeV} are:

Δ[σ(H¯e)e×BR(H)+]σ(H¯e)e×BR(H)+\displaystyle\frac{\Delta[\sigma(\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}})\times BR(\mathup{{{H}}}\to\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}})]}{\sigma(\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}})\times BR(\mathup{{{H}}}\to\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}})} =4.2%at 1.4TeV,\displaystyle=4.2\,\%\ \text{at}\ 1.4\,\text{TeV}\,,
Δ[σ(H¯e)e×BR(H)+]σ(H¯e)e×BR(H)+\displaystyle\frac{\Delta[\sigma(\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}})\times BR(\mathup{{{H}}}\to\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}})]}{\sigma(\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}})\times BR(\mathup{{{H}}}\to\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}})} =4.4%at 3TeV.\displaystyle=4.4\,\%\ \text{at}\ 3\,\text{TeV}\,.

Similar to the observations described in Section 6.1, the expected precisions at 1.4 TeV and 3 TeV are similar. The identification of tau leptons is more challenging at 3 TeV where the impact of the beam-induced backgrounds is larger and the tau leptons from Higgs decays in signal events tend more towards the beam axis.

Refer to caption
Figure 14: Event display of a H+\mathup{{{H}}}\to\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}} event at s=1.4TeV\sqrt{s}=1.4\,\text{TeV} in the CLIC_ILD detector. A 1-prong tau decay is visible in the central part of the detector (blue). The other tau lepton decays to three charged particles and is reconstructed in the forward direction (red). A few soft particles from beam-induced backgrounds are also visible (grey).

6.3 HWW\mathup{{{H}}}\to\mathup{{{W}}}\mathup{{{W}}}^{\ast}

The signature for HWW\mathup{{{H}}}\to\mathup{{{W}}}\mathup{{{W}}}^{*} decays in e+eH¯ee\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}} depends on the WW\mathup{{{W}}}\mathup{{{W}}}^{*} decay modes. As mH<2mWm_{\mathup{{{H}}}}<2m_{\mathup{{{W}}}}, at least one of the W\mathup{{{W}}}-bosons is off mass-shell. Studies for two different final states are described in the following. The presence of a charged lepton in the WWqq¯l\mathup{{{W}}}\mathup{{{W}}}^{\ast}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{l}}}\mathup{} final state suppresses backgrounds from other Higgs decays. However, the invariant mass of the Higgs boson in HWW\mathup{{{H}}}\to\mathup{{{W}}}\mathup{{{W}}}^{*} decays can be reconstructed for fully-hadronic decays alone, WWqq¯qq¯\mathup{{{W}}}\mathup{{{W}}}^{\ast}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}.

6.3.1 WWqq¯qq¯\mathup{{{W}}}\mathup{{{W}}}^{\ast}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}

The experimental signature for H¯ee\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}} production with HWWqq¯qq¯\mathup{{{H}}}\to\mathup{{{W}}}\mathup{{{W}}}^{*}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}} is a four-jet final state with missing pTp_{\mathrm{T}} and a total invariant mass consistent with the Higgs mass, where one pair of jets has a mass consistent with mWm_{\mathup{{{W}}}}.

The HWW\mathup{{{H}}}\to\mathup{{{W}}}\mathup{{{W}}}^{*} event selection has been studied at s=1.4TeV\sqrt{s}=1.4\,\text{TeV} using the CLIC_ILD detector model. It proceeds in two separate stages: a set of preselection cuts designed to reduce the backgrounds from large cross section processes such as e+eqq¯\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}} and e+eqq¯qq¯\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}; followed by a likelihood-based multivariate event selection. The preselection variables are formed by forcing each event into four jets using the Durham jet finder. Of the three possible jet associations with candidate W\mathup{{{W}}} bosons, (12)(34), (13)(24) or (14)(23), the one giving a di-jet invariant mass closest to mWm_{\mathup{{{W}}}} is selected. The preselection requires that there is no high-energy electron or muon with E>30GeVE_{\ell}>30\,\text{GeV}. Further preselection cuts are made on the properties of the jets, the invariant masses of the off-shell and on-shell W\mathup{{{W}}} boson candidates, the Higgs boson candidate, the total visible energy and the missing transverse momentum. In addition, in order to reject Hbb¯\mathup{{{H}}}\to\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}} decays, the event is forced into a two-jet topology and flavour tagging is applied to the two jets. Events where at least one jet has a b\mathup{{{b}}}-tag probability above 0.95 are rejected as part of the preselection. The cross sections and preselection efficiencies for the signal and main background processes are listed in Table 20. After the preselection, the main backgrounds are e+eqq¯¯\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{}\mathup{{\overline{{\upnu}}}}, e±qq¯qq¯\mathup{}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{\pm}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{} and other Higgs decay modes, predominantly Hbb¯\mathup{{{H}}}\to\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}} and Hgg\mathup{{{H}}}\to\mathup{{{g}}}\mathup{{{g}}}, where QCD radiation in the parton shower can lead to a four-jet topology.

Process σ/fb\sigma/\text{fb} εpresel\varepsilon_{\text{presel}} ε>0.35\varepsilon_{{\cal{L}}>0.35} N>0.35N_{{\cal{L}}>0.35}
All H¯ee\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}} 244 14.6 % 21 % 11101
HWWqq¯qq¯\mathup{{{H}}}\to\mathup{{{W}}}\mathup{{{W}}}^{*}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}} 32 % 56 % 7518
HWWqq¯l\mathup{{{H}}}\to\mathup{{{W}}}\mathup{{{W}}}^{*}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{l}}}\mathup{} 4.4 % 14 % 253
Hbb¯\mathup{{{H}}}\to\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}} 1.9 % 21 % 774
Hcc¯\mathup{{{H}}}\to\mathup{{{c}}}\mathup{{\overline{{\mathup{{{c}}}}}}} 8.1 % 26 % 209
Hgg\mathup{{{H}}}\to\mathup{{{g}}}\mathup{{{g}}} 19 % 37 % 1736
HZZ\mathup{{{H}}}\to\mathup{{{Z}}}\mathup{{{Z}}}^{*} 12 % 42 % 556
Hother\mathup{{{H}}}\to\text{other} 0.7 % 29 % 55
e+eqq¯¯\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{}\mathup{{\overline{{\upnu}}}} 788 4.6 % 4.1 % 2225
e+eqq¯qq¯l\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{l}}}\mathup{} 115 0.1 % 25 % 43
e+eqq¯qq¯¯\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{}\mathup{{\overline{{\upnu}}}} 24.7 0.8 % 44 % 130
e±qq¯qq¯\mathup{}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{\pm}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{} 254 1.8 % 20 % 1389
Table 20: Summary of the HWWqq¯qq¯\mathup{{{H}}}\to\mathup{{{W}}}\mathup{{{W}}}^{\ast}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}} event selection at s=1.4TeV\sqrt{s}=1.4\,\text{TeV}, giving the raw cross sections, preselection efficiency, selection efficiency for a likelihood cut of >0.35{\cal{L}}>0.35, and the expected numbers of events passing the event selection for an integrated luminosity of 1.5ab11.5\,\text{ab}^{-1}.

A relative likelihood selection is used to classify all events passing the preselection cuts. Five event categories including the signal are considered. The relative likelihood of an event being signal is estimated as:

=L(HWWqq¯qq¯)L(HWWqq¯qq¯)+L1+L2+L3+L4,{\cal{L}}=\frac{L(\mathup{{{H}}}\to\mathup{{{W}}}\mathup{{{W}}}^{*}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}})}{L(\mathup{{{H}}}\to\mathup{{{W}}}\mathup{{{W}}}^{*}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}})+L_{1}+L_{2}+L_{3}+L_{4}}\,,

where LiL_{i} represents the likelihood for four background categories: Hbb¯\mathup{{{H}}}\to\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}}, Hgg\mathup{{{H}}}\to\mathup{{{g}}}\mathup{{{g}}}, e+eqq¯¯\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{}\mathup{{\overline{{\upnu}}}} and e±qq¯qq¯\mathup{}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{\pm}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{}. The absolute likelihood LL for each event type is formed from normalised probability distributions Pi(xi)P_{i}(x_{i}) of the NN likelihood discriminating variables xix_{i} for that event type. For example, the distribution of the reconstructed Higgs mass for all events passing the preselection is shown in Figure 15; it can be seen that good separation between signal and background is achievable. The discriminating variables are: the 2D distribution of reconstructed invariant masses mHm_{\mathup{{{H}}}} and mWm_{\mathup{{{W}}}}, the 2D distribution of minimal ktk_{t} distances y23y_{23}, y34y_{34}, and 2D distribution of b\mathup{{{b}}}-tag probabilities when the event is forced into two jets. The use of 2D distributions accounts for the most significant correlations between the likelihood variables. The selection efficiencies and expected numbers of events for the signal dominated region, >0.35{\cal{L}}>0.35, are listed in Table 20.

Refer to caption
Figure 15: Reconstructed Higgs invariant mass distributions for preselected HWWqq¯qq¯\mathup{{{H}}}\to\mathup{{{W}}}\mathup{{{W}}}^{\ast}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}} events at s=1.4TeV\sqrt{s}=1.4\,\text{TeV}, showing the signal and main backgrounds as stacked histograms. The distributions are normalised to an integrated luminosity of 1.5ab11.5\,\text{ab}^{-1}.

The expected precision on BR(HWW)BR(\mathup{{{H}}}\to\mathup{{{W}}}\mathup{{{W}}}^{*}) is extracted from a fit to the likelihood distribution. Given the non-negligible backgrounds from other Higgs decays, it is necessary to simultaneously fit the different components. A χ2\chi^{2} fit to the expected {\cal{L}} distribution is performed by scaling independently five components: the HWW\mathup{{{H}}}\to\mathup{{{W}}}\mathup{{{W}}}^{*} signal, the Hbb¯\mathup{{{H}}}\to\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}}, Hcc¯\mathup{{{H}}}\to\mathup{{{c}}}\mathup{{\overline{{\mathup{{{c}}}}}}} and Hgg\mathup{{{H}}}\to\mathup{{{g}}}\mathup{{{g}}} backgrounds, and all other backgrounds (dominated by qq¯¯\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{}\mathup{{\overline{{\upnu}}}} and qq¯qq¯\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{}). The constraints on the Hbb¯\mathup{{{H}}}\to\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}}, Hcc¯\mathup{{{H}}}\to\mathup{{{c}}}\mathup{{\overline{{\mathup{{{c}}}}}}} and Hgg\mathup{{{H}}}\to\mathup{{{g}}}\mathup{{{g}}} branching ratios, as described in Section 6.1, are implemented by modifying the χ2\chi^{2} function to include penalty terms:

χ2χ2+\displaystyle\chi^{2}\to\chi^{2}+ (sbb¯1)2σbb¯2+(scc¯1)2σcc¯2+(sgg1)2σgg2+\displaystyle\frac{(s_{\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}}}-1)^{2}}{\sigma^{2}_{\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}}}}+\frac{(s_{\mathup{{{c}}}\mathup{{\overline{{\mathup{{{c}}}}}}}}-1)^{2}}{\sigma^{2}_{\mathup{{{c}}}\mathup{{\overline{{\mathup{{{c}}}}}}}}}+\frac{(s_{\mathup{{{g}}}\mathup{{{g}}}}-1)^{2}}{\sigma^{2}_{\mathup{{{g}}}\mathup{{{g}}}}}+
(sZZ1)2σZZ2+(b1)2σb2.\displaystyle\frac{(s_{\mathup{{{Z}}}\mathup{{{Z}}}^{*}}-1)^{2}}{\sigma^{2}_{\mathup{{{Z}}}\mathup{{{Z}}}^{*}}}+\frac{(b-1)^{2}}{\sigma^{2}_{b}}\,.

Here, for example, sggs_{\mathup{{{g}}}\mathup{{{g}}}} is the amount by which the Hgg\mathup{{{H}}}\to\mathup{{{g}}}\mathup{{{g}}} complement is scaled in the fit and σgg\sigma_{\mathup{{{g}}}\mathup{{{g}}}} is the expected statistical error on BR(Hgg)BR(\mathup{{{H}}}\to\mathup{{{g}}}\mathup{{{g}}}) from the analysis of Section 6.1. The expected uncertainties on the contributions from Hbb¯\mathup{{{H}}}\to\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}} and Hcc¯\mathup{{{H}}}\to\mathup{{{c}}}\mathup{{\overline{{\mathup{{{c}}}}}}} are taken from the same analysis. The background from HZZ\mathup{{{H}}}\to\mathup{{{Z}}}\mathup{{{Z}}}^{*} is assumed here to be known to 1 % from other measurements of gHZZ2g_{\mathup{{{H}}}\mathup{{{Z}}}\mathup{{{Z}}}}^{2} and gHZZ2/gHWW2g_{\mathup{{{H}}}\mathup{{{Z}}}\mathup{{{Z}}}}^{2}/g_{\mathup{{{H}}}\mathup{{{W}}}\mathup{{{W}}}}^{2}. The systematic uncertainty in the non-H\mathup{{{H}}} background, denoted by bb, is taken to be 1 %. This has a small effect on the resulting uncertainty on the HWW\mathup{{{H}}}\to\mathup{{{W}}}\mathup{{{W}}}^{*} branching ratio, which is:

Δ[σ(H¯e)e×BR(HWW)]σ(H¯e)e×BR(HWW)=1.5%.\frac{\Delta[\sigma(\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}})\times BR(\mathup{{{H}}}\to\mathup{{{W}}}\mathup{{{W}}}^{*})]}{\sigma(\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}})\times BR(\mathup{{{H}}}\to\mathup{{{W}}}\mathup{{{W}}}^{*})}=1.5\,\%\,.

6.3.2 WWqq¯l\mathup{{{W}}}\mathup{{{W}}}^{\ast}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{l}}}\mathup{}

As a second channel, the HWWqq¯l\mathup{{{H}}}\to\mathup{{{W}}}\mathup{{{W}}}^{\ast}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{l}}}\mathup{} decay is investigated lcd:ww_qqlv_1400 . The study is performed at s=1.4TeV\sqrt{s}=1.4\,\text{TeV} using the CLIC_ILD detector model.

As a first step, isolated electrons or muons from W\mathup{{{W}}} boson decay are identified. An efficiency of 93 % is achieved for the identification of electrons and muons in signal events including the geometrical acceptance of the detector. Two jets are reconstructed from the remaining particles, excluding the isolated electron or muon. Flavour tagging information is obtained from the LcfiPlus package.

The following preselection cuts are imposed:

  • energy of the W\mathup{{{W}}} candidate less than 590 GeV;

  • mass of the W\mathup{{{W}}} candidate less than 230 GeV;

  • energy of the H\mathup{{{H}}} candidate less than 310 GeV;

  • total missing energy of the event in the range between 670 GeV and 1.4 TeV.

Nearly all signal events pass this preselection, while more than 30 % of the critical e+eqq¯l\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{l}}}\mathup{} background events are rejected. The background processes are suppressed further using a BDT classifier with 19 input variables including the number of isolated leptons. The event selection is summarised in Table 21. The resulting statistical precision for 1.5ab11.5\,\text{ab}^{-1} is:

Δ[σ(H¯e)e×BR(HWW)]σ(H¯e)e×BR(HWW)=1.3%.\frac{\Delta[\sigma(\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}})\times BR(\mathup{{{H}}}\to\mathup{{{W}}}\mathup{{{W}}}^{*})]}{\sigma(\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}})\times BR(\mathup{{{H}}}\to\mathup{{{W}}}\mathup{{{W}}}^{*})}=1.3\,\%\,.

The combined precision for HWWqq¯qq¯\mathup{{{H}}}\to\mathup{{{W}}}\mathup{{{W}}}^{\ast}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}} and HWWqq¯l\mathup{{{H}}}\to\mathup{{{W}}}\mathup{{{W}}}^{\ast}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{l}}}\mathup{} decays at s=1.4TeV\sqrt{s}=1.4\,\text{TeV} for an integrated luminosity of 1.5ab11.5\,\text{ab}^{-1} is 1.0 %.

Process σ/fb\sigma/\text{fb} εpresel\varepsilon_{\text{presel}} εBDT\varepsilon_{\text{BDT}} NBDTN_{\text{BDT}}
e+eH¯e;e\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}; 18.9 100 % 42 % 11900
HWWqq¯l\mathup{{{H}}}\to\mathup{{{W}}}\mathup{{{W}}}^{\ast}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{l}}}\mathup{}
e+eH¯e;e\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}; 25.6 100 % 1.9 % 721
HWWqq¯qq¯\mathup{{{H}}}\to\mathup{{{W}}}\mathup{{{W}}}^{\ast}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}
e+eH¯e;e\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}; 200 99.6 % 1.2 % 3660
Hother\mathup{{{H}}}\to\textnormal{other}
e+eqq¯¯\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{}\mathup{{\overline{{\upnu}}}} 788 97 % 0.07 % 841
e+eqq¯ll\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{l}}}\mathup{{{l}}} 2730 90 % 0.005 % 178
e+eqq¯l\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{l}}}\mathup{} 4310 67 % 0.11 % 4730
e±qq¯e±\mathup{}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{\pm}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{\pm}}} 88400 86 % 0.0013 % 1430
Table 21: Preselection and selection efficiencies for the signal and most important background processes in the HWWqq¯l\mathup{{{H}}}\to\mathup{{{W}}}\mathup{{{W}}}^{\ast}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{l}}}\mathup{} analysis. Numbers of events correspond to 1.5 ab1\text{ab}^{-1} at s=1.4TeV\sqrt{s}=1.4\,\text{TeV}.

6.4 HZZ\mathup{{{H}}}\to\mathup{{{Z}}}\mathup{{{Z}}}^{\ast}

The decay HZZ\mathup{{{H}}}\to\mathup{{{Z}}}\mathup{{{\mathup{{{Z}}}}}^{\scriptstyle{\ast}}} in e+eH¯ee\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}} events is studied using Z()qq¯\mathup{{{Z}}}^{(*)}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}} and Z()l+l\mathup{{{Z}}}^{(*)}\to\mathup{{{\mathup{{{l}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{l}}}}}^{\scriptstyle{-}}} decays at s=1.4TeV\sqrt{s}=1.4\,\text{TeV} using the CLIC_ILD detector model. The experimental signature is two jets, a pair of oppositely charged leptons and missing pTp_{\mathrm{T}}. The total invariant mass of all visible final-state particles is equal to the Higgs mass, while either the quarks or the charged lepton pair have a mass consistent with mZm_{\mathup{{{Z}}}}. Due to the large background from HWW\mathup{{{H}}}\to\mathup{{{W}}}\mathup{{{W}}}^{*}, the ZZqq¯qq¯\mathup{{{Z}}}\mathup{{{\mathup{{{Z}}}}}^{\scriptstyle{\ast}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}} final state is not considered here. The ZZl+ll+l\mathup{{{Z}}}\mathup{{{\mathup{{{Z}}}}}^{\scriptstyle{\ast}}}\to\mathup{{{\mathup{{{l}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{l}}}}}^{\scriptstyle{-}}}\mathup{{{\mathup{{{l}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{l}}}}}^{\scriptstyle{-}}} signature is not expected to be competitive at CLIC due to the small number of expected events and is not further considered.

Process σ/fb\sigma/\text{fb} εpresel\varepsilon_{\text{presel}} εBDT\varepsilon_{\text{BDT}} NBDTN_{\text{BDT}}
e+eH¯e;e\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}; 0.995 62 % 46 % 425
HZZqq¯l+l\mathup{{{H}}}\to\mathup{{{Z}}}\mathup{{{\mathup{{{Z}}}}}^{\scriptstyle{\ast}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{\mathup{{{l}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{l}}}}}^{\scriptstyle{-}}}
e+eH¯e;e\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}; 25.6 32 % 0.2 % 24
HWWqq¯qq¯\mathup{{{H}}}\to\mathup{{{W}}}\mathup{{{W}}}^{\ast}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}
e+eH¯e;eHbb¯\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}};\mathup{{{H}}}\to\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}} 137 20 % 0.06 % 23
e+eH¯e;eHgg\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}};\mathup{{{H}}}\to\mathup{{{g}}}\mathup{{{g}}} 21 25 % 0.05 % 4
e+eH¯e;eHcc¯\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}};\mathup{{{H}}}\to\mathup{{{c}}}\mathup{{\overline{{\mathup{{{c}}}}}}} 6.9 23 % 0.0 % 0
e+eH¯e;eHother\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}};\mathup{{{H}}}\to\textnormal{other} 51 50 % 0.3 % 98
Table 22: Preselection and selection efficiencies for the signal and the relevant background processes in the HZZ\mathup{{{H}}}\to\mathup{{{Z}}}\mathup{{{\mathup{{{Z}}}}}^{\scriptstyle{\ast}}} analysis. The numbers of events correspond to 1.5 ab1\text{ab}^{-1} at s=1.4TeV\sqrt{s}=1.4\,\text{TeV}. All background processes other than Higgs production are completely rejected by the event selection.

The analysis is performed in several steps. First, isolated electrons and muons with an impact parameter of less than 0.02 mm are searched for. Hadronic lepton decays are identified using the TauFinder algorithm described in Section 5.2.2, with the requirement pT>10GeVp_{\mathrm{T}}>10\,\text{GeV} for the seed track and pT>4GeVp_{\mathrm{T}}>4\,\text{GeV} for all other tracks within a search cone of 0.15 radian. In signal events, 87 % of the electron or muon pairs and 37 % of the tau lepton pairs are found, including the effect of the geometrical acceptance of the detector in the forward direction.

In events with exactly two identified leptons of the same flavour and opposite charge, two jets are reconstructed from the remaining particles. No other preselection cuts are applied. Flavour tagging information is obtained from the LcfiPlus package.

A BDT classifier is used to suppress the background processes using 17 input variables, including:

  • the invariant masses of the H\mathup{{{H}}}, Z\mathup{{{Z}}} and Z\mathup{{{\mathup{{{Z}}}}}^{\scriptstyle{\ast}}} candidates;

  • the topology of the hadronic system: log10(y34)-\log_{10}(y_{34}),
    log10(y23)-\log_{10}(y_{23}) and log10(y12)-\log_{10}(y_{12});

  • the b-tag and c-tag probabilities for both jets;

  • the visible energy and the missing transverse momentum of the event;

  • the number of particles in the event.

Refer to caption
Refer to caption
Figure 16: Reconstructed Higgs invariant mass distributions of HZZqq¯l+l\mathup{{{H}}}\to\mathup{{{Z}}}\mathup{{{\mathup{{{Z}}}}}^{\scriptstyle{\ast}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{\mathup{{{l}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{l}}}}}^{\scriptstyle{-}}} events at s=1.4TeV\sqrt{s}=1.4\,\text{TeV}, showing the signal and main backgrounds as stacked histograms a) after preselection, and b) after the full event selection including a cut on the BDT classifier. The distributions are normalised to an integrated luminosity of 1.5ab11.5\,\text{ab}^{-1}.

The event selection is summarised in Table 22. Only backgrounds from other Higgs decays pass the event selection, while all other background processes are fully rejected. The invariant mass distribution of the Higgs candidates in events with two isolated leptons after the full selection chain, including the BDT classifier, is shown in Figure 16. The resulting statistical uncertainty is:

Δ[σ(H¯e)e×BR(HZZ)]σ(H¯e)e×BR(HZZ)=5.6%.\frac{\Delta[\sigma(\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}})\times BR(\mathup{{{H}}}\to\mathup{{{Z}}}\mathup{{{Z}}}^{\ast})]}{\sigma(\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}})\times BR(\mathup{{{H}}}\to\mathup{{{Z}}}\mathup{{{Z}}}^{\ast})}=5.6\,\%\,.

6.5 H\mathup{{{H}}}\to\mathup{}\mathup{}

The measurement of the H\mathup{{{H}}}\to\mathup{}\mathup{} decay played a central role in the discovery of the Higgs boson at the LHC Aad:2012tfa ; Chatrchyan:2012xdj . In the SM, this decay is induced via loops of heavy charged particles, with dominant contributions from W\mathup{{{W}}} bosons and t\mathup{{{t}}} quarks. For BSM scenarios, other heavy charged particles can appear in the loops, modifying the expected effective H\mathup{{{H}}}\to\mathup{}\mathup{} branching ratio. The sensitivity for the measurement of BR(H)BR(\mathup{{{H}}}\to\mathup{}\mathup{}) at CLIC has been studied using the CLIC_SiD detector model for s=1.4TeV\sqrt{s}=1.4\,\text{TeV} and an integrated luminosity of 1.5 ab1\text{ab}^{-1}. The SM branching ratio for mH=126GeVm_{\mathup{{{H}}}}=126\,\text{GeV} is 0.23 % which results in approximately 840 signal events. The experimental signature for e+eH¯e;e\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}; H\mathup{{{H}}}\to\mathup{}\mathup{} is two high pTp_{\mathrm{T}} photons with invariant mass m()m(\mathup{}\mathup{}) consistent with mHm_{\mathup{{{H}}}}, and missing momentum from the ¯ee\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}} system. All relevant SM background processes with one or two photons in the final state have been considered. In addition to the photons from the hard interaction, the MC samples include additional ISR and FSR photons.

The following preselection cuts are applied to restrict the analysis to relevant events. At least two reconstructed photons each with energy E>15GeVE>15\,\text{GeV} and pT>10GeVp_{\mathrm{T}}>10\,\text{GeV} are required. The two highest energy photons passing these requirements are used to form the H\mathup{{{H}}} candidate and the preselection requires an invariant mass consistent with mHm_{\mathup{{{H}}}}, 115GeV<m()<140GeV115\,\text{GeV}<m(\mathup{}\mathup{})<140\,\text{GeV}. The highest energy photon in the event is required to have pT>40GeVp_{\mathrm{T}}>40\,\text{GeV}. In addition, to remove contributions from FSR, both photons are required to be isolated with no reconstructed particle with pT>5GeVp_{\mathrm{T}}>5\,\text{GeV} within a cone of radius 500 mrad centred on the photon. Furthermore, the remaining reconstructed energy after excluding the Higgs candidate has to be less than 250 GeV. The cross sections and efficiencies of the preselection cuts for the signal and the main backgrounds are listed in Table 23. At this stage in the event selection the background dominates.

Process σ/fb\sigma/\text{fb} εpresel\varepsilon_{\text{presel}} εBDT\varepsilon_{\text{BDT}} NBDTN_{\text{BDT}}
e+eH¯e;eH\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}};\,\mathup{{{H}}}\to\mathup{}\mathup{} 0.56 85%85\,\% 47%47\,\% 337
e+e¯\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{}\mathup{{\overline{{\upnu}}}}\mathup{} 29.5 34%34\,\% 7.3%7.3\,\% 1110
e+e¯\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{}\mathup{{\overline{{\upnu}}}}\mathup{}\mathup{} 17.3 31%31\,\% 8.6%8.6\,\% 688
e+e\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{}\mathup{} 27.2 20%20\,\% 0.68%0.68\,\% 55
e+ee+e\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\mathup{} 289 9.2%9.2\,\% 0.66%0.66\,\% 265
e+ee+e\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\mathup{}\mathup{} 12.6 5.2%5.2\,\% 0.2%0.2\,\% 2
e+eqq¯\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{} 67.0 0.8%0.8\,\% 0.0%0.0\,\% 0
e+eqq¯\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{}\mathup{} 16.6 1.4%1.4\,\% 0.57%0.57\,\% 2
Table 23: Signal and relevant background processes used in the H\mathup{{{H}}}\to\mathup{}\mathup{} analysis. Additional photons from ISR and FSR are present in each sample. The cross sections for the backgrounds include cuts applied at generator level that are slightly looser than the preselection described in the text. The numbers of events correspond to 1.5 ab1\text{ab}^{-1} at s=1.4TeV\sqrt{s}=1.4\,\text{TeV}.

To illustrate the photon reconstruction capabilities of the CLIC_SiD detector concept, the invariant mass of Higgs candidates in signal events after the preselection is shown in Figure 17. A fit to the distribution using a Gaussian function indicates a mass resolution in the signal sample of σ=3.3GeV\sigma=3.3\,\text{GeV}.

The signal and background events are classified using a BDT. The 13 variables used to distinguish the signal from the backgrounds include:

  • the invariant mass of the Higgs candidate;

  • kinematic properties of the Higgs candidate;

  • kinematic properties of the two photons;

  • the angle between the two photons and the helicity angle of the Higgs candidate;

  • the remaining reconstructed energy excluding the Higgs candidate.

For the optimal BDT cut, the total signal selection efficiency is 40%, corresponding to 337 selected signal events in 1.5 ab1\text{ab}^{-1}. The event selection for the signal and the main backgrounds is summarised in Table 23, leading to a statistical uncertainty of:

Δ[σ(H¯e)e×BR(H)]σ(H¯e)e×BR(H)=15%.\frac{\Delta[\sigma(\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}})\times BR(\mathup{{{H}}}\to\mathup{}\mathup{})]}{\sigma(\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}})\times BR(\mathup{{{H}}}\to\mathup{}\mathup{})}=15\,\%\,.
Refer to caption
Figure 17: Reconstructed di-photon invariant mass distribution of preselected signal H\mathup{{{H}}}\to\mathup{}\mathup{} events at s=1.4TeV\sqrt{s}=1.4\,\text{TeV}. The distribution is normalised to an integrated luminosity of 1.5ab11.5\,\text{ab}^{-1}. The statistical uncertainties correspond to the size of the simulated event sample. The line shows the fit described in the text.

6.6 HZ\mathup{{{H}}}\to\mathup{{{Z}}}\mathup{}

As is the case for H\mathup{{{H}}}\to\mathup{}\mathup{}, at lowest order, the SM decay HZ\mathup{{{H}}}\to\mathup{{{Z}}}\mathup{} is induced by loops of heavy charged particles. Contributions from BSM particles would lead to deviations from the SM expectation for BR(HZ)BR(\mathup{{{H}}}\to\mathup{{{Z}}}\mathup{}). For mH=126GeVm_{\mathup{{{H}}}}=126\,\text{GeV}, the decay HZ\mathup{{{H}}}\to\mathup{{{Z}}}\mathup{} is expected to have a branching ratio of BR(HZ)=0.16%BR(\mathup{{{H}}}\to\mathup{{{Z}}}\mathup{})=0.16\,\%. The potential to measure σ(e+eH¯e)e×BR(HZ)\sigma(\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}})\times BR(\mathup{{{H}}}\to\mathup{{{Z}}}\mathup{}) at CLIC has been studied at s=1.4TeV\sqrt{s}=1.4\,\text{TeV} with the CLIC_SiD detector model, where 585 HZ\mathup{{{H}}}\to\mathup{{{Z}}}\mathup{} events are expected in 1.5 ab1\text{ab}^{-1} of data LCD:zgamma_1400 . For the purpose of the event selection, only Zqq¯\mathup{{{Z}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}} and Zl+l\mathup{{{Z}}}\to\mathup{{{\mathup{{{l}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{l}}}}}^{\scriptstyle{-}}} (with l=e,\mathup{{{l}}}=\mathup{{{e}}},\mathup{}) are useful, giving small event samples of 409 qq¯\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{}, 21 e+e\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\mathup{} and 21 +\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}}\mathup{} events from HZ\mathup{{{H}}}\to\mathup{{{Z}}}\mathup{} in 1.5 ab1\text{ab}^{-1} at s=1.4TeV\sqrt{s}=1.4\,\text{TeV}. A typical event display is shown in Figure 18.

The visible final states of the signal channels qq¯\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{} or l+l\mathup{{{\mathup{{{l}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{l}}}}}^{\scriptstyle{-}}}\mathup{} are also produced in several background processes, some of which have much larger cross sections than the signal. In addition to background with photons from the hard process, e+eqq¯\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}} or e+el+l\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{\mathup{{{l}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{l}}}}}^{\scriptstyle{-}}} events with a FSR or ISR photon can mimic the signal.

The HZ\mathup{{{H}}}\to\mathup{{{Z}}}\mathup{} event selection requires at least one identified high-pTp_{\mathrm{T}} photon and either two electrons, muons or quarks consistent with a Z\mathup{{{Z}}} decay. The photon with the highest energy in the event is identified. Events are considered as either e+e\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\mathup{}, +\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}}\mathup{} or qq¯\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{} candidates. In the case where an e+e\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}} or +\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}} pair is found, photons nearly collinear with the lepton trajectories (within 0.30.3^{\circ}) are combined with the leptons under the assumption that these photons originate from bremsstrahlung. If neither an e+e\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}} nor a +\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}} pair is found, all reconstructed particles except for the photon of highest energy are clustered into two jets using a jet radius of R=1.2R=1.2. In all cases, the selected Z\mathup{{{Z}}} decay candidate and the highest energy photon are combined to form the H\mathup{{{H}}} candidate.

In order to reduce the number of background process events, two selection steps are performed. First, preselection cuts are applied: the Higgs candidate daughter photon and jets, electrons, or muons are only accepted if they have an energy of E>20GeVE>20\,\text{GeV} and pT>15GeVp_{\mathrm{T}}>15\,\text{GeV}. In the qq¯\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{} channel, only jets with at least 5 particles are considered in order to suppress hadronic decays. In addition, the reconstructed Z\mathup{{{Z}}} and H\mathup{{{H}}} masses in the event are required to be consistent with a HZ\mathup{{{H}}}\to\mathup{{{Z}}}\mathup{} decay. The second step in the event selection is three BDT selections (one for each signal final state). The input variables are the properties of the reconstructed H\mathup{{{H}}}, Z\mathup{{{Z}}}, and such as mass, energy, momentum, and polar angle, event shapes such as sphericity and aplanarity, as well as missing energy distributions and particle multiplicity distributions.

Refer to caption
Figure 18: Event display of a HZqq¯\mathup{{{H}}}\to\mathup{{{Z}}}\mathup{}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{} event at s=1.4TeV\sqrt{s}=1.4\,\text{TeV} in the CLIC_SiD detector. Both jets are visible. The photon creates a cluster in the central part of the electromagnetic calorimeter (blue).
Process σ/fb\sigma/\text{fb} ϵpresel\epsilon_{\text{presel}} ϵBDT\epsilon_{\text{BDT}} NBDTN_{\text{BDT}}
e+eH¯e;e\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}; 0.27 45 % 41 % 75
HZ;Zqq¯\mathup{{{H}}}\to\mathup{{{Z}}}\mathup{};\,\mathup{{{Z}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}
e+e¯qq¯\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{}\mathup{{\overline{{\upnu}}}}\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{} 37.3 12 % 7.3 % 504
e+e¯qq¯\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{}\mathup{{\overline{{\upnu}}}}\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}} 122 8.4 % 3.0 % 463
e±e±qq¯\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{\pm}}}\mathup{}\,\to\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{\pm}}}\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}} 978978 2.4 % 0.2 % 70
e+eH¯e;e\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}; 0.014 38 % 50 % 4
HZ;Ze+e\mathup{{{H}}}\to\mathup{{{Z}}}\mathup{};\,\mathup{{{Z}}}\to\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}
e+e¯l+l\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{}\mathup{{\overline{{\upnu}}}}\mathup{{{\mathup{{{l}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{l}}}}}^{\scriptstyle{-}}}\mathup{} 9.6 1.6 % 6.5 % 15
e+e¯l+l\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{}\mathup{{\overline{{\upnu}}}}\mathup{{{\mathup{{{l}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{l}}}}}^{\scriptstyle{-}}} 23.3 1.0 % 34 % 12
e±e±l+l\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{\pm}}}\mathup{}\,\to\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{\pm}}}\mathup{{{\mathup{{{l}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{l}}}}}^{\scriptstyle{-}}} 19401940 0.22 % 0.1 % 7
e+eH¯e;e\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}; 0.014 54 % 44 % 5
HZ;Z+\mathup{{{H}}}\to\mathup{{{Z}}}\mathup{};\,\mathup{{{Z}}}\to\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}}
e+e¯l+l\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{}\mathup{{\overline{{\upnu}}}}\mathup{{{\mathup{{{l}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{l}}}}}^{\scriptstyle{-}}}\mathup{} 9.6 1.2 % 8.1 % 14
e+e¯l+l\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{}\mathup{{\overline{{\upnu}}}}\mathup{{{\mathup{{{l}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{l}}}}}^{\scriptstyle{-}}} 23.3 0.45 % 8.3 % 13
e±e±l+l\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{\pm}}}\mathup{}\,\to\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{\pm}}}\mathup{{{\mathup{{{l}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{l}}}}}^{\scriptstyle{-}}} 19401940 0.27 % 1.1 % 9
Table 24: Preselection and selection efficiencies for HZ\mathup{{{H}}}\to\mathup{{{Z}}}\mathup{} events in all three considered Z\mathup{{{Z}}} decay channels. The cross sections for the backgrounds include kinematic cuts applied at generator level. All numbers assume an integrated luminosity of 1.5ab11.5\,\text{ab}^{-1} at 1.4TeV1.4\text{TeV}.

For the optimal BDT cuts, expected statistical significances of 2.2, 0.54 and 0.78 (in units of standard deviations) are found for the qq¯\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{}, e+e\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\mathup{} and +\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}}\mathup{} channels respectively. The signal selection efficiencies and contributions from the most important backgrounds are summarised in Table 24. When the results from all three channels are combined, the expected statistical precision at s=1.4TeV\sqrt{s}=1.4\,\text{TeV} for an integrated luminosity of 1.5 ab1\text{ab}^{-1} is:

Δ[σ(H¯e)e×BR(HZ)]σ(H¯e)e×BR(HZ)=42%.\frac{\Delta[\sigma(\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}})\times BR(\mathup{{{H}}}\to\mathup{{{Z}}}\mathup{})]}{\sigma(\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}})\times BR(\mathup{{{H}}}\to\mathup{{{Z}}}\mathup{})}=42\,\%\,.

With electron polarisation the statistical precision can be increased, for example with 80%-80\,\% electron polarisation, Δ[σ(e+eH¯e)e×BR(HZ)]31%\Delta[\sigma(\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}})\times BR(\mathup{{{H}}}\to\mathup{{{Z}}}\mathup{})]\approx 31\,\%. Further gains are expected at higher centre-of-mass energies, as the Higgs production cross section at s=3TeV\sqrt{s}=3\,\text{TeV} is 70 % higher than at 1.4 TeV.

6.7 H+\mathup{{{H}}}\to\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}}

The measurement of the rare H+\mathup{{{H}}}\to\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}} decay is challenging due to the very low SM branching ratio of 2×1042\times 10^{-4}. In e+eH¯ee\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}} production, the signature for H+\mathup{{{H}}}\to\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}} decay is a +\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}} pair with invariant mass consistent with mHm_{\mathup{{{H}}}} and missing momentum. The efficient rejection of background relies on the excellent detector momentum resolution, which directly influences the width of the reconstructed di-muon invariant mass peak. Signal and background events have been simulated at s=1.4TeV\sqrt{s}=1.4\,\text{TeV} and 3TeV3\,\text{TeV} using the CLIC_ILD\textsc{CLIC}\_\text{ILD} and CLIC_SiD\textsc{CLIC}\_\text{SiD} detector models respectively Grefe:2012gj ; Milutinovic-Dumbelovic:2015fba . In contrast with other studies presented in this paper, an electron beam polarisation of 80%-80\,\% is assumed owing to the very small branching ratio for the H+\mathup{{{H}}}\to\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}} decay. The two analyses were performed independently. They follow the same strategy but differ in some of the observables that are used in the event selection.

The most important background processes include ¯+\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}}\mathup{}\mathup{{\overline{{\upnu}}}} in the final state, as shown in Table 25 for 1.4TeV1.4\,\text{TeV} and in Table 26 for 3TeV3\,\text{TeV}. A significant fraction of these events are also produced from interactions involving beamstrahlung photons. Another important background is e+ee+e+\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}}, where both electrons are usually emitted at very low polar angles and thus might not be detected. Tagging of these low angle electrons in the very forward calorimeters—LumiCal and BeamCal—is essential to keep this background under control.

The event selection requires two reconstructed, oppositely charged muons with a di-muon invariant mass within the relevant mass region of 105145GeV105-145\,\text{GeV}. Events with one or more detected high-energy electrons (E>200GeVE>200\,\text{GeV} at 1.4TeV1.4\,\text{TeV}, E>250GeVE>250\,\text{GeV} at 3TeV3\,\text{TeV}) in the very forward calorimeters are vetoed. This introduces the possibility of vetoing signal events if they coincide with Bhabha scattering events. The e+ee+e\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}} cross section is sufficiently high that the probability of such a coincidence within 20 bunch crossings (10ns10\,\text{ns}) is about 7%7\,\% in both analyses. The cuts on the minimum energy and the minimum polar angle for vetoing forward electrons need to be chosen carefully. e+ee+e+\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}} and e±e±+\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{\pm}}}\mathup{}\to\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{\pm}}}\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}} events need to be rejected efficiently while a low probability for coincidence with Bhabha scattering events needs to be maintained.

The 3TeV3\,\text{TeV} analysis includes some additional preselection cuts to remove phase space regions that do not include any signal events. These cuts reject events that contain a reconstructed non-muon object with an energy greater than 100GeV100\,\text{GeV}; in addition, events containing electrons in the central region of the detector with an energy above 20GeV20\,\text{GeV} are also rejected. The sum of the transverse momenta of the two muons, pT()+pT()+p_{\mathrm{T}}(\mathup{{}^{\scriptstyle{-}}})+p_{\mathrm{T}}(\mathup{{}^{\scriptstyle{+}}}), is required to be above 50GeV50\,\text{GeV} and the transverse momentum of the di-muon system should be above 25GeV25\,\text{GeV}.

The final event selection uses a BDT classifier using various kinematic variables, excluding the invariant mass of the di-muon system. The 1.4TeV1.4\,\text{TeV} analysis uses the visible energy of the event after removal of the di-muon system EvisE_{\text{vis}}, the transverse momentum of the di-muon system pT()p_{\mathrm{T}}(\mathup{}\mathup{}), the sum of the transverse momenta of the two muons pT()+pT()+p_{T}(\mathup{{}^{\scriptstyle{-}}})+p_{T}(\mathup{{}^{\scriptstyle{+}}}), the polar angle of the di-muon system θ\theta, the boost of the di-muon system β\beta, and the cosine of the helicity angle cosθ\cos{\theta^{\ast}}. The 3TeV3\,\text{TeV} analysis uses the energy of the hardest non-muon object instead of the total visible energy and also includes the energy, transverse momentum, polar angle and azimuthal angle of both individual muons. This event selection reduces background from four-fermion processes by several orders of magnitude, while maintaining an overall signal selection efficiency of ϵ=30.5%\epsilon=30.5\,\% and ϵ=26.3%\epsilon=26.3\,\% at 1.4TeV1.4\,\text{TeV} and 3TeV3\,\text{TeV} respectively.

Process σ/fb\sigma/\text{fb} ϵpresel\epsilon_{\text{presel}} ϵBDT\epsilon_{\text{BDT}} NBDTN_{\text{BDT}}
e+eH¯e;eH+\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}};\,\mathup{{{H}}}\to\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}} 0.094 83 % 37 % 43
e+e¯ee+\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}} 232 1.1 % 27 % 1030
e±e±¯+\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{\pm}}}\mathup{}\to\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{\pm}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{}}}}\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}} 35 8.5 % 1.3 % 57
¯+\mathup{}\mathup{}\to\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{}}}}\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}} 162 10.6 % 2.2 % 560
Table 25: The signal and main backgrounds in the H+\mathup{{{H}}}\to\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}} analysis at s=1.4TeV\sqrt{s}=1.4\,\text{TeV} with the corresponding cross sections. The numbers of selected events assume an integrated luminosity of 1.5ab11.5\,\text{ab}^{-1} and 80%-80\,\% polarisation of the electron beam. Other processes, including e+e+\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}} and e±e±+\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{\pm}}}\mathup{}\to\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{\pm}}}\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}}, contribute a total of less than 10 events to the final selection.
Process σ/fb\sigma/\text{fb} ϵpresel\epsilon_{\text{presel}} ϵBDT\epsilon_{\text{BDT}} NBDTN_{\text{BDT}}
e+eH¯ee\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}; H+\mathup{{{H}}}\to\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}} 0.16 64 % 41 % 84
e+e¯ee+\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}} 6.6 33 % 41 % 1797
e±e±+\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{\pm}}}\mathup{}\to\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{\pm}}}\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}} 1210 6.9 % 0.16 % 262
¯+\mathup{}\mathup{}\to\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{}}}}\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}} 413 4.3 % 0.50 % 176
Table 26: The signal and most important background processes in the H+\mathup{{{H}}}\to\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}} analysis at s=3TeV\sqrt{s}=3\,\text{TeV} with the corresponding cross sections. The numbers of selected events assume an integrated luminosity of 2ab12\,\text{ab}^{-1} and 80%-80\,\% polarisation of the electron beam. All other processes contribute of the order of 10 events to the final event selection. The cross sections are calculated for events with invariant mass of the di-muon system between 100GeV100\,\text{GeV} and 140GeV140\,\text{GeV}.

The number of signal events is extracted from the reconstructed invariant mass distribution after the event selection, as shown in Figure 19. Using a large MC sample, the signal and background shapes are extracted. The signal is described by a Gaussian distribution with asymmetric exponential tails. The combined background is parameterised as the sum of an exponential and a constant function. To assess the expected statistical precision, a large number of trial samples are generated from the expected reconstructed mass distributions of signal and background and are then fitted to the signal and background components. For P(e)=80%P(\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}})=-80\,\%, the expected relative uncertainty on the σ(e+eH¯e)e×BR(H)+\sigma(\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}})\times BR(\mathup{{{H}}}\to\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}}) is 27%27\,\%, corresponding to a significance of 3.73.7, at 1.4TeV1.4\,\text{TeV}, and 19%19\,\%, corresponding to a significance of 5.25.2, at 3TeV3\,\text{TeV}. The corresponding uncertainties for unpolarised beams are:

Δ[σ(H¯e)e×BR(H)+]σ(H¯e)e×BR(H)+\displaystyle\frac{\Delta[\sigma(\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}})\times BR(\mathup{{{H}}}\to\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}})]}{\sigma(\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}})\times BR(\mathup{{{H}}}\to\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}})} =38%at 1.4TeV,\displaystyle=38\,\%\ \text{at}\ 1.4\,\text{TeV}\,,
Δ[σ(H¯e)e×BR(H)+]σ(H¯e)e×BR(H)+\displaystyle\frac{\Delta[\sigma(\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}})\times BR(\mathup{{{H}}}\to\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}})]}{\sigma(\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}})\times BR(\mathup{{{H}}}\to\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}})} =25%at 3TeV.\displaystyle=25\,\%\ \text{at}\ 3\,\text{TeV}\,.
Refer to caption
Figure 19: Reconstructed di-muon invariant mass distribution of selected H+\mathup{{{H}}}\to\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}} events at s=3TeV\sqrt{s}=3\,\text{TeV}. The simulated data are shown as dots while the solid line represents the fit function described in the text. The dotted line shows the background contribution of the fit function. The distribution is normalised to an integrated luminosity of 2ab12\,\text{ab}^{-1}, assuming 80%-80\,\% electron polarisation.

7 ZZ-fusion

Higgs boson production through the tt-channel fusion of two Z\mathup{{{Z}}} bosons, e+eHe+e\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{H}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}, is analogous to the WW\mathup{{{W}}}\mathup{{{W}}}-fusion process but gives access to gHZZg_{\mathup{{{H}}}\mathup{{{Z}}}\mathup{{{Z}}}} and gHbbg_{\mathup{{{H}}}\mathup{{{b}}}\mathup{{{b}}}} using a complementary technique. At s=1.4TeV\sqrt{s}=1.4\,\text{TeV}, ZZ\mathup{{{Z}}}\mathup{{{Z}}}-fusion is the sub-leading Higgs production process, with a cross section of around 25fb25\,\text{fb}, which is 10 % of that for the WW\mathup{{{W}}}\mathup{{{W}}}-fusion process. The potential for the measurement of the ZZ\mathup{{{Z}}}\mathup{{{Z}}}-fusion process has been investigated at s=1.4TeV\sqrt{s}=1.4\,\text{TeV} using the CLIC_ILD detector.

The characteristic signature of the ZZ\mathup{{{Z}}}\mathup{{{Z}}}-fusion process is two scattered beam electrons reconstructed in the forward regions of the detector, plus the Higgs boson decay products. Here, the scattered beam electrons are required to be fully reconstructed, and the final state Hbb¯\mathup{{{H}}}\to\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}} is considered.

Events are clustered into a four-jet topology using a ktk_{t} exclusive clustering algorithm with R=1.0R=1.0. For a well-reconstructed signal event, two of the resulting ‘jets’ are expected to be the reconstructed electrons, and the remaining two jets originate from the Higgs decay to bb¯\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}}. The event selection requires two oppositely-charged electron candidates, separated by |Δη|>1|\Delta\eta|>1, each with E>100GeVE>100\,\text{GeV}. This preselection preserves 27 % of the e+eHe+ebb¯e+e\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{H}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}} signal (3.6 fb), with the lost events almost entirely due to the scattered electrons falling outside the detector acceptance, as shown in Figure 20. After the preselection, the SM background consists mainly of events that have two real electrons and a qq¯\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}} pair, either from the continuum or from the decay of Z\mathup{{{Z}}} bosons. Although the preselection suppresses 98 % of the e+eqq¯e+e\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}} background, the accepted cross section is 48fb48\,\text{fb}, which is thirteen times larger than that for the remaining signal. A further requirement that one of the two jets associated with the Higgs decay has a b\mathup{{{b}}}-tag value >0.4>0.4 preserves 80 % of the remaining signal and rejects 80 % of the remaining background.

A relative likelihood classifier 1\mathcal{L}_{1}, which treats ZZ\mathup{{{Z}}}\mathup{{{Z}}}-fusion events with Hbb¯\mathup{{{H}}}\to\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}} as signal and HWW\mathup{{{H}}}\to\mathup{{{W}}}\mathup{{{W}}}^{*} and HZZ\mathup{{{H}}}\to\mathup{{{Z}}}\mathup{{{Z}}}^{*} as background, is used to reduce contributions from other Higgs decays. Seven variables are used to construct the likelihood: the jet clustering variable y45y_{45}; the invariant mass of the two jets associated with the Higgs decay; the visible mass of the event with the scattered beam electrons removed; the higher of the b\mathup{{{b}}}-tag values of the two jets associated with the Higgs decay; the c\mathup{{{c}}}-tag value corresponding to the same jet; and the b-c-separation returned by the tagger, for both Higgs decay jets. Requiring a high signal likelihood, 1>0.8\mathcal{L}_{1}>0.8, reduces the Hbb¯\mathup{{{H}}}\to\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}} signal to 3000 events but leaves only 90 events from other Higgs decays, while also reducing the non-Higgs backgrounds to 4700 events.

Finally, to separate the signal from all backgrounds, a further relative likelihood classifier 2\mathcal{L}_{2} is constructed using four variables that provide separation power between signal and background: the opening between the reconstructed electrons ΔR\Delta R; the recoil mass of the event determined from the momenta of the reconstructed electrons, mrecm_{\text{rec}}; the jet clustering variable y34y_{34}; and the invariant mass of the two jets associated with the Higgs decay.

The resulting likelihood is shown in Figure 21 and gives good separation between signal and background. The likelihood distribution is fitted by signal and background components (where the normalisation is allowed to vary), giving:

Δ[σ(He+e)×BR(Hbb¯)]σ(He+e)×BR(Hbb¯)=1.8%\displaystyle\frac{\Delta[\sigma(\mathup{{{H}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}})\times BR{(\mathup{{{H}}}\to\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}})}]}{\sigma(\mathup{{{H}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}})\times BR{(\mathup{{{H}}}\to\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}})}}=1.8\,\%

for 1.5ab11.5\,\text{ab}^{-1} at s=1.4TeV\sqrt{s}=1.4\,\text{TeV}.

Refer to caption
Figure 20: Generated electron pseudorapidity (η=lntanθ2\eta=-\ln\tan\frac{\theta}{2}) distributions for e+eHe+e\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{H}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}} events at s=1.4TeV\sqrt{s}=1.4\,\text{TeV} and 3TeV3\,\text{TeV}. The distributions are normalised to 1.5ab11.5\,\text{ab}^{-1} and 2ab12\,\text{ab}^{-1} respectively. The vertical arrows show the detector acceptance.
Refer to caption
Figure 21: Likelihood distributions for Hbb¯\mathup{{{H}}}\to\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}} events in the ZZ-fusion analysis at s=1.4TeV\sqrt{s}=1.4\,\text{TeV}, shown for the signal and main background. The distributions are normalised to an integrated luminosity of 1.5ab11.5\,\text{ab}^{-1}.

8 Top Yukawa Coupling

At an e+e\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}} collider the top Yukawa coupling, yty_{\mathup{{{t}}}}, can be determined from the production rate in the process where a Higgs boson is produced in association with a top quark pair, e+ett¯H\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{t}}}\mathup{{\overline{{\mathup{{{t}}}}}}}\mathup{{{H}}}. The top quarks decay almost exclusively by tbW\mathup{{{t}}}\to\mathup{{{b}}}\mathup{{{W}}}. The signal event topology thus depends on the nature of the W\mathup{{{W}}} and Higgs boson decays. Here Hbb¯\mathup{{{H}}}\to\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}} decays have been studied for two tt¯H\mathup{{{t}}}\mathup{{\overline{{\mathup{{{t}}}}}}}\mathup{{{H}}} decay channels at s=1.4TeV\sqrt{s}=1.4\,\text{TeV} using the CLIC_SiD detector model LCD:tth_1400 ; LCD:tth_backgrounds_1400 :

  • the fully-hadronic channel (where both W\mathup{{{W}}} bosons decay hadronically), giving a tt¯H\mathup{{{t}}}\mathup{{\overline{{\mathup{{{t}}}}}}}\mathup{{{H}}} final state of eight jets, including four b\mathup{{{b}}} jets;

  • the semi-leptonic channel (where one W\mathup{{{W}}} boson decays leptonically), giving a tt¯H\mathup{{{t}}}\mathup{{\overline{{\mathup{{{t}}}}}}}\mathup{{{H}}} final state of six jets (four b\mathup{{{b}}} jets), one lepton and one neutrino,

The two channels are distinguished by first searching for isolated leptons (muons and electrons with an energy of at least 15GeV15\,\text{GeV} and tau candidates from TauFinder containing a track with pT>10GeVp_{\mathrm{T}}>10\,\text{GeV}). If zero leptons are found, the event is classified as fully-hadronic. If one lepton is found, the event is classified as semi-leptonic. Events in which more than one lepton is found are not analysed further. The ktk_{\mathrm{t}} algorithm is used to cluster the particles of each event into a specific number of jets, and remove particles arising from beam-beam interactions that are closer to the beam axis than to a hard jet as described in Section 4.2. Events classified as fully-hadronic are clustered into eight jets. In semi-leptonic events, the lepton is removed and the remaining particles are clustered into six jets. A semi-leptonic event is shown in Figure 22. The particles not clustered into jets by the ktk_{\mathrm{t}} algorithm are removed from the event and the remaining particles are then re-clustered using the e+e\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}} Durham algorithm in LcfiPlus, which performs flavour tagging for each jet, and prevents particles from displaced vertices being split between two or more jets. The jets are combined to form candidate primary particles in such a way so as to minimise a χ2\chi^{2} function expressing the consistency of the reconstructed di- and tri-jet invariant masses with the tt¯(Hbb¯)\mathup{{{t}}}\mathup{{\overline{{\mathup{{{t}}}}}}}(\mathup{{{H}}}\to\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}}) hypothesis. For example, in the case of the semi-leptonic channel, the jet assignment with the minimum of:

χ2=(mijmW)2σW2+(mijkmt)2σt2+(mlmmH)2σH2,\chi^{2}=\frac{(m_{ij}-m_{\mathup{{{W}}}})^{2}}{\sigma_{\mathup{{{W}}}}^{2}}+\frac{(m_{ijk}-m_{\mathup{{{t}}}})^{2}}{\sigma_{\mathup{{{t}}}}^{2}}+\frac{(m_{lm}-m_{\mathup{{{H}}}})^{2}}{\sigma_{\mathup{{{H}}}}^{2}}\,,

gives the W\mathup{{{W}}}, top and Higgs candidates, where mijm_{ij} is the invariant mass of the jet pair used to reconstruct the W\mathup{{{W}}} candidate, mijkm_{ijk} is the invariant mass of the three jets used to reconstruct the top quark candidate and mlmm_{lm} is the invariant mass of the jet pair used to reconstruct the Higgs candidate. The expected invariant mass resolutions σW,t,H\sigma_{\mathup{{{W}}},\mathup{{{t}}},\mathup{{{H}}}} were estimated from combinations of two or three reconstructed jets matched to W\mathup{{{W}}}, top and Higgs particles on generator level.

Refer to caption
Figure 22: Event display of a tt¯Hbb¯bb¯qq¯¯\mathup{{{t}}}\mathup{{\overline{{\mathup{{{t}}}}}}}\mathup{{{H}}}\to\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}}\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}}\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{}^{\scriptstyle{-}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{}}}} event at s=1.4TeV\sqrt{s}=1.4\,\text{TeV} in the CLIC_SiD detector. The tau lepton decays hadronically.

Having forced each event into one of the two signal-like topologies, multivariate BDT classifiers (one for fully-hadronic events and one for semi-leptonic events) are used to separate signal and background. The discriminating variables include: kinematic quantities such as the reconstructed Higgs mass, the visible energy in the jets and the missing pTp_{\mathrm{T}}; angular variables such as the angles between the Higgs decay products in the rest frame of the Higgs candidate with respect to its flight direction and the angle between the momenta of the top and Higgs candidates; event variables such as thrust, sphericity and the number of particles in the event; and flavour tag variables for the four most likely b-jets. As an example, the BDT response distributions for the fully-hadronic channel are shown in Figure 23. The selection is chosen to maximise the signal significance. The expected numbers of selected events for 1.5ab11.5\,\text{ab}^{-1} of s=1.4TeV\sqrt{s}=1.4\,\text{TeV} data are listed in Table 27. The contributions from other investigated background processes were found to be negligible. The tt¯H\mathup{{{t}}}\mathup{{\overline{{\mathup{{{t}}}}}}}\mathup{{{H}}} cross section can be measured with an accuracy of 12%12\,\% in the semi-leptonic channel and 11%11\,\% in the hadronic channel. The combined precision of the two channels is 8%8\,\%.

Refer to caption
Figure 23: BDT classifier distributions for fully-hadronic tt¯H\mathup{{{t}}}\mathup{{\overline{{\mathup{{{t}}}}}}}\mathup{{{H}}} events at s=1.4TeV\sqrt{s}=1.4\,\text{TeV}, shown for the tt¯H\mathup{{{t}}}\mathup{{\overline{{\mathup{{{t}}}}}}}\mathup{{{H}}} signal and main backgrounds. The distributions are normalised to an integrated luminosity of 1.5ab11.5\,\text{ab}^{-1}. The vertical arrow shows the value of the cut, chosen to give the highest significance.
Process Events Selected as
in 1.5ab11.5\,\text{ab}^{-1} HAD SL
e+ett¯H\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{t}}}\mathup{{\overline{{\mathup{{{t}}}}}}}\mathup{{{H}}}, 6 jet, Hbb¯\mathup{{{H}}}\to\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}} 647 357 9
e+ett¯H\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{t}}}\mathup{{\overline{{\mathup{{{t}}}}}}}\mathup{{{H}}}, 4 jet, Hbb¯\mathup{{{H}}}\to\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}} 623 62 233
e+ett¯H\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{t}}}\mathup{{\overline{{\mathup{{{t}}}}}}}\mathup{{{H}}}, 2 jet, Hbb¯\mathup{{{H}}}\to\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}} 150 1 20
e+ett¯H\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{t}}}\mathup{{\overline{{\mathup{{{t}}}}}}}\mathup{{{H}}}, 6 jet, H↛bb¯\mathup{{{H}}}\not\to\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}} 473 38 8
e+ett¯H\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{t}}}\mathup{{\overline{{\mathup{{{t}}}}}}}\mathup{{{H}}}, 4 jet, H↛bb¯\mathup{{{H}}}\not\to\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}} 455 5 19
e+ett¯H\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{t}}}\mathup{{\overline{{\mathup{{{t}}}}}}}\mathup{{{H}}}, 2 jet, H↛bb¯\mathup{{{H}}}\not\to\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}} 110 0 1
e+ett¯bb¯\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{t}}}\mathup{{\overline{{\mathup{{{t}}}}}}}\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}}, 6 jet 824 287 8
e+ett¯bb¯\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{t}}}\mathup{{\overline{{\mathup{{{t}}}}}}}\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}}, 4 jet 794 44 175
e+ett¯bb¯\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{t}}}\mathup{{\overline{{\mathup{{{t}}}}}}}\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}}, 2 jet 191 1 14
e+ett¯Z\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{t}}}\mathup{{\overline{{\mathup{{{t}}}}}}}\mathup{{{Z}}}, 6 jet 2,843 316 12
e+ett¯Z\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{t}}}\mathup{{\overline{{\mathup{{{t}}}}}}}\mathup{{{Z}}}, 4 jet 2,738 49 170
e+ett¯Z\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{t}}}\mathup{{\overline{{\mathup{{{t}}}}}}}\mathup{{{Z}}}, 2 jet 659 1 13
e+ett¯\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{t}}}\mathup{{\overline{{\mathup{{{t}}}}}}} 203,700 1,399 523
e+eqqqql(non-tt¯)\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{q}}}\mathup{{{q}}}\mathup{{{q}}}\mathup{{{q}}}\mathup{{{l}}}\mathup{}(\text{non-}\mathup{{{t}}}\mathup{{\overline{{\mathup{{{t}}}}}}}) 68,300 11 70
e+eqqqq\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{q}}}\mathup{{{q}}}\mathup{{{q}}}\mathup{{{q}}} 2.0×1062.0\times 10^{6} 195 0
Table 27: Expected numbers of signal and background events in the fully-hadronic (HAD) and semi-leptonic (SL) channels for 1.5ab11.5\,\text{ab}^{-1} at s=1.4TeV\sqrt{s}=1.4\,\text{TeV}. The columns show the total numbers of events before selection and the numbers of events passing the fully-hadronic and semi-leptonic BDT selections. No preselection is applied in the analysis.

To translate the measurement of the tt¯H\mathup{{{t}}}\mathup{{\overline{{\mathup{{{t}}}}}}}\mathup{{{H}}} cross section into a measurement of the top Yukawa coupling, a correction is applied to take into account the contribution from the Higgsstrahlung diagram, where the Higgs boson is radiated off the intermediate Z\mathup{{{Z}}} boson in e+ett¯\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{t}}}\mathup{{\overline{{\mathup{{{t}}}}}}} Djouadi:1991tk ; Djouadi:1992gp . To evaluate the small degradation in sensitivity, the Whizard program is used to calculate the cross section for the inclusive process e+ett¯H\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{t}}}\mathup{{\overline{{\mathup{{{t}}}}}}}\mathup{{{H}}} as a function of the value of the top Yukawa coupling. The factor required to translate the measured cross section uncertainty into a coupling uncertainty is determined from the slope of the cross section at the SM value of the top Yukawa coupling, and is found to be:

Δytyt=0.53Δσσ,\frac{\Delta y_{\mathup{{{t}}}}}{y_{\mathup{{{t}}}}}=0.53\frac{\Delta\sigma}{\sigma}\,,

which is slightly larger than the factor of 0.50 expected without the Higgsstrahlung diagram. Thus, the expected precision on the top Yukawa coupling is:

Δytyt=4.2%,\frac{\Delta y_{\mathup{{{t}}}}}{y_{\mathup{{{t}}}}}=4.2\,\%\,,

for 1.5ab11.5\,\text{ab}^{-1} of data at s=1.4TeV\sqrt{s}=1.4\,\text{TeV} without beam polarisation. This value is expected to improve to about 4.0%4.0\,\% for the same amount of data collected using the P(e)=80%P(\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}})=-80\,\% polarisation configuration Price:2014oca . Since the cross section for the tt¯H\mathup{{{t}}}\mathup{{\overline{{\mathup{{{t}}}}}}}\mathup{{{H}}} cross section falls with increasing s\sqrt{s} (see Figure 3), the precision with 2ab12\,\text{ab}^{-1} at 3TeV3\,\text{TeV} is not expected to be better than the result presented here.

9 Double Higgs Production

In e+e\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}} collisions at high energy, double Higgs production, e+eHH¯ee\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{H}}}\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}, can occur through the processes shown in Figure 24. Despite the small cross section (0.15 fb and 0.59 fb for CLIC operated at s=1.4TeV\sqrt{s}=1.4\,\text{TeV} and 3TeV3\,\text{TeV}, respectively), measurements of the double Higgs production rate can be used to extract the Higgs boson trilinear self-coupling parameter λ\lambda, that determines the shape of the fundamental Higgs potential. BSM physics scenarios can introduce deviations of λ\lambda from its SM value of up to tens of percent Gupta:2013zza . The physics potential for the measurement of this coupling has been studied using the CLIC_ILD detector model for 1.5ab11.5\,\text{ab}^{-1} of data at s=1.4TeV\sqrt{s}=1.4\,\text{TeV} and for 2ab12\,\text{ab}^{-1} of data at s=3TeV\sqrt{s}=3\,\text{TeV}. The process e+eHHe+e\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{H}}}\mathup{{{H}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}} has not been included as its cross section is about an order of magnitude smaller compared to e+eHH¯ee\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{H}}}\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}.

{fmffile}

triple_higgs/eevvh {fmfgraph*}(25,20) a)\fmfstraight\fmflefti1,i2,i3 \fmfrighto1,o2,o3,o4 \fmflabele\mathup{{{e}}}^{-}i1 \fmflabele+\mathup{{{e}}}^{+}i3 \fmflabelH\mathup{{{H}}}o2 \fmflabelH\mathup{{{H}}}o3 \fmflabele\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}o1 \fmflabel¯e\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}o4 \fmffermioni1,v1 \fmffermionv2,i3 \fmffermionv1,o1 \fmffermiono4,v2 \fmfphoton,label.side=left,label=W\mathup{{{W}}}^{*}v1,v3 \fmfphoton,label.side=left,label=W\mathup{{{W}}}^{*}v3,v2 \fmfdashes,tension=2.0,label=H\mathup{{{H}}}v3,v4 \fmfvlabel.angle=90,decor.shape=circle,decor.filled=full,decor.size=2thickv4 \fmfdashesv4,o2 \fmfdashesv4,o3 \fmfphantom,tension=0.75i2,v3       {fmffile}triple_higgs/HHWWnunu {fmfgraph*}(25,20) b)\fmfstraight\fmflefti1,i2,i3 \fmfrighto1,o2,oinv,o3,o4 \fmflabele\mathup{{{e}}}^{-}i1 \fmflabele+\mathup{{{e}}}^{+}i3 \fmflabelH\mathup{{{H}}}o2 \fmflabelH\mathup{{{H}}}o3 \fmflabele\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}o1 \fmflabel¯e\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}o4 \fmffermioni1,v1 \fmffermionv1,o1 \fmffermionv2,i3 \fmffermiono4,v2 \fmfphoton,label.side=left,label=W\mathup{{{W}}}^{*}v1,v3 \fmfphoton,label.side=left,label=W\mathup{{{W}}}^{*}v3,v2 \fmfdashesv3,o2 \fmfdashesv3,o3 \fmfphantom,tension=1.2i2,v3

{fmffile}triple_higgs/HWHnunu {fmfgraph*}(25,20) c)\fmfstraight\fmflefti1,i2,i3,i4 \fmfrighto1,o2,oinv,o3,o4 \fmflabele\mathup{{{e}}}^{-}i1 \fmflabele+\mathup{{{e}}}^{+}i4 \fmflabelH\mathup{{{H}}}o2 \fmflabelH\mathup{{{H}}}o3 \fmflabele\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}o1 \fmflabel¯e\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}o4 \fmffermioni1,v1 \fmffermionv1,o1 \fmffermionv2,i4 \fmffermiono4,v2 \fmfphoton,label.side=leftv1,v3 \fmfphoton,label.side=left,label=W\mathup{{{W}}}^{*}v3,v4 \fmfphoton,label.side=leftv4,v2 \fmfdashesv3,o2 \fmfdashesv4,o3 \fmfphantom,tension=0.75i2,v3 \fmfphantom,tension=0.75i3,v4       {fmffile}triple_higgs/HWHnunuXed {fmfgraph*}(25,20) d)\fmfstraight\fmflefti1,i2,i3,i4 \fmfrighto1,o2,oinv,o3,o4 \fmflabele\mathup{{{e}}}^{-}i1 \fmflabele+\mathup{{{e}}}^{+}i4 \fmflabelH\mathup{{{H}}}o2 \fmflabelH\mathup{{{H}}}o3 \fmflabele\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}o1 \fmflabel¯e\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}o4 \fmffermioni1,v1 \fmffermionv1,o1 \fmffermionv2,i4 \fmffermiono4,v2 \fmfphoton,label.side=leftv1,v3 \fmfphoton,label.side=left,label=W\mathup{{{W}}}^{*}v3,v4 \fmfphoton,label.side=leftv4,v2 \fmfphantomv3,o2 \fmfphantomv4,o3 \fmfphantom,tension=0.75i2,v3 \fmfphantom,tension=0.75i3,v4 \fmffreeze\fmfdashesv3,o3 \fmfdashesv4,o2

Figure 24: Feynman diagrams of leading-order processes that produce two Higgs bosons and missing energy at CLIC at s=1.4TeV\sqrt{s}=1.4\,\text{TeV} and 3TeV3\,\text{TeV}. The diagram (a) is sensitive to the trilinear Higgs self-coupling λ\lambda. The diagram (b) is sensitive to the quartic coupling gHHWWg_{\mathup{{{H}}}\mathup{{{H}}}\mathup{{{W}}}\mathup{{{W}}}}. All four diagrams are included in the generated e+eHH¯ee\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{H}}}\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}} signal samples.

Two signatures for e+eHH¯ee\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{H}}}\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}} production are considered in the following: HHbb¯bb¯\mathup{{{H}}}\mathup{{{H}}}\to\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}}\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}} and HHbb¯WWbb¯qq¯qq¯\mathup{{{H}}}\mathup{{{H}}}\to\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}}\mathup{{{W}}}\mathup{{{W}}}^{*}\to\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}}\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}. All events without isolated leptons are considered for the analysis. These events are clustered into four jets using the ktk_{\mathrm{t}} algorithm. Flavour tagging information is obtained from the LcfiPlus package. Events where the sum of the b-tag values of the four jets is smaller than 2.3 and the hadronic system fulfills the requirement log10(y34)<3.7(3.6)-\log_{10}(y_{34})<3.7(3.6) at 1.4 TeV (3 TeV) are considered as bb¯WW\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}}\mathup{{{W}}}\mathup{{{W}}}^{*} candidates, while all other events are considered as bb¯bb¯\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}}\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}} candidates. The following steps of the analysis are performed separately for the two final states.

At 1.4 TeV, a cut on the sum of the four b-tag values of at least 1.5 is imposed for bb¯bb¯\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}}\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}} candidate events. Those events with a sum of the four b-tag values less than 2.3 are required to have a sum of the jet energies of at least 150 GeV and a second highest jet transverse momentum of at least 25 GeV. A cut on the sum of the four b-tag values of at least 2.3 is imposed for all events at 3 TeV. The jets are grouped into two Higgs boson candidates by minimising |mijmkl||m_{ij}-m_{kl}|, where mijm_{ij} and mklm_{kl} are the invariant masses of the jet pairs used to reconstruct the Higgs candidates. For events passing the preselection cuts, at both energies BDT classifiers with the same 10 input variables are used to suppress the backgrounds further.

For the bb¯WW\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}}\mathup{{{W}}}\mathup{{{W}}}^{*} final state, the events are re-clustered into six jets. These jets are then grouped into W\mathup{{{W}}} and H\mathup{{{H}}} candidates by minimising:

χ2=(mijmH)2σHbb¯2+(mklmnmH)2σHWW2+(mklmW)2σW2,\displaystyle\chi^{2}=\frac{(m_{ij}-m_{\mathup{{{H}}}})^{2}}{\sigma_{\mathup{{{H}}}\to\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}}}^{2}}+\frac{(m_{klmn}-m_{\mathup{{{H}}}})^{2}}{\sigma_{\mathup{{{H}}}\to\mathup{{{W}}}\mathup{{{W}}}^{*}}^{2}}+\frac{(m_{kl}-m_{\mathup{{{W}}}})^{2}}{\sigma_{\mathup{{{W}}}}^{2}},

where mijm_{ij} and mklmnm_{klmn} are the jet combinations used to reconstruct the Higgs candidates, mklm_{kl} is the invariant mass of the jet pair used to reconstruct the W\mathup{{{W}}} candidate and σHbb¯\sigma_{\mathup{{{H}}}\to\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}}}, σHWW\sigma_{\mathup{{{H}}}\to\mathup{{{W}}}\mathup{{{W}}}^{*}}, σW\sigma_{\mathup{{{W}}}} are the estimated invariant mass resolutions for the reconstruction of Hbb¯\mathup{{{H}}}\to\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}}, HWW\mathup{{{H}}}\to\mathup{{{W}}}\mathup{{{W}}}^{*} and W\mathup{{{W}}} decays. Events with an invariant mass of the two H\mathup{{{H}}} boson candidates above 150 GeV are considered further. At 3 TeV a highest b-tag value of at least 0.7 is required while at 1.4 TeV the second highest b-tag values has to be larger than 0.2 and the visible transverse momentum has to be larger than 30 GeV. After this preselection, BDT classifiers using 32 input variables are used to suppress the backgrounds further.

The event selections for both studies at 1.4 TeV and 3 TeV are summarised in Table 28 and Table 29, respectively. Combining the expected precisions on the cross sections for both signatures leads to:

Δ[σ(HH¯e)e]σ(HH¯e)e\displaystyle\frac{\Delta[\sigma(\mathup{{{H}}}\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}})]}{\sigma(\mathup{{{H}}}\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}})} =44%at 1.4TeV,\displaystyle=44\,\%\ \text{at}\ 1.4\,\text{TeV}\,,
Δ[σ(HH¯e)e]σ(HH¯e)e\displaystyle\frac{\Delta[\sigma(\mathup{{{H}}}\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}})]}{\sigma(\mathup{{{H}}}\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}})} =20%at 3TeV.\displaystyle=20\,\%\ \text{at}\ 3\,\text{TeV}\,.
Process σ/fb\sigma/\text{fb} εpresel\varepsilon_{\text{presel}} εBDT\varepsilon_{\text{BDT}} NBDTN_{\text{BDT}}
HH¯e;eHHbb¯bb¯\mathup{{{H}}}\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}};\,\mathup{{{H}}}\mathup{{{H}}}\to\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}}\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}} 0.047 94 % 24 % 16
HH¯e;eHHother\mathup{{{H}}}\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}};\,\mathup{{{H}}}\mathup{{{H}}}\to\textnormal{other} 0.102 29 % 0.77 % 0.3
e+eqq¯qq¯¯\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{}\mathup{{\overline{{\upnu}}}} 23 6.2 % 0.38 % 8
e+eqq¯qq¯l\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{l}}}\mathup{} 110 16 % 0.03 % 7
e+eqq¯H¯\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{H}}}\mathup{}\mathup{{\overline{{\upnu}}}} 1.5 39 % 2.0 % 18
e±qq¯qq¯\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{\pm}}}\mathup{}\to\mathup{}\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}} 154 13 % 0.01 % 3
e±qqHν\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{\pm}}}\mathup{}\to\mathup{{{q}}}\mathup{{{q}}}\mathup{{{H}}}\nu 30 28 % 0.01 % 1
HH¯e;eHHbb¯WW\mathup{{{H}}}\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}};\,\mathup{{{H}}}\mathup{{{H}}}\to\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}}\mathup{{{W}}}\mathup{{{W}}}^{*}; 0.018 60 % 8.2 % 1.3
W+Wqq¯qq¯\mathup{{{\mathup{{{W}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{W}}}}}^{\scriptstyle{-}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}
HH¯e;eHHbb¯bb¯\mathup{{{H}}}\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}};\,\mathup{{{H}}}\mathup{{{H}}}\to\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}}\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}} 0.047 15 % 0.5 % 0.1
HH¯e;eHHother\mathup{{{H}}}\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}};\,\mathup{{{H}}}\mathup{{{H}}}\to\textnormal{other} 0.085 20 % 1.7 % 0.5
e+eqq¯qq¯¯\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{}\mathup{{\overline{{\upnu}}}} 23 17 % 0.002 % 0.1
e+eqq¯qq¯l\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{l}}}\mathup{} 110 10 % 0.01 % 2
e+eqq¯H¯\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{H}}}\mathup{}\mathup{{\overline{{\upnu}}}} 1.5 35 % 0.1 % 0.8
e±qq¯qq¯\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{\pm}}}\mathup{}\to\mathup{}\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}} 154 22 % 0.0045 % 2
e±qqHν\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{\pm}}}\mathup{}\to\mathup{{{q}}}\mathup{{{q}}}\mathup{{{H}}}\nu 30 27 % 0.02 % 3
Table 28: Preselection and selection efficiencies for the double Higgs signal and most important background processes in both considered decay channels at s=1.4TeV\sqrt{s}=1.4\,\text{TeV}. The numbers of events correspond to 1.5ab11.5\,\text{ab}^{-1}. Contributions from all other backgrounds are found to be negligibly small.
Process σ/fb\sigma/\text{fb} εpresel\varepsilon_{\text{presel}} εBDT\varepsilon_{\text{BDT}} NBDTN_{\text{BDT}}
HH¯e;eHHbb¯bb¯\mathup{{{H}}}\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}};\,\mathup{{{H}}}\mathup{{{H}}}\to\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}}\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}} 0.19 66 % 24 % 61
HH¯e;eHHother\mathup{{{H}}}\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}};\,\mathup{{{H}}}\mathup{{{H}}}\to\textnormal{other} 0.40 5.4 % 3.2 % 1
e+eqq¯qq¯\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}} 547 0.16 % 0.16 % 3
e+eqq¯qq¯¯\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{}\mathup{{\overline{{\upnu}}}} 72 1.8 % 0.68 % 17
e+eqq¯qq¯l\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{l}}}\mathup{} 107 1.8 % 0.15 % 6
e+eqq¯H¯\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{H}}}\mathup{}\mathup{{\overline{{\upnu}}}} 4.7 18 % 3.0 % 50
e±qq¯qq¯\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{\pm}}}\mathup{}\to\mathup{}\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}} 523 1.2 % 0.09 % 11
e±qqHν\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{\pm}}}\mathup{}\to\mathup{{{q}}}\mathup{{{q}}}\mathup{{{H}}}\nu 116 2.7 % 0.14 % 9
HH¯e;eHHbb¯WW\mathup{{{H}}}\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}};\,\mathup{{{H}}}\mathup{{{H}}}\to\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}}\mathup{{{W}}}\mathup{{{W}}}^{*}; 0.07 62 % 12 % 10
W+Wqq¯qq¯\mathup{{{\mathup{{{W}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{W}}}}}^{\scriptstyle{-}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}
HH¯e;eHHbb¯bb¯\mathup{{{H}}}\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}};\,\mathup{{{H}}}\mathup{{{H}}}\to\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}}\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}} 0.19 19 % 1.5 % 1
HH¯e;eHHother\mathup{{{H}}}\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}};\,\mathup{{{H}}}\mathup{{{H}}}\to\textnormal{other} 0.34 20 % 3.6 % 5
e+eqq¯qq¯\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}} 547 1.4 % 0.01 % 1
e+eqq¯qq¯¯\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{}\mathup{{\overline{{\upnu}}}} 72 9.0 % 0.05 % 6
e+eqq¯qq¯l\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{l}}}\mathup{} 107 7.3 % 0.05 % 8
e+eqq¯H¯\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{H}}}\mathup{}\mathup{{\overline{{\upnu}}}} 4.8 32 % 0.6 % 19
e±qq¯qq¯\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{\pm}}}\mathup{}\to\mathup{}\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}} 523 15 % 0.04 % 67
e±qqHν\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{\pm}}}\mathup{}\to\mathup{{{q}}}\mathup{{{q}}}\mathup{{{H}}}\nu 116 27 % 0.2 % 140
Table 29: Preselection and selection efficiencies for the double Higgs signal and most important background processes in both considered decay channels at s=3TeV\sqrt{s}=3\,\text{TeV}. The numbers of events correspond to 2ab12\,\text{ab}^{-1}. Contributions from all other backgrounds are found to be negligibly small.

The double Higgs production cross section is sensitive to the trilinear Higgs self-coupling λ\lambda. Since diagrams not involving λ\lambda also contribute to the e+eHH¯ee\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{H}}}\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}} process, their effect must be taken into account. The relation between the relative uncertainty on the cross section and the relative uncertainty of the Higgs trilinear coupling can be approximated as:

ΔλλκΔ[σ(HH¯e)e]σ(HH¯e)e.\frac{\Delta\lambda}{\lambda}\approx\kappa\cdot\frac{\Delta[\sigma(\mathup{{{H}}}\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}})]}{\sigma(\mathup{{{H}}}\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}})}\,.

The value of κ\kappa can be determined from the Whizard generator by parameterising the e+eHH¯ee\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{H}}}\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}} cross section as a function of the input value for λ\lambda, as indicated in Figure 25. The fact that the slope is negative indicates that the main dependence on λ\lambda enters through interference with other SM diagrams. The value of κ\kappa is determined from the derivative of the cross section dependence as a function of λ\lambda, evaluated at its SM value, giving κ=1.22\kappa=1.22 and κ=1.47\kappa=1.47 at 1.4 TeV and 3 TeV, respectively. However, this method does not account for the possibility that the event selection might preferentially favour some diagrams over others, and hence change the analysis sensitivity to λ\lambda.

Refer to caption
Figure 25: Cross section for the e+eHH¯ee\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{H}}}\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}} process as a function of the ratio λ/λSM\lambda/\lambda^{\text{SM}} at s=1.4TeV\sqrt{s}=1.4\,\text{TeV} and 3TeV3\,\text{TeV}.

In the case of zero beam polarisation, the combined cross sections for double Higgs production give:

Δλ/λ\displaystyle\Delta\lambda/\lambda =54%ats=1.4TeV,\displaystyle=54\,\%\ \ \text{at}\ \sqrt{s}=1.4\,\text{TeV}\,,
Δλ/λ\displaystyle\Delta\lambda/\lambda =29%ats=3TeV.\displaystyle=29\,\%\ \ \text{at}\ \sqrt{s}=3\,\text{TeV}\,.

Because the process involving the trilinear Higgs coupling involves tt-channel WW\mathup{{{W}}}\mathup{{{W}}}-fusion, it can be enhanced by operating with polarised beams. For the case of P(e)=80%P(\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}})=-80\,\%, this yields:

Δλ/λ\displaystyle\Delta\lambda/\lambda =40%ats=1.4TeV,\displaystyle=40\,\%\ \ \text{at}\ \sqrt{s}=1.4\,\text{TeV}\,,
Δλ/λ\displaystyle\Delta\lambda/\lambda =22%ats=3TeV.\displaystyle=22\,\%\ \ \text{at}\ \sqrt{s}=3\,\text{TeV}\,.

The statistical precision on λ\lambda improves to 26%26\,\% for unpolarised beams and to 19%19\,\% for P(e)=80%P(\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}})=-80\,\% when combining both energy stages. These results will be improved further using template fits to the BDT output distributions as the different diagrams contributing to double Higgs production lead to different event topologies.

10 Higgs Mass

At a centre-of-mass energy of s=350GeV\sqrt{s}=350\,\text{GeV}, the Higgs boson mass can be measured in the e+eZH\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{Z}}}\mathup{{{H}}} process. The Higgs boson mass can be extracted from the four-momentum recoiling against in Z\mathup{{{Z}}} boson using Ze+e\mathup{{{Z}}}\to\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}} or Z+\mathup{{{Z}}}\to\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}} events as described in Section 5. Due to the small branching ratios for leptonic Z\mathup{{{Z}}} boson decay channels and the impact of the CLIC beamstrahlung spectrum, the achievable precision is limited to 110MeV110\,\text{MeV}.

In a different approach, the Higgs mass is reconstructed from the measured four-vectors of its decay products. The best precision is expected using Hbb¯\mathup{{{H}}}\to\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}} decays in e+eH¯ee\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}} events at high energy. For this purpose, the analysis described in Section 6.1 has been modified. After the preselection, a single BDT is used at each energy to select Hbb¯\mathup{{{H}}}\to\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}} decays. In contrast to the coupling measurement, the flavour tagging information is included in the BDT classifier.

Refer to caption
Figure 26: Reconstructed di-jet invariant mass distribution of selected Hbb¯\mathup{{{H}}}\to\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}} events at s=1.4TeV\sqrt{s}=1.4\,\text{TeV}, showing the signal and backgrounds as stacked histograms. The distributions are normalised to an integrated luminosity of 1.5ab11.5\,\text{ab}^{-1}.

The invariant mass distribution for selected events at s=1.4TeV\sqrt{s}=1.4\,\text{TeV} is shown in Figure 26. The Higgs mass is extracted in the range 105GeV<mbb¯<145GeV105\,\text{GeV}<m_{\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}}}<145\,\text{GeV} where good purity of the signal channel is achieved. At the nominal Z\mathup{{{Z}}} boson mass, a second peak from e+eZ¯e;eZbb¯\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{Z}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}};\mathup{{{Z}}}\to\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}} events is visible. These events can be used to calibrate the jet energy scale for the precision measurement of the Higgs boson mass.

A template fit using e+eH¯e;eHbb¯\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}};\mathup{{{H}}}\to\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}} event samples generated using slightly shifted values for the Higgs mass parameter is performed. The Higgs mass and production cross section are extracted simultaneously. The following statistical precisions on the Higgs mass are achieved:

Δ(mH)\displaystyle\Delta(m_{\mathup{{{H}}}}) =47MeVat 1.4TeV,\displaystyle=47\,\text{MeV}\ \text{at}\ 1.4\,\text{TeV}\,,
Δ(mH)\displaystyle\Delta(m_{\mathup{{{H}}}}) =44MeVat 3TeV.\displaystyle=44\,\text{MeV}\ \text{at}\ 3\,\text{TeV}\,.

A combination of both energy stages would lead to a precision of 32MeV32\,\text{MeV}.

11 Systematic Uncertainties

The complete Higgs physics potential of a CLIC collider implemented in three energy stages is described in this paper. The expected statistical uncertainties given in the previous sections do not include potential sources of systematic uncertainty. The obtained results therefore illustrate the level of precision desirable for the control of systematic effects. This is crucial input for the choice of detector technologies and the development of calibration procedures in the coming years.

A comprehensive study of systematic uncertainties requires more knowledge on the technical implementation of the detector. This is beyond the scope of this paper. At this stage, the impact of potentially relevant sources of systematic uncertainty is discussed. The measurements of σ(H¯e)e×BR(Hbb¯)\sigma(\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}})\times BR(\mathup{{{H}}}\to\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}}) and the Higgs mass at s=3\sqrt{s}=3TeV, described in Section 6.1 and Section 10, are used as examples. These measurements are the most challenging test cases for many systematic effects due to the very small expected statistical uncertainties of 0.3 % and 44 MeV, respectively. In addition, the experimental conditions are most challenging at 3 TeV.

The impact of theoretical uncertainties on the Higgs branching fractions is discussed in Section 12 in the context of a combined fit.

  • Luminosity spectrum: A good knowledge of the luminosity spectrum is mandatory for precision Higgs physics at CLIC. The reconstruction of the CLIC luminosity spectrum from Bhabha scattering events is described in Poss:2013oea . A model of the CLIC luminosity spectrum with 19 free parameters is assumed. The expected uncertainties of these parameters and their correlations are propagated to the measurement of σ(H¯e)e×BR(Hbb¯)\sigma(\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}})\times BR(\mathup{{{H}}}\to\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}}) and lead to a systematic uncertainty of 0.15 %. The luminosity spectrum affects the event rate more than the observed invariant mass of the two jets. Concerning the Higgs mass extraction, the luminosity spectrum is not expected to represent a dominant source of systematic uncertainty since the cross section is a free parameter in the template fit.

  • Total luminosity: The expected statistical precision of the σ(H¯e)e×BR(Hbb¯)\sigma(\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}})\times BR(\mathup{{{H}}}\to\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}}) measurement indicates the desired precision for the knowledge of the total luminosity. It is expected that an accuracy of a few permille can be achieved using the luminometer envisaged for CLIC Lukic:2013fw ; Bozovic-Jelisavcic:2013aca .

  • Beam polarisation: The knowledge of the beam polarisation at the interaction point is most important for the measurement of WW\mathup{{{W}}}\mathup{{{W}}}-fusion events at high energy. The beam polarisation can be controlled to a level of 0.2 % using single W\mathup{{{W}}}, Z\mathup{{{Z}}} and events with missing energy Wilson:lcws2012 . The resulting systematic uncertainty on σ(H¯e)e×BR(Hbb¯)\sigma(\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}})\times BR(\mathup{{{H}}}\to\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}}) is 0.1 %. For the Higgs mass measurement, the effect of the estimated beam polarisation uncertainty is negligible.

  • Jet energy scale: The measurement of the Higgs boson mass using Hbb¯\mathup{{{H}}}\to\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}} decays requires a precise knowledge of the energy scale correction for b-jets. An uncertainty on the jet energy scale of 3.5×1043.5\times 10^{-4} leads to a systematic uncertainty on the Higgs mass similar to the statistical error at 3 TeV. The same jet energy scale uncertainty would have negligible impact on σ(H¯e)e×BR(Hbb¯)\sigma(\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}})\times BR(\mathup{{{H}}}\to\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}}). A suitable process for the calibration is e+eZ¯e;eZbb¯\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{Z}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}};\mathup{{{Z}}}\to\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}} which is kinematically similar to Higgs production in WW\mathup{{{W}}}\mathup{{{W}}}-fusion. σ(Z¯e)e×BR(Zbb¯)=276\sigma(\mathup{{{Z}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}})\times BR(\mathup{{{Z}}}\to\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}})=276 fb leads to an expected number of events for calibration which is slightly larger than the signal event sample. To improve the precision further, additional high-statistics Z\mathup{{{Z}}} boson samples would be needed. Generator-level studies show that e±Ze±;Zbb¯\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{\pm}}}\mathup{}\to\mathup{{{Z}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{\pm}}};\mathup{{{Z}}}\to\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}} with a cross section about one order of magnitude larger compared to the signal process is a promising channel for this purpose.

  • Flavour tagging: Several of the precision measurements discussed in this paper rely on b-tagging information. The calibration of the flavour tagging at CLIC is a topic for future study. To illustrate the impact of a non-perfect understanding of the mistag rate for charm and light quark jets, an ad hoc variation of the b-tag distributions for jets in background events is performed. Even after the BDT selection, the background contains only very few b-jets in the σ(H¯e)e×BR(Hbb¯)\sigma(\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}})\times BR(\mathup{{{H}}}\to\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}}) analysis. First, the b-tag distributions for both jets were decreased (increased) by 0.5 % using event reweighting for values below (above) the median keeping the overall number of background events constant. The opposite variation is applied in a second step. These variations lead to a ±0.25%\pm 0.25\,\% change of the result.
    As the flavour tagging efficiency mostly affects the event rate, it is not expected to be a dominant source of systematic uncertainty for the Higgs mass measurement.

In summary, it seems possible to control the systematic uncertainties discussed above with similar or better precision compared to the statistical uncertainty for the measurement of σ(H¯e)e×BR(Hbb¯)\sigma(\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}})\times BR(\mathup{{{H}}}\to\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}}). An excellent understanding of the b-jet energy scale is necessary for a competitive Higgs mass measurement at CLIC.

Many of the analyses described in this paper, especially where hadronisation is relevant, will require a careful tuning of the Monte Carlo models using other high-precision processes. Such an investigation is beyond the scope of this first study of Higgs physics at CLIC presented here.

12 Combined Fits

The results discussed in the preceding sections are summarised in Table 30 and Table 31. From the σ\sigma and σ×BR\sigma\times BR measurements given in the tables the Higgs coupling parameters and total width are extracted by a global fit as described below. Here, a 80%-80\,\% electron polarisation is assumed for the 1.4TeV1.4\,\text{TeV} and the 3TeV3\,\text{TeV} stages. The increase in cross section is taken into account by multiplying the event rates with a factor of 1.8 for all WW-fusion measurements (see Table 3), resulting in a reduction of the uncertainties by a factor of 1.8\sqrt{1.8}. This approach is conservative since it assumes that all backgrounds including those from ss-channel processes, which do not receive the same enhancement by polarisation, scale with the same factor.

Statistical precision
Channel Measurement Observable 350GeV350\,\text{GeV}
500fb1500\,\text{fb}^{-1}
ZH\mathup{{{Z}}}\mathup{{{H}}} Recoil mass distribution mHm_{\mathup{{{H}}}} 110MeV110\,\text{MeV}
ZH\mathup{{{Z}}}\mathup{{{H}}} σ(ZH)×BR(Hinvisible)\sigma(\mathup{{{Z}}}\mathup{{{H}}})\times BR(\mathup{{{H}}}\to\text{invisible}) Γinv\Gamma_{\text{inv}} 0.6%0.6\,\%
ZH\mathup{{{Z}}}\mathup{{{H}}} σ(ZH)×BR(Zl+l)\sigma(\mathup{{{Z}}}\mathup{{{H}}})\times BR(\mathup{{{Z}}}\to\mathup{{{\mathup{{{l}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{l}}}}}^{\scriptstyle{-}}}) gHZZ2g_{\mathup{{{H}}}\mathup{{{Z}}}\mathup{{{Z}}}}^{2} 3.8%3.8\,\%
ZH\mathup{{{Z}}}\mathup{{{H}}} σ(ZH)×BR(Zqq¯)\sigma(\mathup{{{Z}}}\mathup{{{H}}})\times BR(\mathup{{{Z}}}\to\mathup{{{q}}}\mathup{{\overline{{\mathup{{{q}}}}}}}) gHZZ2g_{\mathup{{{H}}}\mathup{{{Z}}}\mathup{{{Z}}}}^{2} 1.8%1.8\,\%
ZH\mathup{{{Z}}}\mathup{{{H}}} σ(ZH)×BR(Hbb¯)\sigma(\mathup{{{Z}}}\mathup{{{H}}})\times BR(\mathup{{{H}}}\to\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}}) gHZZ2gHbb2/ΓHg_{\mathup{{{H}}}\mathup{{{Z}}}\mathup{{{Z}}}}^{2}g_{\mathup{{{H}}}\mathup{{{b}}}\mathup{{{b}}}}^{2}/\Gamma_{\mathup{{{H}}}} 0.86%0.86\,\%
ZH\mathup{{{Z}}}\mathup{{{H}}} σ(ZH)×BR(Hcc¯)\sigma(\mathup{{{Z}}}\mathup{{{H}}})\times BR(\mathup{{{H}}}\to\mathup{{{c}}}\mathup{{\overline{{\mathup{{{c}}}}}}}) gHZZ2gHcc2/ΓHg_{\mathup{{{H}}}\mathup{{{Z}}}\mathup{{{Z}}}}^{2}g_{\mathup{{{H}}}\mathup{{{c}}}\mathup{{{c}}}}^{2}/\Gamma_{\mathup{{{H}}}} 14%14\,\%
ZH\mathup{{{Z}}}\mathup{{{H}}} σ(ZH)×BR(Hgg)\sigma(\mathup{{{Z}}}\mathup{{{H}}})\times BR(\mathup{{{H}}}\to\mathup{{{g}}}\mathup{{{g}}}) 6.1%6.1\,\%
ZH\mathup{{{Z}}}\mathup{{{H}}} σ(ZH)×BR(H)+\sigma(\mathup{{{Z}}}\mathup{{{H}}})\times BR(\mathup{{{H}}}\to\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}}) gHZZ2gH2/ΓHg_{\mathup{{{H}}}\mathup{{{Z}}}\mathup{{{Z}}}}^{2}g_{\mathup{{{H}}}\mathup{}\mathup{}}^{2}/\Gamma_{\mathup{{{H}}}} 6.2%6.2\,\%
ZH\mathup{{{Z}}}\mathup{{{H}}} σ(ZH)×BR(HWW)\sigma(\mathup{{{Z}}}\mathup{{{H}}})\times BR(\mathup{{{H}}}\to\mathup{{{W}}}\mathup{{{W}}}^{*}) gHZZ2gHWW2/ΓHg_{\mathup{{{H}}}\mathup{{{Z}}}\mathup{{{Z}}}}^{2}g_{\mathup{{{H}}}\mathup{{{W}}}\mathup{{{W}}}}^{2}/\Gamma_{\mathup{{{H}}}} 5.1%5.1\,\%
H¯ee\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}} σ(H¯e)e×BR(Hbb¯)\sigma(\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}})\times BR(\mathup{{{H}}}\to\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}}) gHWW2gHbb2/ΓHg_{\mathup{{{H}}}\mathup{{{W}}}\mathup{{{W}}}}^{2}g_{\mathup{{{H}}}\mathup{{{b}}}\mathup{{{b}}}}^{2}/\Gamma_{\mathup{{{H}}}} 1.9%1.9\,\%
H¯ee\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}} σ(H¯e)e×BR(Hcc¯)\sigma(\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}})\times BR(\mathup{{{H}}}\to\mathup{{{c}}}\mathup{{\overline{{\mathup{{{c}}}}}}}) gHWW2gHcc2/ΓHg_{\mathup{{{H}}}\mathup{{{W}}}\mathup{{{W}}}}^{2}g_{\mathup{{{H}}}\mathup{{{c}}}\mathup{{{c}}}}^{2}/\Gamma_{\mathup{{{H}}}} 26%26\,\%
H¯ee\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}} σ(H¯e)e×BR(Hgg)\sigma(\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}})\times BR(\mathup{{{H}}}\to\mathup{{{g}}}\mathup{{{g}}}) 10%10\,\%
Table 30: Summary of the precisions obtainable for the Higgs observables in the first stage of CLIC for an integrated luminosity of 500fb1500\,\text{fb}^{-1} at s=350GeV\sqrt{s}=350\,\text{GeV}, assuming unpolarised beams. For the branching ratios, the measurement precision refers to the expected statistical uncertainty on the product of the relevant cross section and branching ratio; this is equivalent to the expected statistical uncertainty of the product of couplings divided by ΓH\Gamma_{\mathup{{{H}}}} as indicated in the third column.
Statistical precision
Channel Measurement Observable 1.4TeV1.4\,\text{TeV} 3TeV3\,\text{TeV}
1.5ab11.5\,\text{ab}^{-1} 2.0ab12.0\,\text{ab}^{-1}
H¯ee\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}} Hbb¯\mathup{{{H}}}\to\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}} mass distribution mHm_{\mathup{{{H}}}} 47MeV47\,\text{MeV} 44MeV44\,\text{MeV}
H¯ee\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}} σ(H¯e)e×BR(Hbb¯)\sigma(\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}})\times BR(\mathup{{{H}}}\to\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}}) gHWW2gHbb2/ΓHg_{\mathup{{{H}}}\mathup{{{W}}}\mathup{{{W}}}}^{2}g_{\mathup{{{H}}}\mathup{{{b}}}\mathup{{{b}}}}^{2}/\Gamma_{\mathup{{{H}}}} 0.4%0.4\,\% 0.3%0.3\,\%
H¯ee\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}} σ(H¯e)e×BR(Hcc¯)\sigma(\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}})\times BR(\mathup{{{H}}}\to\mathup{{{c}}}\mathup{{\overline{{\mathup{{{c}}}}}}}) gHWW2gHcc2/ΓHg_{\mathup{{{H}}}\mathup{{{W}}}\mathup{{{W}}}}^{2}g_{\mathup{{{H}}}\mathup{{{c}}}\mathup{{{c}}}}^{2}/\Gamma_{\mathup{{{H}}}} 6.1%6.1\,\% 6.9%6.9\,\%
H¯ee\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}} σ(H¯e)e×BR(Hgg)\sigma(\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}})\times BR(\mathup{{{H}}}\to\mathup{{{g}}}\mathup{{{g}}}) 5.0%5.0\,\% 4.3%4.3\,\%
H¯ee\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}} σ(H¯e)e×BR(H)+\sigma(\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}})\times BR(\mathup{{{H}}}\to\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}}) gHWW2gH2/ΓHg_{\mathup{{{H}}}\mathup{{{W}}}\mathup{{{W}}}}^{2}g_{\mathup{{{H}}}\mathup{}\mathup{}}^{2}/\Gamma_{\mathup{{{H}}}} 4.2%4.2\,\% 4.4%4.4\,\%
H¯ee\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}} σ(H¯e)e×BR(H)+\sigma(\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}})\times BR(\mathup{{{H}}}\to\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}}) gHWW2gH2/ΓHg_{\mathup{{{H}}}\mathup{{{W}}}\mathup{{{W}}}}^{2}g_{\mathup{{{H}}}\mathup{}\mathup{}}^{2}/\Gamma_{\mathup{{{H}}}} 38%38\,\% 25%25\,\%
H¯ee\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}} σ(H¯e)e×BR(H)\sigma(\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}})\times BR(\mathup{{{H}}}\to\upgamma\upgamma) 15%15\,\% 10%10\,\%^{*}
H¯ee\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}} σ(H¯e)e×BR(HZ)\sigma(\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}})\times BR(\mathup{{{H}}}\to\mathup{{{Z}}}\upgamma) 42%42\,\% 30%30\,\%^{*}
H¯ee\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}} σ(H¯e)e×BR(HWW)\sigma(\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}})\times BR(\mathup{{{H}}}\to\mathup{{{W}}}\mathup{{{W}}}^{*}) gHWW4/ΓHg_{\mathup{{{H}}}\mathup{{{W}}}\mathup{{{W}}}}^{4}/\Gamma_{\mathup{{{H}}}} 1.0%1.0\,\% 0.7%0.7\,\%^{*}
H¯ee\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}} σ(H¯e)e×BR(HZZ)\sigma(\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}})\times BR(\mathup{{{H}}}\to\mathup{{{Z}}}\mathup{{{Z}}}^{*}) gHWW2gHZZ2/ΓHg_{\mathup{{{H}}}\mathup{{{W}}}\mathup{{{W}}}}^{2}g_{\mathup{{{H}}}\mathup{{{Z}}}\mathup{{{Z}}}}^{2}/\Gamma_{\mathup{{{H}}}} 5.6%5.6\,\% 3.9%3.9\,\%^{*}
He+e\mathup{{{H}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}} σ(He+e)×BR(Hbb¯)\sigma(\mathup{{{H}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}})\times BR(\mathup{{{H}}}\to\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}}) gHZZ2gHbb2/ΓHg_{\mathup{{{H}}}\mathup{{{Z}}}\mathup{{{Z}}}}^{2}g_{\mathup{{{H}}}\mathup{{{b}}}\mathup{{{b}}}}^{2}/\Gamma_{\mathup{{{H}}}} 1.8%1.8\,\% 2.3%2.3\,\%^{*}
tt¯H\mathup{{{t}}}\mathup{{\overline{{\mathup{{{t}}}}}}}\mathup{{{H}}} σ(tt¯H)×BR(Hbb¯)\sigma(\mathup{{{t}}}\mathup{{\overline{{\mathup{{{t}}}}}}}\mathup{{{H}}})\times BR(\mathup{{{H}}}\to\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}}) gHtt2gHbb2/ΓHg_{\mathup{{{H}}}\mathup{{{t}}}\mathup{{{t}}}}^{2}g_{\mathup{{{H}}}\mathup{{{b}}}\mathup{{{b}}}}^{2}/\Gamma_{\mathup{{{H}}}} 8%8\,\% -
HH¯ee\mathup{{{H}}}\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}} σ(HH¯e)e\sigma(\mathup{{{H}}}\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}) λ\lambda 54%54\,\% 29%29\,\%
HH¯ee\mathup{{{H}}}\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}} with 80%-80\,\% e\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}} polarisation λ\lambda 40%40\,\% 22%22\,\%
Table 31: Summary of the precisions obtainable for the Higgs observables in the higher-energy CLIC stages for integrated luminosities of 1.5ab11.5\,\text{ab}^{-1} at s=1.4TeV\sqrt{s}=1.4\,\text{TeV}, and 2.0ab12.0\,\text{ab}^{-1} at s=3TeV\sqrt{s}=3\,\text{TeV}. In both cases unpolarised beams have been assumed. For gHttg_{\mathup{{{H}}}\mathup{{{t}}}\mathup{{{t}}}}, the 3TeV3\,\text{TeV} case has not yet been studied, but is not expected to result in substantial improvement due to the significantly reduced cross section at high energy. Numbers marked with * are extrapolated from s=1.4TeV\sqrt{s}=1.4\,\text{TeV} to s=3TeV\sqrt{s}=3\,\text{TeV} as explained in the text. For the branching ratios, the measurement precision refers to the expected statistical uncertainty on the product of the relevant cross section and branching ratio; this is equivalent to the expected statistical uncertainty of the product of couplings divided by ΓH\Gamma_{\mathup{{{H}}}}, as indicated in the third column. For the measurements from the HH¯ee\mathup{{{H}}}\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}} process, the measurement precisions give the expected statistical uncertainties on the self-coupling parameter λ\lambda.

A few of the observables listed in Table 31 were studied only at s=1.4TeV\sqrt{s}=1.4\,\text{TeV}, but not at s=3TeV\sqrt{s}=3\,\text{TeV}. In cases where those observables have a significant impact on the combined fits described in this section, the precisions obtained at s=1.4TeV\sqrt{s}=1.4\,\text{TeV} were extrapolated to s=3TeV\sqrt{s}=3\,\text{TeV}. The extrapolation is based on the number of signal events within the detector acceptance at 1.4TeV1.4\,\text{TeV} and 3TeV3\,\text{TeV}. It is assumed that the background processes scale in the same way with s\sqrt{s} as the signal events. However, in fact the signal Higgs bosons are produced in vector boson fusion which increases with increasing s\sqrt{s}, while several backgrounds are dominated by ss-channel diagrams which decrease with increasing s\sqrt{s}.

Since the physical observables (σ\sigma or σ×BR\sigma\times BR) typically depend on several coupling parameters and on the total width, these parameters are extracted with a combined fit of all measurements. To provide a first indication of the overall impact of the CLIC physics programme, simple fits considering only the statistical uncertainties of the measurements are performed. Two types of fits are used: A model-independent fit making minimal theoretical assumptions, and a model-dependent fit following the strategies used for the interpretation of LHC Higgs results.

Both fits are based on a χ2\chi^{2} minimisation using the Minuit package James1975343 . The measurements which serve as input to the fit, presented in detail in the preceding sections, are either a total cross section σ\sigma in the case of the measurement of e+eZH\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{Z}}}\mathup{{{H}}} via the recoil mass technique, or a cross section ×\times branching ratio σ×BR\sigma\times BR for specific Higgs production modes and decays. To obtain the expected sensitivity for CLIC it is assumed that for all measurements the value expected in the SM has been measured, so only the statistical uncertainties of each measurement are used in the χ2\chi^{2} calculation. In the absence of correlations, the contribution of a single measurement is given by

χi2=(Ci/CiSM1)2ΔFi2,\chi^{2}_{i}=\frac{(C_{i}/C_{i}^{\text{SM}}-1)^{2}}{\Delta F_{i}^{2}},

where CiC_{i} is the fitted value of the relevant combination of relevant Higgs couplings (and total width) describing the particular measurement, CiSMC_{i}^{\text{SM}} is the SM expectation, and ΔFi\Delta F_{i} is the statistical uncertainty of the measurement of the considered process. Since this simplified description does not allow the accurate treatment of correlations between measurements, nor the inclusion of correlated theory systematics in the model-dependent fit, the global χ2\chi^{2} of the fit is constructed from the covariance matrix of all measurements. It is given by

χ2=ζT𝐕1ζ,\chi^{2}={\zeta}^{T}{\bf{V}}^{-1}{\zeta},

where 𝐕{\bf{V}} is the covariance matrix and ζ\zeta is the vector of deviations of fitted values of the relevant combination of Higgs couplings and total width describing the particular measurement deviation from the SM expectation as introduced above, ζi=Ci/CiSM1\zeta_{i}=C_{i}/C_{i}^{\text{SM}}-1.

The CiC_{i}’s depend on the particular measurements and on the type of fit (model-independent or model-dependent), given in detail below. In the absence of systematic uncertainties, the diagonal elements of 𝐕{\bf{V}} are given by the statistical uncertainty of the measurement,

𝐕ii=ΔFi2,{\bf{V}}_{ii}=\Delta F_{i}^{2},

while the off-diagonal elements represent the correlations between measurements. In the fit, correlations are taken into account in cases where they are expected to be large. This applies to the measurements of σ×BR\sigma\times BR for Hbb¯,cc¯,gg\mathup{{{H}}}\to\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}},\mathup{{{c}}}\mathup{{\overline{{\mathup{{{c}}}}}}},\mathup{{{g}}}\mathup{{{g}}} in Higgsstrahlung and WW\mathup{{{W}}}\mathup{{{W}}}-fusion events at 350 GeV and in WW\mathup{{{W}}}\mathup{{{W}}}-fusion events only at 1.4 TeV and 3 TeV, which are extracted in a combined fitting procedure at each energy. These measurements show correlation coefficients with absolute values as large as 0.32.

In signal channels with substantial contaminations from other Higgs decays, penalty terms were added to the χ2\chi^{2} to take into account the normalisation of the other channels. These additional uncertainties, which are also of a statistical nature, are derived from the statistical uncertainties of the respective Higgs final state analysis, taking the level of contamination into account. The channels where this results in non-negligible effects are the HWW\mathup{{{H}}}\to\mathup{{{W}}}\mathup{{{W}}}^{*} analyses at all energies, in particular in the all-hadronic decay modes, with corrections to the statistical uncertainties as large as 8% at 350 GeV.

12.1 Model-independent Fit

The model-independent fit uses the zero-width approximation to describe the individual measurements in terms of Higgs couplings and the total width, ΓH\Gamma_{\mathup{{{H}}}}. Here, the total cross section of e+eZH\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{Z}}}\mathup{{{H}}} depends on:

CZH=gHZZ2,C_{\mathup{{{Z}}}\mathup{{{H}}}}=g_{\mathup{{{H}}}\mathup{{{Z}}}\mathup{{{Z}}}}^{2},

while for specific final states such as e+eZH\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{Z}}}\mathup{{{H}}}; Hbb¯\mathup{{{H}}}\to\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}} and e+eH¯ee\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}; Hbb¯\mathup{{{H}}}\to\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}}:

CZH,Hbb¯=gHZZ2gHbb2ΓHC_{{\mathup{{{Z}}}\mathup{{{H}}}},\,\mathup{{{H}}}\to\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}}}=\frac{g_{\mathup{{{H}}}\mathup{{{Z}}}\mathup{{{Z}}}}^{2}g_{\mathup{{{H}}}\mathup{{{b}}}\mathup{{{b}}}}^{2}}{\Gamma_{\mathup{{{H}}}}}

and:

CH¯e,eHbb¯=gHWW2gHbb2ΓH,C_{\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}},\,\mathup{{{H}}}\to\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}}}=\frac{g_{\mathup{{{H}}}\mathup{{{W}}}\mathup{{{W}}}}^{2}g_{\mathup{{{H}}}\mathup{{{b}}}\mathup{{{b}}}}^{2}}{\Gamma_{\mathup{{{H}}}}},

respectively.

The fit is performed with 11 free parameters: gHZZg_{\mathup{{{H}}}\mathup{{{Z}}}\mathup{{{Z}}}}, gHWWg_{\mathup{{{H}}}\mathup{{{W}}}\mathup{{{W}}}}, gHbbg_{\mathup{{{H}}}\mathup{{{b}}}\mathup{{{b}}}}, gHccg_{\mathup{{{H}}}\mathup{{{c}}}\mathup{{{c}}}}, gHg_{\mathup{{{H}}}\mathup{}\mathup{}}, gHg_{\mathup{{{H}}}\mathup{}\mathup{}}, gHttg_{\mathup{{{H}}}\mathup{{{t}}}\mathup{{{t}}}} and ΓH\Gamma_{\mathup{{{H}}}}, as well as the three effective couplings gHggg^{\dagger}_{\mathrm{\mathup{{{H}}}\mathup{{{g}}}\mathup{{{g}}}}}, gHg^{\dagger}_{\mathup{{{H}}}\mathup{}\mathup{}} and gHZg^{\dagger}_{\mathup{{{H}}}\mathup{{{Z}}}\mathup{}}. The latter three parameters are treated in the same way as the physical Higgs couplings in the fit.

Parameter Relative precision
350GeV350\,\text{GeV} + 1.4TeV1.4\,\text{TeV} + 3TeV3\,\text{TeV}
500fb1500\,\text{fb}^{-1} + 1.5ab11.5\,\text{ab}^{-1} + 2ab12\,\text{ab}^{-1}
gHZZg_{\mathup{{{H}}}\mathup{{{Z}}}\mathup{{{Z}}}} 0.8 % 0.8 % 0.8 %
gHWWg_{\mathup{{{H}}}\mathup{{{W}}}\mathup{{{W}}}} 1.4 % 0.9 % 0.9 %
gHbbg_{\mathup{{{H}}}\mathup{{{b}}}\mathup{{{b}}}} 3.0 % 1.0 % 0.9 %
gHccg_{\mathup{{{H}}}\mathup{{{c}}}\mathup{{{c}}}} 6.2 % 2.3 % 1.9 %
gHg_{\mathup{{{H}}}\mathup{}\mathup{}} 4.3 % 1.7 % 1.4 %
gHg_{\mathup{{{H}}}\mathup{}\mathup{}} - 14.1 % 7.8 %
gHttg_{\mathup{{{H}}}\mathup{{{t}}}\mathup{{{t}}}} - 4.2 % 4.2 %
gHggg^{\dagger}_{\mathup{{{H}}}\mathup{{{g}}}\mathup{{{g}}}} 3.7 % 1.8 % 1.4 %
gHg^{\dagger}_{\mathup{{{H}}}\mathup{}\mathup{}} - 5.7 % 3.2 %
gHZg^{\dagger}_{\mathup{{{H}}}\mathup{{{Z}}}\mathup{}} - 15.6 % 9.1 %
ΓH\Gamma_{\mathup{{{H}}}} 6.7 % 3.7 % 3.5 %
Table 32: Results of the model-independent fit. Values marked "-" can not be measured with sufficient precision at the given energy. For gHttg_{\mathup{{{H}}}\mathup{{{t}}}\mathup{{{t}}}}, the 3TeV3\,\text{TeV} case has not yet been studied, but is not expected to result in substantial improvement due to the significantly reduced cross section at high energy. The three effective couplings gHggg^{\dagger}_{\mathup{{{H}}}\mathup{{{g}}}\mathup{{{g}}}}, gHg^{\dagger}_{\mathup{{{H}}}\mathup{}\mathup{}} and gHZg^{\dagger}_{\mathup{{{H}}}\mathup{{{Z}}}\mathup{}} are also included in the fit. Operation with 80%-80\,\% electron beam polarisation is assumed above 1 TeV.
Refer to caption
Figure 27: Illustration of the precision of the Higgs couplings of the three-stage CLIC programme determined in a model-independent fit without systematic or theoretical uncertainties. The dotted lines show the relative precisions of 1 % and 5 %.

The fit is performed in three stages, taking the statistical uncertainties obtainable from CLIC at the three considered energy stages (350GeV350\,\text{GeV}, 1.4TeV1.4\,\text{TeV}, 3TeV3\,\text{TeV}) successively into account. Each new stage also includes all measurements of the previous stages. Table 32 summarises the results. They are graphically illustrated in Figure 27. Since the model-independence of the analysis hinges on the absolute measurement of σ(ZH)\sigma(\mathup{{{Z}}}\mathup{{{H}}}) at 350GeV350\,\text{GeV}, which provides the coupling gHZZg_{\mathup{{{H}}}\mathup{{{Z}}}\mathup{{{Z}}}}, the precision of all other couplings is ultimately limited by this uncertainty.

12.2 Model-dependent Fit

For the model-dependent fit, it is assumed that the Higgs decay properties can be described by ten independent parameters κHZZ\kappa_{\mathup{{{H}}}\mathup{{{Z}}}\mathup{{{Z}}}}, κHWW\kappa_{\mathup{{{H}}}\mathup{{{W}}}\mathup{{{W}}}}, κHbb\kappa_{\mathup{{{H}}}\mathup{{{b}}}\mathup{{{b}}}}, κHcc\kappa_{\mathup{{{H}}}\mathup{{{c}}}\mathup{{{c}}}}, κH\kappa_{\mathup{{{H}}}\mathup{}\mathup{}}, κH\kappa_{\mathup{{{H}}}\mathup{}\mathup{}}, κHtt\kappa_{\mathup{{{H}}}\mathup{{{t}}}\mathup{{{t}}}}, κHgg\kappa_{{\mathup{{{H}}}\mathup{{{g}}}\mathup{{{g}}}}}, κH\kappa_{\mathup{{{H}}}\mathup{}\mathup{}} and κHZ\kappa_{\mathup{{{H}}}\mathup{{{Z}}}\mathup{}}. These factors are defined by the ratio of the Higgs partial width divided by the partial width expected in the Standard Model as:

κi2=Γi/ΓiSM.\kappa_{i}^{2}=\Gamma_{i}/\Gamma_{i}^{\text{SM}}\,.

In this scenario, the total width is given by the sum of the ten partial widths considered, which is equivalent to assuming no non-Standard-Model Higgs decays such as decays into new invisible particles. The ratio of the total width to its SM value is thus given by:

ΓH,mdΓHSM=iκi2BRi,\frac{\Gamma_{\mathup{{{H}}},\text{md}}}{\Gamma_{\mathup{{{H}}}}^{\text{SM}}}=\sum_{i}\kappa_{i}^{2}\ BR_{i}, (1)

where BRiBR_{i} is the SM branching fraction for the respective final state and the subscript “md” stands for “model-dependent”. To obtain these branching fractions, a fixed value for the Higgs mass has to be imposed. For the purpose of this study, 126GeV126\,\text{GeV} is assumed. The branching ratios are taken from the LHC Higgs cross section working group Dittmaier:2012vm . To exclude effects from numerical rounding errors, the total sum of BRBR’s is normalised to unity.

With these definitions, the CiC_{i}’s in the χ2\chi^{2} take the following forms: for the total e+eZH\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{Z}}}\mathup{{{H}}} cross section:

CZH=κHZZ2;C_{\mathup{{{Z}}}\mathup{{{H}}}}=\kappa_{\mathup{{{H}}}\mathup{{{Z}}}\mathup{{{Z}}}}^{2};

while for specific final states such as e+eZH\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{Z}}}\mathup{{{H}}}; Hbb¯\mathup{{{H}}}\to\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}} and e+eH¯ee\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}; Hbb¯\mathup{{{H}}}\to\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}}:

CZH,Hbb¯=κHZZ2κHbb2(ΓH,md/ΓHSM)C_{{\mathup{{{Z}}}\mathup{{{H}}}},\,\mathup{{{H}}}\to\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}}}=\frac{\kappa_{\mathup{{{H}}}\mathup{{{Z}}}\mathup{{{Z}}}}^{2}\kappa_{\mathup{{{H}}}\mathup{{{b}}}\mathup{{{b}}}}^{2}}{\left(\Gamma_{\mathup{{{H}}},\text{md}}/\Gamma_{\mathup{{{H}}}}^{\text{SM}}\right)}

and:

CH¯e,eHbb¯=κHWW2κHbb2(ΓH,md/ΓHSM),C_{\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}},\,\mathup{{{H}}}\to\mathup{{{b}}}\mathup{{\overline{{\mathup{{{b}}}}}}}}=\frac{\kappa_{\mathup{{{H}}}\mathup{{{W}}}\mathup{{{W}}}}^{2}\kappa_{\mathup{{{H}}}\mathup{{{b}}}\mathup{{{b}}}}^{2}}{\left(\Gamma_{\mathup{{{H}}},\text{md}}/\Gamma_{\mathup{{{H}}}}^{\text{SM}}\right)},

respectively.

Since at the first energy stage of CLIC no significant measurements of the H+\mathup{{{H}}}\to\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}}, H\mathup{{{H}}}\to\mathup{}\mathup{} and HZ\mathup{{{H}}}\to\mathup{{{Z}}}\mathup{} decays are possible, the fit is reduced to six free parameters (the coupling to top is also not constrained, but this is without effect on the total width) by setting H+\mathup{{{H}}}\to\mathup{{}^{\scriptstyle{+}}}\mathup{{}^{\scriptstyle{-}}}, H\mathup{{{H}}}\to\mathup{}\mathup{} and HZ\mathup{{{H}}}\to\mathup{{{Z}}}\mathup{} to zero. These branching ratios are much smaller than the derived uncertainty on the total width.

Two versions of the model-dependent fit are performed, one ignoring theoretical uncertainties to illustrate the full potential of the constrained fit, and one taking the present theoretical uncertainties of the branching fractions into account Dittmaier:2012vm . To avoid systematic biases in the fit results, the uncertainties are symmetrised, preserving the overall size of the uncertainties. Theoretical uncertainties on the production are assumed to be substantially smaller than in the decay, and are ignored in the present study. Depending on the concrete Higgs decay, multiple measurements may enter in the fit, originating from different centre-of-mass energies, different production channels or different signal final states. To account for this, the theoretical uncertainties are treated as fully correlated for each given Higgs decay.

Parameter Relative precision
350GeV350\,\text{GeV} + 1.4TeV1.4\,\text{TeV} + 3TeV3\,\text{TeV}
500fb1500\,\text{fb}^{-1} + 1.5ab11.5\,\text{ab}^{-1} + 2ab12\,\text{ab}^{-1}
κHZZ\kappa_{\mathup{{{H}}}\mathup{{{Z}}}\mathup{{{Z}}}} 0.6 % 0.4 % 0.3 %
κHWW\kappa_{\mathup{{{H}}}\mathup{{{W}}}\mathup{{{W}}}} 1.1 % 0.2 % 0.1 %
κHbb\kappa_{\mathup{{{H}}}\mathup{{{b}}}\mathup{{{b}}}} 1.8 % 0.4 % 0.2 %
κHcc\kappa_{\mathup{{{H}}}\mathup{{{c}}}\mathup{{{c}}}} 5.8 % 2.1 % 1.7 %
κH\kappa_{\mathup{{{H}}}\mathup{}\mathup{}} 3.9 % 1.5 % 1.1 %
κH\kappa_{\mathup{{{H}}}\mathup{}\mathup{}} - 14.1 % 7.8 %
κHtt\kappa_{\mathup{{{H}}}\mathup{{{t}}}\mathup{{{t}}}} - 4.1 % 4.1 %
κHgg\kappa_{\mathup{{{H}}}\mathup{{{g}}}\mathup{{{g}}}} 3.0 % 1.5 % 1.1 %
κH\kappa_{\mathup{{{H}}}\mathup{}\mathup{}} - 5.6 % 3.1 %
κHZ\kappa_{\mathup{{{H}}}\mathup{{{Z}}}\mathup{}} - 15.6 % 9.1 %
ΓH,md, derived\Gamma_{\mathup{{{H}}},\text{md,\,derived}} 1.4 % 0.4 % 0.3 %
Table 33: Results of the model-dependent fit without theoretical uncertainties. Values marked "-" can not be measured with sufficient precision at the given energy. For gHttg_{\mathup{{{H}}}\mathup{{{t}}}\mathup{{{t}}}}, the 3TeV3\,\text{TeV} case has not yet been studied, but is not expected to result in substantial improvement due to the significantly reduced cross section at high energy. The uncertainty of the total width is calculated from the fit results following Equation 1, taking the parameter correlations into account. Operation with 80%-80\,\% electron beam polarisation is assumed above 1 TeV.
Refer to caption
Figure 28: Illustration of the precision of the Higgs couplings of the three-stage CLIC programme determined in a model-dependent fit without systematic or theoretical uncertainties. The dotted lines show the relative precisions of 0.5 % and 2.5 %.
Parameter Relative precision
350GeV350\,\text{GeV} + 1.4TeV1.4\,\text{TeV} + 3TeV3\,\text{TeV}
500fb1500\,\text{fb}^{-1} + 1.5ab11.5\,\text{ab}^{-1} + 2ab12\,\text{ab}^{-1}
κHZZ\kappa_{\mathup{{{H}}}\mathup{{{Z}}}\mathup{{{Z}}}} 0.6 % 0.5 % 0.5 %
κHWW\kappa_{\mathup{{{H}}}\mathup{{{W}}}\mathup{{{W}}}} 1.2 % 0.5 % 0.5 %
κHbb\kappa_{\mathup{{{H}}}\mathup{{{b}}}\mathup{{{b}}}} 2.6 % 1.5 % 1.4 %
κHcc\kappa_{\mathup{{{H}}}\mathup{{{c}}}\mathup{{{c}}}} 6.3 % 3.2 % 2.9 %
κH\kappa_{\mathup{{{H}}}\mathup{}\mathup{}} 4.2 % 2.1 % 1.8 %
κH\kappa_{\mathup{{{H}}}\mathup{}\mathup{}} - 14.2 % 7.9 %
κHtt\kappa_{\mathup{{{H}}}\mathup{{{t}}}\mathup{{{t}}}} - 4.2 % 4.1 %
κHgg\kappa_{\mathup{{{H}}}\mathup{{{g}}}\mathup{{{g}}}} 5.1 % 4.0 % 3.9 %
κH\kappa_{\mathup{{{H}}}\mathup{}\mathup{}} - 5.9 % 3.5 %
κHZ\kappa_{\mathup{{{H}}}\mathup{{{Z}}}\mathup{}} - 16.0 % 9.8 %
ΓH,md, derived\Gamma_{\mathup{{{H}}},\text{md,\,derived}} 2.0 % 1.1 % 1.1 %
Table 34: Results of the model-dependent fit with the current theoretical uncertainties on the decay branching fractions. Values marked "-" can not be measured with sufficient precision at the given energy. For gHttg_{\mathup{{{H}}}\mathup{{{t}}}\mathup{{{t}}}}, the 3TeV3\,\text{TeV} case has not yet been studied, but is not expected to result in substantial improvement due to the significantly reduced cross section at high energy. The uncertainty of the total width is calculated from the fit results following Equation 1, taking the parameter correlations into account. Operation with 80%-80\,\% electron beam polarisation is assumed above 1 TeV.

As in the model-independent case the fit is performed in three stages, taking the statistical errors of CLIC at the three considered energy stages (350GeV350\,\text{GeV}, 1.4TeV1.4\,\text{TeV}, 3TeV3\,\text{TeV}) successively into account. Each new stage also includes all measurements of the previous stages. The total width is not a free parameter of the fit. Instead, its uncertainty, based on the assumption given in Equation 1, is calculated from the fit results, taking the full correlation of all parameters into account. Table 33 summarises the results of the fit without taking theoretical uncertainties into account, and Figure 28 illustrates the evolution of the precision over the full CLIC programme. Table 34 summarises the results of the model-dependent fit with theoretical uncertainties of the branching fractions.

12.3 Discussion of Fit Results

The full Higgs physics programme of CLIC, interpreted with a combined fit of the couplings to fermions and gauge bosons as well as the total width, and combined with the measurement of the self-coupling, will provide a comprehensive picture of the properties of this recently discovered particle. Figure 29 illustrates the expected uncertainties of the various couplings determined in the model-independent fit as well as the self-coupling as a function of the particle mass. Combined with the quasi model-independent measurement of the total width with a precision of 3.5%3.5\,\%, this illustrates the power of the three-stage CLIC programme. Each of the stages contributes significantly to the total precision, with the first stage at 350GeV350\,\text{GeV} providing the model-independent "anchor" of the coupling to the Z\mathup{{{Z}}} boson, as well as a first measurement of the total width and coupling measurements to most fermions and bosons. The higher-energy stages add direct measurements of the coupling to top quarks, to muons and photons as well as overall improvements of the branching ratio measurements and with that of the total width and all couplings except the one to the Z\mathup{{{Z}}} already measured in the first stage. They also provide a measurement of the self-coupling of the Higgs boson. In a model-dependent analysis, the improvement with increasing energy is even more significant than in the model-independent fit, since the overall limit of all couplings imposed by the model-independent measurement of the ZH\mathup{{{Z}}}\mathup{{{H}}} recoil process is removed.

Refer to caption
Figure 29: Illustration of the precision of the model-independent Higgs couplings and of the self-coupling as a function of particle mass. The line shows the SM prediction that the Higgs coupling of each particle is proportional to its mass.

13 Summary and Conclusions

A detailed study of the Higgs physics reach of CLIC has been presented in the context of CLIC operating in three energy stages, s=350GeV\sqrt{s}=350\,\text{GeV}, 1.4TeV1.4\,\text{TeV} and 3TeV3\,\text{TeV}. The initial stage of operation, 500fb1500\,\text{fb}^{-1} at s=350GeV\sqrt{s}=350\,\text{GeV}, allows the study of Higgs production from both the e+eZH\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{Z}}}\mathup{{{H}}} and the WW\mathup{{{W}}}\mathup{{{W}}}-fusion process. These data yield precise model-independent measurements of the Higgs boson couplings, in particular Δ(gHZZ)=0.8%\Delta(g_{\mathup{{{H}}}\mathup{{{Z}}}\mathup{{{Z}}}})=0.8\,\%, Δ(gHWW)=1.4%\Delta(g_{\mathup{{{H}}}\mathup{{{W}}}\mathup{{{W}}}})=1.4\,\% and Δ(gHbb)=3.0%\Delta(g_{\mathup{{{H}}}\mathup{{{b}}}\mathup{{{b}}}})=3.0\,\%. In addition, the branching ratio to invisible decay modes is constrained to Γinvis/ΓH<0.01\Gamma_{\text{invis}}/\Gamma_{\mathup{{{H}}}}<0.01 at 90%90\,\% C.L. and the total Higgs width is measured to Δ(ΓH)=6.7%\Delta(\Gamma_{\mathup{{{H}}}})=6.7\,\%. Operation of CLIC at s>1TeV\sqrt{s}>1\,\text{TeV} provides high-statistics samples of Higgs bosons produced through the WW\mathup{{{W}}}\mathup{{{W}}}-fusion process and give access to rarer processes such as e+ett¯H\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{t}}}\mathup{{\overline{{\mathup{{{t}}}}}}}\mathup{{{H}}} and e+eHH¯ee\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{+}}}\mathup{{{\mathup{{{e}}}}}^{\scriptstyle{-}}}\to\mathup{{{H}}}\mathup{{{H}}}\mathup{{{\mathup{}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}\mathup{{\overline{{\mathup{}}}}{}_{\scriptstyle{\!\mathup{{{e}}}}}}. Studies of these rare processes provide measurements of the top Yukawa coupling to 4.2%4.2\,\% and the Higgs boson self-coupling to about 20%20\,\%. Furthermore, the full data sample leads to very strong constraints on the Higgs couplings to vector bosons and fermions. In a model-independent treatment, many of the accessible couplings are measured to better than 2%2\,\%, and the model-dependent κ\kappa parameters are determined with a precision of between 0.1%0.1\,\% and 1%1\,\%.

Acknowledgements.
This work benefited from services provided by the ILC Virtual Organisation, supported by the national resource providers of the EGI Federation. This research was done using resources provided by the Open Science Grid, which is supported by the National Science Foundation and the U.S. Department of Energy’s Office of Science. The authors would like to acknowledge the use of the Oxford Particle Physics Computing Cluster. This work was supported by the Comisión Nacional de Investigación Científica y Tecnológica (CONICYT), Chile; the Ministry of Education, Youth and Sports, Czech Republic, under Grant INGO II-LG 14033; the DFG cluster of excellence “Origin and Structure of the Universe”, Germany; the EC HIGGSTOOLS project, under contract PITN-GA-2012-316704; the European Union’s Horizon 2020 Research and Innovation programme under Grant Agreement no. 654168; the German - Israel Foundation (GIF); the Israel Science Foundation (ISF); the I-CORE programme of VATAT, ISF and the Israel Academy of Sciences, Israel; the Research Council of Norway; the Ministry of Education, Science and Technological Development of the Republic of Serbia through the national project OI171012; the Polish Ministry of Science and Higher Education under contract nr 3501/H2020/2016/2; the National Science Centre, Poland, HARMONIA project, under contracts 2013/10/M/ST2/00629 and UMO-2015/18/M/ST2/00518; the Romanian agencies UEFISCDI and ROSA; the Secretary of State of Research, Development and Innovation of Spain, under project FPA2011-15330-E, FPA2015-71956-REDT; the Gates Foundation, United Kingdom; the UK Science and Technology Facilities Council (STFC), United Kingdom; and the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences and Office of High Energy Physics under contract DE-AC02-06CH11357.

References

  • (1) G. Aad et al., Phys. Lett. B716, 1 (2012). DOI 10.1016/j.physletb.2012.08.020
  • (2) S. Chatrchyan et al., Phys. Lett. B716, 30 (2012). DOI 10.1016/j.physletb.2012.08.021
  • (3) F. Englert, R. Brout, Phys. Rev. Lett. 13, 321 (1964). DOI 10.1103/PhysRevLett.13.321
  • (4) P. Higgs, Phys. Lett. 12, 132 (1964). DOI 10.1016/0031-9163(64)91136-9
  • (5) P. Higgs, Phys. Rev. Lett. 13, 508 (1964). DOI 10.1103/PhysRevLett.13.508
  • (6) G. Guralnik, C. Hagen, T. Kibble, Phys. Rev. Lett. 13, 585 (1964). DOI 10.1103/PhysRevLett.13.585
  • (7) P. Higgs, Phys. Rev. 145, 1156 (1966). DOI 10.1103/PhysRev.145.1156
  • (8) T. Kibble, Phys. Rev. 155, 1554 (1967). DOI 10.1103/PhysRev.155.1554
  • (9) H. Abramowicz et al., Physics at the CLIC ee+\mathit{{{\mathit{{{e}}{}_{\mspace{-2.0mu}\scriptstyle{}}^{\mspace{0.0mu}\scriptstyle{}}}}}{}_{\mspace{-2.0mu}\scriptstyle{}}^{\mspace{0.0mu}\scriptstyle{+}}}\mathit{{{\mathit{{{e}}{}_{\mspace{-2.0mu}\scriptstyle{}}^{\mspace{0.0mu}\scriptstyle{}}}}}{}_{\mspace{-2.0mu}\scriptstyle{}}^{\mspace{0.0mu}\scriptstyle{-}}} Linear Collider – Input to the Snowmass process 2013 (2013). arXiv:1307.5288
  • (10) M. Aicheler et al. (eds.), A Multi-TeV Linear Collider based on CLIC Technology: CLIC Conceptual Design Report (CERN, 2012). DOI 10.5170/CERN-2012-007
  • (11) L. Linssen et al. (eds.), Physics and Detectors at CLIC: CLIC Conceptual Design Report (CERN, 2012). DOI 10.5170/CERN-2012-003
  • (12) H. Aihara et al. (eds.), SiD Letter of Intent (2009). SLAC-R-989, arXiv:0911.0006
  • (13) T. Behnke et al. (eds.), The International Linear Collider Technical Design Report - Volume 4: Detectors (2013). ILC-Report-2013-040, arXiv:1306.6329
  • (14) T. Abe et al., The International Large Detector: Letter of Intent (2010). DESY 2009-87, arXiv:1006.3396
  • (15) M. Thomson, Nucl. Instrum. Meth. A611, 25 (2009). DOI 10.1016/j.nima.2009.09.009
  • (16) J. Marshall, A. Münnich, M. Thomson, Nucl. Instrum. Meth. A700, 153 (2013). DOI 10.1016/j.nima.2012.10.038
  • (17) D. Buskulic et al., Nucl. Instrum. Meth. A360(3), 481 (1995). DOI 10.1016/0168-9002(95)00138-7
  • (18) The CMS Collaboration, Particle-flow event reconstruction in CMS and performance for jets, taus, and missing ET (2009). URL https://cds.cern.ch/record/1194487/. CMS PAS PFT-09-001
  • (19) P. Burrows et al. (eds.), Updated baseline for a staged Compact Linear Collider (CERN, 2016). DOI 10.5170/CERN-2016-004
  • (20) W. Kilian, T. Ohl, J. Reuter, Eur. Phys. J. C71, 1742 (2011). DOI 10.1140/epjc/s10052-011-1742-y
  • (21) K.A. Olive et al., Chin. Phys. C38, 090001 (2014). DOI 10.1088/1674-1137/38/9/090001
  • (22) S. Dittmaier et al., Handbook of LHC Higgs Cross Sections: 2. Differential Distributions (2012). DOI 10.5170/CERN-2012-002
  • (23) J. Beringer et al., Phys. Rev. D86, 010001 (2012). DOI 10.1103/PhysRevD.86.010001
  • (24) S. Dawson et al., Working Group Report: Higgs Boson. FERMILAB-CONF-13-671-T, arXiv:1310.8361
  • (25) H. Baer et al. (eds.), The International Linear Collider Technical Design Report - Volume 2: Physics (2013). ILC-Report-2013-040, arXiv:1306.6352
  • (26) S. Agostinelli et al., Nucl. Instrum. Meth. A506, 250 (2003). DOI 10.1016/S0168-9002(03)01368-8
  • (27) J. Allison et al., IEEE Trans. Nucl. Sci. 53, 270 (2006). DOI 10.1109/TNS.2006.869826
  • (28) T. Sjöstrand, S. Mrenna, P.Z. Skands, JHEP 0605, 026 (2006). DOI 10.1088/1126-6708/2006/05/026
  • (29) G. Alexander et al., Z. Phys. C69, 543 (1996). DOI 10.1007/s002880050059
  • (30) Z. Was, Nucl. Phys. Proc. Suppl. 98, 96 (2001). DOI 10.1016/S0920-5632(01)01200-2
  • (31) K. Fujii, Physics Study Libraries. URL http://www-jlc.kek.jp/subg/offl/physsim/
  • (32) P. Mora de Freitas, H. Videau, Detector simulation with MOKKA / GEANT4: Present and future (2002). LC-TOOL-2003-010
  • (33) N. Graf, J. McCormick, AIP Conf. Proc. 867, 503 (2006). DOI 10.1063/1.2396991
  • (34) F. Gaede, Nucl. Instrum. Meth. A559, 177 (2006). DOI 10.1016/j.nima.2005.11.138
  • (35) N.A. Graf, J. Phys. Conf. Ser. 331, 032012 (2011). DOI 10.1088/1742-6596/331/3/032012
  • (36) J.S. Marshall, M.A. Thomson, Eur. Phys. J. C75, 439 (2015). DOI 10.1140/epjc/s10052-015-3659-3
  • (37) T. Suehara, T. Tanabe, Nucl. Instrum. Meth. A808, 109 (2016). DOI 10.1016/j.nima.2015.11.054
  • (38) P. Schade, A. Lucaci-Timoce, Description of the signal and background event mixing as implemented in the Marlin processor OverlayTiming (2011). URL http://cds.cern.ch/record/1443537. LCD-Note-2011-006
  • (39) M. Cacciari, G.P. Salam, G. Soyez, Eur. Phys. J. C72, 1896 (2012). DOI 10.1140/epjc/s10052-012-1896-2
  • (40) S. Catani et al., Phys. Lett. B269, 432 (1991). DOI 10.1016/0370-2693(91)90196-W
  • (41) S. Catani et al., Nucl. Phys. B406, 187 (1993). DOI 10.1016/0550-3213(93)90166-M
  • (42) S.D. Ellis, D.E. Soper, Phys. Rev. D48, 3160 (1993). DOI 10.1103/PhysRevD.48.3160
  • (43) C. Grefe et al., J. Phys. Conf. Ser. 513, 032077 (2014). DOI 10.1088/1742-6596/513/3/032077
  • (44) A. Tsaregorodtsev et al., J. Phys. Conf. Ser. 119, 062048 (2008). DOI 10.1088/1742-6596/119/6/062048
  • (45) M. Thomson, Eur. Phys. J. C76, 72 (2016). DOI 10.1140/epjc/s10052-016-3911-5
  • (46) J. Marshall, Higgs Mass and Cross-Section Measurements at a 500 GeV CLIC Machine, Operating at s\sqrt{s} = 350 GeV and 500 GeV (2012). URL https://cds.cern.ch/record/1498592. LCD-Note-2012-015
  • (47) J. Therhaag, AIP Conf. Proc. 1504, 1013 (2009). DOI 10.1063/1.4771869
  • (48) K.S. Cranmer, Comput. Phys. Commun. 136, 198 (2001). DOI 10.1016/S0010-4655(00)00243-5
  • (49) K.S. Cranmer, Kernel Estimation for Parameterizing Distributions of Discriminating Variables (1999). ALEPH Note 99-144
  • (50) The OPAL Collaboration, Search for Neutral Higgs Bosons in ee+\mathit{{{\mathit{{{e}}{}_{\mspace{-2.0mu}\scriptstyle{}}^{\mspace{0.0mu}\scriptstyle{}}}}}{}_{\mspace{-2.0mu}\scriptstyle{}}^{\mspace{0.0mu}\scriptstyle{+}}}\mathit{{{\mathit{{{e}}{}_{\mspace{-2.0mu}\scriptstyle{}}^{\mspace{0.0mu}\scriptstyle{}}}}}{}_{\mspace{-2.0mu}\scriptstyle{}}^{\mspace{0.0mu}\scriptstyle{-}}} Collisions at s=192202\sqrt{s}=192-202 GeV (2000). OPAL Physics Note PN426
  • (51) A.L. Read, Modified frequentist analysis of search results (the CL_s method) (2000). DOI 10.5170/CERN-2000-005.81. URL http://cds.cern.ch/record/451614/. CERN-OPEN-2000-205
  • (52) A. Münnich, Measurement of σ(ee+H¯)×BR(H)\sigma(\mathit{{{\mathit{{{e}}{}_{\mspace{-2.0mu}\scriptstyle{}}^{\mspace{0.0mu}\scriptstyle{}}}}}{}_{\mspace{-2.0mu}\scriptstyle{}}^{\mspace{0.0mu}\scriptstyle{+}}}\mathit{{{\mathit{{{e}}{}_{\mspace{-2.0mu}\scriptstyle{}}^{\mspace{0.0mu}\scriptstyle{}}}}}{}_{\mspace{-2.0mu}\scriptstyle{}}^{\mspace{0.0mu}\scriptstyle{-}}}\to\mathit{{{H}}{}_{\mspace{-2.0mu}\scriptstyle{}}^{\mspace{0.0mu}\scriptstyle{}}}\mathit{{{\upnu}}{}_{\mspace{-2.0mu}\scriptstyle{}}^{\mspace{0.0mu}\scriptstyle{}}}\mathit{{\mkern 3.5mu\overline{\mkern-3.5mu{\upnu}}}{}_{\mspace{-3.0mu}\scriptstyle{}}^{\mspace{1.0mu}\scriptstyle{}}})\times\textnormal{BR}(\mathit{{{H}}{}_{\mspace{-2.0mu}\scriptstyle{}}^{\mspace{0.0mu}\scriptstyle{}}}\to\mathit{{{\uptau}}{}_{\mspace{-2.0mu}\scriptstyle{}}^{\mspace{0.0mu}\scriptstyle{}}}\mathit{{{\uptau}}{}_{\mspace{-2.0mu}\scriptstyle{}}^{\mspace{0.0mu}\scriptstyle{}}}) at CLIC @ 350 GeV (2013). URL http://cds.cern.ch/record/1504764. LCD-Note-2012-019
  • (53) A. Münnich, Taufinder: A Reconstruction Algorithm for tau Leptons at Linear Colliders (2010). URL http://cds.cern.ch/record/1443551/. LCD-Note-2010-009
  • (54) A. Münnich, Measurement of σ(ee+H¯)×BR(H)\sigma(\mathit{{{\mathit{{{e}}{}_{\mspace{-2.0mu}\scriptstyle{}}^{\mspace{0.0mu}\scriptstyle{}}}}}{}_{\mspace{-2.0mu}\scriptstyle{}}^{\mspace{0.0mu}\scriptstyle{+}}}\mathit{{{\mathit{{{e}}{}_{\mspace{-2.0mu}\scriptstyle{}}^{\mspace{0.0mu}\scriptstyle{}}}}}{}_{\mspace{-2.0mu}\scriptstyle{}}^{\mspace{0.0mu}\scriptstyle{-}}}\to\mathit{{{H}}{}_{\mspace{-2.0mu}\scriptstyle{}}^{\mspace{0.0mu}\scriptstyle{}}}\mathit{{{\upnu}}{}_{\mspace{-2.0mu}\scriptstyle{}}^{\mspace{0.0mu}\scriptstyle{}}}\mathit{{\mkern 3.5mu\overline{\mkern-3.5mu{\upnu}}}{}_{\mspace{-3.0mu}\scriptstyle{}}^{\mspace{1.0mu}\scriptstyle{}}})\times\textnormal{BR}(\mathit{{{H}}{}_{\mspace{-2.0mu}\scriptstyle{}}^{\mspace{0.0mu}\scriptstyle{}}}\to\mathit{{{\uptau}}{}_{\mspace{-2.0mu}\scriptstyle{}}^{\mspace{0.0mu}\scriptstyle{}}}\mathit{{{\uptau}}{}_{\mspace{-2.0mu}\scriptstyle{}}^{\mspace{0.0mu}\scriptstyle{}}}) at CLIC @ 1.4 TeV (2013). URL http://cds.cern.ch/record/1558360/. LCD-Note-2012-010
  • (55) S. Kawada et al., Eur. Phys. J. C75, 617 (2015). DOI 10.1140/epjc/s10052-015-3854-2
  • (56) A. Winter, N. Watson, Measurement of the HWW\mathit{{{H}}{}_{\mspace{-2.0mu}\scriptstyle{}}^{\mspace{0.0mu}\scriptstyle{}}}\to\mathit{{{W}}{}_{\mspace{-2.0mu}\scriptstyle{}}^{\mspace{0.0mu}\scriptstyle{}}}\mathit{{{W}}{}_{\mspace{-2.0mu}\scriptstyle{}}^{\mspace{0.0mu}\scriptstyle{}}}^{*} Branching Ratio at 1.4 TeV using the semileptonic final state at CLIC (2016). URL http://cds.cern.ch/record/2157035/. CLICdp-Note-2016-003
  • (57) C. Grefe, E. Sicking, Physics potential of the σee+H¯ee×BRHZ\sigma_{\mathit{{{\mathit{{{e}}{}_{\mspace{-2.0mu}\scriptstyle{}}^{\mspace{0.0mu}\scriptstyle{}}}}}{}_{\mspace{-2.0mu}\scriptstyle{}}^{\mspace{0.0mu}\scriptstyle{+}}}\mathit{{{\mathit{{{e}}{}_{\mspace{-2.0mu}\scriptstyle{}}^{\mspace{0.0mu}\scriptstyle{}}}}}{}_{\mspace{-2.0mu}\scriptstyle{}}^{\mspace{0.0mu}\scriptstyle{-}}}\to\mathit{{{H}}{}_{\mspace{-2.0mu}\scriptstyle{}}^{\mspace{0.0mu}\scriptstyle{}}}\mathit{{{\mathit{{{\upnu}}{}_{\mspace{-2.0mu}\scriptstyle{}}^{\mspace{0.0mu}\scriptstyle{}}}}}{}_{\mspace{-2.0mu}\scriptstyle{\!\mathit{{{e}}{}_{\mspace{-2.0mu}\scriptstyle{}}^{\mspace{0.0mu}\scriptstyle{}}}}}^{\mspace{0.0mu}\scriptstyle{}}}\mathit{{\mkern 3.5mu\overline{\mkern-3.5mu{\mathit{{{\upnu}}{}_{\mspace{-2.0mu}\scriptstyle{}}^{\mspace{0.0mu}\scriptstyle{}}}}}}{}_{\mspace{-3.0mu}\scriptstyle{\!\mathit{{{e}}{}_{\mspace{-2.0mu}\scriptstyle{}}^{\mspace{0.0mu}\scriptstyle{}}}}}^{\mspace{1.0mu}\scriptstyle{}}}}\times\textnormal{BR}_{\mathit{{{H}}{}_{\mspace{-2.0mu}\scriptstyle{}}^{\mspace{0.0mu}\scriptstyle{}}}\to\mathit{{{Z}}{}_{\mspace{-2.0mu}\scriptstyle{}}^{\mspace{0.0mu}\scriptstyle{}}}\mathit{{{\upgamma}}{}_{\mspace{-2.0mu}\scriptstyle{}}^{\mspace{0.0mu}\scriptstyle{}}}} measurement at a 1.4 TeV Compact Linear Collider (2014). URL http://cds.cern.ch/record/1749741. CLICdp-Note-2014-003
  • (58) C. Grefe, T. Lastovicka, J. Strube, Eur. Phys. J. C73(2), 2290 (2013). DOI 10.1140/epjc/s10052-013-2290-4
  • (59) G. Milutinović-Dumbelović et al., Eur. Phys. J. C75, 515 (2015). DOI 10.1140/epjc/s10052-015-3742-9
  • (60) S. Redford, P. Roloff, M. Vogel, Physics potential of the top Yukawa coupling measurement at a 1.4 TeV Compact Linear Collider using the CLIC_SiD detector (2014). URL http://cds.cern.ch/record/1690648. CLICdp-Note-2014-001
  • (61) S. Redford, P. Roloff, M. Vogel, Study of the effect of additional background channels on the top Yukawa coupling measurement at a 1.4 TeV CLIC (2015). URL http://cds.cern.ch/record/1982243/. CLICdp-Note-2015-001
  • (62) A. Djouadi, J. Kalinowski, P.M. Zerwas, Z. Phys. C54, 255 (1992). DOI 10.1007/BF01566654
  • (63) A. Djouadi, J. Kalinowski, P.M. Zerwas, Mod. Phys. Lett. A7, 1765 (1992). DOI 10.1142/S0217732392001464
  • (64) T. Price et al., Eur. Phys. J. C75, 309 (2015). DOI 10.1140/epjc/s10052-015-3532-4
  • (65) R.S. Gupta, H. Rzehak, J.D. Wells, Phys. Rev. D88, 055024 (2013). DOI 10.1103/PhysRevD.88.055024
  • (66) S. Poss, A. Sailer, Eur. Phys. J. C74, 2833 (2014). DOI 10.1140/epjc/s10052-014-2833-3
  • (67) S. Lukić et al., JINST 8, P05008 (2013). DOI 10.1088/1748-0221/8/05/P05008
  • (68) I. Božović-Jelisavčić et al., JINST 8, P08012 (2013). DOI 10.1088/1748-0221/8/08/P08012
  • (69) G. Wilson, Beam Polarization Measurement Using Single Bosons with Missing Energy (2012). International Workshop on Future Linear Colliders (LCWS12)
  • (70) F. James, M. Roos, Computer Physics Communications 10(6), 343 (1975). DOI 10.1016/0010-4655(75)90039-9