This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

High-precision determination of the 𝑲𝒆𝟑K_{e3} radiative corrections

Chien-Yeah Seng1    Daniel Galviz1    Mikhail Gorchtein2,3,4    Ulf-G. Meißner1,5,6 1Helmholtz-Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical Physics,
Universität Bonn, 53115 Bonn, Germany
2Helmholtz Institute Mainz, D-55099 Mainz, Germany 3GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany 4Johannes Gutenberg University, D-55099 Mainz, Germany 5Institute for Advanced Simulation, Institut für Kernphysik and Jülich Center for Hadron Physics, Forschungszentrum Jülich, 52425 Jülich, Germany 6Tbilisi State University, 0186 Tbilisi, Georgia
(August 2, 2025)
Abstract

We report a high-precision calculation of the Standard Model electroweak radiative corrections in the Kπe+ν(γ)K\to\pi e^{+}\nu(\gamma) decay as a part of the combined theory effort to understand the existing anomaly in the determinations of VusV_{us}. Our new analysis features a chiral resummation of the large infrared-singular terms in the radiative corrections and a well-under-control strong interaction uncertainty based on the most recent lattice QCD inputs. While being consistent with the current state-of-the-art results obtained from chiral perturbation theory, we reduce the existing theory uncertainty from 10310^{-3} to 10410^{-4}. Our result suggests that the Standard Model electroweak effects cannot account for the VusV_{us} anomaly.

An interesting anomaly has recently been observed in VusV_{us}, which is a top-row element of the Cabibbo-Kobayashi-Maskawa (CKM) matrix Cabibbo (1963); Kobayashi and Maskawa (1973) in the Standard Model (SM) of particle physics. The measured values of this matrix element stem from two different channels of kaon decay, Kμν(γ)K\to\mu\nu(\gamma) (Kμ2K_{\mu 2}) and Kπl+ν(γ)K\to\pi l^{+}\nu(\gamma) (Kl3K_{l3}), and show a disagreement at the 3σ\sim 3\sigma level Zyla et al. (2020):

|Vus|\displaystyle|V_{us}| =\displaystyle= 0.2252(5)(Kμ2),\displaystyle 0.2252(5)\>\>(K_{\mu 2})\leavevmode\nobreak\ , (1)
=\displaystyle= 0.2231(7)(Kl3),\displaystyle 0.2231(7)\>\>(K_{l3})\leavevmode\nobreak\ ,

which may hint to the existence of physics beyond the Standard Model (BSM). The value obtained from the Kl3K_{l3} decay is particularly interesting because it also leads to a violation of the top-row CKM unitarity at (35)σ(3-5)\sigma upon combining with the most recent updates of VudV_{ud} Seng et al. (2018); Czarnecki et al. (2019); Seng et al. (2020a); Shiells et al. (2020), depending on the amount of nuclear uncertainties assigned to the latter Seng et al. (2019); Gorchtein (2019). However, despite of an active discussion about the possible BSM origin of the Kμ2K_{\mu 2}Kl3K_{l3} discrepancy Belfatto et al. (2020); Tan (2019); Grossman et al. (2020); Coutinho et al. (2020); Cheung et al. (2020); Crivellin and Hoferichter (2020); Endo and Mishima (2020); Capdevila et al. (2020); Kirk (2020), the current significance level is not yet sufficient to claim a discovery. One of the main obstacles is the large hadronic uncertainty in the electroweak radiative corrections (EWRC), which are the focus of this work.

Among the many studies of the EWRC in Kl3K_{l3} Ginsberg (1966, 1968, 1967, 1970); Becherrawy (1970); Bytev et al. (2003); Andre (2007); Garcia and Maya (1981); Juarez-Leon et al. (2011); Torres et al. (2012); Neri et al. (2015), the standard inputs in global analyses Antonelli et al. (2010); Cirigliano et al. (2012) are based on chiral perturbation theory (ChPT) which is the low-energy effective field theory of Quantum Chromodynamics (QCD). Within this framework, the “short-distance” electroweak corrections are isolated as a constant factor, while the “long-distance” electromagnetic corrections are calculated up to 𝒪(e2p2)\mathcal{O}(e^{2}p^{2}) Cirigliano et al. (2002, 2004, 2008), with ee the electric charge and pp a small momentum/meson mass. The estimated theory uncertainties in these calculations are of the order 10310^{-3}, and originate from: (1) the neglected contributions at 𝒪(e2p4)\mathcal{O}(e^{2}p^{4}), and (2) the contributions from non-perturbative QCD at the chiral symmetry breaking scale Λχ4πFπ\Lambda_{\chi}\simeq 4\pi F_{\pi} that exhibit themselves as the poorly-constrained low-energy constants (LECs) in the theory Urech (1995); Knecht et al. (2000). These natural limitations prohibit further improvements of the precision level within the original framework.

In this letter we report a new calculation of the EWRC in Ke3K_{e3}. Based on a newly-proposed computational framework Seng et al. (2020b, c) that hybridizes the classical approach by Sirlin Sirlin (1978) and modern ChPT, we effectively resum the numerically largest terms in the EWRC to all orders in the chiral expansion and significantly reduce the 𝒪(e2p4)\mathcal{O}(e^{2}p^{4}) uncertainty. Also, we utilize the high-precision lattice QCD calculations of the forward axial γW\gamma W-box diagrams Feng et al. (2020); Ma et al. (2021) to constrain the physics from the non-perturbative QCD. With these improvements, we reduce the theory uncertainty in the EWRC to Ke3K_{e3} to an unprecedented level of 10410^{-4}. We will outline here the most important steps that lead to the final results, while the full detail of the calculation will appear in a longer paper Seng et al. (2021).

Our primary goal is to study the fractional correction to the Ke3K_{e3} decay rate due to EWRC:

δKe3=δΓKe3/(ΓKe3)tree\delta_{K_{e3}}=\delta\Gamma_{K_{e3}}/\left(\Gamma_{K_{e3}}\right)_{\mathrm{tree}} (2)

up to the precision level of 10410^{-4}. The denominator in Eq.(2) comes from the tree-level amplitude for K(p)π(p)e+(pe)ν(pν)K(p)\rightarrow\pi(p^{\prime})e^{+}(p_{e})\nu(p_{\nu}):

M0=2GFu¯νLγλveLFλ(p,p),M_{0}=-\sqrt{2}G_{F}\bar{u}_{\nu L}\gamma_{\lambda}v_{eL}F^{\lambda}(p^{\prime},p)\leavevmode\nobreak\ , (3)

where GFG_{F} is the Fermi constant, Fλ(p,p)=Vus[f+(t)(p+p)λ+f(t)(pp)λ]F^{\lambda}(p^{\prime},p)=V_{us}^{*}\left[f_{+}(t)(p+p^{\prime})^{\lambda}+f_{-}(t)(p-p^{\prime})^{\lambda}\right] is the charged weak matrix element and f±(t)f_{\pm}(t) are the charged weak form factors, with t=(pp)2t=(p-p^{\prime})^{2}. We restrict ourselves to Ke3K_{e3} for which the contribution from ff_{-} to the decay rate is suppressed by me2/MK2106m_{e}^{2}/M_{K}^{2}\approx 10^{-6} and can be neglected.

Refer to caption
Refer to caption
Figure 1: Non-trivial loop diagrams in the Ke3K_{e3} EWRC. A factor MW2/(MW2q2)M_{W}^{2}/(M_{W}^{2}-q^{\prime 2}) is attached to the propagator of γ<\gamma_{<}.

The full EWRC includes both the virtual corrections and the bremsstrahlung contributions, and we shall start with the former. A generic one-loop correction to the decay amplitude reads:

δMvir=2GFu¯νLγλveLIλ,\delta M_{\mathrm{vir}}=-\sqrt{2}G_{F}\bar{u}_{\nu L}\gamma_{\lambda}v_{eL}I^{\lambda}\leavevmode\nobreak\ , (4)

where the loop integrals are contained in IλI^{\lambda}. It results in a shift of the form factors: f±f±+δf±f_{\pm}\to f_{\pm}+\delta f_{\pm}, except that δf±\delta f_{\pm} can also depend on s=(p+pe)2s=(p^{\prime}+p_{e})^{2} or u=(ppe)2u=(p-p_{e})^{2}. Again, in Ke3K_{e3} only δf+\delta f_{+} is relevant.

We follow the categorization of the different components of the 𝒪(GFα)\mathcal{O}(G_{F}\alpha) virtual corrections in Refs.Seng et al. (2020b, c), with α=e2/4π\alpha=e^{2}/4\pi. First, there are pieces in which the loop integrals are independent of the hadron properties and can be computed analytically. They are contained in Eqs.(2.4) and (2.13) in Ref. Seng et al. (2020c), which combine to give:

(δf+)I\displaystyle\left(\delta f_{+}\right)_{\mathrm{I}} ={α2π[lnMZ2me214lnMW2me2+12lnme2Mγ238..\displaystyle=\biggl{\{}\frac{\alpha}{2\pi}\biggl{[}\ln\frac{M_{Z}^{2}}{m_{e}^{2}}-\frac{1}{4}\ln\frac{M_{W}^{2}}{m_{e}^{2}}+\frac{1}{2}\ln\frac{m_{e}^{2}}{M_{\gamma}^{2}}-\frac{3}{8}\biggr{.}\biggr{.}
..\displaystyle\biggl{.}\biggl{.} +12a~g]+12δHOQED}f+(t),\displaystyle\qquad\qquad+\frac{1}{2}\tilde{a}_{g}\biggr{]}+\frac{1}{2}\delta_{\mathrm{HO}}^{\mathrm{QED}}\biggr{\}}f_{+}(t)\leavevmode\nobreak\ , (5)

where a~g=0.083\tilde{a}_{g}=-0.083 and δHOQED=0.0010(3)\delta_{\mathrm{HO}}^{\mathrm{QED}}=0.0010(3) come from perturbative QCD corrections and the resummation of large QED logarithms, respectively. Notice also that we have introduced a small photon mass MγM_{\gamma} to regularize the infrared (IR)-divergence.

The remaining loop diagrams in the EWRC, in which the entire dependence on hadronic structure is contained, are depicted in Fig.1. They depend on the following quantities:

Tμνd4xeiqxπ(p)|T{Jemμ(x)JWν(0)}|K(p)\displaystyle T^{\mu\nu}\equiv\int d^{4}xe^{iq^{\prime}\cdot x}\left\langle\pi(p^{\prime})\right|T\{J_{\mathrm{em}}^{\mu}(x)J_{W}^{\nu\dagger}(0)\}\left|K(p)\right\rangle
Γμd4xeiqxπ(p)|T{Jemμ(x)JW(0)}|K(p),\displaystyle\Gamma^{\mu}\equiv\int d^{4}xe^{iq^{\prime}\cdot x}\left\langle\pi(p^{\prime})\right|T\{J_{\mathrm{em}}^{\mu}(x)\partial\cdot J_{W}^{\dagger}(0)\}\left|K(p)\right\rangle\leavevmode\nobreak\ , (6)

which are both functions of the momenta {q,p,p}\{q^{\prime},p^{\prime},p\}. In particular, we may split the tensor TμνT^{\mu\nu} into two pieces: Tμν=(Tμν)V+(Tμν)AT^{\mu\nu}=\left(T^{\mu\nu}\right)_{V}+\left(T^{\mu\nu}\right)_{A} that contain the vector and axial component of the charged weak current, respectively. With these, the first relevant integral can be written as:

I𝔄λ=e2d4q(2π)41[(peq)2me2][q2Mγ2]\displaystyle I_{\mathfrak{A}}^{\lambda}=-e^{2}\int\frac{d^{4}q^{\prime}}{(2\pi)^{4}}\frac{1}{\left[(p_{e}-q^{\prime})^{2}-m_{e}^{2}\right]\left[q^{\prime 2}-M_{\gamma}^{2}\right]}
×{2peqqλq2Mγ2Tμμ+2peμTμλ(pp)μTλμ+iΓλ.\displaystyle\times\biggl{\{}\frac{2p_{e}\cdot q^{\prime}q^{\prime\lambda}}{q^{\prime 2}-M_{\gamma}^{2}}T^{\mu}_{\>\mu}+2p_{e\mu}T^{\mu\lambda}-(p-p^{\prime})_{\mu}T^{\lambda\mu}+i\Gamma^{\lambda}\biggr{.}
.iϵμναλqα(Tμν)V},\displaystyle\biggl{.}-i\epsilon^{\mu\nu\alpha\lambda}q_{\alpha}^{\prime}\left(T_{\mu\nu}\right)_{V}\biggr{\}}\leavevmode\nobreak\ , (7)

where the first two lines come from Eq.(2.13) of Ref. Seng et al. (2020c), and the third line is a part of δMγWA\delta M_{\gamma W}^{A} in Eq. (2.10) of the same paper.

Refer to caption
Refer to caption
Refer to caption
Figure 2: Pole (left, middle) and seagull diagrams.

The operator product expansion (OPE) shows that the |q|>Λχ|q^{\prime}|>\Lambda_{\chi} region does not contribute to the integral I𝔄λI_{\mathfrak{A}}^{\lambda}, therefore only the low-energy expressions of TμνT^{\mu\nu} and Γμ\Gamma^{\mu} are needed. To this end, we find it useful to split them into the “pole” and “seagull” terms respectively, as depicted in Fig. 2:

Tμν=Tpoleμν+Tsgμν,Γμ=Γpoleμ+Γsgμ.T^{\mu\nu}=T^{\mu\nu}_{\mathrm{pole}}+T^{\mu\nu}_{\mathrm{sg}},\>\>\Gamma^{\mu}=\Gamma^{\mu}_{\mathrm{pole}}+\Gamma^{\mu}_{\mathrm{sg}}\leavevmode\nobreak\ . (8)

Furthermore, we can obtain the so-called “convection term” by setting q0q^{\prime}\to 0 in both the electromagnetic form factor and the charged weak vertex of the pole term Meister and Yennie (1963). It represents the minimal expression that satisfies the exact electromagnetic Ward identity, and thus gives the full IR-divergent structures in the loop integrals.

The seagull term receives contributions from resonances and the many-particle continuum. An estimate operating with low-lying resonances Ecker et al. (1989a, b); Cirigliano et al. (2006) suggests that its contribution to δKe3\delta_{K_{e3}} is at most 10410^{-4}. Note that t-channel exchanges that still retain some sensitivity to the long-range effects do not contribute to Eq.(7). To stay on the conservative side, we assign to it a generic uncertainty of 2×1042\times 10^{-4}. Therefore, δf+\delta f_{+} derived from I𝔄λI_{\mathfrak{A}}^{\lambda} is dominated by the pole contribution which is fully determined by the KK and π\pi electromagnetic and charged weak form factors. The result splits into two pieces:

(δf+)𝔄=(δf+)II+(δf+)𝔄fin,\left(\delta f_{+}\right)_{\mathfrak{A}}=\left(\delta f_{+}\right)_{\mathrm{II}}+\left(\delta f_{+}\right)_{\mathfrak{A}}^{\mathrm{fin}}\leavevmode\nobreak\ , (9)

where (δf+)II\left(\delta f_{+}\right)_{\mathrm{II}} is a model-independent IR-divergent piece. The IR-finite piece, (δf+)𝔄fin\left(\delta f_{+}\right)_{\mathfrak{A}}^{\mathrm{fin}}, on the other hand, is evaluated numerically by adopting a monopole parameterization of the hadronic form factors Amendolia et al. (1986a, b); Batley et al. (2018). Notice that the integral I𝔄λI_{\mathfrak{A}}^{\lambda} only probes the region qpeppMKMπq^{\prime}\sim p_{e}\sim p-p^{\prime}\sim M_{K}-M_{\pi}, where different parameterizations of the form factors are practically indistinguishable. In particular, we find that the main source of the uncertainty is the K+K^{+} mean-square charge radius and the experimental uncertainty thereof, rK2=0.34(5)\left\langle r_{K}^{2}\right\rangle=0.34(5) fm2 Amendolia et al. (1986a).

The second relevant integral is:

I𝔅λ=ie2d4q(2π)4MW2MW2q2ϵμναλqα(Tμν)A[(peq)2me2]q2,I_{\mathfrak{B}}^{\lambda}=ie^{2}\int\frac{d^{4}q^{\prime}}{(2\pi)^{4}}\frac{M_{W}^{2}}{M_{W}^{2}-q^{\prime 2}}\frac{\epsilon^{\mu\nu\alpha\lambda}q_{\alpha}^{\prime}\left(T_{\mu\nu}\right)_{A}}{\left[(p_{e}-q^{\prime})^{2}-m_{e}^{2}\right]q^{\prime 2}}\leavevmode\nobreak\ , (10)

which picks up the remaining part of δMγWA\delta M_{\gamma W}^{A} in Eq.(2.10) of Ref. Seng et al. (2020c). It is IR-finite, but probes the physics from |q|=0|q^{\prime}|=0 all the way up to |q|MW|q^{\prime}|\sim M_{W}. A significant amount of theoretical uncertainty thus resides in the region |q|Λχ|q^{\prime}|\sim\Lambda_{\chi} where non-perturbative QCD takes place, and has been an unsettled issue for decades. The situation is changed following the recent lattice QCD calculations of the so-called “forward axial γW\gamma W-box”:

γWVA(ϕi,ϕf,M)ie22M2d4q(2π)4MW2MW2q2ϵμναβqαpβ(q2)2\displaystyle\Box_{\gamma W}^{VA}(\phi_{i},\phi_{f},M)\equiv\frac{ie^{2}}{2M^{2}}\int\frac{d^{4}q^{\prime}}{(2\pi)^{4}}\frac{M_{W}^{2}}{M_{W}^{2}-q^{\prime 2}}\frac{\epsilon^{\mu\nu\alpha\beta}q_{\alpha}^{\prime}p_{\beta}}{(q^{\prime 2})^{2}}
×Tμνif(q,p,p)F+if(0),\displaystyle\times\frac{T_{\mu\nu}^{if}(q^{\prime},p,p)}{F_{+}^{if}(0)}\leavevmode\nobreak\ , (11)

where TμνifT_{\mu\nu}^{if} is just TμνT_{\mu\nu} except that the initial and final states are now {ϕi,ϕf}\{\phi_{i},\phi_{f}\} with p2=Mi2=Mf2=M2p^{2}=M_{i}^{2}=M_{f}^{2}=M^{2}, and F+if(0)F_{+}^{if}(0) is the form factor f+if(0)f_{+}^{if}(0) multiplied by the appropriate CKM matrix element. Following the existing literature, we split it into two pieces:

γWVA(ϕi,ϕf,M)=γWVA>+γWVA<(ϕi,ϕf,M)\Box_{\gamma W}^{VA}(\phi_{i},\phi_{f},M)=\Box_{\gamma W}^{VA>}+\Box_{\gamma W}^{VA<}(\phi_{i},\phi_{f},M) (12)

which come from the loop integral at Q2q2>Qcut2Q^{2}\equiv-q^{\prime 2}>Q_{\mathrm{cut}}^{2} and Q2<Qcut2Q^{2}<Q_{\mathrm{cut}}^{2} respectively, where Qcut2=2Q_{\mathrm{cut}}^{2}=2 GeV2 is a scale above which perturbative QCD works well. The “>>” term is flavor- and mass-independent, and was calculated to 𝒪(αs4)\mathcal{O}(\alpha_{s}^{4}): γWVA>=2.16×103\Box_{\gamma W}^{VA>}=2.16\times 10^{-3} Feng et al. (2020). In the meantime, direct lattice calculations of the “<<” term were performed in two channels Feng et al. (2020); Ma et al. (2021):

γWVA<(π+,π0,Mπ)\displaystyle\Box_{\gamma W}^{VA<}(\pi^{+},\pi^{0},M_{\pi}) =\displaystyle= 0.67(3)lat×103\displaystyle 0.67(3)_{\mathrm{lat}}\times 10^{-3}
γWVA<(K0,π,Mπ)\displaystyle\Box_{\gamma W}^{VA<}(K^{0},\pi^{-},M_{\pi}) =\displaystyle= 0.28(4)lat×103\displaystyle 0.28(4)_{\mathrm{lat}}\times 10^{-3} (13)

from which we can also obtain γWVA<(K+,π0,Mπ)=1.06(7)lat×103\Box_{\gamma W}^{VA<}(K^{+},\pi^{0},M_{\pi})=1.06(7)_{\mathrm{lat}}\times 10^{-3} through a ChPT matching Seng et al. (2020c).

The only difference between the integrals in Eq.(10) and (11) is the non-forward (NF) kinematics in the former (i.e. ppp\neq p^{\prime} and pe0p_{e}\neq 0), which only affect the integral in the Q2<Qcut2Q^{2}<Q_{\mathrm{cut}}^{2} region. Therefore one could similarly split (δf+)𝔅\left(\delta f_{+}\right)_{\mathfrak{B}} into two pieces: (δf+)𝔅=(δf+)𝔅>+(δf+)𝔅<\left(\delta f_{+}\right)_{\mathfrak{B}}=\left(\delta f_{+}\right)_{\mathfrak{B}}^{>}+\left(\delta f_{+}\right)_{\mathfrak{B}}^{<}, where the “>>” piece matches trivially to the forward axial γW\gamma W-box:

(δf+)𝔅>=γWVA>f+(t).\left(\delta f_{+}\right)_{\mathfrak{B}}^{>}=\Box_{\gamma W}^{VA>}f_{+}(t)\leavevmode\nobreak\ . (14)

On the other hand, the matching between the “<<” components is not exact due to the NF effects. We characterize the latter by an energy scale EE that could be either MKMπM_{K}-M_{\pi}, (sMπ2)1/2(s-M_{\pi}^{2})^{1/2} or (uMπ2)1/2(u-M_{\pi}^{2})^{1/2}. The matching then reads:

(δf+)𝔅<={γWVA<(K,π,Mπ)+𝒪(E2/Λχ2)}f+(t),\left(\delta f_{+}\right)_{\mathfrak{B}}^{<}=\left\{\Box_{\gamma W}^{VA<}(K,\pi,M_{\pi})+\mathcal{O}\left(E^{2}/\Lambda_{\chi}^{2}\right)\right\}f_{+}(t)\leavevmode\nobreak\ , (15)

where 𝒪(E2/Λχ2)\mathcal{O}(E^{2}/\Lambda_{\chi}^{2}) represents the NF corrections. Numerically, since E<MKE<M_{K}, we may multiply the right-hand side of Eq. (15) by MK2/Λχ2M_{K}^{2}/\Lambda_{\chi}^{2} as a conservative estimation of the NF uncertainty.

The last virtual correction is the so-called “three-point function” contribution to the charged weak form factors, which was derived within ChPT to 𝒪(e2p2)\mathcal{O}(e^{2}p^{2}) in Ref. Seng et al. (2020b). However, it contains an IR-divergent piece that comes from the convection term contribution, and can be resummed to all orders in the chiral expansion by simply adding back the charged weak form factors. This leads to the following partially-resummed ChPT expression:

δf+,3=(δf+)III+{(δf+,3)e2p2fin+𝒪(e2p4)},\delta f_{+,3}=\left(\delta f_{+}\right)_{\mathrm{III}}+\left\{\left(\delta f_{+,3}\right)_{e^{2}p^{2}}^{\mathrm{fin}}+\mathcal{O}(e^{2}p^{4})\right\}\leavevmode\nobreak\ , (16)

where the IR-divergent piece (δf+)III\left(\delta f_{+}\right)_{\mathrm{III}} is exact, i.e. resummed to all orders in ChPT. It combines with (δf+)II\left(\delta f_{+}\right)_{\mathrm{II}} in Eq. (9) to give:

𝔢(δf+)II+III\displaystyle\mathfrak{Re}\left(\delta f_{+}\right)_{\mathrm{II+III}} =\displaystyle= α4π[2βitanh1βiln(MimeMγ2)\displaystyle\frac{\alpha}{4\pi}\left[-\frac{2}{\beta_{i}}\tanh^{-1}\beta_{i}\ln\left(\frac{M_{i}m_{e}}{M_{\gamma}^{2}}\right)\right. (17)
+lnMi2Mγ252]f+(t),\displaystyle\left.+\ln\frac{M_{i}^{2}}{M_{\gamma}^{2}}-\frac{5}{2}\right]f_{+}(t)\leavevmode\nobreak\ ,

where MiM_{i} is the mass of the charged meson (K+K^{+} in Ke3+K_{e3}^{+} and π\pi^{-} in Ke30K_{e3}^{0}) and βi\beta_{i} is the speed of the positron in the rest frame of the charged meson. Meanwhile, the IR-finite pieces, (δf+,3)e2p2fin\left(\delta f_{+,3}\right)_{e^{2}p^{2}}^{\mathrm{fin}}, are given by the terms in Eqs. (8.3) and (8.5) of Ref. Seng et al. (2020b) that are not attached to the factor ln(M2/Mγ2)5/2\ln(M^{2}/M_{\gamma}^{2})-5/2, and are subject to 𝒪(e2p4)\mathcal{O}(e^{2}p^{4}) corrections.

Refer to caption
Refer to caption
Figure 3: Bremsstrahlung diagrams.
from (δf+)𝔄fin\left(\delta f_{+}\right)_{\mathfrak{A}}^{\mathrm{fin}} from (δf+)𝔅\left(\delta f_{+}\right)_{\mathfrak{B}} from (δf+)I+II+III\left(\delta f_{+}\right)_{\mathrm{I+II+III}} and |MA|2|M_{A}|^{2} from 2𝔢{MAMB}+|MB|22\mathfrak{Re}\left\{M_{A}^{*}M_{B}\right\}+|M_{B}|^{2}
Ke30K_{e3}^{0} 0.09(2)sg-0.09(2)_{\mathrm{sg}} 0.49(1)lat(1)NF0.49(1)_{\mathrm{lat}}(1)_{\mathrm{NF}} 2.97(3)HO2.97(3)_{\mathrm{HO}} 0.12(2)e2p40.12(2)_{e^{2}p^{4}}
Ke3+K_{e3}^{+} 0.96(2)sg(1)rK20.96(2)_{\mathrm{sg}}(1)_{\left\langle r_{K}^{2}\right\rangle} 0.64(1)lat(4)NF0.64(1)_{\mathrm{lat}}(4)_{\mathrm{NF}} 0.97(3)HO0.97(3)_{\mathrm{HO}} 0.04(1)e2p4-0.04(1)_{e^{2}p^{4}}
Table 1: Summary of various contributions to δKe3\delta_{K_{e3}} (except that from (δf+,3)e2p2fin\left(\delta f_{+,3}\right)_{e^{2}p^{2}}^{\mathrm{fin}}, see the discussions after Eq.(21)) in units of 10210^{-2}.

Next we switch to the bremsstrahlung contributions, as depicted in Fig. 3. Its amplitude is given by:

Mbrems=2GFeu¯νLγμ{peεpek+ε̸2pek}veLFμ\displaystyle M_{\mathrm{brems}}=-\sqrt{2}G_{F}e\bar{u}_{\nu L}\gamma^{\mu}\left\{\frac{p_{e}\cdot\varepsilon^{*}}{p_{e}\cdot k}+\frac{\not{k}\not{\varepsilon}^{*}}{2p_{e}\cdot k}\right\}v_{eL}F_{\mu}
+i2GFeu¯νLγνveLεμTμν(k;p,p),\displaystyle+i\sqrt{2}G_{F}e\bar{u}_{\nu L}\gamma^{\nu}v_{eL}\varepsilon^{\mu*}T_{\mu\nu}(k;p^{\prime},p)\leavevmode\nobreak\ , (18)

in which the tensor TμνT^{\mu\nu} appears again, except that now it deals with an on-shell photon momentum kk whose size is restricted by phase space. Similar to δf+,3\delta f_{+,3}, we find that the most efficient way to calculate the bremsstrahlung contributions is to adopt a partially-resummed ChPT expression for TμνT^{\mu\nu}:

Tμν=Tconvμν+{(TμνTconvμν)p2+𝒪(p4)},T^{\mu\nu}=T^{\mu\nu}_{\mathrm{conv}}+\left\{\left(T^{\mu\nu}-T^{\mu\nu}_{\mathrm{conv}}\right)_{p^{2}}+\mathcal{O}(p^{4})\right\}\leavevmode\nobreak\ , (19)

where the full convection term TconvμνT_{\mathrm{conv}}^{\mu\nu} is explicitly singled out, while the remaining terms in the curly bracket are expanded to 𝒪(p2)\mathcal{O}(p^{2}). Consequently, one can split MbremsM_{\mathrm{brems}} into two separately gauge-invariant pieces:

Mbrems=MA+MB,M_{\mathrm{brems}}=M_{A}+M_{B}\leavevmode\nobreak\ , (20)

where the terms in the curly bracket of Eq.(19) reside in MBM_{B}. The contribution to the decay rate from |MA|2|M_{A}|^{2} contains the full IR-divergent structure (which cancels with the virtual corrections), is numerically the largest and does not associate to any chiral expansion uncertainty. The term 2𝔢{MAMB}+|MB|22\mathfrak{Re}\left\{M_{A}^{*}M_{B}\right\}+|M_{B}|^{2}, on the other hand, is subject to 𝒪(e2p4)\mathcal{O}(e^{2}p^{4}) corrections. We find that its contribution to δKe3\delta_{K_{e3}} is 103\lesssim 10^{-3}, so the associated chiral expansion uncertainty, which is obtained by multiplying the central value with MK2/Λχ2M_{K}^{2}/\Lambda_{\chi}^{2}, is of the order 10410^{-4}.

With the above, we have calculated all EWRC to 10410^{-4} and may compare with existing results. The standard parameterization of the fully-inclusive Ke3K_{e3} decay rate reads Zyla et al. (2020):

ΓKe3\displaystyle\Gamma_{K_{e3}} =\displaystyle= GF2|Vus|2MK5CK2192π3SEW|f+K0π(0)|2IKe(0)(λi)\displaystyle\frac{G_{F}^{2}|V_{us}|^{2}M_{K}^{5}C_{K}^{2}}{192\pi^{3}}S_{\mathrm{EW}}|f_{+}^{K^{0}\pi^{-}}(0)|^{2}I_{Ke}^{(0)}(\lambda_{i}) (21)
×(1+δEMKe+δSU(2)Kπ),\displaystyle\times(1+\delta_{\mathrm{EM}}^{Ke}+\delta_{\mathrm{SU(2)}}^{K\pi})\leavevmode\nobreak\ ,

among which SEW=1.0232(3)S_{\mathrm{EW}}=1.0232(3) describes the short-distance EWRC Marciano and Sirlin (1993) (the uncertainty comes from δHOQED\delta_{\mathrm{HO}}^{\mathrm{QED}} Erler (2004)) and δEMKe\delta_{\mathrm{EM}}^{Ke} describes the long-distance electromagnetic corrections respectively. We also realize that in the existing ChPT treatment a residual component of the electromagnetic corrections, which corresponds exactly to (δf+,3)e2p2fin\left(\delta f_{+,3}\right)_{e^{2}p^{2}}^{\mathrm{fin}} in our language, is redistributed into IKe(0)(λi)I_{Ke}^{(0)}(\lambda_{i}) and δSU(2)Kπ\delta_{\mathrm{SU(2)}}^{K\pi} that describe the tt-dependence of the charged weak form factors and the isospin breaking correction, respectively Cirigliano et al. (2002, 2004, 2008). Therefore, the correspondence between δEMKe\delta_{\mathrm{EM}}^{Ke} in the ChPT calculation and δKe3\delta_{K_{e3}} in our approach reads:

δEMKe=(δKe3)tot(SEW1)(δKe3)3fin.\delta_{\mathrm{EM}}^{Ke}=\left(\delta_{K_{e3}}\right)_{\mathrm{tot}}-\left(S_{\mathrm{EW}}-1\right)-\left(\delta_{K_{e3}}\right)_{3}^{\mathrm{fin}}\leavevmode\nobreak\ . (22)

Our results of the different components of δKe3\delta_{K_{e3}} are summarized in Table 1, from which we obtain:

δEMK+e\displaystyle\delta_{\mathrm{EM}}^{K^{+}e} =\displaystyle= 0.21(2)sg(1)rK2(1)lat(4)NF(1)e2p4×102\displaystyle 0.21(2)_{\mathrm{sg}}(1)_{\left\langle r_{K}^{2}\right\rangle}(1)_{\mathrm{lat}}(4)_{\mathrm{NF}}(1)_{e^{2}p^{4}}\times 10^{-2}
δEMK0e\displaystyle\delta_{\mathrm{EM}}^{K^{0}e} =\displaystyle= 1.16(2)sg(1)lat(1)NF(2)e2p4×102.\displaystyle 1.16(2)_{\mathrm{sg}}(1)_{\mathrm{lat}}(1)_{\mathrm{NF}}(2)_{e^{2}p^{4}}\times 10^{-2}\leavevmode\nobreak\ . (23)

The uncertainties are explained as follows: “sg” is our estimate of the seagull contribution to I𝔄λI_{\mathfrak{A}}^{\lambda}, “rK2\left\langle r_{K}^{2}\right\rangle” comes from the experimental uncertainty of the K+K^{+} mean-square charge radius that enters I𝔄λI_{\mathfrak{A}}^{\lambda}, “lat” and “NF” are the uncertainties in (δf+)𝔅\left(\delta f_{+}\right)_{\mathfrak{B}} from lattice QCD and the NF effects, respectively, and “e2p4e^{2}p^{4}” represents the chiral expansion uncertainty in the 2𝔢{MAMB}+|MB2|2\mathfrak{Re}\left\{M_{A}^{*}M_{B}\right\}+|M_{B}^{2}| term from the bremsstrahlung contribution. We should compare Eq.(23) to the ChPT result Cirigliano et al. (2008):

(δEMK+e)ChPT\displaystyle\left(\delta_{\mathrm{EM}}^{K^{+}e}\right)_{\mathrm{ChPT}} =\displaystyle= 0.10(19)e2p4(16)LEC×102\displaystyle 0.10(19)_{e^{2}p^{4}}(16)_{\mathrm{LEC}}\times 10^{-2}
(δEMK0e)ChPT\displaystyle\left(\delta_{\mathrm{EM}}^{K^{0}e}\right)_{\mathrm{ChPT}} =\displaystyle= 0.99(19)e2p4(11)LEC×102.\displaystyle 0.99(19)_{e^{2}p^{4}}(11)_{\mathrm{LEC}}\times 10^{-2}\leavevmode\nobreak\ . (24)

They are consistent within error bars, but Eq. (23) shows a reduction of the total uncertainty by almost an order of magnitude, which can be easily understood as follows. First, in ChPT the 𝒪(e2p4)\mathcal{O}(e^{2}p^{4}) uncertainty is obtained by multiplying the full result, including the IR-singular pieces that are numerically the largest, with MK2/Λχ2M_{K}^{2}/\Lambda_{\chi}^{2}; meanwhile, within the new formalism those pieces can be evaluated exactly by simply isolating the pole/convection term in TμνT^{\mu\nu} and Γμ\Gamma^{\mu}. The remainders are generically an order of magnitude smaller, so their associated 𝒪(e2p4)\mathcal{O}(e^{2}p^{4}) uncertainty is also suppressed. Secondly, in ChPT the LECs {Xi}\{X_{i}\} were estimated within resonance models Ananthanarayan and Moussallam (2004); Descotes-Genon and Moussallam (2005) and were assigned a 100% uncertainty. On the other hand, some of us pointed out in Ref. Seng et al. (2020c) that these LECs are associated with the forward axial γW\gamma W-box diagram, and promoted first-principle calculations with lattice QCD. This effectively transforms the LEC uncertainties in ChPT into the lattice and NF uncertainties in (δf+)𝔅\left(\delta f_{+}\right)_{\mathfrak{B}} which are much better under control.

To conclude, we performed a significantly improved calculation of the EWRC in the Ke3K_{e3} channel. We observe no large systematic corrections with respect to previous analyses. Although the error analysis in the Kμ3K_{\mu 3} channel is somewhat more complicated, we deem such large corrections in this channel unlikely. Hence, it is safe to conclude that the EWRC in Kl3K_{l3} cannot be responsible for the Kμ2K_{\mu 2}Kl3K_{l3} discrepancy in VusV_{us}. One should then switch to other SM inputs, such as the lattice calculation of |f+K0π(0)||f_{+}^{K^{0}\pi^{-}}(0)| and the theory inputs of IKl(0)(λi)I_{Kl}^{(0)}(\lambda_{i}) and δSU(2)Kπ\delta_{\mathrm{SU(2)}}^{K\pi}. Finally, our improvement in δEMKe\delta_{\mathrm{EM}}^{Ke} also opens a new pathway for the precise measurement of Vus/VudV_{us}/V_{ud} through the ratio between the semileptonic kaon and pion decay rate Czarnecki et al. (2020). For instance, we may define:

RVΓKe30Γπe3=4.035(4)PS(1)RC×108|Vusf+K0π(0)Vudf+π+π0(0)|2.R_{V}\equiv\frac{\Gamma_{K_{e3}^{0}}}{\Gamma_{\pi_{e3}}}=4.035(4)_{\mathrm{PS}}(1)_{\mathrm{RC}}\times 10^{8}\left|\frac{V_{us}f_{+}^{K^{0}\pi^{-}}(0)}{V_{ud}f_{+}^{\pi^{+}\pi^{0}}(0)}\right|^{2}. (25)

Since both the RC uncertainties in Ke30K_{e3}^{0} and πe3\pi_{e3} are now at the 10410^{-4} level, the dominant theory uncertainty (apart from lattice inputs) of RVR_{V} comes from the Ke30K_{e3}^{0} phase space (PS) integral. We compare this to:

RAΓKμ2Γπμ2=17.55(3)RC|VusfK+Vudfπ+|2R_{A}\equiv\frac{\Gamma_{K_{\mu 2}}}{\Gamma_{\pi_{\mu 2}}}=17.55(3)_{\mathrm{RC}}\left|\frac{V_{us}f_{K^{+}}}{V_{ud}f_{\pi^{+}}}\right|^{2} (26)

which is currently used to extract Vus/VudV_{us}/V_{ud}. We see that RVR_{V} possesses a much smaller theoretical uncertainty than RAR_{A}, and hence represents a more promising avenue in the future. Our work thus provides a strong motivation for experimentalists to measure the πe3\pi_{e3} branching ratio with an order-of-magnitude increase in precision Aguilar-Arevalo et al. .

Acknowledgements.
We thank Vincenzo Cirigliano for many inspiring discussions. This work is supported in part by the DFG (Projektnummer 196253076 - TRR 110) and the NSFC (Grant No. 11621131001) through the funds provided to the Sino-German TRR 110 “Symmetries and the Emergence of Structure in QCD” (U-G.M, C.Y.S and D.G), by the Alexander von Humboldt Foundation through the Humboldt Research Fellowship (C.Y.S), by the Chinese Academy of Sciences (CAS) through a President’s International Fellowship Initiative (PIFI) (Grant No. 2018DM0034) and by the VolkswagenStiftung (Grant No. 93562) (U-G.M), by EU Horizon 2020 research and innovation programme, STRONG-2020 project under grant agreement No 824093 and by the German-Mexican research collaboration Grant No. 278017 (CONACyT) and No. SP 778/4-1 (DFG) (M.G).

References

  • Cabibbo (1963) N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963).
  • Kobayashi and Maskawa (1973) M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).
  • Zyla et al. (2020) P. Zyla et al. (Particle Data Group), PTEP 2020, 083C01 (2020).
  • Seng et al. (2018) C.-Y. Seng, M. Gorchtein, H. H. Patel, and M. J. Ramsey-Musolf, Phys. Rev. Lett. 121, 241804 (2018), eprint 1807.10197.
  • Czarnecki et al. (2019) A. Czarnecki, W. J. Marciano, and A. Sirlin (2019), eprint 1907.06737.
  • Seng et al. (2020a) C.-Y. Seng, X. Feng, M. Gorchtein, and L.-C. Jin, Phys. Rev. D 101, 111301 (2020a), eprint 2003.11264.
  • Shiells et al. (2020) K. Shiells, P. Blunden, and W. Melnitchouk (2020), eprint 2012.01580.
  • Seng et al. (2019) C. Y. Seng, M. Gorchtein, and M. J. Ramsey-Musolf, Phys. Rev. D100, 013001 (2019), eprint 1812.03352.
  • Gorchtein (2019) M. Gorchtein, Phys. Rev. Lett. 123, 042503 (2019), eprint 1812.04229.
  • Belfatto et al. (2020) B. Belfatto, R. Beradze, and Z. Berezhiani, Eur. Phys. J. C 80, 149 (2020), eprint 1906.02714.
  • Tan (2019) W. Tan (2019), eprint 1906.10262.
  • Grossman et al. (2020) Y. Grossman, E. Passemar, and S. Schacht, JHEP 07, 068 (2020), eprint 1911.07821.
  • Coutinho et al. (2020) A. M. Coutinho, A. Crivellin, and C. A. Manzari, Phys. Rev. Lett. 125, 071802 (2020), eprint 1912.08823.
  • Cheung et al. (2020) K. Cheung, W.-Y. Keung, C.-T. Lu, and P.-Y. Tseng, JHEP 05, 117 (2020), eprint 2001.02853.
  • Crivellin and Hoferichter (2020) A. Crivellin and M. Hoferichter (2020), eprint 2002.07184.
  • Endo and Mishima (2020) M. Endo and S. Mishima, JHEP 08, 004 (2020), eprint 2005.03933.
  • Capdevila et al. (2020) B. Capdevila, A. Crivellin, C. A. Manzari, and M. Montull (2020), eprint 2005.13542.
  • Kirk (2020) M. Kirk (2020), eprint 2008.03261.
  • Ginsberg (1966) E. S. Ginsberg, Phys. Rev. 142, 1035 (1966).
  • Ginsberg (1968) E. S. Ginsberg, Phys. Rev. 171, 1675 (1968), [Erratum: Phys.Rev. 174, 2169 (1968)].
  • Ginsberg (1967) E. S. Ginsberg, Phys. Rev. 162, 1570 (1967), [Erratum: Phys.Rev. 187, 2280 (1969)].
  • Ginsberg (1970) E. Ginsberg, Phys. Rev. D 1, 229 (1970).
  • Becherrawy (1970) T. Becherrawy, Phys. Rev. D 1, 1452 (1970).
  • Bytev et al. (2003) V. Bytev, E. Kuraev, A. Baratt, and J. Thompson, Eur. Phys. J. C 27, 57 (2003), [Erratum: Eur.Phys.J.C 34, 523–524 (2004)], eprint hep-ph/0210049.
  • Andre (2007) T. C. Andre, Annals Phys. 322, 2518 (2007), eprint hep-ph/0406006.
  • Garcia and Maya (1981) A. Garcia and M. Maya, Phys. Rev. D 23, 2603 (1981).
  • Juarez-Leon et al. (2011) C. Juarez-Leon, A. Martinez, M. Neri, J. Torres, and R. Flores-Mendieta, Phys. Rev. D 83, 054004 (2011), [Erratum: Phys.Rev.D 86, 059901 (2012)], eprint 1010.5547.
  • Torres et al. (2012) J. Torres, A. Martinez, M. Neri, C. Juarez-Leon, and R. Flores-Mendieta, Phys. Rev. D 86, 077501 (2012), eprint 1209.5759.
  • Neri et al. (2015) M. Neri, A. Martínez, C. Juárez-León, J. Torres, and R. Flores-Mendieta, Phys. Rev. D 92, 074022 (2015), eprint 1510.00401.
  • Antonelli et al. (2010) M. Antonelli et al. (FlaviaNet Working Group on Kaon Decays), Eur. Phys. J. C 69, 399 (2010), eprint 1005.2323.
  • Cirigliano et al. (2012) V. Cirigliano, G. Ecker, H. Neufeld, A. Pich, and J. Portoles, Rev. Mod. Phys. 84, 399 (2012), eprint 1107.6001.
  • Cirigliano et al. (2002) V. Cirigliano, M. Knecht, H. Neufeld, H. Rupertsberger, and P. Talavera, Eur. Phys. J. C23, 121 (2002), eprint hep-ph/0110153.
  • Cirigliano et al. (2004) V. Cirigliano, H. Neufeld, and H. Pichl, Eur. Phys. J. C 35, 53 (2004), eprint hep-ph/0401173.
  • Cirigliano et al. (2008) V. Cirigliano, M. Giannotti, and H. Neufeld, JHEP 11, 006 (2008), eprint 0807.4507.
  • Urech (1995) R. Urech, Nucl. Phys. B433, 234 (1995), eprint hep-ph/9405341.
  • Knecht et al. (2000) M. Knecht, H. Neufeld, H. Rupertsberger, and P. Talavera, Eur. Phys. J. C12, 469 (2000), eprint hep-ph/9909284.
  • Seng et al. (2020b) C.-Y. Seng, D. Galviz, and U.-G. Meißner, JHEP 02, 069 (2020b), eprint 1910.13208.
  • Seng et al. (2020c) C.-Y. Seng, X. Feng, M. Gorchtein, L.-C. Jin, and U.-G. Meißner, JHEP 10, 179 (2020c), eprint 2009.00459.
  • Sirlin (1978) A. Sirlin, Rev. Mod. Phys. 50, 573 (1978), [Erratum: Rev. Mod. Phys.50,905(1978)].
  • Feng et al. (2020) X. Feng, M. Gorchtein, L.-C. Jin, P.-X. Ma, and C.-Y. Seng, Phys. Rev. Lett. 124, 192002 (2020), eprint 2003.09798.
  • Ma et al. (2021) P.-X. Ma, X. Feng, M. Gorchtein, L.-C. Jin, and C.-Y. Seng, Phys. Rev. D 103, 114503 (2021), eprint 2102.12048.
  • Seng et al. (2021) C.-Y. Seng, D. Galviz, M. Gorchtein, and U.-G. Meißner (2021), eprint 2103.04843.
  • Meister and Yennie (1963) N. Meister and D. Yennie, Phys. Rev. 130, 1210 (1963).
  • Ecker et al. (1989a) G. Ecker, J. Gasser, A. Pich, and E. de Rafael, Nucl. Phys. B 321, 311 (1989a).
  • Ecker et al. (1989b) G. Ecker, J. Gasser, H. Leutwyler, A. Pich, and E. de Rafael, Phys. Lett. B 223, 425 (1989b).
  • Cirigliano et al. (2006) V. Cirigliano, G. Ecker, M. Eidemuller, R. Kaiser, A. Pich, and J. Portoles, Nucl. Phys. B 753, 139 (2006), eprint hep-ph/0603205.
  • Amendolia et al. (1986a) S. Amendolia et al., Phys. Lett. B 178, 435 (1986a).
  • Amendolia et al. (1986b) S. Amendolia et al. (NA7), Nucl. Phys. B 277, 168 (1986b).
  • Batley et al. (2018) J. R. Batley et al. (NA48/2), JHEP 10, 150 (2018), eprint 1808.09041.
  • Marciano and Sirlin (1993) W. J. Marciano and A. Sirlin, Phys. Rev. Lett. 71, 3629 (1993).
  • Erler (2004) J. Erler, Rev. Mex. Fis. 50, 200 (2004), eprint hep-ph/0211345.
  • Ananthanarayan and Moussallam (2004) B. Ananthanarayan and B. Moussallam, JHEP 06, 047 (2004), eprint hep-ph/0405206.
  • Descotes-Genon and Moussallam (2005) S. Descotes-Genon and B. Moussallam, Eur. Phys. J. C42, 403 (2005), eprint hep-ph/0505077.
  • Czarnecki et al. (2020) A. Czarnecki, W. J. Marciano, and A. Sirlin, Phys. Rev. D 101, 091301 (2020), eprint 1911.04685.
  • (55) A. Aguilar-Arevalo et al., Testing Lepton Flavor Universality and CKM Unitarity with Rare Pion Decay. [Link].