This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

High-precision mass measurement of 103Sn restores smoothness of the mass surface

C. M. Ireland ireland@frib.msu.edu Facility for Rare Isotope Beams, East Lansing, Michigan, 48824, USA Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA    F. M. Maier Facility for Rare Isotope Beams, East Lansing, Michigan, 48824, USA    G. Bollen Facility for Rare Isotope Beams, East Lansing, Michigan, 48824, USA Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA    S. E. Campbell Facility for Rare Isotope Beams, East Lansing, Michigan, 48824, USA Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA    X. Chen Facility for Rare Isotope Beams, East Lansing, Michigan, 48824, USA    H. Erington Facility for Rare Isotope Beams, East Lansing, Michigan, 48824, USA Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA    N. D. Gamage Facility for Rare Isotope Beams, East Lansing, Michigan, 48824, USA    M. J. Gutiérrez Institut für Physik, Universität Greifswald, 17487 Greifswald, Germany GSI Helmholtzzentrum für Schwerionenforschung, D-64291 Darmstadt, Germany    C. Izzo Facility for Rare Isotope Beams, East Lansing, Michigan, 48824, USA    E. Leistenschneider Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA    E. M. Lykiardopoulou Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA    R. Orford Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA    W. S. Porter Department of Physics and Astronomy, University of Notre Dame, Notre Dame, IN, USA    D. Puentes Facility for Rare Isotope Beams, East Lansing, Michigan, 48824, USA Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA    M. Redshaw Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA    R. Ringle Facility for Rare Isotope Beams, East Lansing, Michigan, 48824, USA Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA    S. Rogers Facility for Rare Isotope Beams, East Lansing, Michigan, 48824, USA    S. Schwarz Facility for Rare Isotope Beams, East Lansing, Michigan, 48824, USA    L. Stackable Facility for Rare Isotope Beams, East Lansing, Michigan, 48824, USA    C. S. Sumithrarachchi Facility for Rare Isotope Beams, East Lansing, Michigan, 48824, USA    A. A. Valverde Physics Divison, Argonne National Laboratory, Argonne, IL, USA    A. C. C. Villari Facility for Rare Isotope Beams, East Lansing, Michigan, 48824, USA    I. T. Yandow Facility for Rare Isotope Beams, East Lansing, Michigan, 48824, USA Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
(August 2, 2025)
Abstract

As a step towards the ultimate goal of a high-precision mass measurement of doubly-magic 100Sn, the mass of 103Sn was measured at the Low Energy Beam and Ion Trap (LEBIT) located at the Facility for Rare Isotope Beams (FRIB). Utilizing the time-of-flight ion cyclotron resonance (ToF-ICR) technique, a mass uncertainty of 3.7 keV was achieved, an improvement by more than an order of magnitude compared to a recent measurement performed in 2023 at the Cooler Storage Ring (CSRe) in Lanzhou. Although the LEBIT and CSRe mass measurements of 103Sn are in agreement, they diverge from the experimental mass value reported in the 2016 version of the Atomic Mass Evaluation (AME2016), which was derived from the measured Qβ+Q_{\beta^{+}} value and the mass of 103In. In AME2020, this indirectly measured 103Sn mass was classified as a ‘seriously irregular mass’ and replaced with an extrapolated value, which aligns with the most recent measured values from CSRe and LEBIT. As such, the smoothness of the mass surface is confidently reestablished for 103Sn. Furthermore, LEBIT’s mass measurement of 103Sn enabled a significant reduction in the mass uncertainties of five parent isotopes which are now dominated by uncertainties in their respective QQ-values.

preprint: APS/123-QED

I I. Introduction

Atomic nuclei composed of specific numbers of protons and neutrons known as magic numbers show particularly energetically favorable configurations. For example, the binding energy of these nuclei is significantly higher than what the semi-empirical mass formula [1], derived from the liquid drop model of the nucleus, would predict. Understanding the microscopic origins of this phenomenon, known as nuclear shell evolution, is a central focus of contemporary nuclear physics [2, 3]. The isotope 100Sn is often referred to as the ‘holy grail of nuclear structure research’, as it is the heaviest known proton-bound nucleus among the self-conjugate (N=ZN=Z) nuclei, which is expected to be doubly magic with neutron and proton shell closures at N=50N=50 and Z=50Z=50, respectively. Comprehensive reviews of the existing literature on 100Sn can be found in Refs. [4, 5]. Significant experimental efforts are underway to measure the properties of 100Sn. Its proximity to the proton drip-line makes it one of the rarest nuclei to study. As such, only its half-life, β\beta-endpoint energy and mass are known so far [6, 7]. Unfortunately, the limited precision of the latter does not provide sufficient clarity regarding the nuclear shell evolution along the proton drip-line.

The properties of nuclei close to 100Sn are also of high interest for nuclear structure studies, see e.g. recent discussions in Refs. [8, 9, 10, 11, 12, 13]. The isotopes located northeast of 100Sn on the nuclear chart form an island of enhanced α\alpha and proton decay whose existence originates from the double magicity of 100Sn and the proximity to the proton drip-line [14]. They show a large Gamow-Teller β\beta-decay strength [6], super-allowed α\alpha decay [15, 16, 17, 18, 19, 20], and potentially cluster [21, 22, 23] and two-proton emission [24, 25]. Moreover, these isotopes play a role in stellar nucleosynthesis as the astrophysical rapid proton (rp) capture process dies out in this region [14, 26, 27, 28, 29, 30]. Precise knowledge of their binding energies, and thus their masses, are necessary to establish the energy balances of the relevant decays and transitions in this process.

Since the decay chains of 104Sb, 107Te, 108I, 111Xe, and 112Cs are terminated in 103Sn (see Fig. 1), a precise knowledge of the mass of 103Sn is required to determine the masses of these five isotopes based on their respective QQ-values known from decay spectroscopy [31]. However, the mass of 103Sn has been a topic of debate. The 2016 version of the Atomic Mass Evaluation (AME2016) [32] reported an experimental mass excess of 66970(70)-66970(70) keV for 103Sn derived from the Qβ+Q_{\beta^{+}} value and the mass of 103In, but significant inconsistencies with theoretical predictions, see e.g. Ref. [8], and mass surface trends led to its replacement with an extrapolated value of 67090(100)-67090(100) keV in AME2020 [31]. A subsequent direct mass measurement at the Cooler Storage Ring (CSRe) in Lanzhou in 2023 yielded a mass excess of 67138(68)-67138(68) keV [33], which is in good agreement with the extrapolated value in AME2020, restoring confidence in the smoothness of the mass surface. An independent and more precise mass measurement of 103Sn would further validate this finding and would serve as a crucial anchor for the masses of 104Sb, 107Te, 108I, 111Xe, and 112Cs.

Refer to caption
Figure 1: The nuclear landscape in the region of 100Sn. Individual isotopes are colored based on their mass excess uncertainties δME\delta_{M_{E}} prior to this work. A dashed border around an isotope refers to an extrapolated mass. The mass excesses of isotopes marked with a thick solid border were improved in this work. Directly observed and predicted decay chains are illustrated by thick orange and thin grey arrows, respectively, representing either proton (solid) or alpha (dashed) decay.

In this work, we report on high-precision Penning trap mass measurements of 103Sn performed at the Low Energy Beam and Ion Trap (LEBIT) [34] located at the Facility of Rare Isotope Beams (FRIB) using the time-of-flight ion cyclotron (ToF-ICR) technique [35, 36, 37]. Beyond its relevance to nuclear structure and astrophysics, the high precision mass measurement of 103Sn serves as a step towards a measurement of 100Sn. With the ongoing ramp-up of beam intensity [38], FRIB is expected to produce 100Sn, as well as many of its neighbors, at rates of a few ions per second in the near future, paving the way for exceptional research opportunities and deeper insights into the evolution of the nuclear shells in the vicinity of doubly magic 100Sn.

II II. Experimental Method and Analysis

A beam of radioactive 103Sn was produced via projectile fragmentation. A 124Xe primary beam was accelerated in FRIB’s superconducting Linear Accelerator [39] to an energy of 228 MeV/u and sent to a 2.015 mm thick 12C target, creating a cocktail of ion species that was passed to the Advanced Rare Isotope Separator (ARIS) [40] for purification. In preparation for stopping the ions in a gas stopper, the momentum of the purified beam was compressed using an Al wedge of 1004 μ\mum thickness at an angle of 2.67 mrad, followed by a 611 μ\mum thick Al degrader. An optimal degrader angle of 17 degrees was determined adjusting the effective thickness seen by the incoming beam. This process prepared the beam for acceptance into the Advanced Cryogenic Gas Stopper (ACGS) [41], which utilizes helium buffer gas to stop the beam. After stopping, radio-frequency (RF) carpet surfing [42] was used to guide the ions to an extraction orifice. After extraction, the ions passed through an RF quadrupole for differential pumping and were accelerated to 30 keV. A dipole magnet with resolving power \approx 1500 selected all ion species with a mass-to-charge ratio A/A/Q=51.5, including 103Sn2+. The choice of a half-integer A/A/Q was motivated by the increased purity of the beam delivered to LEBIT. At LEBIT, the continuous ion beam was injected into a linear buffer-gas-filled Paul trap cooler-buncher [43] for accumulation, cooling and bunching of the ion beam. Following the extraction of the ions from the Paul trap as well-defined ion bunches with reduced emittance, the ions were guided into LEBIT’s 9.4 T hyperbolic Penning trap [44].

In the Penning trap, the ions were confined in three-dimensions by a homogeneous magnetic field BB and a quadrupolar electrostatic field. The motion of an ion in a Penning trap is characterized by three eigenfrequencies: an axial frequency νz\nu_{z} and two radial frequencies, ν\nu_{-} (magnetron frequency) and ν+\nu_{+} (reduced-cyclotron frequency), where typically ννz<ν+\nu_{-}\ll\nu_{z}<\nu_{+}. For an ideal trap, the cyclotron frequency νc\nu_{c} of an ion can be approximated as the sum of its radial frequencies [45],

νc=ν++ν.\nu_{c}=\nu_{+}+\nu_{-}. (1)

Penning traps enable a precise determination of the mass mm of the ion of interest by measuring its cyclotron frequency νc=qB/(2πm)\nu_{c}=qB/(2\pi m) relative to that of a well-known reference ion νc,ref=qrefB/(2πmref)\nu_{c,\mathrm{ref}}=q_{\mathrm{ref}}B/(2\pi m_{\mathrm{ref}}). The cyclotron frequency ratio RR is given by

R=νcνc,ref=qmrefqrefm,R=\frac{\nu_{c}}{\nu_{c,\textrm{ref}}}=\frac{q\cdot m_{\textrm{ref}}}{q_{\textrm{ref}}\cdot m}, (2)

where qq and qrefq_{\mathrm{ref}} are the charges and mm and mrefm_{\mathrm{ref}} are the masses of the ion of interest and the reference ion, respectively.

Refer to caption
Figure 2: A summed ToF-ICR spectrum of all 8 individual cyclotron frequency measurements taken for 103Sn2+ using the LEBIT 9.4 T Penning trap mass spectrometer. A χ2\chi^{2} minimization fit to the analytical curve described in [37], depicted in red, was used to determine the frequency νRF=νc\nu_{RF}=\nu_{c} occuring at the minimum time-of-flight. The width of the central dip corresponds to the inverse of the applied 250 ms quadrupolar excitation time.

In this work, the mass of 103Sn2+ was determined using the ToF-ICR technique [35, 37, 36]. Extracted ions from the cooler-buncher were steered off-axis relative to trap center upon injection into the Penning trap using a Lorentz steerer [46], inducing initial magnetron motion. The remaining isobaric contaminants at A/A/Q = 51.5 were cleaned using dipolar RF excitation applied to the central ring electrode near their respective reduced cyclotron frequencies [47]. A quadrupolar RF pulse applied for a chosen 250 ms of excitation time within a frequency range near that of the expected cyclotron frequency for 103Sn2+ converted the slow magnetron motion to fast reduced cyclotron motion. The ions were subsequently ejected and their time-of-flight to a microchannel plate (MCP) detector was recorded. Figure 2 shows the ions’ time-of-flight as a function of the applied quadrupolar frequency νRF\nu_{RF}. When νRF\nu_{RF} approached νc\nu_{c}, the ions’ radial energy increased, resulting in a shorter flight time to the detector. This led to a time-of-flight minimum when νRF=νc\nu_{RF}=\nu_{c}. Measurements of the ion of interest for 250 ms of quadrupolar excitation time and measurements of the stable molecular reference 12\ceC31\ceH214\ceN1+ for 500 ms of excitation time were interleaved to yield the average ratio R¯\bar{R}, weighted by each measurement’s uncertainty. The mass of 103Sn was determined according to Eq. 2 accounting for the mass of the missing electron(s). The electron’s binding energy itself is neglected, as it is smaller than the statistical uncertainty of R¯\bar{R}.

III III. Results

Eight ToF-ICR measurements of 103Sn2+ were taken over the course of approximately eight hours. The measured frequency ratios of the individual measurements are shown in Fig. 3 relative to that of the stable reference. The weighted average mass ratio R¯=1.010779605(29)\bar{R}=1.010779605(29) corresponds to a mass excess of 67125.9(3.7)-67125.9(3.7) keV for 103Sn.

Refer to caption
Figure 3: Cyclotron frequency ratios RR with respect to the average ratio R¯=1.010779605(29)\bar{R}=1.010779605(29). The gray bar shows the ±1σ\pm 1\sigma uncertainty in R¯\bar{R}.

Several systematic effects add an uncertainty δR\delta_{R} to R¯\bar{R}. Mass-dependent shifts related to inhomogeneity in the magnetic field and trap imperfections were studied at LEBIT in detail and are known to add an uncertainty of δR2×1010/u\delta_{R}\approx 2\times 10^{-10}/u [48]. Additionally, non-linear temporal shifts in the magnetic field at LEBIT contribute δR<109\delta_{R}<10^{-9} per hour [49]. To counter these, regular reference measurements were performed. The maximum ion cutoff 5\leq 5 also allowed the uncertainty due to ion-ion interactions to be δR108\delta_{R}\approx 10^{-8}. These various uncertainties are negligible in comparison to the statistical precision of the measurement (107\approx 10^{-7}). The cyclotron frequency ratio RR was periodically checked against the expected RR determined from masses obtained from AME2020 as measurements were performed to verify that it did not correspond to (molecular) isobars within the uncertainty of the measurement. No such isobars were plausible, providing confirmation that what was measured was indeed 103Sn2+.

IV IV. Discussion

Refer to caption
Figure 4: Mass excess for 103Sn compared with literature (AME2016 [32], AME2020 [31] and CSRe [33]).

Our mass value of 103Sn agrees with the previous measurement conducted at CSRe [33], while improving the precision by more than an order of magnitude, see Fig. 4. However, both of these measurements deviate from the mass reported experimentally in AME2016 [32], which was derived indirectly from the known mass of 103In and the β\beta-decay energy Qβ+Q_{\beta^{+}} between 103Sn and 103In [32, 50, 51]. Assuming that the atomic mass MM of 103In is well known, we calculate a new Qβ+Q_{\beta^{+}} value based on our measured mass of 103Sn and the AME2020 mass of 103In [31], Qβ+=M(103Sn)M(103In)Q_{\beta^{+}}=M(^{103}\mathrm{Sn})-M(^{103}\mathrm{In}). Our updated Qβ+Q_{\beta^{+}} value is 7506(10) keV, compared to the previous value of 7660(70) keV. This discrepancy indicates a limited understanding of the full decay processes, possibly due to internal gamma conversion or undetected weak decay branches in Refs. [50, 51]. In AME2020 [31], the mass of 103Sn was classified as a ‘seriously irregular mass’ and replaced by an extrapolated value, which perfectly matches our new measurement. Consequently, the smoothness of the mass surface around 103Sn is confidently restored. Taking our new mass value of 103Sn into account, the experimental trend of the three-point estimator for the odd-even staggering Δ3n(Z,N)=0.5(1)N[ME(Z,N1)2ME(Z,N)+ME(Z,N+1)]\Delta_{3n}(Z,N)=0.5\cdot(-1)^{N}[M_{E}(Z,N-1)-2M_{E}(Z,N)+M_{E}(Z,N+1)] along the tin isotopic chain is relatively well reproduced by various theoretical models that are discussed in detail in Ref. [8], see Fig. 5. This increases confidence in the predictive power of these theoretical calculations for 100Sn.

Refer to caption
Figure 5: Three-point estimator for the odd-even staggering for the tin isotopic chain (Z=50Z=50) as a function of neutron number NN. The experimental data (grey and black curve) is taken from AME2020 [31] except for 103Sn. The black curve takes our new mass measurement of 103Sn into account. The grey curve utilizes the experimental mass of 103Sn as reported in AME2016 [32], which was replaced with an extrapolated value in AME2020 . Beside of this mass of 103Sn the masses reported in AME2020 are used. The theoretical results of the valence-space formulation of the in-medium similarity renormalization group (VS-IMSRG) as well as shell-model coupled-cluster (SMCC) calculations are taken from Ref. [8].

Furthermore, our new high-precision mass measurement of 103Sn significantly reduces the mass uncertainty of the alpha and proton emitters 104Sb, 107Te, 108I, 111Xe and 112Cs, which are located northeast of the nuclear chart with respect to 100Sn, see Fig. 1. The mass excesses of these five isotopes were calculated based on our high-precision 103Sn measurement and the respective  QQ-values, see Tab. 1,

ME(107Te)=ME(103Sn)+ME(α)+Qα(107Te),ME(111Xe)=ME(107Te)+ME(α)+Qα(111Xe),ME(112Cs)=ME(111Xe)+ME(p)+Qp(112Cs),ME(108I)=ME(107Te)+ME(p)+Qp(108I) andME(104Sb)=ME(108I)ME(α)Qα(108I).\begin{split}M_{E}(^{107}\mathrm{Te})&=M_{E}(^{103}\mathrm{Sn})+M_{E}(\alpha)+Q_{\alpha}(^{107}\mathrm{Te}),\\ M_{E}(^{111}\mathrm{Xe})&=M_{E}(^{107}\mathrm{Te})+M_{E}(\alpha)+Q_{\alpha}(^{111}\mathrm{Xe}),\\ M_{E}(^{112}\mathrm{Cs})&=M_{E}(^{111}\mathrm{Xe})+M_{E}(p)+Q_{p}(^{112}\mathrm{Cs}),\\ M_{E}(^{108}\mathrm{I})&=M_{E}(^{107}\mathrm{Te})+M_{E}(p)+Q_{p}(^{108}\mathrm{I})\text{ and}\\ M_{E}(^{104}\mathrm{Sb})&=M_{E}(^{108}\mathrm{I})-M_{E}(\alpha)-Q_{\alpha}(^{108}\mathrm{I}).\\ \end{split} (3)

The respective mass excesses can be found in Tab. 2. Their uncertainties are now dominated by the uncertainties of the respective QQ-values and not by the uncertainty in the mass excess of 103Sn. Since the astrophysical rp-process is terminated in this region [14, 26, 27, 28, 29, 30], these isotopes play a vital role in our understanding of stellar nucleosynthesis. Precise mass determinations, and ideally direct mass measurements in the future, aid in establishing the energy balances of the relevant decays and transitions.

Table 1: Measured QQ-values as reported in AME2020 [31] and used for the mass excess calculation of the five parent isotopes of 103Sn presented in Tab. 2.

QQ-value (keV) references
QpQ_{p}(108I) 597(13) Ref. [26]
QpQ_{p}(112Cs) 816(4) Refs. [52, 53]
QαQ_{\alpha}(107Te) 4010(5) Refs. [54, 55, 26, 56]
QαQ_{\alpha}(108I) 4099(5) Refs. [52, 26]
QαQ_{\alpha}(111Xe) 3710(60) Refs. [54, 57, 55, 56]
Table 2: Measured mass excess of 103Sn and calculated mass excesses based on the 103Sn measurement from this work (left) compared to the result from CSRe [33] (right).

ME,LEBITM_{E,\mathrm{LEBIT}} (keV) ME,CSReM_{E,\mathrm{CSRe}} (keV)
103Sn 67125.9(3.7)-67125.9(3.7) 67138(68)-67138(68)
104Sb 59329(15)-59329(15) 59340(70)-59340(70)
107Te 60691(6)-60691(6) 60700(70)-60700(70)
108I 52805(14)-52805(14) 52820(70)-52820(70)
111Xe 54556(60)-54556(60) 54570(90)-54570(90)
112Cs 46451(60)-46451(60) 46460(90)-46460(90)

V V. Conclusions

The first Penning trap mass measurement of 103Sn was performed at LEBIT [34] and a mass excess of 67125.9(3.7)-67125.9(3.7) keV was obtained. This value improves the precision of the previous measurement [33] by more than an order of magnitude and restores confidence in the smoothness of the nuclear mass surface. Furthermore, the masses of five parent alpha/proton emitters calculated from this improved measurement of 103Sn have become well-anchored and their mass uncertainties are now dominated by their respective QQ-values. The closed neutron and proton shells at N=50N=50 and Z=50Z=50 of 100Sn provide a unique testing ground for our understanding of nuclear forces and shell evolution. Our measurement of 103Sn, just three neutrons away from 100Sn, lays the foundation for future high-precision mass measurements of 100Sn.

VI Acknowledgements

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics and used resources of the Facility for Rare Isotope Beams (FRIB) Operations, which is a DOE Office of Science User Facility under Award Number DE-SC0023633. This work was conducted with the support of Michigan State University, the US National Science Foundation under contracts nos. PHY-1565546 and PHY-2111185, the DOE, Office of Nuclear Physics under contract no. DE-AC02-06CH11357, DE-AC02-05CH11231, DE-SC0022538, and DE-SC0022538. S.E.C. acknowledges support from the DOE NNSA SSGF under DE-NA0003960.

References

  • Benzaid et al. [2020] D. Benzaid, S. Bentridi, A. Kerraci, and N. Amrani, Bethe–Weizsäcker semiempirical mass formula coefficients 2019 update based on AME2016, Nuclear Science and Techniques 31, 9 (2020).
  • Sorlin and Porquet [2008] O. Sorlin and M.-G. Porquet, Nuclear magic numbers: New features far from stability, Progress in Particle and Nuclear Physics 61, 602 (2008).
  • Kanungo [2013] R. Kanungo, A new view of nuclear shells, Physica Scripta 2013, 014002 (2013).
  • Faestermann et al. [2013] T. Faestermann, M. Górska, and H. Grawe, The structure of 100Sn and neighbouring nuclei, Progress in Particle and Nuclear Physics 69, 85 (2013).
  • Górska [2022] M. Górska, Trends in the Structure of Nuclei near 100Sn, Physics 4, 364 (2022).
  • Hinke et al. [2012] C. Hinke, M. Böhmer, P. Boutachkov, T. Faestermann, H. Geissel, J. Gerl, R. Gernhäuser, M. Górska, A. Gottardo, H. Grawe, et al., Superallowed Gamow–Teller decay of the doubly magic nucleus 100Sn, Nature 486, 341 (2012).
  • Chartier et al. [1996] M. Chartier, G. Auger, W. Mittig, A. Lépine-Szily, L. K. Fifield, J. M. Casandjian, M. Chabert, J. Fermé, A. Gillibert, M. Lewitowicz, M. Mac Cormick, M. H. Moscatello, O. H. Odland, N. A. Orr, G. Politi, C. Spitaels, and A. C. C. Villari, Mass Measurement of 100Sn, Phys. Rev. Lett. 77, 2400 (1996).
  • Mougeot et al. [2021] M. Mougeot, D. Atanasov, J. Karthein, R. N. Wolf, P. Ascher, K. Blaum, K. Chrysalidis, G. Hagen, J. D. Holt, W. J. Huang, G. R. Jansen, I. Kulikov, Y. A. Litvinov, D. Lunney, V. Manea, T. Miyagi, T. Papenbrock, L. Schweikhard, A. Schwenk, T. Steinsberger, S. R. Stroberg, Z. H. Sun, A. Welker, F. Wienholtz, S. G. Wilkins, and K. Zuber, Mass measurements of 99-101In challenge ab initio nuclear theory of the nuclide 100Sn, Nature Physics 17, 1099 (2021).
  • Nies et al. [2023] L. Nies, D. Atanasov, M. Athanasakis-Kaklamanakis, M. Au, K. Blaum, J. Dobaczewski, B. S. Hu, J. D. Holt, J. Karthein, I. Kulikov, Y. A. Litvinov, D. Lunney, V. Manea, T. Miyagi, M. Mougeot, L. Schweikhard, A. Schwenk, K. Sieja, and F. Wienholtz, Isomeric excitation energy for Inm99{{}^{99}\mathrm{In}}^{m} from mass spectrometry reveals constant trend next to doubly magic Sn100{}^{100}\mathrm{Sn}Phys. Rev. Lett. 131, 022502 (2023).
  • Park et al. [2020] J. Park, R. Krücken, A. Blazhev, D. Lubos, R. Gernhäuser, M. Lewitowicz, S. Nishimura, D. S. Ahn, H. Baba, B. Blank, P. Boutachkov, F. Browne, I. Čeliković, G. de France, P. Doornenbal, T. Faestermann, Y. Fang, N. Fukuda, J. Giovinazzo, N. Goel, M. Górska, H. Grawe, S. Ilieva, N. Inabe, T. Isobe, A. Jungclaus, D. Kameda, G. D. Kim, Y.-K. Kim, I. Kojouharov, T. Kubo, N. Kurz, Y. K. Kwon, G. Lorusso, K. Moschner, D. Murai, I. Nishizuka, Z. Patel, M. M. Rajabali, S. Rice, H. Sakurai, H. Schaffner, Y. Shimizu, L. Sinclair, P.-A. Söderström, K. Steiger, T. Sumikama, H. Suzuki, H. Takeda, Z. Wang, H. Watanabe, J. Wu, and Z. Y. Xu, Spectroscopy of Cd99{}^{99}\mathrm{Cd} and In101{}^{101}\mathrm{In} from β\beta decays of In99{}^{99}\mathrm{In} and Sn101{}^{101}\mathrm{Sn}Phys. Rev. C 102, 014304 (2020).
  • Reponen et al. [2021] M. Reponen, R. P. de Groote, L. Al Ayoubi, O. Beliuskina, M. L. Bissell, P. Campbell, L. Cañete, B. Cheal, K. Chrysalidis, C. Delafosse, A. de Roubin, C. S. Devlin, T. Eronen, R. F. Garcia Ruiz, S. Geldhof, W. Gins, M. Hukkanen, P. Imgram, A. Kankainen, M. Kortelainen, Á. Koszorús, S. Kujanpää, R. Mathieson, D. A. Nesterenko, I. Pohjalainen, M. Vilén, A. Zadvornaya, and I. D. Moore, Evidence of a sudden increase in the nuclear size of proton-rich silver-96, Nature Communications 12, 4596 (2021).
  • Hornung et al. [2020] C. Hornung, D. Amanbayev, I. Dedes, G. Kripko-Koncz, I. Miskun, N. Shimizu, S. Ayet San Andrés, J. Bergmann, T. Dickel, J. Dudek, J. Ebert, H. Geissel, M. Górska, H. Grawe, F. Greiner, E. Haettner, T. Otsuka, W. R. Plaß, S. Purushothaman, A.-K. Rink, C. Scheidenberger, H. Weick, S. Bagchi, A. Blazhev, O. Charviakova, D. Curien, A. Finlay, S. Kaur, W. Lippert, J.-H. Otto, Z. Patyk, S. Pietri, Y. K. Tanaka, Y. Tsunoda, and J. S. Winfield, Isomer studies in the vicinity of the doubly-magic nucleus 100Sn: Observation of a new low-lying isomeric state in 97Ag, Physics Letters B 802, 135200 (2020).
  • Karthein et al. [2023] J. Karthein, C. Ricketts, R. Ruiz, J. Billowes, C. Binnersley, T. Cocolios, J. Dobaczewski, G. Farooq-Smith, K. Flanagan, G. Georgiev, et al., Electromagnetic properties of indium isotopes elucidate the doubly magic character of 100Sn, arXiv preprint arXiv:2310.15093  (2023).
  • Cartegni et al. [2012] L. Cartegni, C. Mazzocchi, R. Grzywacz, I. G. Darby, S. N. Liddick, K. P. Rykaczewski, J. C. Batchelder, L. Bianco, C. R. Bingham, E. Freeman, C. Goodin, C. J. Gross, A. Guglielmetti, D. T. Joss, S. H. Liu, M. Mazzocco, S. Padgett, R. D. Page, M. M. Rajabali, M. Romoli, P. J. Sapple, J. Thomson, and H. V. Watkins, Experimental study of the decays of 112Cs and 111Xe, Phys. Rev. C 85, 014312 (2012).
  • Auranen et al. [2018] K. Auranen, D. Seweryniak, M. Albers, A. D. Ayangeakaa, S. Bottoni, M. P. Carpenter, C. J. Chiara, P. Copp, H. M. David, D. T. Doherty, J. Harker, C. R. Hoffman, R. V. F. Janssens, T. L. Khoo, S. A. Kuvin, T. Lauritsen, G. Lotay, A. M. Rogers, J. Sethi, C. Scholey, R. Talwar, W. B. Walters, P. J. Woods, and S. Zhu, Superallowed α\alpha decay to doubly magic Sn100{}^{100}\mathrm{Sn}Phys. Rev. Lett. 121, 182501 (2018).
  • Macfarlane and Siivola [1965] R. D. Macfarlane and A. Siivola, New region of alpha radioactivity, Phys. Rev. Lett. 14, 114 (1965).
  • Seweryniak et al. [2006] D. Seweryniak, K. Starosta, C. N. Davids, S. Gros, A. A. Hecht, N. Hoteling, T. L. Khoo, K. Lagergren, G. Lotay, D. Peterson, A. Robinson, C. Vaman, W. B. Walters, P. J. Woods, and S. Zhu, α\alpha decay of Te105{}^{105}\mathrm{Te}Phys. Rev. C 73, 061301 (2006).
  • Liddick et al. [2006] S. N. Liddick, R. Grzywacz, C. Mazzocchi, R. D. Page, K. P. Rykaczewski, J. C. Batchelder, C. R. Bingham, I. G. Darby, G. Drafta, C. Goodin, C. J. Gross, J. H. Hamilton, A. A. Hecht, J. K. Hwang, S. Ilyushkin, D. T. Joss, A. Korgul, W. Królas, K. Lagergren, K. Li, M. N. Tantawy, J. Thomson, and J. A. Winger, Discovery of Xe109{}^{109}\mathrm{Xe} and Te105{}^{105}\mathrm{Te}: Superallowed α\alpha decay near doubly magic Sn100{}^{100}\mathrm{Sn}Phys. Rev. Lett. 97, 082501 (2006).
  • Janas et al. [2005] Z. Janas, C. Mazzocchi, L. Batist, A. Blazhev, M. Górska, M. Kavatsyuk, O. Kavatsyuk, R. Kirchner, A. Korgul, M. La Commara, K. Miernik, I. Mukha, A. Płochocki, E. Roeckl, and K. Schmidt, Measurements of 110Xe and 106Te decay half-lives, The European Physical Journal A - Hadrons and Nuclei 23, 197 (2005).
  • Capponi et al. [2016] L. Capponi, J. F. Smith, P. Ruotsalainen, C. Scholey, P. Rahkila, K. Auranen, L. Bianco, A. J. Boston, H. C. Boston, D. M. Cullen, X. Derkx, M. C. Drummond, T. Grahn, P. T. Greenlees, L. Grocutt, B. Hadinia, U. Jakobsson, D. T. Joss, R. Julin, S. Juutinen, M. Labiche, M. Leino, K. G. Leach, C. McPeake, K. F. Mulholland, P. Nieminen, D. O’Donnell, E. S. Paul, P. Peura, M. Sandzelius, J. Sarén, B. Saygi, J. Sorri, S. Stolze, A. Thornthwaite, M. J. Taylor, and J. Uusitalo, Direct observation of the Ba114110Xe106Te102Sn{}^{114}\mathrm{Ba}\rightarrow^{110}\mathrm{Xe}\rightarrow^{106}\mathrm{Te}\rightarrow^{102}\mathrm{Sn} triple α\alpha-decay chain using position and time correlations, Phys. Rev. C 94, 024314 (2016).
  • Florescu and Insolia [1995] A. Florescu and A. Insolia, Microscopic calculation for α\alpha and heavier cluster emissions from proton rich Ba and Ce isotopes, Phys. Rev. C 52, 726 (1995).
  • Kumar and Gupta [1994] S. Kumar and R. K. Gupta, Measurable decay modes of barium isotopes via exotic cluster emissions, Phys. Rev. C 49, 1922 (1994).
  • Kumar et al. [1995] S. Kumar, D. Bir, and R. K. Gupta, daughter100{}^{100}\mathrm{daughter} α\alpha-nuclei cluster decays of some neutron-deficient Xe to Gd parents: Sn radioactivity, Phys. Rev. C 51, 1762 (1995).
  • Dobaczewski and Nazarewicz [1995] J. Dobaczewski and W. Nazarewicz, Limits of proton stability near Sn100{}^{100}\mathrm{Sn}Phys. Rev. C 51, R1070 (1995).
  • Olsen et al. [2013] E. Olsen, M. Pfützner, N. Birge, M. Brown, W. Nazarewicz, and A. Perhac, Landscape of two-proton radioactivity, Phys. Rev. Lett. 110, 222501 (2013).
  • Auranen et al. [2019] K. Auranen, D. Seweryniak, M. Albers, A. Ayangeakaa, S. Bottoni, M. Carpenter, C. Chiara, P. Copp, H. David, D. Doherty, J. Harker, C. Hoffman, R. Janssens, T. Khoo, S. Kuvin, T. Lauritsen, G. Lotay, A. Rogers, C. Scholey, J. Sethi, R. Talwar, W. Walters, P. Woods, and S. Zhu, Proton decay of 108I and its significance for the termination of the astrophysical rp-process, Physics Letters B 792, 187 (2019).
  • Schatz et al. [2001] H. Schatz, A. Aprahamian, V. Barnard, L. Bildsten, A. Cumming, M. Ouellette, T. Rauscher, F.-K. Thielemann, and M. Wiescher, End point of the 𝑟𝑝\mathit{rp} process on accreting neutron stars, Phys. Rev. Lett. 86, 3471 (2001).
  • Elomaa et al. [2009] V.-V. Elomaa, G. K. Vorobjev, A. Kankainen, L. Batist, S. Eliseev, T. Eronen, J. Hakala, A. Jokinen, I. D. Moore, Y. N. Novikov, H. Penttilä, A. Popov, S. Rahaman, J. Rissanen, A. Saastamoinen, H. Schatz, D. M. Seliverstov, C. Weber, and J. Äystö, Quenching of the snsbte cycle in the rprp process, Phys. Rev. Lett. 102, 252501 (2009).
  • Grawe et al. [2007] H. Grawe, K. Langanke, and G. Martínez-Pinedo, Nuclear structure and astrophysics, Reports on Progress in Physics 70, 1525 (2007).
  • Mazzocchi et al. [2007] C. Mazzocchi, R. Grzywacz, S. N. Liddick, K. P. Rykaczewski, H. Schatz, J. C. Batchelder, C. R. Bingham, C. J. Gross, J. H. Hamilton, J. K. Hwang, S. Ilyushkin, A. Korgul, W. Królas, K. Li, R. D. Page, D. Simpson, and J. A. Winger, α\alpha Decay of I109{}^{109}\mathrm{I} and Its Implications for the Proton Decay of Sb105{}^{105}\mathrm{Sb} and the Astrophysical Rapid Proton-Capture Process, Phys. Rev. Lett. 98, 212501 (2007).
  • Wang et al. [2021] M. Wang, W. Huang, F. Kondev, G. Audi, and S. Naimi, The AME 2020 atomic mass evaluation (II). Tables, graphs and references*, Chinese Physics C 45, 030003 (2021).
  • Meng et al. [2017] W. Meng, G. Audi, F. G. Kondev, W. Huang, S. Naimi, and X. Xing, The AME2016 atomic mass evaluation (II). Tables, graphs and references, Chinese Physics C 41, 030003 (2017).
  • Xing et al. [2023] Y. M. Xing, C. X. Yuan, M. Wang, Y. H. Zhang, X. H. Zhou, Y. A. Litvinov, K. Blaum, H. S. Xu, T. Bao, R. J. Chen, C. Y. Fu, B. S. Gao, W. W. Ge, J. J. He, W. J. Huang, T. Liao, J. G. Li, H. F. Li, S. Litvinov, S. Naimi, P. Shuai, M. Z. Sun, Q. Wang, X. Xu, F. R. Xu, T. Yamaguchi, X. L. Yan, J. C. Yang, Y. J. Yuan, Q. Zeng, M. Zhang, and X. Zhou, Isochronous mass measurements of neutron-deficient nuclei from Sn112{}^{112}\mathrm{Sn} projectile fragmentation, Phys. Rev. C 107, 014304 (2023).
  • Ringle et al. [2013] R. Ringle, S. Schwarz, and G. Bollen, Penning trap mass spectrometry of rare isotopes produced via projectile fragmentation at the lebit facility, International Journal of Mass Spectrometry 349-350, 87 (2013), 100 years of Mass Spectrometry.
  • Bollen et al. [1990] G. Bollen, R. B. Moore, G. Savard, and H. Stolzenberg, The accuracy of heavy‐ion mass measurements using time of flight‐ion cyclotron resonance in a penning trap, Journal of Applied Physics 68, 4355 (1990)https://doi.org/10.1063/1.346185 .
  • Becker et al. [1990] S. Becker, G. Bollen, F. Kern, H.-J. Kluge, R. Moore, G. Savard, L. Schweikhard, and H. Stolzenberg, Mass measurements of very high accuracy by time-of-flight ion cyclotron resonance of ions injected into a penning trap, International Journal of Mass Spectrometry and Ion Processes 99, 53 (1990).
  • König et al. [1995] M. König, G. Bollen, H.-J. Kluge, T. Otto, and J. Szerypo, Quadrupole excitation of stored ion motion at the true cyclotron frequency, International Journal of Mass Spectrometry and Ion Processes 142, 95 (1995).
  • Wei et al. [2022] J. Wei, H. Ao, B. Arend, S. Beher, G. Bollen, N. Bultman, F. Casagrande, W. Chang, Y. Choi, S. Cogan, C. Compton, M. Cortesi, J. Curtin, K. Davidson, X. Du, K. Elliott, B. Ewert, A. Facco, A. Fila, K. Fukushima, V. Ganni, A. Ganshyn, J. Gao, T. Glasmacher, J. Guo, Y. Hao, W. Hartung, N. Hasan, M. Hausmann, K. Holland, H. C. Hseuh, M. Ikegami, D. Jager, S. Jones, N. Joseph, T. Kanemura, S.-H. Kim, P. Knudsen, B. Kortum, E. Kwan, T. Larter, R. E. Laxdal, M. Larmann, K. Laturkar, J. LeTourneau, Z.-Y. Li, S. Lidia, G. Machicoane, C. Magsig, P. Manwiller, F. Marti, T. Maruta, A. McCartney, E. Metzgar, S. Miller, Y. Momozaki, D. Morris, M. Mugerian, I. Nesterenko, C. Nguyen, W. O’Brien, K. Openlander, P. N. Ostroumov, M. Patil, A. S. Plastun, J. Popielarski, L. Popielarski, M. Portillo, J. Priller, X. Rao, M. Reaume, H. Ren, K. Saito, M. Smith, M. Steiner, A. Stolz, O. B. Tarasov, B. Tousignant, R. Walker, X. Wang, J. Wenstrom, G. West, K. Witgen, M. Wright, T. Xu, Y. Xu, Y. Yamazaki, T. Zhang, Q. Zhao, S. Zhao, K. Dixon, M. Wiseman, M. Kelly, K. Hosoyama, and S. Prestemon, Accelerator commissioning and rare isotope identification at the facility for rare isotope beams, Modern Physics Letters A 37, 2230006 (2022)https://doi.org/10.1142/S0217732322300063 .
  • York et al. [2009] R. York, G. Bollen, C. Compton, A. Crawford, M. Doleans, T. Glasmacher, W. Hartung, F. Marti, J. Popielarski, J. Vincent, et al., Frib: A new accelerator facility for the production of rare isotope beams, SRF2009, Berlin, September  (2009).
  • Hausmann et al. [2013] M. Hausmann, A. Aaron, A. Amthor, M. Avilov, L. Bandura, R. Bennett, G. Bollen, T. Borden, T. Burgess, S. Chouhan, et al., Design of the advanced rare isotope separator aris at frib, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 317, 349 (2013).
  • Lund et al. [2020] K. Lund, G. Bollen, D. Lawton, D. Morrissey, J. Ottarson, R. Ringle, S. Schwarz, C. Sumithrarachchi, A. Villari, and J. Yurkon, Online tests of the advanced cryogenic gas stopper at nscl, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 463, 378 (2020).
  • Bollen [2011] G. Bollen, “ion surfing” with radiofrequency carpets, International Journal of Mass Spectrometry 299, 131 (2011).
  • Schwarz et al. [2016] S. Schwarz, G. Bollen, R. Ringle, J. Savory, and P. Schury, The lebit ion cooler and buncher, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 816, 131 (2016).
  • Ringle et al. [2009] R. Ringle, G. Bollen, A. Prinke, J. Savory, P. Schury, S. Schwarz, and T. Sun, The LEBIT 9.4T Penning trap mass spectrometer, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 604, 536 (2009).
  • Gabrielse [2009] G. Gabrielse, Why is sideband mass spectrometry possible with ions in a Penning trap?, Phys. Rev. Lett. 102, 172501 (2009).
  • Ringle et al. [2007a] R. Ringle, G. Bollen, A. Prinke, J. Savory, P. Schury, S. Schwarz, and T. Sun, A “lorentz” steerer for ion injection into a penning trap, International Journal of Mass Spectrometry 263, 38 (2007a).
  • Blaum et al. [2004] K. Blaum, D. Beck, G. Bollen, P. Delahaye, C. Guénaut, F. Herfurth, A. Kellerbauer, H.-J. Kluge, D. Lunney, S. Schwarz, L. Schweikhard, and C. Yazidjian, Population inversion of nuclear states by a Penning trap mass spectrometer, Europhysics Letters 67, 586 (2004).
  • Gulyuz et al. [2015] K. Gulyuz, J. Ariche, G. Bollen, S. Bustabad, M. Eibach, C. Izzo, S. J. Novario, M. Redshaw, R. Ringle, R. Sandler, S. Schwarz, and A. A. Valverde, Determination of the direct double-β\beta-decay Q value of 96Zr and atomic masses of 90-92,94,96Zr and92,94-98,100Mo, Phys. Rev. C 91, 055501 (2015).
  • Ringle et al. [2007b] R. Ringle, T. Sun, G. Bollen, D. Davies, M. Facina, J. Huikari, E. Kwan, D. J. Morrissey, A. Prinke, J. Savory, P. Schury, S. Schwarz, and C. S. Sumithrarachchi, High-precision penning trap mass measurements of Ca37,38{}^{37,38}\mathrm{Ca} and their contributions to conserved vector current and isobaric mass multiplet equation, Phys. Rev. C 75, 055503 (2007b).
  • Mukha et al. [2004] I. Mukha, L. Batist, F. Becker, A. Blazhev, A. Brüchle, J. Döring, M. Gorska, H. Grawe, T. Faestermann, C. Hoffman, et al., Studies of β\beta-delayed proton decays of N \approx Z nuclei around 100Sn at the GSI-ISOL facility, Nuclear Physics A 746, 66 (2004).
  • Kavatsyuk et al. [2005] O. Kavatsyuk, M. Kavatsyuk, L. Batist, A. Banu, F. Becker, A. Blazhev, W. Brüchle, J. Döring, T. Faestermann, M. Górska, H. Grawe, Z. Janas, A. Jungclaus, M. Karny, R. Kirchner, M. La Commara, S. Mandal, C. Mazzocchi, I. Mukha, S. Muralithar, C. Plettner, A. Płochocki, E. Roeckl, M. Romoli, M. Schädel, R. Schwengner, and J. Żylicz, Beta decay of 103Sn, The European Physical Journal A - Hadrons and Nuclei 25, 211 (2005).
  • Page et al. [1994] R. D. Page, P. J. Woods, R. A. Cunningham, T. Davinson, N. J. Davis, A. N. James, K. Livingston, P. J. Sellin, and A. C. Shotter, Decays of odd-odd N-Z=2 nuclei above Sn100{}^{100}\mathrm{Sn}: The observation of proton radioactivity from Cs112{}^{112}\mathrm{Cs}Phys. Rev. Lett. 72, 1798 (1994).
  • Wady et al. [2012] P. T. Wady, J. F. Smith, E. S. Paul, B. Hadinia, C. J. Chiara, M. P. Carpenter, C. N. Davids, A. N. Deacon, S. J. Freeman, A. N. Grint, R. V. F. Janssens, B. P. Kay, T. Lauritsen, C. J. Lister, B. M. McGuirk, M. Petri, A. P. Robinson, D. Seweryniak, D. Steppenbeck, and S. Zhu, γ\gamma-ray spectroscopy of the odd-odd N=Z+2N=Z+2 deformed proton emitter 112Cs, Phys. Rev. C 85, 034329 (2012).
  • Schardt et al. [1979] D. Schardt, R. Kirchner, O. Klepper, W. Reisdorf, E. Roeckl, P. Tidemand-Petersson, G. Ewan, E. Hagberg, B. Jonson, S. Mattsson, and G. Nyman, Alpha decay studies of tellurium, iodine, xenon and cesium isotopes, Nuclear Physics A 326, 65 (1979).
  • Heine et al. [1991] F. Heine, T. Faestermann, A. Gillitzer, J. Homolka, M. Köpf, and W. Wagner, Proton and alpha radioactivity of very neutron deficient Te, I, Xe and Cs isotopes, studied after electrostatic separation, Zeitschrift für Physik A Hadrons and Nuclei 340, 225 (1991).
  • Capponi et al. [2020] L. Capponi, J. F. Smith, P. Ruotsalainen, C. Scholey, P. Rahkila, L. Bianco, A. J. Boston, H. C. Boston, D. M. Cullen, X. Derkx, M. C. Drummond, T. Grahn, P. T. Greenlees, L. Grocutt, B. Hadinia, U. Jakobsson, D. T. Joss, R. Julin, S. Juutinen, M. Labiche, M. Leino, K. G. Leach, C. McPeake, K. F. Mulholland, P. Nieminen, D. O’Donnell, E. S. Paul, P. Peura, M. Sandzelius, J. Sarén, B. Saygi, J. Sorri, S. Stolze, A. Thornthwaite, M. J. Taylor, and J. Uusitalo, Delayed or absent π(h11/2)2\pi{({h}_{11/2})}^{2} alignment in Xe111{}^{111}\mathrm{Xe}Phys. Rev. C 101, 014313 (2020).
  • Schardt et al. [1981] D. Schardt, T. Batsch, R. Kirchner, O. Klepper, W. Kurcewicz, E. Roeckl, and P. Tidemand-Petersson, Alpha decay of neutron-deficient isotopes with 52 \leq Z \leq 55, including the new isotopes 106Te (T1/2 = 60 μ\mus) and 110Xe, Nuclear Physics A 368, 153 (1981).