This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\thankstext

[\star]t1These authors equally contribute to this work. \thankstexte1e-mail: hxchen@seu.edu.cn

11institutetext: School of Physics, Southeast University, Nanjing 210094, China

Highly excited and exotic fully-strange tetraquark states

Rui-Rui Dong\thanksreft1    Niu Su\thanksreft1    Hua-Xing Chen\thanksrefe1
(Received: date / Accepted: date)
Abstract

Some hadrons have the exotic quantum numbers that the traditional q¯q\bar{q}q mesons and qqqqqq baryons can not reach, such as JPC=0/0+/1+/2+/3+/4+J^{PC}=0^{--}/0^{+-}/1^{-+}/2^{+-}/3^{-+}/4^{+-}, etc. We investigate for the first time the exotic quantum number JPC=4+J^{PC}=4^{+-}, and study the fully-strange tetraquark states with such an exotic quantum number. We systematically construct all the diquark-antidiquark interpolating currents, and apply the method of QCD sum rules to calculate both the diagonal and off-diagonal correlation functions. The obtained results are used to construct three mixing currents that are nearly non-correlated, and we use one of them to extract the mass of the lowest-lying state to be 2.850.22+0.192.85^{+0.19}_{-0.22} GeV. We apply the Fierz rearrangement to transform this mixing current to be the combination of three meson-meson currents, and the obtained Fierz identity suggests that this state dominantly decays into the PP-wave ϕ(1020)f2(1525)\phi(1020)f_{2}^{\prime}(1525) channel. This fully-strange tetraquark state of JPC=4+J^{PC}=4^{+-} is a purely exotic hadron to be potentially observed in future particle experiments.

journal: Eur. Phys. J. C

1 Introduction

In the past twenty years many candidates of exotic hadrons were observed in particle experiments, which can not be well explained in the traditional quark model pdg . Most of them still have the “traditional” quantum numbers that the traditional q¯q\bar{q}q mesons and qqqqqq baryons can also reach, making them not so easy to be clearly identified as exotic hadrons. However, there are some “exotic” quantum numbers that the traditional hadrons can not reach, such as the spin-parity quantum numbers JPC=0/0+/1+/2+/3+/4+/J^{PC}=0^{--}/0^{+-}/1^{-+}/2^{+-}/3^{-+}/4^{+-}/\cdots. The hadrons with such exotic quantum numbers are of particular interests, since they can not be explained as traditional hadrons any more. Their possible interpretations are compact multiquark states Chen:2008qw ; Chen:2008ne ; Zhu:2013sca ; Huang:2016rro , hadronic molecules Zhang:2019ykd ; Dong:2022cuw ; Ji:2022blw , glueballs Morningstar:1999rf ; Chen:2005mg ; Mathieu:2008me ; Meyer:2004gx ; Gregory:2012hu ; Athenodorou:2020ani ; Qiao:2014vva ; Pimikov:2017bkk , and hybrid states Frere:1988ac ; Page:1998gz ; MILC:1997usn ; Dudek:2009qf ; Dudek:2013yja ; Chetyrkin:2000tj ; Chen:2010ic ; Huang:2016upt ; Qiu:2022ktc ; Wang:2022sib , etc.

Among these exotic quantum numbers, the states of JPC=1+J^{PC}=1^{-+} have been extensively studied in the literature Chen:2008qw ; Chen:2008ne ; Huang:2016rro ; Zhang:2019ykd ; Dong:2022cuw ; Frere:1988ac ; Page:1998gz ; MILC:1997usn ; Dudek:2009qf ; Dudek:2013yja ; Chetyrkin:2000tj ; Chen:2010ic ; Huang:2016upt ; Qiu:2022ktc ; Wang:2022sib , since they are predicted to be the lightest hybrid states Meyer:2015eta . Up to now there have been four structures observed in experiments with JPC=1+J^{PC}=1^{-+}, including three isovector states π1(1400)\pi_{1}(1400) IHEP-Brussels-LosAlamos-AnnecyLAPP:1988iqi , π1(1600)\pi_{1}(1600) E852:1998mbq , and π1(2015)\pi_{1}(2015) E852:2004gpn as well as one isoscalar state η1(1855)\eta_{1}(1855) Ablikim:2022zze . Besides, the states of JPC=0/0+/2+/3+J^{PC}=0^{--}/0^{+-}/2^{+-}/3^{-+} have also been studied to some extent Zhu:2013sca ; Ji:2022blw ; Morningstar:1999rf ; Chen:2005mg ; Mathieu:2008me ; Meyer:2004gx ; Gregory:2012hu ; Athenodorou:2020ani ; Qiao:2014vva ; Pimikov:2017bkk . These theoretical and experimental studies have significantly improved our understanding on the non-perturbative behaviors of the strong interaction in the low energy region. However, there has not been any investigation on the exotic quantum number JPC=4+J^{PC}=4^{+-} yet.

In this paper we shall investigate for the first time the exotic quantum number JPC=4+J^{PC}=4^{+-}, and study the fully-strange tetraquark states with such an exotic quantum number. We shall work within the diquark-antidiquark picture, and systematically construct all the diquark-antidiquark currents of JPC=4+J^{PC}=4^{+-}, as depicted in Fig. 1(a). We shall apply the method of QCD sum rules to study these currents as a whole, and extract the mass of the lowest-lying state to be 2.850.22+0.192.85^{+0.19}_{-0.22} GeV.

Refer to caption
Refer to caption
Figure 1: Two configurations for the fully-strange tetraquark states: (a) the diquark-antidiquark system with the internal orbital angular momenta lλ/lρ/lρl_{\lambda}/l_{\rho}/l_{\rho^{\prime}} and (b) the meson-meson system with lλ/lρ/lρl_{\lambda}^{\prime}/l_{\rho}^{\prime}/l_{\rho^{\prime}}^{\prime}.

Besides, we shall also systematically construct all the meson-meson currents of JPC=4+J^{PC}=4^{+-}, as depicted in Fig. 1(b). We shall relate these currents and the diquark-antidiquark currents through the Fierz rearrangement. The obtained Fierz identity suggests that the lowest-lying state dominantly decays into the PP-wave ϕ(1020)f2(1525)\phi(1020)f_{2}^{\prime}(1525) channel. Accordingly, we propose to search for it in the Xϕ(1020)f2(1525)ϕKK¯X\to\phi(1020)f_{2}^{\prime}(1525)\to\phi K\bar{K} decay process. With a large amount of J/ψJ/\psi sample, the BESIII collaboration are intensively studying the physics happening around here. Such experiments can also be performed by Belle-II, COMPASS, GlueX, and PANDA, etc. Accordingly, this fully-strange tetraquark state of JPC=4+J^{PC}=4^{+-} is a purely exotic hadron to be potentially observed in future particle experiments.

This paper is organized as follows. In Sec. 2 we systematically construct the local fully-strange tetraquark currents with the exotic quantum number JPC=4+J^{PC}=4^{+-}. We use them to perform QCD sum rule analyses in Sec. 3, where we calculate both their diagonal and off-diagonal two-point correlation functions. Based on the obtained results, we use the three single currents to perform numerical analyses in Sec. 4, while their mixing currents are investigated in Sec. 5. Sec. 6 is a summary.

2 Fully-strange tetraquark currents

As the first step, we construct the local fully-strange tetraquark currents with the exotic quantum number JPC=4+J^{PC}=4^{+-}. This quantum number can not be reached by simply using one quark and one antiquark, and moreover, we need two quarks and two antiquarks together with at least two derivatives to reach such a quantum number.

As depicted in Fig. 1, there are two possible configurations, the diquark-antidiquark configuration and the meson-meson configuration. When investigating the former configuration, the two covalent derivative operators Dα(α+igsAα)D_{\alpha}(\equiv\partial_{\alpha}+ig_{s}A_{\alpha}) and DβD_{\beta} can be either inside the diquark/antidiquark field or between them:

η\displaystyle\eta =\displaystyle= [saTCΓ1DαDβsb](s¯cΓ2Cs¯dT)±h.c.,\displaystyle\big{[}s_{a}^{T}C\Gamma_{1}{\overset{\leftrightarrow}{D}}_{\alpha}{\overset{\leftrightarrow}{D}}_{\beta}s_{b}\big{]}(\bar{s}_{c}\Gamma_{2}C\bar{s}_{d}^{T})\pm h.c.\,,
η\displaystyle\eta^{\prime} =\displaystyle= [saTCΓ3Dαsb][s¯cΓ4CDβs¯dT]±h.c.,\displaystyle\big{[}s_{a}^{T}C\Gamma_{3}{\overset{\leftrightarrow}{D}}_{\alpha}s_{b}\big{]}\big{[}\bar{s}_{c}\Gamma_{4}C{\overset{\leftrightarrow}{D}}_{\beta}\bar{s}_{d}^{T}\big{]}\pm h.c.\,,
η′′\displaystyle\eta^{\prime\prime} =\displaystyle= [[saTCΓ5Dαsb]Dβ(s¯cΓ6Cs¯dT)]±h.c.,\displaystyle\big{[}\big{[}s_{a}^{T}C\Gamma_{5}{\overset{\leftrightarrow}{D}}_{\alpha}s_{b}\big{]}{\overset{\leftrightarrow}{D}}_{\beta}(\bar{s}_{c}\Gamma_{6}C\bar{s}_{d}^{T})\big{]}\pm h.c.\,,
η′′′\displaystyle\eta^{\prime\prime\prime} =\displaystyle= [(saTCΓ7sb)DαDβ(s¯cΓ8Cs¯dT)]±h.c.,\displaystyle\big{[}(s_{a}^{T}C\Gamma_{7}s_{b}){\overset{\leftrightarrow}{D}}_{\alpha}{\overset{\leftrightarrow}{D}}_{\beta}(\bar{s}_{c}\Gamma_{8}C\bar{s}_{d}^{T})\big{]}\pm h.c.\,, (1)

where [ADαB]A[DαB][DαA]B\big{[}A{\overset{\leftrightarrow}{D}}_{\alpha}B\big{]}\equiv A[D_{\alpha}B]-[D_{\alpha}A]B, ada\cdots d are color indices, and Γ18\Gamma_{1\cdots 8} are Dirac matrices. The internal orbital angular momenta contained in these currents are

η\displaystyle\eta :\displaystyle: lλ=0,lρ=2/0,lρ=0/2,\displaystyle l_{\lambda}=0,\,l_{\rho}=2/0,\,l_{\rho^{\prime}}=0/2,
η\displaystyle\eta^{\prime} :\displaystyle: lλ=0,lρ=1,lρ=1,\displaystyle l_{\lambda}=0,\,l_{\rho}=1,\,l_{\rho^{\prime}}=1,
η′′\displaystyle\eta^{\prime\prime} :\displaystyle: lλ=1,lρ=1/0,lρ=0/1,\displaystyle l_{\lambda}=1,\,l_{\rho}=1/0,\,l_{\rho^{\prime}}=0/1,
η′′′\displaystyle\eta^{\prime\prime\prime} :\displaystyle: lλ=2,lρ=0,lρ=0.\displaystyle l_{\lambda}=2,\,l_{\rho}=0,\,l_{\rho^{\prime}}=0. (2)

After carefully examining all the possible combinations, we find that only the η\eta currents can reach JPC=4+J^{PC}=4^{+-}, as depicted in Fig. 2, while the η/η′′/η′′′\eta^{\prime}/\eta^{\prime\prime}/\eta^{\prime\prime\prime} currents can not. Altogether, we can construct three independent diquark-antidiquark currents of JPC=4+J^{PC}=4^{+-}:

ηα1α2α3α41\displaystyle\eta^{1}_{\alpha_{1}\alpha_{2}\alpha_{3}\alpha_{4}} =\displaystyle= ϵabeϵcde×\displaystyle\epsilon^{abe}\epsilon^{cde}\times
𝒮{[saTCγα1Dα3Dα4sb](s¯cγα2Cs¯dT)\displaystyle\mathcal{S}\Big{\{}\big{[}s_{a}^{T}C\gamma_{\alpha_{1}}{\overset{\leftrightarrow}{D}}_{\alpha_{3}}{\overset{\leftrightarrow}{D}}_{\alpha_{4}}s_{b}\big{]}(\bar{s}_{c}\gamma_{\alpha_{2}}C\bar{s}_{d}^{T})
(saTCγα1sb)[s¯cγα2CDα3Dα4s¯dT]},\displaystyle~{}-(s_{a}^{T}C\gamma_{\alpha_{1}}s_{b})\big{[}\bar{s}_{c}\gamma_{\alpha_{2}}C{\overset{\leftrightarrow}{D}}_{\alpha_{3}}{\overset{\leftrightarrow}{D}}_{\alpha_{4}}\bar{s}_{d}^{T}\big{]}\Big{\}},
ηα1α2α3α42\displaystyle\eta^{2}_{\alpha_{1}\alpha_{2}\alpha_{3}\alpha_{4}} =\displaystyle= (δacδbd+δadδbc)×\displaystyle(\delta^{ac}\delta^{bd}+\delta^{ad}\delta^{bc})\times
𝒮{[saTCγα1γ5Dα3Dα4sb](s¯cγα2γ5Cs¯dT)\displaystyle\mathcal{S}\Big{\{}\big{[}s_{a}^{T}C\gamma_{\alpha_{1}}\gamma_{5}{\overset{\leftrightarrow}{D}}_{\alpha_{3}}{\overset{\leftrightarrow}{D}}_{\alpha_{4}}s_{b}\big{]}(\bar{s}_{c}\gamma_{\alpha_{2}}\gamma_{5}C\bar{s}_{d}^{T})
(saTCγα1γ5sb)[s¯cγα2γ5CDα3Dα4s¯dT]},\displaystyle~{}-(s_{a}^{T}C\gamma_{\alpha_{1}}\gamma_{5}s_{b})\big{[}\bar{s}_{c}\gamma_{\alpha_{2}}\gamma_{5}C{\overset{\leftrightarrow}{D}}_{\alpha_{3}}{\overset{\leftrightarrow}{D}}_{\alpha_{4}}\bar{s}_{d}^{T}\big{]}\Big{\}},
ηα1α2α3α43\displaystyle\eta^{3}_{\alpha_{1}\alpha_{2}\alpha_{3}\alpha_{4}} =\displaystyle= ϵabeϵcdegμν×\displaystyle\epsilon^{abe}\epsilon^{cde}g^{\mu\nu}\times
𝒮{[saTCσα1μDα3Dα4sb](s¯cσα2νCs¯dT)\displaystyle\mathcal{S}\Big{\{}\big{[}s_{a}^{T}C\sigma_{\alpha_{1}\mu}{\overset{\leftrightarrow}{D}}_{\alpha_{3}}{\overset{\leftrightarrow}{D}}_{\alpha_{4}}s_{b}\big{]}(\bar{s}_{c}\sigma_{\alpha_{2}\nu}C\bar{s}_{d}^{T})
(saTCσα1μsb)[s¯cσα2νCDα3Dα4s¯dT]}.\displaystyle~{}-(s_{a}^{T}C\sigma_{\alpha_{1}\mu}s_{b})\big{[}\bar{s}_{c}\sigma_{\alpha_{2}\nu}C{\overset{\leftrightarrow}{D}}_{\alpha_{3}}{\overset{\leftrightarrow}{D}}_{\alpha_{4}}\bar{s}_{d}^{T}\big{]}\Big{\}}.

The symbol 𝒮\mathcal{S} denotes symmetrization and subtracting the trace terms in the set {α1αJ}\{\alpha_{1}\cdots\alpha_{J}\}. Among these currents, η1\eta^{1}_{\cdots} and η3\eta^{3}_{\cdots} have the antisymmetric color structure [ss]𝟑¯C[s¯s¯]𝟑C[ss]_{\mathbf{\bar{3}}_{C}}[\bar{s}\bar{s}]_{\mathbf{3}_{C}}, and η2\eta^{2}_{\cdots} has the symmetric color structure [ss]𝟔C[s¯s¯]𝟔¯C[ss]_{\mathbf{6}_{C}}[\bar{s}\bar{s}]_{\mathbf{\bar{6}}_{C}}.

After similarly investigating the meson-meson configuration, we can also construct three independent meson-meson currents of JPC=4+J^{PC}=4^{+-}:

ξα1α2α3α41\displaystyle\xi^{1}_{\alpha_{1}\alpha_{2}\alpha_{3}\alpha_{4}} =\displaystyle= 𝒮{[s¯aγα1Dα3sa]Dα4(s¯bγα2sb)},\displaystyle\mathcal{S}\Big{\{}\big{[}\bar{s}_{a}\gamma_{\alpha_{1}}{\overset{\leftrightarrow}{D}}_{\alpha_{3}}s_{a}\big{]}{\overset{\leftrightarrow}{D}}_{\alpha_{4}}(\bar{s}_{b}\gamma_{\alpha_{2}}s_{b})\Big{\}},
ξα1α2α3α42\displaystyle\xi^{2}_{\alpha_{1}\alpha_{2}\alpha_{3}\alpha_{4}} =\displaystyle= 𝒮{[s¯aγα1γ5Dα3sa]Dα4(s¯bγα2γ5sb)},\displaystyle\mathcal{S}\Big{\{}\big{[}\bar{s}_{a}\gamma_{\alpha_{1}}\gamma_{5}{\overset{\leftrightarrow}{D}}_{\alpha_{3}}s_{a}\big{]}{\overset{\leftrightarrow}{D}}_{\alpha_{4}}(\bar{s}_{b}\gamma_{\alpha_{2}}\gamma_{5}s_{b})\Big{\}},
ξα1α2α3α43\displaystyle\xi^{3}_{\alpha_{1}\alpha_{2}\alpha_{3}\alpha_{4}} =\displaystyle= gμν𝒮{[s¯aσα1μDα3sa]Dα4(s¯bσα2νsb)}.\displaystyle g^{\mu\nu}\mathcal{S}\Big{\{}\big{[}\bar{s}_{a}\sigma_{\alpha_{1}\mu}{\overset{\leftrightarrow}{D}}_{\alpha_{3}}s_{a}\big{]}{\overset{\leftrightarrow}{D}}_{\alpha_{4}}(\bar{s}_{b}\sigma_{\alpha_{2}\nu}s_{b})\Big{\}}.

As depicted in Fig. 2, the internal orbital angular momenta contained in these currents are

ξ\displaystyle\xi :\displaystyle: lλ=1,lρ=1,lρ=0.\displaystyle l_{\lambda}^{\prime}=1,\,l_{\rho}^{\prime}=1,\,l_{\rho^{\prime}}^{\prime}=0. (5)
Refer to caption
Figure 2: Possible internal orbital angular momenta contained in the fully-strange tetraquark currents of JPC=4+J^{PC}=4^{+-}. The Fierz identity given in Eq. (6) indicates that the internal orbital angular momenta contained in the diquark-antidiquark system {lλ=0\{l_{\lambda}=0, lρ=2/0l_{\rho}=2/0, lρ=0/2}l_{\rho^{\prime}}=0/2\} correspond to those contained in the meson-meson system {lλ=1\{l_{\lambda}^{\prime}=1, lρ=1l_{\rho}^{\prime}=1, lρ=0}l_{\rho^{\prime}}^{\prime}=0\}.

After applying the Fierz rearrangement, we obtain

(η1η2η3)=(222222440)(ξ1ξ2ξ3).\left(\begin{array}[]{c}\eta^{1}_{\cdots}\\ \eta^{2}_{\cdots}\\ \eta^{3}_{\cdots}\end{array}\right)=\left(\begin{array}[]{ccc}2&-2&-2\\ -2&2&-2\\ -4&-4&0\end{array}\right)\left(\begin{array}[]{c}\xi^{1}_{\cdots}\\ \xi^{2}_{\cdots}\\ \xi^{3}_{\cdots}\end{array}\right)\,. (6)

This Fierz identity will be used to study the decay behaviors later.

3 QCD sum rule analysis

We apply the QCD sum rule method Shifman:1978bx ; Reinders:1984sr to study the fully-strange tetraquark currents ηα1α2α3α41,2,3\eta^{1,2,3}_{\alpha_{1}\alpha_{2}\alpha_{3}\alpha_{4}} with the exotic quantum number JPC=4+J^{PC}=4^{+-}. This non-perturbative method has been successfully applied to study various conventional and exotic hadrons in the past fifty years Nielsen:2009uh .

We generally assume that the current ηα1α2α3α4i\eta^{i}_{\alpha_{1}\alpha_{2}\alpha_{3}\alpha_{4}} (i=13i=1\cdots 3) couples to the fully-strange tetraquark states XnX_{n} (n=1Nn=1\cdots N) through

0|ηα1α2α3α4i|Xn=finϵα1α2α3α4,\langle 0|\eta^{i}_{\alpha_{1}\alpha_{2}\alpha_{3}\alpha_{4}}|X_{n}\rangle=f_{in}\epsilon_{\alpha_{1}\alpha_{2}\alpha_{3}\alpha_{4}}\,, (7)

where finf_{in} is the 3×N3\times N matrix for the decay constants, and ϵα1α2α3α4\epsilon_{\alpha_{1}\alpha_{2}\alpha_{3}\alpha_{4}} is the traceless and symmetric polarization tensor satisfying

ϵα1α2α3α4ϵβ1β2β3β4=𝒮[g~α1β1g~α2β2g~α3β3g~α4β4],\epsilon_{\alpha_{1}\alpha_{2}\alpha_{3}\alpha_{4}}\epsilon^{*}_{\beta_{1}\beta_{2}\beta_{3}\beta_{4}}=\mathcal{S}^{\prime}[\tilde{g}_{\alpha_{1}\beta_{1}}\tilde{g}_{\alpha_{2}\beta_{2}}\tilde{g}_{\alpha_{3}\beta_{3}}\tilde{g}_{\alpha_{4}\beta_{4}}]\,, (8)

with g~μν=gμνqμqν/q2\tilde{g}_{\mu\nu}=g_{\mu\nu}-q_{\mu}q_{\nu}/q^{2}. The symbol 𝒮\mathcal{S}^{\prime} denotes symmetrization and subtracting the trace terms in the sets {α1α2α3α4}\{\alpha_{1}\alpha_{2}\alpha_{3}\alpha_{4}\} and {β1β2β3β4}\{\beta_{1}\beta_{2}\beta_{3}\beta_{4}\}.

Based on Eq. (7), we can investigate both the diagonal and off-diagonal correlation functions:

Πα1α2α3α4;β1β2β3β4ij(q2)\displaystyle\Pi^{ij}_{\alpha_{1}\alpha_{2}\alpha_{3}\alpha_{4};\beta_{1}\beta_{2}\beta_{3}\beta_{4}}(q^{2}) (9)
\displaystyle\equiv id4xeiqx0|𝐓[ηα1α2α3α4i(x)ηβ1β2β3β4j,(0)]|0\displaystyle i\int d^{4}xe^{iqx}\langle 0|{\bf T}[\eta^{i}_{\alpha_{1}\alpha_{2}\alpha_{3}\alpha_{4}}(x){\eta_{\beta_{1}\beta_{2}\beta_{3}\beta_{4}}^{j,\dagger}}(0)]|0\rangle
=\displaystyle= Πij(q2)×𝒮[g~α1β1g~α2β2g~α3β3g~α4β4].\displaystyle\Pi_{ij}(q^{2})\times\mathcal{S}^{\prime}[\tilde{g}_{\alpha_{1}\beta_{1}}\tilde{g}_{\alpha_{2}\beta_{2}}\tilde{g}_{\alpha_{3}\beta_{3}}\tilde{g}_{\alpha_{4}\beta_{4}}]\,.

At the hadron level we express Πij(q2)\Pi_{ij}(q^{2}) using the dispersion relation as

Πij(q2)=s<ρijphen(s)sq2iε𝑑s,\Pi_{ij}(q^{2})=\int^{\infty}_{s_{<}}\frac{\rho^{\rm phen}_{ij}(s)}{s-q^{2}-i\varepsilon}ds\,, (10)

with s<=16ms2s_{<}=16m_{s}^{2} the physical threshold. We parameterize the spectral density ρijphen(s)\rho^{\rm phen}_{ij}(s) for the states XnX_{n} together with a continuum contribution as

ρijphen(s)×𝒮[]\displaystyle\rho^{\rm phen}_{ij}(s)\times\mathcal{S}^{\prime}[\cdots] (11)
\displaystyle\equiv nδ(sMn2)0|ηi|nn|ηj|0+\displaystyle\sum_{n}\delta(s-M^{2}_{n})\langle 0|\eta^{i}_{\cdots}|n\rangle\langle n|{\eta^{j\dagger}_{\cdots}}|0\rangle+\cdots
=\displaystyle= nfinfjnδ(sMn2)×𝒮[]+,\displaystyle\sum_{n}f_{in}f_{jn}\delta(s-M^{2}_{n})\times\mathcal{S}^{\prime}[\cdots]+\cdots\,,

with MnM_{n} the mass of XnX_{n}.

At the quark-gluon level we calculate Πij(q2)\Pi_{ij}(q^{2}) using the method of operator product expansion (OPE), and extract the OPE spectral density ρij(s)ρijOPE(s)\rho_{ij}(s)\equiv\rho^{\rm OPE}_{ij}(s) ope . In the calculations we take into account the Feynman diagrams depicted in Fig. 3. We consider the perturbative term, the strange quark mass msm_{s}, the quark condensate s¯s\langle\bar{s}s\rangle, the quark-gluon mixed condensate gss¯σGs\langle g_{s}\bar{s}\sigma Gs\rangle, the gluon condensate gs2GG\langle g_{s}^{2}GG\rangle, and their combinations. We calculate all the diagrams proportional to gsN=0g_{s}^{N=0} and gsN=1g_{s}^{N=1}, where we find the D=6D=6 term s¯s2\langle\bar{s}s\rangle^{2} and the D=8D=8 term s¯sgss¯σGs\langle\bar{s}s\rangle\langle g_{s}\bar{s}\sigma Gs\rangle to be important. We partly calculate the diagrams proportional to gsN2g_{s}^{N\geq 2}, whose contributions are found to be small. Especially, we have not taken into account the radiative corrections in our QCD sum rule calculations.

Refer to caption
Figure 3: Feynman diagrams for the fully-strange tetraquark currents of JPC=4+J^{PC}=4^{+-}. The covariant derivative operator Dα=α+igsAαD_{\alpha}=\partial_{\alpha}+ig_{s}A_{\alpha} contains two terms, and we depict the latter term using a green vertex.

Then we perform the Borel transformation at both the hadron and quark-gluon levels. After approximating the continuum using ρij(s)\rho_{ij}(s) above the threshold value s0s_{0}, we obtain the sum rule equation

Πij(s0,MB2)\displaystyle\Pi_{ij}(s_{0},M_{B}^{2}) \displaystyle\equiv nfinfjneMn2/MB2\displaystyle\sum_{n}f_{in}f_{jn}e^{-M_{n}^{2}/M_{B}^{2}} (12)
=\displaystyle= s<s0es/MB2ρij(s)𝑑s.\displaystyle\int^{s_{0}}_{s_{<}}e^{-s/M_{B}^{2}}\rho_{ij}(s)ds\,.

We shall investigate it through two steps, the single-channel analysis and the multi-channel analysis, as follows.

4 Single-channel analysis

To perform the single-channel analysis, we neglect the off-diagonal correlation functions by setting ρij(s)|ij=0\rho_{ij}(s)|_{i\neq j}=0 so that only ρii(s)0\rho_{ii}(s)\neq 0. This assumption means that the three currents ηα1α2α3α41,2,3\eta^{1,2,3}_{\alpha_{1}\alpha_{2}\alpha_{3}\alpha_{4}} are “non-correlated”, and any two of them can not mainly couple to the same state XX, otherwise,

ρij(s)×𝒮[]\displaystyle\rho_{ij}(s)\times\mathcal{S}^{\prime}[\cdots] (13)
\displaystyle\equiv nδ(sMn2)0|ηi|nn|ηj|0+\displaystyle\sum_{n}\delta(s-M^{2}_{n})\langle 0|\eta^{i}_{\cdots}|n\rangle\langle n|{\eta^{j\dagger}_{\cdots}}|0\rangle+\cdots
\displaystyle\approx δ(sMX2)0|ηi|XX|ηj|0+\displaystyle\delta(s-M^{2}_{X})\langle 0|\eta^{i}_{\cdots}|X\rangle\langle X|{\eta^{j\dagger}_{\cdots}}|0\rangle+\cdots
\displaystyle\neq 0.\displaystyle 0\,.

Accordingly, we assume that there are three states X1,2,3X_{1,2,3} corresponding to the three currents ηα1α2α3α41,2,3\eta^{1,2,3}_{\alpha_{1}\alpha_{2}\alpha_{3}\alpha_{4}} through

0|ηα1α2α3α4i|Xi=fiiϵα1α2α3α4.\langle 0|\eta^{i}_{\alpha_{1}\alpha_{2}\alpha_{3}\alpha_{4}}|X_{i}\rangle=f_{ii}\epsilon_{\alpha_{1}\alpha_{2}\alpha_{3}\alpha_{4}}\,. (14)

After parameterizing the spectral density ρii(s)\rho_{ii}(s) as one pole dominance for the state XiX_{i} together with a continuum contribution, Eq. (12) is simplified to be

Πii(s0,MB2)fii2eMi2/MB2=s<s0es/MB2ρii(s)𝑑s,\Pi_{ii}(s_{0},M_{B}^{2})\equiv f_{ii}^{2}e^{-M_{i}^{2}/M_{B}^{2}}=\int^{s_{0}}_{s_{<}}e^{-s/M_{B}^{2}}\rho_{ii}(s)ds\,, (15)

which can be used to calculate MiM_{i} through

Mi2(s0,MB)=s<s0es/MB2sρii(s)𝑑ss<s0es/MB2ρii(s)𝑑s.M^{2}_{i}(s_{0},M_{B})=\frac{\int^{s_{0}}_{s_{<}}e^{-s/M_{B}^{2}}s\rho_{ii}(s)ds}{\int^{s_{0}}_{s_{<}}e^{-s/M_{B}^{2}}\rho_{ii}(s)ds}\,. (16)

We use the spectral density ρ11(s)\rho_{11}(s) extracted from the current ηα1α2α3α41\eta^{1}_{\alpha_{1}\alpha_{2}\alpha_{3}\alpha_{4}} as an example to perform the numerical analysis. We take the following values for various QCD parameters pdg ; Yang:1993bp ; Narison:2002pw ; Gimenez:2005nt ; Jamin:2002ev ; Ioffe:2002be ; Ovchinnikov:1988gk ; Ellis:1996xc :

ms(2GeV)\displaystyle m_{s}(2~{}{\rm GeV}) =\displaystyle= 935+11MeV,\displaystyle 93_{-~{}5}^{+11}{\rm~{}MeV}\,,
gs2GG\displaystyle\left\langle g_{s}^{2}GG\right\rangle =\displaystyle= (0.48±0.14)GeV4,\displaystyle(0.48\pm 0.14){\rm~{}GeV}^{4}\,,
s¯s\displaystyle\langle\bar{s}s\rangle =\displaystyle= (0.8±0.1)×(0.240 GeV)3,\displaystyle-(0.8\pm 0.1)\times(0.240\mbox{ GeV})^{3}\,, (17)
gss¯σGs\displaystyle\left\langle g_{s}\bar{s}\sigma Gs\right\rangle =\displaystyle= M02×s¯s,\displaystyle-M_{0}^{2}\times\langle\bar{s}s\rangle\,,
M02\displaystyle M_{0}^{2} =\displaystyle= (0.8±0.2)GeV2.\displaystyle(0.8\pm 0.2){\rm~{}GeV}^{2}\,.

As shown in Eq. (16), the mass M1M_{1} of the state X1X_{1} depends on two free parameters, the Borel mass MBM_{B} and the threshold value s0s_{0}. We investigate three aspects to find their proper working regions: a) the convergence of OPE, b) the sufficient amount of the pole contribution, and c) the mass dependence on these two parameters.

Refer to caption
Figure 4: CVG12 (short-dashed curve, defined in Eq. (18)), CVG10 (middle-dashed curve, defined in Eq. (19)), CVG8 (long-dashed curve, defined in Eq. (20)), and PC (solid curve, defined in Eq. (21)) as functions of the Borel mass MBM_{B}. These curves are obtained using the current ηα1α2α3α41\eta^{1}_{\alpha_{1}\alpha_{2}\alpha_{3}\alpha_{4}} when setting s0=16.0s_{0}=16.0 GeV2.

Firstly, we investigate the convergence of OPE, which is the cornerstone for a reliable QCD sum rule analysis. We require the D=12D=12 terms (CVG12) to be less than 5%, the D=10D=10 terms (CVG10) to be less than 10%, and the D=8D=8 terms (CVG8) to be less than 20%:

CVG12\displaystyle\mbox{CVG}_{12} \displaystyle\equiv |Π11D=12(,MB2)Π11(,MB2)|<5%,\displaystyle\left|\frac{\Pi_{11}^{D=12}(\infty,M_{B}^{2})}{\Pi_{11}(\infty,M_{B}^{2})}\right|<5\%\,, (18)
CVG10\displaystyle\mbox{CVG}_{10} \displaystyle\equiv |Π11D=10(,MB2)Π11(,MB2)|<10%,\displaystyle\left|\frac{\Pi_{11}^{D=10}(\infty,M_{B}^{2})}{\Pi_{11}(\infty,M_{B}^{2})}\right|<10\%\,, (19)
CVG8\displaystyle\mbox{CVG}_{8} \displaystyle\equiv |Π11D=8(,MB2)Π11(,MB2)|<20%.\displaystyle\left|\frac{\Pi_{11}^{D=8}(\infty,M_{B}^{2})}{\Pi_{11}(\infty,M_{B}^{2})}\right|<20\%\,. (20)

As depicted in Fig. 4 using the dashed curves, the lower bound of the Borel mass is determined to be MB2>2.40M_{B}^{2}>2.40 GeV2.

Secondly, we investigate the one-pole-dominance assumption by requiring the pole contribution (PC) to be larger than 40%:

PC|Π11(s0,MB2)Π11(,MB2)|>40%.\mbox{PC}\equiv\left|\frac{\Pi_{11}(s_{0},M_{B}^{2})}{\Pi_{11}(\infty,M_{B}^{2})}\right|>40\%\,. (21)

As depicted in Fig. 4 using the solid curve, the upper bound of the Borel mass is determined to be MB2<2.65M_{B}^{2}<2.65 GeV2 when setting s0=16.0s_{0}=16.0 GeV2. Altogether the Borel window is determined to be 2.402.40 GeV<2MB2<2.65{}^{2}<M_{B}^{2}<2.65 GeV2 for s0=16.0s_{0}=16.0 GeV2. Redoing the same procedures, we find that there are non-vanishing Borel windows for s0>s0min=14.6s_{0}>s_{0}^{\rm min}=14.6 GeV2. Accordingly, we choose s0s_{0} to be slightly larger, and determine its working region to be 13.013.0 GeV<2s0<19.0{}^{2}<s_{0}<19.0 GeV2.

Refer to caption
Refer to caption
Figure 5: The mass M1M_{1} of the state X1X_{1} extracted from the current ηα1α2α3α41\eta^{1}_{\alpha_{1}\alpha_{2}\alpha_{3}\alpha_{4}}, with respect to (a) the threshold value s0s_{0} and (b) the Borel mass MBM_{B}: (a) the short-dashed/solid/long-dashed curves are obtained by setting MB2=2.40/2.53/2.65M_{B}^{2}=2.40/2.53/2.65 GeV2, respectively; (b) the short-dashed/solid/long-dashed curves are obtained by setting s0=15.0/16.0/17.0s_{0}=15.0/16.0/17.0 GeV2, respectively.

Thirdly, we show the mass M1M_{1} in Fig. 5, and investigate its dependence on MBM_{B} and s0s_{0}. It is stable against MBM_{B} inside the Borel window 2.402.40 GeV<2MB2<2.65{}^{2}<M_{B}^{2}<2.65 GeV2, and its dependence on s0s_{0} is moderate insider the working region 13.013.0 GeV<2s0<19.0{}^{2}<s_{0}<19.0 GeV2, where the mass is calculated to be

M1=3.500.25+0.21GeV.M_{1}=3.50^{+0.21}_{-0.25}{\rm~{}GeV}\,. (22)

Its uncertainty is due to s0s_{0} and MBM_{B} as well as various QCD parameters listed in Eqs. (4).

We repeat the same procedures to study the other two currents ηα1α2α3α42\eta^{2}_{\alpha_{1}\alpha_{2}\alpha_{3}\alpha_{4}} and ηα1α2α3α43\eta^{3}_{\alpha_{1}\alpha_{2}\alpha_{3}\alpha_{4}}. The obtained results are summarized in Table 1.

Table 1: QCD sum rule results for the fully-strange tetraquark states with the exotic quantum number JPC=4+J^{PC}=4^{+-}, extracted from the diquark-antidiquark currents ηα1α2α3α41,2,3\eta^{1,2,3}_{\alpha_{1}\alpha_{2}\alpha_{3}\alpha_{4}} as well as their mixing currents Jα1α2α3α41,2,3J^{1,2,3}_{\alpha_{1}\alpha_{2}\alpha_{3}\alpha_{4}}.
  Currents  s0mins_{0}^{min} Working Regions   Pole [%]   Mass [GeV]
  [GeV2][{\rm GeV}^{2}]   MB2[GeV2]M_{B}^{2}~{}[{\rm GeV}^{2}]   s0[GeV2]s_{0}~{}[{\rm GeV}^{2}]
ηα1α2α3α41\eta^{1}_{\alpha_{1}\alpha_{2}\alpha_{3}\alpha_{4}} 14.6 2.402.402.652.65 16±3.016\pm 3.0 40405050 3.500.25+0.213.50^{+0.21}_{-0.25}
ηα1α2α3α42\eta^{2}_{\alpha_{1}\alpha_{2}\alpha_{3}\alpha_{4}} 19.2 2.802.803.133.13 21±4.021\pm 4.0 40405151 4.080.31+0.264.08^{+0.26}_{-0.31}
ηα1α2α3α43\eta^{3}_{\alpha_{1}\alpha_{2}\alpha_{3}\alpha_{4}} 11.0 1.251.251.651.65 12±2.012\pm 2.0 40405858 3.340.18+0.393.34^{+0.39}_{-0.18}
Jα1α2α3α41J^{1}_{\alpha_{1}\alpha_{2}\alpha_{3}\alpha_{4}} 10.1 1.781.781.921.92 11±2.011\pm 2.0 40404848 2.850.22+0.192.85^{+0.19}_{-0.22}
Jα1α2α3α42J^{2}_{\alpha_{1}\alpha_{2}\alpha_{3}\alpha_{4}} 19.1 2.792.793.143.14 21±4.021\pm 4.0 40405151 4.080.31+0.264.08^{+0.26}_{-0.31}
Jα1α2α3α43J^{3}_{\alpha_{1}\alpha_{2}\alpha_{3}\alpha_{4}}

5 Multi-channel analysis

To perform the multi-channel analysis, we take into account the off-diagonal correlation functions, which are actually non-zero, i.e., ρij(s)|ij0\rho_{ij}(s)|_{i\neq j}\neq 0. It is interesting to see how large they are, so we choose s0=11.0s_{0}=11.0 GeV2 and MB2=1.85M_{B}^{2}=1.85 GeV2 to obtain

Πij(s0,MB2)=(2.770.043.830.040.980.463.830.462.38)×106GeV14.\Pi_{ij}(s_{0},M_{B}^{2})=\left(\begin{array}[]{ccc}2.77&-0.04&-3.83\\ -0.04&0.98&0.46\\ -3.83&0.46&2.38\end{array}\right)\times 10^{-6}{\rm~{}GeV}^{14}. (23)

Hence, η1\eta^{1}_{\cdots} and η3\eta^{3}_{\cdots} are strongly correlated with each other, making the off-diagonal terms of ρij(s)\rho_{ij}(s) non-negligible, as depicted in Fig. 6 using the solid curve.

Refer to caption
Figure 6: Off-diagonal terms, |Π13/Π11Π33|\left|\Pi_{13}/\sqrt{\Pi_{11}\Pi_{33}}\right| (solid) and |Π13/Π11Π33|\left|\Pi^{\prime}_{13}/\sqrt{\Pi^{\prime}_{11}\Pi^{\prime}_{33}}\right| (dashed), as functions of the Borel mass MBM_{B}. These curves are obtained by setting s0=11.0s_{0}=11.0 GeV2.

To diagonalize the 3×33\times 3 matrix ρij(s)\rho_{ij}(s), we construct three mixing currents Jα1α2α3α41,2,3J^{1,2,3}_{\alpha_{1}\alpha_{2}\alpha_{3}\alpha_{4}}:

(J1J2J3)=𝕋3×3(η1η2η3),\left(\begin{array}[]{c}J^{1}_{\cdots}\\ J^{2}_{\cdots}\\ J^{3}_{\cdots}\end{array}\right)=\mathbb{T}_{3\times 3}\left(\begin{array}[]{c}\eta^{1}_{\cdots}\\ \eta^{2}_{\cdots}\\ \eta^{3}_{\cdots}\end{array}\right)\,, (24)

with 𝕋3×3\mathbb{T}_{3\times 3} the transition matrix.

We apply the method of operator product expansion to extract the spectral densities ρij(s)\rho^{\prime}_{ij}(s) from the mixing currents Jα1α2α3α41,2,3J^{1,2,3}_{\alpha_{1}\alpha_{2}\alpha_{3}\alpha_{4}}. After choosing

𝕋3×3=(0.720.060.690.140.990.050.680.130.72),\mathbb{T}_{3\times 3}=\left(\begin{array}[]{ccc}0.72&-0.06&-0.69\\ 0.14&0.99&0.05\\ 0.68&-0.13&0.72\end{array}\right)\,, (25)

we obtain

Πij(s0,MB2)=(6.430001.000001.30)×106GeV14,\Pi^{\prime}_{ij}(s_{0},M_{B}^{2})=\left(\begin{array}[]{ccc}6.43&0&0\\ 0&1.00&0\\ 0&0&-1.30\end{array}\right)\times 10^{-6}{\rm~{}GeV}^{14}, (26)

at s0=11.0s_{0}=11.0 GeV2 and MB2=1.85M_{B}^{2}=1.85 GeV2. Hence, the off-diagonal terms of ρij(s)\rho^{\prime}_{ij}(s) are negligible around here, suggesting that the three mixing currents Jα1α2α3α41,2,3J^{1,2,3}_{\alpha_{1}\alpha_{2}\alpha_{3}\alpha_{4}} are nearly non-correlated around here, as depicted in Fig. 6 using the dashed curve. Moreover, Eq. (26) indicates that the QCD sum rule result from Jα1α2α3α43J^{3}_{\alpha_{1}\alpha_{2}\alpha_{3}\alpha_{4}} is non-physical around here due to its negative correlation function. Besides, Eq. (25) indicates that J2J^{2}_{\cdots} is almost the same as η2\eta^{2}_{\cdots}, while J1J^{1}_{\cdots} and J3J^{3}_{\cdots} are mainly from the recombination of η1\eta^{1}_{\cdots} and η3\eta^{3}_{\cdots}.

Refer to caption
Refer to caption
Figure 7: The mass M1M_{1}^{\prime} extracted from the mixing current Jα1α2α3α41J^{1}_{\alpha_{1}\alpha_{2}\alpha_{3}\alpha_{4}}, with respect to (a) the threshold value s0s_{0} and (b) the Borel mass MBM_{B}: (a) the short-dashed/solid/long-dashed curves are obtained by setting MB2=1.78/1.85/1.92M_{B}^{2}=1.78/1.85/1.92 GeV2, respectively; (b) the short-dashed/solid/long-dashed curves are obtained by setting s0=10.0/11.0/12.0s_{0}=10.0/11.0/12.0 GeV2, respectively.

We use the procedures previously applied on the diquark-antidiquark currents ηα1α2α3α41,2,3\eta^{1,2,3}_{\alpha_{1}\alpha_{2}\alpha_{3}\alpha_{4}} to study their mixing currents Jα1α2α3α41,2,3J^{1,2,3}_{\alpha_{1}\alpha_{2}\alpha_{3}\alpha_{4}}. The obtained results are also summarized in Table 1. Especially, the mass extracted from the current Jα1α2α3α41J^{1}_{\alpha_{1}\alpha_{2}\alpha_{3}\alpha_{4}} is significantly reduced to be

M1=2.850.22+0.19GeV.M^{\prime}_{1}=2.85^{+0.19}_{-0.22}{\rm~{}GeV}\,. (27)

For completeness, we show it in Fig. 7 as a function of the threshold value s0s_{0} and the Borel mass MBM_{B}.

6 Conclusion

In this paper we apply the method of QCD sum rules to study the fully-strange tetraquark states with the exotic quantum number JPC=4+J^{PC}=4^{+-}. We work within the diquark-antidiquark picture and systematically construct their interpolating currents. We calculate both the diagonal and off-diagonal correlation functions. The obtained results are used to construct three mixing currents that are nearly non-correlated. We use the mixing current Jα1α2α3α41J^{1}_{\alpha_{1}\alpha_{2}\alpha_{3}\alpha_{4}} to evaluate the mass of the lowest-lying state to be 2.850.22+0.192.85^{+0.19}_{-0.22} GeV.

In this paper we also systematically construct the fully-strange meson-meson currents of JPC=4+J^{PC}=4^{+-}, and relate them to the diquark-antidiquark currents through the Fierz rearrangement. Especially, we can apply Eq. (24) and Eq. (6) to transform the mixing current Jα1α2α3α41J^{1}_{\alpha_{1}\alpha_{2}\alpha_{3}\alpha_{4}} to be

J1=4.3ξ1+1.2ξ21.3ξ3.J^{1}_{\cdots}=4.3~{}\xi^{1}_{\cdots}+1.2~{}\xi^{2}_{\cdots}-1.3~{}\xi^{3}_{\cdots}\,. (28)

This Fierz identity suggests that the lowest-lying state dominantly decays into the PP-wave ϕ(1020)f2(1525)\phi(1020)f_{2}^{\prime}(1525) channel through the meson-meson current ξα1α2α3α41\xi^{1}_{\alpha_{1}\alpha_{2}\alpha_{3}\alpha_{4}}, given that the operator s¯bγα2sb\bar{s}_{b}\gamma_{\alpha_{2}}s_{b} of IGJPC=01I^{G}J^{PC}=0^{-}1^{--} well couples to the vector meson ϕ(1020)\phi(1020) and the operator 𝒮[s¯aγα1Dα3sa]\mathcal{S}[\bar{s}_{a}\gamma_{\alpha_{1}}{\overset{\leftrightarrow}{D}}_{\alpha_{3}}s_{a}] of IGJPC=0+2++I^{G}J^{PC}=0^{+}2^{++} well couples to the f2(1525)f_{2}^{\prime}(1525) meson. Accordingly, we propose to search for it in the Xϕ(1020)f2(1525)ϕKK¯X\to\phi(1020)f_{2}^{\prime}(1525)\to\phi K\bar{K} decay process in the future Belle-II, BESIII, COMPASS, GlueX, and PANDA experiments.

This is the first study on the exotic quantum number JPC=4+J^{PC}=4^{+-}, and the above lowest-lying fully-strange tetraquark state of JPC=4+J^{PC}=4^{+-} is a purely exotic hadron to be potentially observed in future experiments. Its theoretical and experimental studies will continuously improve our understanding on the non-perturbative behaviors of the strong interaction in the low energy region.

Acknowledgements.
We thank Wei Chen, Er-Liang Cui, and Hui-Min Yang for useful discussions. This project is supported by the National Natural Science Foundation of China under Grant No. 12075019, and the Fundamental Research Funds for the Central Universities.

References