This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

HOMFLYPT skein sub-modules of the lens spaces L(p,1)L(p,1)

Ioannis Diamantis International College Beijing, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing, 100083, P. R. China. ioannis.diamantis@hotmail.com
Abstract.

In this paper we work toward the HOMFLYPT skein module of L(p,1)L(p,1), 𝒮(L(p,1))\mathcal{S}(L(p,1)), via braids. Our starting point is the linear Turaev-basis, Λ\Lambda^{\prime}, of the HOMFLYPT skein module of the solid torus ST, 𝒮(ST)\mathcal{S}({\rm ST}), which can be decomposed as the tensor product of the “positive” Λ+{\Lambda^{\prime}}^{+} and the “negative” Λ{\Lambda^{\prime}}^{-} sub-modules, and the Lambropoulou invariant, XX, for knots and links in ST, that captures S(ST)S({\rm ST}). It is a well-known result by now that 𝒮(L(p,1))=𝒮(ST)<bbms>\mathcal{S}(L(p,1))=\frac{\mathcal{S}(ST)}{<bbm^{\prime}s>}, where bbm’s (braid band moves) denotes the isotopy moves that correspond to the surgery description of L(p,1)L(p,1). Namely, a HOMFLYPT-type invariant for knots and links in ST can be extended to an invariant for knots and links in L(p,1)L(p,1) by imposing relations coming from the performance of bbm’s and solving the infinite system of equations obtained that way.

In this paper we work with a new basis of 𝒮(ST)\mathcal{S}({\rm ST}), Λ\Lambda, and we relate the infinite system of equations obtained by performing bbm’s on elements in Λ+\Lambda^{+} to the infinite system of equations obtained by performing bbm’s on elements in Λ\Lambda^{-} via a map II. More precisely we prove that the solutions of one system can be derived from the solutions of the other. Our aim is to reduce the complexity of the infinite system one needs to solve in order to compute 𝒮(L(p,1))\mathcal{S}(L(p,1)) using the braid technique. Finally, we present a generating set and a potential basis for Λ+<bbms>\frac{\Lambda^{+}}{<bbm^{\prime}s>} and thus, we obtain a generating set and a potential basis for Λ<bbms>\frac{\Lambda^{-}}{<bbm^{\prime}s>}. We also discuss further steps needed in order to compute 𝒮(L(p,1))\mathcal{S}(L(p,1)) via braids.

Key words and phrases:
HOMFLYPT polynomial, skein modules, solid torus, Iwahori–Hecke algebra of type B, mixed links, mixed braids, lens spaces.
2010 Mathematics Subject Classification:
57M27, 57M25, 20F36, 20F38, 20C08

0. Introduction and overview

Skein modules were independently introduced by Przytycki [P] and Turaev [Tu] as generalizations of knot polynomials in S3S^{3} to knot polynomials in arbitrary 3-manifolds. The essence is that skein modules are formal linear sums of (oriented) links in a 3-manifold MM, modulo some local skein relations.

Definition 1.

Let MM be an oriented 33-manifold, R=[u±1,z±1]R=\mathbb{Z}[u^{\pm 1},z^{\pm 1}], \mathcal{L} the set of all oriented links in MM up to ambient isotopy in MM and let SS be the submodule of RR\mathcal{L} generated by the skein expressions u1L+uLzL0u^{-1}L_{+}-uL_{-}-zL_{0}, where L+L_{+}, LL_{-} and L0L_{0} comprise a Conway triple represented schematically by the illustrations in Figure 1.

Refer to caption
Figure 1. The links L+,L,L0L_{+},L_{-},L_{0} locally.

For convenience we allow the empty knot, \emptyset, and add the relation u1u=zT1u^{-1}\emptyset-u\emptyset=zT_{1}, where T1T_{1} denotes the trivial knot. Then the HOMFLYPT skein module of MM is defined to be:

𝒮(M)=𝒮(M;[u±1,z±1],u1L+uLzL)0=R/S.\mathcal{S}\left(M\right)=\mathcal{S}\left(M;{\mathbb{Z}}\left[u^{\pm 1},z^{\pm 1}\right],u^{-1}L_{+}-uL_{-}-zL{}_{0}\right)={\raise 3.01385pt\hbox{$R\mathcal{L}$}\!\mathord{\left/{\vphantom{R\mathcal{L}S}}\right.\kern-1.2pt}\!\lower 3.01385pt\hbox{$S$}}.

The HOMFLYPT skein module of a 3-manifold is very hard to compute (see [HP] for a survey on skein modules). For example, 𝒮(S3)\mathcal{S}(S^{3}) is freely generated by the unknot ([FYHLMO, PT]). Let now ST denote the solid torus. In [Tu], [HK] the Homflypt skein module of the solid torus has been computed using diagrammatic methods by means of the following theorem:

Theorem 1 (Turaev, Kidwell–Hoste).

The skein module 𝒮(ST)\mathcal{S}({\rm ST}) is a free, infinitely generated [u±1,z±1]\mathbb{Z}[u^{\pm 1},z^{\pm 1}]-module isomorphic to the symmetric tensor algebra SRπ^0SR\widehat{\pi}^{0}, where π^0\widehat{\pi}^{0} denotes the conjugacy classes of non trivial elements of π1(ST)\pi_{1}(\rm ST).

A basic element of 𝒮(ST)\mathcal{S}({\rm ST}) in the context of [Tu, HK], is illustrated in Figure 2. Note that in the diagrammatic setting of [Tu] and [HK], ST is considered as Annulus×Interval{\rm Annulus}\times{\rm Interval}.

Refer to caption
Figure 2. A basic element of 𝒮(ST)\mathcal{S}({\rm ST}).

𝒮(ST)\mathcal{S}({\rm ST}) is well-studied and understood by now. It forms a commutative algebra with multiplication induced by embedding two solid tori in one in a standard way. Let now +\mathcal{B}^{+} denote the sub-algebra of 𝒮(ST)\mathcal{S}({\rm ST}), freely generated by elements that are clockwise oriented (see Fig. 2) and let \mathcal{B}^{-} denote the sub-algebra of 𝒮(ST)\mathcal{S}({\rm ST}), freely generated by elements with counter-clockwise orientation. Let also k+\mathcal{B}_{k}^{+} denote the sub-module generated by elements in +\mathcal{B}^{+} whose winding number is equal to kk\in\mathbb{N} and k\mathcal{B}_{-k}^{-} denote the sub-module generated by elements in \mathcal{B}^{-} whose winding number is equal to kk. As a linear space, +\mathcal{B}^{+} is graded by

+k0k+\mathcal{B}^{+}\cong\underset{k\geq 0}{\oplus}\,\mathcal{B}_{k}^{+}

and similarly, \mathcal{B}^{-} is graded by

k0k.\mathcal{B}^{-}\cong\underset{k\geq 0}{\oplus}\,\mathcal{B}_{-k}^{-}.

Finally, we have the following module decomposition:

𝒮(ST)=λ,μ0λμ+.\mathcal{S}({\rm ST})\ =\ \underset{\lambda,\mu\geq 0}{\oplus}\,\mathcal{B}_{-\lambda}^{-}\,\otimes\,\mathcal{B}_{\mu}^{+}.

The Turaev-basis of 𝒮(ST)\mathcal{S}({\rm ST}) is described in Equation 2 in open braid form (see left illustration of Figure 5). In [DL2] a new basis, Λ\Lambda, of 𝒮(ST)\mathcal{S}({\rm ST}) is presented via braids, that naturally describes isotopy in L(p,1)L(p,1). This basis was obtained by relating the Turaev-basis to Λ\Lambda via a lower triangular matrix with invertible elements in the diagonal, and is presented in Equation 3 in open braid form (see right illustration of Figure 5). The sets +\mathcal{B}^{+} and \mathcal{B}^{-} are presented in Equation 9 and the sets k+\mathcal{B}_{k}^{+} and k\mathcal{B}_{-k}^{-} are presented in Equations 10 and 11 respectively.

In [DLP] the relation between 𝒮(ST)\mathcal{S}({\rm ST}) and 𝒮(L(p,1))\mathcal{S}(L(p,1)) is established and it is shown that:

(1) 𝒮(L(p,1))=𝒮(ST)<bbmi>,\mathcal{S}(L(p,1))=\frac{\mathcal{S}({\rm ST})}{<bbm_{i}>}\,,

where <bbmi><bbm_{i}> corresponds to the relations coming from the performance of all possible braid band moves (or slide moves) on elements in a basis of 𝒮(ST)\mathcal{S}({\rm ST}). More precisely, Eq. (1) suggests that in order to compute 𝒮(L(p,1))\mathcal{S}(L(p,1)), we need to consider elements in 𝒮(ST)\mathcal{S}({\rm ST}), apply all possible bbm’s and identify all linear dependent elements. A step toward a simplification of the above infinite system of equations can be found in [DL4], where it is shown that in order to compute 𝒮(L(p,1))\mathcal{S}(L(p,1)) it suffices to consider elements in an augmented set, Λaug\Lambda^{aug} (Equation 5,) and perform bbm’s only on their first moving strand (the strand that lies closer to the surgery strand), i.e. 𝒮(L(p,1))=Λaug<bbm1>\mathcal{S}(L(p,1))=\frac{\Lambda^{aug}}{<bbm_{1}>}. In that way more control over the infinite system is obtained.

In this paper we consider the module obtained by solving the infinite system of equations (1), where we only consider elements in Λaug+\Lambda^{aug_{+}}, a set related to +\mathcal{B}^{+} and that is presented in Eq. 10, and we perform braid band moves on their first moving strands, namely Λaug+<bbm1>\frac{\Lambda^{aug_{+}}}{<bbm_{1}>}. Similarly, we consider the module Λaug<bbm1>\frac{\Lambda^{aug_{-}}}{<bbm_{1}>} obtained by solving the infinite system of equations by considering elements in Λaug\Lambda^{aug_{-}} (Definition 5, Eq. 11), and we perform braid band moves on their first moving strands. We then relate these modules via two maps ff and II defined in Definition 6, and in particular we show that the solution of the system Λaug<bbm1>\frac{\Lambda^{aug_{-}}}{<bbm_{1}>} can be derived from the solution of the system Λaug+<bbm1>\frac{\Lambda^{aug_{+}}}{<bbm_{1}>}. In this way we simplify the infinite system (1). Furthermore, we provide potential bases for Λaug+<bbm1>\frac{\Lambda^{aug_{+}}}{<bbm_{1}>} and Λaug<bbm1>\frac{\Lambda^{aug_{-}}}{<bbm_{1}>} and we present results suggesting that the full solution of the infinite system (1) would correspond to the basis of 𝒮(L(p,1))\mathcal{S}(L(p,1)) presented in [GM], and which was obtained using diagrammatic methods. Finally, the braid technique can also be applied for computing other types of skein modules. The interested reader is referred to [D2] and [D3] for the case of Kauffman bracket skein modules of 3-manifolds.

The paper is organized as follows: In §1 we discuss isotopy & braid equivalence for knots and links in L(p,1)L(p,1) ([DL1, LR1]) and in §2 we recall the setting and the essential techniques and results from [La1, La2, LR1, LR2, DL1, DL2, DL3, DL4, DLP] in order to describe the HOMFLYPT skein module of ST via braids. In particular, we present the generalized Hecke algebra of type B, and through a unique trace defined on this algebra, we present the Lambropoulou invariant for knots and links in ST that captures 𝒮(ST)\mathcal{S}({\rm ST}). In §2.2 we present an ordering relation defined on 𝒮(ST)\mathcal{S}({\rm ST}), which is crucial in order to obtain the new basis of 𝒮(ST)\mathcal{S}({\rm ST}), Λ\Lambda, and in §2.3 we present results from [DL2] that are used in order to relate the sets Λ\Lambda and Λ\Lambda^{\prime} via an infinite triangular matrix with invertible elements in the diagonal. Moreover, in §2.4 we briefly discuss the relation of 𝒮(L(p,1))\mathcal{S}(L(p,1)) to 𝒮(ST)\mathcal{S}({\rm ST}) presented in [DLP, DL4]. In §3 we relate the modules Λ+aug<bbm1>\frac{\Lambda^{aug}_{+}}{<bbm_{1}>} and Λaug<bbm1>\frac{\Lambda^{aug}_{-}}{<bbm_{1}>} via the maps ff and II (see §3.2) and in §4 we present generating sets and the potential bases of these modules. Finally, in §4.2 we present further results toward the solution of the infinite system (that is studied in [DL5]), that lead to the [GM]-basis of 𝒮(L(p,1))\mathcal{S}(L(p,1)).

1. Preliminaries

1.1. Mixed Links in S3S^{3}

We consider ST to be the complement of a solid torus in S3S^{3} and knots in ST are represented by mixed links in S3S^{3}. Mixed links consist of two parts, the unknotted fixed part I^\widehat{I} that represents the complementary solid torus in S3S^{3} and the moving part LL that links with I^\widehat{I}. A mixed link diagram is a diagram I^L~\widehat{I}\cup\widetilde{L} of I^L\widehat{I}\cup L on the plane of I^\widehat{I}, where this plane is equipped with the top-to-bottom direction of II (see top left hand side of Figure 3). For more details on mixed links the reader is referred to [LR1, LR2, DL1] and references therein.

The lens spaces L(p,1)L(p,1) can be obtained from S3S^{3} by surgery on the unknot with integer surgery coefficient pp. Surgery along the unknot can be realized by considering first the complementary solid torus and then attaching to it a solid torus according to some homeomorphism on the boundary. Thus, isotopy in L(p,1)L(p,1) can be viewed as isotopy in ST together with the band moves in S3S^{3}, which reflect the surgery description of L(p,1)L(p,1). Moreover, in [DL1] it is shown that in order to describe isotopy for knots and links in a c.c.o. 33-manifold, it suffices to consider only the type α\alpha band moves (for an illustration see top of Figure 3) and thus, isotopy between oriented links in L(p,1)L(p,1) is reflected in S3S^{3} by means of the following result (cf. Thm. 5.8 [LR1], Thm. 6 [DL1] ):

Two oriented links in L(p,1)L(p,1) are isotopic if and only if two corresponding mixed link diagrams of theirs differ by isotopy in ST together with a finite sequence of the type α\alpha band moves.

1.2. Mixed braids and braid equivalence for knots and links in L(p,1)L(p,1)

By the Alexander theorem for knots and links in the solid torus (cf. Thm. 1 [La2]), a mixed link diagram I^L~\widehat{I}\cup\widetilde{L} of I^L\widehat{I}\cup L may be turned into a mixed braid IβI\cup\beta with isotopic closure. This is a braid in S3S^{3} where, without loss of generality, its first strand represents I^\widehat{I}, the fixed part, and the other strands, β\beta, represent the moving part LL. The subbraid β\beta is called the moving part of IβI\cup\beta (see bottom left hand side of Figure 3). Then, in order to translate isotopy for links in L(p,1)L(p,1) into braid equivalence, we first perform the technique of standard parting introduced in [LR2] in order to separate the moving strands from the fixed strand that represents the lens spaces L(p,1)L(p,1). This can be realized by pulling each pair of corresponding moving strands to the right and over or under the fixed strand that lies on their right. Then, we define a braid band move to be a move between mixed braids, which is a band move between their closures. It starts with a little band oriented downward, which, before sliding along a surgery strand, gets one twist positive or negative (see bottom of Figure 3).

Refer to caption
Figure 3. Isotopy in L(p,1)L(p,1) and the two types of braid band moves on mixed braids.

The sets of braids related to ST form groups, which are in fact the Artin braid groups of type B, denoted B1,nB_{1,n}, with presentation:

B1,n=t,σ1,,σn1|σ1tσ1t=tσ1tσ1tσi=σit,i>1σiσi+1σi=σi+1σiσi+1,1in2σiσj=σjσi,|ij|>1,B_{1,n}=\left<\begin{array}[]{ll}\begin{array}[]{l}t,\sigma_{1},\ldots,\sigma_{n-1}\\ \end{array}&\left|\begin{array}[]{l}\sigma_{1}t\sigma_{1}t=t\sigma_{1}t\sigma_{1}\\ t\sigma_{i}=\sigma_{i}t,\quad{i>1}\\ {\sigma_{i}}\sigma_{i+1}{\sigma_{i}}=\sigma_{i+1}{\sigma_{i}}\sigma_{i+1},\quad{1\leq i\leq n-2}\\ {\sigma_{i}}{\sigma_{j}}={\sigma_{j}}{\sigma_{i}},\quad{|i-j|>1}\\ \end{array}\right.\end{array}\right>,

where the generators σi\sigma_{i} and tt are illustrated in Figure 4(i).

Let now \mathcal{L} denote the set of oriented knots and links in ST. Then, isotopy in L(p,1)L(p,1) is then translated on the level of mixed braids by means of the following theorem:

Theorem 2 (Theorem 5, [LR2]).

Let L1,L2L_{1},L_{2} be two oriented links in L(p,1)L(p,1) and let Iβ1,Iβ2I\cup\beta_{1},{\rm\;}I\cup\beta_{2} be two corresponding mixed braids in S3S^{3}. Then L1L_{1} is isotopic to L2L_{2} in L(p,1)L(p,1) if and only if Iβ1I\cup\beta_{1} is equivalent to Iβ2I\cup\beta_{2} in \mathcal{B} by the following moves:

(i)Conjugation:αβ1αβ,ifα,βB1,n.(ii)Stabilizationmoves:αασn±1B1,n+1,ifαB1,n.(iii)Loopconjugation:αt±1αt1,ifαB1,n.(iv)Braidbandmoves:αtpα+σ1±1,a+B1,n+1,\begin{array}[]{clll}(i)&Conjugation:&\alpha\sim\beta^{-1}\alpha\beta,&{\rm if}\ \alpha,\beta\in B_{1,n}.\\ (ii)&Stabilization\ moves:&\alpha\sim\alpha\sigma_{n}^{\pm 1}\in B_{1,n+1},&{\rm if}\ \alpha\in B_{1,n}.\\ (iii)&Loop\ conjugation:&\alpha\sim t^{\pm 1}\alpha t^{\mp 1},&{\rm if}\ \alpha\in B_{1,n}.\\ (iv)&Braid\ band\ moves:&\alpha\sim{t}^{p}\alpha_{+}\sigma_{1}^{\pm 1},&a_{+}\in B_{1,n+1},\end{array}

where α+\alpha_{+} is the word α\alpha with all indices shifted by +1. Note that moves (i), (ii) and (iii) correspond to link isotopy in ST.

Notation 1.

We denote a braid band move by bbm and, specifically, the result of a positive or negative braid band move performed on the ithi^{th}-moving strand of a mixed braid β\beta by bbm±i(β)bbm_{\pm i}(\beta).

Note also that in [LR2] it was shown that the choice of the position of connecting the two components after the performance of a bbm is arbitrary.

2. The HOMFLYPT skein module of ST via braids

In [La2] the most generic analogue of the HOMFLYPT polynomial, XX, for links in the solid torus ST\rm ST has been derived from the generalized Iwahori–Hecke algebras of type B\rm B, H1,n\textrm{H}_{1,n}, via a unique Markov trace constructed on them. This algebra was defined as the quotient of [q±1]B1,n{\mathbb{C}}\left[q^{\pm 1}\right]B_{1,n} over the quadratic relations gi2=(q1)gi+q{g_{i}^{2}=(q-1)g_{i}+q}. Namely:

H1,n(q)=[q±1]B1,nσi2(q1)σiq.\textrm{H}_{1,n}(q)=\frac{{\mathbb{C}}\left[q^{\pm 1}\right]B_{1,n}}{\langle\sigma_{i}^{2}-\left(q-1\right)\sigma_{i}-q\rangle}.

It is also shown that the following sets form linear bases for H1,n(q){\rm H}_{1,n}(q) ([La2, Proposition 1 & Theorem 1]):

(i)Σn={ti1k1tirkrσ},where 0i1<<irn1,(ii)Σn={ti1k1tirkrσ},where 0i1<<irn1,\begin{array}[]{llll}(i)&\Sigma_{n}&=&\{t_{i_{1}}^{k_{1}}\ldots t_{i_{r}}^{k_{r}}\cdot\sigma\},\ {\rm where}\ 0\leq i_{1}<\ldots<i_{r}\leq n-1,\\ (ii)&\Sigma^{\prime}_{n}&=&\{{t^{\prime}_{i_{1}}}^{k_{1}}\ldots{t^{\prime}_{i_{r}}}^{k_{r}}\cdot\sigma\},\ {\rm where}\ 0\leq i_{1}<\ldots<i_{r}\leq n-1,\\ \end{array}

where k1,,krk_{1},\ldots,k_{r}\in{\mathbb{Z}}, t0=t0:=t,ti=gig1tg11gi1andti=gig1tg1git_{0}^{\prime}\ =\ t_{0}\ :=\ t,\quad t_{i}^{\prime}\ =\ g_{i}\ldots g_{1}tg_{1}^{-1}\ldots g_{i}^{-1}\quad{\rm and}\quad t_{i}\ =\ g_{i}\ldots g_{1}tg_{1}\ldots g_{i} are the ‘looping elements’ in H1,n(q){\rm H}_{1,n}(q) (see Figure 4(ii)) and σ\sigma a basic element in the Iwahori–Hecke algebra of type A, Hn(q){\rm H}_{n}(q), for example in the form of the elements in the set [Jo]:

Sn={(gi1gi11gi1k1)(gi2gi21gi2k2)(gipgip1gipkp)},S_{n}=\left\{(g_{i_{1}}g_{i_{1}-1}\ldots g_{i_{1}-k_{1}})(g_{i_{2}}g_{i_{2}-1}\ldots g_{i_{2}-k_{2}})\ldots(g_{i_{p}}g_{i_{p}-1}\ldots g_{i_{p}-k_{p}})\right\},

for 1i1<<ipn11\leq i_{1}<\ldots<i_{p}\leq n-1{\rm\;}. In [La2] the bases Σn\Sigma^{\prime}_{n} are used for constructing a Markov trace on :=n=1H1,n\mathcal{H}:=\bigcup_{n=1}^{\infty}{\rm H}_{1,n}, and using this trace, a universal HOMFLYPT-type invariant for oriented links in ST was constructed.

Refer to caption
Figure 4. The generators of B1,nB_{1,n} and the ‘looping’ elements tit^{\prime}_{i} and tit_{i}.
Theorem 3.

[La2, Theorem 6 & Definition 1] Given z,skz,s_{k} with kk\in{\mathbb{Z}} specified elements in R=[q±1]R={\mathbb{C}}\left[q^{\pm 1}\right], there exists a unique linear Markov trace function on \mathcal{H}:

tr:R(z,sk),k{\rm tr}:\mathcal{H}\to R\left(z,s_{k}\right),\ k\in{\mathbb{Z}}

determined by the rules:

(1)tr(ab)=tr(ba)fora,bH1,n(q)(2)tr(1)=1forallH1,n(q)(3)tr(agn)=ztr(a)foraH1,n(q)(4)tr(atnk)=sktr(a)foraH1,n(q),k\begin{array}[]{lllll}(1)&{\rm tr}(ab)&=&{\rm tr}(ba)&\quad{\rm for}\ a,b\in{\rm H}_{1,n}(q)\\ (2)&{\rm tr}(1)&=&1&\quad{\rm for\ all}\ {\rm H}_{1,n}(q)\\ (3)&{\rm tr}(ag_{n})&=&z{\rm tr}(a)&\quad{\rm for}\ a\in{\rm H}_{1,n}(q)\\ (4)&{\rm tr}(a{t^{\prime}_{n}}^{k})&=&s_{k}{\rm tr}(a)&\quad{\rm for}\ a\in{\rm H}_{1,n}(q),\ k\in{\mathbb{Z}}\\ \end{array}

Then, the function X:X:\mathcal{L} R(z,sk)\rightarrow R(z,s_{k})

Xα^=Δn1(λ)etr(π(α)),X_{\widehat{\alpha}}=\Delta^{n-1}\cdot\left(\sqrt{\lambda}\right)^{e}{\rm tr}\left(\pi\left(\alpha\right)\right),

is an invariant of oriented links in ST, where Δ:=1λqλ(1q)\Delta:=-\frac{1-\lambda q}{\sqrt{\lambda}\left(1-q\right)}, λ:=z+1qqz\lambda:=\frac{z+1-q}{qz}, αB1,n\alpha\in B_{1,n} is a word in the σi\sigma_{i}’s and tit^{\prime}_{i}’s, α^\widehat{\alpha} is the closure of α\alpha, ee is the exponent sum of the σi\sigma_{i}’s in α\alpha, π\pi the canonical map of B1,nB_{1,n} on H1,n(q){\rm H}_{1,n}(q), such that ttt\mapsto t and σigi\sigma_{i}\mapsto g_{i}.

Remark 1.

Note that the use of the looping elements tt^{\prime}’s enable the trace to be defined by just extending by rule (4) the three rules of the Ocneanu trace on the algebras Hn(q){\rm H}_{n}(q) ([Jo]).

In the braid setting of [La2], the elements of 𝒮(ST)\mathcal{S}({\rm ST}) correspond bijectively to the elements of the following set Λ\Lambda^{\prime}:

(2) Λ={tk0t1k1tnkn,ki{0},kiki+1i,n}.\Lambda^{\prime}=\{{t^{k_{0}}}{t^{\prime}_{1}}^{k_{1}}\ldots{t^{\prime}_{n}}^{k_{n}},\ k_{i}\in\mathbb{Z}\setminus\{0\},\ k_{i}\leq k_{i+1}\ \forall i,\ n\in\mathbb{N}\}.

As explained in [La2, DL2], the set Λ\Lambda^{\prime} forms a basis of 𝒮(ST)\mathcal{S}({\rm ST}) in terms of braids (see also [HK, Tu]). Note that Λ\Lambda^{\prime} is a subset of \mathcal{H} and, in particular, Λ\Lambda^{\prime} is a subset of Σ=nΣn\Sigma^{\prime}=\bigcup_{n}\Sigma^{\prime}_{n}. Note also that in contrast to elements in Σ\Sigma^{\prime}, the elements in Λ\Lambda^{\prime} have no gaps in the indices, the exponents are ordered and there are no ‘braiding tails’.

Remark 2.

The Lambropoulou invariant XX recovers 𝒮(ST)\mathcal{S}({\rm ST}). Indeed, it gives distinct values to distinct elements of Λ\Lambda^{\prime}, since tr(tk0t1k1tnkn)=sknsk1sk0{\rm tr}(t^{k_{0}}{t^{\prime}_{1}}^{k_{1}}\ldots{t^{\prime}_{n}}^{k_{n}})=s_{k_{n}}\ldots s_{k_{1}}s_{k_{0}}.

2.1. A different basis for 𝒮(ST)\mathcal{S}({\rm ST})

In [DL2], a different basis Λ\Lambda for 𝒮(ST)\mathcal{S}({\rm ST}) is presented, which is crucial toward the computation of 𝒮(L(p,1))\mathcal{S}\left(L(p,1)\right) and which is described in Eq. 3 in open braid form (for an illustration see Figure 5). In particular we have the following:

Theorem 4.

[DL2, Theorem 2] The following set is a [q±1,z±1]\mathbb{C}[q^{\pm 1},z^{\pm 1}]-basis for 𝒮(ST)\mathcal{S}({\rm ST}):

(3) Λ={tk0t1k1tnkn,ki{0},kiki+1i,n}.\Lambda=\{t^{k_{0}}t_{1}^{k_{1}}\ldots t_{n}^{k_{n}},\ k_{i}\in\mathbb{Z}\setminus\{0\},\ k_{i}\leq k_{i+1}\ \forall i,\ n\in\mathbb{N}\}.

The importance of the new basis Λ\Lambda of 𝒮(ST)\mathcal{S}({\rm ST}) lies in the simplicity of the algebraic expression of a braid band move, which extends the link isotopy in ST to link isotopy in L(p,1)L(p,1) and this fact was our motivation for establishing this new basis Λ\Lambda. Note that comparing the set Λ\Lambda with the set Σ=nΣn\Sigma=\bigcup_{n}\Sigma_{n}, we observe that in Λ\Lambda there are no gaps in the indices of the tit_{i}’s and the exponents are in decreasing order. Also, there are no ‘braiding tails’ in the words in Λ\Lambda.

Refer to caption
Figure 5. Elements in the two different bases of 𝒮(ST)\mathcal{S}({\rm ST}).

2.2. An ordering in the bases of 𝒮(ST)\mathcal{S}({\rm ST})

We now define an ordering relation in the sets Σ\Sigma and Σ\Sigma^{\prime}, which passes to their respective subsets Λ\Lambda and Λ\Lambda^{\prime} and that first appeared in [DL2]. This ordering relation plays a crucial role to what will follow. For that we need the notion of the index of a word ww in any of these sets, denoted ind(w)ind(w). In Λ\Lambda^{\prime} or Λ\Lambda ind(w)ind(w) is defined to be the highest index of the tit_{i}^{\prime}’s, resp. of the tit_{i}’s in ww. Similarly, in Σ\Sigma^{\prime} or Σ\Sigma, ind(w)ind(w) is defined as above by ignoring possible gaps in the indices of the looping generators and by ignoring the braiding parts in the algebras Hn(q)\textrm{H}_{n}(q). Moreover, the index of a monomial in Hn(q)\textrm{H}_{n}(q) is equal to 0.

Definition 2.

[DL2, Definition 2] Let w=ti1k1tiμkμβ1w={t^{\prime}_{i_{1}}}^{k_{1}}\ldots{t^{\prime}_{i_{\mu}}}^{k_{\mu}}\cdot\beta_{1} and u=tj1λ1tjνλνβ2u={t^{\prime}_{j_{1}}}^{\lambda_{1}}\ldots{t^{\prime}_{j_{\nu}}}^{\lambda_{\nu}}\cdot\beta_{2} in Σ\Sigma^{\prime}, where kt,λsk_{t},\lambda_{s}\in\mathbb{Z} for all t,st,s and β1,β2Hn(q)\beta_{1},\beta_{2}\in H_{n}(q). Then, we define the following ordering in Σ\Sigma^{\prime}:

  • (a)

    If i=0μki<i=0νλi\sum_{i=0}^{\mu}k_{i}<\sum_{i=0}^{\nu}\lambda_{i}, then w<uw<u.

  • (b)

    If i=0μki=i=0νλi\sum_{i=0}^{\mu}k_{i}=\sum_{i=0}^{\nu}\lambda_{i}, then:

    (i) if ind(w)<ind(u)ind(w)<ind(u), then w<uw<u,

    (ii) if ind(w)=ind(u)ind(w)=ind(u), then:

    (α\alpha) if i1=j1,,is1=js1,is<jsi_{1}=j_{1},\ldots,i_{s-1}=j_{s-1},i_{s}<j_{s}, then w>uw>u,

    (β\beta) if it=jti_{t}=j_{t} for all tt and kμ=λμ,kμ1=λμ1,,ki+1=λi+1,|ki|<|λi|k_{\mu}=\lambda_{\mu},k_{\mu-1}=\lambda_{\mu-1},\ldots,k_{i+1}=\lambda_{i+1},|k_{i}|<|\lambda_{i}|, then w<uw<u,

    (γ\gamma) if it=jti_{t}=j_{t} for all tt and kμ=λμ,kμ1=λμ1,,ki+1=λi+1,|ki|=|λi|k_{\mu}=\lambda_{\mu},k_{\mu-1}=\lambda_{\mu-1},\ldots,k_{i+1}=\lambda_{i+1},|k_{i}|=|\lambda_{i}| and ki>λik_{i}>\lambda_{i}, then w<uw<u,

    (δ\delta) if it=jtti_{t}=j_{t}\ \forall t and ki=λik_{i}=\lambda_{i}, i\forall i, then w=uw=u.

The ordering in the set Σ\Sigma is defined as in Σ\Sigma^{\prime}, where tit_{i}^{\prime}’s are replaced by tit_{i}’s.

Notation 2.

We set τi,i+mki,i+m:=tikiti+mki+m\tau_{i,i+m}^{k_{i,i+m}}:=t_{i}^{k_{i}}\ldots t^{k_{i+m}}_{i+m} and τi,i+mki,i+m:=tikiti+mki+m{\tau^{\prime}}_{i,i+m}^{k_{i,i+m}}:={t^{\prime}}_{i}^{k_{i}}\ldots{t^{\prime}}^{k_{i+m}}_{i+m}, for mm\in\mathbb{N}, kj0k_{j}\neq 0 for all jj.

The subsets of level kk, Λ(k)\Lambda_{(k)} and Λ(k)\Lambda^{\prime}_{(k)}, of Λ\Lambda and Λ\Lambda^{\prime} respectively ([DL2, Definition 3]), are defined to be the sets:

(4) Λ(k):={t0k0t1k1tmkm|i=0mki=k,ki{0},kiki+1i}Λ(k):={t0k0t1k1tmkm|i=0mki=k,ki{0},kiki+1i}\begin{array}[]{l}\Lambda_{(k)}:=\{t_{0}^{k_{0}}t_{1}^{k_{1}}\ldots t_{m}^{k_{m}}|\sum_{i=0}^{m}{k_{i}}=k,\ k_{i}\in\mathbb{Z}\setminus\{0\},\ k_{i}\leq k_{i+1}\ \forall i\}\\ \\ \Lambda^{\prime}_{(k)}:=\{{t^{\prime}_{0}}^{k_{0}}{t^{\prime}_{1}}^{k_{1}}\ldots{t^{\prime}_{m}}^{k_{m}}|\sum_{i=0}^{m}{k_{i}}=k,\ k_{i}\in\mathbb{Z}\setminus\{0\},\ k_{i}\leq k_{i+1}\ \forall i\}\end{array}

In [DL2] it was shown that the sets Λ(k)\Lambda_{(k)} and Λ(k)\Lambda^{\prime}_{(k)} are totally ordered and well ordered for all kk ([DL2, Propositions 1 & 2]). Note that in [DLP] the exponents in the monomials of Λ\Lambda are in decreasing order, while here the exponents are considered in increasing order, which is totally symmetric.

We finally define the set Λaug\Lambda^{aug}, which augments the basis Λ\Lambda and its subset of level kk, and we also introduce the notion of homologous words.

Definition 3.

We define the set:

(5) Λaug:={t0k0t1k1tnkn,ki\{0}}.\Lambda^{aug}\ :=\{t_{0}^{k_{0}}t_{1}^{k_{1}}\ldots t_{n}^{k_{n}},\ k_{i}\in\mathbb{Z}\backslash\{0\}\}.

and the subset of level kk, Λ(k)aug\Lambda^{aug}_{(k)}, of Λaug\Lambda^{aug}:

(6) Λ(k)aug:={t0k0t1k1tmkm|i=0mki=k,ki\{0}}\Lambda^{aug}_{(k)}:=\{t_{0}^{k_{0}}t_{1}^{k_{1}}\ldots t_{m}^{k_{m}}|\sum_{i=0}^{m}{k_{i}}=k,\ k_{i}\in\mathbb{Z}\backslash\{0\}\}
Definition 4.

We shall say that two words wΛw^{\prime}\in\Lambda^{\prime} and wΛw\in\Lambda are homologous, denoted www^{\prime}\sim w, if ww is obtained from ww^{\prime} by turning tit^{\prime}_{i} into tit_{i} for all ii.

2.3. Relating Λ\Lambda^{\prime} to Λ\Lambda

We now present results from [DL2] used in order to relate the sets Λ\Lambda^{\prime} and Λ\Lambda via a lower triangular matrix with invertible elements in the diagonal. We start by expressing elements in Λ\Lambda^{\prime} to to expressions containing the tit_{i}’s. We have that:

Theorem 5 (Theorem 7, [DL2]).

The following relations hold in H1,n(q){\rm H}_{1,n}(q) for kk\in\mathbb{Z}:

tk0t1k1tmkm=qn=1𝑚nkntk0t1k1tmkm+𝑖fi(q)tk0t1k1tmkmwi++𝑗gj(q)τjuj,\begin{array}[]{lcl}t^{k_{0}}{t_{1}^{\prime}}^{k_{1}}\ldots{t_{m}^{\prime}}^{k_{m}}&=&q^{-\underset{n=1}{\overset{m}{\sum}}\,{nk_{n}}}\cdot\ t^{k_{0}}t_{1}^{k_{1}}\ldots t_{m}^{k_{m}}\ +\ \underset{i}{\sum}\,{f_{i}(q)\cdot t^{k_{0}}t_{1}^{k_{1}}\ldots t_{m}^{k_{m}}\cdot w_{i}}\ +\\ &&\\ &+&\underset{j}{\sum}\,{g_{j}(q)\tau_{j}\cdot u_{j}},\end{array}

where wi,ujHm+1(q),iw_{i},u_{j}\in{\rm H}_{m+1}(q),\forall i, τjΣn\tau_{j}\in\Sigma_{n}, such that τj<tk0t1k1tmkm,j\tau_{j}<t^{k_{0}}t_{1}^{k_{1}}\ldots t_{m}^{k_{m}},\forall j.

Equivalently, the relation in Theorem 5 can be written as:

(7) tk0t1k1tmkm=qn=1𝑚nkntk0t1k1tmkm+𝑖fi(q)tk0t1k1tmkmwi++𝑗gj(q)τjuj,\begin{array}[]{lcl}t^{k_{0}}t_{1}^{k_{1}}\ldots t_{m}^{k_{m}}&=&q^{\underset{n=1}{\overset{m}{\sum}}\,{nk_{n}}}\cdot\ t^{k_{0}}{t_{1}^{\prime}}^{k_{1}}\ldots{t_{m}^{\prime}}^{k_{m}}\ +\ \underset{i}{\sum}\,{f^{\prime}_{i}(q)\cdot t^{k_{0}}t_{1}^{k_{1}}\ldots t_{m}^{k_{m}}\cdot w_{i}}\ +\\ &&\\ &+&\underset{j}{\sum}\,{g^{\prime}_{j}(q)\tau_{j}\cdot u_{j}},\end{array}

When applying Theorem 5 on an element in Λ\Lambda^{\prime}, we obtain the homologous word, the homologous word followed by a braiding “tail”, and a sum of lower order terms followed by braiding “tails”. These elements belong to Σn\Sigma_{n} since they may have gaps in their indices, and we manage the gaps applying Theorem 8 in [DL2], namely:

(8) Σnτ=^𝑖fi(q)τiwi:τiΛaugwiHn(q),i,\Sigma_{n}\ni\tau\ \widehat{=}\ \underset{i}{\sum}\,f_{i}(q)\,\tau_{i}\cdot w_{i}\ :\ \tau_{i}\in\Lambda^{aug}\,\ w_{i}\in{\rm H}_{n}(q),\ \forall i,

where =^\widehat{=} denotes that conjugation is applied in this process.

We now deal with the elements in Λ(k)aug\Lambda^{aug}_{(k)} that are followed by a braiding “tail” ww in Hn(q)H_{n}(q). More precisely we have:

Theorem 6 (Theorem 9, [DL2]).

For an element in Λ(k)aug\Lambda^{aug}_{(k)} followed by a braiding “tail” ww in Hn(q)H_{n}(q) we have that:

tr(τw)=jfj(q,z)tr(τj),tr(\tau\cdot w)\ =\ \sum_{j}{f_{j}(q,z)\cdot tr(\tau_{j})},

such that τjΛ(k)aug\tau_{j}\in\Lambda^{aug}_{(k)} and τj<τ\tau_{j}<\tau, for all jj.

One very important result in [DL2] is that one can change the order of the exponents by using conjugation and stabilization moves on elements in Λ\Lambda and express them as sums of monomials in tit_{i}’s with arbitrary exponents and which are of lower order than the initial elements in Λ\Lambda. Note that both conjugation and stabilization moves are captures by the trace rules, and that we translate here Theorem 9 in [DL2] using the trace.

Theorem 7.

[DL2, Theorem 9] For an element in Λaug\Lambda^{aug} followed by a braiding “tail” in Hn(q){\rm H}_{n}(q) we have that:

tr(τ0,mk0,mw)=tr(𝑗τ0,jλ0,jwj),tr(\tau_{0,m}^{k_{0,m}}\cdot w)\ =\ tr\left(\underset{j}{\sum}\,{\tau_{0,j}^{\lambda_{0,j}}\cdot w_{j}}\right),

where τ0,jλ0,jΛ\tau_{0,j}^{\lambda_{0,j}}\in\Lambda and w,wjnHn(q)w,w_{j}\in\bigcup_{n\in\mathbb{N}}{\rm H}_{n}(q) for all jj.

Examples of how to apply Theorems 5, 6 and 7 can be found in [DL3].

2.4. Relating 𝒮(L(p,1))\mathcal{S}\left(L(p,1)\right) to 𝒮(ST)\mathcal{S}({\rm ST}).

In order to simplify this system of equations (1), in [DLP] we first show that performing a bbm on a mixed braid in B1,nB_{1,n} reduces to performing bbm’s on elements in the canonical basis, Σn\Sigma_{n}^{\prime}, of the algebra H1,n(q){\rm H}_{1,n}(q) and, in fact, on their first moving strand. We then reduce the equations obtained from elements in Σ\Sigma^{\prime} to equations obtained from elements in Σ\Sigma. In order now to reduce further the computation to elements in the basis Λ\Lambda of 𝒮(ST)\mathcal{S}({\rm ST}), in [DLP] we manage the gaps in the indices of the looping generators of elements in Σ\Sigma, obtaining elements in the augmented Hn(q){\rm H}_{n}(q)-module Λaug\Lambda^{aug}, denoted by Λaug|Hn\Lambda^{aug}|{\rm H}_{n}. We need to emphasize on the fact that the “managing the gaps” procedure, allows the performance of bbm’s to take place on any moving strand. Then, these equations are shown to be equivalent to equations obtained from elements in the Hn(q){\rm H}_{n}(q)-module Λ\Lambda, denoted by Λ|Hn\Lambda|{\rm H}_{n}, by performing bbm’s on any moving strand. We finally eliminate the braiding “tails” from elements in Λ|Hn\Lambda|{\rm H}_{n} and reduce the computations to the set Λ\Lambda, where the bbm’s are performed on any moving strand (see [DLP]). Thus, in order to compute 𝒮(L(p,1))\mathcal{S}(L(p,1)), it suffices to solve the infinite system of equations obtained by performing bbm’s on any moving strand of elements in the set Λ\Lambda. Moreover, in [DL4] we consider the augmented set Λaug\Lambda^{aug} and show that the system of equations obtained from elements in Λ\Lambda by performing bbm’s on any moving strand, is equivalent to the system of equations obtained by performing bbm’s on the first moving strand of elements in Λaug\Lambda^{aug}. It is worth mentioning that although ΛaugΛ\Lambda^{aug}\supset\Lambda, the advantage of considering elements in the augmented set Λaug\Lambda^{aug} is that we restrict the performance of the braid band moves only on the first moving strand and, thus, we obtain less equations and more control on the infinite system (1).

The above are summarized in the following sequence of equations:

𝒮(L(p,1))=𝒮(ST)<abbmi(a)>,aB1,n,i=𝒮(ST)<sbbm1(s)>,sΣn==𝒮(ST)<sbbm1(s)>,sΣn=𝒮(ST)<λbbmi(λ)>,λΛaug|Hn,i==𝒮(ST)<λ′′bbmi(λ′′)>,λ′′Λ|Hn,i=𝒮(ST)<λbbmi(λ)>,λΛ,i==𝒮(ST)<μbbm1(μ)>,μΛaug.\begin{array}[]{llllll}\mathcal{S}\left(L(p,1)\right)&=&\frac{\mathcal{S}({\rm ST})}{<a-bbm_{i}(a)>},\ a\in B_{1,n},\ \forall\ i&=&\frac{\mathcal{S}({\rm ST})}{<s^{\prime}-bbm_{1}(s^{\prime})>},\ s^{\prime}\in\Sigma_{n}^{\prime}&=\\ &&&&&\\ &=&\frac{\mathcal{S}({\rm ST})}{<s-bbm_{1}(s)>},\ s\in\Sigma_{n}&=&\frac{\mathcal{S}({\rm ST})}{<\lambda^{\prime}-bbm_{i}(\lambda^{\prime})>},\ \lambda^{\prime}\in\Lambda^{aug}|{\rm H}_{n},\ \forall\ i&=\\ &&&&&\\ &=&\frac{\mathcal{S}({\rm ST})}{<\lambda^{\prime\prime}-bbm_{i}(\lambda^{\prime\prime})>},\ \lambda^{\prime\prime}\in\Lambda|{\rm H}_{n},\ \forall\ i&=&\frac{\mathcal{S}({\rm ST})}{<\lambda-bbm_{i}(\lambda)>},\ \lambda\in\Lambda,\ \forall\ i&=\\ &&&&&\\ &=&\frac{\mathcal{S}({\rm ST})}{<\mu-bbm_{1}(\mu)>},\ \mu\in\Lambda^{aug}.&&&\\ \end{array}

Namely, we have:

Theorem 8.

([DLP, DL4])

i.𝒮(L(p,1))=𝒮(ST)<λbbmi(λ)>,λΛ,i.ii.𝒮(L(p,1))=𝒮(ST)<μbbm1(μ)>,μΛaug.\begin{array}[]{llcll}{\rm i.}&\mathcal{S}\left(L(p,1)\right)&=&\frac{\mathcal{S}({\rm ST})}{<\lambda-bbm_{i}(\lambda)>},&\lambda\in\Lambda,\ \forall\ i.\\ &&&&\\ {\rm ii.}&\mathcal{S}\left(L(p,1)\right)&=&\frac{\mathcal{S}({\rm ST})}{<\mu-bbm_{1}(\mu)>},&\mu\in\Lambda^{aug}.\end{array}

3. Relating the “positive” and “negative” sub-modules of 𝒮(L(p,1))\mathcal{S}\left(L(p,1)\right)

In this section we relate the infinite system of equations obtained by performing bbm’s on elements in +\mathcal{B}^{+} to the infinite system obtained by performing bbm’s on elements in \mathcal{B}^{-}. We present now the sets +\mathcal{B}^{+} and \mathcal{B}^{-} in open braid form:

(9) Λ+:={t0k0t1k1tnkn,ki\{0}:kiki1,i}Λ:={t0k0t1k1tnkn,ki\:kiki1,i}\begin{array}[]{lcl}\Lambda^{+}&:=&\{t_{0}^{k_{0}}t_{1}^{k_{1}}\ldots t_{n}^{k_{n}},\ k_{i}\in\mathbb{N}\backslash\{0\}\ :\ k_{i}\leq k_{i-1},\,\forall\,i\}\\ &&\\ \Lambda^{-}&:=&\{t_{0}^{k_{0}}t_{1}^{k_{1}}\ldots t_{n}^{k_{n}},\ k_{i}\in\mathbb{Z}\backslash\mathbb{N}\ :\ k_{i}\leq k_{i-1},\,\forall\,i\}\\ \end{array}

We now augment the sets Λ+,Λ\Lambda^{+},\Lambda^{-} by allowing arbitrary exponents in monomials in the tit_{i}’s, and we define the the corresponding subsets of Λ+,Λ\Lambda^{+},\Lambda^{-} of level kk as follows:

Definition 5.

We define the “positive” subset of Λ(k)aug\Lambda^{aug}_{(k)}:

(10) Λ(k)aug+:={t0k0t1k1tnkn,ki\{0}}.\Lambda^{aug_{+}}_{(k)}\ :=\{t_{0}^{k_{0}}t_{1}^{k_{1}}\ldots t_{n}^{k_{n}},\ k_{i}\in\mathbb{N}\backslash\{0\}\}.

and the the “negative” subset of Λ(k)aug\Lambda^{aug}_{(k)}:

(11) Λ(k)aug:={t0k0t1k1tnkn,ki\}.\Lambda^{aug_{-}}_{(k)}\ :=\{t_{0}^{k_{0}}t_{1}^{k_{1}}\ldots t_{n}^{k_{n}},\ k_{i}\in\mathbb{Z}\backslash\mathbb{N}\}.

The infinite system of equations obtained by performing ±\pm-bbm1bbm_{1}’s on elements in Λaug+\Lambda^{aug_{+}} is related to the infinite system of equations obtained by performing \mp-bbm1bbm_{1}’s on elements in Λaug\Lambda^{aug_{-}} by the following maps:

Definition 6.
  • (i)

    We define the automorphism f:ΛaugΛaugf:\Lambda^{aug}\rightarrow\Lambda^{aug} such that:

    f(τ1τ2)=f(τ1)f(τ2),τ1,τ2Λaugtiktik,i,kσiσi1,i\begin{array}[]{rcll}f(\tau_{1}\cdot\tau_{2})&=&f(\tau_{1})\cdot f(\tau_{2}),&\forall\,\tau_{1},\tau_{2}\in\Lambda^{aug}\\ &&&\\ t_{i}^{k}&\mapsto&t_{i}^{-k},&\forall\ i\in\mathbb{N}^{*},\ \forall\ k\in\mathbb{Z}\setminus\mathbb{N}\\ \ \sigma_{i}&\mapsto&\sigma_{i}^{-1},&\forall\ i\in\mathbb{N}^{*}\end{array}
  • (ii)

    We define the map I:R[z±1,sk]R[z±1,sk]I:R[z^{\pm 1},s_{k}]\rightarrow R[z^{\pm 1},s_{k}], kk\in\mathbb{Z} such that:

    I(τ1+τ2)=I(τ1)+I(τ2),τ1,τ2I(τ1τ2)=I(τ1)I(τ2),τ1,τ2sksk,kspksp+k,k: 0kpzλzq±1q1λkz1λk+1z,k\begin{array}[]{rcll}I(\tau_{1}+\tau_{2})&=&I(\tau_{1})+I(\tau_{2}),&\forall\,\tau_{1},\tau_{2}\\ I(\tau_{1}\cdot\tau_{2})&=&I(\tau_{1})\cdot I(\tau_{2}),&\forall\,\tau_{1},\tau_{2}\\ &&&\\ s_{-k}&\mapsto&s_{k},&\forall\,k\in\mathbb{N}\\ s_{p-k}&\mapsto&s_{p+k},&\forall\,k\ :\ 0\leq k\leq p\\ z&\mapsto&\lambda\cdot z&\\ q^{\pm 1}&\mapsto&q^{\mp 1}&\\ \frac{\lambda^{k}}{z}&\mapsto&\frac{1}{\lambda^{k+1}z},&\forall\,k\\ \end{array}

We now state the main result of this paper:

Theorem 9.

The equations obtained by imposing on the invariant XX relations coming from the performance of a ±\pm-bbm1bbm_{1} on an element τ\tau in Λaug+\Lambda^{aug_{+}} are equivalent to the image of the equations obtained by performing \mp-bbm1bbm_{1} on its corresponding element f(τ)f(\tau) in Λaug\Lambda^{aug_{-}} under II. That is:

I(Xf(τ)^=Xbbm1(f(τ))^)Xτ^=Xbbm±1(τ)^I\left(X_{\widehat{f(\tau)}}=X_{\widehat{bbm_{\mp 1}(f(\tau))}}\right)\ \Leftrightarrow\ X_{\widehat{\tau}}=X_{\widehat{bbm_{\pm 1}(\tau)}}

Equivalently we have:

Corollary 1.

The following diagram commutes:

Λ(k)augτbbm±bbm±1(τ)Xτ^=Xbbm1(τ)^,Xτ^=Xbbm1(τ)^fIIΛ(k)augf(τ)bbmbbm1(τ)Xf(τ)^=Xbbm1(f(τ))^,Xf(τ)^=Xbbm+1(f(τ))^\begin{matrix}\Lambda^{aug}_{(k)}&\ni&\tau&\overset{bbm_{\pm}}{\rightarrow}&bbm_{\pm 1}(\tau)&\Rightarrow&X_{\widehat{\tau}}=X_{\widehat{bbm_{1}(\tau)}},&X_{\widehat{\tau}}=X_{\widehat{bbm_{-1}(\tau)}}\\ &&\updownarrow f&&&&\uparrow I&\uparrow I\\ \Lambda^{aug}_{(-k)}&\ni&f(\tau)&\overset{bbm_{\mp}}{\rightarrow}&bbm_{\mp 1}(\tau)&\Rightarrow&X_{\widehat{f(\tau)}}=X_{\widehat{bbm_{-1}(f(\tau))}},&X_{\widehat{f(\tau)}}=X_{\widehat{bbm_{+1}(f(\tau))}}\\ \end{matrix}
Definition 7.

We will say that the elements bbm±τbbm_{\pm}{\tau} and bbmf(τ)bbm_{\mp}{f(\tau)} are “symmetric” with respect to the sign of their exponents (or just “symmetric”), although the loop generator tpt^{p} appears in both. Moreover, an element in Hn(q){\rm H}_{n}(q) will be called braiding “tail” and two braiding “tails” will be called “symmetric” with respect to the sign of their exponents, if one is obtained from the other by changing σi±1\sigma_{i}^{\pm 1} to σi1\sigma_{i}^{\mp 1}.

3.1. The infinite system

Let τ0,mk0,mΛ(k)aug\tau_{0,m}^{k_{0,m}}\in\Lambda^{aug}_{(k)}, that is i=0mki=k\sum_{i=0}^{m}k_{i}=k. We present some results on the infinite system of equations (1):

{Xτ0,mk0,m^=Xtpτ1,m+1k0,mσ1^Xτ0,mk0,m^=Xtpτ1,m+1k0,mσ11^\left\{\begin{matrix}X_{\widehat{\tau_{0,m}^{k_{0,m}}}}&=&X_{\widehat{t^{p}\tau_{1,m+1}^{k_{0,m}}\sigma_{1}}}&\\ &&&\\ X_{\widehat{\tau_{0,m}^{k_{0,m}}}}&=&X_{\widehat{t^{p}\tau_{1,m+1}^{k_{0,m}}\sigma_{1}^{-1}}}&\end{matrix}\right.

which is equivalent to (see Eq. (13) and (14)):

{tr(τ0,mk0,m)=1zλj=0m(j+1)kjtr(tpτ1,m+1k0,mg1)tr(τ0,mk0,m)=1zλj=0m(j+1)kj1tr(tpτ1,m+1k0,mg11)\left\{\begin{matrix}tr(\tau_{0,m}^{k_{0,m}})&=&\frac{1}{z}\cdot\lambda^{\sum_{j=0}^{m}\,(j+1)k_{j}}\cdot tr({t^{p}\tau_{1,m+1}^{k_{0,m}}g_{1}})&\\ &&&\\ tr(\tau_{0,m}^{k_{0,m}})&=&\frac{1}{z}\cdot\lambda^{\sum_{j=0}^{m}\,(j+1)k_{j}-1}\cdot tr(t^{p}\tau_{1,m+1}^{k_{0,m}}g_{1}^{-1})&\end{matrix}\right.

We have the following:

Proposition 1.

The unknowns s1,s2,s_{1},s_{2},\ldots of the system commute.

Proof.

Consider the set of all permutations of the set S=k1,knS={k_{1},\ldots k_{n}} and let φ\varphi be a bijection from the set SS to itself. We consider now the elements α=ti1k1tinkn\alpha={t^{\prime}_{i_{1}}}^{k_{1}}\ldots{t^{\prime}_{i_{n}}}^{k_{n}} and β=ti1φ(k1)tinφ(kn)\beta={t^{\prime}_{i_{1}}}^{\varphi(k_{1})}\ldots{t^{\prime}_{i_{n}}}^{\varphi(k_{n})}, where 0i1i2in0\leq i_{1}\leq i_{2}\leq\ldots\leq i_{n} of the basis of S(ST)S(ST). We have that: tr(α)=sknsk1tr(\alpha)=s_{k_{n}}\ldots s_{k_{1}} and tr(β)=sφ(kn)sφ(k1)tr(\beta)=s_{\varphi(k_{n})}\ldots s_{\varphi(k_{1})}. We compute the invariant XX on the closures α^,β^\widehat{\alpha},\widehat{\beta} of α\alpha and β\beta, respectively, and we obtain: X(α^)=[1λqλ]n1λ0tr(α)=[1λqλ]n1sknsk1X_{(\widehat{\alpha})}=[-\frac{1-\lambda q}{\sqrt{\lambda}}]^{n-1}\sqrt{\lambda}^{0}tr(\alpha)=[-\frac{1-\lambda q}{\sqrt{\lambda}}]^{n-1}s_{k_{n}}\ldots s_{k_{1}} and X(β^)=[1λqλ]n1λ0tr(β)=[1λqλ]n1sφ(kn)sφ(k1)X_{(\widehat{\beta})}=[-\frac{1-\lambda q}{\sqrt{\lambda}}]^{n-1}\sqrt{\lambda}^{0}tr(\beta)=[-\frac{1-\lambda q}{\sqrt{\lambda}}]^{n-1}s_{\varphi(k_{n})}\ldots s_{\varphi(k_{1})}. Now, the nn-component link α^\widehat{\alpha} is isotopic to β^\widehat{\beta} in STST, as illustrated in Figure 6 for the case of two components. So, we have that X(α^)=X(β^)X_{(\widehat{\alpha})}=X_{(\widehat{\beta})}, equivalently,

(12) sknsk1=sφ(kn)sφ(k1)s_{k_{n}}\ldots s_{k_{1}}=s_{\varphi(k_{n})}\ldots s_{\varphi(k_{1})}

and so the unknowns of the system commute.
Equation 12 holds for any subset SS of \mathbb{Z} and for any permutation ϕ\phi of SS, hence the unknowns sis_{i} of the system (1)(\ref{inft}) must commute. ∎

Refer to caption
Figure 6. t1t1=tt11t^{-1}t_{1}^{\prime}\ =\ t{t_{1}^{\prime}}^{-1}.

3.2. The modules Λaug+<bbm1>\frac{\Lambda^{aug_{+}}}{<{\rm bbm_{1}}>} and Λaug<bbm1>\frac{\Lambda^{aug_{-}}}{<{\rm bbm_{1}}>}

From now on, we will consider all braid band moves to take place on the first moving strand of elements in Λaug\Lambda^{aug} and we will denote by bbm+(τ)bbm_{+}(\tau) the result of the performance of a positive bbm1bbm_{1} and bbm(τ)bbm_{-}(\tau) will correspond to the result of the performance of a negative bbm1bbm_{1} on τΛaug\tau\in\Lambda^{aug}.

Let τ:=τ0,nk0,nΛ+aug\tau:=\tau_{0,n}^{k_{0,n}}\in\Lambda^{aug}_{+} and perform a bbm+bbm_{+}. We have that

bbm+(τ)=tpτ1,n+1k0,nσ1bbm_{+}(\tau)=t^{p}\tau_{1,n+1}^{k_{0,n}}\sigma_{1}

and we obtain the equation:

Xτ^=Xbbm+(τ)^tr(τ0,nk0,n)=1λqλ(1q)λ 1+i=0𝑛 2(i+1)kitr(tpτ1,n+1k0,ng1)X_{\widehat{\tau}}=X_{\widehat{bbm_{+}(\tau)}}\ \Leftrightarrow\ tr(\tau_{0,n}^{k_{0,n}})=-\frac{1-\lambda q}{\sqrt{\lambda}(1-q)}\,\sqrt{\lambda}^{\,1+\underset{i=0}{\overset{n}{\sum}}\,2(i+1)k_{i}}\cdot tr(t^{p}\tau_{1,n+1}^{k_{0},n}g_{1})

and since λ=z+1qqz\lambda=\frac{z+1-q}{qz}, we obtain

(13) tr(τ0,nk0,n)=λi=0𝑛(i+1)kiztr(tpτ1,n+1k0,ng1)tr(\tau_{0,n}^{k_{0,n}})=\frac{\lambda^{\underset{i=0}{\overset{n}{\sum}}\,(i+1)k_{i}}}{z}\cdot tr(t^{p}\tau_{1,n+1}^{k_{0},n}g_{1})

Consider now f(τ):=τ0,nk0,nΛaugf(\tau):=\tau_{0,n}^{-k_{0,n}}\in\Lambda^{aug}_{-} and perform a bbmbbm_{-}. We have that

bbm(f(τ))=tpτ1,n+1k0,nσ11bbm_{-}(f(\tau))=t^{p}\tau_{1,n+1}^{-k_{0,n}}\sigma_{1}^{-1}

and we obtain the equation:

Xf(τ)^=Xbbm(f(τ))^tr(τ0,nk0,n)=1λqλ(1q)λ 1i=0𝑛 2(i+1)kitr(tpτ1,n+1k0,ng1)X_{\widehat{f(\tau)}}=X_{\widehat{bbm_{-}(f(\tau))}}\ \Leftrightarrow\ tr(\tau_{0,n}^{-k_{0,n}})=-\frac{1-\lambda q}{\sqrt{\lambda}(1-q)}\,\sqrt{\lambda}^{\,1-\underset{i=0}{\overset{n}{\sum}}\,2(i+1)k_{i}}\cdot tr(t^{p}\tau_{1,n+1}^{k_{0},n}g_{1})

, that is:

(14) tr(τ0,nk0,n)=λ1i=0𝑛(i+1)kiztr(tpτ1,n+1k0,ng11)tr(\tau_{0,n}^{-k_{0,n}})=\frac{\lambda^{-1-\underset{i=0}{\overset{n}{\sum}}\,(i+1)k_{i}}}{z}\cdot tr(t^{p}\tau_{1,n+1}^{-k_{0},n}g_{1}^{-1})

In order to prove Corollary 1, we first prove that the image of the coefficient in Equation 14 under the map II is equal to the coefficient of Equation 13. Indeed we have the following:

Lemma 1.
I(λ1i=0𝑛(i+1)kiz)=λi=0𝑛(i+1)kizI\left(\frac{\lambda^{-1-\underset{i=0}{\overset{n}{\sum}}\,(i+1)k_{i}}}{z}\right)\ =\ \frac{\lambda^{\underset{i=0}{\overset{n}{\sum}}\,(i+1)k_{i}}}{z}
Proof.

We have that:

I(λ1i=0𝑛(i+1)kiz)=λ1+i=0𝑛(i+1)ki1z=λi=0𝑛(i+1)kizI\left(\frac{\lambda^{-1-\underset{i=0}{\overset{n}{\sum}}\,(i+1)k_{i}}}{z}\right)\ =\ \frac{\lambda^{1+\underset{i=0}{\overset{n}{\sum}}\,(i+1)k_{i}-1}}{z}\ =\ \frac{\lambda^{\underset{i=0}{\overset{n}{\sum}}\,(i+1)k_{i}}}{z}

Remark 3.

Lemma 1 demonstrates the motivation for the Definition 6(ii) on λkz\frac{\lambda^{k}}{z}, where λkz𝐼1λk+1z\frac{\lambda^{k}}{z}\overset{I}{\mapsto}\frac{1}{\lambda^{k+1}\,z}.

We now relate tr(τ)tr(\tau) to I(tr(f(τ)))I\left(tr\left(f(\tau)\right)\right) using the fact that relations used in order to convert elements in Λaug+\Lambda^{aug_{+}} to sums of elements in (Λ)aug+\left(\Lambda^{\prime}\right)^{aug_{+}}, where (Λ)aug+\left(\Lambda^{\prime}\right)^{aug_{+}} is defined as monomials in tit_{i}^{\prime}’s with positive exponents, are “symmetric”, as shown for example below:

σi=qσi1+(q11)&σi2=(q1)σi+qσi1=q1σi+(q1)&σi2=(q11)σi1+q1\begin{array}[]{lclclcl}\sigma_{i}&=&q\,\sigma_{i}^{-1}\ +\ (q^{-1}-1)&\&&\sigma_{i}^{2}&=&(q-1)\,\sigma_{i}\ +\ q\\ &&&&&&\\ \sigma_{i}^{-1}&=&q^{-1}\,\sigma_{i}\ +\ (q-1)&\&&\sigma_{i}^{-2}&=&(q^{-1}-1)\,\sigma_{i}^{-1}\ +\ q^{-1}\\ \end{array}

Moreover, these relations lead to q𝐼q1q\overset{I}{\mapsto}q^{-1} in Definition 6(ii), and the rule z𝐼zλz\overset{I}{\mapsto}z\cdot\lambda comes from the fact that tr(σi)=ztr(\sigma_{i})\ =\ z, while tr(σi1)=q1z+(q11)=z+1qq=λztr(\sigma_{i}^{-1})\ =\ q^{-1}z+(q^{-1}-1)\ =\ \frac{z+1-q}{q}\ =\ \lambda\cdot z. The reader is now referred to [La1, La2, DL2, DL3, DL4, DLP] for other “symmetric” relations, and also for more details on the techniques applied in order to obtain the infinite change of basis matrix relating the sets Λ\Lambda and Λ\Lambda^{\prime}.

We are now in position to translate Theorems 5, 6 and 7 in the context of this paper:

  • \bullet

    Theorem 5 suggests that an element τ\tau in Λaug+\Lambda^{aug_{+}} can be written as a sum of its homologous word τ\tau^{\prime} in (Λ)aug+(\Lambda^{\prime})^{aug_{+}}, the element τ\tau followed by a braiding “tail” and monomials in Σ\Sigma which are of lower order than the initial monomial τ\tau.

    Similarly, an element TT in Λaug\Lambda^{aug_{-}} can be written as a sum of its homologous word TT^{\prime} in (Λ)aug(\Lambda^{\prime})^{aug_{-}}, the element TT followed by a braiding “tail” and monomials in Σ\Sigma which are of lower order than the initial monomial TT.

    Moreover, as explained above, corresponding coefficients in these two processes will be “symmetric” and the braiding “tails” in τ\tau, after Theorem 5 is applied, will be “symmetric” to the braiding “tails” in TT.

  • \bullet

    For the elements τ\tau and TT that are followed by braiding “tails” in Hn(q){\rm H}_{n}(q), we apply Theorem 6 and we have that corresponding coefficients will be “symmetric” only for the terms involving the parameter qq, while for zz, the reader is referred to the discussion after Remark 3.

  • \bullet

    By Theorem 7 the order of the exponents in an element in Λaug\Lambda^{aug} can be altered, leading to elements of lower (or even greater) order. For the braiding “tail” occurring after applying Theorem 7, we apply Theorem 6 again, and this procedure will eventually stop and the result will be a sum of elements in Λaug\Lambda^{aug} of lower order than the initial element. For more details of how this procedure terminates the reader is referred to [DL2] and [DL3].

We now have the following result:

Proposition 2.

For τΛ(k)aug+\tau\in\Lambda^{aug_{+}}_{(k)}, where kk\in\mathbb{N}, the following relation holds:

tr(τ)=I(tr(f(τ))),tr(\tau)\ =\ I\left(tr\left(f(\tau)\right)\right),

where f(τ)Λ(k)augf(\tau)\in\Lambda^{aug_{-}}_{(-k)}.

Proof.

Let τ:=τ0,nk0,nΛ(k)aug+\tau:=\tau_{0,n}^{k_{0,n}}\in\Lambda^{aug_{+}}_{(k)}, kk\in\mathbb{N} and f(τ):=τ0,nk0,nΛ(k)augf(\tau):=\tau_{0,n}^{-k_{0,n}}\in\Lambda^{aug_{-}}_{(-k)}. In order to evaluate tr(τ)tr(\tau) we use the inverse of the change of basis matrix and express τ\tau as a sum of elements in (Λ)(k)aug+\left(\Lambda^{\prime}\right)^{aug_{+}}_{(k)}, i.e. τ^𝑖Aiτi\tau\ \widehat{\cong}\ \underset{i}{\sum}\,A_{i}\,\tau_{i}^{\prime}, where AiA_{i} coefficients in [q±1,z±1]\mathbb{C}[q^{\pm 1},z^{\pm 1}] for all ii, such that j:τj=ττ\exists\,j\ :\ \tau_{j}^{\prime}=\tau^{\prime}\sim\tau and τi<τ\tau_{i}^{\prime}<\tau^{\prime}, for all iji\neq j. Following the same steps in order to express f(τ)f(\tau) as a sum of elements in (Λ)(k)aug\left(\Lambda^{\prime}\right)^{aug_{-}}_{(-k)}, we prove that we obtain that f(τ)^𝑖Bif(τi)f(\tau)\ \widehat{\cong}\ \underset{i}{\sum}\,B_{i}\,f(\tau_{i}^{\prime}), where BiB_{i} coefficients in [q±1,z±1]\mathbb{C}[q^{\pm 1},z^{\pm 1}] for all ii, such that j:f(τj)=f(τ)f(τ)\exists\,j\ :\ f(\tau_{j}^{\prime})=f(\tau^{\prime})\sim f(\tau) and f(τi)<f(τ)f(\tau_{i}^{\prime})<f(\tau^{\prime}), for all iji\neq j, and also that f(Bi)=Aif(B_{i})\ =\ A_{i}, for all ii. We prove that by strong induction on the order of τ\tau.

The base of induction is tkΛ(k)aug+t^{k}\in\Lambda^{aug_{+}}_{(k)}, where tr(tk)=sktr(t^{k})=s_{k} and f(tk)=tkf(t^{k})=t^{-k} and tr(tk)=sktr(t^{-k})=s_{-k}. We observe that sk𝐼sks_{-k}\overset{I}{\mapsto}s_{k} by Definition 6, and thus I(tr(f(tk)))=tr(tk)I\left(tr\left(f(t^{-k})\right)\right)\ =\ tr\left(t^{k}\right).

Assume now that I(tr(f(τi)))=tr(τi)I\left(tr\left(f(\tau_{i})\right)\right)\ =\ tr(\tau_{i}), for all τi<τΛ(k)aug+\tau_{i}<\tau\in\Lambda^{aug_{+}}_{(k)}. Then, for τ\tau we have that:

τ:=τ0,nk0,n:=tk0t1k1tnkn=tk0tnkn1(σnσ1tσ1¯σn)==qτ0,n1k0,n1tnkn1(σnσ1tσ11σ2σn)𝐴++(q1)tk0+1τ1,n1k1,n1tnkn1(σnσ1σ2σn)𝐵\begin{array}[]{lcl}\tau&:=&\tau_{0,n}^{k_{0,n}}\ :=\ t^{k_{0}}t_{1}^{k_{1}}\ldots t_{n}^{k_{n}}\ =\ t^{k_{0}}\ldots t_{n}^{k_{n}-1}\cdot(\sigma_{n}\ldots\sigma_{1}\,t\,\underline{\sigma_{1}}\ldots\sigma_{n})\ =\\ &&\\ &=&\underset{A}{\underbrace{q\,\tau_{0,n-1}^{k_{0,n-1}}\cdot t_{n}^{k_{n}-1}\cdot(\sigma_{n}\ldots\sigma_{1}\,t\,\sigma_{1}^{-1}\sigma_{2}\ldots\sigma_{n})}}\ +\\ &&\\ &+&\underset{B}{\underbrace{(q-1)\,t^{k_{0}+1}\cdot\tau_{1,n-1}^{k_{1,n-1}}\cdot t_{n}^{k_{n}-1}\cdot(\sigma_{n}\ldots\sigma_{1}\sigma_{2}\ldots\sigma_{n})}}\\ \end{array}

and for f(τ)f(\tau) we obtain:

f(τ):=τ0,nk0,n:=tk0t1k1tnkn=tk0tnkn+1(σn1σ11¯t1σ11σn1)==q1τ0,n1k0,n1tnkn+1(σn1σ21σ1tσ11σn1)𝐶++(q11)tk0+1τ1,n1k1,n1tnkn+1(σn1σ11σn1)𝐷\begin{array}[]{lcl}f(\tau)&:=&\tau_{0,n}^{-k_{0,n}}\ :=\ t^{-k_{0}}t_{1}^{-k_{1}}\ldots t_{n}^{-k_{n}}\ =\ t^{-k_{0}}\ldots t_{n}^{-k_{n}+1}\cdot(\sigma_{n}^{-1}\ldots\underline{\sigma_{1}^{-1}}\,t^{-1}\,\sigma_{1}^{-1}\ldots\sigma_{n}^{-1})\ =\\ &&\\ &=&\underset{C}{\underbrace{q^{-1}\,\tau_{0,n-1}^{-k_{0,n-1}}\cdot t_{n}^{-k_{n}+1}\cdot(\sigma_{n}^{-1}\ldots\sigma_{2}^{-1}\sigma_{1}\,t\,\sigma_{1}^{-1}\ldots\sigma_{n}^{-1})}}\ +\\ &&\\ &+&\underset{D}{\underbrace{(q^{-1}-1)\,t^{-k_{0}+1}\cdot\tau_{1,n-1}^{-k_{1,n-1}}\cdot t_{n}^{-k_{n}+1}\cdot(\sigma_{n}^{-1}\ldots\sigma_{1}^{-1}\ldots\sigma_{n}^{-1})}}\\ \end{array}

Observe now that D=f(B)D\ =\ f(B) and according to Definition 2 we have that

tk0+1τ1,n1k1,n1tnkn1(σnσ1σ2σn)<τ.t^{k_{0}+1}\cdot\tau_{1,n-1}^{k_{1,n-1}}\cdot t_{n}^{k_{n}-1}\cdot(\sigma_{n}\ldots\sigma_{1}\sigma_{2}\ldots\sigma_{n})\ <\ \tau.

Thus, from the induction step we obtain that I(tr(D))=tr(B)I\left(tr(D)\right)\ =\ tr(B).

We now apply Theorems 7, 8, 9 & 10 in [DL2] (relations used for the change of basis matrix and which are Theorems 5, 6, 7 & Eq.(8) in this paper) on AA and CC and we use the induction step to reduce the complexity of the relations obtained each time a lower order term appears in the relations. As explained in [DL2, DL4], we will eventually obtain the homologous word in (Λ)kaug+\left(\Lambda^{\prime}\right)^{aug_{+}}_{k} for τ\tau (coming from AA) and the homologous word in (Λ)kaug\left(\Lambda^{\prime}\right)^{aug_{-}}_{-k} for f(τ)f(\tau) (coming from CC), with “symmetric” coefficients. Hence,

tr(τ)=I(tr(f(τ))).tr(\tau)\ =\ I\left(tr\left(f(\tau)\right)\right).

In order to proceed with the proof of Corolarry 1, we will need the following relations (Lemma 2 [La2]):

(15) tnkσn=(q1)j=0k1qjtn1jtnkj+qkσntn1k,ktnkσn1=(q11)j=0k+1qjtn1jtnkj+qkσntn1kσn1,k\begin{array}[]{lclcll}t_{n}^{k}\,\sigma_{n}&=&(q-1)\,\underset{j=0}{\overset{k-1}{\sum}}\,q^{j}\,t_{n-1}^{j}t_{n}^{k-j}&+&q^{k}\,\sigma_{n}\,t_{n-1}^{k}&,\ k\in\mathbb{N}\\ &&&&&\\ t_{n}^{-k}\,\sigma_{n}^{-1}&=&(q^{-1}-1)\,\underset{j=0}{\overset{-k+1}{\sum}}\,q^{j}\,t_{n-1}^{j}t_{n}^{-k-j}&+&q^{-k}\,\sigma_{n}\,t_{n-1}^{-k}\ \sigma_{n}^{-1}&,\ k\in\mathbb{N}\end{array}

and the following lemmas:

Lemma 2.

For n,kn,k\in\mathbb{N}, the following relations hold:

i.tnk=j=1k1qj1(q1)tn1jtnkjσn+qk1σntn1kσnii.tnk=j=1k+1qj+1(q11)tn1jtnkjσn1+qk+1σn1tn1kσn1\begin{array}[]{llcl}{\rm i.}&t_{n}^{k}&=&\underset{j=1}{\overset{k-1}{\sum}}\,q^{j-1}\,(q-1)\,t_{n-1}^{j}\,t_{n}^{k-j}\cdot\sigma_{n}\ +\ q^{k-1}\,\sigma_{n}\,t_{n-1}^{k}\,\sigma_{n}\\ &&&\\ {\rm ii.}&t_{n}^{-k}&=&\underset{j=-1}{\overset{-k+1}{\sum}}\,q^{j+1}\,(q^{-1}-1)\,t_{n-1}^{j}\,t_{n}^{-k-j}\cdot\sigma_{n}^{-1}\ +\ q^{-k+1}\,\sigma_{n}^{-1}\,t_{n-1}^{-k}\,\sigma_{n}^{-1}\\ \end{array}
Proof.

We only prove relations (i). Relations (ii) follow similarly. For k=2k=2 we have that:

tn2=σntn1σn2¯tn1σn=(q1)σntn1σn¯tn1σn+qσntn12σn==(q1)tn1tnσn+qσntn12σn\begin{array}[]{lcl}t_{n}^{2}&=&\sigma_{n}\,t_{n-1}\,\underline{\sigma_{n}^{2}}\,t_{n-1}\,\sigma_{n}\ =\ (q-1)\,\underline{\sigma_{n}\,t_{n-1}\,\sigma_{n}}\,t_{n-1}\,\sigma_{n}\ +\ q\,\sigma_{n}\,t_{n-1}^{2}\,\sigma_{n}\ =\\ &&\\ &=&(q-1)\,t_{n-1}\,\,t_{n}\,\sigma_{n}\ +\ q\,\sigma_{n}\,t_{n-1}^{2}\,\sigma_{n}\\ \end{array}

For kk\in\mathbb{N} we have:

tnk=tnk2tn2¯=(q1)tnk1tn1σn+qtnk2σn¯tn12σn==Eq.15(q1)tnk1tn1σn+q(q1)j=0k3qjtn1jtnk2jtn12σn++qk1σntn1k2tn12σn==j=1k1qj1(q1)tn1jtnkjσn+qk1σntn1kσn\begin{array}[]{lcl}t_{n}^{k}\ =\ t_{n}^{k-2}\cdot\underline{t_{n}^{2}}&=&(q-1)\,t_{n}^{k-1}t_{n-1}\,\sigma_{n}\ +\ q\,\underline{t_{n}^{k-2}\sigma_{n}}\,t_{n-1}^{2}\,\sigma_{n}\ =\\ &&\\ &\overset{Eq.~{}\ref{sllem}}{=}&(q-1)\,t_{n}^{k-1}t_{n-1}\,\sigma_{n}\ +\ q\,(q-1)\,\underset{j=0}{\overset{k-3}{\sum}}\,q^{j}\,t_{n-1}^{j}t_{n}^{k-2-j}\,t_{n-1}^{2}\,\sigma_{n}\ +\\ &&\\ &+&q^{k-1}\,\sigma_{n}\,t_{n-1}^{k-2}\,t_{n-1}^{2}\,\sigma_{n}\ =\\ &&\\ &=&\underset{j=1}{\overset{k-1}{\sum}}\,q^{j-1}\,(q-1)\,t_{n-1}^{j}\,t_{n}^{k-j}\cdot\sigma_{n}\ +\ q^{k-1}\,\sigma_{n}\,t_{n-1}^{k}\,\sigma_{n}\\ \end{array}

Lemma 3.

For n,kn,k\in\mathbb{N}, the following relations hold:

i.tnkσn+1=qk+1σn+11tn+1k+j=1k1qj+1(q11)tnkjtn+1jii.tnkσn+11=qk1σn+1tn+1k+j=1k1qj1(q1)tnk+jtn+1j\begin{array}[]{llcl}{\rm i.}&t_{n}^{k}\,\sigma_{n+1}&=&q^{-k+1}\,\sigma_{n+1}^{-1}\,t_{n+1}^{k}\ +\ \underset{j=1}{\overset{k-1}{\sum}}\,q^{-j+1}\,(q^{-1}-1)\,t_{n}^{k-j}\,t_{n+1}^{j}\\ &&&\\ {\rm ii.}&t_{n}^{-k}\,\sigma_{n+1}^{-1}&=&q^{k-1}\,\sigma_{n+1}\,t_{n+1}^{-k}\ +\ \underset{j=1}{\overset{k-1}{\sum}}\,q^{j-1}\,(q-1)\,t_{n}^{-k+j}\,t_{n+1}^{-j}\\ \end{array}
Proof.

We prove relations (i) by induction on kk\in\mathbb{N}. Relations (ii) follow similarly.

For k=1k=1 we have that tnσn+1=σn+11tn+1t_{n}\,\sigma_{n+1}\ =\ \sigma_{n+1}^{-1}\,t_{n+1}, which is true. Assume now that the relation holds for k1k-1. Then, for kk we have:

tnkσn+1=tntnk1σn+1¯=stepind.=qk+2tnσn+11¯tn+1k1+j=1k2qj+1(q11)tnkjtn+1j==qk+1tnσn+1¯tn+1k1+qk+2(q11)tntn+1k1+j=1k2qj+1(q11)tnkjtn+1j==qk+1σn+11tn+1k+j=1k1qj+1(q11)tnkjtn+1j\begin{array}[]{lcl}t_{n}^{k}\,\sigma_{n+1}&=&t_{n}\,\underline{t_{n}^{k-1}\,\sigma_{n+1}}\ \overset{ind.}{\underset{step}{=}}\\ &&\\ &=&q^{-k+2}\,t_{n}\,\underline{\sigma_{n+1}^{-1}}\,t_{n+1}^{k-1}\ +\ \underset{j=1}{\overset{k-2}{\sum}}\,q^{-j+1}\,(q^{-1}-1)\,t_{n}^{k-j}\,t_{n+1}^{j}\ =\\ &&\\ &=&q^{-k+1}\,\underline{t_{n}\,\sigma_{n+1}}\,t_{n+1}^{k-1}\ +\ q^{-k+2}(q^{-1}-1)\,t_{n}\,t_{n+1}^{k-1}+\ \underset{j=1}{\overset{k-2}{\sum}}\,q^{-j+1}\,(q^{-1}-1)\,t_{n}^{k-j}\,t_{n+1}^{j}\ =\\ &&\\ &=&q^{-k+1}\,\sigma_{n+1}^{-1}\,t_{n+1}^{k}\ +\ \underset{j=1}{\overset{k-1}{\sum}}\,q^{-j+1}\,(q^{-1}-1)\,t_{n}^{k-j}\,t_{n+1}^{j}\\ \end{array}

We are now in position to prove the following lemma that serves as the basis of the induction applied in the final result of this section, Proposition 3, which will conclude the proof of Corollary 1.

Lemma 4.

Let tkbbm±tpt1kσ±1t^{k}\ \overset{bbm_{\pm}}{\longrightarrow}\ t^{p}t_{1}^{k}\,\sigma^{\pm 1} and f(tk):=tkbbmtpt1kσ1f(t^{k}):=t^{-k}\ \overset{bbm_{\mp}}{\longrightarrow}\ t^{p}t_{1}^{-k}\,\sigma^{\mp 1}. Then, the following relations hold:

I(tr(tpt1kσ11))=tr(tpt1kσ1±1).I\left(tr(t^{p}t_{1}^{-k}\,\sigma_{1}^{\mp 1})\right)\ =\ tr(t^{p}t_{1}^{k}\,\sigma_{1}^{\pm 1}).
Proof.

We only prove that I(tr(bbm(f(tk))))=tr(bbm+(tk))I\left(tr(bbm_{-}(f(t^{k})))\right)\ =\ tr(bbm_{+}(t^{k})), by strong induction on the order of bbm(f(tk))bbm_{-}(f(t^{k})). The case I(tr(bbm+(f(tk))))=tr(bbm(tk))I\left(tr(bbm_{+}(f(t^{k})))\right)\ =\ tr(bbm_{-}(t^{k})) follows similarly.

The base of induction is the case k=1k=1, i.e. I(tr(tpt11σ11))=tr(tpt1σ1)I\left(tr(t^{p}t_{1}^{-1}\,\sigma_{1}^{-1})\right)\ =\ tr(t^{p}t_{1}\,\sigma_{1}). We have that:

tr(tpt1σ1¯)=(q1)tr(tpt1¯)+qtr(tpσ1t¯)==q(q1)tr(tpt1)+(q1)2tr(tp+1σ1)+qtr(tp+1σ1)==q(q1)s1sp+(q1)2zsp+1+qzsp+1\begin{array}[]{lclclclc}tr(t^{p}\underline{t_{1}\,\sigma_{1}})&=&(q-1)\,tr(t^{p}\underline{t_{1}})&+&q\,tr(t^{p}\,\sigma_{1}\,\underline{t})&=&\\ &&&&&&\\ &=&q(q-1)\,tr(t^{p}t_{1}^{\prime})&+&(q-1)^{2}\,tr(t^{p+1}\,\sigma_{1})&+&q\,tr(t^{p+1}\,\sigma_{1})&=\\ &&&&&&\\ &=&q(q-1)\,s_{1}s_{p}&+&(q-1)^{2}\,z\,s_{p+1}&+&qz\,s_{p+1}&\\ \end{array}

and

tr(tpt11σ11¯)=(q11)tr(tpt11¯)+q1tr(tpσ11t1¯)==q1(q11)tr(tpt11)+(q11)2tr(tp1σ11)++q1tr(tp1σ11)==q1(q11)s1sp+q1(q11)2zsp1++(q11)3sp1+q1(q11)sp1+q2zsp1\begin{array}[]{lclclclc}tr(t^{p}\underline{t_{1}^{-1}\,\sigma_{1}^{-1}})&=&(q^{-1}-1)\,tr(t^{p}\underline{t_{1}^{-1}})&+&q^{-1}\,tr(t^{p}\,\sigma_{1}^{-1}\,\underline{t^{-1}})&=&\\ &&&&&&\\ &=&q^{-1}(q^{-1}-1)\,tr(t^{p}{t_{1}^{\prime}}^{-1})&+&(q^{-1}-1)^{2}\,tr(t^{p-1}\,\sigma_{1}^{-1})&+&&\\ &&&&&&\\ &+&q^{-1}\,tr(t^{p-1}\,\sigma_{1}^{-1})&=&&&\\ &&&&&&\\ &=&q^{-1}(q^{-1}-1)\,s_{-1}s_{p}&+&q^{-1}(q^{-1}-1)^{2}\,z\,s_{p-1}&+&&\\ &&&&&&\\ &+&(q^{-1}-1)^{3}\,s_{p-1}&+&q^{-1}(q^{-1}-1)\,s_{p-1}&+&q^{-2}z\,s_{p-1}&\\ \end{array}

Moreover:

I(tr(tpt11σ11¯))=I(q1(q11)s1sp)+I(q1(q11)2zsp1)++I((q11)3sp1)+I(q1(q11)sp1)++I(q2zsp1)==q(q1)s1sp+q(q1)2λzsp+1++(q1)3sp+1+q2zλsp+1++q(q)sp+1\begin{array}[]{lclclc}I\left(tr(t^{p}\underline{t_{1}^{-1}\,\sigma_{1}^{-1}})\right)&=&I\left(q^{-1}(q^{-1}-1)\,s_{-1}s_{p}\right)&+&I\left(q^{-1}(q^{-1}-1)^{2}\,z\,s_{p-1}\right)&+\\ &&&&&\\ &+&I\left((q^{-1}-1)^{3}\,s_{p-1}\right)&+&I\left(q^{-1}(q^{-1}-1)\,s_{p-1}\right)&+\\ &&&&&\\ &+&I\left(q^{-2}z\,s_{p-1}\right)&=&&\\ &&&&&\\ &=&q(q-1)\,s_{1}s_{p}&+&q(q-1)^{2}\,\lambda z\,s_{p+1}&+\\ &&&&&\\ &+&(q-1)^{3}\,s_{p+1}&+&q^{2}\,z\lambda\,s_{p+1}&+\\ &&&&&\\ &+&q(q-)\,s_{p+1}&\Rightarrow&&\\ \end{array}
I(tr(tpt11σ11))=q(q1)s1sp++[q(q1)2z+1qqz+(q1)3+q2zz+1qqz+q(q1)]sp+1==q(q1)s1sp+(q1)2zsp+1+qzsp+1==tr(tpt1kσ1)\begin{array}[]{lcl}I\left(tr(t^{p}t_{1}^{-1}\,\sigma_{1}^{-1})\right)&=&q(q-1)\,s_{1}s_{p}\ +\\ &&\\ &+&\left[q(q-1)^{2}\,\frac{z+1-q}{qz}\ +\ (q-1)^{3}\ +\ q^{2}z\,\frac{z+1-q}{qz}\ +\ q(q-1)\right]\,s_{p+1}\ =\\ &&\\ &=&q(q-1)\,s_{1}s_{p}\ +\ (q-1)^{2}\,z\,s_{p+1}\ +\ qz\,s_{p+1}\ =\\ &&\\ &=&tr(t^{p}t_{1}^{k}\,\sigma_{1})\\ \end{array}

Assume now that I(tr(tpit1kiσ11))=tr(tp+it1kiσ1)I\left(tr(t^{p-i}t_{1}^{-k-i}\,\sigma_{1}^{-1})\right)\ =\ tr(t^{p+i}t_{1}^{k-i}\,\sigma_{1}), for all 0<i<k0<i<k. Then, for i=0i=0 we have:

tr(tpt1kσ1)=Eq.15(q1)j=0k1qjtp+jt1kj+qkztr(tp+k)==(q1)j=0k1qjtr(tp+jt1kj)+qkzsp+ktr(tpt1kσ11)=Eq.15(q11)j=0k+1qjtr(tp+jt1kj)++qk1ztr(tpk)+qk(q11)tr(tpk)==(q11)j=0k+1qjtr(tp+jt1kj)+(qk1z+qk(q11))spk\begin{array}[]{lcl}tr\left(t^{p}t_{1}^{k}\,\sigma_{1}\right)&\overset{Eq.~{}\ref{sllem}}{=}&(q-1)\,\underset{j=0}{\overset{k-1}{\sum}}\,q^{j}\,t^{p+j}t_{1}^{k-j}\ +\ q^{k}\,z\,tr(t^{p+k})\ =\\ &&\\ &=&(q-1)\,\underset{j=0}{\overset{k-1}{\sum}}\,q^{j}\,tr(t^{p+j}t_{1}^{k-j})\ +\ q^{k}\,z\,s_{p+k}\\ &&\\ tr\left(t^{p}t_{1}^{-k}\,\sigma_{1}^{-1}\right)&\overset{Eq.~{}\ref{sllem}}{=}&(q^{-1}-1)\,\underset{j=0}{\overset{-k+1}{\sum}}\,q^{j}\,tr(t^{p+j}t_{1}^{-k-j})\ +\\ &&\\ &+&\ q^{-k-1}\,z\,tr(t^{p-k})\ +\ q^{-k}\,(q^{-1}-1)\,tr(t^{p-k})\ =\\ &&\\ &=&(q^{-1}-1)\,\underset{j=0}{\overset{-k+1}{\sum}}\,q^{j}\,tr(t^{p+j}t_{1}^{-k-j})\ +\ \left(q^{-k-1}\,z\,\ +\ q^{-k}\,(q^{-1}-1)\right)\,s_{p-k}\end{array}

We have that

I((qk1z+qk(q11))spk)=(qk+1λz+qk(q1))sp+k==(qk+1z+1qqzz+qk(q1))sp+k=qkzsp+k\begin{array}[]{lcl}I\left(\left(q^{-k-1}\,z\ +\ q^{-k}\,(q^{-1}-1)\right)\,s_{p-k}\right)&=&\left(q^{k+1}\,\lambda\,z\ +\ q^{k}\,(q-1)\right)\,s_{p+k}\ =\\ &&\\ &=&\left(q^{k+1}\,\frac{z+1-q}{qz}\,z\ +\ q^{k}\,(q-1)\right)\,s_{p+k}\ =\ q^{k}\,z\,s_{p+k}\\ \end{array}

Moreover, the terms tp+jt1kjt^{p+j}t_{1}^{k-j} are of lower order than tpt1kt^{p}t_{1}^{k} for all j0j\neq 0 and thus, from the induction step we have that:

I(tr(tp+jt1kj))=tr(tp+jt1kj),forallj0.I\left(tr(t^{p+j}t_{1}^{k-j})\right)\ =\ tr(t^{p+j}t_{1}^{-k-j}),\ {\rm for\ all}\ j\neq 0.

For j=0j=0 we have:

tpt1k=tpt1k2t12¯=(q1)tp+1t1k1σ1+qtpt1k2σ1¯t2σ1==(q1)tp+1t1k1σ1+q(q1)j=0k3qjtp+j+2t1k2jσ1+qk2tpσ1tkσ1¯==(q1)tp+1t1k1σ1𝐴+q(q1)j=0k3qjtp+j+2t1k2jσ1𝐵++qk1tpt1k𝐶+qk2(q1)tpσ1tk𝐷\begin{array}[]{lclc}t^{p}t_{1}^{k}&=&t^{p}t_{1}^{k-2}\,\underline{t_{1}^{2}}\ =\ (q-1)\,t^{p+1}t_{1}^{k-1}\,\sigma_{1}\ +\ q\,t^{p}\,\underline{t_{1}^{k-2}\,\sigma_{1}}\,t^{2}\sigma_{1}&=\\ &&&\\ &=&(q-1)\,t^{p+1}t_{1}^{k-1}\,\sigma_{1}\ +\ q\,(q-1)\,\underset{j=0}{\overset{k-3}{\sum}}\,q^{j}t^{p+j+2}\,t_{1}^{k-2-j}\,\sigma_{1}\ +\ q^{k-2}\,t^{p}\sigma_{1}t^{k}\underline{\sigma_{1}}&=\\ &&&\\ &=&\underset{A}{\underbrace{(q-1)\,t^{p+1}t_{1}^{k-1}\,\sigma_{1}}}\ +\ \underset{B}{\underbrace{q\,(q-1)\,\underset{j=0}{\overset{k-3}{\sum}}\,q^{j}t^{p+j+2}\,t_{1}^{k-2-j}\,\sigma_{1}}}&+\\ &&&\\ &+&\underset{C}{\underbrace{q^{k-1}\,t^{p}{t_{1}^{\prime}}^{k}}}\ +\ \underset{D}{\underbrace{q^{k-2}\,(q-1)\,t^{p}\sigma_{1}t^{k}}}&\\ \end{array}

and

tpt1k=tpt1k+2t12¯=(q11)tp1t1k+1σ11+q1tpt1k+2σ11¯t2σ11==(q11)tp1t1k+1σ11+q(q1)j=0k+3qjtp+j2t1k+2jσ11++qk+2tpσ11¯tkσ11==(q11)tp1t1k+1σ11A+q(q1)j=0k+3qjtp+j2t1k+2jσ11B++qk+1tpt1kC+qk+2(q11)tptkσ11D\begin{array}[]{lclc}t^{p}t_{1}^{-k}&=&t^{p}t_{1}^{-k+2}\,\underline{t_{1}^{-2}}\ =\ (q^{-1}-1)\,t^{p-1}\,t_{1}^{-k+1}\,\sigma_{1}^{-1}\ +\ q^{-1}\,t^{p}\,\underline{t_{1}^{-k+2}\,\sigma_{1}^{-1}}\,t^{-2}\sigma_{1}^{-1}&=\\ &&&\\ &=&(q^{-1}-1)\,t^{p-1}t_{1}^{-k+1}\,\sigma_{1}^{-1}\ +\ q\,(q-1)\,\underset{j=0}{\overset{-k+3}{\sum}}\,q^{j}t^{p+j-2}\,t_{1}^{-k+2-j}\,\sigma_{1}^{-1}&+\\ &&&\\ &+&q^{-k+2}\,t^{p}\,\underline{\sigma_{1}^{-1}}\,t^{-k}\sigma_{1}^{-1}&=\\ &&&\\ &=&\underset{A^{\prime}}{\underbrace{(q^{-1}-1)\,t^{p-1}t_{1}^{-k+1}\,\sigma_{1}^{-1}}}\ +\ \underset{B^{\prime}}{\underbrace{q\,(q-1)\,\underset{j=0}{\overset{-k+3}{\sum}}\,q^{j}t^{p+j-2}\,t_{1}^{-k+2-j}\,\sigma_{1}^{-1}}}&+\\ &&&\\ &+&\underset{C^{\prime}}{\underbrace{q^{-k+1}\,t^{p}{t_{1}^{\prime}}^{-k}}}\ +\ \underset{D^{\prime}}{\underbrace{q^{-k+2}\,(q^{-1}-1)\,t^{p}t^{-k}\sigma_{1}^{-1}}}&\\ \end{array}

Observe now now that in AA the term tp+1t1k1σ1t^{p+1}t_{1}^{k-1}\,\sigma_{1} is of lower order than tpt1kt^{p}t_{1}^{k} and also that the terms A,AA,A^{\prime} are “symmetric”. From the induction step we have that I(tr(A))=tr(A)I\left(tr(A^{\prime})\right)\ =\ tr(A). For the same reasons I(tr(B))=tr(B)I\left(tr(B^{\prime})\right)\ =\ tr(B). Finally we have that:

tr(C)=qk1tr(tpt1k)=qk1spskI(qk+1spsk)=qk1spsktr(C)=qk+1tpt1k=qk+1spsk\begin{array}[]{lclclr}tr(C)&=&q^{k-1}\,tr(t^{p}{t_{1}^{\prime}}^{k})&=&q^{k-1}\,s_{p}\,s_{k}&\\ &&&&&\Rightarrow\ I\left(q^{-k+1}\,s_{p}\,s_{-k}\right)\ =\ q^{k-1}\,s_{p}\,s_{k}\\ tr(C^{\prime})&=&q^{-k+1}\,t^{p}{t_{1}^{\prime}}^{-k}&=&q^{-k+1}\,s_{p}\,s_{-k}&\\ \end{array}

and that

tr(D)=qk2(q1)tr(tp+kσ1)=qk2(q1)zsp+ktr(D)=qk+2(q11)tr(tpkσ11)=qk+1(q11)zspk+qk+2(q11)2spk\begin{array}[]{lclcl}tr(D)&=&q^{k-2}\,(q-1)\,tr(t^{p+k}\sigma_{1})&=&q^{k-2}\,(q-1)\,z\,s_{p+k}\\ &&&&\\ tr(D^{\prime})&=&q^{-k+2}\,(q^{-1}-1)\,tr(t^{p-k}\sigma_{1}^{-1})&=&q^{-k+1}\,(q^{-1}-1)\,z\,s_{p-k}\ +\ q^{-k+2}\,(q^{-1}-1)^{2}\,s_{p-k}\\ \end{array}
I(tr(D))=(qk1(q1)λz+qk2(q1)2)spk=(qk1(q1)z+1qqzz+qk2(q1)2)spk=(qk2(q1)(z+1q)+qk2(q1)2)spk=qk2(q1)zsp+kI(tr(D))=tr(D)\begin{array}[]{lcl}I\left(tr(D^{\prime})\right)&=&\left(q^{k-1}\,(q-1)\,\lambda\,z\ +\ q^{k-2}\,(q-1)^{2}\right)\,s_{p-k}\\ &&\\ &=&\left(q^{k-1}\,(q-1)\,\frac{z+1-q}{qz}\,z\ +\ q^{k-2}\,(q-1)^{2}\right)\,s_{p-k}\\ &&\\ &=&\left(q^{k-2}\,(q-1)\,(z+1-q)\ +\ q^{k-2}\,(q-1)^{2}\right)\,s_{p-k}\\ &&\\ &=&q^{k-2}\,(q-1)\,z\,s_{p+k}\ \Rightarrow\\ &&\\ I\left(tr(D^{\prime})\right)&=&tr(D)\\ \end{array}

The proof is now concluded. ∎

We are now ready to state and prove the final proposition that concludes the proof of Corollary 1.

Proposition 3.

Let τΛ(k)aug+\tau\in\Lambda^{aug_{+}}_{(k)}, where kk\in\mathbb{N}, and bbm+(τ)bbm_{+}\left(\tau\right) the result of the performance of a positive braid band move on τ\tau. Let also f(τ)Λ(k)augf(\tau)\in\Lambda^{aug_{-}}_{(-k)} and bbm(f(τ))bbm_{-}\left(f(\tau)\right) the result of the performance of a negative braid band move on f(τ)f(\tau). Then, the following relation holds:

I(tr(bbm(f(τ))))=tr(bbm±(τ)),whereτΛ(k)aug+.I\left(tr\left(bbm_{\mp}\left(f(\tau)\right)\right)\right)\ =\ tr\left(bbm_{\pm}(\tau)\right),\ {\rm where}\ \tau\in\Lambda^{aug_{+}}_{(k)}.
Proof.

We only prove that I(tr(bbm(f(τ))))=tr(bbm+(τ))I\left(tr\left(bbm_{-}\left(f(\tau)\right)\right)\right)\ =\ tr\left(bbm_{+}(\tau)\right), by strong induction on the order of bbm(f(τ))bbm_{-}\left(f(\tau)\right). The case I(tr(bbm+(f(τ))))=tr(bbm(τ))I\left(tr\left(bbm_{+}\left(f(\tau)\right)\right)\right)\ =\ tr\left(bbm_{-}(\tau)\right) follows similarly. Let

τ=tk0t1k1tnkn,f(τ)=tk0t1k1tnkn,bbm+(τ)=tpt1k0tnkn1tn+1knσ1,bbm(f(τ))=tpt1k0tnkn1tn+1knσ11.\begin{array}[]{rclrcl}\tau&=&t^{k_{0}}t_{1}^{k_{1}}\ldots t_{n}^{k_{n}},&f(\tau)&=&t^{-k_{0}}t_{1}^{-k_{1}}\ldots t_{n}^{-k_{n}},\\ &&&&\\ bbm_{+}(\tau)&=&t^{p}t_{1}^{k_{0}}\ldots t_{n}^{k_{n-1}}t_{n+1}^{k_{n}}\,\sigma_{1},&bbm_{-}(f(\tau))&=&t^{p}t_{1}^{-k_{0}}\ldots t_{n}^{-k_{n-1}}t_{n+1}^{-k_{n}}\,\sigma_{1}^{-1}.\\ \end{array}

The base of induction is Lemma 4. Assume now that I(tr(bbm(f(τi))))=tr(bbm+(τi))I\left(tr\left(bbm_{-}\left(f(\tau_{i})\right)\right)\right)\ =\ tr\left(bbm_{+}(\tau_{i})\right), for all τi<τ\tau_{i}<\tau. Then, for τ\tau we have that:

tr(tpt1k0tnkn1tn+1knσ1¯)=tr(tp(t1k0σ1¯)tnkn1tn+1kn)=Eq.15=(q1)j=0k01qjtr(tp+jt1k0jτ2,n+1k1,n)𝐴+qk0tr(tp+k0τ2,n+1k1,nσ1)𝐵,\begin{array}[]{lcl}tr(t^{p}t_{1}^{k_{0}}\underline{\ldots t_{n}^{k_{n-1}}t_{n+1}^{k_{n}}\,\sigma_{1}})&=&tr(t^{p}\,(\underline{t_{1}^{k_{0}}\cdot\sigma_{1}})\ldots t_{n}^{k_{n-1}}t_{n+1}^{k_{n}})\ \overset{Eq.~{}\ref{sllem}}{=}\\ &&\\ &=&\underset{A}{\underbrace{(q-1)\,\underset{j=0}{\overset{k_{0}-1}{\sum}}\,q^{j}\,tr\left(t^{p+j}t_{1}^{k_{0}-j}\,\tau_{2,n+1}^{k_{1,n}}\right)}}\ +\ \underset{B}{\underbrace{q^{k_{0}}\,tr\left(t^{p+k_{0}}\,\tau_{2,n+1}^{k_{1,n}}\cdot\sigma_{1}\right)}},\\ \end{array}

and

tr(tpt1k0tnkn1tn+1knσ11¯)=tr(tp(t1k0σ11¯)tnkn1tn+1kn)=Eq.15=(q11)j=0k0+1qjtr(tp+jt1k0jτ2,n+1k1,n)A++qk0tr(tpk0τ2,n+1k1,nσ11)B\begin{array}[]{lcl}tr(t^{p}t_{1}^{-k_{0}}\underline{\ldots t_{n}^{-k_{n-1}}t_{n+1}^{-k_{n}}\,\sigma_{1}^{-1}})&=&tr(t^{p}\,(\underline{t_{1}^{-k_{0}}\cdot\sigma_{1}^{-1}})\ldots t_{n}^{-k_{n-1}}t_{n+1}^{-k_{n}})\ \overset{Eq.~{}\ref{sllem}}{=}\\ &&\\ &=&\underset{A^{\prime}}{\underbrace{(q^{-1}-1)\,\underset{j=0}{\overset{-k_{0}+1}{\sum}}\,q^{j}\,tr\left(t^{p+j}t_{1}^{-k_{0}-j}\,\tau_{2,n+1}^{-k_{1,n}}\right)}}\ +\\ &&\\ &+&\underset{B^{\prime}}{\underbrace{q^{-k_{0}}\,tr\left(t^{p-k_{0}}\,\tau_{2,n+1}^{-k_{1,n}}\cdot\sigma_{1}^{-1}\right)}}\\ \end{array}

Observe now that the terms BB and BB^{\prime} are “symmetric” and also that the term tp+k0τ2,n+1k1,nσ1t^{p+k_{0}}\,\tau_{2,n+1}^{k_{1,n}}\cdot\sigma_{1} in BB has a “gap” in the indices, and thus, it is of lower order than τ\tau according to Definition 2(b)(ii)(α\alpha). Note also that in AA, the terms tp+jt1k0jτ2,n+1k1,nt^{p+j}t_{1}^{k_{0}-j}\,\tau_{2,n+1}^{k_{1,n}} are “symmetric” with the corresponding terms in AA^{\prime} for all jj, and that for j0j\neq 0, all terms are of lower order than τ\tau. Thus, from the induction hypothesis, we have that

I(tr(B))=tr(B)I(tr(A))=tr(A)forallj0.\begin{array}[]{lclr}I\left(tr(B^{\prime})\right)&=&tr(B)&\\ &&&\\ I\left(tr(A^{\prime})\right)&=&tr(A)&{\rm for\ all}\ j\neq 0.\\ \end{array}

For j=0j=0 in AA we obtain the element tr(tpτ1,n+1k0,n)tr\left(t^{p}\,\tau_{1,n+1}^{k_{0,n}}\right) and for j=0j=0 in AA^{\prime} we obtain tr(tpτ1,n+1k0,n)tr\left(t^{p}\,\tau_{1,n+1}^{-k_{0,n}}\right). These element’s are “symmetric” and we have the following:

tr(tpτ1,n+1k0,n)=tr(tpτ1,nk0,n1tn+1kn¯)=j=1kn1qj1(q1)tr(tpt1,nk0,n1tnjtn+1knjσn+1)𝐴+qkntpτ1,nk0,n1σn+1tnknσn+1𝐵andtr(tpτ1,n+1k0,n)=tr(tpτ1,nk0,n1tn+1kn¯)=j=1kn1qj+1(q11)tr(tpt1,nk0,n1tnjtn+1kn+jσn+11)A=qkntpτ1,nk0,n1σn+11tnknσn+11B\begin{array}[]{lcl}tr\left(t^{p}\,\tau_{1,n+1}^{k_{0,n}}\right)&=&tr\left(t^{p}\,\tau_{1,n}^{k_{0,n-1}}\,\underline{t_{n+1}^{k_{n}}}\right)\ =\ \underset{A}{\underbrace{\underset{j=1}{\overset{k_{n}-1}{\sum}}\,q^{j-1}\,(q-1)\,tr\left(t^{p}t_{1,n}^{k_{0,n-1}}\,t_{n}^{j}\,t_{n+1}^{k_{n}-j}\cdot\sigma_{n+1}\right)}}\\ &&\\ &+&\underset{B}{\underbrace{q^{k_{n}}\,t^{p}\,\tau_{1,n}^{k_{0,n-1}}\,\sigma_{n+1}\,t_{n}^{k_{n}}\,\sigma_{n+1}}}\\ &&\\ {\rm and}&&\\ &&\\ tr\left(t^{p}\,\tau_{1,n+1}^{-k_{0,n}}\right)&=&tr\left(t^{p}\,\tau_{1,n}^{-k_{0,n-1}}\,\underline{t_{n+1}^{-k_{n}}}\right)\ =\ \underset{A^{\prime}}{\underbrace{\underset{j=1}{\overset{k_{n}-1}{\sum}}\,q^{j+1}\,(q^{-1}-1)\,tr\left(t^{p}t_{1,n}^{-k_{0,n-1}}\,t_{n}^{j}\,t_{n+1}^{-k_{n}+j}\cdot\sigma_{n+1}^{-1}\right)}}\\ &&\\ &=&\underset{B^{\prime}}{\underbrace{q^{-k_{n}}\,t^{p}\,\tau_{1,n}^{-k_{0,n-1}}\,\sigma_{n+1}^{-1}\,t_{n}^{-k_{n}}\,\sigma_{n+1}^{-1}}}\\ \end{array}

We observe again that the terms AA and AA^{\prime} are “symmetric” and of lower order than τ,f(τ)\tau,f(\tau) and thus, from the induction hypothesis we have that I(A)=tr(A)I\left(A^{\prime}\right)\ =\ tr\left(A\right). For the terms B,BB,B^{\prime} we only have that the coefficients are “symmetric”. The idea is to change the order of particular exponents that will lead to lower order terms in the resulting sum, when applying Theorem 7. We demonstrate this technique for the case kn1<knk_{n-1}<k_{n}:

B=qkntr(tpτ1,n1k0,n2tnkn1σn+1¯tnknσn+1)=Lem.3=j=1kn11tr()+qknkn1+1tr(tpτ1,n1k0,n2σn+11¯tn+1kn1tnknσn+1)==j=1kn11tr()+qknkn1+1tr(tpτ1,n1k0,n2tn+1kn1tnkn)\begin{array}[]{lcl}B&=&q^{k_{n}}\,tr\left(t^{p}\,\tau_{1,n-1}^{k_{0,n-2}}\,\underline{t_{n}^{k_{n-1}}\,\sigma_{n+1}}\,t_{n}^{k_{n}}\,\sigma_{n+1}\right)\ \overset{Lem.~{}\ref{llem}}{=}\\ &&\\ &=&\underset{j=1}{\overset{k_{n-1}-1}{\sum}}\,tr\left(...\right)\ +\ q^{k_{n}-k_{n-1}+1}\,tr\left(\underline{t^{p}\,\tau_{1,n-1}^{k_{0,n-2}}\,\sigma_{n+1}^{-1}}\,t_{n+1}^{k_{n-1}}\,t_{n}^{k_{n}}\,\sigma_{n+1}\right)\ =\\ &&\\ &=&\underset{j=1}{\overset{k_{n-1}-1}{\sum}}\,tr\left(...\right)\ +\ q^{k_{n}-k_{n-1}+1}\,tr\left(t^{p}\,\tau_{1,n-1}^{k_{0,n-2}}\,t_{n+1}^{k_{n-1}}\,t_{n}^{k_{n}}\right)\end{array}

Similarly for BB^{\prime} we obtain:

B=Lem.3j=1kn11tr()+qkn+kn11tr(tpτ1,n1k0,n2tn+1kn1tnkn)B^{\prime}\ \overset{Lem.~{}\ref{llem}}{=}\ \underset{j=1}{\overset{k_{n-1}-1}{\sum}}\,tr\left(...\right)\ +\ q^{-k_{n}+k_{n-1}-1}\,tr\left(t^{p}\,\tau_{1,n-1}^{-k_{0,n-2}}\,t_{n+1}^{-k_{n-1}}\,t_{n}^{-k_{n}}\right)

Monomials in tit_{i}’s in the sums in these relations are “symmetric” and of lower order than the initial monomial, and, assuming kn1<knk_{n-1}<k_{n}, same is true for tpτ1,n1k0,n2tn+1kn1tnknt^{p}\,\tau_{1,n-1}^{k_{0,n-2}}\,t_{n+1}^{k_{n-1}}\,t_{n}^{k_{n}}. The result follows from the induction step. ∎

Lemma 1 and Propositions 2 and 3 are summarized in the following diagram:

tr(f(τ0,nk0,n))=bbmλ1i=0𝑛(i+1)kiztr(tpτ1,n+1k0,ng11)fProp.2ILem.1IProp.3tr(τ0,nk0,n)=bbm±λi=0𝑛(i+1)kiztr(tpτ1,n+1k0,ng1)\begin{array}[]{ccccc}tr\left(f(\tau_{0,n}^{k_{0,n}})\right)&\overset{bbm_{\mp}}{=}&\frac{\lambda^{-1-\underset{i=0}{\overset{n}{\sum}}\,(i+1)k_{i}}}{z}&\cdot&tr(t^{p}\tau_{1,n+1}^{-k_{0},n}g_{1}^{-1})\\ &&&&\\ f\,\uparrow\,Prop.~{}\ref{trtau}&&I\,\uparrow\,Lem.~{}\ref{coef}&&I\,\uparrow\,Prop.~{}\ref{fl}\\ &&&&\\ tr(\tau_{0,n}^{k_{0,n}})&\overset{bbm_{\pm}}{=}&\frac{\lambda^{\underset{i=0}{\overset{n}{\sum}}\,(i+1)k_{i}}}{z}&\cdot&tr(t^{p}\tau_{1,n+1}^{k_{0},n}g_{1})\\ \end{array}

The proof of Corollary 1, and thus, the proof of the main theorem, Theorem 9, is now concluded.

4. Toward the HOMFLYPT skein module of L(p,1)L(p,1)

In this section we present some results concerning the full solution of the infinite system of equations (1), a solution of which corresponds to computing 𝒮(L(p,1))\mathcal{S}(L(p,1)). We start by only considering equations obtained by the performance of braid band moves on elements in Λaug+\Lambda^{aug_{+}} and we prove that the infinite system of equations splits into self-contained subsystems. More precisely:

Lemma 5.

Let τΛkaug+\tau\in\Lambda^{aug_{+}}_{k}. Then tr(τ)=𝑖fi(q,z)s1,vu1,vtr(\tau)\ =\ \underset{i}{\sum}\,f_{i}(q,z)\,s_{1,v}^{u_{1,v}}, where s1,vu1,v:=s1u1s2u2svuvs_{1,v}^{u_{1,v}}\ :=\ s_{1}^{u_{1}}s_{2}^{u_{2}}\ldots s_{v}^{u_{v}}, such that uiu_{i}\in\mathbb{N} for all ii and i=1𝑣iui=k\underset{i=1}{\overset{v}{\sum}}\,i\cdot u_{i}\ =\ k.

Proof.

It derives directly from the change of basis matrix and the fourth rule of the trace. ∎

Corollary 2.

For kk\in\mathbb{N} we obtain an infinite self-contained system of equations by performing bbm’s on elements in Λ(k)aug+\Lambda^{aug_{+}}_{(k)}. That is, the system (1)(\ref{inft}) splits into infinitely many self-contained subsystems of equations.

Remark 4.

Note that if instead of considering elements in Λ(k)aug+\Lambda^{aug_{+}}_{(k)} and performing bbm1bbm_{1}’s, we considered elements in the set Λ(k)aug,k\Lambda^{aug}_{(k)},k\in\mathbb{Z}, and perform bbm1bbm_{1}’s, then the infinitely many sub-systems of equations would again be self-contained, but they would be of infinite dimension, i.e. the number of equations and unknowns in each sub-system would be infinite. This is due to the fact that the exponents in the monomials in tit_{i}’s in Λ(k)aug\Lambda^{aug}_{(k)} are arbitrary (positive and negative). We call such monomials, monomials of “mixed” exponents and we deal with the equations obtained by performing bbm’s on these elements in a sequel paper. For more details the reader is referred to [D].

4.1. Potential bases for the submodules Λaug+<bbm>&Λaug<bbm>\frac{\Lambda^{aug_{+}}}{<bbm>}\ \&\ \frac{\Lambda^{aug_{-}}}{<bbm>}

We now present some sub-systems with their solutions (without evaluating the coefficients) and we present generating sets (which also form potential bases) for Λaug+<bbm>\frac{\Lambda^{aug_{+}}}{<bbm>} and Λaug<bbm>\frac{\Lambda^{aug_{-}}}{<bbm>}. In particular, we consider elements in the subset of level kk\in\mathbb{N} of Λaug+\Lambda^{aug_{+}}, Λ(k)aug+\Lambda^{aug_{+}}_{(k)}, and we perform positive and negative bbm’s on their first moving strand. We present some of the equations of the infinite system obtained that way:

  • \bullet

    For k=0k=0 we have 1Λ(0)aug+1\in\Lambda^{aug_{+}}_{(0)} and applying bbm±1bbm_{\pm 1}’s we obtain:

    1bbm±tpσ1±11:=s0=sp1\overset{bbm_{\pm}}{\rightarrow}t^{p}\sigma_{1}^{\pm 1}\Rightarrow\color[rgb]{1,0,0}1:=s_{0}=s_{p}
  • \bullet

    For k=1k=1 we have tΛ(1)aug+t\in\Lambda^{aug_{+}}_{(1)} and applying bbm±1bbm_{\pm 1}’s we obtain:

    tbbm±tpt1σ1±1sp+1=s1&sps1=a0s1t\overset{bbm_{\pm}}{\rightarrow}t^{p}t_{1}\sigma_{1}^{\pm 1}\Rightarrow\color[rgb]{1,0,0}s_{p+1}=s_{1}\ \color[rgb]{0,0,0}\&\ \color[rgb]{1,0,0}s_{p}s_{1}=a_{0}s_{1}
  • \bullet

    For k=2k=2 we have t2,tt1Λ(2)aug+t^{2},\,tt_{1}\in\Lambda^{aug_{+}}_{(2)} and applying bbm±1bbm_{\pm 1}’s we obtain:

    • t2bbmtpt12σ1±1:t^{2}\overset{bbm}{\rightarrow}t^{p}t_{1}^{2}\sigma_{1}^{\pm 1}:

      {s2=a1sp+2+a2sp+1s1+a3sps2s2=b1sp+2+b2sp+1s1\left\{\begin{array}[]{ccl}s_{2}&=&a_{1}s_{p+2}+a_{2}s_{p+1}s_{1}+a_{3}s_{p}s_{2}\\ s_{2}&=&b_{1}s_{p+2}+b_{2}s_{p+1}s_{1}\end{array}\right.
    • tt1bbmtpt1t2σ1±1:tt_{1}\overset{bbm}{\rightarrow}t^{p}t_{1}t_{2}\sigma_{1}^{\pm 1}:

      {s2+s12=c1sp+2+c2sp+1s1s2+s12=d1sp+2+d2sp+1s1+d3sps2+d4sps12\left\{\begin{array}[]{ccl}s_{2}+s_{1}^{2}&=&c_{1}s_{p+2}+c_{2}s_{p+1}s_{1}\\ s_{2}+s_{1}^{2}&=&d_{1}s_{p+2}+d_{2}s_{p+1}s_{1}+d_{3}s_{p}s_{2}+d_{4}s_{p}s_{1}^{2}\end{array}\right.

    and thus:

    {sp+2=A1s2+A2s12s2sp=B1s2+B2s12s1sp+1=C1s2+C2s12sps12=D1s2+D2s12\left\{\begin{array}[]{ccl}s_{p+2}&=&A_{1}s_{2}+A_{2}s_{1}^{2}\\ s_{2}s_{p}&=&B_{1}s_{2}+B_{2}s_{1}^{2}\\ s_{1}s_{p+1}&=&C_{1}s_{2}+C_{2}s_{1}^{2}\\ s_{p}s_{1}^{2}&=&D_{1}s_{2}+D_{2}s_{1}^{2}\\ \end{array}\right.

    where ai,Ai,bi,Bi,ci,Ci,di,Di,ia_{i},A_{i},b_{i},B_{i},c_{i},C_{i},d_{i},D_{i}\in\mathbb{C},\ \forall\ i.

Observe now that for a fixed kk\in\mathbb{N}, the set Λ(k)aug+\Lambda^{aug_{+}}_{(k)} has i=0k1(k1i)=2k1\underset{i=0}{\overset{k-1}{\sum}}\,\bigl{(}\begin{smallmatrix}k-1\\ i\end{smallmatrix}\bigr{)}=2^{k-1} elements and by performing a positive and a negative bbm on each element in Λ(k)aug+\Lambda^{aug_{+}}_{(k)}, we obtain 2k2^{k} equations. We denote the subsystem obtained from elements in Λ(k)aug+\Lambda^{aug_{+}}_{(k)} by [S(k)][S_{(k)}]. From Lemma 5 we have that the unknowns in [S(k)][S_{(k)}] are of the form s1u1s2u2svuvs_{1}^{u_{1}}s_{2}^{u_{2}}\ldots s_{v}^{u_{v}}, such that uiu_{i}\in\mathbb{N} for all ii and i=1𝑣iui=k\underset{i=1}{\overset{v}{\sum}}\,i\cdot u_{i}\ =\ k. Note also that the unknowns of the subsystem [S(k)][S_{(k)}] are related to the unknowns of the subsystems [S(p+k)],[S(2p+k)],,[S(np+k)],n[S_{(p+k)}],[S_{(2p+k)}],\ldots,[S_{(np+k)}],\ n\in\mathbb{N}, by performing bbm1bbm_{1}’s, and thus, the solutions of the subsystems

[S(0)],[S(1)],,[S(p1)][S_{(0)}],[S_{(1)}],\ldots,[S_{(p-1)}]

produce a generating set of Λaug+<bbm>\frac{\Lambda^{aug_{+}}}{<bbm>}. Recall also that the unknown of the infinite system sms_{m}, corresponds to the looping generator tim{t_{i}^{\prime}}^{m} for any ii\in\mathbb{N}, since tit_{i}^{\prime}’s are conjugates.

These lead to the following theorem:

Theorem 10.

The set

(16) {tk0tk1tnkn,wheren,ki: 0kip1}\left\{{t^{\prime}}^{k_{0}}{t^{\prime}}^{k_{1}}\ldots{t_{n}^{\prime}}^{k_{n}},\ {\rm where}\ n,\,k_{i}\in\mathbb{N}\ :\ 0\leq k_{i}\leq p-1\right\}

is a generating set of the module Λaug+<bbm1>\frac{\Lambda^{aug_{+}}}{<bbm_{1}>}.

Remark 5.

From Theorem 8 we have that Λaug+<bbm1>=Λ+<bbmi>\frac{\Lambda^{aug_{+}}}{<bbm_{1}>}\ =\ \frac{\Lambda^{+}}{<bbm_{i}>}, and as explained in [DLP, DL4], Λ+<bbmi>=Λ+<bbmi>\frac{\Lambda^{+}}{<bbm_{i}>}\ =\ \frac{{\Lambda^{\prime}}^{+}}{<bbm_{i}>}. Thus, the set in Eq. 16 forms a basis for +/<bbmi>\mathcal{B}^{+}/<bbm_{i}>.

Moreover, results on the infinite system so far suggest that each subsystem admits unique solution and thus, Λaug+<bbm>\frac{\Lambda^{aug_{+}}}{<bbm>} is torsion free, which suggest that the following conjecture is true:

Conjecture 1.

The set

{tk0tk1tnkn,wheren,ki: 0kip1}\left\{{t^{\prime}}^{k_{0}}{t^{\prime}}^{k_{1}}\ldots{t_{n}^{\prime}}^{k_{n}},\ {\rm where}\ n,\,k_{i}\in\mathbb{N}\ :\ 0\leq k_{i}\leq p-1\right\}

forms a basis for Λaug+<bbm1>\frac{\Lambda^{aug_{+}}}{<bbm_{1}>}.

By Theorem 9 we have that the solution of the infinite system of equations Λaug<bbm>\frac{\Lambda^{aug_{-}}}{<bbm>} is derived from the solution of the infinite system of equations Λaug+<bbm>\frac{\Lambda^{aug_{+}}}{<bbm>}. Combined with Theorem 10, this leads to the following:

Theorem 11.

The set

{tk0tk1tnkn,wheren,ki\: 0kip+1}\left\{{t^{\prime}}^{k_{0}}{t^{\prime}}^{k_{1}}\ldots{t_{n}^{\prime}}^{k_{n}},\ {\rm where}\ n,\,k_{i}\in\mathbb{Z}\backslash\mathbb{N}\ :\ 0\geq k_{i}\geq-p+1\right\}

is a generating set of the module Λaug<bbm>\frac{\Lambda^{aug_{-}}}{<bbm>}.

And similarly to Conjecture 1, we have that:

Conjecture 2.

The set

{tk0tk1tnkn,wheren,ki: 0kip+1}\left\{{t^{\prime}}^{k_{0}}{t^{\prime}}^{k_{1}}\ldots{t_{n}^{\prime}}^{k_{n}},\ {\rm where}\ n,\,k_{i}\in\mathbb{N}\ :\ 0\geq k_{i}\geq-p+1\right\}

forms a basis for Λaug<bbm>\frac{\Lambda^{aug_{-}}}{<bbm>}.

4.2. Further Research

We now consider the subsystems of equations obtained by performing braid band moves on elements in Λ(k<0)aug\Lambda^{aug_{-}}_{(k<0)}. We use Theorem 9 and the equations obtained from elements in Λaug+\Lambda^{aug_{+}}, presented above.

  • \bullet

    For k=1k=-1 we have t1Λ(1)augt^{-1}\in\Lambda^{aug_{-}}_{(-1)} and: t1bbm±tpt11σ1±1sp1=s1&sps1=a0s1t^{-1}\overset{bbm_{\pm}}{\rightarrow}t^{p}t_{1}^{-1}\sigma_{1}^{\pm 1}\Leftrightarrow\color[rgb]{1,0,0}s_{p-1}=s_{-1}\ \color[rgb]{0,0,0}\&\ \color[rgb]{1,0,0}s_{p}s_{-1}=a^{\prime}_{0}s_{1} .

  • \bullet

    For the elements in Λ(2)aug\Lambda^{aug_{-}}_{(-2)} we have:

    • t2bbmtpt12σ1±1t^{-2}\overset{bbm}{\rightarrow}t^{p}t_{1}^{-2}\sigma_{1}^{\pm 1}

    • t1t11bbmtpt11t2σ1±1t^{-1}t_{1}^{-1}\overset{bbm}{\rightarrow}t^{p}t_{1}^{-1}t_{-2}\sigma_{1}^{\pm 1} and:

      {sp2=A1s2+A2s12s2sp=B1s2+B2s12s1sp1=C1s2+C2s12sps12=D1s2+D2s12\left\{\begin{array}[]{ccl}s_{p-2}&=&A_{1}^{\prime}s_{-2}+A_{2}^{\prime}s_{-1}^{2}\\ s_{-2}s_{p}&=&B_{1}^{\prime}s_{-2}+B_{2}^{\prime}s_{-1}^{2}\\ s_{-1}s_{p-1}&=&C_{1}^{\prime}s_{-2}+C_{2}^{\prime}s_{-1}^{2}\\ s_{p}s_{-1}^{2}&=&D_{1}^{\prime}s_{-2}+D_{2}^{\prime}s_{-1}^{2}\\ \end{array}\right.

      where Ai,Bi,Ci,Di,iA_{i}^{\prime},B_{i}^{\prime},C_{i}^{\prime},D_{i}^{\prime}\in\mathbb{C},\ \forall\ i.

Observe now for example that the unknown sp1s_{p-1} is equal to s1s_{-1} and that the unknown sp2s_{p-2} can be written as a combination of s2s_{-2} and s12s_{-1}^{2}. Thus, sp1,sp2s_{p-1},s_{p-2} will not be in the basis of 𝒮(L(p,1))\mathcal{S}\left(L(p,1)\right). The above examples of equations combined with the equations presented before for the system obtained from elements in Λ(k>0)aug+\Lambda^{aug_{+}}_{(k>0)}, and results from [D], suggest that the following set forms a basis for 𝒮(L(p,1))\mathcal{S}(L(p,1)):

{tk0tk1tnkn,wheren,ki:p/2ki<p/2}\left\{{t^{\prime}}^{k_{0}}{t^{\prime}}^{k_{1}}\ldots{t_{n}^{\prime}}^{k_{n}},\ {\rm where}\ n,\,k_{i}\in\mathbb{Z}\ :\ -p/2\leq k_{i}<p/2\right\}

It is worth mentioning that the same set was obtained and proved to be a basis for 𝒮(L(p,1))\mathcal{S}(L(p,1)) in [GM] using diagrammatic methods. In [DL5] we work toward proving this result using braids and techniques described within this paper. We have reasons to believe that the braid technique can be successfully applied in order to compute skein modules of other more complicated c.c.o. 3-manifolds (such as the lens spaces L(p,q),q>1L(p,q),q>1), where diagrammatic methods fail to do so.

References

  • [D] I. Diamantis, The HOMFLYPT skein module of the lens spaces L(p,1)L(p,1) via braids, PhD thesis, National Technical University of Athens, 2015.
  • [D2] I. Diamantis, (2019) An Alternative Basis for the Kauffman Bracket Skein Module of the Solid Torus via Braids. In: Adams C. et al. (eds) Knots, Low-Dimensional Topology and Applications. KNOTS16 2016. Springer Proceedings in Mathematics & Statistics, vol 284. Springer, Cham.
  • [D3] I. Diamantis, The Kauffman bracket skein module of the handlebody of genus 2 via braids, J. Knot Theory and Ramifications, 28, No. 13, 1940020 (2019).
  • [DL1] I. Diamantis, S. Lambropoulou, Braid equivalences in 3-manifolds with rational surgery description, Topology and its Applications, 194 (2015), 269-295.
  • [DL2] I. Diamantis, S. Lambropoulou, A new basis for the HOMFLYPT skein module of the solid torus, J. Pure Appl. Algebra 220 Vol. 2 (2016), 577-605.
  • [DL3] I. Diamantis, S. Lambropoulou, The braid approach to the HOMFLYPT skein module of the lens spaces L(p,1)L(p,1), Springer Proceedings in Mathematics and Statistics (PROMS), Algebraic Modeling of Topological and Computational Structures and Application, (2017).
  • [DL4] I. Diamantis, S. Lambropoulou, An important step for the computation of the HOMFLYPT skein module of the lens spaces L(p,1)L(p,1) via braids, J. Knot Theory and Ramifications, 28, No. 11, 1940007 (2019).
  • [DL5] I. Diamantis, S. Lambropoulou, The HOMFLYPT skein module of the lens spaces L(p,1)L(p,1) via braids, in preparation.
  • [DLP] I. Diamantis, S. Lambropoulou, J. H. Przytycki, Topological steps on the HOMFLYPT skein module of the lens spaces L(p,1)L(p,1) via braids, J. Knot Theory and Ramifications, 25, No. 14, (2016).
  • [FYHLMO] P. Freyd, D. Yetter, J. Hoste, W. B. R. Lickorish, K. Millett, A. Ocneanu, A new polynomial invariant of knots and links, Bull. Amer. Math. Soc., 12 (1985), 239-249.
  • [GM] B. Gabrovšek, M. Mroczkowski, The Homlypt skein module of the lens spaces L(p,1)L(p,1), Topology and its Applications, 175 (2014), 72-80.
  • [HK] J. Hoste, M. Kidwell, Dichromatic link invariants, Trans. Amer. Math. Soc. 321 (1990), No. 1, 197-229.
  • [HP] J.Hoste, J.H.Przytycki, A survey of skein modules of 3-manifolds. Knots 90 (Osaka, 1990), de Gruyter, Berlin, (1992) 363 ?-379.
  • [Jo] V. F. R. Jones, A polynomial invariant for links via Neumann algebras, Bull. Amer. Math. Soc. 129, (1985) 103-112.
  • [La1] S. Lambropoulou, Knot theory related to generalized and cyclotomic Hecke algebras of type B, J. Knot Theory and its Ramifications 8, No. 5, (1999) 621-658.
  • [La2] S. Lambropoulou, Solid torus links and Hecke algebras of B-type, Quantum Topology; D.N. Yetter Ed.; World Scientific Press, (1994), 225-245.
  • [LR1] S. Lambropoulou, C.P. Rourke (2006), Markov’s theorem in 33-manifolds, Topology and its Applications 78, (1997) 95-122.
  • [LR2] S. Lambropoulou, C. P. Rourke, Algebraic Markov equivalence for links in 33-manifolds, Compositio Math. 142 (2006) 1039-1062.
  • [P] J. Przytycki, Skein modules of 3-manifolds, Bull. Pol. Acad. Sci.: Math., 39, 1-2 (1991), 91-100.
  • [PT] J. H. Przytycki, P. Traczyk, Invariants of links of Conway type, Kobe J. Math. 4 (1987), 115-139.
  • [Tu] V.G. Turaev, The Conway and Kauffman modules of the solid torus, Zap. Nauchn. Sem. Lomi 167 (1988), 79–89. English translation: J. Soviet Math. (1990), 2799-2805.