This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Homogenization of Dissipative Hamiltonian Systems under Lévy Fluctuations

Zibo Wanga,111 zibowang@hust.edu.cn, Li Lva,222 Corresponding author: lilyu@hust.edu.cn , and Jinqiao Duanb,333duan@iit.edu
a School of Mathematics and Statistics & Center for Mathematical Sciences,
Huazhong University of Science and Technology, Wuhan 430074, China
b Department of Applied Mathematics,
Illinois Institute of Technology, Chicago, IL 60616, USA
Abstract

This work is devoted to deriving small mass limiting equation for a class of Hamiltonian systems with multiplicative Lévy noise. Derivation of the limiting equation depends on the structure of the stochastic Hamiltonian systems, in which a noise-induced drift term arises. We prove convergence to the limiting equation in probability under appropriate assumptions on smoothness and boundedness. Furthermore, we demonstrate convergence in moment under stronger assumptions. A Lévy type Smoluchowski-Kramers approximation result is presented as an illustrative example.

keywords:
Homogenization; Hamiltonian systems; non-Gaussian Lévy noise; noise-induced drift; small mass limit; effective reduction
journal: ?

1 Introduction

The motion of a diffusing particle of mass mm can be modeled by a stochastic differential equation (SDE)

dqt=vtdt,mdvt=γvtdt+σdWt,dq_{t}=v_{t}dt,\ \ \ \ mdv_{t}=-\gamma v_{t}dt+\sigma dW_{t},

where γ\gamma is the dissipation coefficient, σ\sigma is the diffusion coefficient and WW is a Wiener process. The small mass limit problem was studied by Smoluchowski [1] and Kramers [2] when the mass m0m\to 0. Following their pioneering work, this subject has been investigated by a number of authors. For example, Nelson [3] derived the limiting equation when γ\gamma and σ\sigma are constants and a Fokker-Planck equation approach was provided by Doering [4]. Convergence in probability for γ\gamma constant and σ\sigma position-dependent was shown by Freidlin [5]. For the infinite dimensional case, the problem was studied by Cerrai-Freidlin [6]. These above problems can be illustrated in the framework of homogenization, for which a splendid relevant reference is given [7].

Recently, the phenomenon of presence of noise-induced drift term in the small mass limit problem attracted wide attentions. It arises when the dissipation and diffusion coefficients depend on the state variable. Then there will be an additional drift term which does not appear in the original system. This phenomenon was firstly discovered by Hanggi [8] for systems satisfying the fluctuation-dissipation relation. Then Volpe et al. [9] made an experimental observation for this phenomenon. Hottovy et al. [10] derived the limiting equation of SDEs with arbitrary state-dependent friction. Birrell et al. developed small mass limit theory on compact Riemannian manifolds [11] and for Hamiltonian systems [12]. A generalized homogenization theorem for Langevin systems was proved in [13]. Lim et al. [14] discussed generalized Langevin equation for non-Markovian anomalous diffusions. We point out that most existing works mentioned above are for Gaussian noise.

However, random fluctuations in nonlinear dynamical systems are often non-Gaussian [15]. The particle undergoing Lévy superdiffusion is performing motion with random jumps and step lengths following a power-law distribution [16]. As an important kind of non-Gaussian noise, Lévy noise have been found widely in atmospheric turbulence [17], epidemic spreading [18] and cell biological behaviour [19]. Lévy noise-driven non-equilibrium systems are known to manifest interesting physical properties. It is worth mentioning that Lévy noise-driven systems do not satisfy classical fluctuation dissipation relation. Therefore, linear response theory, which is viewed as a generalization of the fluctuation-dissipation theorem, has been studied for SDEs driven by Lévy noise [20, 21]. It is similar to the previous part that there are also some small mass limit results for SDEs driven by Lévy noise. For example, Talibi [22] developed Nelson theory for the α\alpha-stable Lévy process. Zhang [23] obtained Smoluchowski-Kramers approximation for SDEs driven by Lévy noise whose moment is finite.

Hamiltonian dynamics [24], as an equivalent description of Newton’s second law in the framework of classical mechanics, form the framework of statistical mechanics. Dissipative Hamiltonian systems with noise have been investigated recently [25, 26].

In this present paper, we derive the small mass limiting equation of a class of dissipative Hamiltonian systems with Lévy noise

dqtε\displaystyle dq_{t}^{\varepsilon} =pHε(t,xtε)dt,\displaystyle=\nabla_{p}H^{\varepsilon}(t,x_{t}^{\varepsilon})dt, (1.1)
dptε\displaystyle dp_{t}^{\varepsilon} =(γ(t,xtε)pHε(t,xtε)qHε(t,xtε)+F(t,xtε))dt+σ(t,xtε)dLt,\displaystyle=(-\gamma(t,x_{t}^{\varepsilon})\nabla_{p}H^{\varepsilon}(t,x_{t}^{\varepsilon})-\nabla_{q}H^{\varepsilon}(t,x_{t}^{\varepsilon})+F(t,x_{t}^{\varepsilon}))dt+\sigma(t,x_{t-}^{\varepsilon})dL_{t},

where xtε=(qtε,ptε)x_{t}^{\varepsilon}=(q_{t}^{\varepsilon},p_{t}^{\varepsilon}) and HH is a Hamiltonian function with small mass parameter ε\varepsilon. The functions γ\gamma, σ\sigma and FF are dissipation coefficient, diffusion coefficient and external force dependent on (qtε,ptε)(q_{t}^{\varepsilon},p_{t}^{\varepsilon}), respectively. Here the process L={Lt}t0L=\{L_{t}\}_{t\geq 0} is a Lévy process. An inspiration for this paper goes back to the work by Birrell-Wehr [12]. The main idea of proof is the following: By means of the structure of Hamiltonian systems and a Lyapunov equation, we derive the limiting equation including a noise-induced drift term. Then, we prove that under appropriate assumptions, the original systems converge to the limiting equation in moment. Finally, utilizing non-explosion property of the solution of original systems, we show the convergence in probability for weaker assumptions.

This paper is organized as follows. In Section 2, we recall some basic notations and introduce a class of dissipative Hamiltonian systems with Lévy noise. In Section 3, we state and prove the homogenization result. More precisely, in Section 3.1, we obtain the moment estimation of kinetic function and get some relevant estimation results. In Section 3.2, we derive the limiting equation by using a Lyapunov equation. In Section 3.3, we finish the proof of the main results (Theorem 3.1 and Theorem 3.2). In Section 3.4, we extend the result to some more general systems. In Section 4, we present an illustrative example .

2 Preliminaries

2.1 Lévy motion

Let (Ω,)(\Omega,\mathbb{P}) be a probability space. An stochastic process Lt=L(t)L_{t}=L(t) taking values in n\mathbb{R}^{n} with L(0)=0L(0)=0 a.s.a.s. (almost surely) is called an nn-dimensional Lévy process if it is stochastically continuous, with independent increments and stationary increments.

An nn-dimensional Lévy process LtL_{t} can be expressed by Lévy-Itô decomposition, i.e., there exist a drift vector bnb\in\mathbb{R}^{n}, a covariance matrix QQ such that

Lt=bt+BQ(t)+x<1xN~(t,dx)+x1xN(t,dx),L_{t}=bt+B_{Q}(t)+\int_{||x||<1}x\widetilde{N}(t,dx)+\int_{||x||\geq 1}xN(t,dx),

where N(dt,dx)N(dt,dx) is the Poisson random measure on ×(n\{0})\mathbb{R}\times(\mathbb{R}^{n}\backslash\{0\}), N~(dt,dx)N(dt,dx)ν(dx)dt\widetilde{N}(dt,dx)\triangleq N(dt,dx)-\nu(dx)dt is the compensated Poisson random measure, ν𝔼N(1,)\nu\triangleq\mathbb{E}N(1,\cdot) is the jump measure, and BQ(t)B_{Q}(t) is an independent nn-dimensional Brownian motion with covariance matrix QQ. The triple (b,Q,ν)(b,Q,\nu) is called the generating triple for the Lévy process LtL_{t}. A Lévy process LtL_{t} has θ\theta-th moment if and only if x>1xθν(dx)<\int_{||x||>1}||x||^{\theta}\nu(dx)<\infty.

2.2 Dissipative Hamiltonian system with Lévy noise

We consider the dissipative Hamiltonian system described in [12]. Given a time-dependent Hamiltonian function H(t,xt)H(t,x_{t}), where xt=(qt,pt)n×nx_{t}=(q_{t},p_{t})\in\mathbb{R}^{n}\times\mathbb{R}^{n}. The following Hamiltonian system describe a system with dissipative force and an external force.

q˙t=pH(t,xt),\displaystyle\dot{q}_{t}=\nabla_{p}H(t,x_{t}), (2.1)
p˙t=γ(t,xt)pH(t,xt)qH(t,xt)+F(t,xt),\displaystyle\dot{p}_{t}=-\gamma(t,x_{t})\nabla_{p}H(t,x_{t})-\nabla_{q}H(t,x_{t})+F(t,x_{t}),

with dissipation coefficient γ:[0,)×2nn×n\gamma:[0,\infty)\times\mathbb{R}^{2n}\to\mathbb{R}^{n\times n}, and external forcing function F:[0,)×2nnF:[0,\infty)\times\mathbb{R}^{2n}\to\mathbb{R}^{n}. A natural example for Hamiltonian function is H(q,p)=p22m+V(q)H(q,p)=\frac{p^{2}}{2m}+V(q), where p22m\frac{p^{2}}{2m} represents kinetic energy of system and mm represents mass. Hence we are interested in a family of Hamiltonians depending on some small parameter ε\varepsilon of the form

Hε(t,q,p)Kε(t,q,p)+V(t,q)=K(ε,t,q,p/ε)+V(t,q).H^{\varepsilon}(t,q,p)\triangleq K^{\varepsilon}(t,q,p)+V(t,q)=K(\varepsilon,t,q,p/\sqrt{\varepsilon})+V(t,q). (2.2)

We remark that the notation KK and VV may not represent physical kinetic energy and potential energy. Actually, the splitting is more extensive as long as it satisfies the assumptions we will make below. However, we still call KK kinetic energy and VV potential energy function in the following sections.

In this paper, we study the following Hamiltonian system perturbed by Lévy fluctuation

dqtε\displaystyle dq_{t}^{\varepsilon} =pHε(t,xtε)dt,\displaystyle=\nabla_{p}H^{\varepsilon}(t,x_{t}^{\varepsilon})dt, (2.3)
dptε\displaystyle dp_{t}^{\varepsilon} =(γ(t,xtε)pHε(t,xtε)qHε(t,xtε)+F(t,xtε))dt+σ(t,xtε)dLt,\displaystyle=(-\gamma(t,x_{t}^{\varepsilon})\nabla_{p}H^{\varepsilon}(t,x_{t}^{\varepsilon})-\nabla_{q}H^{\varepsilon}(t,x_{t}^{\varepsilon})+F(t,x_{t}^{\varepsilon}))dt+\sigma(t,x_{t-}^{\varepsilon})dL_{t},

with initial data (q0ε,p0ε)(q_{0}^{\varepsilon},\ p_{0}^{\varepsilon}), where σ:[0,)×2nn×d\sigma:[0,\infty)\times\mathbb{R}^{2n}\to\mathbb{R}^{n\times d} is noise intensity function and L={Lt}t0L=\{L_{t}\}_{t\geq 0} is a d\mathbb{R}^{d}-valued pure jump Lévy process with triple (0,0,ν)(0,0,\nu).

Remark 2.1.

We consider only pure jump Lévy process here, since by Lévy-Itô decomposition, Lévy process could be expressed as a sum of a Brownian motion and a pure jump Lévy process, in addition to a drift term which may be absorbed in the vector field in SDE. Homogenization of dissipative Hamiltonian systems with Brownian motion was studied in [12]. Thereby we use same notations as in [12] to make sure the influence of Brownian motion can be added to our results.

We assume that the pure jump Lévy process has finite moment. More precisely, we make the following assumption for jump measure ν\nu.
Assumption 1. There exists a constant θ\theta such that the Lévy measure ν\nu satisfies

|x|1|x|2θν(dx)<,\int_{|x|\geq 1}|x|^{2\lor\theta}\nu(dx)<\infty,

here 2θ=max{2,θ}{2\lor\theta}=\max\{2,\theta\}.

3 Homogenization of dissipative Hamiltonian systems under Lévy fluctuations

In this section we formulate the assumptions and state the main results Theorem 3.1 and Theroem 3.2.

3.1 Moment estimates

In this subsection, we derive the moment estimation for kinetic energy KK and some relevant estimation results. For the Hamiltonian function HH we make the following assumptions.
Assumption 2. The Hamiltonian function HH has form (2.2), where K(ε,t,q,z)K(\varepsilon,t,q,z) is non-negative and 𝒞2{\mathcal{C}}^{2} in (t,q,z)(t,q,z) for each ε\varepsilon. Moreover, there exists a constant C0>0C_{0}>0 such that Kε(0,x0ε)C0K^{\varepsilon}(0,x_{0}^{\varepsilon})\leq C_{0}. For every fixed constant T>0T>0 and ε0>0\varepsilon_{0}>0, the following conditions hold on (0,ε0]×[0,T]×2n(0,\varepsilon_{0}]\times[0,T]\times\mathbb{R}^{2n}:
1. There exist positive constants C,M1C,M_{1} such that

max{|tK(ε,t,q,z)|,qK(ε,t,q,z),zK(ε,t,q,z)}M1+CK(ε,t,q,z).\max{\{|\partial_{t}K(\varepsilon,t,q,z)|,||\nabla_{q}K(\varepsilon,t,q,z)||,||\nabla_{z}K(\varepsilon,t,q,z)||\}}\leq M_{1}+CK(\varepsilon,t,q,z).

2. There exist positive constants c,M2c,M_{2} such that

zK(ε,t,q,z)2+M2cK(ε,t,q,z).||\nabla_{z}K(\varepsilon,t,q,z)||^{2}+M_{2}\geq cK(\varepsilon,t,q,z).

3. The kinetic energy K(ε,t,q,z)K(\varepsilon,t,q,z) is Lipschitz w.r.t (with respect to) zz, i.e. there exists a constant LL such that

|K(ε,t,q,z1)K(ε,t,q,z2)|L|z1z2|.|K(\varepsilon,t,q,z_{1})-K(\varepsilon,t,q,z_{2})|\leq L|z_{1}-z_{2}|.

4. The potential energy V(t,q)V(t,q) is 𝒞1\mathcal{C}^{1} in (t,q)(t,q) and qV\nabla_{q}V is bounded.

For dissipative matrix function γ\gamma, external force FF and noise intensity σ\sigma, we assume that
Assumption 3. For every T>0T>0, the following conditions hold on [0,T]×2n[0,T]\times\mathbb{R}^{2n}:
1. The function γ,F,σ\gamma,F,\sigma are bounded and Lipschitz.
2. The matrix function γ\gamma is symmetric with eignevalues bounded below by some constant λ>0\lambda>0.

Remark 3.1.

Under the Assumption 1-3 and additional Assumption 4 below, the solution xtεx_{t}^{\varepsilon} to stochastic Hamiltonian system (2.3) exists and is unique. See Appendix for proof.

At this point, we begin to prove the moment estimations of KK. We firstly give an upper bound of kinetic energy KK.

Lemma 3.1.

For every θ1\theta\geq 1 and T>0T>0 there exist positive constants α0,ε0\alpha_{0},\varepsilon_{0} such that for all constant α(0,α0],ϵ(0,ε0]\alpha\in(0,\alpha_{0}],\epsilon\in(0,\varepsilon_{0}] and t[0,T]t\in[0,T], we have

Kε(t,xtε)θκ(ε)α+0td\{0}eα(ts)/ε[Kε(s,qsε,psε+σ(s,xsε)x)θKε(s,qsε,psε)θ]N~(ds,dx),K^{\varepsilon}(t,x_{t}^{\varepsilon})^{\theta}\leq\frac{\kappa(\varepsilon)}{\alpha}+\int_{0}^{t}\int_{\mathbb{R}^{d}\backslash\{0\}}e^{-\alpha(t-s)/\varepsilon}[K^{\varepsilon}(s,q_{s-}^{\varepsilon},p_{s-}^{\varepsilon}+\sigma(s,x_{s-}^{\varepsilon})x)^{\theta}-K^{\varepsilon}(s,q_{s-}^{\varepsilon},p_{s-}^{\varepsilon})^{\theta}]\widetilde{N}(ds,dx), (3.1)

where κ(ε)=κ1+κ2ε1θ/2\kappa(\varepsilon)=\kappa_{1}+\kappa_{2}\varepsilon^{1-\theta/2} for positive constants κ1\kappa_{1} and κ2\kappa_{2}.

Proof.

Applying Itô formula to eαt/εKε(t,xtε)θe^{\alpha t/\varepsilon}K^{\varepsilon}(t,x_{t}^{\varepsilon})^{\theta}, we have

eαt/εKε(t,xtε)θ\displaystyle e^{\alpha t/\varepsilon}K^{\varepsilon}(t,x_{t}^{\varepsilon})^{\theta}
=Kε(0,x0ε)θ+αε0teαs/εKε(s,xsε)θ𝑑s+θ0teαs/εKε(s,xsε)θ1(sK)ε(s,xsε)𝑑s\displaystyle=K^{\varepsilon}(0,x_{0}^{\varepsilon})^{\theta}+\frac{\alpha}{\varepsilon}\int_{0}^{t}e^{\alpha s/\varepsilon}K^{\varepsilon}(s,x_{s}^{\varepsilon})^{\theta}ds+\theta\int_{0}^{t}e^{\alpha s/\varepsilon}K^{\varepsilon}(s,x_{s}^{\varepsilon})^{\theta-1}(\partial_{s}K)^{\varepsilon}(s,x_{s}^{\varepsilon})ds
+θε0teαs/εKε(s,xsε)θ1(zK)ε(s,xsε)(γ(s,xsε))(zK)ε(s,xsε)𝑑s\displaystyle+\frac{\theta}{\varepsilon}\int_{0}^{t}e^{\alpha s/\varepsilon}K^{\varepsilon}(s,x_{s}^{\varepsilon})^{\theta-1}(\nabla_{z}K)^{\varepsilon}(s,x_{s}^{\varepsilon})(-\gamma(s,x_{s}^{\varepsilon}))(\nabla_{z}K)^{\varepsilon}(s,x_{s}^{\varepsilon})ds
+θε0teαs/ε(zK)ε(s,xsε)(qV(s,qsε)+F(s,xsε))𝑑s\displaystyle+\frac{\theta}{\sqrt{\varepsilon}}\int_{0}^{t}e^{\alpha s/\varepsilon}(\nabla_{z}K)^{\varepsilon}(s,x_{s}^{\varepsilon})(-\nabla_{q}V(s,q_{s}^{\varepsilon})+F(s,x_{s}^{\varepsilon}))ds
+0td\{0}eαs/ε[Kε(s,qsε,psε+σ(s,xsε)x)θKε(s,qsε,psε)θ]N~(ds,dx)\displaystyle+\int_{0}^{t}\int_{\mathbb{R}^{d}\backslash\{0\}}e^{\alpha s/\varepsilon}[K^{\varepsilon}(s,q_{s-}^{\varepsilon},p_{s-}^{\varepsilon}+\sigma(s,x_{s-}^{\varepsilon})x)^{\theta}-K^{\varepsilon}(s,q_{s-}^{\varepsilon},p_{s-}^{\varepsilon})^{\theta}]\widetilde{N}(ds,dx)
+0td\{0}eαs/ε[Kε(s,qsε,psε+σ(s,xsε)x)θKε(s,qsε,psε)θ]ν(dx)𝑑s\displaystyle+\int_{0}^{t}\int_{\mathbb{R}^{d}\backslash\{0\}}e^{\alpha s/\varepsilon}[K^{\varepsilon}(s,q_{s-}^{\varepsilon},p_{s-}^{\varepsilon}+\sigma(s,x_{s-}^{\varepsilon})x)^{\theta}-K^{\varepsilon}(s,q_{s-}^{\varepsilon},p_{s-}^{\varepsilon})^{\theta}]\nu(dx)ds (I1I_{1})
0t|x|<1eαs/εσi(s,xsε)xθεKε(s,qsε,psε)θ1(ziK)ε(s,qsε,psε)]ν(dx)ds,\displaystyle-\int_{0}^{t}\int_{|x|<1}e^{\alpha s/\varepsilon}\sigma^{i}(s,x_{s-}^{\varepsilon})x\frac{\theta}{\sqrt{\varepsilon}}K^{\varepsilon}(s,q_{s-}^{\varepsilon},p_{s-}^{\varepsilon})^{\theta-1}(\nabla_{z_{i}}K)^{\varepsilon}(s,q_{s-}^{\varepsilon},p_{s-}^{\varepsilon})]\nu(dx)ds, (I2I_{2})

where we denote the last two integrals by I1,I2I_{1},I_{2} respectively. The notation (sK)ε(s,x)(\partial_{s}K)^{\varepsilon}(s,x) is equal to sK(ε,s,q,p/ε)\partial_{s}K(\varepsilon,s,q,p/\sqrt{\varepsilon}) and similarly for (zK)ε(s,x)(\nabla_{z}K)^{\varepsilon}(s,x).

First we estimate terms I1,I2I_{1},I_{2}. Using mean value theorem and Lipschitz condition of KK for the term I1I_{1} we have

I1\displaystyle I_{1} =0td\{0}eαs/ε[Kε(s,qsε,psε+σ(s,xsε)x)θKε(s,qsε,psε)θ]ν(dx)𝑑s\displaystyle=\int_{0}^{t}\int_{\mathbb{R}^{d}\backslash\{0\}}e^{\alpha s/\varepsilon}[K^{\varepsilon}(s,q_{s}^{\varepsilon},p_{s}^{\varepsilon}+\sigma(s,x_{s}^{\varepsilon})x)^{\theta}-K^{\varepsilon}(s,q_{s}^{\varepsilon},p_{s}^{\varepsilon})^{\theta}]\nu(dx)ds (3.2)
2θ2θ0td\{0}eαs/ε[Kε(s,qsε,psε)θ1|Kε(s,qsε,psε+σ(s,xsε)x)Kε(s,qsε,psε)|\displaystyle\leq 2^{\theta-2}\theta\int_{0}^{t}\int_{\mathbb{R}^{d}\backslash\{0\}}e^{\alpha s/\varepsilon}\left[K^{\varepsilon}(s,q_{s}^{\varepsilon},p_{s}^{\varepsilon})^{\theta-1}\left|K^{\varepsilon}(s,q_{s}^{\varepsilon},p_{s}^{\varepsilon}+\sigma(s,x_{s}^{\varepsilon})x)-K^{\varepsilon}(s,q_{s}^{\varepsilon},p_{s}^{\varepsilon})\right|\right.
+|Kε(s,qsε,psε+σ(s,xsε)x)Kε(s,qsε,psε)|θ]ν(dx)ds\displaystyle\left.+\left|K^{\varepsilon}(s,q_{s}^{\varepsilon},p_{s}^{\varepsilon}+\sigma(s,x_{s}^{\varepsilon})x)-K^{\varepsilon}(s,q_{s}^{\varepsilon},p_{s}^{\varepsilon})\right|^{\theta}\right]\nu(dx)ds
2θ2θLσεd\{0}|x|ν(dx)0teαs/εKε(s,qsε,psε)2θ1𝑑s+2θ2θLθσεθ/2d\{0}|x|θν(dx)0teαs/ε𝑑s.\displaystyle\leq\frac{2^{\theta-2}\theta L||\sigma||_{\infty}}{\sqrt{\varepsilon}}\int_{\mathbb{R}^{d}\backslash\{0\}}|x|\nu(dx)\int_{0}^{t}e^{\alpha s/\varepsilon}K^{\varepsilon}(s,q_{s}^{\varepsilon},p_{s}^{\varepsilon})^{2\theta-1}ds+\frac{2^{\theta-2}\theta L^{\theta}||\sigma||_{\infty}}{\varepsilon^{\theta/2}}\int_{\mathbb{R}^{d}\backslash\{0\}}|x|^{\theta}\nu(dx)\int_{0}^{t}e^{\alpha s/\varepsilon}ds.

Under Assumption 2-3, for term I2I_{2} we have

I2\displaystyle I_{2} =0t|x|<1eαs/εσi(s,xsε)xθεKε(s,qsε,psε)θ1(ziK)ε(s,qsε,psε)]ν(dx)ds\displaystyle=-\int_{0}^{t}\int_{|x|<1}e^{\alpha s/\varepsilon}\sigma^{i}(s,x_{s}^{\varepsilon})x\frac{\theta}{\sqrt{\varepsilon}}K^{\varepsilon}(s,q_{s}^{\varepsilon},p_{s}^{\varepsilon})^{\theta-1}(\nabla_{z_{i}}K)^{\varepsilon}(s,q_{s}^{\varepsilon},p_{s}^{\varepsilon})]\nu(dx)ds (3.3)
θσε|x|<1|x|ν(dx)(M10teαs/εKε(s,qsε,psε)θ1𝑑s+C0teαs/εKε(s,qsε,psε)θ𝑑s).\displaystyle\leq\frac{\theta||\sigma||_{\infty}}{\varepsilon}\int_{|x|<1}|x|\nu(dx)\left(M_{1}\int_{0}^{t}e^{\alpha s/\varepsilon}K^{\varepsilon}(s,q_{s}^{\varepsilon},p_{s}^{\varepsilon})^{\theta-1}ds+C\int_{0}^{t}e^{\alpha s/\varepsilon}K^{\varepsilon}(s,q_{s}^{\varepsilon},p_{s}^{\varepsilon})^{\theta}ds\right).

Then combining these two inequalities (3.2), (3.3) with Assumption 2-3, we obtain

eαt/εKε(t,xtε)θ\displaystyle e^{\alpha t/\varepsilon}K^{\varepsilon}(t,x_{t}^{\varepsilon})^{\theta} (3.4)
Kε(0,x0ε)θ+(αε+Cθλcθε+CθεqV+F)0teαs/εKε(s,xsε)θ𝑑s\displaystyle\leq K^{\varepsilon}(0,x_{0}^{\varepsilon})^{\theta}+\left(\frac{\alpha}{\varepsilon}+C\theta-\frac{\lambda c\theta}{\varepsilon}+\frac{C\theta}{\sqrt{\varepsilon}}||-\nabla_{q}V+F||_{\infty}\right)\int_{0}^{t}e^{\alpha s/\varepsilon}K^{\varepsilon}(s,x_{s}^{\varepsilon})^{\theta}ds
+θ(M1+λM2ε+M1εqV+F)0teαs/εKε(s,xsε)θ1𝑑s\displaystyle+\theta\left(M_{1}+\frac{\lambda M_{2}}{\varepsilon}+\frac{M_{1}}{\sqrt{\varepsilon}}||-\nabla_{q}V+F||_{\infty}\right)\int_{0}^{t}e^{\alpha s/\varepsilon}K^{\varepsilon}(s,x_{s}^{\varepsilon})^{\theta-1}ds
+(2θ2θLσεd\{0}|x|ν(dx)+θσε|x|<1|x|ν(dx))0teαs/εKε(s,xsε)θ1𝑑s\displaystyle+\left(\frac{2^{\theta-2}\theta L||\sigma||_{\infty}}{\sqrt{\varepsilon}}\int_{\mathbb{R}^{d}\backslash\{0\}}|x|\nu(dx)+\frac{\theta||\sigma||_{\infty}}{\varepsilon}\int_{|x|<1}|x|\nu(dx)\right)\int_{0}^{t}e^{\alpha s/\varepsilon}K^{\varepsilon}(s,x_{s}^{\varepsilon})^{\theta-1}ds
+Cθσε0teαs/εKε(s,qs,ps)θ𝑑s+2θ2θLθσθεθ/2d\{0}|x|θν(dx)0teαs/ε𝑑s\displaystyle+\frac{C\theta||\sigma||_{\infty}}{\varepsilon}\int_{0}^{t}e^{\alpha s/\varepsilon}K^{\varepsilon}(s,q_{s},p_{s})^{\theta}ds+\frac{2^{\theta-2}\theta L^{\theta}||\sigma||_{\infty}^{\theta}}{\varepsilon^{\theta/2}}\int_{\mathbb{R}^{d}\backslash\{0\}}|x|^{\theta}\nu(dx)\int_{0}^{t}e^{\alpha s/\varepsilon}ds
+0td\{0}eαs/ε[Kε(s,qsε,psε+σ(s,xsε)x)θKε(s,qsε,psε)θ]N~(ds,dx).\displaystyle+\int_{0}^{t}\int_{\mathbb{R}^{d}\backslash\{0\}}e^{\alpha s/\varepsilon}[K^{\varepsilon}(s,q_{s-}^{\varepsilon},p_{s-}^{\varepsilon}+\sigma(s,x_{s-}^{\varepsilon})x)^{\theta}-K^{\varepsilon}(s,q_{s-}^{\varepsilon},p_{s-}^{\varepsilon})^{\theta}]\widetilde{N}(ds,dx).

Note that Young inequality allows Kθ11θ(Mδ)θ1+δMKθK^{\theta-1}\leq\frac{1}{\theta}\left(\frac{M}{\delta}\right)^{\theta-1}+\frac{\delta}{M}K^{\theta}. Let M=max{M1,M2}M=\max\{M_{1},M_{2}\}. We get

Kε(t,xtε)θ\displaystyle K^{\varepsilon}(t,x_{t}^{\varepsilon})^{\theta} eαt/εKε(0,x0ε)Dε0teα(ts)/εKε(s,xsε)θ𝑑s+dα\displaystyle\leq e^{-\alpha t/\varepsilon}K^{\varepsilon}(0,x_{0}^{\varepsilon})-\frac{D}{\varepsilon}\int_{0}^{t}e^{-\alpha(t-s)/\varepsilon}K^{\varepsilon}(s,x_{s}^{\varepsilon})^{\theta}ds+\frac{d}{\alpha} (3.5)
+0td\{0}eα(ts)/ε[Kε(s,qsε,psε+σ(s,xsε)x)θKε(s,qsε,psε)θ]N~(ds,dx),\displaystyle+\int_{0}^{t}\int_{\mathbb{R}^{d}\backslash\{0\}}e^{-\alpha(t-s)/\varepsilon}[K^{\varepsilon}(s,q_{s-}^{\varepsilon},p_{s-}^{\varepsilon}+\sigma(s,x_{s-}^{\varepsilon})x)^{\theta}-K^{\varepsilon}(s,q_{s-}^{\varepsilon},p_{s-}^{\varepsilon})^{\theta}]\widetilde{N}(ds,dx),

where

D=\displaystyle D= λcθαCθεCθεqV+FθδεθδλθδεqV+F\displaystyle\lambda c\theta-\alpha-C\theta\varepsilon-C\theta\sqrt{\varepsilon}||-\nabla_{q}V+F||_{\infty}-\theta\delta\varepsilon-\theta\delta\lambda-\theta\delta\sqrt{\varepsilon}||-\nabla_{q}V+F||_{\infty} (3.6)
2θ2θLδσM1εd\{0}|x|ν(dx)θδσ|x|<1|x|ν(dx)Cθδσ,\displaystyle-2^{\theta-2}\theta L\delta||\sigma||_{\infty}M^{-1}\sqrt{\varepsilon}\int_{\mathbb{R}^{d}\backslash\{0\}}|x|\nu(dx)-\theta\delta||\sigma||_{\infty}\int_{|x|<1}|x|\nu(dx)-C\theta\delta||\sigma||_{\infty},

and

d\displaystyle d =(Mδ)θ1(Mε+λM+MεqV+F+2θ2Lεσd\{0}|x|ν(dx)+σ|x|<1|x|ν(dx))\displaystyle=\left(\frac{M}{\delta}\right)^{\theta-1}\left(M\varepsilon+\lambda M+M\sqrt{\varepsilon}||-\nabla_{q}V+F||_{\infty}+2^{\theta-2}L\sqrt{\varepsilon}||\sigma||_{\infty}\int_{\mathbb{R}^{d}\backslash\{0\}}|x|\nu(dx)+||\sigma||_{\infty}\int_{|x|<1}|x|\nu(dx)\right) (3.7)
+(Mδ)θ12θ2Lθσθε1θ/2d\{0}|x|θν(dx).\displaystyle+\left(\frac{M}{\delta}\right)^{\theta-1}2^{\theta-2}L^{\theta}||\sigma||_{\infty}^{\theta}\varepsilon^{1-\theta/2}\int_{\mathbb{R}^{d}\backslash\{0\}}|x|^{\theta}\nu(dx).

For all ε,δ,α\varepsilon,\delta,\alpha sufficiently small, DD is non-negative. In addition, Kε(0,x0ϵ)K^{\varepsilon}(0,x_{0}^{\epsilon}) is bounded by Assumption 2. Thus we obtain the required inequality (3.1). ∎

Now we give the moment estimation of the kinetic energy Kε(t,xtε)K^{\varepsilon}(t,x_{t}^{\varepsilon}) by means of above assumptions and lemma.

Lemma 3.2.

(Supremum of expectation of the kinetic energy) Under Assumption 1-3, for every positive TT and θ\theta, the kinetic energy KK has the following uniform estimate

supt[0,T]𝔼[Kε(t,xtε)θ]=O(ε12θ2),asε0.\sup_{t\in[0,T]}\mathbb{E}\left[K^{\varepsilon}(t,x_{t}^{\varepsilon})^{\theta}\right]=O(\varepsilon^{1-\frac{2\lor\theta}{2}}),\ \text{as}\ \varepsilon\to 0. (3.8)
Proof.

We first consider θ1\theta\geq 1. Note that

0td\{0}eα(ts)/ε[Kε(s,qsε,psε+σ(s,xsε)x)θKε(s,qsε,psε)θ]N~(ds,dx)\int_{0}^{t}\int_{\mathbb{R}^{d}\backslash\{0\}}e^{-\alpha(t-s)/\varepsilon}[K^{\varepsilon}(s,q_{s-}^{\varepsilon},p_{s-}^{\varepsilon}+\sigma(s,x_{s}^{\varepsilon})x)^{\theta}-K^{\varepsilon}(s,q_{s-}^{\varepsilon},p_{s-}^{\varepsilon})^{\theta}]\widetilde{N}(ds,dx)

is a local martingale and it is in fact a martingale by using appropriate sequence of stopping times (see [16], page 266). Then we obtain the following equality

𝔼[0td\{0}eα(ts)/ε[Kε(s,qsε,psε+σ(s,xsε)x)θKε(s,qsε,psε)θ]N~(ds,dx)]=0.\mathbb{E}\left[\int_{0}^{t}\int_{\mathbb{R}^{d}\backslash\{0\}}e^{-\alpha(t-s)/\varepsilon}[K^{\varepsilon}(s,q_{s-}^{\varepsilon},p_{s-}^{\varepsilon}+\sigma(s,x_{s}^{\varepsilon})x)^{\theta}-K^{\varepsilon}(s,q_{s-}^{\varepsilon},p_{s-}^{\varepsilon})^{\theta}]\widetilde{N}(ds,dx)\right]=0.

It follows that the equality (3.8) holds from Lemma 3.1 and preceding equation for θ1\theta\geq 1. The results for 0<θ<10<\theta<1 follows by Hölder’s inequality. ∎

Lemma 3.3.

(Expectation of supremum of the kinetic energy) Under Assumption 1-3 and for every positive TT and θ\theta, the kinetic energy KK has the following uniform estimate

𝔼[supt[0,T]Kε(t,xtε)θ]=O(εθ2),asε0.\mathbb{E}\left[\sup_{t\in[0,T]}K^{\varepsilon}(t,x_{t}^{\varepsilon})^{\theta}\right]=O(\varepsilon^{-\frac{\theta}{2}}),\ as\ \varepsilon\to 0. (3.9)
Proof.

By Lemma 3.1 we have

Kε(t,xtε)κα+0td\{0}eα(ts)/ε[Kε(s,qsε,psε+σ(s,xsε)x)Kε(s,qsε,psε)]N~(ds,dx).K^{\varepsilon}(t,x_{t}^{\varepsilon})\leq\frac{\kappa}{\alpha}+\int_{0}^{t}\int_{\mathbb{R}^{d}\backslash\{0\}}e^{-\alpha(t-s)/\varepsilon}[K^{\varepsilon}(s,q_{s-}^{\varepsilon},p_{s-}^{\varepsilon}+\sigma(s,x_{s-}^{\varepsilon})x)-K^{\varepsilon}(s,q_{s-}^{\varepsilon},p_{s-}^{\varepsilon})]\widetilde{N}(ds,dx). (3.10)

Itô’s product formula implies that

0td\{0}eα(ts)/ε[Kε(s,qsε,psε+σ(s,xsε)x)Kε(s,qsε,psε)]N~(ds,dx)\displaystyle\int_{0}^{t}\int_{\mathbb{R}^{d}\backslash\{0\}}e^{-\alpha(t-s)/\varepsilon}[K^{\varepsilon}(s,q_{s-}^{\varepsilon},p_{s-}^{\varepsilon}+\sigma(s,x_{s-}^{\varepsilon})x)-K^{\varepsilon}(s,q_{s-}^{\varepsilon},p_{s-}^{\varepsilon})]\widetilde{N}(ds,dx) (3.11)
=\displaystyle= 0td\{0}[Kε(s,qsε,psε+σ(s,xsε)x)Kε(s,qsε,psε)]N~(ds,dx)\displaystyle\int_{0}^{t}\int_{\mathbb{R}^{d}\backslash\{0\}}[K^{\varepsilon}(s,q_{s-}^{\varepsilon},p_{s-}^{\varepsilon}+\sigma(s,x_{s-}^{\varepsilon})x)-K^{\varepsilon}(s,q_{s-}^{\varepsilon},p_{s-}^{\varepsilon})]\widetilde{N}(ds,dx)
+0tαεeα(ts)/ε0sd\{0}[Kε(r,qrε,prε+σ(r,xrε)x)Kε(r,qrε,prε)]N~(dr,dx)𝑑s.\displaystyle+\int_{0}^{t}\frac{\alpha}{\varepsilon}e^{-\alpha(t-s)/\varepsilon}\int_{0}^{s}\int_{\mathbb{R}^{d}\backslash\{0\}}[K^{\varepsilon}(r,q_{r-}^{\varepsilon},p_{r-}^{\varepsilon}+\sigma(r,x_{r-}^{\varepsilon})x)-K^{\varepsilon}(r,q_{r-}^{\varepsilon},p_{r-}^{\varepsilon})]\widetilde{N}(dr,dx)ds.

We first show the proposition in the case when θ2\theta\geq 2. Substituting (3.11) into (3.10) and taking supremum and expectation on both side, we have

𝔼[supt[0,T]Kε(t,xtε)θ]\displaystyle\mathbb{E}\left[\sup_{t\in[0,T]}K^{\varepsilon}(t,x_{t}^{\varepsilon})^{\theta}\right] (3.12)
\displaystyle\leq 2θ1(κα)θ+4θ1𝔼[supt[0,T]|0td\{0}[Kε(s,qsε,psε+σ(s,xsε)x)Kε(s,qsε,psε)]N~(ds,dx)|θ]\displaystyle 2^{\theta-1}\left(\frac{\kappa}{\alpha}\right)^{\theta}+4^{\theta-1}\mathbb{E}\left[\sup_{t\in[0,T]}\left|\int_{0}^{t}\int_{\mathbb{R}^{d}\backslash\{0\}}[K^{\varepsilon}(s,q_{s-}^{\varepsilon},p_{s-}^{\varepsilon}+\sigma(s,x_{s-}^{\varepsilon})x)-K^{\varepsilon}(s,q_{s-}^{\varepsilon},p_{s-}^{\varepsilon})]\widetilde{N}(ds,dx)\right|^{\theta}\right]
+\displaystyle+ 4θ1𝔼[supt[0,T]|0tαεeα(ts)/ε0sd\{0}[Kε(r,qrε,prε+σ(r,xrε)x)Kε(r,qrε,prε)]N~(dr,dx)𝑑s|θ].\displaystyle 4^{\theta-1}\mathbb{E}\left[\sup_{t\in[0,T]}\left|\int_{0}^{t}\frac{\alpha}{\varepsilon}e^{-\alpha(t-s)/\varepsilon}\int_{0}^{s}\int_{\mathbb{R}^{d}\backslash\{0\}}[K^{\varepsilon}(r,q_{r-}^{\varepsilon},p_{r-}^{\varepsilon}+\sigma(r,x_{r-}^{\varepsilon})x)-K^{\varepsilon}(r,q_{r-}^{\varepsilon},p_{r-}^{\varepsilon})]\widetilde{N}(dr,dx)ds\right|^{\theta}\right].

For the first Poisson stochastic integral term, Kunita first inequality ([16], Theorem 4.4.23) implies that

𝔼[supt[0,T]|0td\{0}Kε(s,qsε,psε+σ(s,xsε)x)Kε(s,qsε,psε)N~(ds,dx)|θ]\displaystyle\mathbb{E}\left[\sup_{t\in[0,T]}\left|\int_{0}^{t}\int_{\mathbb{R}^{d}\backslash\{0\}}K^{\varepsilon}(s,q_{s-}^{\varepsilon},p_{s-}^{\varepsilon}+\sigma(s,x_{s-}^{\varepsilon})x)-K^{\varepsilon}(s,q_{s-}^{\varepsilon},p_{s-}^{\varepsilon})\widetilde{N}(ds,dx)\right|^{\theta}\right] (3.13)
\displaystyle\leq D(θ)𝔼[(0Td\{0}|Kε(s,qsε,psε+σ(s,xsε)x)Kε(s,qsε,psε)|2ν(dx)𝑑s)θ2]\displaystyle D(\theta)\mathbb{E}\left[\left(\int_{0}^{T}\int_{\mathbb{R}^{d}\backslash\{0\}}|K^{\varepsilon}(s,q_{s-}^{\varepsilon},p_{s-}^{\varepsilon}+\sigma(s,x_{s-}^{\varepsilon})x)-K^{\varepsilon}(s,q_{s-}^{\varepsilon},p_{s-}^{\varepsilon})|^{2}\nu(dx)ds\right)^{\frac{\theta}{2}}\right]
+\displaystyle+ 𝔼[0Td\{0}|Kε(s,qsε,psε+σ(s,xsε)x)Kε(s,qsε,psε)|θν(dx)𝑑s]\displaystyle\mathbb{E}\left[\int_{0}^{T}\int_{\mathbb{R}^{d}\backslash\{0\}}|K^{\varepsilon}(s,q_{s-}^{\varepsilon},p_{s-}^{\varepsilon}+\sigma(s,x_{s-}^{\varepsilon})x)-K^{\varepsilon}(s,q_{s-}^{\varepsilon},p_{s-}^{\varepsilon})|^{\theta}\nu(dx)ds\right]
\displaystyle\leq D(θ)εθ2Tθ2Lθσθ(d\{0}|x|2ν(dx))θ2+εθ2TLθσθd\{0}|x|θν(dx)\displaystyle D(\theta)\varepsilon^{-\frac{\theta}{2}}T^{\frac{\theta}{2}}L^{\theta}||\sigma||_{\infty}^{\theta}\left(\int_{\mathbb{R}^{d}\backslash\{0\}}|x|^{2}\nu(dx)\right)^{\frac{\theta}{2}}+\varepsilon^{-\frac{\theta}{2}}TL^{\theta}||\sigma||_{\infty}^{\theta}\int_{\mathbb{R}^{d}\backslash\{0\}}|x|^{\theta}\nu(dx)
=\displaystyle= O(εθ2).\displaystyle O(\varepsilon^{-\frac{\theta}{2}}).

Next we deal with the second Poisson stochastic integral term

𝔼[supt[0,T]|0tαεeα(ts)/ε0sd\{0}[Kε(r,qrε,prε+σ(r,xrε)x)Kε(r,qrε,prε)]N~(dr,dx)𝑑s|θ]\displaystyle\mathbb{E}\left[\sup_{t\in[0,T]}\left|\int_{0}^{t}\frac{\alpha}{\varepsilon}e^{-\alpha(t-s)/\varepsilon}\int_{0}^{s}\int_{\mathbb{R}^{d}\backslash\{0\}}[K^{\varepsilon}(r,q_{r-}^{\varepsilon},p_{r-}^{\varepsilon}+\sigma(r,x_{r-}^{\varepsilon})x)-K^{\varepsilon}(r,q_{r-}^{\varepsilon},p_{r-}^{\varepsilon})]\widetilde{N}(dr,dx)ds\right|^{\theta}\right] (3.14)
\displaystyle\leq 𝔼[supt[0,T]|0tαεeα(ts)/εsups[0,t]|0sd\{0}[Kε(r,qrε,prε+σ(r,xrε)x)Kε(r,qrε,prε)]N~(dr,dx)|ds|θ]\displaystyle\mathbb{E}\left[\sup_{t\in[0,T]}\left|\int_{0}^{t}\frac{\alpha}{\varepsilon}e^{-\alpha(t-s)/\varepsilon}\sup_{s\in[0,t]}\left|\int_{0}^{s}\int_{\mathbb{R}^{d}\backslash\{0\}}[K^{\varepsilon}(r,q_{r-}^{\varepsilon},p_{r-}^{\varepsilon}+\sigma(r,x_{r-}^{\varepsilon})x)-K^{\varepsilon}(r,q_{r-}^{\varepsilon},p_{r-}^{\varepsilon})]\widetilde{N}(dr,dx)\right|ds\right|^{\theta}\right]
\displaystyle\leq 𝔼[supt[0,T]|0td\{0}Kε(s,qsε,psε+σ(s,xsε)x)Kε(s,qsε,psε)N~(ds,dx)|θ]\displaystyle\mathbb{E}\left[\sup_{t\in[0,T]}\left|\int_{0}^{t}\int_{\mathbb{R}^{d}\backslash\{0\}}K^{\varepsilon}(s,q_{s-}^{\varepsilon},p_{s-}^{\varepsilon}+\sigma(s,x_{s-}^{\varepsilon})x)-K^{\varepsilon}(s,q_{s-}^{\varepsilon},p_{s-}^{\varepsilon})\widetilde{N}(ds,dx)\right|^{\theta}\right]
=\displaystyle= O(εθ2),\displaystyle O(\varepsilon^{-\frac{\theta}{2}}),

where the last equality is obtained by utilizing (3.13). Therefore, equality (3.9) holds for θ2\theta\geq 2 by (3.12), (3.13)and (3.14). It follows for all θ>0\theta>0 by Hölder’s inequality.

We make an additional assumption for kinetic energy KK as follows.
Assumption 4 For every T>0T>0, there exist c>0,η>0c>0,\eta>0 such that

K(ε,t,q,z)czη.K(\varepsilon,t,q,z)\geq c||z||^{\eta}.

Now we can deduce an useful proposition under this assumption. Proposition 3.1 is a direct deduction from Lemma 3.2, Lemma 3.3 and Assumption 4.

Proposition 3.1.

Under Assumption 1-4, for every T>0T>0 we have

supt[0,T]𝔼[||ptε||θ]={O(εθ2),ifθ2η,O(εθ2+1θ2η),ifθ>2η,asε0,\sup_{t\in[0,T]}\mathbb{E}\left[||p_{t}^{\varepsilon}||^{\theta}\right]=\left\{\begin{aligned} &O(\varepsilon^{\frac{\theta}{2}}),\qquad\text{if}\ \theta\leq 2\eta,\\ &O(\varepsilon^{\frac{\theta}{2}+1-\frac{\theta}{2\eta}}),\qquad\text{if}\ \theta>2\eta,\end{aligned}\right.\ \text{as}\ \varepsilon\to 0, (3.15)

and

𝔼[supt[0,T]ptεθ]=O(εθ2θ2η),asε0.\mathbb{E}\left[\sup_{t\in[0,T]}||p_{t}^{\varepsilon}||^{\theta}\right]=O(\varepsilon^{\frac{\theta}{2}-\frac{\theta}{2\eta}}),\ \text{as}\ \varepsilon\to 0. (3.16)
Proof.

From Assumption 4, we have

supt[0,T]𝔼[ptεθ]εθ2supt[0,T]𝔼[Kε(t,xtε)θη].\sup_{t\in[0,T]}\mathbb{E}\left[||p_{t}^{\varepsilon}||^{\theta}\right]\leq\varepsilon^{\frac{\theta}{2}}\sup_{t\in[0,T]}\mathbb{E}\left[K^{\varepsilon}(t,x_{t}^{\varepsilon})^{\frac{\theta}{\eta}}\right].

Note that Lemma 3.2 implies supt[0,T]𝔼[Kε(t,xtε)a]=O(1)\sup_{t\in[0,T]}\mathbb{E}\left[K^{\varepsilon}(t,x_{t}^{\varepsilon})^{a}\right]=O(1) for a2a\leq 2 and supt[0,T]𝔼[Kε(t,xtε)a]=O(ε1a2)\sup_{t\in[0,T]}\mathbb{E}\left[K^{\varepsilon}(t,x_{t}^{\varepsilon})^{a}\right]=O(\varepsilon^{1-\frac{a}{2}}) for a>2a>2. Hence we get (3.15). Equation (3.16) follows similar arguments and Lemma 3.3. ∎

Remark 3.2.

If the parameter η\eta in Assumption 4 was given, then proposition 1 told us the order of momentum ptεp_{t}^{\varepsilon} convergence to zero. For example, assume that η\eta in Assumption 4 equals to 2, we have supt[0,T]𝔼[ptεθ]=O(εθ2)\sup_{t\in[0,T]}\mathbb{E}\left[||p_{t}^{\varepsilon}||^{\theta}\right]=O(\varepsilon^{\frac{\theta}{2}}) when θ4\theta\leq 4 and supt[0,T]𝔼[ptεθ]=O(ε1+θ4)\sup_{t\in[0,T]}\mathbb{E}\left[||p_{t}^{\varepsilon}||^{\theta}\right]=O(\varepsilon^{1+\frac{\theta}{4}}) when θ>4\theta>4. Moreover, 𝔼[supt[0,T]ptεθ]=O(εθ4)\mathbb{E}\left[\sup_{t\in[0,T]}||p_{t}^{\varepsilon}||^{\theta}\right]=O(\varepsilon^{\frac{\theta}{4}}).

3.2 Derivation of the limit equation

In this subsection, we derive the limit equation of the system (2.3) as ε0\varepsilon\to 0. To this end we make an additional assumption on γ\gamma.
Assumption 5 Every element γij\gamma_{i}^{j} in matrix function γ\gamma is C1C^{1} and independent of pp.

Note that stochastic Hamiltonian equation (2.3) can be simplified to

d(qtε)\displaystyle d(q_{t}^{\varepsilon}) =pHε(t,xtε)dt\displaystyle=\nabla_{p}H^{\varepsilon}(t,x_{t}^{\varepsilon})dt (3.17)
=γ1(t,xtε)(qHε(t,xtε)F(t,xtε))dt+γ1(t,xtε)σ(t,xtε)dLtγ1(t,xtε)d(ptε).\displaystyle=\gamma^{-1}(t,x_{t}^{\varepsilon})(\nabla_{q}H^{\varepsilon}(t,x_{t}^{\varepsilon})-F(t,x_{t}^{\varepsilon}))dt+\gamma^{-1}(t,x_{t}^{\varepsilon})\sigma(t,x_{t-}^{\varepsilon})dL_{t}-\gamma^{-1}(t,x_{t}^{\varepsilon})d(p_{t}^{\varepsilon}).

Since matrix function γ\gamma has bounded eigenvalues, γ\gamma is invertible. Taking stochastic integration by parts formula for the last term γ1(t,xtε)d(ptε)\gamma^{-1}(t,x_{t}^{\varepsilon})d(p_{t}^{\varepsilon}) on the right hand side of (3.17), we have

(γ1)ij(t,qtε)d(ptε)j=\displaystyle(\gamma^{-1})_{i}^{j}(t,q_{t}^{\varepsilon})d(p_{t}^{\varepsilon})_{j}= d((γ1)ij(t,qtε)(ptε)j)+(ptε)jt(γ1)ij(t,qtε)dt\displaystyle-d((\gamma^{-1})_{i}^{j}(t,q_{t}^{\varepsilon})(p_{t}^{\varepsilon})_{j})+(p_{t-}^{\varepsilon})_{j}\partial_{t}(\gamma^{-1})_{i}^{j}(t,q_{t}^{\varepsilon})dt
+(ptε)jql(γ1)ij(t,qtε)plHε(t,xtε)dt,\displaystyle+(p_{t-}^{\varepsilon})_{j}\partial_{q^{l}}(\gamma^{-1})_{i}^{j}(t,q_{t}^{\varepsilon})\partial_{p_{l}}H^{\varepsilon}(t,x_{t}^{\varepsilon})dt,

where ql(γ1)ij\partial_{q^{l}}(\gamma^{-1})_{i}^{j} means the ll-th component of q(γ1)ij\nabla_{q}(\gamma^{-1})_{i}^{j}, and plH\partial_{p_{l}}H means the ll-th component of qH\nabla_{q}H. Here we used Einstein summation notation. Therefore,

d(qtε)i=\displaystyle d(q_{t}^{\varepsilon})_{i}= (γ1)ij(t,qtε)(qjHε(t,xtε)Fj(t,xtε))dt+(γ1)ij(t,qtε)σjρ(t,xtε)d(Lt)ρ\displaystyle(\gamma^{-1})_{i}^{j}(t,q_{t}^{\varepsilon})(\partial_{q_{j}}H^{\varepsilon}(t,x_{t}^{\varepsilon})-F_{j}(t,x_{t}^{\varepsilon}))dt+(\gamma^{-1})_{i}^{j}(t,q_{t}^{\varepsilon})\sigma_{j}^{\rho}(t,x_{t-}^{\varepsilon})d(L_{t})_{\rho} (3.18)
d((γ1)ij(t,qtε)(ptε)j)+(ptε)jt(γ1)ij(t,qtε)dt+(ptε)jql(γ1)ij(t,qtε)plHε(t,xtε)dt.\displaystyle-d((\gamma^{-1})_{i}^{j}(t,q_{t}^{\varepsilon})(p_{t}^{\varepsilon})_{j})+(p_{t-}^{\varepsilon})_{j}\partial_{t}(\gamma^{-1})_{i}^{j}(t,q_{t}^{\varepsilon})dt+(p_{t-}^{\varepsilon})_{j}\partial_{q^{l}}(\gamma^{-1})_{i}^{j}(t,q_{t}^{\varepsilon})\partial_{p_{l}}H^{\varepsilon}(t,x_{t}^{\varepsilon})dt.

To simplify the last term (ptε)jplHε(t,xtε)dt(p_{t}^{\varepsilon})_{j}\partial_{p_{l}}H^{\varepsilon}(t,x_{t}^{\varepsilon})dt, we compute

d((ptε)i(ptε)j)=(ptε)id(ptε)j+(ptε)jd(ptε)i+d[piε,pjε]t\displaystyle d((p_{t}^{\varepsilon})_{i}(p_{t}^{\varepsilon})_{j})=(p_{t-}^{\varepsilon})_{i}d(p_{t}^{\varepsilon})_{j}+(p_{t-}^{\varepsilon})_{j}d(p_{t}^{\varepsilon})_{i}+d[p_{i}^{\varepsilon},p_{j}^{\varepsilon}]_{t} (3.19)
=\displaystyle= (ptε)i[(γjk(t,ptε)pkHε(t,xtε)qjHε(t,xtε)+Fj(t,xtε))dt+σjρ(t,xtε)d(Lt)ρ]\displaystyle(p_{t-}^{\varepsilon})_{i}\left[(-\gamma_{j}^{k}(t,p_{t}^{\varepsilon})\partial_{p_{k}}H^{\varepsilon}(t,x_{t}^{\varepsilon})-\partial_{q_{j}}H^{\varepsilon}(t,x_{t}^{\varepsilon})+F_{j}(t,x_{t}^{\varepsilon}))dt+\sigma_{j}^{\rho}(t,x_{t-}^{\varepsilon})d(L_{t})_{\rho}\right]
+\displaystyle+ (ptε)j[(γik(t,ptε)pkHε(t,xtε)qiHε(t,xtε)+Fi(t,xtε))dt+σiρ(t,xtε)d(Lt)ρ]\displaystyle(p_{t-}^{\varepsilon})_{j}\left[(-\gamma_{i}^{k}(t,p_{t}^{\varepsilon})\partial_{p_{k}}H^{\varepsilon}(t,x_{t}^{\varepsilon})-\partial_{q_{i}}H^{\varepsilon}(t,x_{t}^{\varepsilon})+F_{i}(t,x_{t}^{\varepsilon}))dt+\sigma_{i}^{\rho}(t,x_{t-}^{\varepsilon})d(L_{t})_{\rho}\right]
+\displaystyle+ d\{0}σik(t,xtε)σjl(t,xtε)xkxlN(dt,dx).\displaystyle\int_{\mathbb{R}^{d}\backslash\{0\}}\sigma_{i}^{k}(t,x_{t-}^{\varepsilon})\sigma_{j}^{l}(t,x_{t-}^{\varepsilon})x_{k}x_{l}N(dt,dx).

Rewrite this equation in the form of the following Lyapunov equation [27]

γjk(Vt)ki+γik(Vt)kj=(Ct)ij,\gamma_{j}^{k}(V_{t})_{ki}+\gamma_{i}^{k}(V_{t})_{kj}=(C_{t})_{ij}, (3.20)

where (Vt)ij=piHε(t,xtε)(ptε)jdt(V_{t})_{ij}=\partial_{p_{i}}H^{\varepsilon}(t,x_{t}^{\varepsilon})(p_{t-}^{\varepsilon})_{j}dt, and

(Ct)ij=\displaystyle(C_{t})_{ij}= d((ptε)i(ptε)j)+(ptε)i[qjHε(t,xtε)+Fj(t,xtε)]dt+(ptε)j[qiHε(t,xtε)+Fi(t,xtε)]dt\displaystyle-d((p_{t}^{\varepsilon})_{i}(p_{t}^{\varepsilon})_{j})+(p_{t-}^{\varepsilon})_{i}\left[-\partial_{q_{j}}H^{\varepsilon}(t,x_{t}^{\varepsilon})+F_{j}(t,x_{t}^{\varepsilon})\right]dt+(p_{t-}^{\varepsilon})_{j}\left[-\partial_{q_{i}}H^{\varepsilon}(t,x_{t}^{\varepsilon})+F_{i}(t,x_{t}^{\varepsilon})\right]dt
+\displaystyle+ (ptε)iσjρ(t,xtε)d(Lt)ρ+(ptε)jσiρ(t,xtε)d(Lt)ρ+d\{0}σik(t,xtε)σjl(t,xtε)xkxlN(dt,dx).\displaystyle(p_{t-}^{\varepsilon})_{i}\sigma_{j}^{\rho}(t,x_{t-}^{\varepsilon})d(L_{t})_{\rho}+(p_{t-}^{\varepsilon})_{j}\sigma_{i}^{\rho}(t,x_{t-}^{\varepsilon})d(L_{t})_{\rho}+\int_{\mathbb{R}^{d}\backslash\{0\}}\sigma_{i}^{k}(t,x_{t-}^{\varepsilon})\sigma_{j}^{l}(t,x_{t-}^{\varepsilon})x_{k}x_{l}N(dt,dx).

By solving Lyapunov equation (3.20), we have

(Vt)ij=0eyγik(Ct)kleyγjl𝑑y.(V_{t})_{ij}=\int_{0}^{\infty}e^{-y\gamma_{i}^{k}}(C_{t})_{kl}e^{-y\gamma_{j}^{l}}dy.

Hence, we have

(ptε)jplHε(t,xtε)dt=Gjlab(t,qtε)(Ct)ab\displaystyle(p_{t-}^{\varepsilon})_{j}\partial_{p_{l}}H^{\varepsilon}(t,x_{t}^{\varepsilon})dt=G_{jl}^{ab}(t,q_{t}^{\varepsilon})(C_{t})_{ab} (3.21)
=Gjlab(t,qtε)[d((ptε)a(ptε)b)+(ptε)a(pbHε(t,xtε)+Fb(t,xtε))dt\displaystyle=G_{jl}^{ab}(t,q_{t}^{\varepsilon})\left[-d((p_{t}^{\varepsilon})_{a}(p_{t}^{\varepsilon})_{b})+(p_{t-}^{\varepsilon})_{a}(-\partial_{p_{b}}H^{\varepsilon}(t,x_{t}^{\varepsilon})+F_{b}(t,x_{t}^{\varepsilon}))dt\right.
+(ptε)b(paHε(t,xtε)+Fa(t,xtε))dt+(ptε)aσbρ(t,xtε)d(Lt)ρ+(ptε)bσaρ(t,xtε)d(Lt)ρ\displaystyle\left.+(p_{t-}^{\varepsilon})_{b}(-\partial_{p_{a}}H^{\varepsilon}(t,x_{t}^{\varepsilon})+F_{a}(t,x_{t}^{\varepsilon}))dt+(p_{t-}^{\varepsilon})_{a}\sigma_{b}^{\rho}(t,x_{t-}^{\varepsilon})d(L_{t})_{\rho}+(p_{t-}^{\varepsilon})_{b}\sigma_{a}^{\rho}(t,x_{t-}^{\varepsilon})d(L_{t})_{\rho}\right.
+d\{0}σak(t,xtε)σbl(t,xtε)xkxlN(dt,dx)],\displaystyle+\int_{\mathbb{R}^{d}\backslash\{0\}}\sigma_{a}^{k}(t,x_{t-}^{\varepsilon})\sigma_{b}^{l}(t,x_{t-}^{\varepsilon})x_{k}x_{l}N(dt,dx)],

where Gjlab(t,qtε)=0eyγja(t,qtε)eyγlb(t,qtε)𝑑yG_{jl}^{ab}(t,q_{t}^{\varepsilon})=\int_{0}^{\infty}e^{-y\gamma_{j}^{a}(t,q_{t}^{\varepsilon})}e^{-y\gamma_{l}^{b}(t,q_{t}^{\varepsilon})}dy.

Combining Eq.(3.18) and Eq.(3.21) together, we see that qtεq_{t}^{\varepsilon} satisfies the equation

d(qtε)i\displaystyle d(q_{t}^{\varepsilon})_{i} =(γ1)ij(t,qtε)(qjV(t,qtε)+Fj(t,xtε))dt+(γ1)ij(t,qtε)σjρ(t,xtε)d(Lt)ρ\displaystyle=(\gamma^{-1})_{i}^{j}(t,q_{t}^{\varepsilon})\left(\partial_{q_{j}}V(t,q_{t}^{\varepsilon})+F_{j}(t,x_{t}^{\varepsilon})\right)dt+(\gamma^{-1})_{i}^{j}(t,q_{t}^{\varepsilon})\sigma_{j}^{\rho}(t,x_{t-}^{\varepsilon})d(L_{t})_{\rho} (3.22)
+(γ1)ij(t,qtε)qjKε(t,xtε)dtqh(γ1)ij(t,qtε)Gjhab(t,qtε)d\{0}σak(t,xtε)σbl(t,xtε)xkxlN(dt,dx)\displaystyle+(\gamma^{-1})_{i}^{j}(t,q_{t}^{\varepsilon})\partial_{q_{j}}K^{\varepsilon}(t,x_{t}^{\varepsilon})dt-\partial_{q^{h}}(\gamma^{-1})_{i}^{j}(t,q_{t}^{\varepsilon})G_{jh}^{ab}(t,q_{t}^{\varepsilon})\int_{\mathbb{R}^{d}\backslash\{0\}}\sigma_{a}^{k}(t,x_{t-}^{\varepsilon})\sigma_{b}^{l}(t,x_{t-}^{\varepsilon})x_{k}x_{l}N(dt,dx)
+d(Rtε)i,\displaystyle+d(R_{t}^{\varepsilon})_{i},

where

d(Rtε)i\displaystyle d(R_{t}^{\varepsilon})_{i} =d((γ1)ij(t,qtε)(ptε)j)(ptε)jt(γ1)ij(t,qtε)dt\displaystyle=d((\gamma^{-1})_{i}^{j}(t,q_{t}^{\varepsilon})(p_{t}^{\varepsilon})_{j})-(p_{t}^{\varepsilon})_{j}\partial_{t}(\gamma^{-1})_{i}^{j}(t,q_{t}^{\varepsilon})dt (3.23)
qh(γ1)ij(t,qtε)Gjhab(t,qtε)[d((ptε)a(ptε)b)+(ptε)a(pbHε(t,xtε)+Fb(t,xtε))dt\displaystyle-\partial_{q^{h}}(\gamma^{-1})_{i}^{j}(t,q_{t}^{\varepsilon})G_{jh}^{ab}(t,q_{t}^{\varepsilon})\left[-d((p_{t}^{\varepsilon})_{a}(p_{t}^{\varepsilon})_{b})+(p_{t-}^{\varepsilon})_{a}(-\partial_{p_{b}}H^{\varepsilon}(t,x_{t}^{\varepsilon})+F_{b}(t,x_{t}^{\varepsilon}))dt\right.
+(ptε)b(paHε(t,xtε)+Fa(t,xtε))dt+(ptε)aσbρ(t,xtε)d(Lt)ρ+(ptε)bσaρ(t,xtε)d(Lt)ρ].\displaystyle+\left.(p_{t-}^{\varepsilon})_{b}(-\partial_{p_{a}}H^{\varepsilon}(t,x_{t}^{\varepsilon})+F_{a}(t,x_{t}^{\varepsilon}))dt+(p_{t-}^{\varepsilon})_{a}\sigma_{b}^{\rho}(t,x_{t-}^{\varepsilon})d(L_{t})_{\rho}+(p_{t-}^{\varepsilon})_{b}\sigma_{a}^{\rho}(t,x_{t-}^{\varepsilon})d(L_{t})_{\rho}\right].

Note that term (γ1)ij(t,qtε)qjKε(t,xtε)dt(\gamma^{-1})_{i}^{j}(t,q_{t}^{\varepsilon})\partial_{q_{j}}K^{\varepsilon}(t,x_{t}^{\varepsilon})dt in (3.22) will survive in the limiting equation. Here we make another assumption.
Assumption 6 Every element qjK\partial_{q_{j}}K in qK\nabla_{q}K is Lipschitz w.r.t qq.

Remark 3.3.

This assumption seems a little strong. However, it is reasonable since we assume function KK is 𝒞2\mathcal{C}^{2}, hence KK is locally Lipschitz. Indeed we will extend our results to locally Lipshitz KK in Section 3.4. If KK is independent of qq, then this term can be ignored. If KK does not have additional assumption, we refer to [13] for estimations of this term.

The proceeding calculations motivate the proposed lower dimensional limiting equation for the dynamics of position qq:

d(qt)i\displaystyle d(q_{t})_{i} =(γ1)ij(t,qt)(qjV(t,qt)+Fj(t,xt))dt+(γ1)ij(t,qt)σjρ(t,xt)d(Lt)ρ\displaystyle=(\gamma^{-1})_{i}^{j}(t,q_{t})\left(\partial_{q_{j}}V(t,q_{t})+F_{j}(t,x_{t})\right)dt+(\gamma^{-1})_{i}^{j}(t,q_{t})\sigma_{j}^{\rho}(t,x_{t-})d(L_{t})_{\rho} (3.24)
+(γ1)ij(t,qt)qjK(t,xt)dtqh(γ1)ij(t,qt)Gjhab(t,qt)d\{0}σak(t,xt)σbl(t,xt)xkxlN(dt,dx),\displaystyle+(\gamma^{-1})_{i}^{j}(t,q_{t})\partial_{q_{j}}K(t,x_{t})dt-\partial_{q^{h}}(\gamma^{-1})_{i}^{j}(t,q_{t})G_{jh}^{ab}(t,q_{t})\int_{\mathbb{R}^{d}\backslash\{0\}}\sigma_{a}^{k}(t,x_{t-})\sigma_{b}^{l}(t,x_{t-})x_{k}x_{l}N(dt,dx),

where xt=(qt,0)x_{t}=(q_{t},0) since momentum ptεp_{t}^{\varepsilon} converges to 0 from Proposition 3.1. Here we denote

Si(t,x)=0tqh(γ1)ij(t,q)Gjhab(s,q)d\{0}σak(s,xs)σbl(s,xs)zkzlN(ds,dz).S_{i}(t,x)=\int_{0}^{t}\partial_{q^{h}}(\gamma^{-1})_{i}^{j}(t,q)G_{jh}^{ab}(s,q)\int_{\mathbb{R}^{d}\backslash\{0\}}\sigma_{a}^{k}(s,x_{s-})\sigma_{b}^{l}(s,x_{s-})z_{k}z_{l}N(ds,dz). (3.25)

Actually it is the noise-induced drift in limiting equation.

3.3 Proof of convergence to the limiting equation

In this subsection, we show that the stochastic Hamiltonian system (2.3) converge to homogenized equation (3.24) in moment under an additional assumption:
Assumption 7. Assume that function γ\gamma is 𝒞2\mathcal{C}^{2} and tγ\partial_{t}\gamma, qiγ\partial_{q^{i}}\gamma, tqiγ\partial_{t}\partial{q^{i}}\gamma and qiqjγ\partial_{q^{i}}\partial_{q^{j}}\gamma are bounded on [0,T]×n[0,T]\times\mathbb{R}^{n}, for every TT.

Now we demonstrate that the remainder term RtεR_{t}^{\varepsilon} converges to zero. For convenience, we denote C~\tilde{C} a finite positive constant whose value may vary from line to line and the notation C~()\tilde{C}(\cdot) to emphasize the dependence on the quantities appearing in the parentheses.

Lemma 3.4.

Under Assumption 1-7, for every T>0,η>1T>0,\eta>1 and θ<η\theta<\eta, we have

𝔼[supt[0,T]Rtεθ]=O(εβ),asε0,\mathbb{E}\left[\sup_{t\in[0,T]}||R_{t}^{\varepsilon}||^{\theta}\right]=O(\varepsilon^{\beta}),\ as\ \varepsilon\to 0, (3.26)

where RtεR_{t}^{\varepsilon} was defined in Eq. (3.23) and β(θ)\beta(\theta) is a piecewise function

β(θ)={θ2(11η),0<θ2ηη+1,1θη,θ>2ηη+1.\beta(\theta)=\begin{cases}\frac{\theta}{2}\left(1-\frac{1}{\eta}\right),&0<\theta\leq\frac{2\eta}{\eta+1},\\ 1-\frac{\theta}{\eta},&\theta>\frac{2\eta}{\eta+1}.\end{cases}
Proof.

Integrating Eq. (3.23) on [0,T][0,T], then taking expectation and supremum on it, we have

𝔼[supt[0,T]||Rtε||θ]8θ1(𝔼[supt[0,T]||(γ1)ij(t,qtε)(ptε)j||θ]+𝔼[supt[0,T]||(γ1)ij(0,q0ε)(p0ε)j||θ]\displaystyle\mathbb{E}\left[\sup_{t\in[0,T]}||R_{t}^{\varepsilon}||^{\theta}\right]\leq 8^{\theta-1}\left(\mathbb{E}\left[\sup_{t\in[0,T]}||(\gamma^{-1})_{i}^{j}(t,q_{t}^{\varepsilon})(p_{t}^{\varepsilon})_{j}||^{\theta}\right]+\mathbb{E}\left[\sup_{t\in[0,T]}||(\gamma^{-1})_{i}^{j}(0,q_{0}^{\varepsilon})(p_{0}^{\varepsilon})_{j}||^{\theta}\right]\right.
+𝔼[supt[0,T]0t(psε)js(γ1)ij(s,qsε)dsθ]+𝔼[supt[0,T]0tqh(γ1)ij(s,qsε)Gjhab(s,qsε)d((psε)a(psε)b)θ]\displaystyle+\mathbb{E}\left[\sup_{t\in[0,T]}\left|\left|\int_{0}^{t}(p_{s}^{\varepsilon})_{j}\partial_{s}(\gamma^{-1})_{i}^{j}(s,q_{s}^{\varepsilon})ds\right|\right|^{\theta}\right]+\mathbb{E}\left[\sup_{t\in[0,T]}\left|\left|\int_{0}^{t}\partial_{q^{h}}(\gamma^{-1})_{i}^{j}(s,q_{s}^{\varepsilon})G_{jh}^{ab}(s,q_{s}^{\varepsilon})d((p_{s}^{\varepsilon})_{a}(p_{s}^{\varepsilon})_{b})\right|\right|^{\theta}\right]
+𝔼[supt[0,T]0tqh(γ1)ij(s,qsε)Gjhab(s,qsε)(psε)a(qbKε(s,xsε)+qbV(s,qsε)+Fb(s,xsε)ds)θ]\displaystyle+\mathbb{E}\left[\sup_{t\in[0,T]}\left|\left|\int_{0}^{t}\partial_{q^{h}}(\gamma^{-1})_{i}^{j}(s,q_{s}^{\varepsilon})G_{jh}^{ab}(s,q_{s}^{\varepsilon})(p_{s}^{\varepsilon})_{a}\left(\partial_{q_{b}}K^{\varepsilon}(s,x_{s}^{\varepsilon})+\partial_{q_{b}}V(s,q_{s}^{\varepsilon})+F_{b}(s,x_{s}^{\varepsilon})ds\right)\right|\right|^{\theta}\right]
+𝔼[supt[0,T]0tqh(γ1)ij(s,qsε)Gjhab(s,qsε)(psε)b(qaKε(s,xsε)+qaV(s,qsε)+Fa(s,xsε)ds)θ]\displaystyle+\mathbb{E}\left[\sup_{t\in[0,T]}\left|\left|\int_{0}^{t}\partial_{q^{h}}(\gamma^{-1})_{i}^{j}(s,q_{s}^{\varepsilon})G_{jh}^{ab}(s,q_{s}^{\varepsilon})(p_{s}^{\varepsilon})_{b}\left(\partial_{q_{a}}K^{\varepsilon}(s,x_{s}^{\varepsilon})+\partial_{q_{a}}V(s,q_{s}^{\varepsilon})+F_{a}(s,x_{s}^{\varepsilon})ds\right)\right|\right|^{\theta}\right]
+𝔼[supt[0,T]0tqh(γ1)ij(t,qtε)Gjhab(t,qtε)(ptε)aσbρ(t,xtε)d(Lt)ρθ]\displaystyle+\mathbb{E}\left[\sup_{t\in[0,T]}\left|\left|\int_{0}^{t}\partial_{q^{h}}(\gamma^{-1})_{i}^{j}(t,q_{t}^{\varepsilon})G_{jh}^{ab}(t,q_{t}^{\varepsilon})(p_{t-}^{\varepsilon})_{a}\sigma_{b}^{\rho}(t,x_{t}^{\varepsilon})d(L_{t})_{\rho}\right|\right|^{\theta}\right]
+𝔼[supt[0,T]0tqh(γ1)ij(t,qtε)Gjhab(t,qtε)(ptε)bσaρ(t,xtε)d(Lt)ρθ]\displaystyle+\mathbb{E}\left[\sup_{t\in[0,T]}\left|\left|\int_{0}^{t}\partial_{q^{h}}(\gamma^{-1})_{i}^{j}(t,q_{t}^{\varepsilon})G_{jh}^{ab}(t,q_{t}^{\varepsilon})(p_{t-}^{\varepsilon})_{b}\sigma_{a}^{\rho}(t,x_{t}^{\varepsilon})d(L_{t})_{\rho}\right|\right|^{\theta}\right]
:=i=18Ji.\displaystyle:=\sum_{i=1}^{8}J_{i}.

We will now give upper bounds of terms {Ji}i=18\{J_{i}\}_{i=1}^{8} for θ1\theta\geq 1. For the first two terms,

J1+J22γ1θ𝔼[supt[0,T]ptεθ].J_{1}+J_{2}\leq 2||\gamma^{-1}||_{\infty}^{\theta}\mathbb{E}\left[\sup_{t\in[0,T]}||p_{t}^{\varepsilon}||^{\theta}\right].

For the third term, we have

J3Tθ1tγ1θ𝔼[0Tpsεθ𝑑s]Tθtγ1θsupt[0,T]𝔼[ptεθ].J_{3}\leq T^{\theta-1}||\partial_{t}{\gamma^{-1}}||_{\infty}^{\theta}\mathbb{E}\left[\int_{0}^{T}||p_{s}^{\varepsilon}||^{\theta}ds\right]\leq T^{\theta}||\partial_{t}{\gamma^{-1}}||_{\infty}^{\theta}\sup_{t\in[0,T]}\mathbb{E}\left[||p_{t}^{\varepsilon}||^{\theta}\right].

Note by Assumption 7 we can deduce that the function q(γ1)(t,q)G(t,q)\partial_{q}(\gamma^{-1})(t,q)G(t,q) is bounded and 𝒞1\mathcal{C}^{1}. Hence we have the following estimation (see Appendix)

J4C~(θ,T,M1,C,γ)(𝔼[supt[0,T]ptε2θ]+εθ2supt[0,T]𝔼[ptε2θ]+εθ2supt[0,T]𝔼[ptε2θKε(t,xtε)θ]).J_{4}\leq\tilde{C}(\theta,T,M_{1},C,\gamma)\left(\mathbb{E}[\sup_{t\in[0,T]}||p_{t}^{\varepsilon}||^{2\theta}]+\varepsilon^{-\frac{\theta}{2}}\sup_{t\in[0,T]}\mathbb{E}\left[||p_{t}^{\varepsilon}||^{2\theta}\right]+\varepsilon^{-\frac{\theta}{2}}\sup_{t\in[0,T]}\mathbb{E}\left[||p_{t}^{\varepsilon}||^{2\theta}K^{\varepsilon}(t,x_{t}^{\varepsilon})^{\theta}\right]\right). (3.27)

Applying Hölder inequality and Assumption 2-3 we have

J5\displaystyle J_{5} Tθ1𝔼[supt[0,T]0tpsεθ(qKε(s,xsε)θ+qV+Fθ)𝑑s]\displaystyle\leq T^{\theta-1}\mathbb{E}\left[\sup_{t\in[0,T]}\int_{0}^{t}||p_{s}^{\varepsilon}||^{\theta}\left(\left|\left|\nabla_{q}K^{\varepsilon}(s,x_{s}^{\varepsilon})\right|\right|^{\theta}+||\nabla_{q}V+F||_{\infty}^{\theta}\right)ds\right]
Tθ(supt[0,T]𝔼[ptεθKε(t,xtε)θ]+(M1θ+qV+Fθ)supt[0,T]𝔼[ptεθ]).\displaystyle\leq T^{\theta}\left(\sup_{t\in[0,T]}\mathbb{E}\left[||p_{t}^{\varepsilon}||^{\theta}||K^{\varepsilon}(t,x_{t}^{\varepsilon})||^{\theta}\right]+(M_{1}^{\theta}+||\nabla_{q}V+F||_{\infty}^{\theta})\sup_{t\in[0,T]}\mathbb{E}\left[||p_{t}^{\varepsilon}||^{\theta}\right]\right).

The estimation of J6J_{6} is similar to J5J_{5}. For the last two term (see Appendix), we have

J7C~(θ,T,ν)supt[0,T]𝔼[ptεθ].J_{7}\leq\tilde{C}(\theta,T,\nu)\sup_{t\in[0,T]}\mathbb{E}\left[||p_{t}^{\varepsilon}||^{\theta}\right]. (3.28)

The estimation of J8J_{8} is similar to J7J_{7} as well. Substitute all these upper bound together, we obtain

𝔼[supt[0,T]Rtεθ]\displaystyle\mathbb{E}\left[\sup_{t\in[0,T]}||R_{t}^{\varepsilon}||^{\theta}\right] C~(𝔼[supt[0,T]||ptε||θ]+𝔼[supt[0,T]||ptε||2θ]+supt[0,T]𝔼[||ptε||θ]+εθ2supt[0,T]𝔼[||ptε||2θ]\displaystyle\leq\tilde{C}\left(\mathbb{E}\left[\sup_{t\in[0,T]}||p_{t}^{\varepsilon}||^{\theta}\right]+\mathbb{E}\left[\sup_{t\in[0,T]}||p_{t}^{\varepsilon}||^{2\theta}\right]+\sup_{t\in[0,T]}\mathbb{E}\left[||p_{t}^{\varepsilon}||^{\theta}\right]+\varepsilon^{-\frac{\theta}{2}}\sup_{t\in[0,T]}\mathbb{E}\left[||p_{t}^{\varepsilon}||^{2\theta}\right]\right.
+supt[0,T]𝔼[||ptε||θKε(t,xtε)θ]+εθ2supt[0,T]𝔼[||ptε||2θKε(t,xtε)θ])\displaystyle\left.+\sup_{t\in[0,T]}\mathbb{E}\left[||p_{t}^{\varepsilon}||^{\theta}K^{\varepsilon}(t,x_{t}^{\varepsilon})^{\theta}\right]+\varepsilon^{-\frac{\theta}{2}}\sup_{t\in[0,T]}\mathbb{E}\left[||p_{t}^{\varepsilon}||^{2\theta}K^{\varepsilon}(t,x_{t}^{\varepsilon})^{\theta}\right]\right)
C~(𝔼[supt[0,T]ptεθ]+𝔼[supt[0,T]ptε2θ]+supt[0,T]𝔼[ptεθ])\displaystyle\leq\tilde{C}\left(\mathbb{E}\left[\sup_{t\in[0,T]}||p_{t}^{\varepsilon}||^{\theta}\right]+\mathbb{E}\left[\sup_{t\in[0,T]}||p_{t}^{\varepsilon}||^{2\theta}\right]+\sup_{t\in[0,T]}\mathbb{E}\left[||p_{t}^{\varepsilon}||^{\theta}\right]\right)
+C~εθ2(supt[0,T]𝔼[Kε(t,xtε)θ+θη]+supt[0,T]𝔼[Kε(t,xtε)2θη]+supt[0,T]𝔼[Kε(t,xtε)θ+2θη]).\displaystyle+\tilde{C}\varepsilon^{\frac{\theta}{2}}\left(\sup_{t\in[0,T]}\mathbb{E}\left[K^{\varepsilon}(t,x_{t}^{\varepsilon})^{\theta+\frac{\theta}{\eta}}\right]+\sup_{t\in[0,T]}\mathbb{E}\left[K^{\varepsilon}(t,x_{t}^{\varepsilon})^{\frac{2\theta}{\eta}}\right]+\sup_{t\in[0,T]}\mathbb{E}\left[K^{\varepsilon}(t,x_{t}^{\varepsilon})^{\theta+\frac{2\theta}{\eta}}\right]\right).

The last inequality follows from the similar arguments in proposition 3.1. Now we only need to compare order of ε\varepsilon in these terms. By means of Lemma 3.2 and Proposition 3.1, we obtain

𝔼[supt[0,T]Rtεθ]=O(εθ2(11η))+O(ε1θη).\mathbb{E}\left[\sup_{t\in[0,T]}||R_{t}^{\varepsilon}||^{\theta}\right]=O(\varepsilon^{\frac{\theta}{2}\left(1-\frac{1}{\eta}\right)})+O(\varepsilon^{1-\frac{\theta}{\eta}}). (3.29)

Thus if θ>22η+1\theta>2-\frac{2}{\eta+1}, then 𝔼[supt[0,T]Rtεθ]=O(ε1θη)\mathbb{E}\left[\sup_{t\in[0,T]}||R_{t}^{\varepsilon}||^{\theta}\right]=O(\varepsilon^{1-\frac{\theta}{\eta}}). If 1θ22η+11\leq\theta\leq 2-\frac{2}{\eta+1} then 𝔼[supt[0,T]Rtεθ]=O(εθ2(11η))\mathbb{E}\left[\sup_{t\in[0,T]}||R_{t}^{\varepsilon}||^{\theta}\right]=O(\varepsilon^{\frac{\theta}{2}\left(1-\frac{1}{\eta}\right)}). As for the case θ<1\theta<1, Hölder inequality implies that 𝔼[supt[0,T]Rtεθ]=O(εθ2(11η))\mathbb{E}\left[\sup_{t\in[0,T]}||R_{t}^{\varepsilon}||^{\theta}\right]=O(\varepsilon^{\frac{\theta}{2}\left(1-\frac{1}{\eta}\right)}). ∎

Thus we can show that the stochastic Hamiltonian system (2.3) uniformly converges to the homogenized equation (3.24) in moment as follows.

Theorem 3.1.

(Convergence to the limiting equation in moment) Suppose Assumption 1-7 holds. Let xtεx_{t}^{\varepsilon} be the solution of SDE (2.3) with initial condition (p0ε,q0ε)(p_{0}^{\varepsilon},q_{0}^{\varepsilon}) and qtq_{t} be the solution of SDE (3.24)with initial condition q0q_{0}. Also suppose that for every ε>0,η>1\varepsilon>0,\eta>1, the initial condition satisfies integrable conditions 𝔼[q0εθ]<,𝔼[q0θ]<\mathbb{E}[||q_{0}^{\varepsilon}||^{\theta}]<\infty,\mathbb{E}[||q_{0}||^{\theta}]<\infty and 𝔼[q0εq0θ]=O(εβ)\mathbb{E}[||q_{0}^{\varepsilon}-q_{0}||^{\theta}]=O(\varepsilon^{\beta}). Then for every T>0T>0 and θ<η\theta<\eta, we have

𝔼[supt[0,T]qtεqtθ]=O(εβ)asε0.\mathbb{E}\left[\sup_{t\in[0,T]}||q_{t}^{\varepsilon}-q_{t}||^{\theta}\right]=O(\varepsilon^{\beta})\ as\ \varepsilon\to 0. (3.30)
Proof.

First let θ2\theta\geq 2. Define a vector F~(t,x)\widetilde{F}(t,x) and a matrix σ~(t,x)\widetilde{\sigma}(t,x) as follows respectively

F~i(t,x)=(γ1)ij(t,q)(pjK(t,x)+pjV(t,q)+Fj(t,x)),\widetilde{F}_{i}(t,x)=(\gamma^{-1})_{i}^{j}(t,q)(\partial_{p_{j}}K(t,x)+\partial_{p_{j}}V(t,q)+F_{j}(t,x)),
σ~iρ(t,x)=(γ1)ij(t,q)σjρ(t,x).\widetilde{\sigma}_{i}^{\rho}(t,x)=(\gamma^{-1})_{i}^{j}(t,q)\sigma_{j}^{\rho}(t,x).

Hence we can rewrite Eq.(3.22) as

(qtε)i=(q0ε)i+0tF~i(s,xsε)𝑑s+0tσ~iρ(s,xsε)d(Ls)ρ+Si(t,xtε)+(Rtε)i,(q_{t}^{\varepsilon})_{i}=(q_{0}^{\varepsilon})_{i}+\int_{0}^{t}\widetilde{F}_{i}(s,x_{s}^{\varepsilon})ds+\int_{0}^{t}\widetilde{\sigma}_{i}^{\rho}(s,x_{s}^{\varepsilon})d(L_{s})_{\rho}+S_{i}(t,x_{t}^{\varepsilon})+(R_{t}^{\varepsilon})_{i}, (3.31)

and Eq.(3.24) as

(qt)i=(q0)i+0tF~i(s,xs)𝑑s+0tσ~iρ(s,xs)d(Ls)ρ+Si(t,xt).(q_{t})_{i}=(q_{0})_{i}+\int_{0}^{t}\widetilde{F}_{i}(s,x_{s})ds+\int_{0}^{t}\widetilde{\sigma}_{i}^{\rho}(s,x_{s})d(L_{s})_{\rho}+S_{i}(t,x_{t}). (3.32)

Therefore, we obtain the following estimation

𝔼[sups[0,t]qsεqsθ]\displaystyle\mathbb{E}\left[\sup_{s\in[0,t]}||q_{s}^{\varepsilon}-q_{s}||^{\theta}\right] (3.33)
C~𝔼[sups[0,t](||q0εq0||θ+||0sF~i(r,xrε)F~i(r,xr)dr||θ+||0sσ~iρ(r,xrε)σiρ(r,xr)d(Lr)ρ||θ\displaystyle\leq\tilde{C}\mathbb{E}\left[\sup_{s\in[0,t]}\left(||q_{0}^{\varepsilon}-q_{0}||^{\theta}+\left|\left|\int_{0}^{s}\widetilde{F}_{i}(r,x_{r}^{\varepsilon})-\widetilde{F}_{i}(r,x_{r})dr\right|\right|^{\theta}+\left|\left|\int_{0}^{s}\widetilde{\sigma}_{i}^{\rho}(r,x_{r}^{\varepsilon})-\sigma_{i}^{\rho}(r,x_{r})d(L_{r})_{\rho}\right|\right|^{\theta}\right.\right.
+||Si(s,xsε)Si(s,xs)||θ+||Rsε||θ)].\displaystyle+\left.\left.||S_{i}(s,x_{s}^{\varepsilon})-S_{i}(s,x_{s})||^{\theta}+||R_{s}^{\varepsilon}||^{\theta}\right)\right].

By the Lipschitz property of F~\widetilde{F} and σ~\widetilde{\sigma} due to Assumptions, we have

𝔼[sups[0,t]0sF~i(r,xrε)F~i(r,xr)drθ]\displaystyle\mathbb{E}\left[\sup_{s\in[0,t]}\left|\left|\int_{0}^{s}\widetilde{F}_{i}(r,x_{r}^{\varepsilon})-\widetilde{F}_{i}(r,x_{r})dr\right|\right|^{\theta}\right] 𝔼[sups[0,t]sθ10sF~i(r,xsε)F~i(r,xs)θ𝑑s]\displaystyle\leq\mathbb{E}\left[\sup_{s\in[0,t]}s^{\theta-1}\int_{0}^{s}||\widetilde{F}_{i}(r,x_{s}^{\varepsilon})-\widetilde{F}_{i}(r,x_{s})||^{\theta}ds\right] (3.34)
Tθ1𝔼[0tFi(r,xrε)F~i(r,xr)θ𝑑r]\displaystyle\leq T^{\theta-1}\mathbb{E}\left[\int_{0}^{t}\left|\left|F_{i}(r,x_{r}^{\varepsilon})-\widetilde{F}_{i}(r,x_{r})\right|\right|^{\theta}dr\right]
C~(0t𝔼[supr[0,s]qrεqrθ]𝑑s+sups[0,t]𝔼[psεθ]),\displaystyle\leq\tilde{C}\left(\int_{0}^{t}\mathbb{E}[\sup_{r\in[0,s]}||q_{r}^{\varepsilon}-q_{r}||^{\theta}]ds+\sup_{s\in[0,t]}\mathbb{E}[||p_{s}^{\varepsilon}||^{\theta}]\right),

and

𝔼[sups[0,t]0sσ~iρ(r,xrε)σ~iρ(r,xr)d(Lr)ρθ]\displaystyle\mathbb{E}\left[\sup_{s\in[0,t]}\left|\left|\int_{0}^{s}\widetilde{\sigma}_{i}^{\rho}(r,x_{r}^{\varepsilon})-\widetilde{\sigma}_{i}^{\rho}(r,x_{r})d(L_{r})_{\rho}\right|\right|^{\theta}\right] (3.35)
C~𝔼[sups[0,t](0sd\{0}(σ~iρ(r,xrε)σ~iρ(r,xr))xN~(dr,dx)θ+0s|x|>1(σ~iρ(r,xrε)σ~iρ(r,xr))xν(dx)𝑑rθ)]\displaystyle\leq\tilde{C}\mathbb{E}\left[\sup_{s\in[0,t]}\left(\left|\left|\int_{0}^{s}\int_{\mathbb{R}^{d}\backslash\{0\}}(\widetilde{\sigma}_{i}^{\rho}(r,x_{r}^{\varepsilon})-\widetilde{\sigma}_{i}^{\rho}(r,x_{r}))x\widetilde{N}(dr,dx)\right|\right|^{\theta}+\left|\left|\int_{0}^{s}\int_{|x|>1}(\widetilde{\sigma}_{i}^{\rho}(r,x_{r}^{\varepsilon})-\widetilde{\sigma}_{i}^{\rho}(r,x_{r}))x\nu(dx)dr\right|\right|^{\theta}\right)\right]
C~(𝔼[(0td\{0}||σ~iρ(s,xsε)σ~iρ(s,xs)||2|x|2ν(dx)ds)θ2]\displaystyle\leq\tilde{C}\left(\mathbb{E}\left[\left(\int_{0}^{t}\int_{\mathbb{R}^{d}\backslash\{0\}}||\widetilde{\sigma}_{i}^{\rho}(s,x_{s}^{\varepsilon})-\widetilde{\sigma}_{i}^{\rho}(s,x_{s})||^{2}|x|^{2}\nu(dx)ds\right)^{\frac{\theta}{2}}\right]\right.
+𝔼[0td\{0}||σ~iρ(s,xsε)σ~iρ(s,xs)||θ|x|θν(dx)ds]+𝔼[0t|||x|>1xν(dx)(σ~iρ(s,xsε)σ~iρ(s,xs))||θds])\displaystyle+\left.\mathbb{E}\left[\int_{0}^{t}\int_{\mathbb{R}^{d}\backslash\{0\}}||\widetilde{\sigma}_{i}^{\rho}(s,x_{s}^{\varepsilon})-\widetilde{\sigma}_{i}^{\rho}(s,x_{s})||^{\theta}|x|^{\theta}\nu(dx)ds\right]+\mathbb{E}\left[\int_{0}^{t}\left|\left|\int_{|x|>1}x\nu(dx)(\widetilde{\sigma}_{i}^{\rho}(s,x_{s}^{\varepsilon})-\widetilde{\sigma}_{i}^{\rho}(s,x_{s}))\right|\right|^{\theta}ds\right]\right)
C~𝔼(0tσ~iρ(s,xsε)σ~iρ(s,xs)θ𝑑s)\displaystyle\leq\tilde{C}\mathbb{E}\left(\int_{0}^{t}||\widetilde{\sigma}_{i}^{\rho}(s,x_{s}^{\varepsilon})-\widetilde{\sigma}_{i}^{\rho}(s,x_{s})||^{\theta}ds\right)
C~(0t𝔼[supr[0,s]qrεqrθ]𝑑r+sups[0,t]E[psεθ]).\displaystyle\leq\tilde{C}\left(\int_{0}^{t}\mathbb{E}[\sup_{r\in[0,s]}||q_{r}^{\varepsilon}-q_{r}||^{\theta}]dr+\sup_{s\in[0,t]}E[||p_{s}^{\varepsilon}||^{\theta}]\right).

We can also get a similar bound for the noise-induced term

𝔼[sups[0,t]Si(s,xsε)Si(s,xs)θ]C~(0t𝔼[supr[0,s]qrεqrθ]𝑑r+sups[0,t]𝔼[psεθ]).\mathbb{E}\left[\sup_{s\in[0,t]}||S_{i}(s,x_{s}^{\varepsilon})-S_{i}(s,x_{s})||^{\theta}\right]\leq\tilde{C}\left(\int_{0}^{t}\mathbb{E}[\sup_{r\in[0,s]}||q_{r}^{\varepsilon}-q_{r}||^{\theta}]dr+\sup_{s\in[0,t]}\mathbb{E}[||p_{s}^{\varepsilon}||^{\theta}]\right)\\ . (3.36)

Consequently, estimations (3.34)-(3.36) together with Proposition 3.1 and Lemma 3.4 yield that

𝔼[sups[0,t]qsεqsθ]C~0t𝔼[supr[0,s]qrεqrθ]𝑑s+O(εβ),\displaystyle\mathbb{E}\left[\sup_{s\in[0,t]}||q_{s}^{\varepsilon}-q_{s}||^{\theta}\right]\leq\tilde{C}\int_{0}^{t}\mathbb{E}\left[\sup_{r\in[0,s]}||q_{r}^{\varepsilon}-q_{r}||^{\theta}\right]ds+O(\varepsilon^{\beta}), (3.37)

for all t[0,T]t\in[0,T]. If 𝔼[sups[0,t]qsεqsθ]L1[0,T]\mathbb{E}\left[\sup_{s\in[0,t]}||q_{s}^{\varepsilon}-q_{s}||^{\theta}\right]\in L^{1}[0,T]. Then Gronwall’s inequality implies

𝔼[sups[0,t]qsεqsθ]O(εβ)eC~t,\mathbb{E}\left[\sup_{s\in[0,t]}||q_{s}^{\varepsilon}-q_{s}||^{\theta}\right]\leq O(\varepsilon^{\beta})e^{\tilde{C}t}, (3.38)

which is precisely the result we want to prove. Indeed,

𝔼[supt[0,T]qtεθ]\displaystyle\mathbb{E}\left[\sup_{t\in[0,T]}||q_{t}^{\varepsilon}||^{\theta}\right] C(𝔼[supt[0,T]||q0ε||θ]+𝔼[supt[0,T]||0tF~(s,xsε)ds||θ]\displaystyle\leq C\left(\mathbb{E}\left[\sup_{t\in[0,T]}||q_{0}^{\varepsilon}||^{\theta}\right]+\mathbb{E}\left[\sup_{t\in[0,T]}\left|\left|\int_{0}^{t}\widetilde{F}(s,x_{s}^{\varepsilon})ds\right|\right|^{\theta}\right]\right.
+𝔼[supt[0,T]||0tσ~ρ(s,xsε)d(Ls)ρ||θ]+𝔼[supt[0,T]||S(t,xtε)||θ]+𝔼[supt[0,T]||(Rtε)||θ])\displaystyle\left.+\mathbb{E}\left[\sup_{t\in[0,T]}\left|\left|\int_{0}^{t}\widetilde{\sigma}^{\rho}(s,x_{s}^{\varepsilon})d(L_{s})_{\rho}\right|\right|^{\theta}\right]+\mathbb{E}\left[\sup_{t\in[0,T]}||S(t,x_{t}^{\varepsilon})||^{\theta}\right]+\mathbb{E}\left[\sup_{t\in[0,T]}||(R_{t}^{\varepsilon})||^{\theta}\right]\right)
<,\displaystyle<\infty,

and similarly we can get 𝔼[supt[0,T]qtθ]<\mathbb{E}\left[\sup_{t\in[0,T]}||q_{t}||^{\theta}\right]<\infty.

3.4 Extension

In this section, we relax some assumptions that we make before. Actually we can extend all Lipschitz conditions to locally Lipschitz condition and remove all boundedness conditions. Organize and summarize the assumptions in the previous article, now we give a complete theorem.

Theorem 3.2.

(Convergence to the limit equation in probability) Suppose the family of Hamiltonians have the form

Hε(t,q,p)=Kε(t,q,p)+V(t,q)=K(ε,t,q,p/ε)+V(t,q),H^{\varepsilon}(t,q,p)=K^{\varepsilon}(t,q,p)+V(t,q)=K(\varepsilon,t,q,p/\sqrt{\varepsilon})+V(t,q),

and the following conditions hold:
1. The function Kε(t,q,p)K^{\varepsilon}(t,q,p) is non-negative and 𝒞2\mathcal{C}^{2}.
2. There exist constant C>0,M1>0C>0,M_{1}>0 such that

max{|tK(ε,t,q,z)|,qK(ε,t,q,z),zK(ε,t,q,z)}M1+CK(ε,t,q,z).\max{\{|\partial_{t}K(\varepsilon,t,q,z)|,||\nabla_{q}K(\varepsilon,t,q,z)||,||\nabla_{z}K(\varepsilon,t,q,z)||\}}\leq M_{1}+CK(\varepsilon,t,q,z).

3. There exist constant c>0,M20c>0,M_{2}\geq 0 such that

zK(ε,t,q,z)2+M2cK(ε,t,q,z).||\nabla_{z}K(\varepsilon,t,q,z)||^{2}+M_{2}\geq cK(\varepsilon,t,q,z).

4. For every T>0T>0, there exist constant c>0,η>1c>0,\eta>1 such that

K(ε,t,q,z)czη.K(\varepsilon,t,q,z)\geq c||z||^{\eta}.

5. The potential energy function V(t,q)V(t,q) is 𝒞1\mathcal{C}^{1}.
6. The dissipative coefficient γ\gamma is 𝒞2\mathcal{C}^{2}, independent of pp and symmetric with eigenvalues bounded below by a constant λ>0\lambda>0.
7. The external force FF and noise intensity coefficient σ\sigma are continuous and locally Lipschitz.
Let xtεx_{t}^{\varepsilon} be the solution of SDE (2.3) with initial condition (p0ε,q0ε)(p_{0}^{\varepsilon},q_{0}^{\varepsilon}) and qtq_{t} be the solution of SDE (3.24)with initial condition q0q_{0}. Also suppose that for every ε>0\varepsilon>0 and θ(0,η)\theta\in(0,\eta), the initial condition satisfies integrable conditions 𝔼[q0εθ]<,𝔼[q0θ]<\mathbb{E}[||q_{0}^{\varepsilon}||^{\theta}]<\infty,\mathbb{E}[||q_{0}||^{\theta}]<\infty and 𝔼[q0εq0θ]=O(εβ)\mathbb{E}[||q_{0}^{\varepsilon}-q_{0}||^{\theta}]=O(\varepsilon^{\beta}). Then for every T>0,δ>0T>0,\delta>0 we have

limε0(supt[0,T]qtεqt>δ)=0.\lim_{\varepsilon\to 0}\mathbb{P}\left(\sup_{t\in[0,T]}||q_{t}^{\varepsilon}-q_{t}||>\delta\right)=0. (3.39)
Proof.

Let χ:n[0,1]\chi:\mathbb{R}^{n}\to[0,1] be a CC^{\infty} function. Define

Vr(t,q)=χr(q)V(t,q),Fr(t,x)=χr(q)χr(p)F(t,x),σr(t,x)=χr(q)χr(p)σ(t,x),\displaystyle V_{r}(t,q)=\chi_{r}(q)V(t,q),F_{r}(t,x)=\chi_{r}(q)\chi_{r}(p)F(t,x),\sigma_{r}(t,x)=\chi_{r}(q)\chi_{r}(p)\sigma(t,x),
K(ε,t,q,z)=χr(z)K(ε,t,q,z),γr(t,q)=χr(q)γ(t,q)+(1χr(q))λI\displaystyle K(\varepsilon,t,q,z)=\chi_{r}(z)K(\varepsilon,t,q,z),\gamma_{r}(t,q)=\chi_{r}(q)\gamma(t,q)+(1-\chi_{r}(q))\lambda I

Replacing the function V,F,K,γ,σV,F,K,\gamma,\sigma in (2.3) by Vr,Fr,Kr,γr,σrV_{r},F_{r},K_{r},\gamma_{r},\sigma_{r}, we arrive at an SDE satisfying the condition in Theorem 3.1. Let xtr,εx_{t}^{r,\varepsilon} be solution to the corresponding SDE. Similarly, let qtrq_{t}^{r} be the solution to the corresponding limiting SDE (3.24). Proposition 3.1 and Theorem 3.1 imply that, for every T>0,η>1T>0,\ \eta>1 and θ(0,η)\theta\in(0,\eta)

𝔼[supt[0,T]ptr,εθ]=O(εθ2θ2η)asε0,\mathbb{E}\left[\sup_{t\in[0,T]}||p_{t}^{r,\varepsilon}||^{\theta}\right]=O(\varepsilon^{\frac{\theta}{2}-\frac{\theta}{2\eta}})\ \text{as}\ \varepsilon\to 0, (3.40)

and

𝔼[supt[0,T]qtr,εqtrθ]=O(εβ)asε0.\mathbb{E}\left[\sup_{t\in[0,T]}||q_{t}^{r,\varepsilon}-q_{t}^{r}||^{\theta}\right]=O(\varepsilon^{\beta})\ \text{as}\ \varepsilon\to 0. (3.41)

We will use this result to prove that qtεq_{t}^{\varepsilon} converges to qtq_{t} in probability.

Denfine stopping times τrε=inf{t:qtεr}\tau_{r}^{\varepsilon}=\inf\{t:||q_{t}^{\varepsilon}||\geq r\}, ηrε=inf{t:ptεεr}\eta_{r}^{\varepsilon}=\inf\{t:||p_{t}^{\varepsilon}||\geq\varepsilon r\} and τr=inf{t:qtr}\tau_{r}=\inf\{t:||q_{t}||\geq r\}. The drifts and diffusions of the modified and unmodified SDEs agree on the ball {q<r,p<εr}\{||q||<r,||p||<\varepsilon r\}. Hence

qτrεηrεtε=qτrεηrεtr,ε,qτrt=qτrtrfor allt0a.s.q_{\tau_{r}^{\varepsilon}\land\eta_{r}^{\varepsilon}\land t}^{\varepsilon}=q_{\tau_{r}^{\varepsilon}\land\eta_{r}^{\varepsilon}\land t}^{r,\varepsilon},\ q_{\tau_{r}\land t}=q_{\tau_{r}\land t}^{r}\ \text{for all}\ t\geq 0\ \text{a.s.}

For every T>0,δ>0T>0,\delta>0, we deduce that

(supt[0,T]qtεqt>δ)\displaystyle\mathbb{P}\left(\sup_{t\in[0,T]}||q_{t}^{\varepsilon}-q_{t}||>\delta\right) (3.42)
=\displaystyle= (τrτrεηrε>T,supt[0,T]qτrεηrεtεqτrt>δ)+(τrτrεηrεT,supt[0,T]qtεqt>δ)\displaystyle\mathbb{P}\left(\tau_{r}\land\tau_{r}^{\varepsilon}\land\eta_{r}^{\varepsilon}>T,\sup_{t\in[0,T]}||q^{\varepsilon}_{\tau_{r}^{\varepsilon}\land\eta_{r}^{\varepsilon}\land t}-q_{\tau_{r}\land t}||>\delta\right)+\mathbb{P}\left(\tau_{r}\land\tau_{r}^{\varepsilon}\land\eta_{r}^{\varepsilon}\leq T,\sup_{t\in[0,T]}||q_{t}^{\varepsilon}-q_{t}||>\delta\right)
=\displaystyle= (τrτrεηrε>T,supt[0,T]qtr,εqtr>δ)+(τrτrεηrεT,supt[0,T]qtεqt>δ)\displaystyle\mathbb{P}\left(\tau_{r}\land\tau_{r}^{\varepsilon}\land\eta_{r}^{\varepsilon}>T,\sup_{t\in[0,T]}||q^{r,\varepsilon}_{t}-q_{t}^{r}||>\delta\right)+\mathbb{P}\left(\tau_{r}\land\tau_{r}^{\varepsilon}\land\eta_{r}^{\varepsilon}\leq T,\sup_{t\in[0,T]}||q_{t}^{\varepsilon}-q_{t}||>\delta\right)
\displaystyle\leq (supt[0,T]qtr,εqtr>δ)+(τrτrεηrεT),\displaystyle\mathbb{P}\left(\sup_{t\in[0,T]}||q^{r,\varepsilon}_{t}-q_{t}^{r}||>\delta\right)+\mathbb{P}\left(\tau_{r}\land\tau_{r}^{\varepsilon}\land\eta_{r}^{\varepsilon}\leq T\right),

where the first term on the right hand side converges to 0 as ε0\varepsilon\to 0 by (3.41). Then we focus on the second term,

(τrτrεηrεT)\displaystyle\mathbb{P}\left(\tau_{r}\land\tau_{r}^{\varepsilon}\land\eta_{r}^{\varepsilon}\leq T\right) (3.43)
=\displaystyle= (τrT)+(τr>T,τrεηrεT)\displaystyle\mathbb{P}(\tau_{r}\leq T)+\mathbb{P}\left(\tau_{r}>T,\tau_{r}^{\varepsilon}\land\eta_{r}^{\varepsilon}\leq T\right)
\displaystyle\leq (τrT)+(supt[0,T]qtr,εqtr>1)+(τr>T,τrεηrεT,supt[0,T]qtr,εqtr1)\displaystyle\mathbb{P}(\tau_{r}\leq T)+\mathbb{P}\left(\sup_{t\in[0,T]}||q_{t}^{r,\varepsilon}-q_{t}^{r}||>1\right)+\mathbb{P}\left(\tau_{r}>T,\tau_{r}^{\varepsilon}\land\eta_{r}^{\varepsilon}\leq T,\sup_{t\in[0,T]}||q_{t}^{r,\varepsilon}-q_{t}^{r}||\leq 1\right)
\displaystyle\leq (supt[0,T]qtr>r)+(supt[0,T]qtr,εqtr>1)+(τrεηrεT,qτrεηrεTr,εqτrεηrεTr1)\displaystyle\mathbb{P}\left(\sup_{t\in[0,T]}||q_{t}^{r}||>r\right)+\mathbb{P}\left(\sup_{t\in[0,T]}||q_{t}^{r,\varepsilon}-q_{t}^{r}||>1\right)+\mathbb{P}\left(\tau_{r}^{\varepsilon}\land\eta_{r}^{\varepsilon}\leq T,||q_{\tau_{r}^{\varepsilon}\land\eta_{r}^{\varepsilon}\land T}^{r,\varepsilon}-q^{r}_{\tau_{r}^{\varepsilon}\land\eta_{r}^{\varepsilon}\land T}||\leq 1\right)
\displaystyle\leq (supt[0,T]qtr>r)+(supt[0,T]qtr,εqtr>1)+(ηrε>T,τrεT,qτrεTr,εqτrεTr1)\displaystyle\mathbb{P}\left(\sup_{t\in[0,T]}||q_{t}^{r}||>r\right)+\mathbb{P}\left(\sup_{t\in[0,T]}||q_{t}^{r,\varepsilon}-q_{t}^{r}||>1\right)+\mathbb{P}\left(\eta_{r}^{\varepsilon}>T,\tau_{r}^{\varepsilon}\leq T,||q_{\tau_{r}^{\varepsilon}\land T}^{r,\varepsilon}-q^{r}_{\tau_{r}^{\varepsilon}\land T}||\leq 1\right)
+(ηrεT,qτrεηrεTr,εqτrεηrεT1).\displaystyle+\mathbb{P}\left(\eta_{r}^{\varepsilon}\leq T,||q_{\tau_{r}^{\varepsilon}\land\eta_{r}^{\varepsilon}\land T}^{r,\varepsilon}-q_{\tau_{r}^{\varepsilon}\land\eta_{r}^{\varepsilon}\land T}||\leq 1\right).

Note that when τrεT\tau_{r}^{\varepsilon}\leq T, we have qτrεTr||q_{\tau_{r}^{\varepsilon}\land T}||\geq r. Hence by qτrεTr,εqτrεTr1||q_{\tau_{r}^{\varepsilon}\land T}^{r,\varepsilon}-q^{r}_{\tau_{r}^{\varepsilon}\land T}||\leq 1, we can deduce

qτrεTrqτrεTr,εqτrεTr,εqτrεTr>r1.||q^{r}_{\tau_{r}^{\varepsilon}\land T}||\geq||q_{\tau_{r}^{\varepsilon}\land T}^{r,\varepsilon}||-||q_{\tau_{r}^{\varepsilon}\land T}^{r,\varepsilon}-q^{r}_{\tau_{r}^{\varepsilon}\land T}||>r-1.

This implies that

(τrεT,qτrεTr,εqτrεTr1)(qτrεTr>r1)(supt[0,T]qtr>r1).\mathbb{P}\left(\tau_{r}^{\varepsilon}\leq T,||q_{\tau_{r}^{\varepsilon}\land T}^{r,\varepsilon}-q^{r}_{\tau_{r}^{\varepsilon}\land T}||\leq 1\right)\leq\mathbb{P}\left(||q^{r}_{\tau_{r}^{\varepsilon}\land T}||>r-1\right)\leq\mathbb{P}\left(\sup_{t\in[0,T]}||q^{r}_{t}||>r-1\right). (3.44)

Combining (3.42),(3.43) and (3.44) together, we have

(supt[0,T]qtεqt>δ)\displaystyle\mathbb{P}\left(\sup_{t\in[0,T]}||q_{t}^{\varepsilon}-q_{t}||>\delta\right) (3.45)
(supt[0,T]qtr,εqtr>δ)+(supt[0,T]qtr>r)+(supt[0,T]qtr,εqtr>1)\displaystyle\leq\mathbb{P}\left(\sup_{t\in[0,T]}||q^{r,\varepsilon}_{t}-q_{t}^{r}||>\delta\right)+\mathbb{P}\left(\sup_{t\in[0,T]}||q_{t}^{r}||>r\right)+\mathbb{P}\left(\sup_{t\in[0,T]}||q_{t}^{r,\varepsilon}-q_{t}^{r}||>1\right)
+(supt[0,T]qtr>r1)+(ηrεT).\displaystyle+\mathbb{P}\left(\sup_{t\in[0,T]}||q^{r}_{t}||>r-1\right)+\mathbb{P}\left(\eta_{r}^{\varepsilon}\leq T\right).

On the other hand, by Chebyshev inequality and (3.40), we have

(ηrεT)(supt[0,T]ptr,ε>εr)(εr)2𝔼[supt[0,T]ptr,ε2]=O(ε11η)r2.\mathbb{P}\left(\eta_{r}^{\varepsilon}\leq T\right)\leq\mathbb{P}\left(\sup_{t\in[0,T]}||p_{t}^{r,\varepsilon}||>\varepsilon r\right)\leq(\varepsilon r)^{-2}\mathbb{E}\left[\sup_{t\in[0,T]}||p_{t}^{r,\varepsilon}||^{2}\right]=O(\varepsilon^{-1-\frac{1}{\eta}})r^{-2}. (3.46)

Then if we let r1=o(ε12(1+1η))r^{-1}=o(\varepsilon^{\frac{1}{2}\left(1+\frac{1}{\eta}\right)}), i.e., the speed of rr goes to infinity faster than ε12(1+1η)\varepsilon^{-\frac{1}{2}\left(1+\frac{1}{\eta}\right)}. We have

(supt[0,T]qtεqt>δ)0asr,ε0\mathbb{P}\left(\sup_{t\in[0,T]}||q_{t}^{\varepsilon}-q_{t}||>\delta\right)\to 0\ \text{as}\ r\to\infty,\ \varepsilon\to 0 (3.47)

by the non-explosion property of qtrq_{t}^{r}. ∎

4 An Example

In this section, we present a prototypical example with Hamiltonian H(m,t,q,p)=p22m+V(t,q)H(m,t,q,p)=\frac{p^{2}}{2m}+V(t,q), where mm is the mass of a particle. In this case, the small mass limit is also called Smoluchowski-Kramers limit. We consider the stochastic Hamiltonian system with external force F(t,x)F(t,x) and Lévy noise LtL_{t}

dqtm=1mptmdt,\displaystyle dq_{t}^{m}=\frac{1}{m}p_{t}^{m}dt, (4.1)
dptm=(1mγ(t,qtm)ptmqV(t,qtm)+F(t,xtm))dt+σ(t,xtm)dLt.\displaystyle dp_{t}^{m}=\left(\frac{1}{m}\gamma(t,q_{t}^{m})p_{t}^{m}-\nabla_{q}V(t,q_{t}^{m})+F(t,x_{t}^{m})\right)dt+\sigma(t,x_{t}^{m})dL_{t}.

By Proposition 3.1, ptmp_{t}^{m} converges to zero. Then the homogenized equation in the small mass limit is

dqt=γ1(t,qt)(qV(t,qt)+F(t,qt,0))dt+γ1(t,qt)σ(t,qt,0)dLt+S(t,qt),dq_{t}=\gamma^{-1}(t,q_{t})(\nabla_{q}V(t,q_{t})+F(t,q_{t},0))dt+\gamma^{-1}(t,q_{t})\sigma(t,q_{t},0)dL_{t}+S(t,q_{t}), (4.2)

where the noise induced drift is

Si(t,qt)=0td\{0}qh(γ1)ij(t,qt)0(eyγ(s,qs))ja(eyγ(s,qs))lb𝑑yσak(s,qt,0)σbl(s,qt,0)zkzlN(ds,dz).S_{i}(t,q_{t})=\int_{0}^{t}\int_{\mathbb{R}^{d}\backslash\{0\}}\partial_{q^{h}}(\gamma^{-1})_{i}^{j}(t,q_{t})\int_{0}^{\infty}\left(e^{-y\gamma(s,q_{s})}\right)_{j}^{a}\left(e^{-y\gamma(s,q_{s})}\right)_{l}^{b}dy\sigma_{a}^{k}(s,q_{t},0)\sigma_{b}^{l}(s,q_{t},0)z_{k}z_{l}N(ds,dz). (4.3)

Moreover, when dissipative coefficient γ\gamma is independent of qq, the noise-induced drift (4.3) vanish, and the homogenized equation becomes

dqt=γ1(t)(qV(t,qt)+F(t,qt,0))dt+γ1(t)σ(t,qt,0)dLt.dq_{t}=\gamma^{-1}(t)(\nabla_{q}V(t,q_{t})+F(t,q_{t},0))dt+\gamma^{-1}(t)\sigma(t,q_{t},0)dL_{t}. (4.4)

This result coincide with that in [23].

5 Conclusion and Discussion

In this paper, we derive the small mass limiting equation for a class of Hamiltonian systems with multiplicative Lévy noise. Some interesting results appear. If the Hamiltonian function H(ε,q,p)H(\varepsilon,q,p) possesses appropriate properties, then momentum pp will always converge to zero in finite time under uniform norm. The noise-induced drift term induced by pure jump Lévy noise is a Poisson process, which is rather different from that induced by Gaussian noise [12]. Our results could be applied to a class of stochastic Hamiltonian systems, such as a small mass particle in force field with state-dependent friction and a particle on a Riemannian manifold.

However, we have to mention that the pure jump Lévy noises in this paper have finite moment. In other words, it has bounded jumps. Large jumps could lead to some unpredictable dynamics although interlacing techniques allow us to deal with it. Hence an interesting problem is that how to accurately deal with Lévy noise without finite moments such as α\alpha-stable Lévy noise, which will be studied in the future.

Acknowledgments

The authors would like to thank Lingyu Feng, Jianyu Hu, Pingyuan Wei, Shenglan Yuan and Yanjie Zhang for helpful discussions. This work was partly supported by NSFC grants 11771449 and 11531006.

Appendix

Appendix A Non-explosion of solution

In Appendix, we will prove that the solution of SDE (2.3) and limit equation are existence and unique under Assumption 1-4.

Lemma A.1.

Under Assumption 1-4, there exists a unique non-explosive solution to (2.3) in finite time interval [0,T][0,T].

Proof.

First, we can verify that SDE with Assumption 1-3 satisfies Lipschitz condition and one side growth condition (refer to [16]) in every bounded cylinder I×U(R)I\times U(R), where U(R)U(R) is a ball with radius RR. Then, we will prove that there is no explosion. Let τn\tau_{n} be the first exit time of xtεx_{t}^{\varepsilon} from the ball B(0,n)B(0,n). From the right-continuity of the process xtεx^{\varepsilon}_{t} we infer that

|xτnε|n.|x^{\varepsilon}_{\tau_{n}}|\geq n. (A.1)

Define a function Uε(t,xtε)=qtε2η+Kε(t,xtε)U^{\varepsilon}(t,x_{t}^{\varepsilon})=||q_{t}^{\varepsilon}||^{2\eta}+K^{\varepsilon}(t,x_{t}^{\varepsilon}). By Assumption 4, we obtain that

Uε(τn,xτnε)\displaystyle U^{\varepsilon}(\tau_{n},x^{\varepsilon}_{\tau_{n}}) =qτnε2η+Kε(τn,xτnε)\displaystyle=||q_{\tau_{n}}^{\varepsilon}||^{2\eta}+K^{\varepsilon}(\tau_{n},x^{\varepsilon}_{\tau_{n}}) (A.2)
qτnε2η+cεηpτnε2η\displaystyle\geq||q_{\tau_{n}}^{\varepsilon}||^{2\eta}+c\varepsilon^{-\eta}||p_{\tau_{n}}^{\varepsilon}||^{2\eta}
min{1,cεη}xτnε2η\displaystyle\geq\min\{1,c\varepsilon^{-\eta}\}||x_{\tau_{n}}^{\varepsilon}||^{2\eta}
c|n|2η.\displaystyle\geq c|n|^{2\eta}.

On the other hand, we have

𝔼[Uε(tτnT,xtτnTε)]\displaystyle\mathbb{E}\left[U^{\varepsilon}(t\land\tau_{n}\land T,x^{\varepsilon}_{t\land\tau_{n}\land T})\right] (A.3)
=𝔼[Uε(tτnT,xtτnTε)1{τnTt}]+𝔼[Uε(tτnT,xtτnTε)1{τnT<t}]\displaystyle=\mathbb{E}\left[U^{\varepsilon}(t\land\tau_{n}\land T,x^{\varepsilon}_{t\land\tau_{n}\land T})1_{\{\tau_{n}\land T\geq t\}}\right]+\mathbb{E}\left[U^{\varepsilon}(t\land\tau_{n}\land T,x^{\varepsilon}_{t\land\tau_{n}\land T})1_{\{\tau_{n}\land T<t\}}\right]
=𝔼[Uε(t,xtε)1{τnTt}]+𝔼[Uε(τnT,xτnTε)1{τnT<t}]\displaystyle=\mathbb{E}\left[U^{\varepsilon}(t,x^{\varepsilon}_{t})1_{\{\tau_{n}\land T\geq t\}}\right]+\mathbb{E}\left[U^{\varepsilon}(\tau_{n}\land T,x^{\varepsilon}_{\tau_{n}\land T})1_{\{\tau_{n}\land T<t\}}\right]
=𝔼[Uε(t,xtε)1{τnTt}]+𝔼[Uε(τn,xτnε)1{τn<T}1{τn<t}]+𝔼[Uε(T,xTε)1{τnT}1{T<t}]\displaystyle=\mathbb{E}\left[U^{\varepsilon}(t,x^{\varepsilon}_{t})1_{\{\tau_{n}\land T\geq t\}}\right]+\mathbb{E}\left[U^{\varepsilon}(\tau_{n},x^{\varepsilon}_{\tau_{n}})1_{\{\tau_{n}<T\}}1_{\{\tau_{n}<t\}}\right]+\mathbb{E}\left[U^{\varepsilon}(T,x^{\varepsilon}_{T})1_{\{\tau_{n}\geq T\}}1_{\{T<t\}}\right]
𝔼[Uε(τn,xτnε)1{τn<t}].\displaystyle\geq\mathbb{E}\left[U^{\varepsilon}(\tau_{n},x^{\varepsilon}_{\tau_{n}})1_{\{\tau_{n}<t\}}\right].

Therefore, for all nn\in\mathbb{N}

(τn<t)c1n2η𝔼[Uε(tτnT,xtτnTε)].\mathbb{P}(\tau_{n}<t)\leq c^{-1}n^{-2\eta}\mathbb{E}\left[U^{\varepsilon}(t\land\tau_{n}\land T,x^{\varepsilon}_{t\land\tau_{n}\land T})\right]. (A.4)

Notice that by Theorem 3.3 we have

𝔼[Uε(tτnT,xtτnTε)]𝔼[supt[0,T]qtε2η]+𝔼[supt[0,T]Kε(t,xtε)]=O(1).\mathbb{E}\left[U^{\varepsilon}(t\land\tau_{n}\land T,x^{\varepsilon}_{t\land\tau_{n}\land T})\right]\leq\mathbb{E}\left[\sup_{t\in[0,T]}||q_{t}^{\varepsilon}||^{2\eta}\right]+\mathbb{E}\left[\sup_{t\in[0,T]}K^{\varepsilon}(t,x_{t}^{\varepsilon})\right]=O(1). (A.5)

Hence,

limn(τn<t)=0for allt.\lim_{n\to\infty}\mathbb{P}(\tau_{n}<t)=0\ \text{for all}\ t. (A.6)

That is the desired assertion, as required. ∎

Appendix B Proofs of (3.27) and (3.28)

We give calculations for estimations of (3.27) and (3.28) in remainder term.
Proof of (3.27). By Assumption 7 we can deduce that the function q(γ1)(t,q)G(t,q)\partial_{q}(\gamma^{-1})(t,q)G(t,q) is bounded and 𝒞1\mathcal{C}^{1}. Let f(t,q)=q(γ1)(t,q)G(t,q)f(t,q)=\partial_{q}(\gamma^{-1})(t,q)G(t,q). We have

J4\displaystyle J_{4} =𝔼[supt[0,T]0tqh(γ1)ij(s,qsε)Gjhab(s,qsε)d((psε)a(psε)b)θ]\displaystyle=\mathbb{E}\left[\sup_{t\in[0,T]}\left|\left|\int_{0}^{t}\partial_{q^{h}}(\gamma^{-1})_{i}^{j}(s,q_{s}^{\varepsilon})G_{jh}^{ab}(s,q_{s}^{\varepsilon})d((p_{s}^{\varepsilon})_{a}(p_{s}^{\varepsilon})_{b})\right|\right|^{\theta}\right] (B.1)
𝔼[supt[0,T]|0tf(s,qsε)d((psε)i(psε)j)|θ].\displaystyle\leq\mathbb{E}\left[\sup_{t\in[0,T]}\left|\int_{0}^{t}f(s,q_{s}^{\varepsilon})d((p_{s}^{\varepsilon})_{i}(p_{s}^{\varepsilon})_{j})\right|^{\theta}\right].

Since f(s,qsε)f(s,q_{s}^{\varepsilon}) is a C1C^{1}-semimartingale, using integration by parts formula we obtain

0tf(s,qsε)d((psε)i(psε)j)\displaystyle\int_{0}^{t}f(s,q_{s}^{\varepsilon})d((p_{s}^{\varepsilon})_{i}(p_{s}^{\varepsilon})_{j}) =f(t,qtε)(ptε)i(ptε)jf(0,q0ε)(p0ε)i(p0ε)j\displaystyle=f(t,q_{t}^{\varepsilon})(p_{t}^{\varepsilon})_{i}(p_{t}^{\varepsilon})_{j}-f(0,q_{0}^{\varepsilon})(p_{0}^{\varepsilon})_{i}(p_{0}^{\varepsilon})_{j} (B.2)
0t(psε)i(psε)j(sf(s,qsε)+qf(s,qsε)pHε(s,xsε))𝑑s.\displaystyle-\int_{0}^{t}(p_{s}^{\varepsilon})_{i}(p_{s}^{\varepsilon})_{j}\left(\partial_{s}f(s,q_{s}^{\varepsilon})+\nabla_{q}f(s,q_{s}^{\varepsilon})\nabla_{p}H^{\varepsilon}(s,x_{s}^{\varepsilon})\right)ds.

Hence, for θ1\theta\geq 1, we have

J4\displaystyle J_{4} 3θ1(2fθ𝔼[supt[0,T]ptε2θ]+𝔼[supt[0,T]|0tpsε2(sf+qf|pKε(s,xsε)|)𝑑s|θ])\displaystyle\leq 3^{\theta-1}\left(2||f||_{\infty}^{\theta}\mathbb{E}[\sup_{t\in[0,T]}||p_{t}^{\varepsilon}||^{2\theta}]+\mathbb{E}\left[\sup_{t\in[0,T]}\left|\int_{0}^{t}||p_{s}^{\varepsilon}||^{2}\left(||\partial_{s}f||_{\infty}+||\nabla_{q}f||_{\infty}|\nabla_{p}K^{\varepsilon}(s,x_{s}^{\varepsilon})|\right)ds\right|^{\theta}\right]\right) (B.3)
3θ1(2fθ𝔼[supt[0,T]ptε2θ]+𝔼[supt[0,T]|0tpsε2(sf+qf1ε(M1+CKε(s,xsε)))𝑑s|θ])\displaystyle\leq 3^{\theta-1}\left(2||f||_{\infty}^{\theta}\mathbb{E}[\sup_{t\in[0,T]}||p_{t}^{\varepsilon}||^{2\theta}]+\mathbb{E}\left[\sup_{t\in[0,T]}\left|\int_{0}^{t}||p_{s}^{\varepsilon}||^{2}\left(||\partial_{s}f||_{\infty}+||\nabla_{q}f||_{\infty}\frac{1}{\sqrt{\varepsilon}}(M_{1}+CK^{\varepsilon}(s,x_{s}^{\varepsilon}))\right)ds\right|^{\theta}\right]\right)
3θ12fθ𝔼[supt[0,T]ptε2θ]+6θ1Tθ1𝔼[0Tpsε2θ(sfθ+M1θqfθεθ2+CθKε(s,xsε)θεθ2)𝑑s].\displaystyle\leq 3^{\theta-1}2||f||_{\infty}^{\theta}\mathbb{E}[\sup_{t\in[0,T]}||p_{t}^{\varepsilon}||^{2\theta}]+6^{\theta-1}T^{\theta-1}\mathbb{E}\left[\int_{0}^{T}||p_{s}^{\varepsilon}||^{2\theta}\left(||\partial_{s}f||_{\infty}^{\theta}+M_{1}^{\theta}||\nabla_{q}f||_{\infty}^{\theta}\varepsilon^{-\frac{\theta}{2}}+C^{\theta}K^{\varepsilon}(s,x_{s}^{\varepsilon})^{\theta}\varepsilon^{-\frac{\theta}{2}}\right)ds\right].

Proof of (3.28). Applying Kunita’s first inequality [16] on J7J_{7}, we have

J7\displaystyle J_{7} =2θ1𝔼[supt[0,T]||0td\{0}qh(γ1)ij(s,qsε)Gjhab(s,qsε)(psε)aσbρ(s,xsε)xN~(ds,dx)||θ\displaystyle=2^{\theta-1}\mathbb{E}\left[\sup_{t\in[0,T]}\left|\left|\int_{0}^{t}\int_{\mathbb{R}^{d}\backslash\{0\}}\partial_{q^{h}}(\gamma^{-1})_{i}^{j}(s,q_{s}^{\varepsilon})G_{jh}^{ab}(s,q_{s}^{\varepsilon})(p_{s-}^{\varepsilon})_{a}\sigma_{b}^{\rho}(s,x_{s}^{\varepsilon})x\widetilde{N}(ds,dx)\right|\right|^{\theta}\right. (B.4)
+supt[0,T]||0t|x|>1qh(γ1)ij(s,qsε)Gjhab(s,qsε)(psε)aσbρ(s,xsε)xν(dx)ds||θ]\displaystyle+\left.\sup_{t\in[0,T]}\left|\left|\int_{0}^{t}\int_{|x|>1}\partial_{q^{h}}(\gamma^{-1})_{i}^{j}(s,q_{s}^{\varepsilon})G_{jh}^{ab}(s,q_{s}^{\varepsilon})(p_{s-}^{\varepsilon})_{a}\sigma_{b}^{\rho}(s,x_{s}^{\varepsilon})x\nu(dx)ds\right|\right|^{\theta}\right]
2θ1D(θ)𝔼[(0Td\{0}qh(γ1)ij(s,qsε)Gjhab(s,qsε)(psε)aσbρ(s,xsε)x2ν(dx)𝑑s)θ2]\displaystyle\leq 2^{\theta-1}D(\theta)\mathbb{E}\left[\left(\int_{0}^{T}\int_{\mathbb{R}^{d}\backslash\{0\}}\left|\left|\partial_{q^{h}}(\gamma^{-1})_{i}^{j}(s,q_{s}^{\varepsilon})G_{jh}^{ab}(s,q_{s}^{\varepsilon})(p_{s-}^{\varepsilon})_{a}\sigma_{b}^{\rho}(s,x_{s}^{\varepsilon})x\right|\right|^{2}\nu(dx)ds\right)^{\frac{\theta}{2}}\right]
+2θ1𝔼[0Td\{0}qh(γ1)ij(s,qsε)Gjhab(s,qsε)(psε)aσbρ(s,xsε)xθν(dx)𝑑s]\displaystyle+2^{\theta-1}\mathbb{E}\left[\int_{0}^{T}\int_{\mathbb{R}^{d}\backslash\{0\}}\left|\left|\partial_{q^{h}}(\gamma^{-1})_{i}^{j}(s,q_{s}^{\varepsilon})G_{jh}^{ab}(s,q_{s}^{\varepsilon})(p_{s-}^{\varepsilon})_{a}\sigma_{b}^{\rho}(s,x_{s}^{\varepsilon})x\right|\right|^{\theta}\nu(dx)ds\right]
+2θ1TθC(|x|>1|x|ν(dx))θ𝔼[supt[0,T]ptεθ]\displaystyle+2^{\theta-1}T^{\theta}C\left(\int_{|x|>1}|x|\nu(dx)\right)^{\theta}\mathbb{E}\left[\sup_{t\in[0,T]}||p_{t}^{\varepsilon}||^{\theta}\right]
2θ1(D(θ)Tθ2C\{0}|x|2ν(dx)θ2+TC\{0}|x|θν(dx)+TθC(|x|>1|x|ν(dx))θ)supt[0,T]𝔼[ptεθ].\displaystyle\leq 2^{\theta-1}\left(D(\theta)T^{\frac{\theta}{2}}C\int_{\mathbb{R}\backslash\{0\}}|x|^{2}\nu(dx)^{\frac{\theta}{2}}+TC\int_{\mathbb{R}\backslash\{0\}}|x|^{\theta}\nu(dx)+T^{\theta}C\left(\int_{|x|>1}|x|\nu(dx)\right)^{\theta}\right)\sup_{t\in[0,T]}\mathbb{E}\left[||p_{t}^{\varepsilon}||^{\theta}\right].

We have to mention that Kunita’s first inequality holds for θ2\theta\geq 2. Actually J7C~supt[0,T]𝔼[ptεθ]J_{7}\leq\tilde{C}\sup_{t\in[0,T]}\mathbb{E}\left[||p_{t}^{\varepsilon}||^{\theta}\right] still holds for θ[1,2)\theta\in[1,2) since supt[0,T]𝔼[ptεθ]=O(εθ2)\sup_{t\in[0,T]}\mathbb{E}\left[||p_{t}^{\varepsilon}||^{\theta}\right]=O(\varepsilon^{\frac{\theta}{2}}) for θ(0,2η)\theta\in(0,2\eta). ∎

References

References

  • [1] M. Smoluchowski, Drei vortrage uber diffusion, brownsche bewegung und koagulation von kolloidteilchen, Zeitschrift fur Physik 17 (1916) 557–585.
  • [2] H. A. Kramers, Brownian motion in a field of force and the diffusion model of chemical reactions, Physica 7 (4) (1940) 284–304.
  • [3] E. Nelson, Dynamical Theories of Brownian Motion, Vol. 106, Princeton university press, 2020.
  • [4] C. Doering, Modeling Complex Systems: Stochastic Processes, Stochastic Differential Equations, and Fokker-Planck Equations, in: 1990 Lectures In Complex Systems, Addison-Wesley, 1990, pp. 3–51.
  • [5] M. Freidlin, Some remarks on the Smoluchowski–Kramers approximation, Journal of Statistical Physics 117 (3) (2004) 617–634.
  • [6] S. Cerrai, M. Freidlin, On the Smoluchowski-Kramers approximation for a system with an infinite number of degrees of freedom, Probability theory and related fields 135 (3) (2006) 363–394.
  • [7] G. Pavliotis, A. Stuart, Multiscale Methods: Averaging and Homogenization, Springer Science & Business Media, 2008.
  • [8] P. Hanggi, Nonlinear fluctuations: the problem of deterministic limit and reconstruction of stochastic dynamics, Physical Review A 25 (2) (1982) 1130.
  • [9] G. Volpe, L. Helden, T. Brettschneider, J. Wehr, C. Bechinger, Influence of noise on force measurements, Physical Review Letters 104 (17) (2010) 170602.
  • [10] S. Hottovy, A. McDaniel, G. Volpe, J. Wehr, The Smoluchowski-Kramers limit of stochastic differential equations with arbitrary state-dependent friction, Communications in Mathematical Physics 336 (3) (2015) 1259–1283.
  • [11] J. Birrell, S. Hottovy, G. Volpe, J. Wehr, Small mass limit of a langevin equation on a manifold, in: Annales Henri Poincaré, Vol. 18, Springer, 2017, pp. 707–755.
  • [12] J. Birrell, J. Wehr, Homogenization of dissipative, noisy, Hamiltonian dynamics, Stochastic Processes and their Applications 128 (7) (2018) 2367–2403.
  • [13] J. Birrell, J. Wehr, A homogenization theorem for langevin systems with an application to hamiltonian dynamics, in: Sojourns in Probability Theory and Statistical Physics-I, Springer, 2019, pp. 89–122.
  • [14] S. H. Lim, J. Wehr, M. Lewenstein, Homogenization for generalized langevin equations with applications to anomalous diffusion, in: Annales Henri Poincaré, Springer, 2020, pp. 1–59.
  • [15] J. Duan, An Introduction to Stochastic Dynamics, Vol. 51, Cambridge University Press, 2015.
  • [16] D. Applebaum, Lévy Processes and Stochastic Calculus, Cambridge university press, 2009.
  • [17] R. Sánchez, D. E. Newman, J.-N. Leboeuf, V. Decyk, B. A. Carreras, Nature of transport across sheared zonal flows in electrostatic ion-temperature-gradient gyrokinetic plasma turbulence, Physical Review Letters 101 (20) (2008) 205002.
  • [18] B. Dybiec, A. Kleczkowski, C. A. Gilligan, Modelling control of epidemics spreading by long-range interactions, Journal of the Royal Society Interface 6 (39) (2009) 941–950.
  • [19] Y. Xu, Y. Li, H. Zhang, X. Li, J. Kurths, The switch in a genetic toggle system with Lévy noise, Scientific reports 6 (1) (2016) 1–11.
  • [20] B. Dybiec, J. M. Parrondo, E. Gudowska-Nowak, Fluctuation-dissipation relations under Lévy noises, EPL (Europhysics Letters) 98 (5) (2012) 50006.
  • [21] Q. Zhang, J. Duan, Linear response theory for nonlinear stochastic differential equations with α\alpha-stable Lévy noises, Journal of Statistical Physics 182 (2) (2021) 1–28.
  • [22] H. Al-Talibi, A. Hilbert, V. Kolokoltsov, Nelson-type limit for a particular class of Lévy processes, in: AIP Conference Proceedings, Vol. 1232, American Institute of Physics, 2010, pp. 189–193.
  • [23] S. Zhang, Smoluchowski-Kramers approximation for stochastic equations with Lévy-noise, Ph.D. thesis, Purdue University (2008).
  • [24] V. I. Arnol’d, Mathematical Methods of Classical Mechanics, Vol. 60, Springer Science & Business Media, 2013.
  • [25] P. Wei, Y. Chao, J. Duan, Hamiltonian systems with Lévy noise: Symplecticity, Hamilton’s principle and averaging principle, Physica D: Nonlinear Phenomena 398 (2019) 69–83.
  • [26] L. Wu, Large and moderate deviations and exponential convergence for stochastic damping Hamiltonian systems, Stochastic processes and their applications 91 (2) (2001) 205–238.
  • [27] J. M. Ortega, Matrix Theory: A Second Course, Springer Science & Business Media, 2013.