This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

∎∎

11institutetext: Department of Mathematical Sciences
University of Southampton, Highfield Campus
SO17 1BJ, United Kingdom
11email: S.Rea@soton.ac.uk

Homotopy types of gauge groups of PU(p)\mathrm{PU}(p)-bundles over spheres

Simon Rea
(Received: date / Accepted: date)
Abstract

We examine the relation between the gauge groups of SU(n)\mathrm{SU}(n)- and PU(n)\mathrm{PU}(n)-bundles over S2iS^{2i}, with 2in2\leq i\leq n, particularly when nn is a prime. As special cases, for PU(5)\mathrm{PU}(5)-bundles over S4S^{4}, we show that there is a rational or pp-local equivalence 𝒢2,k(p)𝒢2,l\mathcal{G}_{2,k}\simeq_{(p)}\mathcal{G}_{2,l} for any prime pp if, and only if, (120,k)=(120,l)(120,k)=(120,l), while for PU(3)\mathrm{PU}(3)-bundles over S6S^{6} there is an integral equivalence 𝒢3,k𝒢3,l\mathcal{G}_{3,k}\simeq\mathcal{G}_{3,l} if, and only if, (120,k)=(120,l)(120,k)=(120,l).

Keywords:
Gauge groups Homotopy types Samelson products
MSC:
55P15 55Q05

1 Introduction

Let GG be a topological group and XX a space. The gauge group 𝒢(P)\mathcal{G}(P) of a principal GG-bundle PP over XX is defined as the group of GG-equivariant bundle automorphisms of PP which cover the identity on XX. A detailed introduction to gauge groups can be found in husemoller ; piccinini1998conjugacy .

The following problem is of interest: having fixed a topological group GG and a space XX, classify the possible homotopy types of the gauge groups 𝒢(P)\mathcal{G}(P) of principal GG-bundles PP over XX.

Crabb and Sutherland showed (crabb-sutherland, , Theorem 1.1) that if GG is a compact, connected, Lie group and XX is a connected, finite CW-complex, then the number of distinct homotopy types of 𝒢(P)\mathcal{G}(P), as PP ranges over all principal GG-bundles over XX, is finite. This is often in contrast with the fact that the number of isomorphisms classes of principal GG-bundles over XX may be infinite. However, their methods did not lead to an enumeration of the classes of gauge groups. Classification results require a different kind of analysis.

The first classification result was obtained by Kono kono91 in 1991. Using the fact that principal SU(2)\mathrm{SU}(2)-bundles over S4S^{4} are classified by kπ3(SU(2))k\in\mathbb{Z}\cong\pi_{3}(\mathrm{SU}(2)) and denoting by 𝒢k\mathcal{G}_{k} the gauge group of the principal SU(2)\mathrm{SU}(2)-bundle PkS4P_{k}\to S^{4} corresponding to the integer kk, Kono showed that there is a homotopy equivalence 𝒢k𝒢l\mathcal{G}_{k}\simeq\mathcal{G}_{l} if, and only if, (12,k)=(12,l)(12,k)=(12,l), where (m,n)(m,n) denotes the greatest common divisor of mm and nn. It thus follows that there are precisely six homotopy types of SU(2)\mathrm{SU}(2)-gauge groups over S4S^{4}.

In this paper, we examine how the close relationship between the groups SU(n)\mathrm{SU}(n) and PU(n)\mathrm{PU}(n) is reflected in the homotopy properties of the gauge groups of the corresponding bundles, particularly when nn is a prime. We do this by generalising certain results relating the classification of PU(n)\mathrm{PU}(n)-gauge groups to that of SU(n)\mathrm{SU}(n)-gauge groups from the paper so3 for the case n=2n=2 (observe that PU(2)SO(3)\mathrm{PU}(2)\cong\operatorname{SO}(3)), and from hasui16 for the case n=3n=3.

Our first main result compares certain Samelson products on SU(p)\mathrm{SU}(p) and PU(p)\mathrm{PU}(p), with p3p\geq 3 a prime. As will be illustrated in Section 2, the finiteness of the orders of Samelson products (in the appropriate groups of homotopy classes of maps) plays a crucial role in the homotopy classification of gauge groups. In Section 3, we will show the following.

Theorem 1.1

Let pp be an odd prime and let 2ip2\leq i\leq p. Let ϵi\epsilon_{i} and δi\delta_{i} denote generators of π2i1(PU(p))\pi_{2i-1}(\mathrm{PU}(p)) and π2i1(PU(p))\pi_{2i-1}(\mathrm{PU}(p)), respectively. The orders of the Samelson products ϵi,1:S2i1PU(p)PU(p)\langle\epsilon_{i},1\rangle\colon S^{2i-1}\land\mathrm{PU}(p)\to\mathrm{PU}(p) and δi,1:S2i1SU(p)SU(p)\langle\delta_{i},1\rangle\colon S^{2i-1}\land\mathrm{SU}(p)\to\mathrm{SU}(p), where 11 denotes the appropriate identity map, coincide.

Theorem 1.1 is the key ingredient for “if” direction of our classification results. The converse direction, on the other hand, will require that suitable homotopy invariants of the gauge groups be identified. In Section 2, we introduce the notation 𝒢i,k(PU(n))\mathcal{G}_{i,k}(\mathrm{PU}(n)), with kk\in\mathbb{Z}, for gauge groups of PU(n)\mathrm{PU}(n)-bundles over S2iS^{2i} in analogy with the notation used by Kono kono91 and others. In Section 4, we give a sufficient condition for certain homotopy invariants of SU(n)\mathrm{SU}(n)- and PU(n)\mathrm{PU}(n)-gauge groups to coincide.

Our methods then allow us to deduce classification results for PU(p)\mathrm{PU}(p)-gauge groups from the corresponding classification results for SU(p)\mathrm{SU}(p)-gauge groups. As examples of applications of our results, we obtain the following complete classifications.

Theorem 1.2

For PU(5)\mathrm{PU}(5)-bundles over S4S^{4}, it is the case that

(a) if 𝒢2,k(PU(5))𝒢2,l(PU(5))\mathcal{G}_{2,k}(\mathrm{PU}(5))\simeq\mathcal{G}_{2,l}(\mathrm{PU}(5)), then (120,k)=(120,l)(120,k)=(120,l);

(b) if (120,k)=(120,l)(120,k)=(120,l), then 𝒢2,k(PU(5))𝒢2,l(PU(5))\mathcal{G}_{2,k}(\mathrm{PU}(5))\simeq\mathcal{G}_{2,l}(\mathrm{PU}(5)) when localised rationally or at any prime.

Theorem 1.3

For PU(3)\mathrm{PU}(3)-bundles over S6S^{6}, we have 𝒢3,k(PU(3))𝒢3,l(PU(3))\mathcal{G}_{3,k}(\mathrm{PU}(3))\simeq\mathcal{G}_{3,l}(\mathrm{PU}(3)) if, and only if, (120,k)=(120,l)(120,k)=(120,l).

We should note that in hasui16 , the PU(3)\mathrm{PU}(3)-gauge group 𝒢2,k\mathcal{G}_{2,k} is shown to be homotopy equivalent to 𝒢^2,k×S1\widehat{\mathcal{G}}_{2,k}\times S^{1}, where 𝒢^2,k\widehat{\mathcal{G}}_{2,k} is a space whose homotopy groups are all finite. This allows the authors to apply Lemma 2 and obtain a classification result for 𝒢k\mathcal{G}_{k} that holds integrally. We expect the same result to apply more generally to gauge groups of PU(n)\mathrm{PU}(n)-bundles over S2n2S^{2n-2}. However, there are currently no other cases, beside that of hasui16 , in which such a result would be applicable.

Finally, it is worth noting that, should any further classifications of gauge groups of SU(p)\mathrm{SU}(p)-bundles over even-dimensional spheres be obtained, our results would provide the corresponding classification results for PU(p)\mathrm{PU}(p)-gauge groups as immediate corollaries, provided the original results were arrived at via the standard methods.

2 Homotopy types of PU(n)\mathrm{PU}(n)-gauge groups

The projective unitary group PU(n)\mathrm{PU}(n) is defined as the quotient of U(n)\mathrm{U}(n) by its centre

Z(U(n))={λInλ and |λ|=1}U(1).Z(\mathrm{U}(n))=\{\lambda I_{n}\mid\lambda\in\mathbb{C}\text{ and }|\lambda|=1\}\cong\mathrm{U}(1).

In marked contrast with the orthogonal case, there is a homotopy equivalence between PU(n)\mathrm{PU}(n) and PSU(n)\mathrm{PSU}(n) for every nn. For the purposes of this paper, one can therefore equivalently define PU(n)\mathrm{PU}(n) as the quotient of SU(n)\mathrm{SU}(n) by its centre

Z(SU(n))={λInλ and λn=1}/n.Z(\mathrm{SU}(n))=\{\lambda I_{n}\mid\lambda\in\mathbb{C}\text{ and }\lambda^{n}=1\}\cong\mathbb{Z}/n\mathbb{Z}.

We let q:SU(n)PU(n)q\colon\mathrm{SU}(n)\to\mathrm{PU}(n) denote the quotient map corresponding to the latter definition, which we shall use throughout. Note that qq is an nn-fold covering map and SU(n)\mathrm{SU}(n), being simply-connected, is the universal cover of PU(n)\mathrm{PU}(n).

2.1 Notation for PU(n)\mathrm{PU}(n)-gauge groups

Let nn and ii be fixed integers such that 2in2\leq i\leq n. As stated in the introduction, we are interested in the problem of classifying the homotopy types of the gauge groups 𝒢(P)\mathcal{G}(P) as PP ranges over all PU(n)\mathrm{PU}(n)-bundles over S2iS^{2i}.

If there exists a PU(n)\mathrm{PU}(n)-equivariant bundle isomorphism PPP\cong P^{\prime}, then conjugation by such an isomorphism yields a homeomorphism 𝒢(P)𝒢(P)\mathcal{G}(P)\cong\mathcal{G}(P^{\prime}). It therefore suffices to let PP range over a set of representatives of all the isomorphism classes of PU(n)\mathrm{PU}(n)-bundles over S2iS^{2i}.

Since S2iS^{2i} is paracompact, the set of isomorphism classes of principal PU(n)\mathrm{PU}(n)-bundles over S2iS^{2i} is in bijection with the set [S2i,BPU(n)]free[S^{2i},\mathrm{B}\mathrm{PU}(n)]_{\mathrm{free}} of free homotopy classes of maps from S2iS^{2i} to BPU(n)\mathrm{B}\mathrm{PU}(n), the classifying space of PU(n)\mathrm{PU}(n). As PU(n)\mathrm{PU}(n) is connected, BPU(n)\mathrm{B}\mathrm{PU}(n) is simply-connected and hence there is a bijection

[S2i,BPU(n)]free[S2i,BPU(n)],[S^{2i},\mathrm{B}\mathrm{PU}(n)]_{\mathrm{free}}\cong[S^{2i},\mathrm{B}\mathrm{PU}(n)],

the right-hand side denoting the set of pointed homotopy classes of maps from S2iS^{2i} to BPU(n)\mathrm{B}\mathrm{PU}(n). Furthermore, we have bijections

[S2i,BPU(n)]π2i(BPU(n))π2i1(PU(n)).[S^{2i},\mathrm{B}\mathrm{PU}(n)]\cong\pi_{2i}(\mathrm{B}\mathrm{PU}(n))\cong\pi_{2i-1}(\mathrm{PU}(n))\cong\mathbb{Z}.

We can therefore introduce the following labelling for the gauge groups of PU(n)\mathrm{PU}(n)-bundles over S2iS^{2i}. Let ϵi:S2i1PU(n)\epsilon_{i}\colon S^{2i-1}\to\mathrm{PU}(n) denote a generator of π2i1(PU(n))\pi_{2i-1}(\mathrm{PU}(n)). Each isomorphism class of PU(n)\mathrm{PU}(n)-bundles is represented by the bundle PkS2iP_{k}\to S^{2i} induced by pulling back the universal PU(n)\mathrm{PU}(n)-bundle along the classifying map kϵ¯i:S2iBPU(n)k\overline{\epsilon}_{i}\colon S^{2i}\to\mathrm{B}\mathrm{PU}(n), where ϵ¯i\overline{\epsilon}_{i} denotes the adjoint of ϵi\epsilon_{i} and generates π2i(BPU(n))\pi_{2i}(\mathrm{B}\mathrm{PU}(n)). We let 𝒢i,k(PU(n))\mathcal{G}_{i,k}(\mathrm{PU}(n)) (or simply 𝒢i,k\mathcal{G}_{i,k} when the context is clear) denote the gauge group of PkS2iP_{k}\to S^{2i}. Mutatis mutandis, the notation 𝒢i,k(SU(n))\mathcal{G}_{i,k}(\mathrm{SU}(n)) will also be used.

2.2 Classification of the homotopy types of 𝒢i,k\mathcal{G}_{i,k}

By atiyah-bott or gottlieb , there is a homotopy equivalence B𝒢i,kMapk(S2i,BPU(n))\mathrm{B}\mathcal{G}_{i,k}\simeq\mathrm{Map}_{k}(S^{2i},\mathrm{B}\mathrm{PU}(n)), the latter space being the kk-th component of Map(S2i,BPU(n))\mathrm{Map}(S^{2i},\mathrm{B}\mathrm{PU}(n)), meaning the connected component containing the classifying map kϵ¯ik\overline{\epsilon}_{i}.

There is an evaluation fibration

Mapk(S2i,BPU(n))Mapk(S2i,BPU(n))evBPU(n),\mathrm{Map}^{*}_{k}(S^{2i},\mathrm{B}\mathrm{PU}(n))\longrightarrow\mathrm{Map}_{k}(S^{2i},\mathrm{B}\mathrm{PU}(n))\xrightarrow{\ \operatorname{ev}\ }\mathrm{B}\mathrm{PU}(n),

where ev\operatorname{ev} evaluates a map at the basepoint of S2iS^{2i} and the fibre is the kk-th component of the pointed mapping space Mapk(S2i,BPU(n))\mathrm{Map}^{*}_{k}(S^{2i},\mathrm{B}\mathrm{PU}(n)). This fibration extends to a homotopy fibration sequence

𝒢i,kPU(n)Mapk(S2i,BPU(n))B𝒢i,kBPU(n),\mathcal{G}_{i,k}\longrightarrow\mathrm{PU}(n)\longrightarrow\mathrm{Map}^{*}_{k}(S^{2i},\mathrm{B}\mathrm{PU}(n))\longrightarrow\mathrm{B}\mathcal{G}_{i,k}\longrightarrow\mathrm{B}\mathrm{PU}(n),

where we used the equivalences B𝒢i,kMapk(S2i,BPU(n))\mathrm{B}\mathcal{G}_{i,k}\simeq\mathrm{Map}_{k}(S^{2i},\mathrm{B}\mathrm{PU}(n)), ΩBPU(n)PU(n)\Omega\mathrm{B}\mathrm{PU}(n)\simeq\mathrm{PU}(n), and ΩB𝒢i,k𝒢i,k\Omega\mathrm{B}\mathcal{G}_{i,k}\simeq\mathcal{G}_{i,k}. Furthermore, by sutherland92 there is, for each kk\in\mathbb{Z}, a homotopy equivalence

Mapk(S2i,BPU(n))Map0(S2i,BPU(n)).\mathrm{Map}^{*}_{k}(S^{2i},\mathrm{B}\mathrm{PU}(n))\simeq\mathrm{Map}^{*}_{0}(S^{2i},\mathrm{B}\mathrm{PU}(n)).

The space on the right-hand side is denoted Ω02iBPU(n)\Omega_{0}^{2i}\mathrm{B}\mathrm{PU}(n) and is homotopy equivalent to Ω02i1PU(n)\Omega_{0}^{2i-1}\mathrm{PU}(n). We therefore have the following homotopy fibration sequence

𝒢i,kPU(n)i,kΩ02i1PU(n)B𝒢i,kBPU(n),\mathcal{G}_{i,k}\longrightarrow\mathrm{PU}(n)\xrightarrow{\ \partial_{i,k}\ }\Omega_{0}^{2i-1}\mathrm{PU}(n)\longrightarrow\mathrm{B}\mathcal{G}_{i,k}\longrightarrow\mathrm{B}\mathrm{PU}(n),

which exhibits the gauge group 𝒢i,k\mathcal{G}_{i,k} as the homotopy fibre of the map i,k\partial_{i,k}. This is a key observation, as it suggests that the homotopy theory of the gauge groups 𝒢i,k\mathcal{G}_{i,k} depends on the maps i,k\partial_{i,k}. In fact, more is true.

By (lang-ehp, , Theorem 2.6), the adjoint of i,k:PU(n)Ω02i1PU(n)\partial_{i,k}\colon\mathrm{PU}(n)\to\Omega_{0}^{2i-1}\mathrm{PU}(n) is homotopic to the Samelson product kϵi,1:S2i1PU(n)PU(n)\langle k\epsilon_{i},1\rangle\colon S^{2i-1}\land\mathrm{PU}(n)\to\mathrm{PU}(n), where 1 denotes the identity map on PU(n)\mathrm{PU}(n). As the Samelson product is bilinear, kϵi,1kϵi,1\langle k\epsilon_{i},1\rangle\simeq k\langle\epsilon_{i},1\rangle, and hence, taking adjoints once more, i,kki,1\partial_{i,k}\simeq k\partial_{i,1}.

Thus, every one of the gauge groups is the homotopy fibre of the map i,1\partial_{i,1} post-composed with the appropriate power map on Ω02i1PU(n)\Omega^{2i-1}_{0}\mathrm{PU}(n). If i,1\partial_{i,1} can be determined to have finite order in [PU(n),Ω02i1PU(n)][\mathrm{PU}(n),\Omega_{0}^{2i-1}\mathrm{PU}(n)], this will have strong implications for the homotopy types of the 𝒢i,k\mathcal{G}_{i,k}’s, as the following lemmas show.

Lemma 1 (Theriault (theriault-sp2, , Lemma 3.1))

Let XX be a connected CW-complex and let YY be an H-space with a homotopy inverse. Suppose that f[X,Y]f\in[X,Y] has finite order mm. Then, for any integers k,lk,l\in\mathbb{Z} such that (m,k)=(m,l)(m,k)=(m,l), the homotopy fibres of kfkf and lflf are homotopy equivalent when localised rationally or at any prime. ∎

If, additionally, the homotopy groups of YY are all finite, as in the case of PU(n)\mathrm{PU}(n)-bundles over S2nS^{2n}, where Y=Ω02n1PU(n)Y=\Omega^{2n-1}_{0}\mathrm{PU}(n), the following stronger lemma applies.

Lemma 2 (Hamanaka, Kono (hamanaka-kono, , Lemma 3.2))

Let XX be a connected CW-complex and let YY be an H-space such that πj(Y)\pi_{j}(Y) is finite for all jj. Let f[X,Y]f\in[X,Y] be such that mfmf\simeq* for some finite mm and let k,lk,l\in\mathbb{Z} satisfy (m,k)=(m,l)(m,k)=(m,l). Then, there exists a homotopy equivalence h:YYh\colon Y\to Y satisfying hkflfhkf\simeq lf. ∎

Note that the order of i,1\partial_{i,1} coincides with the order of ϵi,1\langle\epsilon_{i},1\rangle.

3 Samelson products on PU(p)\mathrm{PU}(p)

Having fixed n3n\geq 3 and 2in2\leq i\leq n, let δi:S2i1SU(n)\delta_{i}\colon S^{2i-1}\to\mathrm{SU}(n) denote the generator of π2i1(SU(n))\pi_{2i-1}(\mathrm{SU}(n))\cong\mathbb{Z} corresponding to the generator ϵi\epsilon_{i} of π2i1(PU(n))\pi_{2i-1}(\mathrm{PU}(n)). That is, such that q(δi)=ϵiq_{*}(\delta_{i})=\epsilon_{i}, where qq denotes the quotient map q:SU(n)PU(n)q\colon\mathrm{SU}(n)\to\mathrm{PU}(n) introduced in Section 2.

In this section, we wish to compare the orders of the Samelson products δi,1\langle\delta_{i},1\rangle and ϵi,1\langle\epsilon_{i},1\rangle on SU(n)\mathrm{SU}(n) and PU(n)\mathrm{PU}(n), respectively. First, observe that there is a commutative diagram

S2i1SU(n){S^{2i-1}\land\mathrm{SU}(n)}SU(n){\mathrm{SU}(n)}S2i1PU(n){S^{2i-1}\land\mathrm{PU}(n)}PU(n){\mathrm{PU}(n)}δi,1\scriptstyle{\langle\delta_{i},1\rangle}1q\scriptstyle{1\land q}q\scriptstyle{q}ϵi,1\scriptstyle{\langle\epsilon_{i},1\rangle} (\star)

and recall the following property of the quotient map qq.

Lemma 3

The quotient map q:SU(n)PU(n)q\colon\mathrm{SU}(n)\to\mathrm{PU}(n) induces a pp-local homotopy equivalence SU(n)(p)PU(n)\mathrm{SU}(n)\simeq_{(p)}\mathrm{PU}(n) for any prime pp which does not divide nn.

Proof

The quotient map qq induces isomorphisms on the pp-localised homotopy groups (note that π1(PU(n))(p)\pi_{1}(\mathrm{PU}(n))_{(p)} is trivial), and hence it is a pp-local homotopy equivalence by (hilton-mislin-roitberg, , Theorem 3B(ii)).∎

Lemma 4

If the prime pp does not divide nn, then the pp-primary components of the orders of the Samelson products δi,1\langle\delta_{i},1\rangle and ϵi,1\langle\epsilon_{i},1\rangle coincide.

Proof

Let pp be a prime which does not divide nn. Then qq is a pp-local homotopy equivalence by Lemma 3, and hence the commutativity of (\star3) yields

δi,1(p)=q(p)1ϵi,1(p)(1q(p)),\langle\delta_{i},1\rangle_{(p)}=q^{-1}_{(p)}\circ\langle\epsilon_{i},1\rangle_{(p)}\circ(1\land q_{(p)}),

so the pp-primary components of the orders of δi,1\langle\delta_{i},1\rangle and ϵi,1\langle\epsilon_{i},1\rangle coincide.∎

Hence, when nn is prime, the orders of δi,1\langle\delta_{i},1\rangle and ϵi,1\langle\epsilon_{i},1\rangle coincide up to at most their nn-primary component.

Lemma 5

For any nn, the quotient map q:SU(n)PU(n)q\colon\mathrm{SU}(n)\to\mathrm{PU}(n) induces an isomorphism

q:[S2i1SU(n),SU(n)][S2i1SU(n),PU(n)].q_{*}\colon[S^{2i-1}\land\mathrm{SU}(n),\mathrm{SU}(n)]\to[S^{2i-1}\land\mathrm{SU}(n),\mathrm{PU}(n)].
Proof

Recall that q:SU(n)PU(n)q\colon\mathrm{SU}(n)\to\mathrm{PU}(n) fits into a homotopy fibration sequence

/nSU(n)𝑞PU(n)B(/n).\cdots\longrightarrow\mathbb{Z}/n\mathbb{Z}\longrightarrow\mathrm{SU}(n)\xrightarrow{\ q\ }\mathrm{PU}(n)\longrightarrow\mathrm{B}(\mathbb{Z}/n\mathbb{Z}).

Since /n\mathbb{Z}/n\mathbb{Z} is discrete, applying the functor [S2i1SU(n),][S^{2i-1}\land\mathrm{SU}(n),-] yields

0[S2i1SU(n),SU(n)]q[S2i1SU(n),PU(n)]0,\cdots\longrightarrow 0\longrightarrow[S^{2i-1}\land\mathrm{SU}(n),\mathrm{SU}(n)]\xrightarrow{\ q_{*}\ }[S^{2i-1}\land\mathrm{SU}(n),\mathrm{PU}(n)]\longrightarrow 0,

whence the statement. ∎

Lemma 6

The order of δi,1\langle\delta_{i},1\rangle divides the order of ϵi,1\langle\epsilon_{i},1\rangle.

Proof

Let pp be a prime. If pkp^{k} divides the order of δi,1\langle\delta_{i},1\rangle for some k1k\geq 1, then pkp^{k} also divides the order of the composite qδi,1(p)q\circ\langle\delta_{i},1\rangle_{(p)} by Lemma 5. It then follows, by the commutativity of (\star3), that the order of ϵi,1(p)\langle\epsilon_{i},1\rangle_{(p)} is at least pkp^{k}. ∎

For the remainder of this section, we shall restrict to considering PU(n)\mathrm{PU}(n) when nn is an odd prime pp.

Since SU(p)\mathrm{SU}(p) is the universal cover of PU(p)\mathrm{PU}(p) and H(SU(p);)H_{*}(\mathrm{SU}(p);\mathbb{Z}) is torsion-free, by (kishimoto08, , Theorem 1.1) we have the following decomposition of PU(p)\mathrm{PU}(p).

Lemma 7

For an odd prime pp, there is a pp-local homotopy equivalence

PU(p)(p)L×j=2p1S2j1\mathrm{PU}(p)\simeq_{(p)}L\times\prod_{j=2}^{p-1}S^{2j-1}

where LL is an H-space with π1(L)/p\pi_{1}(L)\cong\mathbb{Z}/p\mathbb{Z}.∎

Let α:L(p)PU(p)(p)\alpha\colon L_{(p)}\to\mathrm{PU}(p)_{(p)} be the inclusion. Then we can write the equivalence of Lemma 7 as

L(p)×j=2p1S(p)2j1α×jϵj(p)(PU(p)(p))p1𝜇PU(p)(p),L_{(p)}\times\prod_{j=2}^{p-1}S^{2j-1}_{(p)}\xrightarrow{\ \alpha\times\prod_{j}{\epsilon_{j}}_{(p)}\ }\bigl{(}\mathrm{PU}(p)_{(p)}\bigr{)}^{p-1}\xrightarrow{\ \mu\ }\mathrm{PU}(p)_{(p)},

where μ\mu is the group multiplication in PU(p)(p)\mathrm{PU}(p)_{(p)}. We note that this composite is equal to the product

(αpr1)j=2p1(ϵj(p)prj)(\alpha\circ\mathrm{pr}_{1})\cdot\prod_{j=2}^{p-1}({\epsilon_{j}}_{(p)}\circ\mathrm{pr}_{j})

in the group [L(p)×j=2p1S(p)2j1,PU(p)(p)][L_{(p)}\times\prod_{j=2}^{p-1}S^{2j-1}_{(p)},\mathrm{PU}(p)_{(p)}], where prj\mathrm{pr}_{j} denotes the projection onto the jjth factor.

Lemma 8

With the above notation, the localised Samelson product

ϵi,1(p):S(p)2i1PU(p)(p)PU(p)(p)\langle\epsilon_{i},1\rangle_{(p)}\colon S^{2i-1}_{(p)}\land\mathrm{PU}(p)_{(p)}\to\mathrm{PU}(p)_{(p)}

is trivial if, and only if, each of ϵi(p),α\langle{\epsilon_{i}}_{(p)},\alpha\rangle and ϵi,ϵj(p)\langle\epsilon_{i},\epsilon_{j}\rangle_{(p)}, for 2jp12\leq j\leq p-1, are trivial.

Proof

By (hasui16, , Lemmas 3.3 and 3.4), ϵi,1(p)\langle\epsilon_{i},1\rangle_{(p)} is trivial if, and only if, both ϵi(p),α\langle{\epsilon_{i}}_{(p)},\alpha\rangle and ϵi,jϵj(p)\langle\epsilon_{i},\prod_{j}\epsilon_{j}\rangle_{(p)} are trivial. Applying the same lemmas to the second factor a further p3p-3 times gives the statement. ∎

We therefore calculate the groups [S2i1L,PU(p)](p)[S^{2i-1}\land L,\mathrm{PU}(p)]_{(p)} and, for 2jp12\leq j\leq p-1, the homotopy groups π2i+2j2(PU(p))(p)\pi_{2i+2j-2}(\mathrm{PU}(p))_{(p)} in order to get an upper bound on the order of ϵi,1(p)\langle\epsilon_{i},1\rangle_{(p)}.

Lemma 9

For 2ip2\leq i\leq p and 2jp12\leq j\leq p-1, the group π2i+2j2(PU(p))(p)\pi_{2i+2j-2}\bigl{(}\mathrm{PU}(p)\bigr{)}_{(p)} has exponent at most pp.

Proof

Decompose PU(p)\mathrm{PU}(p) as in Lemma 7. Observe that, by (kishimoto08, , Proposition 2.2), we have πn(L)πn(S2p1)\pi_{n}(L)\cong\pi_{n}(S^{2p-1}) for n2n\geq 2, and hence

π2i+2j2(PU(p))(p)π2i+2j2(L×k=2p1S2k1)(p)k=2pπ2i+2j2(S2k1)(p).\pi_{2i+2j-2}\bigl{(}\mathrm{PU}(p)\bigr{)}_{(p)}\cong\pi_{2i+2j-2}\biggl{(}L\times\prod_{k=2}^{p-1}S^{2k-1}\biggr{)}_{\!(p)}\!\!\cong\bigoplus_{k=2}^{p}\pi_{2i+2j-2}(S^{2k-1})_{(p)}.

By Toda (iterated-ii, , Theorem 7.1), if k2k\geq 2 and r<2p(p1)2r<2p(p-1)-2, the pp-primary component of π(2k1)+r(S2k1)\pi_{(2k-1)+r}(S^{2k-1}) is either 0 or /p\mathbb{Z}/p\mathbb{Z}. Since 2i+2j24p42i+2j-2\leq 4p-4 and

4p4<2p(p1)2+(2k1)4p-4<2p(p-1)-2+(2k-1)

for all k2k\geq 2, the statement follows. ∎

For the next part of our calculation, we will need a certain mod-pp decomposition of Σ2L\Sigma^{2}L which will, in turn, require some cohomological information. The mod-pp cohomology algebra of PU(n)\mathrm{PU}(n), with pp any prime and nn arbitrary, was determined by Baum and Browder in (baum-browder, , Corollary 4.2). In particular, we have:

Lemma 10

For pp an odd prime, there is an algebra isomorphism

H(PU(p);/p)Λ(x1,x3,,x2p3)/p[y](yp),H^{*}(\mathrm{PU}(p);\mathbb{Z}/p\mathbb{Z})\cong\Lambda(x_{1},x_{3},\ldots,x_{2p-3})\otimes\frac{\mathbb{Z}/p\mathbb{Z}[y]}{(y^{p})},

with |xd|=d|x_{d}|=d, |y|=2|y|=2, and β(x1)=y\beta(x_{1})=y.∎

For m2m\geq 2, denote by Pm(p)P^{m}(p) the mod-pp Moore space defined as the homotopy cofibre of the degree pp map

Sm1𝑝Sm1Pm(p)S^{m-1}\xrightarrow{\ p\ }S^{m-1}\longrightarrow P^{m}(p)

on the sphere Sm1S^{m-1}. In other words, Pm(p)=Sm1pemP^{m}(p)=S^{m-1}\cup_{p}e^{m}. Note that, by extending the cofibre sequence to the right, we see that ΣPm(p)Pm+1(p)\Sigma P^{m}(p)\simeq P^{m+1}(p).

Lemma 11

For pp an odd prime, there is a pp-local homotopy equivalence

ΣL(p)Ak=2p1P2k+1(p),\Sigma L\simeq_{(p)}A\lor\bigvee_{k=2}^{p-1}P^{2k+1}(p),

with H(A;/p)H_{*}(A;\mathbb{Z}/p\mathbb{Z}) generated by {u,v,w}\{u,v,w\}, with |u|=2|u|=2, |v|=3|v|=3, |w|=2p|w|=2p, and subject to the relation β(v)=u\beta(v)=u.

Proof

By decomposing PU(p)\mathrm{PU}(p) as in Lemma 7, taking mod-pp cohomology and comparing with Lemma 10, we obtain

H(L;/p)Λ(x1)/p[y](yp).H^{*}(L;\mathbb{Z}/p\mathbb{Z})\cong\Lambda(x_{1})\otimes\frac{\mathbb{Z}/p\mathbb{Z}[y]}{(y^{p})}.

Since H(L;/p)H^{*}(L;\mathbb{Z}/p\mathbb{Z}) is of finite type and self-dual, H(L;/p)H(L;/p)H^{*}(L;\mathbb{Z}/p\mathbb{Z})\cong H_{*}(L;\mathbb{Z}/p\mathbb{Z}) as Hopf algebras. Then, as H(L;/p)H_{*}(L;\mathbb{Z}/p\mathbb{Z}) is primitively generated and LL is a connected H-space (being a retract of PU(p)\mathrm{PU}(p)), by (cohen1976, , Theorem 4.1) there is a decomposition

ΣL(p)A1A2Ap1,\Sigma L\simeq_{(p)}A_{1}\lor A_{2}\lor\cdots\lor A_{p-1},

with each summand AjA_{j} having homology H(Aj;/p)H_{*}(A_{j};\mathbb{Z}/p\mathbb{Z}) generated by the suspensions of monomials in H(L;/p)H_{*}(L;\mathbb{Z}/p\mathbb{Z}) of length jj (modulo p1p-1), where by length of a monomial one means the number of (not necessarily distinct) factors in that monomial.

Let x¯1\overline{x}_{1} and y¯\overline{y} denote the duals of x1x_{1} and yy, and let σ\sigma denote the suspension isomorphism for homology. Then, H(A1;/p)H_{*}(A_{1};\mathbb{Z}/p\mathbb{Z}) is generated by σ(x¯1)\sigma(\overline{x}_{1}), σ(y¯)\sigma(\overline{y}), and σ(x¯1y¯p1)\sigma(\overline{x}_{1}\overline{y}^{p-1}), in degrees 2, 3, and 2p2p, respectively. Furthermore, by the stability of the Bockstein operator β\beta, we also have β(σ(y¯))=σ(x¯1)\beta(\sigma(\overline{y}))=\sigma(\overline{x}_{1}).

On the other hand, for j1j\neq 1, the homology H(Aj;/p)H_{*}(A_{j};\mathbb{Z}/p\mathbb{Z}) is generated by the elements σ(x¯1y¯j1)\sigma(\overline{x}_{1}\overline{y}^{j-1}) and σ(y¯j)\sigma(\overline{y}^{j}), in degrees 2j2j and 2j+12j+1, respectively, subject to the relation β(σ(y¯j))=σ(x¯1y¯j1)\beta(\sigma(\overline{y}^{j}))=\sigma(\overline{x}_{1}\overline{y}^{j-1}). As the homotopy type of Moore spaces is uniquely characterised by their homology, we must have AjP2j+1(p)A_{j}\simeq P^{2j+1}(p) for j1j\neq 1, yielding the decomposition in the statement. ∎

With AA as in Lemma 11, we have:

Lemma 12

There is a pp-local homotopy equivalence

ΣA(p)P4(p)S2p+1.\Sigma A\simeq_{(p)}P^{4}(p)\lor S^{2p+1}.
Proof

Localise at pp throughout. By looking at the degrees of the generators of H(A;/p)H_{*}(A;\mathbb{Z}/p\mathbb{Z}) in Lemma 11, we see that the 3-skeleton of AA is P3(p)P^{3}(p).

Let f:S2p1P3(p)f\colon S^{2p-1}\to P^{3}(p) be the attaching map of the top cell of AA, and let FF be the homotopy fibre of ρ:P3(p)S3\rho\colon P^{3}(p)\to S^{3}, the pinch map to the top cell of P3(p)P^{3}(p). As π2p1(S3)0\pi_{2p-1}(S^{3})\cong 0, the map ff lifts through FF via some map λ:S2p1F\lambda\colon S^{2p-1}\to F, as in the diagram:

F{F}S2p1{S^{2p-1}}P3(p){P^{3}(p)}S3.{S^{3}.}λ\scriptstyle{\lambda}f\scriptstyle{f}\scriptstyle{*}ρ\scriptstyle{\rho}

Let j:S3P4(p)j\colon S^{3}\to P^{4}(p) be the inclusion of the bottom cell and let S3{p}S^{3}\{p\} be the homotopy fibre of the degree pp map on S3S^{3}. As jj has order pp, there is a homotopy fibration diagram

ΩS3{\Omega S^{3}}S3{p}{S^{3}\{p\}}S3{S^{3}}S3{S^{3}}ΩP4(p){\Omega P^{4}(p)}ΩP4(p){\Omega P^{4}(p)}{*}P4(p){P^{4}(p)}Ωj\scriptstyle{\Omega j}s\scriptstyle{s}p\scriptstyle{p}j\scriptstyle{j}

which defines a map s:S3{p}ΩP4(p)s\colon S^{3}\{p\}\to\Omega P^{4}(p). For connectivity reasons, the suspension map P3(p)𝐸ΩP4(p)P^{3}(p)\xrightarrow{\,E\,}\Omega P^{4}(p) factors as the composite P3(p)𝜄S3{p}𝑠ΩP4(p)P^{3}(p)\xrightarrow{\,\iota\,}S^{3}\{p\}\xrightarrow{\,s\,}\Omega P^{4}(p), where ι\iota is the inclusion of the bottom Moore space. Furthermore, there is a homotopy fibration diagram

F{F}P3(p){P^{3}(p)}S3{S^{3}}ΩS3{\Omega S^{3}}S3{p}{S^{3}\{p\}}S3.{S^{3}.}ι\scriptstyle{\iota}ρ\scriptstyle{\rho}

Putting this together gives a commutative diagram

F{F}ΩS3{\Omega S^{3}}ΩS3{\Omega S^{3}}S2p1{S^{2p-1}}P3(3){P^{3}(3)}S3{p}{S^{3}\{p\}}ΩP4(p).{\Omega P^{4}(p).}Ωj\scriptstyle{\Omega j}λ\scriptstyle{\lambda}f\scriptstyle{f}ι\scriptstyle{\iota}s\scriptstyle{s}

Thus EfE\circ f factors through Ωj\Omega j, implying that Σf\Sigma f factors as the composite

S2pf^S3𝑗P4(p)S^{2p}\xrightarrow{\ \hat{f}\ }S^{3}\xrightarrow{\ j\ }P^{4}(p)

for some map f^\hat{f}.

As π2p(S3)/p\pi_{2p}(S^{3})\cong\mathbb{Z}/p\mathbb{Z}, we must have f^=tα\hat{f}=t\alpha, where α\alpha is a generator of π2p(S3)\pi_{2p}(S^{3}). If Σf\Sigma f were essential, then t0t\neq 0. However, the element α\alpha would then be detected by the Steenrod operation 𝒫1\mathcal{P}^{1} in the cohomology of ΣA\Sigma A. This would, in turn, imply that 𝒫1\mathcal{P}^{1} were non-trivial in H(A;/p)H^{*}(A;\mathbb{Z}/p\mathbb{Z}), and hence in H(PU(p);/p)H^{*}(\mathrm{PU}(p);\mathbb{Z}/p\mathbb{Z}). However, 𝒫1(H(PU(p);/p))=0\mathcal{P}^{1}(H^{*}(\mathrm{PU}(p);\mathbb{Z}/p\mathbb{Z}))=0, and thus we must have had Σf\Sigma f\simeq*. ∎

Lemma 13

The exponent of the group [S2i1L,PU(p)](p)[S^{2i-1}\land L,\mathrm{PU}(p)]_{(p)} is at most pp.

Proof

By the decompositions in Lemmas 11 and 12, we have

[S2i1L,PU(p)](p)\displaystyle[S^{2i-1}\land L,\mathrm{PU}(p)]_{(p)} [S2i2(Ak=2p1P2k+1(p)),PU(p)](p)\displaystyle\cong\bigl{[}S^{2i-2}\land\bigl{(}A\lor\textstyle\bigvee_{k=2}^{p-1}P^{2k+1}(p)\bigr{)},\mathrm{PU}(p)\bigr{]}_{(p)}
[S2i3(S2p+1k=1p1P2k+2(p)),PU(p)](p)\displaystyle\cong\bigl{[}S^{2i-3}\land\bigl{(}S^{2p+1}\lor\textstyle\bigvee_{k=1}^{p-1}P^{2k+2}(p)\bigr{)},\mathrm{PU}(p)\bigr{]}_{(p)}
π2i+2p2(PU(p))(p)k=1p1[P2k+2i1(p),PU(p)](p).\displaystyle\cong\pi_{2i+2p-2}(\mathrm{PU}(p))_{(p)}\oplus\bigoplus_{k=1}^{p-1}[P^{2k+2i-1}(p),\mathrm{PU}(p)]_{(p)}.

Since 2i+2p24p2<2p(p1)+12i+2p-2\leq 4p-2<2p(p-1)+1 for p3p\geq 3, the group π2i+2p2(PU(p))(p)\pi_{2i+2p-2}(\mathrm{PU}(p))_{(p)} consists of elements of order at most pp by the same argument as in Lemma 9.

On the other hand, by (neisendorfer80, , Theorem 7.1), the groups [P2k+2i1(p),PU(p)][P^{2k+2i-1}(p),\mathrm{PU}(p)] have exponent at most pp (since, for m3m\geq 3, the identity on Pm(p)P^{m}(p) has order pp), whence the statement. ∎

Lemmas 8, 9, and 13 together imply:

Lemma 14

The order of the Samelson product

ϵi,1(p):S(p)2i1PU(p)(p)PU(p)(p)\langle\epsilon_{i},1\rangle_{(p)}\colon S^{2i-1}_{(p)}\land\mathrm{PU}(p)_{(p)}\to\mathrm{PU}(p)_{(p)}

is at most pp. ∎

We now have all the ingredients necessary to prove Theorem 1.1.

Proof (of Theorem 1.1)

Consider the following commutative diagram

S2i1S2(pi)+1{S^{2i-1}\land S^{2(p-i)+1}}U(p){\mathrm{U}(p)}S2i1SU(p){S^{2i-1}\land\mathrm{SU}(p)}SU(p){\mathrm{SU}(p)}ηi,ηpi1\scriptstyle{\langle\eta_{i},\eta_{p-i-1}\rangle}1δpi1\scriptstyle{1\land\delta_{p-i-1}}δi,1\scriptstyle{\langle\delta_{i},1\rangle}ι\scriptstyle{\iota}

where ι:SU(p)U(p)\iota\colon\mathrm{SU}(p)\to\mathrm{U}(p) is the inclusion and ηi:=ι(δi)\eta_{i}:=\iota_{*}(\delta_{i}). By the unnumbered corollary in Bott (bott60, , p. 250), the map ηi,ηpi1\langle\eta_{i},\eta_{p-i-1}\rangle is non-trivial and pp divides its order. Hence, the order of δi,1(p)\langle\delta_{i},1\rangle_{(p)} is at least pp. The result now follows from Lemmas 4, 6 and 14. ∎

4 Homotopy invariants of PU(n)\mathrm{PU}(n)-gauge groups

The content of Lemma 15 is a straightforward observation about how certain homotopy invariants of SU(n)\mathrm{SU}(n)-gauge groups relate to the corresponding invariants of PU(n)\mathrm{PU}(n)-gauge groups.

Lemma 15

Let nn be arbitrary and XX be a simply-connected space. Suppose further that we have [X,SU(n)]0[X,\mathrm{SU}(n)]\cong 0. Then, the quotient map q:SU(n)PU(n)q\colon\mathrm{SU}(n)\to\mathrm{PU}(n) induces an isomorphism of groups

[X,𝒢i,k(SU(n))][X,𝒢i,k(PU(n))][X,\mathcal{G}_{i,k}(\mathrm{SU}(n))]\cong[X,\mathcal{G}_{i,k}(\mathrm{PU}(n))]

for any 2i2n2\leq i\leq 2n and any kk\in\mathbb{Z}.

Proof

Since [X,SU(n)]0[X,\mathrm{SU}(n)]\cong 0 and XX is simply-connected, applying the functor [X,][X,-] to the homotopy fibration sequence

/nSU(n)𝑞PU(n)B(/n)\cdots\longrightarrow\mathbb{Z}/n\mathbb{Z}\longrightarrow\mathrm{SU}(n)\xrightarrow{\ q\ }\mathrm{PU}(n)\longrightarrow\mathrm{B}(\mathbb{Z}/n\mathbb{Z})

shows that [X,PU(n)]0[X,\mathrm{PU}(n)]\cong 0 also.

Applying now the functor [ΣX,][\Sigma X,-] to the homotopy fibration sequence

PU(n)i,kΩ02i1PU(n)B𝒢i,k(PU(n))BPU(n)\mathrm{PU}(n)\xrightarrow{\ \partial_{i,k}\ }\Omega_{0}^{2i-1}\mathrm{PU}(n)\longrightarrow\mathrm{B}\mathcal{G}_{i,k}(\mathrm{PU}(n))\longrightarrow\mathrm{B}\mathrm{PU}(n)

described in Section 2, as well as to its SU(n)\mathrm{SU}(n) analogue, yields the following commutative diagram

[ΣX,SU(n)]{{[\Sigma X,\mathrm{SU}(n)]}}[Σ2iX,SU(n)]{{[\Sigma^{2i}X,\mathrm{SU}(n)]}}[X,𝒢i,k(SU(n))]{{[X,\mathcal{G}_{i,k}(\mathrm{SU}(n))]}}0{0}[ΣX,PU(n)]{{[\Sigma X,\mathrm{PU}(n)]}}[Σ2iX,PU(n)]{{[\Sigma^{2i}X,\mathrm{PU}(n)]}}[X,𝒢i,k(PU(n))]{{[X,\mathcal{G}_{i,k}(\mathrm{PU}(n))]}}0{0}(i,k)\scriptstyle{(\partial_{i,k})_{*}}q\scriptstyle{q_{*}}q\scriptstyle{q_{*}}(i,k)\scriptstyle{(\partial_{i,k})_{*}}

where the rows are exact and the two leftmost vertical maps are isomorphisms by the same argument as in the proof of Lemma 5. The statement now follows from the five lemma. ∎

Hamanaka and Kono showed in (hamanaka-kono, , Theorem 1.2) that, for principal SU(n)\mathrm{SU}(n)-bundles over S4S^{4}, the homotopy equivalence 𝒢2,k(SU(n))𝒢2,l(SU(n))\mathcal{G}_{2,k}(\mathrm{SU}(n))\simeq\mathcal{G}_{2,l}(\mathrm{SU}(n)) implies that (n(n21),k)=(n(n21),l)(n(n^{2}-1),k)=(n(n^{2}-1),l). As an application of Lemma 15, let us show that the analogue of this result holds for PU(n)\mathrm{PU}(n)-gauge groups.

Corollary 1

Let n>3n>3. For principal PU(n)\mathrm{PU}(n)-bundles over S4S^{4},if

𝒢2,k(PU(n))𝒢2,l(PU(n)),\mathcal{G}_{2,k}(\mathrm{PU}(n))\simeq\mathcal{G}_{2,l}(\mathrm{PU}(n)),

then (n(n21),k)=(n(n21),l)(n(n^{2}-1),k)=(n(n^{2}-1),l).

Proof

First, suppose that nn is even. Note that we have

π2n4(SU(n))π2n2(SU(n))0.\pi_{2n-4}(\mathrm{SU}(n))\cong\pi_{2n-2}(\mathrm{SU}(n))\cong 0.

Hence, applying Lemma 15 with X=S2n4X=S^{2n-4} and X=S2n2X=S^{2n-2}, we find

π2n4(𝒢2,k(PU(n)))π2n4(𝒢2,k(SU(n)))\pi_{2n-4}\bigl{(}\mathcal{G}_{2,k}(\mathrm{PU}(n))\bigr{)}\cong\pi_{2n-4}\bigl{(}\mathcal{G}_{2,k}(\mathrm{SU}(n))\bigr{)}

and

π2n2(𝒢2,k(PU(n)))π2n2(𝒢2,k(SU(n))).\pi_{2n-2}\bigl{(}\mathcal{G}_{2,k}(\mathrm{PU}(n))\bigr{)}\cong\pi_{2n-2}\bigl{(}\mathcal{G}_{2,k}(\mathrm{SU}(n))\bigr{)}.

So the result follows for nn even by (sutherland92, , Proposition 4.2).

When nn is odd, we have from hamanaka-kono that [Σ2n6P2,SU(n)]0[\Sigma^{2n-6}\mathbb{C}P^{2},\mathrm{SU}(n)]\cong 0. Hence, applying Lemma 15 with X=Σ2n6P2X=\Sigma^{2n-6}\mathbb{C}P^{2}, we find

[Σ2n6P2,𝒢2,k(PU(n))][Σ2n6P2,𝒢2,k(SU(n))].[\Sigma^{2n-6}\mathbb{C}P^{2},\mathcal{G}_{2,k}(\mathrm{PU}(n))]\cong[\Sigma^{2n-6}\mathbb{C}P^{2},\mathcal{G}_{2,k}(\mathrm{SU}(n))].

So the result follows for nn odd by (hamanaka-kono, , Corollary 2.6).∎

Following the work of hamanaka-s6 , Mohammadi and Asadi-Golmankhaneh su(n)-s6 recently showed that, for SU(n)\mathrm{SU}(n)-bundles over S6S^{6}, an equivalence 𝒢3,k(SU(n))𝒢3,l(SU(n))\mathcal{G}_{3,k}(\mathrm{SU}(n))\simeq\mathcal{G}_{3,l}(\mathrm{SU}(n)) implies that

((n1)n(n+1)(n+2),k)=((n1)n(n+1)(n+2),l).\bigl{(}(n-1)n(n+1)(n+2),k\bigr{)}=\bigl{(}(n-1)n(n+1)(n+2),l\bigr{)}.

Hence, we also have:

Corollary 2

Let n3n\geq 3. For principal PU(n)\mathrm{PU}(n)-bundles over S6S^{6}, if there is a homotopy equivalence 𝒢3,k(PU(n))𝒢3,l(PU(n))\mathcal{G}_{3,k}(\mathrm{PU}(n))\simeq\mathcal{G}_{3,l}(\mathrm{PU}(n)), then

((n1)n(n+1)(n+2),k)=((n1)n(n+1)(n+2),l).((n-1)n(n+1)(n+2),k)=((n-1)n(n+1)(n+2),l).
Proof

Apply Lemma 15 with X=Σ2n6P2X=\Sigma^{2n-6}\mathbb{C}P^{2} and the result of su(n)-s6 . ∎

5 Special cases

5.1 PU(p)\mathrm{PU}(p)-bundles over S4S^{4}

Theriault showed in theriault-sun that, after localisation at an odd prime pp and provided n<(p1)2+1n<(p-1)^{2}+1, the order of the Samelson product δ2,1:S3SU(n)SU(n)\langle\delta_{2},1\rangle\colon S^{3}\land\mathrm{SU}(n)\to\mathrm{SU}(n) is the pp-primary component of the integer n(n21)n(n^{2}-1). It then follows immediately from Theorem 1.1 that:

Corollary 3

After localisation at an odd prime, the order of the Samelson product ϵ2,1:S3PU(p)PU(p)\langle\epsilon_{2},1\rangle\colon S^{3}\land\mathrm{PU}(p)\to\mathrm{PU}(p) is p(p21)p(p^{2}-1). ∎

5.2 PU(5)\mathrm{PU}(5)-bundles over S4S^{4}

In theriault-su5 , Theriault showed that the order of δ2,1:S3SU(5)SU(5)\langle\delta_{2},1\rangle\colon S^{3}\wedge\mathrm{SU}(5)\to\mathrm{SU}(5) is 120. Hence, by Theorem 1.1, the order of ϵ2,1:S3PU(5)PU(5)\langle\epsilon_{2},1\rangle\colon S^{3}\wedge\mathrm{PU}(5)\to\mathrm{PU}(5) is also 120.

Proof (of Theorem 1.2)

Part (i) follows from Corollary 1, while part (ii) follows from Lemma 1. ∎

5.3 PU(3)\mathrm{PU}(3)-bundles over S6S^{6}

Hamanaka and Kono showed in hamanaka-s6 that the order of δ3,1:S5SU(3)SU(3)\langle\delta_{3},1\rangle\colon S^{5}\land\mathrm{SU}(3)\to\mathrm{SU}(3) is 120120. It follows from Theorem 1.1 that the order of ϵ3,1:S5PU(3)PU(3)\langle\epsilon_{3},1\rangle\colon S^{5}\land\mathrm{PU}(3)\to\mathrm{PU}(3) is also 120120.

Proof (of Theorem 1.3)

As the homotopy groups πn(Ω05PU(3))πn+5(PU(3))\pi_{n}(\Omega_{0}^{5}\mathrm{PU}(3))\cong\pi_{n+5}(\mathrm{PU}(3)) are all finite, the “if” direction follows from Lemma 2, while the “only if” direction follows from Corollary 2. ∎

References

  • (1) Atiyah, M.F., Bott, R.: The Yang-Mills equations over Riemann surfaces. Philos. Trans. Roy. Soc. London Ser. A 308(1505), 523–615 (1983)
  • (2) Baum, P.F., Browder, W.: The cohomology of quotients of classical groups. Topology 3(4), 305–336 (1965)
  • (3) Bott, R.: A note on the Samelson product in the classical groups. Comment. Math. Helv. 34(1), 249–256 (1960)
  • (4) Cohen, F.: Splitting certain suspensions via self-maps. Illinois J. Math. 20(2), 336–347 (1976)
  • (5) Crabb, M.C., Sutherland, W.A.: Counting homotopy types of gauge groups. Proc. London Math. Soc. 81(3), 747–768 (2000)
  • (6) Gottlieb, D.H.: Applications of bundle map theory. Trans. Amer. Math. Soc. 171, 23–50 (1972)
  • (7) Hamanaka, H., Kono, A.: Unstable K1K^{1}-group and homotopy type of certain gauge groups. Proc. Roy. Soc. Edinburgh Sect. A 136(1), 149–155 (2006)
  • (8) Hamanaka, H., Kono, A.: Homotopy type of gauge groups of SU(3){\mathrm{SU}}(3)-bundles over S6{S}^{6}. Topology Appl. 154(7), 1377–1380 (2007)
  • (9) Hasui, S., Kishimoto, D., Kono, A., Sato, T.: The homotopy types of PU(3)\mathrm{PU}(3)- and PSp(2)\mathrm{PSp}(2)-gauge groups. Algebr. Geom. Topol. 16(3), 1813–1825 (2016)
  • (10) Hilton, P., Mislin, G., Roitberg, J.: Localization of nilpotent groups and spaces, North-Holland Mathematics Studies, vol. 15. North-Holland (1975)
  • (11) Husemöller, D.: Fibre bundles, Graduate texts in mathematics, vol. 20, 3rd edn. Springer-Verlag New York (1994)
  • (12) Kamiyama, Y., Kishimoto, D., Kono, A., Tsukuda, S.: Samelson products of SO(3)\operatorname{SO}(3) and applications. Glasgow Math. J. 49(2), 405–409 (2007)
  • (13) Kishimoto, D., Kono, A.: Mod pp decompositions of non-simply connected Lie groups. J. Math. Kyoto Univ. 48(1), 1–5 (2008)
  • (14) Kono, A.: A note on the homotopy type of certain gauge groups. Proc. Roy. Soc. Edinburgh Sect. A 117(3-4), 295–297 (1991)
  • (15) Lang Jr., G.E.: The evaluation map and EHP sequences. Pacific J. Math. 44(1), 201–210 (1973)
  • (16) Mohammadi, S., Asadi-Golmankhaneh, M.A.: The homotopy types of SU(n)\mathrm{SU}(n)-gauge groups over S6S^{6}. Topology Appl. 270, 106952 (2019)
  • (17) Neisendorfer, J.A.: Primary Homotopy Theory, Memoirs of the American Mathematical Society, vol. 232. American Mathematical Society (1980)
  • (18) Piccinini, R.A., Spreafico, M.: Conjugacy classes in gauge groups, Queen’s papers in pure and applied mathematics, vol. 111. Queen’s University, Kingston (1998)
  • (19) Sutherland, W.A.: Function spaces related to gauge groups. Proc. Roy. Soc. Edinburgh Sect. A 121(1–2), 185–190 (1992)
  • (20) Theriault, S.D.: The homotopy types of Sp(2)\mathrm{Sp}(2)-gauge groups. Kyoto J. Math. 50(3), 591–605 (2010)
  • (21) Theriault, S.D.: The homotopy types of SU(5)\mathrm{SU}(5)-gauge groups. Osaka J. Math. 52(1), 15–31 (2015)
  • (22) Theriault, S.D.: Odd primary homotopy types of SU(n)\mathrm{SU}(n)-gauge groups. Algebr. Geom. Topol. 17(2), 1131–1150 (2017)
  • (23) Toda, H.: On iterated suspensions I. J. Math. Kyoto Univ. 5(1), 87–142 (1965)