This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Hopf monoids in the category of species

Marcelo Aguiar Department of Mathematics
Texas A&M University
College Station, TX 77843
maguiar@math.tamu.edu http://www.math.tamu.edu/ maguiar
 and  Swapneel Mahajan Department of Mathematics
Indian Institute of Technology Mumbai
Powai, Mumbai 400 076
India
swapneel@math.iitb.ac.in http://www.math.iitb.ac.in/ swapneel
(Date: July 30, 2025)
Abstract.

A Hopf monoid (in Joyal’s category of species) is an algebraic structure akin to that of a Hopf algebra. We provide a self-contained introduction to the theory of Hopf monoids in the category of species. Combinatorial structures which compose and decompose give rise to Hopf monoids. We study several examples of this nature. We emphasize the central role played in the theory by the Tits algebra of set compositions. Its product is tightly knit with the Hopf monoid axioms, and its elements constitute universal operations on connected Hopf monoids. We study analogues of the classical Eulerian and Dynkin idempotents and discuss the Poincaré-Birkhoff-Witt and Cartier-Milnor-Moore theorems for Hopf monoids.

Key words and phrases:
Species; Hopf monoid; Lie monoid; antipode; Hadamard product; partition; composition; linear order; simple graph; generalized permutahedron; Tits product; group-like; primitive; functional calculus; characteristic operation; Hopf power; Eulerian idempotent; Dynkin quasi-idempotent; Garsia-Reutenauer idempotent; Poincaré-Birkhoff-Witt; Cartier-Milnor-Moore
2010 Mathematics Subject Classification:
Primary 16T30, 18D35, 20B30; Secondary 18D10, 20F55
Aguiar supported in part by NSF grant DMS-1001935.

Introduction

The theory of species and its applications to enumerative combinatorics was developed by Joyal in [34] and further advanced in [12]. The basic theory of Hopf monoids in species was laid out in [6, Part II]. The account we provide here includes most of the topics discussed there and some more recent results from [1, 3, 4, 7], as well as a good number of new results and constructions.

The category of species carries a symmetric monoidal structure, the Cauchy product. We study the resulting algebraic structures, such as monoids, Hopf monoids, and Lie monoids. They are analogous to algebras, Hopf algebras, and Lie algebras (and their graded counterparts).

Species will be denoted by letters such as 𝐩\mathbf{p} and 𝐪\mathbf{q}, monoids by 𝐚\mathbf{a} and 𝐛\mathbf{b}, comonoids by 𝐜\mathbf{c} and 𝐝\mathbf{d}, bimonoids (and Hopf monoids) by 𝐡\mathbf{h} and 𝐤\mathbf{k}, and Lie monoids by 𝐠\mathbf{g}.

A species 𝐩\mathbf{p} consists of a family of vector spaces 𝐩[I]\mathbf{p}[I] indexed by finite sets II and equivariant with respect to bijections IJI\to J. A monoid is a species 𝐚\mathbf{a} together with a family of product maps

μS,T:𝐚[S]𝐚[T]𝐚[I]\mu_{S,T}:\mathbf{a}[S]\otimes\mathbf{a}[T]\to\mathbf{a}[I]

indexed by pairs (S,T)(S,T) of disjoint sets whose union is II. They are subject to the usual axioms (associativity and unitality). Iterations of these maps yield higher product maps

μF:𝐚[S1]𝐚[Sk]𝐚[I]\mu_{F}:\mathbf{a}[S_{1}]\otimes\dots\otimes\mathbf{a}[S_{k}]\to\mathbf{a}[I]

indexed by decompositions F=(S1,,Sk)F=(S_{1},\dots,S_{k}) of II (sequences of pairwise disjoint sets whose union is II). When decompositions FF and GG are related by refinement, the higher product maps μF\mu_{F} and μG\mu_{G} are related by associativity.

The notion of a comonoid in species is defined dually. The higher coproduct maps ΔF\Delta_{F} are again indexed by set decompositions. Decompositions of finite sets go on to play a defining role in the theory.

Given two decompositions FF and GG of the same set II, there is a natural way to refine FF using GG in order to obtain another decomposition FGFG of II. We refer to FGFG as the Tits product of FF and GG. This turns the set of all decompositions of II into a monoid (in the usual sense of the term). We refer to the algebra of this monoid as the Tits algebra of decompositions of II.

A bimonoid is a species 𝐡\mathbf{h} which is at the same time a monoid and a comonoid, with the structures linked by the usual compatibility axiom. The Tits product appears implicitly in this axiom. This becomes evident when the compatibility among the higher product and coproduct maps is spelled out. The axiom then involves two arbitrary decompositions FF and GG of II, and their Tits products FGFG and GFGF.

For any bimonoid 𝐡\mathbf{h}, the set of all endomorphisms of species of 𝐡\mathbf{h} is an algebra under convolution. If the identity of 𝐡\mathbf{h} is invertible, then 𝐡\mathbf{h} is a Hopf monoid and the inverse its antipode. There is a formula for the antipode in terms of the higher (co)product maps (in which decompositions necessarily enter).

Complete definitions of a bimonoid and Hopf monoid are given in Section 2. The discussion on higher (co)products is deferred to Section 10, with the groundwork on set decompositions and the Tits product laid out in Section 1.

The category of species supports other operations in addition to the Cauchy product and one such is the Hadamard product, discussed in Section 3. The corresponding internal Hom and duality functors are also studied. The Hadamard product preserves Hopf monoids. This is one aspect in which the theory of Hopf monoids differs from that of graded Hopf algebras.

We pay particular attention to set-theoretic Hopf monoids (in which the role of vector spaces is played by sets) and connected Hopf monoids (in which 𝐡[]=𝕜\mathbf{h}[\emptyset]=\Bbbk, the base field). These are discussed in Sections 4 and 5. The latter includes a discussion of canonical antipode formulas (Takeuchi’s and Milnor and Moore’s) and the formulation of the antipode problem, a question of a general nature and concrete combinatorial interest. The primitive part 𝒫(𝐜)\mathcal{P}(\mathbf{c}) of a connected comonoid 𝐜\mathbf{c} is also introduced at this point.

The free monoid 𝒯(𝐪)\mathcal{T}(\mathbf{q}) on any species 𝐪\mathbf{q} is studied in Section 6. We concentrate mainly on the case when 𝐪\mathbf{q} is positive: 𝐪[]=0\mathbf{q}[\emptyset]=0. In this situation, the monoid 𝒯(𝐪)\mathcal{T}(\mathbf{q}) is connected and carries a canonical Hopf monoid structure. Corresponding discussions for commutative monoids and Lie monoids are given in Sections 7 and 8. The free commutative monoid on a species 𝐪\mathbf{q} is denoted 𝒮(𝐪)\mathcal{S}(\mathbf{q}) and the universal enveloping monoid of a Lie monoid 𝐠\mathbf{g} by 𝒰(𝐠)\mathcal{U}(\mathbf{g}). They are Hopf monoids. Theorem 20 proves that the Hadamard product of two connected Hopf monoids is free, provided one of the factors is free. In the case when both factors are free, Theorem 19 provides a basis for the Hadamard product in terms of the bases of the factors. Similar results hold in the commutative case.

Many examples of Hopf monoids are given in Section 9. Most of them are connected and at least part of their structure is set-theoretic. They arise from various combinatorial structures ranging from linear orders to generalized permutahedra, which then get organized into Hopf monoids and related to one another by means of morphisms of such. Solutions to the antipode problem are provided in most cases. Among these, we highlight those in Theorems 36 and 44.

Two additional important examples are studied in Section 11. The bimonoid 𝚺^\mathbf{\widehat{\Sigma}} has a linear basis 𝙷F\mathtt{H}_{F} indexed by set decompositions FF. It is not connected and in fact not a Hopf monoid. Its companion 𝚺\mathbf{\Sigma} has a linear basis indexed by set compositions (decompositions into nonempty sets) and is a connected Hopf monoid. They are both free. There is a surjective morphism of Hopf monoids υ:𝚺^𝚺\upsilon:\mathbf{\widehat{\Sigma}}\to\mathbf{\Sigma} which removes the empty blocks from a decomposition. Each space 𝚺^[I]\mathbf{\widehat{\Sigma}}[I] and 𝚺[I]\mathbf{\Sigma}[I] is an algebra under the Tits product, and the interplay between this and the Hopf monoid structure is central to the theory. This important point was made in [5, 6, 54], and is discussed extensively here.

To a species 𝐪\mathbf{q} one may associate a vector space 𝒮(𝐪)\mathscr{S}(\mathbf{q}) of series, studied in Section 12. A series ss of 𝐪\mathbf{q} is a collection of elements sI𝐪[I]s_{I}\in\mathbf{q}[I], equivariant with respect to bijections IJI\to J. If 𝐚\mathbf{a} is a monoid, then 𝒮(𝐚)\mathscr{S}(\mathbf{a}) is an algebra, and formal functional calculus can be used to substitute any series ss of 𝐚\mathbf{a} with s=0s_{\emptyset}=0 into a formal power series a(𝓍)a(\mathpzc{x}) to obtain another series a(s)a(s) of 𝐚\mathbf{a}. In particular, one can define exp(s)\exp(s) and log(s)\log(s), the exponential and logarithm of ss, and these two operations are inverses of each other in their domains of definition. If 𝐡\mathbf{h} is a connected bimonoid, they restrict to inverse bijections

𝒫(𝐡)\textstyle{\mathscr{P}(\mathbf{h})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}exp\scriptstyle{\exp}𝒢(𝐡)\textstyle{\ignorespaces\ignorespaces\ignorespaces\ignorespaces\mathscr{G}(\mathbf{h})}log\scriptstyle{\log}

between primitive series and group-like series of 𝐡\mathbf{h}. The former constitute a Lie algebra and the latter a group.

The characteristic operations are discussed in Section 13. They are analogous to the familiar Hopf powers hh(p)h\mapsto h^{(p)} from the theory of Hopf algebras. The role of the exponent pp is played by a decomposition FF, with the Tits monoid replacing the monoid of natural numbers. For any decomposition F=(S1,,Sk)F=(S_{1},\dots,S_{k}) of II, we refer to the composite

𝐡[I]ΔF𝐡[S1]𝐡[Sk]μF𝐡[I]\mathbf{h}[I]\xrightarrow{\Delta_{F}}\mathbf{h}[S_{1}]\otimes\dots\otimes\mathbf{h}[S_{k}]\xrightarrow{\mu_{F}}\mathbf{h}[I]

as the characteristic operation of 𝙷F\mathtt{H}_{F} on 𝐡[I]\mathbf{h}[I], where 𝐡\mathbf{h} is a bimonoid. Extending by linearity, each element of 𝚺^[I]\mathbf{\widehat{\Sigma}}[I] induces a linear endomorphism of 𝐡[I]\mathbf{h}[I], and thus a series of 𝚺^\mathbf{\widehat{\Sigma}} induces a species endomorphism of 𝐡\mathbf{h}. If 𝐡\mathbf{h} is connected, then the characteristic operations factor through υ\upsilon, and a series of 𝚺\mathbf{\Sigma} induces a species endomorphism of 𝐡\mathbf{h}. Among the most important results in this section we mention Theorems 82 and 90. The former states that, when the bimonoid 𝐡\mathbf{h} is cocommutative, the characteristic operations endow each space 𝐡[I]\mathbf{h}[I] with a left 𝚺^[I]\mathbf{\widehat{\Sigma}}[I]-module structure, and similarly for 𝚺[I]\mathbf{\Sigma}[I] if 𝐡\mathbf{h} is connected. Under the same hypotheses, the latter theorem states that the operation of a primitive element z𝒫(𝚺)[I]z\in\mathcal{P}(\mathbf{\Sigma})[I] maps 𝐡[I]\mathbf{h}[I] to 𝒫(𝐡)[I]\mathcal{P}(\mathbf{h})[I]. Moreover, if the coefficient of 𝙷(I)\mathtt{H}_{(I)} in zz is 11, then zz is an idempotent element of the Tits algebra 𝚺[I]\mathbf{\Sigma}[I], and its operation is a projection onto 𝒫(𝐡)[I]\mathcal{P}(\mathbf{h})[I]. The basis element 𝙷(I)\mathtt{H}_{(I)} of 𝚺[I]\mathbf{\Sigma}[I] is indexed by the composition with one block. The characteristic operations of some important series of 𝚺\mathbf{\Sigma} on connected bimonoids are given in Table 1.

Section 14 deals with the analogues of certain classical idempotents. They are elements (or series) of 𝚺\mathbf{\Sigma}. For each integer k0k\geq 0, the Eulerian idempotent 𝙴k\mathtt{E}_{k} is a certain series of 𝚺\mathbf{\Sigma}, with 𝙴1\mathtt{E}_{1} being primitive. The latter is the logarithm of the group-like series 𝙶\mathtt{G} defined by 𝙶I:=𝙷(I)\mathtt{G}_{I}:=\mathtt{H}_{(I)}. Since 𝙶\mathtt{G} operates as the identity, 𝙴1\mathtt{E}_{1} operates as its logarithm. It follows that the logarithm of the identity projects any cocommutative connected bimonoid onto its primitive part. This result is obtained both in Corollary 80 and in Corollary 101. Another important primitive series of 𝚺\mathbf{\Sigma} is 𝙳\mathtt{D}, the Dynkin quasi-idempotent. It operates (on products of primitive elements) as the left bracketing operator. The analogue of the classical Dynkin-Specht-Wever theorem is given in Corollary 114. This section also discusses the Garsia-Reutenauer idempotents, reviewed below.

Table 1.
Series of 𝚺\mathbf{\Sigma} Characteristic operation on 𝐡\mathbf{h}
𝙴1\mathtt{E}_{1} logid\log\mathrm{id} Corollary 101
𝙴k\mathtt{E}_{k} 1k!(logid)k\frac{1}{k!}(\log\mathrm{id})^{\ast k} Proposition 103
𝙷p\mathtt{H}_{p} idp\mathrm{id}^{\ast p} Formula (308)
𝙷1\mathtt{H}_{-1} s\operatorname{\textsc{s}} (antipode) Formula (313)
𝙳\mathtt{D} sn\operatorname{\textsc{s}}\ast\textsc{n} Corollary 110

The Poincaré-Birkhoff-Witt (PBW) and Cartier-Milnor-Moore (CMM) theorems for Hopf monoids in species are discussed in Section 15. It is a nontrivial fact that any Lie monoid 𝐠\mathbf{g} embeds in 𝒰(𝐠)\mathcal{U}(\mathbf{g}). This is a part of the PBW theorem; the full result is given in Theorem 119. In a bimonoid 𝐡\mathbf{h}, the commutator preserves the primitive part 𝒫(𝐡)\mathcal{P}(\mathbf{h}). The CMM theorem (Theorem 120) states that the functors

{positive Lie monoids}\textstyle{\{\text{positive Lie monoids}\}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝒰\scriptstyle{\mathcal{U}}{cocommutative connected Hopf monoids}\textstyle{\ignorespaces\ignorespaces\ignorespaces\ignorespaces\{\text{cocommutative connected Hopf monoids}\}}𝒫\scriptstyle{\mathcal{P}}

form an adjoint equivalence.

The structure of the Tits algebra 𝚺[I]\mathbf{\Sigma}[I] has been studied in detail in the literature. It follows from works of Bidigare [13] and Brown [17] that 𝚺[I]\mathbf{\Sigma}[I] admits a complete family of orthogonal idempotents indexed by partitions of II. In fact there is a canonical choice for such a family, which we call the Garsia-Reutenauer idempotents (Theorem 102). The action of these idempotents provides a canonical decomposition of each space 𝐡[I]\mathbf{h}[I] (Theorem 117). The Garsia-Reutenauer idempotent indexed by the partition with one block is the first Eulerian idempotent, hence its action is a projection onto the primitive part. This leads to the important result that for any cocommutative connected Hopf monoid 𝐡\mathbf{h}, there is an isomorphism of comonoids between 𝒮(𝒫(𝐡))\mathcal{S}(\mathcal{P}(\mathbf{h})) and 𝐡\mathbf{h} (Theorem 118). This is closely related to (and in fact used to deduce) the PBW and CMM theorems. PBW states that 𝒮(𝒫(𝐡))𝒰(𝒫(𝐡))\mathcal{S}(\mathcal{P}(\mathbf{h}))\cong\mathcal{U}(\mathcal{P}(\mathbf{h})) as comonoids, and CMM includes the statement that 𝒰(𝒫(𝐡))𝐡\mathcal{U}(\mathcal{P}(\mathbf{h}))\cong\mathbf{h} as bimonoids.

Section 16 collects a number of results on the dimension sequence dim𝕜𝐡[n]\dim_{\Bbbk}\mathbf{h}[n] of a finite-dimensional connected Hopf monoid 𝐡\mathbf{h}. The structure imposes conditions on this sequence in the form of various polynomial inequalities its entries must satisfy. For example, Theorem 122 states that the Boolean transform of the sequence must be nonnegative, and Theorem 124 that if the Hopf monoid is set-theoretic (and nontrivial), then the same is true for the binomial transform. The latter result follows from Theorem 15, the analogue of Lagrange’s theorem for Hopf monoids.

Among the topics discussed in [6, Part II] but left out here, we mention the notion of cohomology and deformations for set-theoretic comonoids, the construction of the cofree comonoid on a positive species, the construction of the free Hopf monoid on a positive comonoid, the notion of species with balanced operators, and the geometric perspective that adopts the braid hyperplane arrangement as a central object. The latter is particularly important in regard to generalizations of the theory which we are currently undertaking.

The notion of Hopf monoid parallels the more familiar one of graded Hopf algebra and the analogy manifests itself throughout our discussion. Much of the theory we develop has a counterpart for graded Hopf algebras, with Hopf monoids being richer due to the underlying species structure. To illustrate this point, consider the characteristic operations. For connected Hopf monoids, they are indexed by elements of the Tits algebra, while for connected graded Hopf algebras they are indexed by elements of Solomon’s descent algebra. The symmetric group acts on the former, and the latter is the invariant subalgebra. In some instances, the theory for graded Hopf algebras is not widely available in the literature. We develop the theory for Hopf monoids only, but hope that this paper is useful to readers interested in Hopf algebras as well. Some constructions are specific to the setting of Hopf monoids and others acquire special form. There are ways to build graded Hopf algebras from Hopf monoids. These are studied in [6, Part III], but not in this paper.

Acknowledgements

We warmly thank the editors for their interest in our work and for their support during the preparation of the manuscript. We are equally grateful to the referees for a prompt and detailed report with useful comments and suggestions.

1. Preliminaries on compositions and partitions

Decompositions of sets play a prominent role in the theory of Hopf monoids. Important properties and a good amount of related notation are discussed here. In spite of this, it is possible and probably advisable to proceed with the later sections first and refer to the present one as needed.

1.1. Set compositions

Let II be a finite set. A composition of II is a finite sequence (I1,,Ik)(I_{1},\ldots,I_{k}) of disjoint nonempty subsets of II such that

I=i=1kIi.I=\bigcup_{i=1}^{k}I_{i}.

The subsets IiI_{i} are the blocks of the composition. We write FIF\vDash I to indicate that F=(I1,,Ik)F=(I_{1},\ldots,I_{k}) is a composition of II.

There is only one composition of the empty set (with no blocks).

Let Σ[I]\Sigma[I] denote the set of compositions of II.

1.2. Operations

Let F=(I1,,Ik)F=(I_{1},\dots,I_{k}) be a composition of II.

The opposite of FF is the composition

F¯=(Ik,,I1).\overline{F}=(I_{k},\dots,I_{1}).

Given a subset SS of II, let i1<<iji_{1}<\cdots<i_{j} be the subsequence of 1<<k1<\cdots<k consisting of those indices ii for which IiSI_{i}\cap S\neq\emptyset. The restriction of FF to SS is the composition of SS defined by

F|S=(Ii1S,,IijS).F|_{S}=(I_{i_{1}}\cap S,\ldots,I_{i_{j}}\cap S).

Let TT be the complement of SS in II. We say that SS is FF-admissible if for each i=1,,ki=1,\ldots,k, either

IiSorIiT.I_{i}\subseteq S\quad\text{or}\quad I_{i}\subseteq T.

Thus SS is FF-admissible if and only if TT is, and in this case, F|SF|_{S} and F|TF|_{T} are complementary subsequences of FF.

We write

(1) I=STI=S\sqcup T

to indicate that (S,T)(S,T) is an ordered pair of complementary subsets of II, as above. Either subset SS or TT may be empty.

Given I=STI=S\sqcup T and compositions F=(S1,,Sj)F=(S_{1},\dots,S_{j}) of SS and G=(T1,,Tk)G=(T_{1},\dots,T_{k}) of TT, their concatenation

FG:=(S1,,Sj,T1,,Tk)F\cdot G:=(S_{1},\dots,S_{j},T_{1},\dots,T_{k})

is a composition of II. A quasi-shuffle of FF and GG is a composition HH of II such that H|S=FH|_{S}=F and H|T=GH|_{T}=G. In particular, each block of HH is either a block of FF, a block of GG, or a union of a block of FF and a block of GG.

1.3. The Schubert cocycle and distance

Let I=STI=S\sqcup T and F=(I1,,Ik)IF=(I_{1},\ldots,I_{k})\vDash I. The Schubert cocycle is defined by

(2) schS,T(F):=|{(i,j)S×Ti is in a strictly later block of F than j}|.\operatorname{sch}_{S,T}(F):=\lvert\{(i,j)\in S\times T\mid\text{$i$ is in a strictly later block of $F$ than $j$}\}\rvert.

Alternatively,

schS,T(F)=1i<jk|IiT||IjS|.\operatorname{sch}_{S,T}(F)=\sum_{1\leq i<j\leq k}\lvert I_{i}\cap T\rvert\,\lvert I_{j}\cap S\rvert.

Let F=(I1,,In)F^{\prime}=(I^{\prime}_{1},\ldots,I^{\prime}_{n}) be another composition of II. The distance between FF and FF^{\prime} is

(3) dist(F,F):=i<jm>l|IiIm||IjIl|.\operatorname{dist}(F,F^{\prime}):=\sum_{\begin{subarray}{c}i<j\\ m>l\end{subarray}}\,\lvert I_{i}\cap I^{\prime}_{m}\rvert\,\lvert I_{j}\cap I^{\prime}_{l}\rvert.

In the special case when FF and FF^{\prime} consist of the same blocks (possibly listed in different orders), the previous formula simplifies to

(4) dist(F,F)=(i,j)|Ii||Ij|,\operatorname{dist}(F,F^{\prime})=\sum_{(i,j)}\,\lvert I_{i}\rvert\,\lvert I_{j}\rvert,

where the sum is over those pairs (i,j)(i,j) such that i<ji<j and IiI_{i} appears after IjI_{j} in FF^{\prime}. In particular,

(5) dist(F,F¯)=1i<jk|Ii||Ij|.\operatorname{dist}(F,\overline{F})=\sum_{1\leq i<j\leq k}\lvert I_{i}\rvert\,\lvert I_{j}\rvert.

Note also that

schS,T(F)=dist(F,G),\operatorname{sch}_{S,T}(F)=\operatorname{dist}(F,G),

where G=(S,T)G=(S,T).

1.4. Linear orders

When the blocks are singletons, a composition of II amounts to a linear order on II. We write =i1in\ell=i_{1}\cdots i_{n} for the linear order on I={i1,,in}I=\{i_{1},\ldots,i_{n}\} for which i1<<ini_{1}<\cdots<i_{n}.

Linear orders are closed under opposition, restriction, and concatenation. The opposite of =i1in\ell=i_{1}\cdots i_{n} is ¯=ini1\overline{\ell}=i_{n}\cdots i_{1}. If 1=s1si\ell_{1}=s_{1}\cdots s_{i} and 2=t1tj\ell_{2}=t_{1}\cdots t_{j}, their concatenation is

12=s1sit1tj.\ell_{1}\cdot\ell_{2}=s_{1}\cdots s_{i}\,t_{1}\cdots t_{j}.

The restriction |S\ell|_{S} of a linear order \ell on II to SS is the list consisting of the elements of SS written in the order in which they appear in \ell. We say that \ell is a shuffle of 1\ell_{1} and 2\ell_{2} if |S=1\ell|_{S}=\ell_{1} and |T=2\ell|_{T}=\ell_{2}.

Replacing a composition FF of II for a linear order \ell on II in equations (2) and (3) we obtain

(6) schS,T()=|{(i,j)S×Ti>j according to }|,\displaystyle\operatorname{sch}_{S,T}(\ell)=\lvert\{(i,j)\in S\times T\mid\text{$i>j$ according to $\ell$}\}\rvert,
(7) dist(,)=|{(i,j)I×Ii<j according to  and i>j according to }|.\displaystyle\operatorname{dist}(\ell,\ell^{\prime})=\lvert\{(i,j)\in I\times I\mid\text{$i<j$ according to $\ell$ and $i>j$ according to $\ell^{\prime}$}\}\rvert.

1.5. Refinement

The set Σ[I]\Sigma[I] is a partial order under refinement: we say that GG refines FF and write FGF\leq G if each block of FF is obtained by merging a number of contiguous blocks of GG. The composition (I)(I) is the unique minimum element, and linear orders are the maximal elements.

Let F=(I1,,Ik)Σ[I]F=(I_{1},\ldots,I_{k})\in\Sigma[I]. There is an order-preserving bijection

(8) {GΣ[I]FG}Σ[I1]××Σ[Ik],G(G|I1,,G|Ik).\{G\in\Sigma[I]\mid F\leq G\}\longleftrightarrow\Sigma[I_{1}]\times\cdots\times\Sigma[I_{k}],\quad G\longmapsto(G|_{I_{1}},\ldots,G|_{I_{k}}).

The inverse is given by concatenation:

(G1,,Gk)G1Gk.(G_{1},\ldots,G_{k})\mapsto G_{1}\cdots G_{k}.

Set compositions of II are in bijection with flags of subsets of II via

(I1,,Ik)(I1I1I2I1Ik=I).(I_{1},\ldots,I_{k})\mapsto(\emptyset\subset I_{1}\subset I_{1}\cup I_{2}\subset\cdots\subset I_{1}\cup\cdots\cup I_{k}=I).

Refinement of compositions corresponds to inclusion of flags. In this manner Σ[I]\Sigma[I] is a lower set of the Boolean poset 22I2^{2^{I}}, and hence a meet-semilattice.

1.6. The Tits product

Let F=(S1,,Sp)F=(S_{1},\ldots,S_{p}) and G=(T1,,Tq)G=(T_{1},\ldots,T_{q}) be two compositions of II. Consider the pairwise intersections

Aij:=SiTjA_{ij}:=S_{i}\cap T_{j}

for 1ip1\leq i\leq p, 1jq1\leq j\leq q. A schematic picture is shown below.

(9) S1SpT1TqA11A1qAp1Apq\quad\begin{gathered}\begin{picture}(100.0,90.0)(20.0,0.0)\put(50.0,40.0){\oval(100.0,80.0)} \put(0.0,55.0){\dashbox(2.0)(100.0,0.0)[]{}} \put(0.0,25.0){\dashbox(2.0)(100.0,0.0)[]{}} \put(45.0,63.0){$S_{1}$} \put(45.0,8.0){$S_{p}$} \end{picture}\quad\begin{picture}(100.0,90.0)(10.0,0.0)\put(50.0,40.0){\oval(100.0,80.0)} \put(25.0,0.0){\dashbox(2.0)(0.0,80.0)[]{}} \put(75.0,0.0){\dashbox(2.0)(0.0,80.0)[]{}} \put(8.0,35.0){$T_{1}$} \put(82.0,35.0){$T_{q}$} \end{picture}\quad\begin{picture}(100.0,90.0)(0.0,0.0)\put(50.0,40.0){\oval(100.0,80.0)} \put(0.0,55.0){\dashbox(2.0)(100.0,0.0)[]{}} \put(0.0,25.0){\dashbox(2.0)(100.0,0.0)[]{}} \put(25.0,0.0){\dashbox(2.0)(0.0,80.0)[]{}} \put(75.0,0.0){\dashbox(2.0)(0.0,80.0)[]{}} \put(6.0,62.0){$A_{11}$} \put(77.0,62.0){$A_{1q}$} \put(6.0,8.0){$A_{p1}$} \put(77.0,8.0){$A_{pq}$} \end{picture}\end{gathered}

The Tits product FGFG is the composition obtained by listing the nonempty intersections AijA_{ij} in lexicographic order of the indices (i,j)(i,j):

(10) FG:=(A11,,A1q,,Ap1,,Apq),FG:=(A_{11},\ldots,A_{1q},\ldots,A_{p1},\ldots,A_{pq}),

where it is understood that empty intersections are removed.

The Tits product is associative and unital; it turns the set Σ[I]\Sigma[I] into an ordinary monoid, that we call the Tits monoid. The unit is (I)(I). If |I|2\lvert I\rvert\geq 2, it is not commutative. In fact,

FG=GFF and G admit a common refinement.FG=GF\iff\text{$F$ and $G$ admit a common refinement.}

The following properties hold, for all compositions FF and GG.

  • FFGF\leq FG.

  • FGF\leq G \iff FG=GFG=G.

  • If GHG\leq H, then FGFHFG\leq FH.

  • If CC is a linear order, then CF=CCF=C and FCFC is a linear order.

  • F2=FF^{2}=F and FF¯=FF\overline{F}=F.

  • FGF=FGFGF=FG.

The last property makes the monoid Σ[I]\Sigma[I] a left regular band. Additional properties are given in [6, Proposition 10.1].

Remark.

The product of set compositions may be seen as a special instance of an operation that is defined in more general settings. It was introduced by Tits in the context of Coxeter groups and buildings [74, Section 2.30]. Bland considered it in the context of oriented matroids [16, Section 5, page 62]. It appears in the book by Orlik and Terao on hyperplane arrangements [48, Definition 2.21 and Proposition 2.22]. A good self-contained account is given by Brown [17, Appendices A and B]. The case of set compositions arises from the symmetric group (the Coxeter group of type A), or from the braid hyperplane arrangement.

1.7. Length and factorial

Let F=(I1,,Ik)F=(I_{1},\ldots,I_{k}) be a composition of II. The length of FF is its number of blocks:

(11) l(F):=kl(F):=k

and the factorial is

(12) F!:=i=1k|Ii|!.F!:=\prod_{i=1}^{k}\,\lvert I_{i}\rvert!.

The latter counts the number of ways of endowing each block of FF with a linear order.

Given a set composition GG refining FF, let

(13) l(G/F):=i=1kni,l(G/F):=\prod_{i=1}^{k}n_{i},

where ni:=l(G|Ii)n_{i}:=l(G|_{I_{i}}) is the number of blocks of GG that refine the ii-th block of FF. Let also

(14) (G/F)!=i=1kni!.(G/F)!=\prod_{i=1}^{k}n_{i}!.

In particular, l(G/(I))=l(G)l(G/(I))=l(G) and if GG is a linear order, then (G/F)!=F!(G/F)!=F!.

1.8. Set partitions

A partition XX of II is an unordered collection XX of disjoint nonempty subsets of II such that

I=BXB.I=\bigcup_{B\in X}B.

The subsets BB of II which belong to XX are the blocks of XX. We write XIX\vdash I to indicate that XX is a partition of II.

There is only one partition of the empty set (with no blocks).

Let Π[I]\Pi[I] denote the set of partitions of II.

Given I=STI=S\sqcup T and partitions XX of SS and YY of TT, their union is the partition XYX\sqcup Y of II whose blocks belong to either XX or YY.

Restriction, quasi-shuffles and admissible subsets are defined for set partitions as for set compositions (Section 1.2), disregarding the order among the blocks.

Refinement is defined for set partitions as well: we set XYX\leq Y if each block of XX is obtained by merging a number of blocks of YY. The partition {I}\{I\} is the unique minimum element and the partition of II into singletons is the unique maximum element. We denote it by I^\widehat{I}. The poset Π[I]\Pi[I] is a lattice.

Lengths and factorials for set partitions XYX\leq Y are defined as for set compositions:

l(X):=|X|,X!:=BX|B|!,l(Y/X):=BXnB,(Y/X)!:=BX(nB)!.l(X):=\lvert X\rvert,\quad X!:=\prod_{B\in X}\lvert B\rvert!,\quad l(Y/X):=\prod_{B\in X}n_{B},\quad(Y/X)!:=\prod_{B\in X}(n_{B})!.

Here nB:=l(Y|B)n_{B}:=l(Y|_{B}) is the number of blocks of YY that refine the block BB of XX. In particular, l(Y/{I})=l(Y)l(Y/\{I\})=l(Y) and (I^/X)!=X!(\widehat{I}/X)!=X!.

The cyclic factorial of XX is

(15) X!:=BX(|B|1)!.X\begin{picture}(3.0,5.0)(0.0,0.0)\put(0.0,0.0){{!}}\put(1.5,4.8){\circle{3.0}} \end{picture}:=\prod_{B\in X}(\left\lvert B\rvert-1\right)!.

It counts the number of ways of endowing each block of XX with a cyclic order.

The Möbius function of Π[I]\Pi[I] satisfies

(16) μ(X,Y)=(1)l(Y)l(X)BX(nB1)!\mu(X,Y)=(-1)^{l(Y)-l(X)}\,\prod_{B\in X}(n_{B}-1)!

for XYX\leq Y, with nBn_{B} as above. In particular,

(17) μ({I},X)=(1)l(X)1(l(X)1)!andμ(X,I^)=(1)|I|l(X)X!.\mu(\{I\},X)=(-1)^{l(X)-1}(l(X)-1)!\qquad\text{and}\qquad\mu(X,\widehat{I})=(-1)^{\lvert I\rvert-l(X)}\,X\begin{picture}(3.0,5.0)(0.0,0.0)\put(0.0,0.0){{!}}\put(1.5,4.8){\circle{3.0}} \end{picture}.

1.9. Support

The support of a composition FF of II is the partition suppF\operatorname{supp}F of II obtained by forgetting the order among the blocks: if F=(I1,,Ik)F=(I_{1},\ldots,I_{k}), then

suppF:={I1,,Ik}.\operatorname{supp}F:=\{I_{1},\ldots,I_{k}\}.

The support preserves lengths and factorials:

l(suppF)=l(F),(suppF)!=F!,\displaystyle l(\operatorname{supp}F)=l(F),\qquad(\operatorname{supp}F)!=F!,
l(suppG/suppF)=l(G/F),(suppG/suppF)!=(G/F)!.\displaystyle l(\operatorname{supp}G/\operatorname{supp}F)=l(G/F),\qquad(\operatorname{supp}G/\operatorname{supp}F)!=(G/F)!.

If FF refines GG, then suppF\operatorname{supp}F refines suppG\operatorname{supp}G. Thus, the map supp:Σ[I]Π[I]\operatorname{supp}:\Sigma[I]\to\Pi[I] is order-preserving. Meets are not preserved; for example, (S,T)(T,S)=(I)(S,T)\wedge(T,S)=(I) but supp(S,T)=supp(T,S)\operatorname{supp}(S,T)=\operatorname{supp}(T,S). The support turns the Tits product into the join:

supp(FG)=(suppF)(suppG).\operatorname{supp}(FG)=(\operatorname{supp}F)\vee(\operatorname{supp}G).

We have

(18) GF=GsuppFsuppG.GF=G\iff\operatorname{supp}F\leq\operatorname{supp}G.

Both conditions express the fact that each block of GG is contained in a block of FF.

1.10. The braid arrangement

Compositions of II are in bijection with faces of the braid hyperplane arrangement in I\mathbb{R}^{I}. Partitions of II are in bijection with flats. Refinement of compositions corresponds to inclusion of faces, meet to intersection, linear orders to chambers (top-dimensional faces), and (I)(I) to the central face. When SS and TT are nonempty, the statistic schS,T(F)\operatorname{sch}_{S,T}(F) counts the number of hyperplanes that separate the face (S,T)(S,T) from FF. The factorial F!F! is the number of chambers that contain the face FF. The Tits product FGFG is, in a sense, the face containing FF that is closest to GG.

This geometric perspective is expanded in [6, Chapter 10]. It is also the departing point of far-reaching generalizations of the notions studied in this paper. We intend to make this the subject of future work.

1.11. Decompositions

A decomposition of a finite set II is a finite sequence (I1,,Ik)(I_{1},\ldots,I_{k}) of disjoint subsets of II whose union is II. In this situation, we write

I=I1Ik.I=I_{1}\sqcup\cdots\sqcup I_{k}.

A composition is thus a decomposition in which each subset IiI_{i} is nonempty.

Let Σ^[I]\widehat{\Sigma}[I] denote the set of decompositions of II. If |I|=n\lvert I\rvert=n, there are knk^{n} decompositions into kk subsets. Therefore, the set Σ^[I]\widehat{\Sigma}[I] is countably infinite.

With some care, most of the preceding considerations on compositions extend to decompositions. For I=STI=S\sqcup T, decompositions of SS may be concatenated with decompositions of TT. Let F=(I1,,Ik)F=(I_{1},\ldots,I_{k}) be a decomposition of II. The restriction to SS is the decomposition

F|S:=(SI1,,SIk)F|_{S}:=(S\cap I_{1},\ldots,S\cap I_{k})

(the empty intersections are kept). The set Σ^[I]\widehat{\Sigma}[I] is a monoid under a product defined as in (10) (where now all pqpq intersections are kept). The product is associative and unital. We call it the Tits product on decompositions.

Consider the special case in which II is empty. There is one decomposition

(,,)p,\underbrace{(\emptyset,\ldots,\emptyset)}_{p},

of the empty set for each nonnegative integer pp, with p=0p=0 corresponding to the unique decomposition with no subsets. We denote it by p\emptyset^{p}. Under concatenation,

pq=p+q,\emptyset^{p}\cdot\emptyset^{q}=\emptyset^{p+q},

and under the Tits product

pq=pq.\emptyset^{p}\emptyset^{q}=\emptyset^{pq}.

Thus,

(19) Σ^[]\widehat{\Sigma}[\emptyset]\cong\mathbb{N}

with concatenation corresponding to addition of nonnegative integers and the Tits product to multiplication.

Given a decomposition FF, let F+{F}_{+} denote the composition of II obtained by removing those subsets IiI_{i} which are empty. This operation preserves concatenations, restrictions, and Tits products:

(20) (FG)+=F+G+,(F|S)+=F+|S,(FG)+=F+G+.{(F\cdot G)}_{+}={F}_{+}\cdot{G}_{+},\quad{(F|_{S})}_{+}={F}_{+}|_{S},\quad{(FG)}_{+}={F}_{+}{G}_{+}.

The notion of distance makes sense for decompositions. Since empty subsets do not contribute to (3), we have

(21) dist(F,F)=dist(F+,F+).\operatorname{dist}(F,F^{\prime})=\operatorname{dist}({F}_{+},{F}_{+}^{\prime}).

The notion of refinement for decompositions deserves special attention. Let F=(I1,,Ik)F=(I_{1},\ldots,I_{k}) be a decomposition of a (possibly empty) finite set II. We say that another decomposition GG of II refines FF, and write FGF\leq G, if there exists a sequence γ=(G1,,Gk)\gamma=(G_{1},\ldots,G_{k}), with GjG_{j} a decomposition of IjI_{j}, j=1,,kj=1,\ldots,k, such that G=G1GkG=G_{1}\cdots G_{k} (concatenation). In this situation, we also say that γ\gamma is a splitting of the pair (F,G)(F,G).

If F=0F=\emptyset^{0}, then γ\gamma must be the empty sequence, and hence G=0G=\emptyset^{0}. Thus, the only decomposition that refines 0\emptyset^{0} is itself.

If FF and GG are compositions with FGF\leq G, then (F,G)(F,G) has a unique splitting, in view of (8). In general, however, the factors GjG_{j} cannot be determined from the pair (F,G)(F,G), and thus the splitting γ\gamma is not unique. For example, if

F=2 and G=1,F=\emptyset^{2}\text{ and }G=\emptyset^{1},

we may choose either

(G1=1 and G2=0)or(G1=0 and G2=1)(G_{1}=\emptyset^{1}\text{ and }G_{2}=\emptyset^{0})\quad\text{or}\quad(G_{1}=\emptyset^{0}\text{ and }G_{2}=\emptyset^{1})

to witness that FGF\leq G. Note also that 10\emptyset^{1}\leq\emptyset^{0} (for we may choose G1=0G_{1}=\emptyset^{0}) and in fact

pq\emptyset^{p}\leq\emptyset^{q}

for any p+p\in\mathbb{N}_{+} and qq\in\mathbb{N}.

The preceding also shows that refinement is not an antisymmetric relation. It is reflexive and transitive, though, and thus a preorder on each set Σ^[I]\widehat{\Sigma}[I]. We have, for F0F\neq\emptyset^{0},

FGF+G+.F\leq G\iff{F}_{+}\leq{G}_{+}.

Concatenation defines an order-preserving map

(22) Σ^[I1]××Σ^[Ik]{GΣ^[I]FG},(G1,,Gk)G1Gk.\widehat{\Sigma}[I_{1}]\times\cdots\times\widehat{\Sigma}[I_{k}]\longrightarrow\{G\in\widehat{\Sigma}[I]\mid F\leq G\},\quad(G_{1},\ldots,G_{k})\longmapsto G_{1}\cdots G_{k}.

According to the preceding discussion, the map is surjective but not injective. A sequence γ\gamma in the fiber of GG is a splitting of (F,G)(F,G).

2. Species and Hopf monoids

Joyal’s category of species [34] provides the context for our work. The Cauchy product furnishes it with a braided monoidal structure. We are interested in the resulting algebraic structures, particularly that of a Hopf monoid. This section presents the basic definitions and describes these structures in concrete terms.

2.1. Species

Let 𝗌𝖾𝗍×\mathsf{set^{\times}} denote the category whose objects are finite sets and whose morphisms are bijections. Let 𝕜\Bbbk be a field and let 𝖵𝖾𝖼𝕜\mathsf{Vec}_{\Bbbk} denote the category whose objects are vector spaces over 𝕜\Bbbk and whose morphisms are linear maps.

A (vector) species is a functor

𝗌𝖾𝗍×𝖵𝖾𝖼𝕜.\mathsf{set^{\times}}\longrightarrow\mathsf{Vec}_{\Bbbk}.

Given a species 𝐩\mathbf{p}, its value on a finite set II is denoted by 𝐩[I]\mathbf{p}[I]. Its value on a bijection σ:IJ\sigma:I\to J is denoted

𝐩[σ]:=𝐩[I]𝐩[J].\mathbf{p}[\sigma]:=\mathbf{p}[I]\to\mathbf{p}[J].

We write 𝐩[n]\mathbf{p}[n] for the space 𝐩[{1,,n}]\mathbf{p}[\{1,\ldots,n\}]. The symmetric group Sn\mathrm{S}_{n} acts on 𝐩[n]\mathbf{p}[n] by

σx:=𝐩[σ](x)\sigma\cdot x:=\mathbf{p}[\sigma](x)

for σSn\sigma\in\mathrm{S}_{n}, x𝐩[n]x\in\mathbf{p}[n].

A morphism between species is a natural transformation of functors. Let f:𝐩𝐪f:\mathbf{p}\to\mathbf{q} be a morphism of species. It consists of a collection of linear maps

fI:𝐩[I]𝐪[I],f_{I}:\mathbf{p}[I]\to\mathbf{q}[I],

one for each finite set II, such that the diagram

(23) 𝐩[I]fI𝐩[σ]𝐪[I]𝐪[σ]𝐩[J]fJ𝐪[J]\begin{gathered}\lx@xy@svg{\hbox{\raise 2.5pt\hbox{\kern 20.18951pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&\\&\crcr}}}\ignorespaces{\hbox{\kern-11.56248pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{p}[I]\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 16.87495pt\raise 6.1111pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{f_{I}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 36.88889pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern-20.18951pt\raise-20.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{\mathbf{p}[\sigma]}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 0.0pt\raise-32.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 36.88889pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{q}[I]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 48.29164pt\raise-20.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{\mathbf{q}[\sigma]}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 48.29164pt\raise-32.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-12.22568pt\raise-40.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{p}[J]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 16.46349pt\raise-46.1111pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{f_{J}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 36.22568pt\raise-40.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 36.22568pt\raise-40.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{q}[J]}$}}}}}}}\ignorespaces}}}}\ignorespaces\end{gathered}

commutes, for each bijection σ:IJ\sigma:I\to J. Let 𝖲𝗉𝕜\mathsf{Sp}_{\Bbbk} denote the category of species.

A species 𝐩\mathbf{p} is said to be finite-dimensional if each vector space 𝐩[I]\mathbf{p}[I] is finite-dimensional. We do not impose this condition, although most examples of species we consider are finite-dimensional.

A species 𝐩\mathbf{p} is positive if 𝐩[]=0\mathbf{p}[\emptyset]=0. The positive part of a species 𝐪\mathbf{q} is the (positive) species 𝐪+\mathbf{q}_{+} defined by

𝐪+[I]:={𝐪[I] if I,0 if I=.\mathbf{q}_{+}[I]:=\begin{cases}\mathbf{q}[I]&\text{ if $I\neq\emptyset$,}\\ 0&\text{ if $I=\emptyset$.}\end{cases}

Given a vector space VV, let 𝟏V\mathbf{1}_{V} denote the species defined by

(24) 𝟏V[I]:={Vif I is empty,0otherwise.\mathbf{1}_{V}[I]:=\begin{cases}V&\text{if $I$ is empty,}\\ 0&\text{otherwise.}\end{cases}

2.2. The Cauchy product

Given species 𝐩\mathbf{p} and 𝐪\mathbf{q}, their Cauchy product is the species 𝐩𝐪\mathbf{p}\bm{\cdot}\mathbf{q} defined on a finite set II by

(25) (𝐩𝐪)[I]:=I=ST𝐩[S]𝐪[T].(\mathbf{p}\bm{\cdot}\mathbf{q})[I]:=\bigoplus_{I=S\sqcup T}\mathbf{p}[S]\otimes\mathbf{q}[T].

The direct sum is over all decompositions (S,T)(S,T) of II, or equivalently over all subsets SS of II. On a bijection σ:IJ\sigma:I\to J, the map (𝐩𝐪)[σ](\mathbf{p}\bm{\cdot}\mathbf{q})[\sigma] is defined to be the direct sum of the maps

𝐩[S]𝐪[T]𝐩[σ|S]𝐩[σ|T]𝐩[σ(S)]𝐪[σ(T)]\mathbf{p}[S]\otimes\mathbf{q}[T]\xrightarrow{\mathbf{p}[\sigma|_{S}]\otimes\mathbf{p}[\sigma|_{T}]}\mathbf{p}[\sigma(S)]\otimes\mathbf{q}[\sigma(T)]

over all decompositions (S,T)(S,T) of II, where σ|S\sigma|_{S} denotes the restriction of σ\sigma to SS.

The Cauchy product turns 𝖲𝗉𝕜\mathsf{Sp}_{\Bbbk} into a monoidal category. The unit object is the species 𝟏𝕜\mathbf{1}_{\Bbbk} as in (24).

Let q𝕜q\in\Bbbk be a fixed scalar, possibly zero. Consider the natural transformation

βq:𝐩𝐪𝐪𝐩\beta_{q}\colon\mathbf{p}\bm{\cdot}\mathbf{q}\to\mathbf{q}\bm{\cdot}\mathbf{p}

which on a finite set II is the direct sum of the maps

(26) 𝐩[S]𝐪[T]𝐪[T]𝐩[S],xyq|S||T|yx\mathbf{p}[S]\otimes\mathbf{q}[T]\to\mathbf{q}[T]\otimes\mathbf{p}[S],\qquad x\otimes y\mapsto q^{\lvert S\rvert\lvert T\rvert}y\otimes x

over all decompositions (S,T)(S,T) of II. The notation |S|\lvert S\rvert stands for the cardinality of the set SS.

If qq is nonzero, then βq\beta_{q} is a (strong) braiding for the monoidal category (𝖲𝗉𝕜,)(\mathsf{Sp}_{\Bbbk},\bm{\cdot}). In this case, the inverse braiding is βq1\beta_{q^{-1}}, and βq\beta_{q} is a symmetry if and only if q=±1q=\pm 1. The natural transformation β0\beta_{0} is a lax braiding for (𝖲𝗉𝕜,)(\mathsf{Sp}_{\Bbbk},\bm{\cdot}).

We consider monoids and comonoids in the monoidal category (𝖲𝗉𝕜,)(\mathsf{Sp}_{\Bbbk},\bm{\cdot}), and bimonoids and Hopf monoids in the braided monoidal category (𝖲𝗉𝕜,,βq)(\mathsf{Sp}_{\Bbbk},\bm{\cdot},\beta_{q}). We refer to the latter as qq-bimonoids and qq-Hopf monoids. When q=1q=1, we speak simply of bimonoids and Hopf monoids. We expand on these notions in the following sections.

2.3. Monoids

The structure of a monoid 𝐚\mathbf{a} consists of morphisms of species

μ:𝐚𝐚𝐚andι:𝟏𝕜𝐚\mu:\mathbf{a}\bm{\cdot}\mathbf{a}\to\mathbf{a}\quad\text{and}\quad\iota:\mathbf{1}_{\Bbbk}\to\mathbf{a}

subject to the familiar associative and unit axioms. In view of (25), the morphism μ\mu consists of a collection of linear maps

μS,T:𝐚[S]𝐚[T]𝐚[I],\mu_{S,T}:\mathbf{a}[S]\otimes\mathbf{a}[T]\to\mathbf{a}[I],

one for each finite set II and each decomposition (S,T)(S,T) of II. The unit ι\iota reduces to a linear map

ι:𝕜𝐚[].\iota_{\emptyset}:\Bbbk\to\mathbf{a}[\emptyset].

The collection must satisfy the following naturality condition. For each bijection σ:IJ\sigma:I\to J, the diagram

(27) 𝐚[S]𝐚[T]μS,T𝐚[σ|S]𝐚[σ|T]𝐚[I]𝐚[σ]𝐚[σ(S)]𝐚[σ(T)]μσ(S),σ(T)𝐚[J]\begin{gathered}\lx@xy@svg{\hbox{\raise 2.5pt\hbox{\kern 54.70032pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&\\&\crcr}}}\ignorespaces{\hbox{\kern-26.11626pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{a}[S]\otimes\mathbf{a}[T]\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 53.89716pt\raise 5.49583pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.51805pt\hbox{$\scriptstyle{\mu_{S,T}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 104.2714pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern-54.70032pt\raise-26.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{\mathbf{a}[\sigma|_{S}]\otimes\mathbf{a}[\sigma|_{T}]}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 0.0pt\raise-44.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 104.2714pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{a}[I]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 115.43456pt\raise-26.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{\mathbf{a}[\sigma]}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 115.43456pt\raise-44.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-39.60818pt\raise-52.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{a}[\sigma(S)]\otimes\mathbf{a}[\sigma(T)]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 50.64532pt\raise-57.80139pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.2125pt\hbox{$\scriptstyle{\mu_{\sigma(S),\sigma(T)}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 103.60818pt\raise-52.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 103.60818pt\raise-52.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{a}[J]}$}}}}}}}\ignorespaces}}}}\ignorespaces\end{gathered}

commutes.

The associative axiom states that for each decomposition I=RSTI=R\sqcup S\sqcup T, the diagram

(33) 𝐚[R]𝐚[S]𝐚[T]idμR,SμR,Sid𝐚[R]𝐚[ST]μR,ST𝐚[RS]𝐚[T]μRS,T𝐚[I]\displaystyle\begin{gathered}\lx@xy@svg{\hbox{\raise 2.5pt\hbox{\kern 40.52422pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&\\&\crcr}}}\ignorespaces{\hbox{\kern-40.52422pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{a}[R]\otimes\mathbf{a}[S]\otimes\mathbf{a}[T]\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 47.0244pt\raise 6.41945pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.44167pt\hbox{$\scriptstyle{\mathrm{id}\otimes\mu_{R,S}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 89.52422pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern-35.99965pt\raise-26.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.44167pt\hbox{$\scriptstyle{\mu_{R,S}\otimes\mathrm{id}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 0.0pt\raise-44.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 89.52422pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{a}[R]\otimes\mathbf{a}[S\sqcup T]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 125.03107pt\raise-26.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.51805pt\hbox{$\scriptstyle{\mu_{R,S\sqcup T}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 125.03107pt\raise-44.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-35.50685pt\raise-52.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{a}[R\sqcup S]\otimes\mathbf{a}[T]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 58.45053pt\raise-57.49583pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.51805pt\hbox{$\scriptstyle{\mu_{R\sqcup S,T}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 113.8679pt\raise-52.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 113.8679pt\raise-52.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{a}[I]}$}}}}}}}\ignorespaces}}}}\ignorespaces\end{gathered}

commutes.

The unit axiom states that for each finite set II, the diagrams

(44) 𝐚[I]𝐚[]𝐚[I]μ,I𝕜𝐚[I]ιidI\displaystyle\begin{gathered}\lx@xy@svg{\hbox{\raise 2.5pt\hbox{\kern 11.16316pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&\\&\crcr}}}\ignorespaces{\hbox{\kern-11.16316pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{a}[I]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\hbox{\kern 0.58882pt\raise 0.80826pt\hbox{\lx@xy@drawline@}}\hbox{\kern-0.58882pt\raise-0.80826pt\hbox{\lx@xy@drawline@}}}}\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\hbox{\kern 0.58882pt\raise 0.80826pt\hbox{\lx@xy@drawline@}}\hbox{\kern-0.58882pt\raise-0.80826pt\hbox{\lx@xy@drawline@}}}}\ignorespaces{\hbox{\hbox{\kern 0.58882pt\raise 0.80826pt\hbox{\lx@xy@drawline@}}\hbox{\kern-0.58882pt\raise-0.80826pt\hbox{\lx@xy@drawline@}}}}{\hbox{\kern 47.16316pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{a}[\emptyset]\otimes\mathbf{a}[I]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 18.87608pt\raise 5.6625pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.3514pt\hbox{$\scriptstyle{\mu_{\emptyset,I}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 11.16318pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-3.0pt\raise-52.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 52.45828pt\raise-52.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\Bbbk\otimes\mathbf{a}[I]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 71.39922pt\raise-26.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.62222pt\hbox{$\scriptstyle{\iota_{\emptyset}\otimes\mathrm{id}_{I}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 71.39922pt\raise-8.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces}}}}\ignorespaces\end{gathered} 𝐚[I]𝐚[]μI,𝐚[I]𝐚[I]𝕜idIι\displaystyle\begin{gathered}\lx@xy@svg{\hbox{\raise 2.5pt\hbox{\kern 30.08809pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&\\&\crcr}}}\ignorespaces{\hbox{\kern-24.23605pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{a}[I]\otimes\mathbf{a}[\emptyset]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 31.94896pt\raise 5.6625pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.3514pt\hbox{$\scriptstyle{\mu_{I,\emptyset}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 60.23605pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 60.23605pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{a}[I]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\hbox{\kern 0.58882pt\raise-0.80826pt\hbox{\lx@xy@drawline@}}\hbox{\kern-0.58882pt\raise 0.80826pt\hbox{\lx@xy@drawline@}}}}\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\hbox{\kern 0.58882pt\raise-0.80826pt\hbox{\lx@xy@drawline@}}\hbox{\kern-0.58882pt\raise 0.80826pt\hbox{\lx@xy@drawline@}}}}\ignorespaces{\hbox{\hbox{\kern 0.58882pt\raise-0.80826pt\hbox{\lx@xy@drawline@}}\hbox{\kern-0.58882pt\raise 0.80826pt\hbox{\lx@xy@drawline@}}}}{\hbox{\kern-20.05202pt\raise-52.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{a}[I]\otimes\Bbbk\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern-30.08809pt\raise-26.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.62222pt\hbox{$\scriptstyle{\mathrm{id}_{I}\otimes\iota_{\emptyset}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 0.0pt\raise-8.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 68.39922pt\raise-52.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}\ignorespaces}}}}\ignorespaces\end{gathered}

commute.

We refer to the maps μS,T\mu_{S,T} as the product maps of the monoid 𝐚\mathbf{a}. The following is a consequence of associativity. For any decomposition I=S1SkI=S_{1}\sqcup\cdots\sqcup S_{k} with k2k\geq 2, there is a unique map

(45) 𝐚[S1]𝐚[Sk]μS1,,Sk𝐚[I]\mathbf{a}[S_{1}]\otimes\cdots\otimes\mathbf{a}[S_{k}]\xrightarrow{\mu_{S_{1},\ldots,S_{k}}}\mathbf{a}[I]

obtained by iterating the product maps μS,T\mu_{S,T} in any meaningful way. We refer to (45) as the higher product maps of 𝐚\mathbf{a}. We extend the notation to the cases k=1k=1 and k=0k=0. In the first case, the only subset in the decomposition is II itself, and we let the map (45) be the identity of 𝐚[I]\mathbf{a}[I]. In the second, II is necessarily \emptyset and the decomposition is 0\emptyset^{0}; we let μ0\mu_{\emptyset^{0}} be the unit map ι\iota_{\emptyset}. Thus, the collection of higher product maps contains among others the product maps μS,T\mu_{S,T} as well as the unit map ι\iota_{\emptyset}.

The Cauchy product of two monoids 𝐚1\mathbf{a}_{1} and 𝐚2\mathbf{a}_{2} is again a monoid. The product

(46) μS,T:(𝐚1𝐚2)[S](𝐚1𝐚2)[T](𝐚1𝐚2)[I]\mu_{S,T}:(\mathbf{a}_{1}\bm{\cdot}\mathbf{a}_{2})[S]\otimes(\mathbf{a}_{1}\bm{\cdot}\mathbf{a}_{2})[T]\to(\mathbf{a}_{1}\bm{\cdot}\mathbf{a}_{2})[I]

is the sum of the following maps

(𝐚1[S1]𝐚2[S2])(𝐚1[T1]𝐚2[T2])\textstyle{(\mathbf{a}_{1}[S_{1}]\otimes\mathbf{a}_{2}[S_{2}])\otimes(\mathbf{a}_{1}[T_{1}]\otimes\mathbf{a}_{2}[T_{2}])\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}idβqid\scriptstyle{\mathrm{id}\otimes\beta_{q}\otimes\mathrm{id}}(𝐚1[S1]𝐚1[T1])(𝐚2[S2]𝐚2[T2])\textstyle{(\mathbf{a}_{1}[S_{1}]\otimes\mathbf{a}_{1}[T_{1}])\otimes(\mathbf{a}_{2}[S_{2}]\otimes\mathbf{a}_{2}[T_{2}])\ignorespaces\ignorespaces\ignorespaces\ignorespaces}μS1,T1μS2,T2\scriptstyle{\mu_{S_{1},T_{1}}\otimes\mu_{S_{2},T_{2}}}𝐚1[S1T1]𝐚2[S2T2]\textstyle{\mathbf{a}_{1}[S_{1}\sqcup T_{1}]\otimes\mathbf{a}_{2}[S_{2}\sqcup T_{2}]}

over all S=S1S2S=S_{1}\sqcup S_{2} and T=T1T2T=T_{1}\sqcup T_{2}.

If 𝐚\mathbf{a} is a monoid, then 𝐚[]\mathbf{a}[\emptyset] is an algebra with product μ,\mu_{\emptyset,\emptyset} and unit ι\iota_{\emptyset}.

2.4. Comonoids

Dually, the structure of a comonoid 𝐜\mathbf{c} consists of linear maps

ΔS,T:𝐜[I]𝐜[S]𝐜[T]andϵ:𝐜[]𝕜\Delta_{S,T}:\mathbf{c}[I]\to\mathbf{c}[S]\otimes\mathbf{c}[T]\quad\text{and}\quad\epsilon_{\emptyset}:\mathbf{c}[\emptyset]\to\Bbbk

subject to the coassociative and counit axioms, plus naturality. Given a decomposition I=S1SkI=S_{1}\sqcup\cdots\sqcup S_{k}, there is a unique map

(47) 𝐜[I]ΔS1,,Sk𝐜[S1]𝐜[Sk]\mathbf{c}[I]\xrightarrow{\Delta_{S_{1},\ldots,S_{k}}}\mathbf{c}[S_{1}]\otimes\cdots\otimes\mathbf{c}[S_{k}]

obtained by iterating the coproduct maps ΔS,T\Delta_{S,T}. For k=1k=1 this map is defined to be the identity of 𝐜[I]\mathbf{c}[I], and for k=0k=0 to be the counit map ϵ\epsilon_{\emptyset}.

Comonoids are closed under the Cauchy product. If 𝐜\mathbf{c} is a comonoid, then 𝐜[]\mathbf{c}[\emptyset] is a coalgebra.

2.5. Commutative monoids

A monoid is qq-commutative if the diagram

(48) 𝐚[S]𝐚[T]βqμS,T𝐚[T]𝐚[S]μT,S𝐚[I]\begin{gathered}\lx@xy@svg{\hbox{\raise 2.5pt\hbox{\kern 26.11626pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&\\&&\crcr}}}\ignorespaces{\hbox{\kern-26.11626pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{a}[S]\otimes\mathbf{a}[T]\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 39.02524pt\raise 6.41666pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.44444pt\hbox{$\scriptstyle{\beta_{q}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 66.44258pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 2.06877pt\raise-25.49583pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.51805pt\hbox{$\scriptstyle{\mu_{S,T}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 37.02942pt\raise-32.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}{\hbox{\kern 43.27942pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 66.44258pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{a}[T]\otimes\mathbf{a}[S]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 67.87466pt\raise-25.49583pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.51805pt\hbox{$\scriptstyle{\mu_{T,S}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 55.53723pt\raise-32.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}{\hbox{\kern-3.0pt\raise-40.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 35.11626pt\raise-40.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{a}[I]}$}}}}}}}{\hbox{\kern 89.55884pt\raise-40.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}\ignorespaces}}}}\ignorespaces\end{gathered}

commutes for all decompositions I=STI=S\sqcup T. When q=1q=1, we speak simply of commutative monoids. When q±1q\neq\pm 1, qq-commutative monoids are rare: it follows from (48) that if q2|S||T|1q^{2\lvert S\rvert\lvert T\rvert}\neq 1, then μS,T=0\mu_{S,T}=0.

If 𝐚\mathbf{a} is qq-commutative, then its product μ:𝐚𝐚𝐚\mu:\mathbf{a}\bm{\cdot}\mathbf{a}\to\mathbf{a} is a morphism of monoids.

A comonoid is qq-cocommutative if the dual to diagram (48) commutes.

2.6. Modules, ideals, and quotients

Let 𝐚\mathbf{a} be a monoid. A left 𝐚\mathbf{a}-module is a species 𝐦\mathbf{m} with a structure map

λ:𝐚𝐦𝐦\lambda:\mathbf{a}\bm{\cdot}\mathbf{m}\to\mathbf{m}

which is associative and unital. When made explicit in terms of the components

λS,T:𝐚[S]𝐦[T]𝐦[I],\lambda_{S,T}:\mathbf{a}[S]\otimes\mathbf{m}[T]\to\mathbf{m}[I],

the axioms are similar to (27)–(44).

The free left 𝐚\mathbf{a}-module on a species 𝐩\mathbf{p} is 𝐦:=𝐚𝐩\mathbf{m}:=\mathbf{a}\bm{\cdot}\mathbf{p} with structure map

𝐚𝐦=𝐚𝐚𝐩μid𝐚𝐩=𝐦.\mathbf{a}\bm{\cdot}\mathbf{m}=\mathbf{a}\bm{\cdot}\mathbf{a}\bm{\cdot}\mathbf{p}\xrightarrow{\mu\bm{\cdot}\mathrm{id}}\mathbf{a}\bm{\cdot}\mathbf{p}=\mathbf{m}.

Submonoids, (left, right, and two-sided) ideals, and quotients of 𝐚\mathbf{a} can be defined similarly. Every monoid 𝐚\mathbf{a} has a largest commutative quotient 𝐚ab\mathbf{a}_{\mathrm{ab}}. Depending on the context, we refer to either 𝐚ab\mathbf{a}_{\mathrm{ab}} or the canonical quotient map 𝐚𝐚ab\mathbf{a}\twoheadrightarrow\mathbf{a}_{\mathrm{ab}} as the abelianization of 𝐚\mathbf{a}.

The dual notions exist for comonoids. In particular, every comonoid has a largest cocommutative subcomonoid, its coabelianization.

2.7. The convolution algebra

The set Hom𝖲𝗉𝕜(𝐩,𝐪)\operatorname{Hom}_{\mathsf{Sp}_{\Bbbk}}(\mathbf{p},\mathbf{q}) of morphisms of species is a vector space over 𝕜\Bbbk under

(f+g)I:=fI+gIand(cf)I:=cfI,(f+g)_{I}:=f_{I}+g_{I}\quad\text{and}\quad(c\cdot f)_{I}:=cf_{I},

for f,gHom𝖲𝗉𝕜(𝐩,𝐪)f,g\in\operatorname{Hom}_{\mathsf{Sp}_{\Bbbk}}(\mathbf{p},\mathbf{q}) and c𝕜c\in\Bbbk.

Assume now that 𝐚\mathbf{a} is a monoid and 𝐜\mathbf{c} is a comonoid. The space Hom𝖲𝗉𝕜(𝐜,𝐚)\operatorname{Hom}_{\mathsf{Sp}_{\Bbbk}}(\mathbf{c},\mathbf{a}) is then an algebra over 𝕜\Bbbk under the convolution product:

(49) (fg)I:=I=STμS,T(fSgT)ΔS,T.(f\ast g)_{I}:=\sum_{I=S\sqcup T}\mu_{S,T}(f_{S}\otimes g_{T})\Delta_{S,T}.

The unit is the morphism uu defined by u=ιϵu=\iota\epsilon. Explicitly,

(50) uI:={ιϵ if I=,0 otherwise.u_{I}:=\begin{cases}\iota_{\emptyset}\epsilon_{\emptyset}&\text{ if $I=\emptyset$,}\\ 0&\text{ otherwise.}\end{cases}

If φ:𝐚𝐛\varphi:\mathbf{a}\to\mathbf{b} is a morphism of monoids and ψ:𝐝𝐜\psi:\mathbf{d}\to\mathbf{c} is a morphism of comonoids, then

(51) Hom𝖲𝗉𝕜(ψ,φ):Hom𝖲𝗉𝕜(𝐜,𝐚)Hom𝖲𝗉𝕜(𝐝,𝐛),fφfψ\operatorname{Hom}_{\mathsf{Sp}_{\Bbbk}}(\psi,\varphi):\operatorname{Hom}_{\mathsf{Sp}_{\Bbbk}}(\mathbf{c},\mathbf{a})\to\operatorname{Hom}_{\mathsf{Sp}_{\Bbbk}}(\mathbf{d},\mathbf{b}),\quad f\mapsto\varphi f\psi

is a morphism of algebras.

Let 𝐚i\mathbf{a}_{i} be a monoid and 𝐜i\mathbf{c}_{i} a comonoid, for i=1,2i=1,2. If fi,gi:𝐜i𝐚if_{i},g_{i}:\mathbf{c}_{i}\to\mathbf{a}_{i} are morphisms of species, then

(52) (f1f2)(g1g2)=(f1g1)(f2g2).(f_{1}\bm{\cdot}f_{2})\ast(g_{1}\bm{\cdot}g_{2})=(f_{1}\ast g_{1})\bm{\cdot}(f_{2}\ast g_{2}).

The convolution product on the left is in Hom𝖲𝗉𝕜(𝐜1𝐜2,𝐚1𝐚2)\operatorname{Hom}_{\mathsf{Sp}_{\Bbbk}}(\mathbf{c}_{1}\bm{\cdot}\mathbf{c}_{2},\mathbf{a}_{1}\bm{\cdot}\mathbf{a}_{2}); those on the right in Hom𝖲𝗉𝕜(𝐜i,𝐚i)\operatorname{Hom}_{\mathsf{Sp}_{\Bbbk}}(\mathbf{c}_{i},\mathbf{a}_{i}), i=1,2i=1,2. Here we employ the case q=1q=1 of the Cauchy product of (co)monoids (46).

2.8. Bimonoids and Hopf monoids

A qq-bimonoid 𝐡\mathbf{h} is at the same time a monoid and a comonoid with the two structures linked by axioms (54)–(66) below. They express the requirement that

μ:𝐡𝐡𝐡andι:𝟏𝕜𝐡\mu:\mathbf{h}\bm{\cdot}\mathbf{h}\to\mathbf{h}\quad\text{and}\quad\iota:\mathbf{1}_{\Bbbk}\to\mathbf{h}

are morphisms of comonoids, or equivalently that

Δ:𝐡𝐡𝐡andϵ:𝐡𝟏𝕜\Delta:\mathbf{h}\to\mathbf{h}\bm{\cdot}\mathbf{h}\quad\text{and}\quad\epsilon:\mathbf{h}\to\mathbf{1}_{\Bbbk}

are morphisms of monoids.

Let I=S1S2=T1T2I=S_{1}\sqcup S_{2}=T_{1}\sqcup T_{2} be two decompositions of a finite set and consider the resulting pairwise intersections:

A:=S1T1,B:=S1T2,C:=S2T1,D:=S2T2,A:=S_{1}\cap T_{1},\ B:=S_{1}\cap T_{2},\ C:=S_{2}\cap T_{1},\ D:=S_{2}\cap T_{2},

as illustrated below.

(53) S1S2T1T2ABCD\begin{gathered}\quad\begin{picture}(100.0,90.0)(20.0,0.0)\put(50.0,40.0){\oval(100.0,80.0)} \put(0.0,40.0){\dashbox(2.0)(100.0,0.0)[]{}} \put(45.0,55.0){$S_{1}$} \put(45.0,15.0){$S_{2}$} \end{picture}\quad\begin{picture}(100.0,90.0)(10.0,0.0)\put(50.0,40.0){\oval(100.0,80.0)} \put(50.0,0.0){\dashbox(2.0)(0.0,80.0)[]{}} \put(20.0,35.0){$T_{1}$} \put(70.0,35.0){$T_{2}$} \end{picture}\quad\begin{picture}(100.0,90.0)(0.0,0.0)\put(50.0,40.0){\oval(100.0,80.0)} \put(0.0,40.0){\dashbox(2.0)(100.0,0.0)[]{}} \put(50.0,0.0){\dashbox(2.0)(0.0,80.0)[]{}} \put(20.0,55.0){$A$} \put(70.0,55.0){$B$} \put(20.0,15.0){$C$} \put(70.0,15.0){$D$} \end{picture}\end{gathered}

The compatibility axiom for qq-bimonoids states that diagrams (54)–(66) commute.

(54) 𝐡[A]𝐡[B]𝐡[C]𝐡[D]idβqid𝐡[A]𝐡[C]𝐡[B]𝐡[D]μA,CμB,D𝐡[S1]𝐡[S2]μS1,S2ΔA,BΔC,D𝐡[I]ΔT1,T2𝐡[T1]𝐡[T2]\begin{gathered}\lx@xy@svg{\hbox{\raise 2.5pt\hbox{\kern 57.89194pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&\\&&\crcr}}}\ignorespaces{\hbox{\kern-57.89194pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{h}[A]\otimes\mathbf{h}[B]\otimes\mathbf{h}[C]\otimes\mathbf{h}[D]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 68.26964pt\raise 6.41666pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.44444pt\hbox{$\scriptstyle{\mathrm{id}\otimes\beta_{q}\otimes\mathrm{id}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 119.0169pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 85.45442pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 119.0169pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{h}[A]\otimes\mathbf{h}[C]\otimes\mathbf{h}[B]\otimes\mathbf{h}[D]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 176.90884pt\raise-32.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.17778pt\hbox{$\scriptstyle{\mu_{A,C}\otimes\mu_{B,D}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 176.90884pt\raise-56.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-31.13885pt\raise-64.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{h}[S_{1}]\otimes\mathbf{h}[S_{2}]\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 38.8897pt\raise-69.75972pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.25417pt\hbox{$\scriptstyle{\mu_{S_{1},S_{2}}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 76.89194pt\raise-64.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern-51.71185pt\raise-32.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.40279pt\hbox{$\scriptstyle{\Delta_{A,B}\otimes\Delta_{C,D}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 0.0pt\raise-8.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 76.89194pt\raise-64.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{h}[I]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 106.15717pt\raise-70.64445pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.13889pt\hbox{$\scriptstyle{\Delta_{T_{1},T_{2}}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 145.24565pt\raise-64.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 145.24565pt\raise-64.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{h}[T_{1}]\otimes\mathbf{h}[T_{2}]}$}}}}}}}\ignorespaces}}}}\ignorespaces\end{gathered}
(65) 𝐡[]𝐡[]ϵϵμ,𝕜𝕜𝐡[]ϵ𝕜\displaystyle\begin{gathered}\lx@xy@svg{\hbox{\raise 2.5pt\hbox{\kern 24.94443pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&\\&\\}}}\ignorespaces{\hbox{\kern-24.94443pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{h}[\emptyset]\otimes\mathbf{h}[\emptyset]\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 35.30585pt\raise 5.975pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.35834pt\hbox{$\scriptstyle{\epsilon_{\emptyset}\otimes\epsilon_{\emptyset}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 72.94443pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern-20.73741pt\raise-26.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.3514pt\hbox{$\scriptstyle{\mu_{\emptyset,\emptyset}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 0.0pt\raise-44.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 72.94443pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\Bbbk\otimes\Bbbk}$}}}}}}}{\hbox{\kern-11.47221pt\raise-52.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{h}[\emptyset]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 39.89597pt\raise-57.31528pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.69861pt\hbox{$\scriptstyle{\epsilon_{\emptyset}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 81.83328pt\raise-52.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 81.83328pt\raise-52.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\Bbbk\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\hbox{\kern-1.0pt\raise 0.0pt\hbox{\lx@xy@droprule}}\hbox{\kern 1.0pt\raise 0.0pt\hbox{\lx@xy@droprule}}}}\ignorespaces{}{\hbox{\hbox{\kern-1.0pt\raise 0.0pt\hbox{\lx@xy@droprule}}\hbox{\kern 1.0pt\raise 0.0pt\hbox{\lx@xy@droprule}}}}{\hbox{\hbox{\kern-1.0pt\raise 0.0pt\hbox{\lx@xy@droprule}}\hbox{\kern 1.0pt\raise 0.0pt\hbox{\lx@xy@droprule}}}}\ignorespaces}}}}\ignorespaces\end{gathered} 𝕜ι𝐡[]Δ,𝕜𝕜ιι𝐡[]𝐡[]\displaystyle\begin{gathered}\lx@xy@svg{\hbox{\raise 2.5pt\hbox{\kern 14.66664pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&\\&\crcr}}}\ignorespaces{\hbox{\kern-5.77779pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\Bbbk\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\hbox{\kern 1.0pt\raise 0.0pt\hbox{\lx@xy@droprule}}\hbox{\kern-1.0pt\raise 0.0pt\hbox{\lx@xy@droprule}}}}\ignorespaces{}{\hbox{\hbox{\kern 1.0pt\raise 0.0pt\hbox{\lx@xy@droprule}}\hbox{\kern-1.0pt\raise 0.0pt\hbox{\lx@xy@droprule}}}}{\hbox{\hbox{\kern 1.0pt\raise 0.0pt\hbox{\lx@xy@droprule}}\hbox{\kern-1.0pt\raise 0.0pt\hbox{\lx@xy@droprule}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 34.38826pt\raise 5.31528pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.69861pt\hbox{$\scriptstyle{\iota_{\emptyset}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 76.13885pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 76.13885pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{h}[\emptyset]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 87.61107pt\raise-26.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.23611pt\hbox{$\scriptstyle{\Delta_{\emptyset,\emptyset}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 87.61107pt\raise-44.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-14.66664pt\raise-52.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\Bbbk\otimes\Bbbk\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 25.40154pt\raise-57.975pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.35834pt\hbox{$\scriptstyle{\iota_{\emptyset}\otimes\iota_{\emptyset}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 62.66664pt\raise-52.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 62.66664pt\raise-52.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{h}[\emptyset]\otimes\mathbf{h}[\emptyset]}$}}}}}}}\ignorespaces}}}}\ignorespaces\end{gathered}
(66) 𝐡[]ϵ𝕜ι𝕜\begin{gathered}\lx@xy@svg{\hbox{\raise 2.5pt\hbox{\kern 5.77779pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&\\&&\crcr}}}\ignorespaces{\hbox{\kern-3.0pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 29.77779pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{h}[\emptyset]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 61.41312pt\raise-13.90694pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.69861pt\hbox{$\scriptstyle{\epsilon_{\emptyset}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 76.72221pt\raise-33.06728pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}{\hbox{\kern-5.77779pt\raise-38.44444pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\Bbbk\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\hbox{\kern 0.0pt\raise 1.0pt\hbox{\lx@xy@droprule}}\hbox{\kern 0.0pt\raise-1.0pt\hbox{\lx@xy@droprule}}}}\ignorespaces{}{\hbox{\hbox{\kern 0.0pt\raise 1.0pt\hbox{\lx@xy@droprule}}\hbox{\kern 0.0pt\raise-1.0pt\hbox{\lx@xy@droprule}}}}{\hbox{\hbox{\kern 0.0pt\raise 1.0pt\hbox{\lx@xy@droprule}}\hbox{\kern 0.0pt\raise-1.0pt\hbox{\lx@xy@droprule}}}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 6.52994pt\raise-15.21555pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.69861pt\hbox{$\scriptstyle{\iota_{\emptyset}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 32.66406pt\raise-8.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}{\hbox{\kern 38.25pt\raise-38.44444pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 76.72221pt\raise-38.44444pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\Bbbk}$}}}}}}}\ignorespaces}}}}\ignorespaces\end{gathered}

If 𝐡\mathbf{h} is a qq-bimonoid, then 𝐡[]\mathbf{h}[\emptyset] is an ordinary bialgebra with structure maps μ,\mu_{\emptyset,\emptyset}, ι\iota_{\emptyset}, Δ,\Delta_{\emptyset,\emptyset} and ϵ\epsilon_{\emptyset}.

A qq-Hopf monoid is a qq-bimonoid along with a morphism of species s:𝐡𝐡\operatorname{\textsc{s}}\colon\mathbf{h}\to\mathbf{h} (the antipode) which is the inverse of the identity map in the convolution algebra End𝖲𝗉𝕜(𝐡)\operatorname{End}_{\mathsf{Sp}_{\Bbbk}}(\mathbf{h}) of Section 2.7. This requires the existence of an antipode

s:𝐡[]𝐡[]\operatorname{\textsc{s}}_{\emptyset}:\mathbf{h}[\emptyset]\to\mathbf{h}[\emptyset]

for the bialgebra 𝐡[]\mathbf{h}[\emptyset], and of a linear map

sI:𝐡[I]𝐡[I]\operatorname{\textsc{s}}_{I}\colon\mathbf{h}[I]\to\mathbf{h}[I]

for each nonempty finite set II such that

(67) ST=IμS,T(idSsT)ΔS,T=0andST=IμS,T(sSidT)ΔS,T=0.\sum_{S\sqcup T=I}\mu_{S,T}(\mathrm{id}_{S}\otimes\operatorname{\textsc{s}}_{T})\Delta_{S,T}=0\quad\text{and}\quad\sum_{S\sqcup T=I}\mu_{S,T}(\operatorname{\textsc{s}}_{S}\otimes\mathrm{id}_{T})\Delta_{S,T}=0.
Proposition 1.

Let 𝐡\mathbf{h} be a qq-bimonoid.

  1. (i)

    Suppose 𝐡\mathbf{h} is a qq-Hopf monoid with antipode s\operatorname{\textsc{s}}. Then 𝐡[]\mathbf{h}[\emptyset] is a Hopf algebra with antipode s\operatorname{\textsc{s}}_{\emptyset}.

  2. (ii)

    Suppose 𝐡[]\mathbf{h}[\emptyset] is a Hopf algebra and let s0\operatorname{\textsc{s}}_{0} denote its antipode. Then 𝐡\mathbf{h} is a qq-Hopf monoid with antipode s\operatorname{\textsc{s}} given by

    s:=s0\operatorname{\textsc{s}}_{\emptyset}:=\operatorname{\textsc{s}}_{0}

    and

    (68) sI:=T1Tk=ITik1(1)kμ,T1,,,,Tk,(s0idT1s0s0idTks0)Δ,T1,,,,Tk,\operatorname{\textsc{s}}_{I}:=\!\!\sum_{\begin{subarray}{c}T_{1}\sqcup\dots\sqcup T_{k}=I\\ T_{i}\neq\emptyset\ k\geq 1\end{subarray}}\!\!\!(-1)^{k}\mu_{\emptyset,T_{1},\emptyset,\dots,\emptyset,T_{k},\emptyset}\bigl{(}\operatorname{\textsc{s}}_{0}\otimes\mathrm{id}_{T_{1}}\!\otimes\operatorname{\textsc{s}}_{0}\otimes\dots\otimes\operatorname{\textsc{s}}_{0}\otimes\mathrm{id}_{T_{k}}\!\otimes\operatorname{\textsc{s}}_{0}\bigr{)}\Delta_{\emptyset,T_{1},\emptyset,\dots,\emptyset,T_{k},\emptyset}

    for each nonempty finite set II.

The sum is over all compositions of II. A proof of Proposition 1 is given in [6, Proposition 8.10], when q=1q=1. The same argument yields the general case.

Thus, a qq-Hopf monoid 𝐡\mathbf{h} is equivalent to a qq-bimonoid 𝐡\mathbf{h} for which 𝐡[]\mathbf{h}[\emptyset] is a Hopf algebra.

Proposition 2.

Let 𝐡\mathbf{h} be a qq-Hopf monoid with antipode s\operatorname{\textsc{s}} and I=STI=S\sqcup T. Then the diagram

(69) 𝐡[S]𝐡[T]sSsTμS,T𝐡[S]𝐡[T]βq𝐡[T]𝐡[S]μT,S𝐡[I]sI𝐡[I]\begin{gathered}\lx@xy@svg{\hbox{\raise 2.5pt\hbox{\kern 26.93958pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&\\&&\crcr}}}\ignorespaces{\hbox{\kern-26.93958pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{h}[S]\otimes\mathbf{h}[T]\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 29.36432pt\raise 5.66946pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.6639pt\hbox{$\scriptstyle{\operatorname{\textsc{s}}_{S}\otimes\operatorname{\textsc{s}}_{T}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 60.93958pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern-22.59335pt\raise-20.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.51805pt\hbox{$\scriptstyle{\mu_{S,T}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 0.0pt\raise-32.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 60.93958pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{h}[S]\otimes\mathbf{h}[T]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 124.56454pt\raise 6.41666pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.44444pt\hbox{$\scriptstyle{\beta_{q}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 148.81873pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 148.81873pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{h}[T]\otimes\mathbf{h}[S]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 175.7583pt\raise-20.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.51805pt\hbox{$\scriptstyle{\mu_{T,S}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 175.7583pt\raise-32.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-11.56248pt\raise-40.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{h}[I]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 81.28642pt\raise-45.00972pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.00417pt\hbox{$\scriptstyle{\operatorname{\textsc{s}}_{I}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 164.19582pt\raise-40.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 84.87915pt\raise-40.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 164.19582pt\raise-40.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{h}[I]}$}}}}}}}\ignorespaces}}}}\ignorespaces\end{gathered}

commutes.

Thus, the antipode reverses products (the reversal involves the braiding βq\beta_{q}). Similarly, it reverses coproducts. These are general results for Hopf monoids in braided monoidal categories (see for instance [6, Proposition 1.22]) and hence they apply to qq-Hopf monoids. Other such results [6, Section 1.2] yield the following.

  • If 𝐡\mathbf{h} is a qq-(co)commutative qq-Hopf monoid, then its antipode is an involution: s2=id\operatorname{\textsc{s}}^{2}=\mathrm{id}.

  • Let 𝐡\mathbf{h} and 𝐤\mathbf{k} be qq-Hopf monoids. A morphism of qq-bimonoids 𝐡𝐤\mathbf{h}\to\mathbf{k} necessarily commutes with the antipodes, and is thus a morphism of qq-Hopf monoids.

  • Let 𝐡\mathbf{h} be a qq-Hopf monoid and 𝐚\mathbf{a} a monoid. If f:𝐡𝐚f:\mathbf{h}\to\mathbf{a} is a morphism of monoids, then it is invertible under convolution and its inverse is fsf\operatorname{\textsc{s}}. If 𝐚\mathbf{a} is commutative, then the set of morphisms of monoids from 𝐡\mathbf{h} to 𝐚\mathbf{a} is a group under convolution.

  • The dual statement for comonoid morphisms f:𝐜𝐡f:\mathbf{c}\to\mathbf{h} holds. The inverse of ff is sf\operatorname{\textsc{s}}f.

A result of Schauenburg [64, Corollary 5] implies the following, confirming the earlier observation that qq-(co)commutativity is rare when q±1q\neq\pm 1.

  • If 𝐡\mathbf{h} is a qq-(co)commutative qq-Hopf monoid and q2|I|1q^{2\lvert I\rvert}\neq 1, then 𝐡[I]=0\mathbf{h}[I]=0.

2.9. Lie monoids

We consider Lie monoids in the symmetric monoidal category (𝖲𝗉𝕜,,β)(\mathsf{Sp}_{\Bbbk},\bm{\cdot},\beta). A Lie monoid structure on a species 𝐠\mathbf{g} consists of a morphism of species

𝐠𝐠𝐠\mathbf{g}\bm{\cdot}\mathbf{g}\to\mathbf{g}

subject to antisymmetry and the Jacobi identity. The morphism consists of a collection of linear maps

𝐠[S]𝐠[T]𝐠[I]xy[x,y]S,T\mathbf{g}[S]\otimes\mathbf{g}[T]\to\mathbf{g}[I]\qquad x\otimes y\mapsto[x,y]_{S,T}

one for each finite set II and each decomposition I=STI=S\sqcup T, satisfying the naturality condition (27) (with [x,y]S,T[x,y]_{S,T} replacing μS,T(xy)\mu_{S,T}(x\otimes y)). We refer to [x,y]S,T[x,y]_{S,T} as the Lie bracket of x𝐠[S]x\in\mathbf{g}[S] and y𝐠[T]y\in\mathbf{g}[T].

The antisymmetry relation states that

(70) [x,y]S,T+[y,x]T,S=0[x,y]_{S,T}+[y,x]_{T,S}=0

for any decomposition I=STI=S\sqcup T, x𝐠[S]x\in\mathbf{g}[S], and y𝐠[T]y\in\mathbf{g}[T].

The Jacobi identity states that

(71) [[x,y]R,S,z]RS,T+[[z,x]T,R,y]TR,S+[[y,z]S,T,x]ST,R=0[[x,y]_{R,S},z]_{R\sqcup S,T}+[[z,x]_{T,R},y]_{T\sqcup R,S}+[[y,z]_{S,T},x]_{S\sqcup T,R}=0

for any decomposition I=RSTI=R\sqcup S\sqcup T, x𝐠[R]x\in\mathbf{g}[R], y𝐠[S]y\in\mathbf{g}[S], and z𝐠[T]z\in\mathbf{g}[T].

Every monoid (𝐚,μ)(\mathbf{a},\mu) gives rise to a Lie monoid (𝐚,[,])(\mathbf{a},[\,,\,]) with Lie bracket defined by

(72) [x,y]S,T:=μS,T(xy)μT,S(yx).[x,y]_{S,T}:=\mu_{S,T}(x\otimes y)-\mu_{T,S}(y\otimes x).

We refer to (72) as the commutator bracket. This does not require the monoid 𝐚\mathbf{a} to possess a unit. If 𝐚\mathbf{a} is commutative, then the commutator bracket is zero.

2.10. Algebras as monoids

Let VV be a vector space over 𝕜\Bbbk and 𝟏V\mathbf{1}_{V} the species defined in (24). If VV is an ordinary algebra with unit ι:𝕜V\iota:\Bbbk\to V and product μ:VVV\mu:V\otimes V\to V, then 𝟏V\mathbf{1}_{V} is a monoid with ι:=ι\iota_{\emptyset}:=\iota, μ,:=μ\mu_{\emptyset,\emptyset}:=\mu and all other μS,T=0\mu_{S,T}=0. Moreover, 𝟏V[]=V\mathbf{1}_{V}[\emptyset]=V as algebras.

In the same manner, if VV is a coalgebra, bialgebra, Hopf algebra, or Lie algebra, then 𝟏V\mathbf{1}_{V} is a comonoid, bimonoid, Hopf monoid, or Lie monoid.

There is another way to associate a species to a vector space VV. Define 𝐔V\mathbf{U}_{V} by

(73) 𝐔V[I]:=V\mathbf{U}_{V}[I]:=V

for every finite set II. On a bijection σ:IJ\sigma:I\to J, 𝐔V[σ]\mathbf{U}_{V}[\sigma] is the identity of VV. If VV is an algebra over 𝕜\Bbbk, then 𝐔V\mathbf{U}_{V} is a monoid with ι:=ι\iota_{\emptyset}:=\iota and μS,T:=μ\mu_{S,T}:=\mu for all I=STI=S\sqcup T. If VV is a coalgebra, bialgebra, Hopf algebra, or Lie algebra, then 𝐔V\mathbf{U}_{V} is a comonoid, bimonoid, Hopf monoid, or Lie monoid. When VV is a Hopf algebra with antipode s\operatorname{\textsc{s}}, the antipode of 𝐔V\mathbf{U}_{V} is simply sI:=(1)|I|s\operatorname{\textsc{s}}_{I}:=(-1)^{\lvert I\rvert}\operatorname{\textsc{s}}. This follows from either (67) or (68).

3. The Hadamard product

Multiplying species term by term yields the Hadamard product. The possibility of building Hopf monoids by means of this operation is an important feature of the category of species. We study this and related constructions in this section.

3.1. Species under Hadamard product

The Hadamard product of two species 𝐩\mathbf{p} and 𝐪\mathbf{q} is the species 𝐩×𝐪\mathbf{p}\times\mathbf{q} defined on a finite set II by

(𝐩×𝐪)[I]:=𝐩[I]𝐪[I],(\mathbf{p}\times\mathbf{q})[I]:=\mathbf{p}[I]\otimes\mathbf{q}[I],

and on bijections similarly. This operation turns 𝖲𝗉𝕜\mathsf{Sp}_{\Bbbk} into a symmetric monoidal category. The unit object is the exponential species 𝐄\mathbf{E} defined by

(74) 𝐄[I]:=𝕜\mathbf{E}[I]:=\Bbbk

for all II. The symmetry is simply

𝐩[I]𝐪[I]𝐪[I]𝐩[I],xyyx.\mathbf{p}[I]\otimes\mathbf{q}[I]\to\mathbf{q}[I]\otimes\mathbf{p}[I],\qquad x\otimes y\mapsto y\otimes x.

(Comparing with (73), we see that 𝐄=𝐔𝕜\mathbf{E}=\mathbf{U}_{\Bbbk}. In particular, 𝐄\mathbf{E} is a Hopf monoid. Its structure is further studied in Section 9.1.)

The Hadamard product of two monoids 𝐚\mathbf{a} and 𝐛\mathbf{b} is again a monoid. The product of 𝐚×𝐛\mathbf{a}\times\mathbf{b} is defined by

(𝐚×𝐛)[S](𝐚×𝐛)[T]\textstyle{(\mathbf{a}\times\mathbf{b})[S]\otimes(\mathbf{a}\times\mathbf{b})[T]\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}μS,T\scriptstyle{\mu_{S,T}}(𝐚×𝐛)[I]\textstyle{(\mathbf{a}\times\mathbf{b})[I]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}(𝐚[S]𝐛[S])(𝐚[T]𝐛[T])\textstyle{(\mathbf{a}[S]\otimes\mathbf{b}[S])\otimes(\mathbf{a}[T]\otimes\mathbf{b}[T])\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\cong}(𝐚[S]𝐚[T])(𝐛[S]𝐛[T])\textstyle{(\mathbf{a}[S]\otimes\mathbf{a}[T])\otimes(\mathbf{b}[S]\otimes\mathbf{b}[T])\ignorespaces\ignorespaces\ignorespaces\ignorespaces}μS,TμS,T\scriptstyle{\mu_{S,T}\otimes\mu_{S,T}}𝐚[I]𝐛[I],\textstyle{\mathbf{a}[I]\otimes\mathbf{b}[I],}

where the first map on the bottom simply switches the middle two tensor factors. If 𝐚\mathbf{a} and 𝐛\mathbf{b} are commutative, then so is 𝐚×𝐛\mathbf{a}\times\mathbf{b}. Similar statements hold for comonoids.

Proposition 3.

Let p,q𝕜p,q\in\Bbbk be arbitrary scalars. If 𝐡\mathbf{h} is a pp-bimonoid and 𝐤\mathbf{k} is a qq-bimonoid, then 𝐡×𝐤\mathbf{h}\times\mathbf{k} is a pqpq-bimonoid.

In particular, if 𝐡\mathbf{h} and 𝐤\mathbf{k} are bimonoids (p=q=1p=q=1), then so is 𝐡×𝐤\mathbf{h}\times\mathbf{k}.

A proof of Proposition 3 is given in [6, Corollary 9.6]. The analogous statement for Hopf monoids holds as well, in view of item (ii) in Proposition 1 and the fact that (𝐡×𝐤)[](\mathbf{h}\times\mathbf{k})[\emptyset] is the tensor product of the Hopf algebras 𝐡[]\mathbf{h}[\emptyset] and 𝐤[]\mathbf{k}[\emptyset]. However, there is no simple formula expressing the antipode of 𝐡×𝐤\mathbf{h}\times\mathbf{k} in terms of those of 𝐡\mathbf{h} and 𝐤\mathbf{k}.

3.2. Internal Hom

Given species 𝐩\mathbf{p} and 𝐪\mathbf{q}, let (𝐩,𝐪)\mathcal{H}(\mathbf{p},\mathbf{q}) be the species defined by

(𝐩,𝐪)[I]:=Hom𝕜(𝐩[I],𝐪[I]).\mathcal{H}(\mathbf{p},\mathbf{q})[I]:=\operatorname{Hom}_{\Bbbk}(\mathbf{p}[I],\mathbf{q}[I]).

The latter is the space of all linear maps from the space 𝐩[I]\mathbf{p}[I] to the space 𝐪[I]\mathbf{q}[I]. If σ:IJ\sigma:I\to J is a bijection and f(𝐩,𝐪)[I]f\in\mathcal{H}(\mathbf{p},\mathbf{q})[I], then

(𝐩,𝐪)[σ](f)(𝐩,𝐪)[J]\mathcal{H}(\mathbf{p},\mathbf{q})[\sigma](f)\in\mathcal{H}(\mathbf{p},\mathbf{q})[J]

is defined as the composition

(75) 𝐩[J]𝐩[σ1]𝐩[I]𝑓𝐪[I]𝐪[σ]𝐪[J].\mathbf{p}[J]\xrightarrow{\mathbf{p}[\sigma^{-1}]}\mathbf{p}[I]\xrightarrow{f}\mathbf{q}[I]\xrightarrow{\mathbf{q}[\sigma]}\mathbf{q}[J].

Note that there is a canonical isomorphism

𝐪(𝐄,𝐪).\mathbf{q}\cong\mathcal{H}(\mathbf{E},\mathbf{q}).

For species 𝐩\mathbf{p}, 𝐪\mathbf{q} and 𝐫\mathbf{r}, there is a natural isomorphism

(76) Hom𝖲𝗉𝕜(𝐩×𝐪,𝐫)Hom𝖲𝗉𝕜(𝐩,(𝐪,𝐫)).\operatorname{Hom}_{\mathsf{Sp}_{\Bbbk}}(\mathbf{p}\times\mathbf{q},\mathbf{r})\cong\operatorname{Hom}_{\mathsf{Sp}_{\Bbbk}}\bigl{(}\mathbf{p},\mathcal{H}(\mathbf{q},\mathbf{r})\bigr{)}.

This says that the functor \mathcal{H} is the internal Hom in the symmetric monoidal category (𝖲𝗉𝕜,×)(\mathsf{Sp}_{\Bbbk},\times) of species under Hadamard product. There is a canonical morphism

(77) (𝐩1,𝐪1)×(𝐩2,𝐪2)(𝐩1×𝐩2,𝐪1×𝐪2);\mathcal{H}(\mathbf{p}_{1},\mathbf{q}_{1})\times\mathcal{H}(\mathbf{p}_{2},\mathbf{q}_{2})\to\mathcal{H}(\mathbf{p}_{1}\times\mathbf{p}_{2},\mathbf{q}_{1}\times\mathbf{q}_{2});

it is an isomorphism if 𝐩1\mathbf{p}_{1} and 𝐩2\mathbf{p}_{2} are finite-dimensional.

We let

(𝐩):=(𝐩,𝐩).\mathcal{E}(\mathbf{p}):=\mathcal{H}(\mathbf{p},\mathbf{p}).

Let 𝐜\mathbf{c} be a comonoid and 𝐚\mathbf{a} a monoid. Then (𝐜,𝐚)\mathcal{H}(\mathbf{c},\mathbf{a}) is a monoid as follows. Given f(𝐜,𝐚)[S]f\in\mathcal{H}(\mathbf{c},\mathbf{a})[S] and g(𝐜,𝐚)[T]g\in\mathcal{H}(\mathbf{c},\mathbf{a})[T], their product

μS,T(fg)(𝐜,𝐚)[I]\mu_{S,T}(f\otimes g)\in\mathcal{H}(\mathbf{c},\mathbf{a})[I]

is the composition

(78) 𝐜[I]ΔS,T𝐜[S]𝐜[T]fg𝐚[S]𝐚[T]μS,T𝐚[I].\mathbf{c}[I]\xrightarrow{\Delta_{S,T}}\mathbf{c}[S]\otimes\mathbf{c}[T]\xrightarrow{f\otimes g}\mathbf{a}[S]\otimes\mathbf{a}[T]\xrightarrow{\mu_{S,T}}\mathbf{a}[I].

The unit map ι:𝕜(𝐜,𝐚)[]\iota_{\emptyset}:\Bbbk\to\mathcal{H}(\mathbf{c},\mathbf{a})[\emptyset] sends 1𝕜1\in\Bbbk to the composition

𝐜[]ϵ𝕜ι𝐜[].\mathbf{c}[\emptyset]\xrightarrow{\epsilon_{\emptyset}}\Bbbk\xrightarrow{\iota_{\emptyset}}\mathbf{c}[\emptyset].

Associativity and unitality for (𝐜,𝐚)\mathcal{H}(\mathbf{c},\mathbf{a}) follow from (co)associativity and (co)unitality of 𝐚\mathbf{a} (and 𝐜\mathbf{c}).

There is a connection between (78) and the convolution product (49); this is explained in Section 12.11.

Given f(𝐚,𝐜)[I]f\in\mathcal{H}(\mathbf{a},\mathbf{c})[I], let Δ~(f)\tilde{\Delta}(f) be the composition

(79) 𝐚[S]𝐚[T]μS,T𝐚[I]𝑓𝐜[I]ΔS,T𝐜[S]𝐜[T].\mathbf{a}[S]\otimes\mathbf{a}[T]\xrightarrow{\mu_{S,T}}\mathbf{a}[I]\xrightarrow{f}\mathbf{c}[I]\xrightarrow{\Delta_{S,T}}\mathbf{c}[S]\otimes\mathbf{c}[T].

Assume now that 𝐚\mathbf{a} is finite-dimensional. We then have a canonical isomorphism

Hom𝕜(𝐚[S],𝐜[S])Hom𝕜(𝐚[T],𝐜[T])Hom𝕜(𝐚[S]𝐚[T],𝐜[S]𝐜[T]).\operatorname{Hom}_{\Bbbk}(\mathbf{a}[S],\mathbf{c}[S])\otimes\operatorname{Hom}_{\Bbbk}(\mathbf{a}[T],\mathbf{c}[T])\xrightarrow{\cong}\operatorname{Hom}_{\Bbbk}(\mathbf{a}[S]\otimes\mathbf{a}[T],\mathbf{c}[S]\otimes\mathbf{c}[T]).

Let

ΔS,T(f)(𝐚,𝐜)[S](𝐚,𝐜)[T]\Delta_{S,T}(f)\in\mathcal{H}(\mathbf{a},\mathbf{c})[S]\otimes\mathcal{H}(\mathbf{a},\mathbf{c})[T]

be the preimage of Δ~(f)\tilde{\Delta}(f) under this isomorphism. Also, if I=I=\emptyset, let ϵ(f)𝕜\epsilon_{\emptyset}(f)\in\Bbbk be the preimage of the composition

𝕜ι𝐚[]𝑓𝐜[]ϵ𝕜\Bbbk\xrightarrow{\iota_{\emptyset}}\mathbf{a}[\emptyset]\xrightarrow{f}\mathbf{c}[\emptyset]\xrightarrow{\epsilon_{\emptyset}}\Bbbk

under the canonical isomorphism

𝕜Hom𝕜(𝕜,𝕜).\Bbbk\xrightarrow{\cong}\operatorname{Hom}_{\Bbbk}(\Bbbk,\Bbbk).

With these definitions, (𝐚,𝐜)\mathcal{H}(\mathbf{a},\mathbf{c}) is a comonoid.

Now let 𝐡\mathbf{h} be a pp-bimonoid and 𝐤\mathbf{k} a qq-bimonoid. Suppose 𝐡\mathbf{h} is finite-dimensional. Combining the preceding constructions yields a pqpq-bimonoid structure on (𝐡,𝐤)\mathcal{H}(\mathbf{h},\mathbf{k}). In particular, for any pp-bimonoid 𝐡\mathbf{h}, we obtain a p2p^{2}-bimonoid structure on (𝐡)\mathcal{E}(\mathbf{h}).

The analogous statements for Hopf monoids hold.

3.3. Duality

The dual of a species 𝐩\mathbf{p} is the species 𝐩\mathbf{p}^{*} defined by

𝐩[I]:=𝐩[I].\mathbf{p}^{*}[I]:=\mathbf{p}[I]^{*}.

Equivalently,

𝐩=(𝐩,𝐄).\mathbf{p}^{*}=\mathcal{H}(\mathbf{p},\mathbf{E}).

Since 𝐄\mathbf{E} is a Hopf monoid, the considerations of Section 3.2 apply. Thus, the dual of a comonoid 𝐜\mathbf{c} is a monoid with product

𝐜[S]𝐜[T]=𝐜[S]𝐜[T](𝐜[S]𝐜[T])(ΔS,T)𝐜[I]=𝐜[I],\mathbf{c}^{*}[S]\otimes\mathbf{c}^{*}[T]=\mathbf{c}[S]^{*}\otimes\mathbf{c}[T]^{*}\to\bigl{(}\mathbf{c}[S]\otimes\mathbf{c}[T]\bigr{)}^{*}\xrightarrow{(\Delta_{S,T})^{*}}\mathbf{c}[I]^{*}=\mathbf{c}^{*}[I],

where the first arrow is canonical. The dual of a finite-dimensional monoid (qq-bimonoid, qq-Hopf monoid) is a comonoid (qq-bimonoid, qq-Hopf monoid).

A qq-bimonoid (or qq-Hopf monoid) 𝐡\mathbf{h} is called self-dual if 𝐡𝐡\mathbf{h}\cong\mathbf{h}^{*} as qq-bimonoids. In general, such an isomorphism is not unique.

There are canonical morphisms of species

𝐩×𝐪(𝐩×𝐪)and𝐩×𝐪(𝐩,𝐪)\mathbf{p}^{*}\times\mathbf{q}^{*}\to(\mathbf{p}\times\mathbf{q})^{*}\qquad\text{and}\qquad\mathbf{p}^{*}\times\mathbf{q}\to\mathcal{H}(\mathbf{p},\mathbf{q})

which are isomorphisms if either 𝐩\mathbf{p} or 𝐪\mathbf{q} is finite-dimensional. These are special cases of (77). These maps preserve the (co)monoid structures discussed in Sections 3.1 and 3.2 (when present). In particular, if 𝐡\mathbf{h} is a pp-bimonoid and 𝐤\mathbf{k} a qq-bimonoid, the map

𝐡×𝐤(𝐡,𝐤)\mathbf{h}^{*}\times\mathbf{k}\to\mathcal{H}(\mathbf{h},\mathbf{k})

is a morphism of pqpq-bimonoids. If 𝐡\mathbf{h} is finite-dimensional, the isomorphism

𝐡×𝐡(𝐡)\mathbf{h}^{*}\times\mathbf{h}\to\mathcal{E}(\mathbf{h})

implies that the p2p^{2}-bimonoid (𝐡)\mathcal{E}(\mathbf{h}) is self-dual.

4. Set species and set-theoretic Hopf monoids

Many naturally-occurring Hopf monoids have a canonical basis indexed by combinatorial objects. Let 𝐡\mathbf{h} be such a Hopf monoid and suppose that the product and coproduct maps of 𝐡\mathbf{h} preserve the canonical basis. In this situation, the structure of 𝐡\mathbf{h} can be described in a purely set-theoretic manner, leading to the notion of a set-theoretic Hopf monoid. We discuss these objects and explain how they relate to Hopf monoids via linearization.

4.1. Set species

Let 𝖲𝖾𝗍\mathsf{Set} denote the category whose objects are arbitrary sets and whose morphisms are arbitrary functions. A set species is a functor

𝗌𝖾𝗍×𝖲𝖾𝗍,\mathsf{set^{\times}}\longrightarrow\mathsf{Set},

where the category 𝗌𝖾𝗍×\mathsf{set^{\times}} is as in Section 2.1. A morphism between set species is a natural transformation. Let 𝖲𝗉\mathsf{Sp} denote the category of set species.

A set species P\mathrm{P} is finite if the set P[I]\mathrm{P}[I] is finite for each finite set II. It is positive if P[]=\mathrm{P}[\emptyset]=\emptyset.

The Cauchy product of set species P\mathrm{P} and Q\mathrm{Q} is the set species PQ\mathrm{P}\bm{\cdot}\mathrm{Q} defined by

(80) (PQ)[I]:=I=STP[S]×Q[T],\displaystyle(\mathrm{P}\bm{\cdot}\mathrm{Q})[I]:=\coprod_{I=S\sqcup T}\mathrm{P}[S]\times\mathrm{Q}[T],

where ×\times denotes the cartesian product of sets. The Cauchy product turns 𝖲𝗉\mathsf{Sp} into a monoidal category. The unit object is the set species 11 given by

1[I]\displaystyle 1[I] :={{}if I is empty,otherwise.\displaystyle:=\begin{cases}\{\emptyset\}&\text{if $I$ is empty,}\\ \emptyset&\text{otherwise.}\end{cases}

The set {}\{\emptyset\} is a singleton.

The natural transformation PQQP\mathrm{P}\bm{\cdot}\mathrm{Q}\to\mathrm{Q}\bm{\cdot}\mathrm{P} obtained by interchanging the factors in the cartesian product is a symmetry.

4.2. Set-theoretic monoids and comonoids

Monoids in (𝖲𝗉,)(\mathsf{Sp},\bm{\cdot}) can be described in terms similar to those in Section 2.3: the structure involves a collection of maps

μS,T:P[S]×P[T]P[I],\mu_{S,T}:\mathrm{P}[S]\times\mathrm{P}[T]\to\mathrm{P}[I],

one for each decomposition I=STI=S\sqcup T, and a map ι:{}P[]\iota_{\emptyset}:\{\emptyset\}\to\mathrm{P}[\emptyset], subject to axioms analogous to (33) and (44). We refer to these objects as set-theoretic monoids.

Given xP[S]x\in\mathrm{P}[S] and yP[T]y\in\mathrm{P}[T], let

(81) xyP[I]x\cdot y\in\mathrm{P}[I]

denote the image of (x,y)(x,y) under μS,T\mu_{S,T}. Also, let eP[]e\in\mathrm{P}[\emptyset] denote the image of \emptyset under ι\iota_{\emptyset}. The axioms for a set-theoretic monoid P\mathrm{P} then acquire the familiar form

(82) x(yz)=(xy)zx\cdot(y\cdot z)=(x\cdot y)\cdot z

for all decompositions I=RSTI=R\sqcup S\sqcup T and xP[R]x\in\mathrm{P}[R], yP[S]y\in\mathrm{P}[S], zP[T]z\in\mathrm{P}[T], and

(83) xe=x=exx\cdot e=x=e\cdot x

for all xP[I]x\in\mathrm{P}[I]. In particular, P[]\mathrm{P}[\emptyset] is an ordinary monoid.

A set-theoretic monoid P\mathrm{P} is commutative if

xy=yxx\cdot y=y\cdot x

for all I=STI=S\sqcup T, xP[S]x\in\mathrm{P}[S], and yP[T]y\in\mathrm{P}[T].

The situation for comonoids is different. The existence of the counit forces a comonoid Q\mathrm{Q} in (𝖲𝗉,)(\mathsf{Sp},\bm{\cdot}) to be concentrated on the empty set. Indeed, a morphism ϵ:Q1\epsilon:\mathrm{Q}\to 1 entails maps ϵI:Q[I]1[I]\epsilon_{I}:\mathrm{Q}[I]\to 1[I], and hence we must have Q[I]=\mathrm{Q}[I]=\emptyset for all nonempty II.

There is, nevertheless, a meaningful notion of set-theoretic comonoid. It consists, by definition, of a set species Q\mathrm{Q} together with a collection of maps

ΔS,T:Q[I]Q[S]×Q[T],\Delta_{S,T}:\mathrm{Q}[I]\to\mathrm{Q}[S]\times\mathrm{Q}[T],

one for each I=STI=S\sqcup T, subject to the coassociative and counit axioms. The former states that for each decomposition I=RSTI=R\sqcup S\sqcup T, the diagram

(89) Q[R]×Q[S]×Q[T]Q[R]×Q[ST]id×ΔR,SQ[RS]×Q[T]ΔR,S×idQ[I]ΔRS,TΔR,ST\displaystyle\begin{gathered}\lx@xy@svg{\hbox{\raise 2.5pt\hbox{\kern 46.30559pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&\\&\crcr}}}\ignorespaces{\hbox{\kern-46.30559pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathrm{Q}[R]\times\mathrm{Q}[S]\times\mathrm{Q}[T]\ }$}}}}}}}{\hbox{\kern 95.30559pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathrm{Q}[R]\times\mathrm{Q}[S\sqcup T]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 51.9522pt\raise 6.41945pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.44167pt\hbox{$\scriptstyle{\mathrm{id}\times\Delta_{R,S}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 46.30559pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-37.69443pt\raise-52.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathrm{Q}[R\sqcup S]\times\mathrm{Q}[T]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern-37.7068pt\raise-26.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.44167pt\hbox{$\scriptstyle{\Delta_{R,S}\times\mathrm{id}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 0.0pt\raise-8.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 120.74306pt\raise-52.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathrm{Q}[I]\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 62.12833pt\raise-58.38055pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.40279pt\hbox{$\scriptstyle{\Delta_{R\sqcup S,T}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 37.69443pt\raise-52.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 133.00002pt\raise-26.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.40279pt\hbox{$\scriptstyle{\Delta_{R,S\sqcup T}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 133.00002pt\raise-8.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces}}}}\ignorespaces\end{gathered}

commutes. The latter states that for each finite set II, the diagrams

(100) Q[I]Δ,IQ[]×Q[I]ϵ×idI{}×Q[I]\displaystyle\begin{gathered}\lx@xy@svg{\hbox{\raise 2.5pt\hbox{\kern 12.25696pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&\\&\crcr}}}\ignorespaces{\hbox{\kern-12.25696pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathrm{Q}[I]\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\hbox{\kern 0.57141pt\raise 0.82066pt\hbox{\lx@xy@drawline@}}\hbox{\kern-0.57141pt\raise-0.82066pt\hbox{\lx@xy@drawline@}}}}\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\hbox{\kern 0.57141pt\raise 0.82066pt\hbox{\lx@xy@drawline@}}\hbox{\kern-0.57141pt\raise-0.82066pt\hbox{\lx@xy@drawline@}}}}\ignorespaces{\hbox{\hbox{\kern 0.57141pt\raise 0.82066pt\hbox{\lx@xy@drawline@}}\hbox{\kern-0.57141pt\raise-0.82066pt\hbox{\lx@xy@drawline@}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 19.11629pt\raise 6.54723pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.23611pt\hbox{$\scriptstyle{\Delta_{\emptyset,I}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 48.25696pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 48.25696pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathrm{Q}[\emptyset]\times\mathrm{Q}[I]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 74.68059pt\raise-26.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.62222pt\hbox{$\scriptstyle{\epsilon_{\emptyset}\times\mathrm{id}_{I}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 74.68059pt\raise-44.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-3.0pt\raise-52.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 49.92363pt\raise-52.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\{\emptyset\}\times\mathrm{Q}[I]}$}}}}}}}\ignorespaces}}}}\ignorespaces\end{gathered} Q[I]×Q[]idI×ϵQ[I]ΔI,Q[I]×{}\displaystyle\begin{gathered}\lx@xy@svg{\hbox{\raise 2.5pt\hbox{\kern 30.46156pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&\\&\crcr}}}\ignorespaces{\hbox{\kern-26.42363pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathrm{Q}[I]\times\mathrm{Q}[\emptyset]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern-30.46156pt\raise-26.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.62222pt\hbox{$\scriptstyle{\mathrm{id}_{I}\times\epsilon_{\emptyset}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 0.0pt\raise-44.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 62.42363pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathrm{Q}[I]\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\hbox{\kern 0.57141pt\raise-0.82066pt\hbox{\lx@xy@drawline@}}\hbox{\kern-0.57141pt\raise 0.82066pt\hbox{\lx@xy@drawline@}}}}\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\hbox{\kern 0.57141pt\raise-0.82066pt\hbox{\lx@xy@drawline@}}\hbox{\kern-0.57141pt\raise 0.82066pt\hbox{\lx@xy@drawline@}}}}\ignorespaces{\hbox{\hbox{\kern 0.57141pt\raise-0.82066pt\hbox{\lx@xy@drawline@}}\hbox{\kern-0.57141pt\raise 0.82066pt\hbox{\lx@xy@drawline@}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 33.28297pt\raise 6.54723pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.23611pt\hbox{$\scriptstyle{\Delta_{I,\emptyset}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 26.42365pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-25.86804pt\raise-52.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathrm{Q}[I]\times\{\emptyset\}}$}}}}}}}{\hbox{\kern 71.68059pt\raise-52.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}\ignorespaces}}}}\ignorespaces\end{gathered}

commute, where ϵ\epsilon_{\emptyset} denotes the unique map to the singleton {}\{\emptyset\}.

A set-theoretic comonoid Q\mathrm{Q} is cocommutative if for each I=STI=S\sqcup T, the diagram

Q[S]×Q[T]\textstyle{\mathrm{Q}[S]\times\mathrm{Q}[T]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\cong}Q[T]×Q[S]\textstyle{\mathrm{Q}[T]\times\mathrm{Q}[S]}Q[I]\textstyle{\mathrm{Q}[I]\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ΔS,T\scriptstyle{\Delta_{S,T}}ΔT,S\scriptstyle{\Delta_{T,S}}

commutes.

Given xQ[I]x\in\mathrm{Q}[I], let

(101) (x|S,x/S)(x|_{S},x/_{S})

denote the image of xx under ΔS,T\Delta_{S,T}. Thus, x|SQ[S]x|_{S}\in\mathrm{Q}[S] while x/SQ[T]x/_{S}\in\mathrm{Q}[T]. We think intuitively of xx|Sx\mapsto x|_{S} as restricting the structure xx from II to SS, and of xx/Sx\mapsto x/_{S} as contracting or moding out SS from xx (so that the result is a structure on TT).

The axioms for a set-theoretic comonoid may then be reformulated as follows. Coassociativity states that

(102) (x|RS)|R=x|R,(x|RS)/R=(x/R)|S,x/RS=(x/R)/S,(x|_{R\sqcup S})|_{R}=x|_{R},\quad(x|_{R\sqcup S})/_{R}=(x/_{R})|_{S},\quad x/_{R\sqcup S}=(x/_{R})/_{S},

for any decomposition I=RSTI=R\sqcup S\sqcup T and xQ[I]x\in\mathrm{Q}[I]. Counitality states that

(103) x|I=x=x/x|_{I}=x=x/_{\emptyset}

for any xQ[I]x\in\mathrm{Q}[I].

In particular, it follows from (103) that for xQ[]x\in\mathrm{Q}[\emptyset] we have Δ,(x)=(x,x)\Delta_{\emptyset,\emptyset}(x)=(x,x).

A set-theoretic comonoid Q\mathrm{Q} is cocommutative if and only if

x|S=x/Tx|_{S}=x/_{T}

for every I=STI=S\sqcup T and xQ[I]x\in\mathrm{Q}[I].

Proposition 4.

There is an equivalence between the category of cocommutative set-theoretic comonoids and the category of presheafs on the category of finite sets and injections.

A presheaf is a contravariant functor to 𝖲𝖾𝗍\mathsf{Set}. A set-theoretic comonoid Q\mathrm{Q} becomes a presheaf by means of the restrictions

Q[V]Q[U],xx|U\mathrm{Q}[V]\to\mathrm{Q}[U],\quad x\mapsto x|_{U}

for UVU\subseteq V (together with the action of Q\mathrm{Q} on bijections). Proposition 4 and related results are given in [6, Section 8.7.8]. It originates in work of Schmitt [65, Section 3].

4.3. Set-theoretic bimonoids and Hopf monoids

A set-theoretic bimonoid H\mathrm{H} is, by definition, a set-theoretic monoid and comonoid such that the diagram

(104) H[A]×H[B]×H[C]×H[D]H[A]×H[C]×H[B]×H[D]μA,C×μB,DH[S1]×H[S2]μS1,S2ΔA,B×ΔC,DH[I]ΔT1,T2H[T1]×H[T2]\begin{gathered}\lx@xy@svg{\hbox{\raise 2.5pt\hbox{\kern 60.11426pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&\\&&\crcr}}}\ignorespaces{\hbox{\kern-60.11426pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathrm{H}[A]\times\mathrm{H}[B]\times\mathrm{H}[C]\times\mathrm{H}[D]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 85.60732pt\raise 6.15pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{\cong}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 122.35037pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 88.23232pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 122.35037pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathrm{H}[A]\times\mathrm{H}[C]\times\mathrm{H}[B]\times\mathrm{H}[D]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 182.46463pt\raise-32.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.17778pt\hbox{$\scriptstyle{\mu_{A,C}\times\mu_{B,D}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 182.46463pt\raise-56.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-32.25002pt\raise-64.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathrm{H}[S_{1}]\times\mathrm{H}[S_{2}]\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 40.55643pt\raise-69.75972pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.25417pt\hbox{$\scriptstyle{\mu_{S_{1},S_{2}}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 79.11426pt\raise-64.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern-51.71185pt\raise-32.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.40279pt\hbox{$\scriptstyle{\Delta_{A,B}\times\Delta_{C,D}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 0.0pt\raise-8.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 79.11426pt\raise-64.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathrm{H}[I]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 110.04622pt\raise-70.64445pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.13889pt\hbox{$\scriptstyle{\Delta_{T_{1},T_{2}}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 149.69028pt\raise-64.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 149.69028pt\raise-64.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathrm{H}[T_{1}]\times\mathrm{H}[T_{2}]}$}}}}}}}\ignorespaces}}}}\ignorespaces\end{gathered}

commutes for every choice of sets as in (53). The top map simply interchanges the two middle terms. The condition may be reformulated as follows:

(105) x|Ay|C=(xy)|T1andx/Ay/C=(xy)/T1x|_{A}\cdot y|_{C}=(x\cdot y)|_{T_{1}}\quad\text{and}\quad x/_{A}\cdot y/_{C}=(x\cdot y)/_{T_{1}}

for all xH[S1]x\in\mathrm{H}[S_{1}] and yH[S2]y\in\mathrm{H}[S_{2}]. Note that the set-theoretic analogues of (65) and (66) hold automatically.

A set-theoretic Hopf monoid H\mathrm{H} is a set-theoretic bimonoid such that the monoid H[]\mathrm{H}[\emptyset] is a group. Its antipode is the map

(106) s:H[]H[],xx1.\operatorname{\textsc{s}}_{\emptyset}:\mathrm{H}[\emptyset]\to\mathrm{H}[\emptyset],\quad x\mapsto x^{-1}.

4.4. The Hadamard product

The Hadamard product of two set species P\mathrm{P} and Q\mathrm{Q} is the set species P×Q\mathrm{P}\times\mathrm{Q} defined by

(P×Q)[I]=P[I]×Q[I],(\mathrm{P}\times\mathrm{Q})[I]=\mathrm{P}[I]\times\mathrm{Q}[I],

where on the right-hand side ×\times denotes the cartesian product of sets.

Set-theoretic monoids are preserved under Hadamard products. The same is true of set-theoretic comonoids, bimonoids and Hopf monoids.

4.5. Linearization

Given a set XX, let

𝕜Xand𝕜X\Bbbk X\quad\text{and}\quad\Bbbk^{X}

denote the vector space with basis XX, and the vector space of scalar functions on XX, respectively. We have 𝕜X=(𝕜X)\Bbbk^{X}=(\Bbbk X)^{*}.

Convention 5.

We use

{𝙷xxX}and{𝙼xxX}\{\mathtt{H}_{x}\mid x\in X\}\quad\text{and}\quad\{\mathtt{M}_{x}\mid x\in X\}

to denote, respectively, the canonical basis of 𝕜X\Bbbk X and the basis of 𝕜X\Bbbk^{X} of characteristic functions (𝙼x(y):=δ(x,y)\mathtt{M}_{x}(y):=\delta(x,y)). Thus, {𝙷}\{\mathtt{H}\} and {𝙼}\{\mathtt{M}\} are dual bases.

The linearization functors

𝖲𝖾𝗍𝖵𝖾𝖼𝕜,X𝕜XandX𝕜X\mathsf{Set}\longrightarrow\mathsf{Vec}_{\Bbbk},\quad X\mapsto\Bbbk X\quad\text{and}\quad X\mapsto\Bbbk^{X}

are covariant and contravariant, respectively. Composing a set species P\mathrm{P} with the linearization functors we obtain vector species 𝕜P\Bbbk\mathrm{P} and 𝕜P=(𝕜P)\Bbbk^{\mathrm{P}}=(\Bbbk\mathrm{P})^{*}.

Linearization transforms cartesian products into tensor products. Therefore, if P\mathrm{P} is a set-theoretic monoid, then the species 𝕜P\Bbbk\mathrm{P} is a monoid whose product is the linear map

μS,T:𝕜P[S]𝕜P[T]𝕜P[I]such thatμS,T(𝙷x𝙷y)=𝙷xy\mu_{S,T}:\Bbbk\mathrm{P}[S]\otimes\Bbbk\mathrm{P}[T]\to\Bbbk\mathrm{P}[I]\quad\text{such that}\quad\mu_{S,T}(\mathtt{H}_{x}\otimes\mathtt{H}_{y})=\mathtt{H}_{x\cdot y}

for every xP[S]x\in\mathrm{P}[S] and yP[T]y\in\mathrm{P}[T]. If in addition P\mathrm{P} is finite, then the species 𝕜P\Bbbk^{\mathrm{P}} is a comonoid whose coproduct is the linear map

ΔS,T:𝕜P[I]𝕜P[S]𝕜P[T]such thatΔS,T(𝙼z)=xP[S],yP[T]xy=z𝙼x𝙼y\Delta_{S,T}:\Bbbk^{\mathrm{P}}[I]\to\Bbbk^{\mathrm{P}}[S]\otimes\Bbbk^{\mathrm{P}}[T]\quad\text{such that}\quad\Delta_{S,T}(\mathtt{M}_{z})=\sum_{\begin{subarray}{c}x\in\mathrm{P}[S],\,y\in\mathrm{P}[T]\\ x\cdot y=z\end{subarray}}\mathtt{M}_{x}\otimes\mathtt{M}_{y}

for every zP[I]z\in\mathrm{P}[I]. If Q\mathrm{Q} is a set-theoretic comonoid, then 𝕜Q\Bbbk\mathrm{Q} is a comonoid whose coproduct is the linear map

ΔS,T:𝕜Q[I]𝕜Q[S]𝕜Q[T]such thatΔS,T(𝙷z)=𝙷z|S𝙷z/S,\Delta_{S,T}:\Bbbk\mathrm{Q}[I]\to\Bbbk\mathrm{Q}[S]\otimes\Bbbk\mathrm{Q}[T]\quad\text{such that}\quad\Delta_{S,T}(\mathtt{H}_{z})=\mathtt{H}_{z|_{S}}\otimes\mathtt{H}_{z/_{S}},

and 𝕜Q\Bbbk^{\mathrm{Q}} is a monoid whose product is the linear map

μS,T:𝕜Q[S]𝕜Q[T]𝕜Q[I]such thatμS,T(𝙼x𝙼y)=zQ[I]z|S=x,z/S=y𝙼z.\mu_{S,T}:\Bbbk^{\mathrm{Q}}[S]\otimes\Bbbk^{\mathrm{Q}}[T]\to\Bbbk^{\mathrm{Q}}[I]\quad\text{such that}\quad\mu_{S,T}(\mathtt{M}_{x}\otimes\mathtt{M}_{y})=\sum_{\begin{subarray}{c}z\in\mathrm{Q}[I]\\ z|_{S}=x,\,z/_{S}=y\end{subarray}}\mathtt{M}_{z}.

Similar remarks apply to bimonoids and Hopf monoids. If H\mathrm{H} is a Hopf monoid in set species, then 𝕜H[]\Bbbk\mathrm{H}[\emptyset] is a group algebra, and the antipode of 𝕜H\Bbbk\mathrm{H} exists by item (ii) in Proposition 1. (Co)commutativity and Hadamard products are also preserved under linearization.

5. Connected Hopf monoids

The study of a Hopf monoid 𝐡\mathbf{h} necessarily involves that of the Hopf algebra 𝐡[]\mathbf{h}[\emptyset]. A special yet nontrivial class of Hopf monoids consists of those for which this Hopf algebra is isomorphic to 𝕜\Bbbk, the simplest Hopf algebra. These are the connected Hopf monoids.

5.1. Connected species and Hopf monoids

A species 𝐩\mathbf{p} is connected if

dim𝕜𝐩[]=1.\dim_{\Bbbk}\mathbf{p}[\emptyset]=1.

A set species P\mathrm{P} is connected if P[]\mathrm{P}[\emptyset] is a singleton. In this case, the species 𝕜P\Bbbk\mathrm{P} is connected.

Connectedess is preserved under duality and Hadamard products.

In a connected monoid, the map ι\iota_{\emptyset} is an isomorphism 𝕜𝐚[]\Bbbk\cong\mathbf{a}[\emptyset], and by (44) the resulting maps

𝐚[I]𝐚[I]𝐚[]μI,𝐚[I]and𝐚[I]𝐚[]𝐚[I]μ,I𝐚[I]\mathbf{a}[I]\cong\mathbf{a}[I]\otimes\mathbf{a}[\emptyset]\xrightarrow{\mu_{I,\emptyset}}\mathbf{a}[I]\quad\text{and}\quad\mathbf{a}[I]\cong\mathbf{a}[\emptyset]\otimes\mathbf{a}[I]\xrightarrow{\mu_{\emptyset,I}}\mathbf{a}[I]

are identities. Thus, to provide a monoid structure on a connected species it suffices to specify the maps μS,T\mu_{S,T} when SS and TT are nonempty.

A dual remark applies to connected comonoids 𝐜\mathbf{c}. It can be expressed as follows:

(107) ΔI,(x)=x1andΔ,I(x)=1x,\Delta_{I,\emptyset}(x)=x\otimes 1\quad\text{and}\quad\Delta_{\emptyset,I}(x)=1\otimes x,

where 11 denotes the element of 𝐜[]\mathbf{c}[\emptyset] such that ϵ(1)=1\epsilon_{\emptyset}(1)=1.

Proposition 6.

A connected qq-bimonoid is necessarily a qq-Hopf monoid.

This follows from item (ii) in Proposition 1. The special consideration of formulas (67) and (68) in the connected situation is the subject of Sections 5.2 and 5.3 below.

Proposition 7.

Let 𝐡\mathbf{h} be a connected qq-bimonoid. Let I=STI=S\sqcup T, x𝐡[S]x\in\mathbf{h}[S] and y𝐡[T]y\in\mathbf{h}[T]. Then

(108) ΔS,TμS,T(xy)=xyandΔT,SμS,T(xy)=q|S||T|yx.\Delta_{S,T}\mu_{S,T}(x\otimes y)=x\otimes y\quad\text{and}\quad\Delta_{T,S}\mu_{S,T}(x\otimes y)=q^{\lvert S\rvert\lvert T\rvert}y\otimes x.

These formulas can be deduced from the compatibility axiom (54) by making appropriate choices of the subsets SiS_{i} and TiT_{i}, together with (107). These and related results are given in [6, Corollary 8.38] (when q=1q=1).

Proposition 7 fails for nonconnected bimonoids 𝐡\mathbf{h}. For concrete examples, let HH be a nontrivial bialgebra and let 𝐡=𝟏H\mathbf{h}=\mathbf{1}_{H} as in Section 2.10, or consider the bimonoid 𝚺^\mathbf{\widehat{\Sigma}} of Section 11.2.

5.2. Milnor and Moore’s antipode formulas

Suppose 𝐡\mathbf{h} is a connected qq-bimonoid. Define maps sI\operatorname{\textsc{s}}_{I} and sI\operatorname{\textsc{s}}^{\prime}_{I} by induction on the finite set II as follows. Let

s=s\operatorname{\textsc{s}}_{\emptyset}=\operatorname{\textsc{s}}^{\prime}_{\emptyset}

be the identity of 𝐡[]=𝕜\mathbf{h}[\emptyset]=\Bbbk, and for nonempty II,

(109) sI\displaystyle\operatorname{\textsc{s}}_{I} :=ST=ITIμS,T(idSsT)ΔS,T,\displaystyle:=-\sum_{\begin{subarray}{c}S\sqcup T=I\\ T\neq I\end{subarray}}\mu_{S,T}(\mathrm{id}_{S}\otimes\operatorname{\textsc{s}}_{T})\Delta_{S,T},
(110) sI\displaystyle\operatorname{\textsc{s}}^{\prime}_{I} :=ST=ISIμS,T(sSidT)ΔS,T.\displaystyle:=-\sum_{\begin{subarray}{c}S\sqcup T=I\\ S\neq I\end{subarray}}\mu_{S,T}(\operatorname{\textsc{s}}^{\prime}_{S}\otimes\mathrm{id}_{T})\Delta_{S,T}.
Proposition 8.

We have that

s=s\operatorname{\textsc{s}}=\operatorname{\textsc{s}}^{\prime}

and this morphism is the antipode of 𝐡\mathbf{h}.

This follows from (67). There is an analogous recursive expression for the antipode of a connected Hopf algebra, due to Milnor and Moore [44, Proposition 8.2].

5.3. Takeuchi’s antipode formula

Takeuchi’s formula expresses the antipode in terms of the higher products and coproducts:

Proposition 9.

Let 𝐡\mathbf{h} be a connected qq-Hopf monoid with antipode s\operatorname{\textsc{s}}. Then

(111) sI=FI(1)l(F)μFΔF\operatorname{\textsc{s}}_{I}=\sum_{F\vDash I}(-1)^{l(F)}\mu_{F}\Delta_{F}

for any nonempty finite set II.

The sum runs over all compositions FF of II and the maps μF\mu_{F} and ΔF\Delta_{F} are as in (45) and (47). Proposition 9 may be deduced from either Proposition 1 or 8, or by calculating the inverse of id\mathrm{id} in the convolution algebra Hom(𝐡,𝐡)\operatorname{Hom}(\mathbf{h},\mathbf{h}) as

(ιϵ(ιϵid))1=k0(ιϵid)k.\bigl{(}\iota\epsilon-(\iota\epsilon-\mathrm{id})\bigr{)}^{-1}=\sum_{k\geq 0}(\iota\epsilon-\mathrm{id})^{*k}.

For more details, see [6, Proposition 8.13]. There is an analogous formula for the antipode of a connected Hopf algebra due to Takeuchi; see the proof of [72, Lemma 14] or [45, Lemma 5.2.10].

5.4. The antipode problem

Cancellations frequently take place in Takeuchi’s formula (111). Understanding these cancellations is often a challenging combinatorial problem. The antipode problem asks for an explicit, cancellation-free, formula for the antipode of a given qq-Hopf monoid 𝐡\mathbf{h}. The problem may be formulated as follows: given a linear basis of the vector space 𝐡[I]\mathbf{h}[I], we search for the structure constants of sI\operatorname{\textsc{s}}_{I} on this basis. If 𝐡\mathbf{h} is the linearization of a set-theoretic Hopf monoid H\mathrm{H}, then we may consider the basis H[I]\mathrm{H}[I] of 𝐡[I]\mathbf{h}[I]. In this or other cases, we may also be interested in other linear bases of 𝐡[I]\mathbf{h}[I], and the corresponding structure constants.

Several instances of the antipode problem are solved in Sections 6,  7 and 9 below.

5.5. The primitive part

Let 𝐜\mathbf{c} be a connected comonoid. The primitive part of 𝐜\mathbf{c} is the positive species 𝒫(𝐜)\mathcal{P}(\mathbf{c}) defined by

(112) 𝒫(𝐜)[I]:=I=STS,Tker(ΔS,T:𝐜[I]𝐜[S]𝐜[T])\mathcal{P}(\mathbf{c})[I]:=\bigcap_{\begin{subarray}{c}I=S\sqcup T\\ S,T\neq\emptyset\end{subarray}}\ker\bigl{(}\Delta_{S,T}:\mathbf{c}[I]\to\mathbf{c}[S]\otimes\mathbf{c}[T]\bigr{)}

for each nonempty finite set II. An element x𝒫(𝐜)[I]x\in\mathcal{P}(\mathbf{c})[I] is a primitive element of 𝐜[I]\mathbf{c}[I].

Proposition 10.

We have

(113) 𝒫(𝐜)[I]=FIF(I)ker(ΔF).\mathcal{P}(\mathbf{c})[I]=\bigcap_{\begin{subarray}{c}F\vDash I\\ F\not=(I)\end{subarray}}\ker(\Delta_{F}).

The intersection is over all compositions of II with more than one block and the map ΔF\Delta_{F} as in (47). The result follows from (112) by coassociativity.

Let 𝐝\mathbf{d} be another connected comonoid and consider the Hadamard product 𝐝×𝐜\mathbf{d}\times\mathbf{c} (Section 3.1).

Proposition 11.

We have

(114) 𝐝×𝒫(𝐜)+𝒫(𝐝)×𝐜𝒫(𝐝×𝐜).\mathbf{d}\times\mathcal{P}(\mathbf{c})+\mathcal{P}(\mathbf{d})\times\mathbf{c}\subseteq\mathcal{P}(\mathbf{d}\times\mathbf{c}).

This follows since the coproduct ΔS,T\Delta_{S,T} of 𝐝×𝐜\mathbf{d}\times\mathbf{c} is the tensor product of the coproducts of 𝐝\mathbf{d} and 𝐜\mathbf{c}.

On primitive elements, the antipode is negation:

Proposition 12.

Let 𝐡\mathbf{h} be a connected qq-Hopf monoid and xx a primitive element of 𝐡[I]\mathbf{h}[I]. Then

(115) sI(x)=x.\operatorname{\textsc{s}}_{I}(x)=-x.

This follows from either of Milnor and Moore’s formulas (109) or (110), or also from (113) and Takeuchi’s formula (111).

Proposition 13.

Let 𝐡\mathbf{h} be a connected bimonoid. Then 𝒫(𝐡)\mathcal{P}(\mathbf{h}) is a Lie submonoid of 𝐡\mathbf{h} under the commutator bracket (72).

Proof.

Let I=S1S2I=S_{1}\sqcup S_{2} and xi𝒫(𝐡)[Si]x_{i}\in\mathcal{P}(\mathbf{h})[S_{i}] for i=1,2i=1,2. We need to check that the element

[x1,x2]S1,S2=μS1,S2(x1x2)μS2,S1(x2x1)[x_{1},x_{2}]_{S_{1},S_{2}}=\mu_{S_{1},S_{2}}(x_{1}\otimes x_{2})-\mu_{S_{2},S_{1}}(x_{2}\otimes x_{1})

is primitive. Let I=T1T2I=T_{1}\sqcup T_{2} be another decomposition. We have that

ΔT1,T2μS1,S2(x1x2)={x1x21 if T1=I and T2=,1x1x2 if T1= and T2=I,x1x2 if T1=S1 and T2=S2,x2x1 if T1=S2 and T2=S1,0 in every other case.\Delta_{T_{1},T_{2}}\mu_{S_{1},S_{2}}(x_{1}\otimes x_{2})=\begin{cases}x_{1}x_{2}\otimes 1&\text{ if $T_{1}=I$ and $T_{2}=\emptyset$,}\\ 1\otimes x_{1}x_{2}&\text{ if $T_{1}=\emptyset$ and $T_{2}=I$,}\\ x_{1}\otimes x_{2}&\text{ if $T_{1}=S_{1}$ and $T_{2}=S_{2}$,}\\ x_{2}\otimes x_{1}&\text{ if $T_{1}=S_{2}$ and $T_{2}=S_{1}$,}\\ 0&\text{ in every other case.}\\ \end{cases}

We have written x1x2x_{1}x_{2} for μS1,S2(x1x2)\mu_{S_{1},S_{2}}(x_{1}\otimes x_{2}) and 11 for ι(1)\iota_{\emptyset}(1). These follow from (54) and (108); in the last case we used the primitivity of the xix_{i}. It follows that if T1T_{1} and T2T_{2} are nonempty, then ΔT1,T2([x1,x2]S1,S2)=0\Delta_{T_{1},T_{2}}\bigl{(}[x_{1},x_{2}]_{S_{1},S_{2}}\bigr{)}=0 as needed. ∎

Remark.

The primitive part is the first component of the coradical filtration of 𝐜\mathbf{c}. See [6, Section 8.10] for more information and [6, Section 11.9.2] for a word on primitive elements in the nonconnected setting.

5.6. The indecomposable quotient

Let 𝐚\mathbf{a} be a connected monoid. The indecomposable quotient of 𝐚\mathbf{a} is the positive species 𝒬(𝐚)\mathcal{Q}(\mathbf{a}) defined by

(116) 𝒬(𝐚)[I]\displaystyle\mathcal{Q}(\mathbf{a})[I] :=𝐚[I]/(I=STS,Tim(μS,T:𝐚[S]𝐚[T]𝐚[I]))\displaystyle:=\mathbf{a}[I]\bigl{/}\Bigl{(}\sum_{\begin{subarray}{c}I=S\sqcup T\\ S,T\neq\emptyset\end{subarray}}\operatorname{im}\bigl{(}\mu_{S,T}:\mathbf{a}[S]\otimes\mathbf{a}[T]\to\mathbf{a}[I]\bigr{)}\Bigr{)}
=𝐚[I]/FIF(I)im(μF).\displaystyle=\mathbf{a}[I]\bigl{/}\sum_{\begin{subarray}{c}F\vDash I\\ F\not=(I)\end{subarray}}\operatorname{im}(\mu_{F}).

Primitives and indecomposables are related by duality: 𝒫(𝐜)𝒬(𝐜)\mathcal{P}(\mathbf{c})^{*}\cong\mathcal{Q}(\mathbf{c}^{*}), and if 𝐚\mathbf{a} is finite-dimensional, then 𝒬(𝐚)𝒫(𝐚)\mathcal{Q}(\mathbf{a})^{*}\cong\mathcal{P}(\mathbf{a}^{*}).

Assume 𝐚\mathbf{a} is finite-dimensional and let 𝐜\mathbf{c} be a connected comonoid. Consider the internal Hom (𝐚,𝐜)\mathcal{H}(\mathbf{a},\mathbf{c}) with the comonoid structure discussed in Section 3.2.

Proposition 14.

We have

(𝐚,𝒫(𝐜))+(𝒬(𝐚),𝐜)𝒫((𝐚,𝐜)).\mathcal{H}\bigl{(}\mathbf{a},\mathcal{P}(\mathbf{c})\bigr{)}+\mathcal{H}\bigl{(}\mathcal{Q}(\mathbf{a}),\mathbf{c}\bigr{)}\subseteq\mathcal{P}\bigl{(}\mathcal{H}(\mathbf{a},\mathbf{c})\bigr{)}.

5.7. The Lagrange theorem

Let 𝐚\mathbf{a} be a monoid. We consider modules and ideals as in Section 2.6. Given a submonoid 𝐛\mathbf{b} of 𝐚\mathbf{a}, let 𝐛+𝐚\mathbf{b}_{+}\mathbf{a} denote the right ideal of 𝐚\mathbf{a} generated by the positive part of 𝐛\mathbf{b}.

Theorem 15.

Let 𝐡\mathbf{h} be a connected Hopf monoid and 𝐤\mathbf{k} a Hopf submonoid. Then there is an isomorphism of left 𝐤\mathbf{k}-modules

𝐡𝐤(𝐡/𝐤+𝐡).\mathbf{h}\cong\mathbf{k}\bm{\cdot}(\mathbf{h}/\mathbf{k}_{+}\mathbf{h}).

In particular, 𝐡\mathbf{h} is free as a left 𝐤\mathbf{k}-module.

Theorem 15 is proven in [4, Theorem 2.2]. Similar results for ordinary Hopf algebras are well-known [58, Section 9.3]; these include the familiar theorem of Lagrange from basic group theory.

We remark that versions of this result should exist for certain nonconnected Hopf monoids, as they do for Hopf algebras, but we have not pursued this possibility.

6. The free monoid

We review the explicit construction of the free monoid on a positive species, following [6, Section 11.2]. The free monoid carries a canonical structure of qq-Hopf monoid. We briefly mention the free monoid on an arbitrary species.

There is a companion notion of cofree comonoid on a positive species which is discussed in [6, Section 11.4], but not in this paper.

6.1. The free monoid on a positive species

Given a positive species 𝐪\mathbf{q} and a composition F=(I1,,Ik)F=(I_{1},\ldots,I_{k}) of II, write

(117) 𝐪(F):=𝐪[I1]𝐪[Ik].\mathbf{q}(F):=\mathbf{q}[I_{1}]\otimes\dots\otimes\mathbf{q}[I_{k}].

When FF is the unique composition of the empty set, we set

(118) 𝐪(F):=𝕜.\mathbf{q}(F):=\Bbbk.

Define a new species 𝒯(𝐪)\mathcal{T}(\mathbf{q}) by

𝒯(𝐪)[I]:=FI𝐪(F).\mathcal{T}(\mathbf{q})[I]:=\bigoplus_{F\vDash I}\mathbf{q}(F).

A bijection σ:IJ\sigma:I\to J transports a composition F=(I1,,Ik)F=(I_{1},\dots,I_{k}) of II into a composition σ(F):=(σ(I1),,σ(Ik))\sigma(F):=\bigl{(}\sigma(I_{1}),\dots,\sigma(I_{k})\bigr{)} of JJ. The map

𝒯(𝐪)[σ]:𝒯(𝐪)[I]𝒯(𝐪)[J]\mathcal{T}(\mathbf{q})[\sigma]:\mathcal{T}(\mathbf{q})[I]\to\mathcal{T}(\mathbf{q})[J]

is the direct sum of the maps

𝐪(F)=𝐪[I1]𝐪[Ik]𝐪[σ|I1]𝐪[σ|Ik]𝐪[σ(I1)]𝐪[σ(Ik)]=𝐪(σ(F)).\mathbf{q}(F)=\mathbf{q}[I_{1}]\otimes\dots\otimes\mathbf{q}[I_{k}]\xrightarrow{\mathbf{q}[\sigma|_{I_{1}}]\otimes\dots\otimes\mathbf{q}[\sigma|_{I_{k}}]}\mathbf{q}[\sigma(I_{1})]\otimes\dots\otimes\mathbf{q}[\sigma(I_{k})]=\mathbf{q}\bigl{(}\sigma(F)\bigr{)}.

In view of (118), the species 𝒯(𝐪)\mathcal{T}(\mathbf{q}) is connected.

Every nonempty set II admits a unique composition with one block; namely, F=(I)F=(I). In this case, 𝐪(F)=𝐪[I]\mathbf{q}(F)=\mathbf{q}[I]. This yields an embedding 𝐪[I]𝒯(𝐪)[I]\mathbf{q}[I]\hookrightarrow\mathcal{T}(\mathbf{q})[I] and thus an embedding of species

η𝐪:𝐪𝒯(𝐪).\eta_{\mathbf{q}}:\mathbf{q}\hookrightarrow\mathcal{T}(\mathbf{q}).

On the empty set, η𝐪\eta_{\mathbf{q}} is (necessarily) zero.

Given I=STI=S\sqcup T and compositions FSF\vDash S and GTG\vDash T, there is a canonical isomorphism

𝐪(F)𝐪(G)𝐪(FG)\mathbf{q}(F)\otimes\mathbf{q}(G)\xrightarrow{\cong}\mathbf{q}(F\cdot G)

obtained by concatenating the factors in (117). The sum of these over all FSF\vDash S and GTG\vDash T yields a map

μS,T:𝒯(𝐪)[S]𝒯(𝐪)[T]𝒯(𝐪)[I].\mu_{S,T}:\mathcal{T}(\mathbf{q})[S]\otimes\mathcal{T}(\mathbf{q})[T]\to\mathcal{T}(\mathbf{q})[I].

This turns 𝒯(𝐪)\mathcal{T}(\mathbf{q}) into a monoid. In fact, 𝒯(𝐪)\mathcal{T}(\mathbf{q}) is the free monoid on the positive species 𝐪\mathbf{q}, in view of the following result (a slight reformulation of [6, Theorem 11.4]).

Theorem 16.

Let 𝐚\mathbf{a} be a monoid, 𝐪\mathbf{q} a positive species, and ζ:𝐪𝐚\zeta\colon\mathbf{q}\to\mathbf{a} a morphism of species. Then there exists a unique morphism of monoids ζ^:𝒯(𝐪)𝐚\hat{\zeta}\colon\mathcal{T}(\mathbf{q})\to\mathbf{a} such that

𝒯(𝐪)ζ^𝐚𝐪ζη𝐪
\begin{gathered}\lx@xy@svg{\hbox{\raise 2.5pt\hbox{\kern 14.61316pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&\\\crcr}}}\ignorespaces{\hbox{\kern-13.53471pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathcal{T}(\mathbf{q})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 29.75693pt\raise 6.61111pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-3.61111pt\hbox{$\scriptstyle{\hat{\zeta}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 57.53471pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}{\hbox{\kern 57.53471pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{a}}$}}}}}}}{\hbox{\kern-6.0347pt\raise-38.19444pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{q}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 29.75407pt\raise-25.20833pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{\zeta}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 57.53471pt\raise-3.49742pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern-14.61316pt\raise-19.09723pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.52084pt\hbox{$\scriptstyle{\eta_{\mathbf{q}}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 0.0pt\raise-8.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces}}}}\ignorespaces\end{gathered}

commutes.

The map ζ^\hat{\zeta} is as follows. On the empty set, it is the unit map of 𝐚\mathbf{a}:

𝒯(𝐪)[]=𝕜ι𝐚[].\mathcal{T}(\mathbf{q})[\emptyset]=\Bbbk\xrightarrow{\iota_{\emptyset}}\mathbf{a}[\emptyset].

On a nonempty set II, it is the sum of the maps

𝐪(F)=𝐪[I1]𝐪[Ik]ζI1ζIk𝐚[I1]𝐚[Ik]μI1,,Ik𝐚[I],\mathbf{q}(F)=\mathbf{q}[I_{1}]\otimes\cdots\otimes\mathbf{q}[I_{k}]\xrightarrow{\zeta_{I_{1}}\otimes\cdots\otimes\zeta_{I_{k}}}\mathbf{a}[I_{1}]\otimes\cdots\otimes\mathbf{a}[I_{k}]\xrightarrow{\mu_{I_{1},\ldots,I_{k}}}\mathbf{a}[I],

where the higher product μI1,,Ik\mu_{I_{1},\ldots,I_{k}} is as in (45).

When there is given an isomorphism of monoids 𝐚𝒯(𝐪)\mathbf{a}\cong\mathcal{T}(\mathbf{q}), we say that the positive species 𝐪\mathbf{q} is a basis of the (free) monoid 𝐚\mathbf{a}.

6.2. The free monoid as a Hopf monoid

Let q𝕜q\in\Bbbk and 𝐪\mathbf{q} a positive species. The species 𝒯(𝐪)\mathcal{T}(\mathbf{q}) admits a canonical qq-Hopf monoid structure, which we denote by 𝒯q(𝐪)\mathcal{T}_{q}(\mathbf{q}), as follows.

As monoids, 𝒯q(𝐪)=𝒯(𝐪)\mathcal{T}_{q}(\mathbf{q})=\mathcal{T}(\mathbf{q}). In particular, 𝒯q(𝐪)\mathcal{T}_{q}(\mathbf{q}) and 𝒯(𝐪)\mathcal{T}(\mathbf{q}) are the same species. The comonoid structure depends on qq. Given I=STI=S\sqcup T, the coproduct

ΔS,T:𝒯q(𝐪)[I]𝒯q(𝐪)[S]𝒯q(𝐪)[T]\Delta_{S,T}:\mathcal{T}_{q}(\mathbf{q})[I]\to\mathcal{T}_{q}(\mathbf{q})[S]\otimes\mathcal{T}_{q}(\mathbf{q})[T]

is the sum of the maps

𝐪(F)\displaystyle\mathbf{q}(F) 𝐪(F|S)𝐪(F|T)\displaystyle\to\mathbf{q}(F|_{S})\otimes\mathbf{q}(F|_{T})
x1xk\displaystyle x_{1}\!\otimes\!\cdots\!\otimes x_{k} {qschS,T(F)(xi1xij)(xi1xik)if S is F-admissible,0otherwise.\displaystyle\mapsto\begin{cases}q^{\operatorname{sch}_{S,T}(F)}(x_{i_{1}}\!\otimes\!\cdots\!\otimes x_{i_{j}})\!\otimes\!(x_{i^{\prime}_{1}}\!\otimes\!\cdots\!\otimes x_{i^{\prime}_{k}})&\text{if $S$ is $F$-admissible,}\\ 0&\text{otherwise.}\end{cases}

Here F=(I1,,Ik)F=(I_{1},\ldots,I_{k}), xi𝐪[Ii]x_{i}\in\mathbf{q}[I_{i}] for each ii, and schS,T(F)\operatorname{sch}_{S,T}(F) is as in (2). In the admissible case, we have written F|S=(Ii1,,Iij)F|_{S}=(I_{i_{1}},\ldots,I_{i_{j}}) and F|T=(Ii1,,Iik)F|_{T}=(I_{i^{\prime}_{1}},\ldots,I_{i^{\prime}_{k}}).

The preceding turns 𝒯q(𝐪)\mathcal{T}_{q}(\mathbf{q}) into a qq-bimonoid. Since it is connected, it is a qq-Hopf monoid. We have

(119) 𝐪𝒫(𝒯q(𝐪));\mathbf{q}\subseteq\mathcal{P}\bigl{(}\mathcal{T}_{q}(\mathbf{q})\bigr{)};

more precisely, 𝐪\mathbf{q} maps into the primitive part under the embedding ηq\eta_{q}. When q=1q=1, 𝒯(𝐪)\mathcal{T}(\mathbf{q}) is cocommutative, and 𝒫(𝒯(𝐪))\mathcal{P}\bigl{(}\mathcal{T}(\mathbf{q})\bigr{)} is the Lie submonoid of 𝒯(𝐪)\mathcal{T}(\mathbf{q}) generated by 𝐪\mathbf{q}, see Corollaries 115 and 121.

We return to the situation of Theorem 16 in the case when the monoid 𝐚\mathbf{a} is in fact a qq-Hopf monoid 𝐡\mathbf{h}. Thus, we are given a morphism of species ζ:𝐪𝐡\zeta:\mathbf{q}\to\mathbf{h} and we consider the morphism of monoids ζ^:𝒯q(𝐪)𝐡\hat{\zeta}:\mathcal{T}_{q}(\mathbf{q})\to\mathbf{h}.

Proposition 17.

Suppose that

im(ζ)𝒫(𝐡).\operatorname{im}(\zeta)\subseteq\mathcal{P}(\mathbf{h}).

In other words, ζ\zeta maps elements of 𝐪\mathbf{q} to primitive elements of 𝐡\mathbf{h}. Then ζ^\hat{\zeta} is a morphism of qq-Hopf monoids.

This is a special case of [6, Theorem 11.10]; see also [6, Section 11.7.1]. It follows from here and [43, Theorem IV.1.2, item (i)] that the functors

(120) {positive species}\textstyle{\{\text{positive species}\}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝒯q\scriptstyle{\mathcal{T}_{q}}{connected q-Hopf monoids}\textstyle{\ignorespaces\ignorespaces\ignorespaces\ignorespaces\{\text{connected $q$-Hopf monoids}\}}𝒫\scriptstyle{\mathcal{P}}

form an adjunction (with 𝒯q\mathcal{T}_{q} being left adjoint to 𝒫\mathcal{P}).

The antipode problem for 𝒯q(𝐪)\mathcal{T}_{q}(\mathbf{q}) offers no difficulty.

Theorem 18.

The antipode of 𝒯q(𝐪)\mathcal{T}_{q}(\mathbf{q}) is given by

(121) sI(x1xk)=qdist(F,F¯)(1)kxkx1.\operatorname{\textsc{s}}_{I}(x_{1}\otimes\cdots\otimes x_{k})=q^{\operatorname{dist}(F,\overline{F})}(-1)^{k}x_{k}\otimes\cdots\otimes x_{1}.

Here F=(I1,,Ik)IF=(I_{1},\dots,I_{k})\vDash I, xi𝐪[Ii]x_{i}\in\mathbf{q}[I_{i}] for i=1,,ki=1,\ldots,k, and dist(F,F¯)\operatorname{dist}(F,\overline{F}) is as in (5). In particular, sI\operatorname{\textsc{s}}_{I} sends the summand 𝐪(F)\mathbf{q}(F) of 𝒯q(𝐪)[I]\mathcal{T}_{q}(\mathbf{q})[I] to the summand 𝐪(F¯)\mathbf{q}(\overline{F}).

To obtain this result, one may first note that any x𝐪[I]x\in\mathbf{q}[I] is primitive in 𝒯q(𝐪)[I]\mathcal{T}_{q}(\mathbf{q})[I], so the result holds when k=1k=1 by (115), then one may use the fact that the antipode reverses products (69). One may also derive it as a special case of [6, Theorem 11.38].

Remark.

A free monoid 𝒯(𝐪)\mathcal{T}(\mathbf{q}) may carry other qq-Hopf monoid structures than the one discussed above. In particular, it is possible to construct such a structure from a positive comonoid structure on 𝐪\mathbf{q}; when the latter is trivial, we arrive at the qq-Hopf monoid structure discussed above. This is discussed in [6, Section 11.2.4] but not in this paper.

6.3. The free monoid on an arbitrary species

Let 𝐪\mathbf{q} be an arbitrary species (not necessarily positive). The free monoid 𝒯(𝐪)\mathcal{T}(\mathbf{q}) on 𝐪\mathbf{q} exists [6, Example B.29]. It is obtained by the same construction as the one in Section 6.1, employing decompositions (in the sense of Section 1.11) instead of compositions. Theorem 16 continues to hold. One has

𝒯(𝐪)[]=𝒯(𝐪[]),\mathcal{T}(\mathbf{q})[\emptyset]=\mathcal{T}(\mathbf{q}[\emptyset]),

the free associative unital algebra on the vector space 𝐪[]\mathbf{q}[\emptyset]. Thus, 𝒯(𝐪)\mathcal{T}(\mathbf{q}) is connected if and only if 𝐪\mathbf{q} is positive.

If 𝐪[]\mathbf{q}[\emptyset] is a coalgebra, it is possible to turn 𝒯(𝐪)\mathcal{T}(\mathbf{q}) into a qq-bimonoid as in Section 6.2, employing the notion of restriction of decompositions of Section 1.11. If 𝐪[]0\mathbf{q}[\emptyset]\neq 0, the resulting bialgebra structure on 𝒯(𝐪[])\mathcal{T}(\mathbf{q}[\emptyset]) is not the standard one, and 𝒯(𝐪[])\mathcal{T}(\mathbf{q}[\emptyset]) is not Hopf. Hence, 𝒯(𝐪)\mathcal{T}(\mathbf{q}) is not a qq-Hopf monoid.

In the sections that follow, and in most of the paper, we restrict our attention to the case of positive 𝐪\mathbf{q}.

6.4. Freeness under Hadamard products

Given positive species 𝐩\mathbf{p} and 𝐪\mathbf{q}, define a new positive species 𝐩𝐪\mathbf{p}\star\mathbf{q} by

(122) (𝐩𝐪)[I]:=F,GIFG=(I)𝐩(F)𝐪(G).(\mathbf{p}\star\mathbf{q})[I]:=\bigoplus_{\begin{subarray}{c}F,G\vDash I\\ F\wedge G=(I)\end{subarray}}\mathbf{p}(F)\otimes\mathbf{q}(G).

The sum is over all pairs of compositions of II whose meet is the minimum composition.

The following result shows that the Hadamard product of two free monoids is again free and provides an explicit description for the basis of the product in terms of bases of the factors.

Theorem 19.

For any positive species 𝐩\mathbf{p} and 𝐪\mathbf{q}, there is a natural isomorphism of monoids

(123) 𝒯(𝐩𝐪)𝒯(𝐩)×𝒯(𝐪).\mathcal{T}(\mathbf{p}\star\mathbf{q})\cong\mathcal{T}(\mathbf{p})\times\mathcal{T}(\mathbf{q}).

Theorem 19 is proven in [7, Theorem 3.8]. The isomorphism (123) arises from the evident inclusion 𝐩𝐪𝒯(𝐩)×𝒯(𝐪)\mathbf{p}\star\mathbf{q}\hookrightarrow\mathcal{T}(\mathbf{p})\times\mathcal{T}(\mathbf{q}) via the universal property of 𝒯(𝐩𝐪)\mathcal{T}(\mathbf{p}\star\mathbf{q}) in Theorem 16. It is shown in [7, Proposition 3.10] that this map is an isomorphism of 0-Hopf monoids

𝒯0(𝐩𝐪)𝒯0(𝐩)×𝒯0(𝐪);\mathcal{T}_{0}(\mathbf{p}\star\mathbf{q})\cong\mathcal{T}_{0}(\mathbf{p})\times\mathcal{T}_{0}(\mathbf{q});

the analogous statement for q0q\neq 0 does not hold.

Let pp and q𝕜q\in\Bbbk be arbitrary scalars.

Theorem 20.

Let 𝐡\mathbf{h} be a connected pp-Hopf monoid. Let 𝐤\mathbf{k} be a qq-Hopf monoid that is free as a monoid. Then the connected pqpq-Hopf monoid 𝐡×𝐤\mathbf{h}\times\mathbf{k} is free as a monoid.

This is proven in [7, Theorem 3.2]. In contrast to Theorem 19, this result assumes freeness from only one of the factors to conclude it for their Hadamard product. On the other hand, in this situation we do not have an explicit description for a basis of the product.

6.5. Freeness for 0-bimonoids

The structure of a connected 0-Hopf monoid is particularly rigid, in view of the following result.

Theorem 21.

Let 𝐡\mathbf{h} be a connected 0-Hopf monoid. Then there exists an isomorphism of 0-Hopf monoids

𝐡𝒯0(𝒫(𝐡)).\mathbf{h}\cong\mathcal{T}_{0}\bigl{(}\mathcal{P}(\mathbf{h})\bigr{)}.

Theorem 21 is proven in [6, Theorem 11.49]. There is a parallel result for connected graded 0-Hopf algebras which is due to Loday and Ronco [42, Theorem 2.6].

Theorem 21 implies that any connected 0-Hopf monoid is free as a monoid and cofree as a comonoid. In addition, if 𝐪\mathbf{q} is finite-dimensional, then the 0-Hopf monoid 𝒯0(𝐪)\mathcal{T}_{0}(\mathbf{q}) is self-dual. See [6, Section 11.10.3] for more details.

6.6. The free set-theoretic monoid

Let Q\mathrm{Q} be a positive set species. Given a composition F=(I1,,Ik)F=(I_{1},\ldots,I_{k}) of II, write

Q(F):=Q[I1]××Q[Ik].\mathrm{Q}(F):=\mathrm{Q}[I_{1}]\times\cdots\times\mathrm{Q}[I_{k}].

The set species 𝒯(Q)\mathcal{T}(\mathrm{Q}) defined by

𝒯(Q)[I]:=FIQ(F)\mathcal{T}(\mathrm{Q})[I]:=\coprod_{F\vDash I}\mathrm{Q}(F)

carries a set-theoretic monoid structure, and it is free on Q\mathrm{Q}. There is a canonical isomorphism of monoids

𝕜𝒯(Q)𝒯(𝕜Q)\Bbbk\mathcal{T}(\mathrm{Q})\cong\mathcal{T}(\Bbbk\mathrm{Q})

arising from

𝕜(Q(F))(𝕜Q)(F),𝙷(x1,,xk)𝙷x1𝙷xk,\Bbbk\bigl{(}\mathrm{Q}(F)\bigr{)}\cong(\Bbbk\mathrm{Q})(F),\qquad\mathtt{H}_{(x_{1},\ldots,x_{k})}\leftrightarrow\mathtt{H}_{x_{1}}\otimes\cdots\otimes\mathtt{H}_{x_{k}},

for xiQ[Ii]x_{i}\in\mathrm{Q}[I_{i}] and FF as above.

The comonoid structure of 𝒯(𝕜Q)\mathcal{T}(\Bbbk\mathrm{Q}) of Section 6.2 is, in general, not the linearization of a set-theoretic comonoid structure on 𝒯(Q)\mathcal{T}(\mathrm{Q}). For a case in which it is, see Section 9.2.

7. The free commutative monoid

We review the explicit construction of the free commutative monoid on a positive species, following [6, Section 11.3]. The discussion parallels that of Section 6, with one important distinction: we deal exclusively with Hopf monoids (q=1q=1) as opposed to general qq-Hopf monoids. We briefly mention the free commutative monoid on an arbitrary species.

7.1. The free commutative monoid on a positive species

Given a positive species 𝐪\mathbf{q} and a partition XIX\vdash I, write

(124) 𝐪(X):=BX𝐪[B].\mathbf{q}(X):=\bigotimes_{B\in X}\mathbf{q}[B].

It is not necessary to specify an ordering among the tensor factors above; the unordered tensor is well-defined in view of the fact that the tensor product of vector spaces is symmetric. Its elements are tensors

BXxB,\bigotimes_{B\in X}x_{B},

where xB𝐪[B]x_{B}\in\mathbf{q}[B] for each BXB\in X.

Define a new species 𝒮(𝐪)\mathcal{S}(\mathbf{q}) by

𝒮(𝐪)[I]:=XI𝐪(X).\mathcal{S}(\mathbf{q})[I]:=\bigoplus_{X\vdash I}\mathbf{q}(X).

When XX is the unique partition of \emptyset, we have 𝐪(X)=𝕜\mathbf{q}(X)=\Bbbk. Thus, the species 𝒮(𝐪)\mathcal{S}(\mathbf{q}) is connected.

Every nonempty II admits a unique partition with one block; namely, X={I}X=\{I\}. In this case, 𝐪(X)=𝐪[I]\mathbf{q}(X)=\mathbf{q}[I]. This yields an embedding 𝐪[I]𝒮(𝐪)[I]\mathbf{q}[I]\hookrightarrow\mathcal{S}(\mathbf{q})[I] and thus an embedding of species

η𝐪:𝐪𝒮(𝐪).\eta_{\mathbf{q}}:\mathbf{q}\hookrightarrow\mathcal{S}(\mathbf{q}).

On the empty set, η𝐪\eta_{\mathbf{q}} is (necessarily) zero.

Given I=STI=S\sqcup T and partitions XSX\vdash S and YTY\vdash T, there is a canonical isomorphism

𝐪(X)𝐪(Y)𝐪(XY)\mathbf{q}(X)\otimes\mathbf{q}(Y)\xrightarrow{\cong}\mathbf{q}(X\sqcup Y)

in view of the definition of unordered tensor products. Explicitly,

(BXxB)(CYxC)DXYxD.\bigl{(}\bigotimes_{B\in X}x_{B}\bigr{)}\otimes\bigl{(}\bigotimes_{C\in Y}x_{C}\bigr{)}\mapsto\bigotimes_{D\in X\sqcup Y}x_{D}.

The sum of these isomorphisms over all XSX\vdash S and YTY\vdash T yields a map

μS,T:𝒮(𝐪)[S]𝒮(𝐪)[T]𝒮(𝐪)[I].\mu_{S,T}:\mathcal{S}(\mathbf{q})[S]\otimes\mathcal{S}(\mathbf{q})[T]\to\mathcal{S}(\mathbf{q})[I].

This turns 𝒮(𝐪)\mathcal{S}(\mathbf{q}) into a monoid. The commutativity of the diagram

𝐪(X)𝐪(Y)\textstyle{\mathbf{q}(X)\otimes\mathbf{q}(Y)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\cong}\scriptstyle{\cong}𝐪(XY)\textstyle{\mathbf{q}(X\sqcup Y)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝐪(Y)𝐪(X)\textstyle{\mathbf{q}(Y)\otimes\mathbf{q}(X)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\cong}𝐪(YX)\textstyle{\mathbf{q}(Y\sqcup X)}

implies that the monoid 𝒮(𝐪)\mathcal{S}(\mathbf{q}) is commutative. In fact, 𝒮(𝐪)\mathcal{S}(\mathbf{q}) is the free commutative monoid on the positive species 𝐪\mathbf{q}, in view of the following result (a slight reformulation of [6, Theorem 11.13]).

Theorem 22.

Let 𝐚\mathbf{a} be a commutative monoid, 𝐪\mathbf{q} a positive species, and ζ:𝐪𝐚\zeta\colon\mathbf{q}\to\mathbf{a} a morphism of species. Then there exists a unique morphism of monoids ζ^:𝒮(𝐪)𝐚\hat{\zeta}\colon\mathcal{S}(\mathbf{q})\to\mathbf{a} such that

𝒮(𝐪)ζ^𝐚𝐪ζη𝐪
\begin{gathered}\lx@xy@svg{\hbox{\raise 2.5pt\hbox{\kern 14.61316pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&\\\crcr}}}\ignorespaces{\hbox{\kern-12.70139pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathcal{S}(\mathbf{q})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 28.9236pt\raise 6.61111pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-3.61111pt\hbox{$\scriptstyle{\hat{\zeta}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 56.70139pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}{\hbox{\kern 56.70139pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{a}}$}}}}}}}{\hbox{\kern-6.0347pt\raise-38.19444pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{q}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 29.37506pt\raise-25.20833pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{\zeta}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 56.70139pt\raise-3.54271pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern-14.61316pt\raise-19.09723pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.52084pt\hbox{$\scriptstyle{\eta_{\mathbf{q}}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 0.0pt\raise-8.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces}}}}\ignorespaces\end{gathered}

commutes.

The map ζ^\hat{\zeta} is as follows. On the empty set, it is the unit map of 𝐚\mathbf{a}:

𝒮(𝐪)[]=𝕜ι𝐚[].\mathcal{S}(\mathbf{q})[\emptyset]=\Bbbk\xrightarrow{\iota_{\emptyset}}\mathbf{a}[\emptyset].

On a nonempty set II, it is the sum of the maps

𝐪(X)=BX𝐪[B]BXζBBX𝐚[B]μX𝐚[I],\mathbf{q}(X)=\bigotimes_{B\in X}\mathbf{q}[B]\xrightarrow{\bigotimes_{B\in X}\zeta_{B}}\bigotimes_{B\in X}\mathbf{a}[B]\xrightarrow{\mu_{X}}\mathbf{a}[I],

where μX\mu_{X} denotes the higher product μI1,,Ik\mu_{I_{1},\ldots,I_{k}} as in (45) and (I1,,Ik)(I_{1},\ldots,I_{k}) is any composition of II with support XX. (μX\mu_{X} is well-defined by commutativity of 𝐚\mathbf{a}.)

When there is given an isomorphism of monoids 𝐚𝒮(𝐪)\mathbf{a}\cong\mathcal{S}(\mathbf{q}), we say that the positive species 𝐪\mathbf{q} is a basis of the (free) commutative monoid 𝐚\mathbf{a}.

7.2. The free commutative monoid as a Hopf monoid

The monoid 𝒮(𝐪)\mathcal{S}(\mathbf{q}) admits a canonical Hopf monoid structure. Given I=STI=S\sqcup T, the coproduct

ΔS,T:𝒮(𝐪)[I]𝒮(𝐪)[S]𝒮(𝐪)[T]\Delta_{S,T}:\mathcal{S}(\mathbf{q})[I]\to\mathcal{S}(\mathbf{q})[S]\otimes\mathcal{S}(\mathbf{q})[T]

is the sum of the maps

𝐪(X)\displaystyle\mathbf{q}(X) 𝐪(X|S)𝐪(X|T)\displaystyle\to\mathbf{q}(X|_{S})\otimes\mathbf{q}(X|_{T})
BXxB\displaystyle\bigotimes_{B\in X}x_{B} {(BX|SxB)(BX|TxB) if S is X-admissible,0 otherwise.\displaystyle\mapsto\begin{cases}\bigl{(}\bigotimes_{B\in X|_{S}}x_{B}\bigr{)}\otimes\bigl{(}\bigotimes_{B\in X|_{T}}x_{B}\bigr{)}&\text{ if $S$ is $X$-admissible,}\\ 0&\text{ otherwise.}\end{cases}

Note that SS is XX-admissible if and only if X=X|SX|TX=X|_{S}\sqcup X|_{T}.

This turns 𝒮(𝐪)\mathcal{S}(\mathbf{q}) into a cocommutative bimonoid. Since it is connected, it is a Hopf monoid. We have

𝒫(𝒮(𝐪))=𝐪;\mathcal{P}\bigl{(}\mathcal{S}(\mathbf{q})\bigr{)}=\mathbf{q};

more precisely, the primitive part identifies with 𝐪\mathbf{q} under the embedding ηq\eta_{q}.

We return to the situation of Theorem 22 in the case when 𝐚\mathbf{a} is in fact a commutative Hopf monoid 𝐡\mathbf{h}. Thus, we are given a morphism of species ζ:𝐪𝐡\zeta:\mathbf{q}\to\mathbf{h} and we consider the morphism of monoids ζ^:𝒮(𝐪)𝐡\hat{\zeta}:\mathcal{S}(\mathbf{q})\to\mathbf{h}.

Proposition 23.

Suppose that ζ\zeta maps elements of 𝐪\mathbf{q} to primitive elements of 𝐡\mathbf{h}. Then ζ^\hat{\zeta} is a morphism of Hopf monoids.

This is a special case of [6, Theorem 11.14].

Theorem 24.

The antipode of 𝒮(𝐪)\mathcal{S}(\mathbf{q}) is given by

(125) sI(z)=(1)(X)z\operatorname{\textsc{s}}_{I}(z)=(-1)^{\ell(X)}z

for any z𝐪(X)z\in\mathbf{q}(X), where (X)\ell(X) is the number of blocks of XX.

One may prove this result as that in Theorem 18. It is a special case of [6, Theorem 11.40].

7.3. The free commutative monoid on an arbitrary species

Let 𝐪\mathbf{q} be an arbitrary species (not necessarily positive). The free commutative monoid 𝒮(𝐪)\mathcal{S}(\mathbf{q}) on 𝐪\mathbf{q} exists. It is the Hadamard product

𝒮(𝐪):=𝐔𝒮(𝐪[])×𝒮(𝐪+).\mathcal{S}(\mathbf{q}):=\mathbf{U}_{\mathcal{S}(\mathbf{q}[\emptyset])}\times\mathcal{S}(\mathbf{q}_{+}).

The second factor is the free commutative monoid (as in Section 7.1) on the positive part of 𝐪\mathbf{q}. The first factor is the monoid associated to the free commutative algebra on the space 𝐪[]\mathbf{q}[\emptyset] as in (73). Theorem 22 continues to hold. One has 𝒮(𝐪)[]=𝒮(𝐪[])\mathcal{S}(\mathbf{q})[\emptyset]=\mathcal{S}(\mathbf{q}[\emptyset]); in particular, 𝒮(𝐪)\mathcal{S}(\mathbf{q}) is connected if and only if 𝐪\mathbf{q} is positive.

If 𝐪[]\mathbf{q}[\emptyset] is a coalgebra, then 𝒮(𝐪[])\mathcal{S}(\mathbf{q}[\emptyset]) acquires a nonstandard bialgebra structure and 𝒮(𝐪)\mathcal{S}(\mathbf{q}) is a bimonoid. If 𝐪[]0\mathbf{q}[\emptyset]\neq 0, then 𝒮(𝐪[])\mathcal{S}(\mathbf{q}[\emptyset]) and 𝒮(𝐪)\mathcal{S}(\mathbf{q}) are not Hopf.

In the sections that follow, and in most of the paper, we restrict our attention to the case of positive 𝐪\mathbf{q}.

7.4. The Hadamard product of free commutative monoids

Let 𝐩\mathbf{p} and 𝐪\mathbf{q} be positive species. Define a new positive species 𝐩𝐪\mathbf{p}\diamond\mathbf{q} by

(126) (𝐩𝐪)[I]:=X,YIXY={I}𝐩(X)𝐪(Y).(\mathbf{p}\diamond\mathbf{q})[I]:=\bigoplus_{\begin{subarray}{c}X,Y\vDash I\\ X\wedge Y=\{I\}\end{subarray}}\mathbf{p}(X)\otimes\mathbf{q}(Y).

The sum is over all pairs of partitions of II whose meet is the minimum partition.

Theorem 25.

For any positive species 𝐩\mathbf{p} and 𝐪\mathbf{q}, there is a natural isomorphism of Hopf monoids

(127) 𝒮(𝐩𝐪)𝒮(𝐩)×𝒮(𝐪).\mathcal{S}(\mathbf{p}\diamond\mathbf{q})\cong\mathcal{S}(\mathbf{p})\times\mathcal{S}(\mathbf{q}).

Arguments similar to those in [7, Theorem 3.8 and Proposition 3.10] yield this result.

7.5. The free commutative set-theoretic monoid

Let Q\mathrm{Q} be a positive set species. The free commutative set-theoretic monoid on Q\mathrm{Q} is the set species 𝒮(Q)\mathcal{S}(\mathrm{Q}) defined by

𝒮(Q)[I]:=XIQ(X),\mathcal{S}(\mathrm{Q})[I]:=\coprod_{X\vdash I}\mathrm{Q}(X),

where

Q(X):=BXQ[B].\mathrm{Q}(X):=\prod_{B\in X}\mathrm{Q}[B].

There is a canonical isomorphism of monoids

𝕜𝒮(Q)𝒮(𝕜Q).\Bbbk\mathcal{S}(\mathrm{Q})\cong\mathcal{S}(\Bbbk\mathrm{Q}).

The comonoid structure of 𝒮(𝕜Q)\mathcal{S}(\Bbbk\mathrm{Q}) of Section 7.2 is, in general, not the linearization of a set-theoretic comonoid structure on 𝒮(Q)\mathcal{S}(\mathrm{Q}). For a case in which it is, see Section 9.1.

7.6. The abelianization

Let 𝐪\mathbf{q} be a positive species and consider the free Hopf monoid 𝒯(𝐪)\mathcal{T}(\mathbf{q}) and the free commutative Hopf monoid 𝒮(𝐪)\mathcal{S}(\mathbf{q}) on it. By freeness of the former (Theorem 16), there is a unique morphism of monoids

π𝐪:𝒯(𝐪)𝒮(𝐪)\pi_{\mathbf{q}}\colon\mathcal{T}(\mathbf{q})\to\mathcal{S}(\mathbf{q})

such that

𝒯(𝐪)\textstyle{\mathcal{T}(\mathbf{q})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}π𝐪\scriptstyle{\pi_{\mathbf{q}}}𝒮(𝐪)\textstyle{\mathcal{S}(\mathbf{q})}𝐪\textstyle{\mathbf{q}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}η𝐪\scriptstyle{\eta_{\mathbf{q}}}η𝐪\scriptstyle{\eta_{\mathbf{q}}}

commutes, where η𝐪\eta_{\mathbf{q}} denotes either universal arrow.

It is easy to see that π𝐪\pi_{\mathbf{q}} is the abelianization of 𝒯(𝐪)\mathcal{T}(\mathbf{q}). Since the elements of 𝐪\mathbf{q} are primitive, Proposition 23 implies that π𝐪\pi_{\mathbf{q}} is a morphism of Hopf monoids.

On a finite set II, the morphism π𝐪\pi_{\mathbf{q}} is the sum of the canonical isomorphisms

𝐪(F)=𝐪[I1]𝐪[Ik]BsuppF𝐪[B]=𝐪(suppF)\mathbf{q}(F)=\mathbf{q}[I_{1}]\otimes\dots\otimes\mathbf{q}[I_{k}]\stackrel{{\scriptstyle\cong}}{{\longrightarrow}}\bigotimes_{B\in\operatorname{supp}F}\mathbf{q}[B]=\mathbf{q}(\operatorname{supp}F)

over all compositions F=(I1,,Ik)F=(I_{1},\ldots,I_{k}) of II. The support is as in Section 1.9. (The map π𝐪\pi_{\mathbf{q}} is not an isomorphism since a given partition supports many compositions.)

Since the support map does not preserve meets, the map

𝒯(𝐩𝐪)𝒯(𝐩)×𝒯(𝐪)π𝐩×π𝐪𝒮(𝐩)×𝒮(𝐪)𝒮(𝐩𝐪)\mathcal{T}(\mathbf{p}\star\mathbf{q})\xrightarrow{\cong}\mathcal{T}(\mathbf{p})\times\mathcal{T}(\mathbf{q})\xrightarrow{\pi_{\mathbf{p}}\times\pi_{\mathbf{q}}}\mathcal{S}(\mathbf{p})\times\mathcal{S}(\mathbf{q})\xrightarrow{\cong}\mathcal{S}(\mathbf{p}\diamond\mathbf{q})

(where the isomorphisms are as in (122) and (126)) does not send 𝐩𝐪\mathbf{p}\star\mathbf{q} to 𝐩𝐪\mathbf{p}\diamond\mathbf{q}.

Abelianization is also meaningful in the set-theoretic context.

8. The free Lie monoid

Recall the notion of a Lie monoid from Section 2.9. We discuss two important universal constructions, that of the free Lie monoid on a positive species, and the universal enveloping monoid of a positive Lie monoid.

8.1. The free Lie monoid

We begin with some preliminary definitions. A bracket sequence α\alpha on kk letters is a way to parenthesize kk letters. The concatenation αβ\alpha\cdot\beta of bracket sequences α\alpha and β\beta is defined in the obvious manner. For instance, (((a,b),c),(d,e))(((a,b),c),(d,e)) is the concatenation of ((a,b),c)((a,b),c) and (d,e)(d,e). The left bracket sequence is the one in which all brackets are to the left. For instance, (((a,b),c),d)(((a,b),c),d) is the left bracket sequence on 44 letters.

A bracket composition of a finite nonempty set II is a pair (F,α)(F,\alpha), where FF is a composition of II and α\alpha is a bracket sequence on l(F)l(F) letters. It is convenient to think of α\alpha as a bracket sequence on the blocks of FF. For example, ((S1,S2),(S3,S4))((S_{1},S_{2}),(S_{3},S_{4})) is a bracket composition.

Fix a positive species 𝐪\mathbf{q}. We proceed to describe the free Lie monoid on 𝐪\mathbf{q}. For any bracket composition (F,α)(F,\alpha), parenthesizing 𝐪(F)\mathbf{q}(F) using α\alpha yields a bracketed tensor product which we denote by 𝐪(F,α)\mathbf{q}(F,\alpha). Note that there is a canonical identification

(128) 𝐪(F,α)𝐪(G,β)𝐪(FG,αβ).\mathbf{q}(F,\alpha)\otimes\mathbf{q}(G,\beta)\stackrel{{\scriptstyle\cong}}{{\longrightarrow}}\mathbf{q}(F\cdot G,\alpha\cdot\beta).

Now consider the positive species whose II-component is

(F,α)𝐪(F,α),\bigoplus_{(F,\alpha)}\mathbf{q}(F,\alpha),

where the sum is over all bracket compositions of II. The product (128) turns this space into a non-associative monoid. Let ie(𝐪)\mathcal{L}ie(\mathbf{q}) denote its quotient by the two-sided ideal generated by the relations:

For all x𝐪(F,α)x\in\mathbf{q}(F,\alpha), y𝐪(G,β)y\in\mathbf{q}(G,\beta), and z𝐪(H,γ)z\in\mathbf{q}(H,\gamma),

(129) xy+yx=0,x\otimes y+y\otimes x=0,

and

(130) (xy)z+(zx)y+(yz)x=0.(x\otimes y)\otimes z+(z\otimes x)\otimes y+(y\otimes z)\otimes x=0.

The relations (129) and (130) imply that the induced product satisfies (70) and (71). So ie(𝐪)\mathcal{L}ie(\mathbf{q}) is a Lie monoid. In fact, by construction, it is the free Lie monoid on 𝐪\mathbf{q}. It satisfies the following universal property.

Theorem 26.

Let 𝐠\mathbf{g} be a Lie monoid, 𝐪\mathbf{q} a positive species, and ζ:𝐪𝐠\zeta\colon\mathbf{q}\to\mathbf{g} a morphism of species. Then there exists a unique morphism of Lie monoids ζ^:ie(𝐪)𝐠\hat{\zeta}\colon\mathcal{L}ie(\mathbf{q})\to\mathbf{g} such that

ie(𝐪)ζ^𝐠𝐪ζη𝐪
\begin{gathered}\lx@xy@svg{\hbox{\raise 2.5pt\hbox{\kern 17.0993pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&\\\crcr}}}\ignorespaces{\hbox{\kern-17.0993pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathcal{L}ie(\mathbf{q})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 33.32152pt\raise 6.61111pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-3.61111pt\hbox{$\scriptstyle{\hat{\zeta}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 61.0993pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}{\hbox{\kern 61.0993pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{g}}$}}}}}}}{\hbox{\kern-6.0347pt\raise-38.19444pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{q}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 31.41629pt\raise-25.20833pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{\zeta}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 61.0993pt\raise-3.35057pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern-14.61316pt\raise-19.09723pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.52084pt\hbox{$\scriptstyle{\eta_{\mathbf{q}}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 0.0pt\raise-8.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces}}}}\ignorespaces\end{gathered}

commutes.

Remark.

We mention that the free Lie monoid ie(𝐪)\mathcal{L}ie(\mathbf{q}) on an arbitrary species 𝐪\mathbf{q} also exists. One has that ie(𝐪)[]\mathcal{L}ie(\mathbf{q})[\emptyset] is the free Lie algebra on the vector space 𝐪[]\mathbf{q}[\emptyset]. Thus, ie(𝐪)\mathcal{L}ie(\mathbf{q}) is positive if and only if 𝐪\mathbf{q} is positive.

For any bracket composition (F,α)(F,\alpha), there is a map

(131) 𝐪(F,α)G:suppG=suppF𝐪(G)\mathbf{q}(F,\alpha)\to\bigoplus_{G:\,\operatorname{supp}G=\operatorname{supp}F}\mathbf{q}(G)

constructed by replacing each bracket in α\alpha by a commutator. For instance, if FF has three blocks and α\alpha is the left bracket sequence, then

((xy)z)xyzyxzzxy+zyx.((x\otimes y)\otimes z)\mapsto x\otimes y\otimes z-y\otimes x\otimes z-z\otimes x\otimes y+z\otimes y\otimes x.

Note that among all tensors on the right, only one begins with xx. This property holds whenever α\alpha is the left bracket sequence. An explicit description of the action of this map on the left bracket sequence is provided by Lemma 111 below.

By summing (131) over all (F,α)(F,\alpha) and noting that the relations  (129) and (130) map to zero, we obtain an induced map

(132) ie(𝐪)𝒯(𝐪).\mathcal{L}ie(\mathbf{q})\to\mathcal{T}(\mathbf{q}).
Lemma 27.

The map (132) is injective.

Proof.

We first make a general observation. Repeated use of the Leibniz identity

[x,[y,z]]=[[x,y],z][[x,z],y][x,[y,z]]=[[x,y],z]-[[x,z],y]

changes any bracket sequence to a combination of left bracket sequences only, and antisymmetry can be used to get any specified factor to the first position.

Consider the component ie(𝐪)[I]\mathcal{L}ie(\mathbf{q})[I]. Note that the bracket compositions in (129) or (130) have the same underlying set partition. So ie(𝐪)[I]\mathcal{L}ie(\mathbf{q})[I] splits as a direct sum over partitions of II. For each partition XX of II, fix a block SS of XX. Using the above general observation, any element of ie(𝐪)[I]\mathcal{L}ie(\mathbf{q})[I] in the XX-component can be expressed as a sum of elements in those 𝐪(F,α)\mathbf{q}(F,\alpha) for which the first block of FF is SS and α\alpha is the left bracket sequence. Further, the image of any such 𝐪(F,α)\mathbf{q}(F,\alpha) (see (131)) is a linear combination of the 𝐪(G)\mathbf{q}(G) (with GG having the same support as FF) in which 𝐪(F)\mathbf{q}(F) appears and it is the only composition which begins with SS. So the images of the different 𝐪(F,α)\mathbf{q}(F,\alpha) are linearly independent proving injectivity. ∎

The above proof shows the following. For each partition XX of II, fix a block SS of XX. Then ie(𝐪)[I]\mathcal{L}ie(\mathbf{q})[I] is isomorphic to the direct sum of those 𝐪(F,α)\mathbf{q}(F,\alpha) for which the first block of FF is SS and α\alpha is the left bracket sequence. As a consequence, we have

(133) dim𝕜(ie(𝐪)[I])=XIdim𝕜(𝐩(X))(l(X)1)!,\dim_{\Bbbk}(\mathcal{L}ie(\mathbf{q})[I])=\sum_{X\vdash I}\dim_{\Bbbk}(\mathbf{p}(X))(l(X)-1)!,

where l(X)l(X) denotes the number of blocks of XX.

Recall that every monoid, and in particular 𝒯(𝐪)\mathcal{T}(\mathbf{q}), is a Lie monoid via the commutator bracket (72). Note that the image of ie(𝐪)\mathcal{L}ie(\mathbf{q}) under (132) is precisely the Lie submonoid of 𝒯(𝐪)\mathcal{T}(\mathbf{q}) generated by 𝐪\mathbf{q} (the smallest Lie submonoid containing 𝐪\mathbf{q}).

8.2. The universal enveloping monoid

Let 𝐠\mathbf{g} be a positive Lie monoid. Let 𝒥(𝐠)\mathcal{J}(\mathbf{g}) be the ideal of the monoid 𝒯(𝐠)\mathcal{T}(\mathbf{g}) generated by the elements

(134) xyyx[x,y]S,T𝐠(S,T)𝐠(T,S)𝐠[I]𝒯(𝐠)[I]x\otimes y-y\otimes x-[x,y]_{S,T}\ \in\mathbf{g}(S,T)\oplus\mathbf{g}(T,S)\oplus\mathbf{g}[I]\subseteq\mathcal{T}(\mathbf{g})[I]

for x𝐠[S]x\in\mathbf{g}[S] and y𝐠[T]y\in\mathbf{g}[T], for all nonempty finite sets II and compositions (S,T)I(S,T)\vDash I. The universal enveloping monoid of 𝐠\mathbf{g}, denoted 𝒰(𝐠)\mathcal{U}(\mathbf{g}), is the quotient of 𝒯(𝐠)\mathcal{T}(\mathbf{g}) by the ideal 𝒥(𝐠)\mathcal{J}(\mathbf{g}). It is a connected monoid.

Let

π𝐠:𝒯(𝐠)𝒰(𝐠)\pi_{\mathbf{g}}:\mathcal{T}(\mathbf{g})\twoheadrightarrow\mathcal{U}(\mathbf{g})

denote the quotient map, and let

η𝐠:𝐠𝒰(𝐠)\eta_{\mathbf{g}}:\mathbf{g}\to\mathcal{U}(\mathbf{g})

be the composition of π𝐠\pi_{\mathbf{g}} with the embedding of 𝐠\mathbf{g} in 𝒯(𝐠)\mathcal{T}(\mathbf{g}). Since (134) equals 0 in 𝒰(𝐠)\mathcal{U}(\mathbf{g}), the map η𝐠\eta_{\mathbf{g}} is a morphism of Lie monoids when 𝒰(𝐠)\mathcal{U}(\mathbf{g}) is viewed as a Lie monoid via the commutator bracket (72).

When the Lie bracket of 𝐠\mathbf{g} is identically 0, we have 𝒰(𝐠)=𝒮(𝐠)\mathcal{U}(\mathbf{g})=\mathcal{S}(\mathbf{g}) and the map π𝐠\pi_{\mathbf{g}} is the abelianization of Section 7.6.

Proposition 28.

Let 𝐚\mathbf{a} be a monoid, 𝐠\mathbf{g} a positive Lie monoid, and ζ:𝐠𝐚\zeta\colon\mathbf{g}\to\mathbf{a} a morphism of Lie monoids. Then there exists a unique morphism of monoids ζ^:𝒰(𝐠)𝐚\hat{\zeta}\colon\mathcal{U}(\mathbf{g})\to\mathbf{a} such that the first diagram below commutes.

𝒰(𝐠)ζ^𝐚𝐠ζη𝐠
\displaystyle\begin{gathered}\lx@xy@svg{\hbox{\raise 2.5pt\hbox{\kern 14.41176pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&\\\crcr}}}\ignorespaces{\hbox{\kern-13.51389pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathcal{U}(\mathbf{g})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 29.7361pt\raise 6.61111pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-3.61111pt\hbox{$\scriptstyle{\hat{\zeta}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 57.51389pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}{\hbox{\kern 57.51389pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{a}}$}}}}}}}{\hbox{\kern-5.87498pt\raise-38.19444pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{g}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 29.74367pt\raise-25.20833pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{\zeta}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 57.51389pt\raise-3.49742pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern-14.41176pt\raise-19.09723pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.52084pt\hbox{$\scriptstyle{\eta_{\mathbf{g}}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 0.0pt\raise-8.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces}}}}\ignorespaces\end{gathered}
𝒯(𝐠)ζ~π𝐠𝒰(𝐠)ζ^𝐚\displaystyle\begin{gathered}\lx@xy@svg{\hbox{\raise 2.5pt\hbox{\kern 14.9679pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr\\&\crcr}}}\ignorespaces{\hbox{\kern-13.375pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathcal{T}(\mathbf{g})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 29.52168pt\raise-13.38889pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-3.61111pt\hbox{$\scriptstyle{\tilde{\zeta}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 57.51389pt\raise-36.34412pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern-14.9679pt\raise-20.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.52084pt\hbox{$\scriptstyle{\pi_{\mathbf{g}}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 0.0pt\raise-32.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-13.51389pt\raise-40.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathcal{U}(\mathbf{g})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 29.7361pt\raise-46.61111pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-3.61111pt\hbox{$\scriptstyle{\hat{\zeta}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 57.51389pt\raise-40.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 57.51389pt\raise-40.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{a}}$}}}}}}}\ignorespaces}}}}\ignorespaces\end{gathered}

Moreover, the second diagram above commutes as well, where ζ~\tilde{\zeta} is the morphism of monoids afforded by Theorem 16.

Proof.

By Theorem 16, there is a morphism of monoids ζ~:𝒯(𝐠)𝐚\tilde{\zeta}:\mathcal{T}(\mathbf{g})\to\mathbf{a} extending ζ\zeta. By construction, its value on the element (134) is

μS,T(ζS(x)ζT(y))μT,S(ζT(y)ζS(x))ζI([x,y]S,T).\mu_{S,T}(\zeta_{S}(x)\otimes\zeta_{T}(y))-\mu_{T,S}(\zeta_{T}(y)\otimes\zeta_{S}(x))-\zeta_{I}([x,y]_{S,T}).

Further, since ζ\zeta is a morphism of Lie monoids,

ζI([x,y]S,T)=[ζS(x),ζT(y)]S,T,\zeta_{I}([x,y]_{S,T})=[\zeta_{S}(x),\zeta_{T}(y)]_{S,T},

and hence the above value is 0 by (72). Therefore, ζ~:𝒯(𝐠)𝐚\tilde{\zeta}:\mathcal{T}(\mathbf{g})\to\mathbf{a} factors through the quotient map π𝐠\pi_{\mathbf{g}} to yield a morphism of monoids ζ^:𝒰(𝐠)𝐚\hat{\zeta}:\mathcal{U}(\mathbf{g})\to\mathbf{a}. The uniqueness of ζ^\hat{\zeta} follows from that of ζ~\tilde{\zeta} and the surjectivity of π𝐠\pi_{\mathbf{g}}. ∎

This explains the usage of “universal”. It is true but not obvious that η𝐠\eta_{\mathbf{g}} is injective. This fact is a part of the PBW theorem (Theorem 119). This justifies the usage of “envelope”.

Recall from Section 6.2 that 𝒯(𝐠)\mathcal{T}(\mathbf{g}) carries a canonical structure of a bimonoid.

Lemma 29.

The ideal 𝒥(𝐠)\mathcal{J}(\mathbf{g}) of 𝒯(𝐠)\mathcal{T}(\mathbf{g}) is also a coideal.

Proof.

According to (119), 𝐠𝒫(𝒯(𝐠))\mathbf{g}\subseteq\mathcal{P}\bigl{(}\mathcal{T}(\mathbf{g})\bigr{)}. By Proposition 13, 𝒫(𝒯(𝐠))\mathcal{P}\bigl{(}\mathcal{T}(\mathbf{g})\bigr{)} is closed under the commutator bracket (72). Hence, for any x𝐠[S]x\in\mathbf{g}[S] and y𝐠[T]y\in\mathbf{g}[T], both xyyxx\otimes y-y\otimes x and [x,y]S,T[x,y]_{S,T} belong to 𝒫(𝒯(𝐠))[I]\mathcal{P}\bigl{(}\mathcal{T}(\mathbf{g})\bigr{)}[I]. Thus, the ideal 𝒥(𝐠)\mathcal{J}(\mathbf{g}) is generated by primitive elements, and hence is a coideal. ∎

As a consequence:

Proposition 30.

There is a unique bimonoid structure on 𝒰(𝐠)\mathcal{U}(\mathbf{g}) for which the map π𝐠:𝒯(𝐠)𝒰(𝐠)\pi_{\mathbf{g}}:\mathcal{T}(\mathbf{g})\twoheadrightarrow\mathcal{U}(\mathbf{g}) is a morphism of bimonoids. Moreover, 𝒰(𝐠)\mathcal{U}(\mathbf{g}) is cocommutative.

We return to the situation of Proposition 28 in the case when 𝐚\mathbf{a} is in fact a Hopf monoid 𝐡\mathbf{h}. Thus, we are given a morphism of Lie monoids ζ:𝐠𝐡\zeta:\mathbf{g}\to\mathbf{h} and we consider the morphism of monoids ζ^:𝒰(𝐠)𝐡\hat{\zeta}:\mathcal{U}(\mathbf{g})\to\mathbf{h}. Combining Propositions 17 and 30, we obtain the following.

Proposition 31.

Suppose that ζ\zeta maps elements of 𝐠\mathbf{g} to primitive elements of 𝐡\mathbf{h}. Then ζ^\hat{\zeta} is a morphism of bimonoids.

It follows from here and [43, Theorem IV.1.2, item (i)] that the functors

(135) {positive Lie monoids}\textstyle{\{\text{positive Lie monoids}\}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝒰\scriptstyle{\mathcal{U}}{connected Hopf monoids}\textstyle{\ignorespaces\ignorespaces\ignorespaces\ignorespaces\{\text{connected Hopf monoids}\}}𝒫\scriptstyle{\mathcal{P}}

form an adjunction (with 𝒰\mathcal{U} being left adjoint to 𝒫\mathcal{P}). This may be composed with the adjunction

{positive species}\textstyle{\{\text{positive species}\}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ie\scriptstyle{\mathcal{L}ie}{positive Lie monoids}\textstyle{\ignorespaces\ignorespaces\ignorespaces\ignorespaces\{\text{positive Lie monoids}\}}forget

(arising from Theorem 26) and the result must be isomorphic to the adjunction (120). Hence, for any positive species 𝐪\mathbf{q},

(136) 𝒰(ie(𝐪))𝒯(𝐪)\mathcal{U}(\mathcal{L}ie(\mathbf{q}))\cong\mathcal{T}(\mathbf{q})

as bimonoids.

9. Examples of Hopf monoids

We discuss a number of important examples of connected Hopf monoids (and qq-Hopf monoids). In most cases at least part of the structure is set-theoretic. Starting with the simplest Hopf monoid (the exponential Hopf monoid), we build on more complicated examples involving combinatorial structures such as linear orders, set partitions, simple graphs, and generalized permutahedra. Many of these monoids are free or free commutative. An example involving groups of unitriangular matrices is included too. We discuss various morphisms relating them and provide formulas for the structure maps on one or more linear bases. Self-duality is studied and the antipode problem is solved in all but one instance.

Two important examples are discussed separately in Section 11. Additional examples can be found in [6, Chapters 12 and 13].

In this section we assume that the base field 𝕜\Bbbk is of characteristic 0. This is only needed for certain statements regarding self-duality, certain basis changes, and on a few other occasions where rational numbers intervene.

9.1. The exponential Hopf monoid

Let E\mathrm{E} be the set species defined by

E[I]:={I}\mathrm{E}[I]:=\{I\}

on all finite sets II. The set {I}\{I\} is a singleton canonically associated to the set II. We refer to E\mathrm{E} as the exponential set species. It is a set-theoretic connected Hopf monoid with product and coproduct defined by

E[S]×E[T]\displaystyle\mathrm{E}[S]\times\mathrm{E}[T] μS,TE[I]\displaystyle\xrightarrow{\mu_{S,T}}\mathrm{E}[I] E[I]\displaystyle\mathrm{E}[I] ΔS,TE[S]×E[T]\displaystyle\xrightarrow{\Delta_{S,T}}\mathrm{E}[S]\times\mathrm{E}[T]
(S,T)\displaystyle(S,T) I\displaystyle\xmapsto{\phantom{\mu_{S,T}}}I I\displaystyle I (S,T).\displaystyle\xmapsto{\phantom{\Delta_{S,T}}}(S,T).

The Hopf monoid axioms (Sections 4.2 and 4.3) are trivially satisfied. The Hopf monoid E\mathrm{E} is commutative and cocommutative.

Let 𝐄:=𝕜E\mathbf{E}:=\Bbbk\mathrm{E} denote the linearization of E\mathrm{E}. This agrees with (74). It is a connected Hopf monoid. We follow Convention 5 by writing 𝙷I\mathtt{H}_{I} for the unique element of the canonical basis of 𝐄[I]\mathbf{E}[I].

Let 𝐗\mathbf{X} be the species defined by

𝐗[I]:={𝕜if I is a singleton,0otherwise.\mathbf{X}[I]:=\begin{cases}\Bbbk&\text{if $I$ is a singleton,}\\ 0&\text{otherwise.}\end{cases}

It is positive. Note that if XX is a partition of II, then

𝐗(X){𝕜 if all blocks of X are singletons,0 otherwise.\mathbf{X}(X)\cong\begin{cases}\Bbbk&\text{ if all blocks of $X$ are singletons,}\\ 0&\text{ otherwise.}\end{cases}

Moreover, in the former case, any subset SS of II is XX-admissible. It follows that 𝒮(𝐗)[I]𝐄[I]\mathcal{S}(\mathbf{X})[I]\cong\mathbf{E}[I] for all finite sets II. This gives rise to a canonical isomorphism of Hopf monoids

𝒮(𝐗)𝐄.\mathcal{S}(\mathbf{X})\cong\mathbf{E}.

In particular, 𝐄\mathbf{E} is the free commutative monoid on the species 𝐗\mathbf{X} and the primitive part is

𝒫(𝐄)𝐗.\mathcal{P}(\mathbf{E})\cong\mathbf{X}.

As a simple special case of (125), we have that the antipode of 𝐄\mathbf{E} is given by

sI(𝙷I)=(1)|I|𝙷I.\operatorname{\textsc{s}}_{I}(\mathtt{H}_{I})=(-1)^{\lvert I\rvert}\mathtt{H}_{I}.

The Hopf monoid 𝐄\mathbf{E} is self-dual under 𝙷I𝙼I\mathtt{H}_{I}\leftrightarrow\mathtt{M}_{I}.

9.2. The Hopf monoid of linear orders

For any finite set II, let L[I]\mathrm{L}[I] be the set of all linear orders on II. If =i1in\ell=i_{1}\cdots i_{n} and σ:IJ\sigma:I\to J is a bijection, then L[σ]():=σ(i1)σ(in)\mathrm{L}[\sigma](\ell):=\sigma(i_{1})\cdots\sigma(i_{n}). In this manner, L\mathrm{L} is a set species, called of linear orders. It is a set-theoretic connected Hopf monoid with product and coproduct defined by

L[S]×L[T]\displaystyle\mathrm{L}[S]\times\mathrm{L}[T] μS,TL[I]\displaystyle\xrightarrow{\mu_{S,T}}\mathrm{L}[I] L[I]\displaystyle\mathrm{L}[I] ΔS,TL[S]×L[T]\displaystyle\xrightarrow{\Delta_{S,T}}\mathrm{L}[S]\times\mathrm{L}[T]
(1,2)\displaystyle(\ell_{1},\ell_{2}) 12\displaystyle\xmapsto{\phantom{\mu_{S,T}}}\ell_{1}\cdot\ell_{2} \displaystyle\ell (|S,|T).\displaystyle\xmapsto{\phantom{\Delta_{S,T}}}(\ell|_{S},\ell|_{T}).

We have employed the operations of concatenation and restriction from Section 1.4; other notions from that section are used below.

Consider the compatibility axiom (105). Given linear orders 1\ell_{1} on S1S_{1} and 2\ell_{2} on S2S_{2}, the axiom boils down to the fact that the concatenation of 1|A\ell_{1}|_{A} and 2|C\ell_{2}|_{C} agrees with the restriction to T1T_{1} of 12\ell_{1}\cdot\ell_{2}.

The Hopf monoid L\mathrm{L} is cocommutative but not commutative.

Let 𝐋:=𝕜L\mathbf{L}:=\Bbbk\mathrm{L} denote the linearization of L\mathrm{L}. It is a connected Hopf monoid. The product and coproduct are

μS,T(𝙷1𝙷2)=𝙷12andΔS,T(𝙷)=𝙷|S𝙷|T.\mu_{S,T}(\mathtt{H}_{\ell_{1}}\otimes\mathtt{H}_{\ell_{2}})=\mathtt{H}_{\ell_{1}\cdot\ell_{2}}\qquad\text{and}\qquad\Delta_{S,T}(\mathtt{H}_{\ell})=\mathtt{H}_{\ell|_{S}}\otimes\mathtt{H}_{\ell|_{T}}.

For the antipode of 𝐋\mathbf{L} on the basis {𝙷}\{\mathtt{H}\}, set q=1q=1 in (139) below.

For the dual Hopf monoid 𝐋=𝕜L\mathbf{L}^{*}=\Bbbk^{\mathrm{L}}, we have

μS,T(𝙼1𝙼2)=: a shuffle of 1 and 2𝙼\mu_{S,T}(\mathtt{M}_{\ell_{1}}\otimes\mathtt{M}_{\ell_{2}})=\sum_{\ell:\,\text{$\ell$ a shuffle of $\ell_{1}$ and $\ell_{2}$}}\mathtt{M}_{\ell}

and

ΔS,T(𝙼)={𝙼|S𝙼|T if S is an initial segment of ,0 otherwise.\Delta_{S,T}(\mathtt{M}_{\ell})=\begin{cases}\mathtt{M}_{\ell|_{S}}\otimes\mathtt{M}_{\ell|_{T}}&\text{ if $S$ is an initial segment of $\ell$,}\\ 0&\text{ otherwise.}\end{cases}

Note that if FF is a composition of II,

𝐗(F){𝕜 if all blocks of F are singletons,0 otherwise.\mathbf{X}(F)\cong\begin{cases}\Bbbk&\text{ if all blocks of $F$ are singletons,}\\ 0&\text{ otherwise.}\end{cases}

Since a set composition of II into singletons amounts to a linear order on II, we have 𝒯(𝐗)[I]𝐋[I]\mathcal{T}(\mathbf{X})[I]\cong\mathbf{L}[I] for all finite sets II. Moreover, for such FF, any subset SS of II is FF-admissible. This gives rise to a canonical isomorphism of Hopf monoids

𝒯(𝐗)𝐋.\mathcal{T}(\mathbf{X})\cong\mathbf{L}.

In particular, 𝐋\mathbf{L} is the free monoid on the species 𝐗\mathbf{X}.

By Corollary 121 below, the primitive part is

𝒫(𝐋)ie(𝐗),\mathcal{P}(\mathbf{L})\cong\mathcal{L}ie(\mathbf{X}),

the free Lie monoid on 𝐗\mathbf{X}. We denote this species by 𝐋𝐢𝐞\mathbf{Lie}. It is the species underlying the Lie operad. (The species 𝐋\mathbf{L} underlies the associative operad.) For more details, see [6, Section 11.9 and Appendix B].

Fix a scalar q𝕜q\in\Bbbk. Let 𝐋q\mathbf{L}_{q} denote the same monoid as 𝐋\mathbf{L}, but endowed with the following coproduct:

ΔS,T:𝐋q[I]𝐋q[S]𝐋q[T],𝙷qschS,T()𝙷|S𝙷|T,\Delta_{S,T}:\mathbf{L}_{q}[I]\to\mathbf{L}_{q}[S]\otimes\mathbf{L}_{q}[T],\qquad\mathtt{H}_{\ell}\mapsto q^{\operatorname{sch}_{S,T}(\ell)}\,\mathtt{H}_{\ell|_{S}}\otimes\mathtt{H}_{\ell|_{T}},

where the Schubert cocycle schS,T\operatorname{sch}_{S,T} is as in (6). Then 𝐋q\mathbf{L}_{q} is a connected qq-Hopf monoid. The following properties of the Schubert cocycle enter in the verification of coassociativity and of axiom (54), respectively.

(137) schR,ST()+schS,T(|ST)=schRS,T()+schR,S(|RS),\displaystyle\operatorname{sch}_{R,S\sqcup T}(\ell)+\operatorname{sch}_{S,T}(\ell|_{S\sqcup T})=\operatorname{sch}_{R\sqcup S,T}(\ell)+\operatorname{sch}_{R,S}(\ell|_{R\sqcup S}),
(138) schT1,T2(12)=schA,B(1)+schC,D(2)+|B||C|.\displaystyle\operatorname{sch}_{T_{1},T_{2}}(\ell_{1}\cdot\ell_{2})=\operatorname{sch}_{A,B}(\ell_{1})+\operatorname{sch}_{C,D}(\ell_{2})+\lvert B\rvert\lvert C\rvert.

There is an isomorphism of qq-Hopf monoids

𝒯q(𝐗)𝐋q.\mathcal{T}_{q}(\mathbf{X})\cong\mathbf{L}_{q}.

As a special case of (121), we have that the antipode of 𝐋q\mathbf{L}_{q} is given by

(139) sI(𝙷)=(1)|I|q(|I|2)𝙷¯,\operatorname{\textsc{s}}_{I}(\mathtt{H}_{\ell})=(-1)^{\lvert I\rvert}q^{\binom{\lvert I\rvert}{2}}\mathtt{H}_{\overline{\ell}},

where ¯\overline{\ell} denotes the opposite linear order of \ell. Other proofs of this result are discussed in [6, Example 8.16 and Proposition 12.3].

Generically, the qq-Hopf monoid 𝐋q\mathbf{L}_{q} is self-dual. In fact, we have the following result. Define a map ψq:𝐋q(𝐋q)\psi_{q}:\mathbf{L}_{q}\to(\mathbf{L}_{q})^{*} by

(140) ψq(𝙷):=qdist(,)𝙼.\psi_{q}(\mathtt{H}_{\ell}):=\sum_{\ell^{\prime}}q^{\operatorname{dist}(\ell,\ell^{\prime})}\,\mathtt{M}_{\ell^{\prime}}.

The distance dist(,)\operatorname{dist}(\ell,\ell^{\prime}) between linear orders \ell and \ell^{\prime} on II is as in (7).

Proposition 32.

The map ψq:𝐋q(𝐋q)\psi_{q}:\mathbf{L}_{q}\to(\mathbf{L}_{q})^{*} is a morphism of qq-Hopf monoids. If qq is not a root of unity, then it is an isomorphism. Moreover, for any qq, ψq=(ψq)\psi_{q}=(\psi_{q})^{*}.

Proposition 32 is proven in [6, Proposition 12.6]. The invertibility of the map (140) follows from a result of Zagier; see [6, Example 10.30] for related information. A more general result is given in [6, Theorem 11.35].

The map ψ0\psi_{0} sends 𝙷\mathtt{H}_{\ell} to 𝙼\mathtt{M}_{\ell} (and is an isomorphism of 0-Hopf monoids).

The isomorphism ψq\psi_{q} gives rise to a nondegenerate pairing on 𝐋q\mathbf{L}_{q} (for qq not a root of unity). The self-duality of the isomorphism translates into the fact that the associated pairing is symmetric.

9.3. The Hopf monoid of set partitions

Recall that Π[I]\Pi[I] denotes the set of partitions of a finite set II. Below we make use of notions and notation for partitions discussed in Section 1.8.

The species Π\Pi of partitions is a set-theoretic connected Hopf monoid with product and coproduct defined by

Π[S]×Π[T]\displaystyle\Pi[S]\times\Pi[T] μS,TΠ[I]\displaystyle\xrightarrow{\mu_{S,T}}\Pi[I] Π[I]\displaystyle\Pi[I] ΔS,TΠ[S]×Π[T]\displaystyle\xrightarrow{\Delta_{S,T}}\Pi[S]\times\Pi[T]
(X1,X2)\displaystyle(X_{1},X_{2}) X1X2\displaystyle\xmapsto{\phantom{\mu_{S,T}}}X_{1}\sqcup X_{2} X\displaystyle X (X|S,X|T).\displaystyle\xmapsto{\phantom{\Delta_{S,T}}}(X|_{S},X|_{T}).

We have employed the operations of union and restriction of partitions. The Hopf monoid Π\Pi is commutative and cocommutative.

Let 𝚷:=𝕜Π\mathbf{\Pi}:=\Bbbk\Pi denote the linearization of Π\Pi. It is a connected Hopf monoid. The product and coproduct are

μS,T(𝙷X1𝙷X2)=𝙷X1X2andΔS,T(𝙷X)=𝙷X|S𝙷X|T.\mu_{S,T}(\mathtt{H}_{X_{1}}\otimes\mathtt{H}_{X_{2}})=\mathtt{H}_{X_{1}\sqcup X_{2}}\qquad\text{and}\qquad\Delta_{S,T}(\mathtt{H}_{X})=\mathtt{H}_{X|_{S}}\otimes\mathtt{H}_{X|_{T}}.

The monoid 𝚷\mathbf{\Pi} is the free commutative monoid on the positive part of the exponential species: there is an isomorphism of monoids

𝒮(𝐄+)𝚷,BX𝙷B𝙷X.\mathcal{S}(\mathbf{E}_{+})\cong\mathbf{\Pi},\quad\bigotimes_{B\in X}\mathtt{H}_{B}\leftrightarrow\mathtt{H}_{X}.

The isomorphism does not preserve coproducts, since ΔS,T(BX𝙷B)=0\Delta_{S,T}(\bigotimes_{B\in X}\mathtt{H}_{B})=0 when SS is not XX-admissible.

Theorem 33.

The antipode of 𝚷\mathbf{\Pi} is given by

sI(𝙷X)=Y:XY(1)l(Y)(Y/X)!𝙷Y.\operatorname{\textsc{s}}_{I}(\mathtt{H}_{X})=\sum_{Y:\,X\leq Y}(-1)^{l(Y)}\,(Y/X)!\,\mathtt{H}_{Y}.

A proof of Theorem 33 is given in [6, Theorem 12.47].

For the dual Hopf monoid 𝚷=𝕜Π\mathbf{\Pi}^{*}=\Bbbk^{\Pi}, we have

μS,T(𝙼X1𝙼X2)=X:X a quasi-shuffle of X1 and X2𝙼X\mu_{S,T}(\mathtt{M}_{X_{1}}\otimes\mathtt{M}_{X_{2}})=\sum_{X:\,\text{$X$ a quasi-shuffle of $X_{1}$ and $X_{2}$}}\mathtt{M}_{X}

and

ΔS,T(𝙼X)={𝙼X|S𝙼X|T if S is X-admissible,0 otherwise.\Delta_{S,T}(\mathtt{M}_{X})=\begin{cases}\mathtt{M}_{X|_{S}}\otimes\mathtt{M}_{X|_{T}}&\text{ if $S$ is $X$-admissible,}\\ 0&\text{ otherwise.}\end{cases}

The Hopf monoid 𝚷\mathbf{\Pi} is self-dual. There are in fact several isomorphisms 𝚷𝚷\mathbf{\Pi}\cong\mathbf{\Pi}^{*}. We highlight two particular ones. Define maps ψ,φ:𝚷𝚷\psi,\varphi\colon\mathbf{\Pi}\to\mathbf{\Pi}^{*} by

(141) ψ(𝙷Y):=X(XY)!𝙼Xandφ(𝙷Y):=X:XY=I^𝙼X.\psi(\mathtt{H}_{Y}):=\sum_{X}(X\vee Y)!\,\mathtt{M}_{X}\qquad\text{and}\qquad\varphi(\mathtt{H}_{Y}):=\sum_{X:\,X\vee Y=\widehat{I}}\mathtt{M}_{X}.
Proposition 34.

The maps ψ,φ:𝚷𝚷\psi,\varphi\colon\mathbf{\Pi}\to\mathbf{\Pi}^{*} are isomorphisms of Hopf monoids. Moreover, ψ=ψ\psi=\psi^{*} and φ=φ\varphi=\varphi^{*}.

The assertion about ψ\psi is proven in [6, Proposition 12.48]. One verifies without difficulty that φ\varphi preserves products and coproducts. Its invertibility follows from a result of Dowling and Wilson [19, Lemma 1] (or from the considerations below).

Define a linear basis {𝚀}\{\mathtt{Q}\} of 𝚷[I]\mathbf{\Pi}[I] by

𝙷X=Y:XY𝚀Y.\mathtt{H}_{X}=\sum_{Y:\,X\leq Y}\mathtt{Q}_{Y}.

The basis {𝚀}\{\mathtt{Q}\} is determined by Möbius inversion. Let {𝙿}\{\mathtt{P}\} denote the linear basis of 𝚷\mathbf{\Pi}^{*} dual to the basis {𝚀}\{\mathtt{Q}\} of 𝚷\mathbf{\Pi}. Equivalently,

𝙿Y=X:XY𝙼X.\mathtt{P}_{Y}=\sum_{X:\,X\leq Y}\mathtt{M}_{X}.
Proposition 35.

We have

μS,T(𝚀X1𝚀X2)=𝚀X1X2,\displaystyle\mu_{S,T}(\mathtt{Q}_{X_{1}}\otimes\mathtt{Q}_{X_{2}})=\mathtt{Q}_{X_{1}\sqcup X_{2}},
ΔS,T(𝚀X)={𝚀X|S𝚀X|T if S is X-admissible,0 otherwise,\displaystyle\Delta_{S,T}(\mathtt{Q}_{X})=\begin{cases}\mathtt{Q}_{X|_{S}}\otimes\mathtt{Q}_{X|_{T}}&\text{ if $S$ is $X$-admissible,}\\ 0&\text{ otherwise,}\end{cases}
sI(𝚀X)=(1)l(X)𝚀X.\displaystyle\operatorname{\textsc{s}}_{I}(\mathtt{Q}_{X})=(-1)^{l(X)}\,\mathtt{Q}_{X}.

This is shown in [6, Section 12.6]. In addition, the maps in (141) satisfy

ψ(𝚀X)=X!𝙿Xandφ(𝚀X)=(1)|I|l(X)X!𝙿X,\psi(\mathtt{Q}_{X})=X\begin{picture}(3.0,5.0)(0.0,0.0)\put(0.0,0.0){{!}}\put(1.5,4.8){\circle{3.0}} \end{picture}\,\mathtt{P}_{X}\quad\text{and}\quad\varphi(\mathtt{Q}_{X})=(-1)^{\lvert I\rvert-l(X)}\,X\begin{picture}(3.0,5.0)(0.0,0.0)\put(0.0,0.0){{!}}\put(1.5,4.8){\circle{3.0}} \end{picture}\,\mathtt{P}_{X},

where the coefficient X!X\begin{picture}(3.0,5.0)(0.0,0.0)\put(0.0,0.0){{!}}\put(1.5,4.8){\circle{3.0}} \end{picture} is as in (15). The second coefficient is the Möbius function value (17).

The expressions for the product and coproduct on the basis {𝚀}\{\mathtt{Q}\} show that there is an isomorphism of Hopf monoids

𝒮(𝐄+)𝚷,BX𝙷B𝚀X.\mathcal{S}(\mathbf{E}_{+})\cong\mathbf{\Pi},\quad\bigotimes_{B\in X}\mathtt{H}_{B}\leftrightarrow\mathtt{Q}_{X}.

It follows that the primitive part satisfies

𝒫(𝚷)𝐄+\mathcal{P}(\mathbf{\Pi})\cong\mathbf{E}_{+}

with 𝒫(𝚷)[I]\mathcal{P}(\mathbf{\Pi})[I] one-dimensional spanned by the element 𝚀{I}\mathtt{Q}_{\{I\}}.

9.4. The Hopf monoid of simple graphs

A simple graph on II is a collection of subsets of II of cardinality 22. The elements of II are the vertices and the subsets are the (undirected) edges.

Let gg be a simple graph on II and SIS\subseteq I. The restriction g|Sg|_{S} is the simple graph on SS consisting of those edges of gg connecting elements of SS. Write I=STI=S\sqcup T. We say that SS is gg-admissible if no edge of gg connects an element of SS to an element of TT.

Given I=STI=S\sqcup T and simple graphs gg on SS and hh on TT, their union is the simple graph ghg\sqcup h on II whose edges belong to either gg or hh.

Let G[I]\mathrm{G}[I] denote the set of simple graphs with vertex set II. The species G\mathrm{G} of simple graphs is a set-theoretic connected Hopf monoid with product and coproduct defined by

G[S]×G[T]\displaystyle\mathrm{G}[S]\times\mathrm{G}[T] μS,TG[I]\displaystyle\xrightarrow{\mu_{S,T}}\mathrm{G}[I] G[I]\displaystyle\mathrm{G}[I] ΔS,TG[S]×G[T]\displaystyle\xrightarrow{\Delta_{S,T}}\mathrm{G}[S]\times\mathrm{G}[T]
(g1,g2)\displaystyle(g_{1},g_{2}) g1g2\displaystyle\xmapsto{\phantom{\mu_{S,T}}}g_{1}\sqcup g_{2} g\displaystyle g (g|S,g|T).\displaystyle\xmapsto{\phantom{\Delta_{S,T}}}(g|_{S},g|_{T}).

The Hopf monoid G\mathrm{G} is commutative and cocommutative.

We let 𝐆:=𝕜G\mathbf{G}:=\Bbbk\mathrm{G} denote the linearization of G\mathrm{G}. It is a connected Hopf monoid. The product and coproduct are

μS,T(𝙷g1𝙷g2)=𝙷g1g2andΔS,T(𝙷g)=𝙷g|S𝙷g|T.\mu_{S,T}(\mathtt{H}_{g_{1}}\otimes\mathtt{H}_{g_{2}})=\mathtt{H}_{g_{1}\sqcup g_{2}}\qquad\text{and}\qquad\Delta_{S,T}(\mathtt{H}_{g})=\mathtt{H}_{g|_{S}}\otimes\mathtt{H}_{g|_{T}}.

Let 𝐜𝐆\mathbf{cG} denote the subspecies of 𝐆\mathbf{G} spanned by connected simple graphs. The monoid 𝐆\mathbf{G} is the free commutative monoid on 𝐜𝐆+\mathbf{cG}_{+}: there is an isomorphism of monoids

𝒮(𝐜𝐆+)𝐆,BX𝙷g|B𝙷g.\mathcal{S}(\mathbf{cG}_{+})\cong\mathbf{G},\qquad\bigotimes_{B\in X}\mathtt{H}_{g|_{B}}\leftrightarrow\mathtt{H}_{g}.

Here XX is the partition into connected components of gg. The isomorphism does not preserve coproducts, since ΔS,T(BX𝙷g|B)=0\Delta_{S,T}(\bigotimes_{B\in X}\mathtt{H}_{g|_{B}})=0 when SS is not gg-admissible.

There is a pleasant solution to the antipode problem for 𝐆\mathbf{G}. In order to state it, we set up some terminology.

Given a simple graph gg on II and a partition XIX\vdash I, let

g|X:=BXg|B.g|_{X}:=\bigsqcup_{B\in X}g|_{B}.

This is a simple graph on II. Let also g/Xg/_{X} be the simple graph on XX such that there is an edge between B,CXB,C\in X if there is at least one edge in gg between an element of BB and an element of CC. In other words, g/Xg/_{X} is obtained from gg by identifying all vertices in each block of XX and removing all loops and multiple edges that may arise as a result. The lattice of contractions of gg is the set

L(g):={XIthe graph g|B is connected for each BX}.L(g):=\{X\vdash I\mid\text{the graph $g|_{B}$ is connected for each $B\in X$}\}.

An orientation of the edges of gg is acyclic if it contains no oriented cycles. Let g!g! denote the number of acyclic orientations of gg.

Theorem 36.

The antipode of 𝐆\mathbf{G} is given by

(142) sI(𝙷g)=XL(g)(1)l(X)(g/X)!𝙷g|X.\operatorname{\textsc{s}}_{I}(\mathtt{H}_{g})=\sum_{X\in L(g)}(-1)^{l(X)}\,(g/_{X})!\,\mathtt{H}_{g|_{X}}.

Note that if XL(g)X\in L(g), then XX can be recovered from g|Xg|_{X} as the partition into connected components. Hence there are no cancellations in the antipode formula (142).

Theorem 36 is given in [1] and also (in the setting of Hopf algebras) in work of Humpert and Martin [33, Theorem 3.1]. It is explained in these references how Stanley’s negative one color theorem [69, Corollary 1.3] may be derived from this result. It is possible to proceed conversely, as we outline after Proposition 38 below.

For the dual Hopf monoid 𝐆=𝕜G\mathbf{G}^{*}=\Bbbk^{\mathrm{G}}, the product is

μS,T(𝙼g1𝙼g2)=g𝙼g.\mu_{S,T}(\mathtt{M}_{g_{1}}\otimes\mathtt{M}_{g_{2}})=\sum_{g}\mathtt{M}_{g}.

The sum is over those simple graphs gg for which g|S=g1g|_{S}=g_{1} and g|T=g2g|_{T}=g_{2}. In other words, an edge of gg is either an edge of g1g_{1}, or an edge of g2g_{2}, or connects an element of SS with an element of TT. The coproduct is

ΔS,T(𝙼g)={𝙼g|S𝙼g|T if S is g-admissible,0 otherwise.\Delta_{S,T}(\mathtt{M}_{g})=\begin{cases}\mathtt{M}_{g|_{S}}\otimes\mathtt{M}_{g|_{T}}&\text{ if $S$ is $g$-admissible,}\\ 0&\text{ otherwise.}\end{cases}

The Hopf monoid 𝐆\mathbf{G} is self-dual. The following result provides a canonical duality. The complement of a simple graph gg on II is the simple graph gg^{\prime} with the complementary edge set. Define a map φ:𝐆𝐆\varphi\colon\mathbf{G}\to\mathbf{G}^{*} by

(143) φ(𝙷h):=g:gh𝙼g.\varphi(\mathtt{H}_{h}):=\sum_{g:\,g\subseteq h^{\prime}}\,\mathtt{M}_{g}.

The simple graphs gg in the sum are those without common edges with hh.

Proposition 37.

The map φ:𝐆𝐆\varphi\colon\mathbf{G}\to\mathbf{G}^{*} is an isomorphism of Hopf monoids. Moreover, φ=φ\varphi=\varphi^{*}.

One verifies that φ\varphi preserves products and coproducts. It is triangular with respect to inclusion, hence invertible.

Define a linear basis {𝚀}\{\mathtt{Q}\} of 𝐆[I]\mathbf{G}[I] by

𝙷g=h:hg𝚀h.\mathtt{H}_{g}=\sum_{h:\,h\subseteq g}\mathtt{Q}_{h}.

The basis {𝚀}\{\mathtt{Q}\} is determined by Möbius inversion. Let {𝙿}\{\mathtt{P}\} denote the linear basis of 𝐆\mathbf{G}^{*} dual to the basis {𝚀}\{\mathtt{Q}\} of 𝐆\mathbf{G}. Equivalently,

𝙿h=g:hg𝙼g.\mathtt{P}_{h}=\sum_{g:\,h\subseteq g}\mathtt{M}_{g}.
Proposition 38.

We have

(144) μS,T(𝚀g1𝚀g2)=𝚀g1g2,\displaystyle\mu_{S,T}(\mathtt{Q}_{g_{1}}\otimes\mathtt{Q}_{g_{2}})=\mathtt{Q}_{g_{1}\sqcup g_{2}},
(145) ΔS,T(𝚀g)={𝚀g|S𝚀g|T if S is g-admissible,0 otherwise,\displaystyle\Delta_{S,T}(\mathtt{Q}_{g})=\begin{cases}\mathtt{Q}_{g|_{S}}\otimes\mathtt{Q}_{g|_{T}}&\text{ if $S$ is $g$-admissible,}\\ 0&\text{ otherwise,}\end{cases}
(146) sI(𝚀g)=(1)c(g)𝚀g.\displaystyle\operatorname{\textsc{s}}_{I}(\mathtt{Q}_{g})=(-1)^{c(g)}\,\mathtt{Q}_{g}.

Here c(g)c(g) denotes the number of connected components of gg. In addition, the map in (143) satisfies

φ(𝚀g)=(1)|I|c(g)𝙿g.\varphi(\mathtt{Q}_{g})=(-1)^{\lvert I\rvert-c(g)}\,\mathtt{P}_{g}.

Formulas (144) and (145) show that there is an isomorphism of Hopf monoids

𝒮(𝐜𝐆+)𝐆,BX𝙷g|B𝚀g.\mathcal{S}(\mathbf{cG}_{+})\cong\mathbf{G},\qquad\bigotimes_{B\in X}\mathtt{H}_{g|_{B}}\leftrightarrow\mathtt{Q}_{g}.

The antipode formula (146) is then a special case of (125). This in turn can be used to derive the antipode formula (142) using Stanley’s negative one color theorem [69, Corollary 1.3].

It also follows that the primitive part satisfies

𝒫(𝐆)𝐜𝐆+\mathcal{P}(\mathbf{G})\cong\mathbf{cG}_{+}

with 𝒫(𝐆)[I]\mathcal{P}(\mathbf{G})[I] spanned by the elements 𝚀g\mathtt{Q}_{g} as gg runs over the connected simple graphs on II.

The analogy in the analyses of the Hopf monoids 𝚷\mathbf{\Pi} and 𝐆\mathbf{G} can be formalized. Let kIk_{I} denote the complete graph on II, and for a partition XX of II, let

kX:=BXkB.k_{X}:=\bigsqcup_{B\in X}k_{B}.

Define a map k:𝚷𝐆k:\mathbf{\Pi}\to\mathbf{G} by

(147) k(𝙷X):=𝙷kX.k(\mathtt{H}_{X}):=\mathtt{H}_{k_{X}}.
Proposition 39.

The map k:𝚷𝐆k:\mathbf{\Pi}\to\mathbf{G} is an injective morphism of Hopf monoids. Moreover,

𝐆\textstyle{\mathbf{G}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}φ\scriptstyle{\varphi}𝐆\textstyle{\mathbf{G}^{*}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}k\scriptstyle{k^{*}}𝚷\textstyle{\mathbf{\Pi}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}k\scriptstyle{k}φ\scriptstyle{\varphi}𝚷\textstyle{\mathbf{\Pi}^{*}}

commutes.

The commutativity of the diagram translates into the fact that kk is an isometric embedding when 𝚷\mathbf{\Pi} and 𝐆\mathbf{G} are endowed with the pairings associated to the isomorphisms φ\varphi.

One may use Proposition 39 to deduce the antipode formula for 𝚷\mathbf{\Pi} (Theorem 33) from that for 𝐆\mathbf{G} (Theorem 36).

9.5. The Hopf monoid of functions on unitriangular groups

Let 𝔽\mathbb{F} be a fixed field, possibly different from the base field 𝕜\Bbbk. Given a finite set II and a linear order \ell on II, let M(I)\mathrm{M}(I) denote the algebra of matrices

A=(aij)i,jIA=(a_{ij})_{i,j\in I}, aij𝔽a_{ij}\in\mathbb{F} for all i,jIi,j\in I.

The general linear group GL(I)\mathrm{GL}(I) consists of the invertible matrices in M(I)\mathrm{M}(I), and the subgroup U(I,)\mathrm{U}(I,\ell) consists of the upper \ell-unitriangular matrices

U=(uij)i,jIU=(u_{ij})_{i,j\in I}, uii=1u_{ii}=1 for all iIi\in I, uij=0u_{ij}=0 whenever iji\geq j according to \ell.

Let I=S1S2I=S_{1}\sqcup S_{2}. Given A=(aij)M(S1)A=(a_{ij})\in\mathrm{M}(S_{1}) and B=(bij)M(S2)B=(b_{ij})\in\mathrm{M}(S_{2}), their direct sum is the matrix AB=(cij)M(I)A\oplus B=(c_{ij})\in\mathrm{M}(I) with entries

cij={aij if both i,jS1,bij if both i,jS2,0 otherwise.c_{ij}=\begin{cases}a_{ij}&\text{ if both $i,j\in S_{1}$,}\\ b_{ij}&\text{ if both $i,j\in S_{2}$,}\\ 0&\text{ otherwise.}\end{cases}

Let L[I]\ell\in\mathrm{L}[I]. The direct sum of an |S1\ell|_{S_{1}}-unitriangular and an |S2\ell|_{S_{2}}-unitriangular matrix is \ell-unitriangular. The morphism of algebras

M(S1)×M(S2)M(I),(A,B)AB\mathrm{M}(S_{1})\times\mathrm{M}(S_{2})\to\mathrm{M}(I),\quad(A,B)\mapsto A\oplus B

thus restricts to a morphism of groups

(148) σS1,S2:U(S1,|S1)×U(S2,|S2)U(I,).\sigma_{S_{1},S_{2}}:\mathrm{U}(S_{1},\ell|_{S_{1}})\times\mathrm{U}(S_{2},\ell|_{S_{2}})\to\mathrm{U}(I,\ell).

(The dependence of σS1,S2\sigma_{S_{1},S_{2}} on \ell is left implicit.)

Given A=(aij)M(I)A=(a_{ij})\in\mathrm{M}(I), the principal minor indexed by SIS\subseteq I is the matrix

AS=(aij)i,jS.A_{S}=(a_{ij})_{i,j\in S}.

If UU is \ell-unitriangular, then USU_{S} is |S\ell|_{S}-unitriangular. Moreover, the map

U(I,)U(S,|S),UUS\mathrm{U}(I,\ell)\to\mathrm{U}(S,\ell|_{S}),\quad U\mapsto U_{S}

is a morphism of groups if and only if SS is an \ell-segment: if i,kSi,k\in S and ijki\leq j\leq k according to \ell, then also jSj\in S.

Let I=S1S2I=S_{1}\sqcup S_{2}, iL[Si]\ell_{i}\in\mathrm{L}[S_{i}], i=1,2i=1,2. Define a map

(149) πS1,S2:U(I,12)U(S1,1)×U(S2,2)\pi_{S_{1},S_{2}}:\mathrm{U}(I,\ell_{1}\cdot\ell_{2})\to\mathrm{U}(S_{1},\ell_{1})\times\mathrm{U}(S_{2},\ell_{2})

by

U(US1,US2).U\mapsto(U_{S_{1}},U_{S_{2}}).

Note that S1S_{1} is an initial segment for 12\ell_{1}\cdot\ell_{2} and S2S_{2} is a final segment for 12\ell_{1}\cdot\ell_{2}. Thus πS1,S2\pi_{S_{1},S_{2}} is a morphism of groups.

Let I=S1S2=T1T2I=S_{1}\sqcup S_{2}=T_{1}\sqcup T_{2} and let A,B,CA,B,C and DD be the pairwise intersections, as in (53). We then have

(150) (UV)S1=UAVB(U\oplus V)_{S_{1}}=U_{A}\oplus V_{B}

and a similar statement for S2S_{2}, CC, and DD.

Assume from now on that the field 𝔽\mathbb{F} is finite. Thus, all groups U(I,)\mathrm{U}(I,\ell) of unitriangular matrices are finite. Define a vector species 𝐟(U)\bm{\mathrm{f}}(\mathrm{U}) as follows. On a finite set II,

𝐟(U)[I]=L[I]𝕜U(I,).\bm{\mathrm{f}}(\mathrm{U})[I]=\bigoplus_{\ell\in\mathrm{L}[I]}\Bbbk^{\mathrm{U}(I,\ell)}.

In other words, 𝐟(U)[I]\bm{\mathrm{f}}(\mathrm{U})[I] is the direct sum of the spaces of functions (with values in 𝕜\Bbbk) on all unitriangular groups on II.

Let I=S1S2I=S_{1}\sqcup S_{2} and iL[Si]\ell_{i}\in\mathrm{L}[S_{i}], i=1,2i=1,2. From the morphism πS1,S2\pi_{S_{1},S_{2}} in (149) we obtain a linear map

𝕜U(S1,1)𝕜U(S2,2)𝕜U(I,12).\Bbbk^{\mathrm{U}(S_{1},\ell_{1})}\otimes\Bbbk^{\mathrm{U}(S_{2},\ell_{2})}\to\Bbbk^{\mathrm{U}(I,\ell_{1}\cdot\ell_{2})}.

Summing over all 1L[S1]\ell_{1}\in\mathrm{L}[S_{1}] and 2L[S2]\ell_{2}\in\mathrm{L}[S_{2}], we obtain a linear map

(151) μS1,S2:𝐟(U)[S1]𝐟(U)[S2]𝐟(U)[I].\mu_{S_{1},S_{2}}:\bm{\mathrm{f}}(\mathrm{U})[S_{1}]\otimes\bm{\mathrm{f}}(\mathrm{U})[S_{2}]\to\bm{\mathrm{f}}(\mathrm{U})[I].

Explicitly, given functions f:U(S1,1)𝕜f:\mathrm{U}(S_{1},\ell_{1})\to\Bbbk and g:U(S2,2)𝕜g:\mathrm{U}(S_{2},\ell_{2})\to\Bbbk,

μS1,S2(fg):U(I,12)𝕜\mu_{S_{1},S_{2}}(f\otimes g):\mathrm{U}(I,\ell_{1}\cdot\ell_{2})\to\Bbbk

is the function given by

Uf(US1)g(US2).U\mapsto f(U_{S_{1}})g(U_{S_{2}}).

Similarly, from the map σS1,S2\sigma_{S_{1},S_{2}} in (148) we obtain the components

𝕜U(I,)𝕜U(S1,|S1)𝕜U(S2,|S2)\Bbbk^{\mathrm{U}(I,\ell)}\to\Bbbk^{\mathrm{U}(S_{1},\ell|_{S_{1}})}\otimes\Bbbk^{\mathrm{U}(S_{2},\ell|_{S_{2}})}

(one for each L[I]\ell\in\mathrm{L}[I]) of a linear map

(152) ΔS1,S2:𝐟(U)[I]𝐟(U)[S1]𝐟(U)[S2].\Delta_{S_{1},S_{2}}:\bm{\mathrm{f}}(\mathrm{U})[I]\to\bm{\mathrm{f}}(\mathrm{U})[S_{1}]\otimes\bm{\mathrm{f}}(\mathrm{U})[S_{2}].

Explicitly, given a function f:U(I,)𝕜f:\mathrm{U}(I,\ell)\to\Bbbk, we have

ΔS1,S2(f)=ifi1fi2,\Delta_{S_{1},S_{2}}(f)=\sum_{i}f^{1}_{i}\otimes f^{2}_{i},

where

fi1:U(S1,|S1)𝕜andfi2:U(S2,|S2)𝕜f^{1}_{i}:\mathrm{U}(S_{1},\ell|_{S_{1}})\to\Bbbk\quad\text{and}\quad f^{2}_{i}:\mathrm{U}(S_{2},\ell|_{S_{2}})\to\Bbbk

are functions such that

(153) f(U1U2)=ifi1(U)fi2(V)f(U_{1}\oplus U_{2})=\sum_{i}f^{1}_{i}(U)f^{2}_{i}(V)

for all U1U(S1,|S1)U_{1}\in\mathrm{U}(S_{1},\ell|_{S_{1}}) and U2U(S2,|S2)U_{2}\in\mathrm{U}(S_{2},\ell|_{S_{2}}).

Proposition 40.

With the operations (151) and (152), the species 𝐟(U)\bm{\mathrm{f}}(\mathrm{U}) is a connected Hopf monoid. It is cocommutative.

The compatibility between the product and the coproduct follows from (150). The construction is carried out in more detail in [3].

We describe the operations on the basis {𝙼}\{\mathtt{M}\} of characteristic functions (see Convention 5). Let UiU(Si,i)U_{i}\in\mathrm{U}(S_{i},\ell_{i}), i=1,2i=1,2. The product is

(154) μS1,S2(𝙼U1𝙼U2)=UU(I,12)US1=U1,US2=U2𝙼U.\mu_{S_{1},S_{2}}(\mathtt{M}_{U_{1}}\otimes\mathtt{M}_{U_{2}})=\sum_{\begin{subarray}{c}U\in\mathrm{U}(I,\ell_{1}\cdot\ell_{2})\\ U_{S_{1}}=U_{1},\,U_{S_{2}}=U_{2}\end{subarray}}\mathtt{M}_{U}.

The coproduct is

(155) ΔS1,S2(𝙼U)={𝙼US1𝙼US2 if U=US1US2,0 otherwise.\Delta_{S_{1},S_{2}}(\mathtt{M}_{U})=\begin{cases}\mathtt{M}_{U_{S_{1}}}\otimes\mathtt{M}_{U_{S_{2}}}&\text{ if }U=U_{S_{1}}\oplus U_{S_{2}},\\ 0&\text{ otherwise.}\end{cases}

To a unitriangular matrix UU(I,)U\in\mathrm{U}(I,\ell) we associate a graph g(U)g(U) on II as follows: there is an edge between ii and jj if i<ji<j in \ell and uij0u_{ij}\neq 0. For example, given nonzero entries a,b,c𝔽a,b,c\in\mathbb{F},

=hijk,U=(100a1bc101)g(U)=hijk.\begin{gathered}\ell=hijk,\quad U=\begin{pmatrix}1&0&0&a\\ &1&b&c\\ &&1&0\\ &&&1\end{pmatrix}\quad\Rightarrow\quad g(U)=\lx@xy@svg{\hbox{\raise 2.5pt\hbox{\kern 5.88078pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&&\\&&&\crcr}}}\ignorespaces{\hbox{\kern-2.5pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise-2.22223pt\hbox{$\textstyle{\bullet}$}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{}{}{{}{}{}{}{}{}{}}{}\ignorespaces\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{{}{}{{}}{{}{}{}}{}}}}\ignorespaces{}\ignorespaces{}{}{}{{}{}{}{}{}{}{}{}{}{}{}{}}{}\ignorespaces\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{{}{}{}{{}}{{}{}{}\lx@xy@spline@}{}}}}\ignorespaces{}\ignorespaces\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{{}{}{{}}{{}{}{}}{}}}}\ignorespaces{}{\hbox{\kern 32.10335pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise-2.22223pt\hbox{$\textstyle{\bullet}$}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{}{}{{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}}{}\ignorespaces\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{{}{}{{}}{{}{}{}}{}}}}\ignorespaces{}\ignorespaces{}{}{}{{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}}{}\ignorespaces\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{{}{}{}{{}}{{}{}{}\lx@xy@spline@}{}}}}\ignorespaces{}\ignorespaces\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{{}{}{{}}{{}{}{}}{}}}}\ignorespaces{}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{}{}{{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}}{}\ignorespaces\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{{}{}{{}}{{}{}{}}{}}}}\ignorespaces{}\ignorespaces{}{}{}{{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}}{}\ignorespaces\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{{}{}{}{{}}{{}{}{}\lx@xy@spline@}{}}}}\ignorespaces{}\ignorespaces\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{{}{}{{}}{{}{}{}}{}}}}\ignorespaces{}{\hbox{\kern 66.17116pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise-2.22223pt\hbox{$\textstyle{\bullet}$}}}}}{\hbox{\kern 101.27682pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise-2.22223pt\hbox{$\textstyle{\bullet}$}}}}}{\hbox{\kern-5.88078pt\raise-8.66666pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{h}$}}}}}}}{\hbox{\kern 29.88078pt\raise-8.66666pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{i}$}}}}}}}{\hbox{\kern 63.32591pt\raise-8.66666pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{j}$}}}}}}}{\hbox{\kern 98.0164pt\raise-8.66666pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{k}$}}}}}}}\ignorespaces}}}}\ignorespaces.\end{gathered}

Let γ:𝐋×𝐆𝐟(U)\gamma:\mathbf{L}\times\mathbf{G}^{*}\to\bm{\mathrm{f}}(\mathrm{U}) be the map defined by

(156) γ(𝙷𝙼g):=UU(I,):g(U)=g𝙼U.\gamma(\mathtt{H}_{\ell}\otimes\mathtt{M}_{g}):=\sum_{U\in\mathrm{U}(I,\ell):\,g(U)=g}\mathtt{M}_{U}.
Proposition 41.

The map γ:𝐋×𝐆𝐟(U)\gamma:\mathbf{L}\times\mathbf{G}^{*}\to\bm{\mathrm{f}}(\mathrm{U}) is an injective morphism of Hopf monoids. If 𝔽\mathbb{F} is the field with two elements, then γ\gamma is an isomorphism.

This result is given in [3, Proposition 8 and Corollary 9]. (In this reference, 𝐆\mathbf{G} is identified with its dual 𝐆\mathbf{G}^{*}.)

An injective morphism of Hopf monoids

𝐋×𝚷𝐋×𝐆\mathbf{L}\times\mathbf{\Pi}^{*}\to\mathbf{L}\times\mathbf{G}^{*}

is described in [3, Section 4.6]. The composite

𝐋×𝚷𝐋×𝐆𝛾𝐟(U)\mathbf{L}\times\mathbf{\Pi}^{*}\hookrightarrow\mathbf{L}\times\mathbf{G}^{*}\xrightarrow{\gamma}\bm{\mathrm{f}}(\mathrm{U})

maps to a certain Hopf submonoid of superclass functions on the unitriangular groups.

9.6. The Hopf monoid of generalized permutahedra

Consider the Euclidean space

I:={functions x:I}\mathbb{R}^{I}\ :=\ \{\text{functions $x:I\to\mathbb{R}$}\}

endowed with the standard inner product

x,y=iIxiyi.\langle x,y\rangle=\sum_{i\in I}x_{i}y_{i}.

Let PP be a convex polytope in I\mathbb{R}^{I} [76]. The faces of PP are then convex polytopes also. We write QPQ\leq P to indicate that QQ is a face of PP.

Given a vector vIv\in\mathbb{R}^{I}, let PvP_{v} denote the subset of PP where the function

v,:P\langle v,-\rangle:P\to\mathbb{R}

achieves its maximum value. Then PvP_{v} is a face of PP.

Given a face QQ of PP, its normal cone is the set

Q:={vIPv=Q}.Q^{\bot}:=\{v\in\mathbb{R}^{I}\mid P_{v}=Q\}.

The collection of normal cones

𝒩(P):={QQP}\mathcal{N}(P):=\{Q^{\bot}\mid Q\leq P\}

is the normal fan of PP.

Let n:=|I|n:=\lvert I\rvert. The standard permutahedron 𝔭II\mathfrak{p}_{I}\subseteq\mathbb{R}^{I} is the convex hull of the n!n! points

{xI the function x:I[n] is bijective}.\{x\in\mathbb{R}^{I}\mid\text{ the function $x:I\to[n]$ is bijective}\}.

The faces of 𝔭I\mathfrak{p}_{I} are in bijection with compositions FF of II. For F=(I1,,Ik)F=(I_{1},\ldots,I_{k}), the corresponding face 𝔭F\mathfrak{p}_{F} of 𝔭I\mathfrak{p}_{I} has as vertices the bijections x:I[n]x:I\to[n] such that

x(I1)={1,,i1},x(I2)={i1+1,,i1+i2},,x(Ik)={i1++ik1,,n}.x(I_{1})=\{1,\ldots,i_{1}\},\ x(I_{2})=\{i_{1}+1,\ldots,i_{1}+i_{2}\},\ldots,x(I_{k})=\{i_{1}+\cdots+i_{k-1},\ldots,n\}.

The normal cone of this face is the set of vectors vIv\in\mathbb{R}^{I} such that

vi=vj\displaystyle v_{i}=v_{j} if ii and jj belong to the same block of FF,
vi<vj\displaystyle v_{i}<v_{j} if the block of ii precedes the block of jj in FF.

When I={a,b,c}I=\{a,b,c\}, the standard permutahedron is a regular hexagon. It lies on the plane xa+xb+xc=6x_{a}+x_{b}+x_{c}=6. The intersection of its normal fan with this plane is shown next to it, below.

3,2,13,1,21,3,21,2,32,3,12,1,3\displaystyle\begin{gathered}\begin{picture}(85.0,95.0)(0.0,-45.0){\color[rgb]{0,0,1} \put(0.0,-15.0){\circle*{3.0}} \put(0.0,15.0){\circle*{3.0}} \put(50.0,-15.0){\circle*{3.0}} \put(50.0,15.0){\circle*{3.0}} \put(25.0,30.0){\circle*{3.0}} \put(25.0,-30.0){\circle*{3.0}} \put(0.0,-15.0){\line(0,1){30.0}} \put(50.0,-15.0){\line(0,1){30.0}} \put(0.0,15.0){\line(5,3){25.0}}\put(25.0,-30.0){\line(5,3){25.0}} \put(0.0,-15.0){\line(5,-3){25.0}} \put(25.0,30.0){\line(5,-3){25.0}} } \put(-35.0,-20.0){$3,2,1$} \put(-35.0,15.0){$3,1,2$} \put(56.0,-20.0){$1,3,2$} \put(56.0,15.0){$1,2,3$} \put(12.0,-45.0){$2,3,1$} \put(12.0,38.0){$2,1,3$} \end{picture}\end{gathered} va<vb=vc\displaystyle\begin{gathered}\begin{picture}(85.0,95.0)(0.0,-45.0){\color[rgb]{1,0,0} \lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 42.67911pt\hbox{\ignorespaces\ignorespaces{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern-42.67911pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces{\hbox{\kern 42.67911pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\kern-21.33954pt\raise-36.9613pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces{\hbox{\kern 21.33954pt\raise 36.9613pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\kern-21.33957pt\raise 36.9613pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces{\hbox{\kern 21.33957pt\raise-36.9613pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\kern-2.5pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise-2.22223pt\hbox{$\textstyle{\bullet}$}}}}}{\hbox{\kern 53.41669pt\raise 7.39233pt\hbox{\hbox{\kern 0.0pt\raise-1.9455pt\hbox{$\textstyle{{\color[rgb]{0,0,0}v_{a}<v_{b}=v_{c}}}$}}}}}}}}} } \end{picture}\end{gathered}

A polytope PP in I\mathbb{R}^{I} is a generalized permutahedron if its normal fan is coarser than that of the standard permutahedron. In other words, each cone Q𝒩(P)Q^{\bot}\in\mathcal{N}(P) must be a union of cones in 𝒩(𝔭I)\mathcal{N}(\mathfrak{p}_{I}).

A generalized permutahedron is shown below, together with its normal fan.

\displaystyle\begin{gathered}\begin{picture}(85.0,100.0)(0.0,-50.0){\color[rgb]{0,0,1} \put(0.0,15.0){\circle*{3.0}} \put(0.0,-15.0){\circle*{3.0}} \put(50.0,15.0){\circle*{3.0}} \put(25.0,30.0){\circle*{3.0}} \put(50.0,-45.0){\circle*{3.0}} \put(25.0,30.0){\circle*{3.0}} \put(0.0,-15.0){\line(0,1){30.0}} \put(50.0,15.0){\line(0,-1){60.0}} \put(0.0,15.0){\line(5,3){25.0}} \put(0.0,-15.0){\line(5,-3){50.0}} \put(25.0,30.0){\line(5,-3){25.0}} } \end{picture}\end{gathered} \displaystyle\begin{gathered}\begin{picture}(85.0,95.0)(0.0,-45.0){\color[rgb]{1,0,0} \lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 42.67911pt\hbox{\ignorespaces\ignorespaces{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern-42.67911pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces{\hbox{\kern 42.67911pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\kern-21.33954pt\raise-36.9613pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces{\hbox{\kern 21.33954pt\raise 36.9613pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\kern-21.33957pt\raise 36.9613pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\kern-2.5pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise-2.22223pt\hbox{$\textstyle{\bullet}$}}}}}}}}} } \end{picture}\end{gathered}

Let GP[I]\mathrm{GP}[I] denote the (infinite) set of generalized permutahedra in I\mathbb{R}^{I}.

Fix a decomposition I=STI=S\sqcup T. This yields a canonical identification

I=S×T.\mathbb{R}^{I}=\mathbb{R}^{S}\times\mathbb{R}^{T}.
Proposition 42.

If PP is a generalized permutahedron in S\mathbb{R}^{S} and QQ is another in T\mathbb{R}^{T}, then P×QP\times Q is a generalized permutahedron in I\mathbb{R}^{I}.

This holds because the normal fan of 𝔭S×𝔭T\mathfrak{p}_{S}\times\mathfrak{p}_{T} is coarser than that of 𝔭I\mathfrak{p}_{I}. This allows us to define a map

μS,T:GP[S]×GP[T]GP[I],(P,Q)P×Q.\mu_{S,T}:\mathrm{GP}[S]\times\mathrm{GP}[T]\to\mathrm{GP}[I],\quad(P,Q)\mapsto P\times Q.
Proposition 43.

Let PP be a generalized permutahedron in I\mathbb{R}^{I}. Let vIv\in\mathbb{R}^{I} be a vector such that

vi=vj\displaystyle v_{i}=v_{j} if ii and jj belong both to SS or both to TT,
vi<vj\displaystyle v_{i}<v_{j} if iSi\in S and jTj\in T.

Then there exist generalized permutahedra P1P_{1} in S\mathbb{R}^{S} and P2P_{2} in T\mathbb{R}^{T} such that

Pv=P1×P2.P_{v}=P_{1}\times P_{2}.

If SS or TT are empty, then Pv=PP_{v}=P. Otherwise, the conditions on vv express precisely that v(𝔭(S,T))v\in(\mathfrak{p}_{(S,T)})^{\bot}. Therefore, if ww is another vector in (𝔭(S,T))(\mathfrak{p}_{(S,T)})^{\bot}, then both vv and ww belong to the same cone in the fan 𝒩(P)\mathcal{N}(P), and hence Pv=PwP_{v}=P_{w}. Thus, P1P_{1} and P2P_{2} are independent of the choice of vv, and we may define a map

ΔS,T:GP[I]GP[S]×GP[T],P(P1,P2).\Delta_{S,T}:\mathrm{GP}[I]\to\mathrm{GP}[S]\times\mathrm{GP}[T],\quad P\mapsto(P_{1},P_{2}).

It is shown in [1] that, with the above structure, the species GP\mathrm{GP} is a set-theoretic connected Hopf monoid. It is commutative, but not cocommutative.

Let 𝐆𝐏:=𝕜GP\mathbf{GP}:=\Bbbk\mathrm{GP} denote the linearization of GP\mathrm{GP}. It is a connected Hopf monoid. The product and coproduct are

μS,T(𝙷P𝙷Q)=𝙷P×QandΔS,T(𝙷P)=𝙷P1𝙷P2.\mu_{S,T}(\mathtt{H}_{P}\otimes\mathtt{H}_{Q})=\mathtt{H}_{P\times Q}\qquad\text{and}\qquad\Delta_{S,T}(\mathtt{H}_{P})=\mathtt{H}_{P_{1}}\otimes\mathtt{H}_{P_{2}}.

One of the main results in [1] is the following.

Theorem 44.

The antipode of 𝐆𝐏\mathbf{GP} is

(157) sI(P)=(1)|I|QP(1)dimQQ.\operatorname{\textsc{s}}_{I}(P)=(-1)^{\lvert I\rvert}\sum_{Q\leq P}(-1)^{\dim Q}\,Q.

Each face of PP appears once in the sum, with coefficient ±1\pm 1. The formula is thus cancellation free.

The antipode formula (142) for the Hopf monoid of simple graphs may be deduced from (157) by means of a morphism from 𝐆\mathbf{G} to the quotient of 𝐆𝐏\mathbf{GP} in which generalized permutahedra with the same normal fan are identified.

Remark.

Generalized permutahedra are studied in depth by Postnikov [56], where they are defined as deformations of the standard permutahedron. The definition in terms of normal fans is from work of Postnikov, Reiner, and Williams [55, Proposition 3.2], where plenty of additional information is given. The same class of polytopes is studied in Fujishige [24]. The Hopf monoid of generalized permutahedra as defined above appears in [1]. Several related examples are discussed in that reference, which builds on the work of Billera, Jia, and Reiner on Hopf algebras [15].

10. Higher associativity and compatibility

Let 𝐡\mathbf{h} be a bimonoid. The bimonoid axioms link the structure maps μS,T\mu_{S,T}, ΔS,T\Delta_{S,T}, ι\iota_{\emptyset} and ϵ\epsilon_{\emptyset} of 𝐡\mathbf{h}. We study the implications of these on the higher structure maps. A remarkable fact is that the four bimonoid axioms of Section 2.8 can be unified into a single axiom relating the higher product and coproduct. Associativity and unitality are similarly unified. The combinatorics of set decompositions underlies this study and the discussion necessitates the notions and terminology discussed in Section 1.11, including those of concatenation, refinement, splitting, and Tits product for set decompositions.

10.1. Higher associativity

Given a species 𝐩\mathbf{p}, a finite set II and a decomposition F=(I1,,Ik)F=(I_{1},\ldots,I_{k}) of II, write

(158) 𝐩(F):=𝐩[I1]𝐩[Ik].\mathbf{p}(F):=\mathbf{p}[I_{1}]\otimes\dots\otimes\mathbf{p}[I_{k}].

(This generalizes (117).) When F=0F=\emptyset^{0} (the unique decomposition of the empty set without subsets), we set 𝐩(F):=𝕜\mathbf{p}(F):=\Bbbk.

Given I=STI=S\sqcup T and decompositions FF of SS and GG of TT, there is a canonical isomorphism

(159) 𝐩(F)𝐩(G)𝐩(FG)\mathbf{p}(F)\otimes\mathbf{p}(G)\xrightarrow{\cong}\mathbf{p}(F\cdot G)

obtained by concatenating the factors in (158). If F=0F=\emptyset^{0}, then this is the canonical isomorphism

𝕜𝐩(G)𝐩(G);\Bbbk\otimes\mathbf{p}(G)\xrightarrow{\cong}\mathbf{p}(G);

a similar remark applies if G=0G=\emptyset^{0}.

Assume now that 𝐚\mathbf{a} is a monoid and FF is a decomposition of II. We write

μF:𝐚(F)𝐚[I]\mu_{F}:\mathbf{a}(F)\to\mathbf{a}[I]

for the higher product maps of 𝐚\mathbf{a}, as in (45). Recall that μ0=ι\mu_{\emptyset^{0}}=\iota_{\emptyset}.

Given a bijection σ:IJ\sigma:I\to J, let Ji:=σ(Ii)J_{i}:=\sigma(I_{i}), σi:=σ|Ii\sigma_{i}:=\sigma|_{I_{i}}, σ(F)=(J1,,Jk)\sigma(F)=(J_{1},\ldots,J_{k}), and 𝐚(σ)\mathbf{a}(\sigma) the map

𝐚(F)𝐚(σ)𝐚(σ(F))𝐚[I1]𝐚[Ik]𝐚[σ1]𝐚[σk]𝐚[J1]𝐚[Jk].\begin{gathered}\lx@xy@svg{\hbox{\raise 2.5pt\hbox{\kern 38.89053pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&\\&\crcr}}}\ignorespaces{\hbox{\kern-13.59373pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{a}(F)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 67.88986pt\raise 6.5pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{\mathbf{a}(\sigma)}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 143.47617pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\hbox{\kern 1.0pt\raise 0.0pt\hbox{\lx@xy@droprule}}\hbox{\kern-1.0pt\raise 0.0pt\hbox{\lx@xy@droprule}}}}\ignorespaces{}{\hbox{\hbox{\kern 1.0pt\raise 0.0pt\hbox{\lx@xy@droprule}}\hbox{\kern-1.0pt\raise 0.0pt\hbox{\lx@xy@droprule}}}}{\hbox{\hbox{\kern 1.0pt\raise 0.0pt\hbox{\lx@xy@droprule}}\hbox{\kern-1.0pt\raise 0.0pt\hbox{\lx@xy@droprule}}}}{\hbox{\kern 143.47617pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{a}\bigl{(}\sigma(F)\bigr{)}}$}}}}}}}{\hbox{\kern-38.89053pt\raise-41.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{a}[I_{1}]\otimes\cdots\otimes\mathbf{a}[I_{k}]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 51.31035pt\raise-47.5pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{\mathbf{a}[\sigma_{1}]\otimes\cdots\otimes\mathbf{a}[\sigma_{k}]}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 122.89053pt\raise-41.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 122.89053pt\raise-41.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{a}[J_{1}]\otimes\cdots\otimes\mathbf{a}[J_{k}].\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\hbox{\kern-1.0pt\raise 0.0pt\hbox{\lx@xy@droprule}}\hbox{\kern 1.0pt\raise 0.0pt\hbox{\lx@xy@droprule}}}}\ignorespaces{}{\hbox{\hbox{\kern-1.0pt\raise 0.0pt\hbox{\lx@xy@droprule}}\hbox{\kern 1.0pt\raise 0.0pt\hbox{\lx@xy@droprule}}}}{\hbox{\hbox{\kern-1.0pt\raise 0.0pt\hbox{\lx@xy@droprule}}\hbox{\kern 1.0pt\raise 0.0pt\hbox{\lx@xy@droprule}}}}\ignorespaces}}}}\ignorespaces\end{gathered}

The collection μF\mu_{F} satisfies the following naturality condition. For any such FF and σ\sigma, the diagram

(160) 𝐚(F)μF𝐚(σ)𝐚[I]𝐚[σ]𝐚(σ(F))μσ(F)𝐚[J]\begin{gathered}\lx@xy@svg{\hbox{\raise 2.5pt\hbox{\kern 21.2902pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&\\&\crcr}}}\ignorespaces{\hbox{\kern-13.59373pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{a}(F)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 36.35497pt\raise 5.1875pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.8264pt\hbox{$\scriptstyle{\mu_{F}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 75.68341pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern-21.2902pt\raise-20.5pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{\mathbf{a}(\sigma)}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 0.0pt\raise-31.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 75.68341pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{a}[I]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 86.84657pt\raise-20.5pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{\mathbf{a}[\sigma]}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 86.84657pt\raise-33.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-21.0202pt\raise-41.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{a}\bigl{(}\sigma(F)\bigr{)}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 34.9903pt\raise-46.80139pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.2125pt\hbox{$\scriptstyle{\mu_{\sigma(F)}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 75.0202pt\raise-41.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 75.0202pt\raise-41.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{a}[J]}$}}}}}}}\ignorespaces}}}}\ignorespaces\end{gathered}

commutes. This follows from (27).

Let FF still be as above. Let GG be a decomposition of II such that FGF\leq G and γ=(G1,,Gk)\gamma=(G_{1},\dots,G_{k}) a splitting of the pair (F,G)(F,G). In other words, each GjG_{j} is a decomposition of IjI_{j} and G=G1GkG=G_{1}\cdots G_{k}. Define a map μG/Fγ\mu_{G/F}^{\gamma} by means of the diagram

(161) 𝐚(G)μG/Fγ𝐚(F)𝐚(G1)𝐚(Gk)μG1μGk𝐚[I1]𝐚[Ik],\begin{gathered}\lx@xy@svg{\hbox{\raise 2.5pt\hbox{\kern 43.79471pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&\\&\crcr}}}\ignorespaces{\hbox{\kern-13.61525pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{a}(G)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 66.4027pt\raise 6.87975pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.29085pt\hbox{$\scriptstyle{\mu_{G/F}^{\gamma}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 144.48041pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern-11.25pt\raise-20.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{\cong}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 0.0pt\raise-32.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 144.48041pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{a}(F)}$}}}}}}}{\hbox{\kern-43.79471pt\raise-40.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{a}(G_{1})\otimes\cdots\otimes\mathbf{a}(G_{k})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 54.09998pt\raise-46.82777pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.07222pt\hbox{$\scriptstyle{\mu_{G_{1}}\otimes\cdots\otimes\mu_{G_{k}}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 117.79471pt\raise-40.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 117.79471pt\raise-40.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{a}[I_{1}]\otimes\cdots\otimes\mathbf{a}[I_{k}],\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\hbox{\kern-1.0pt\raise 0.0pt\hbox{\lx@xy@droprule}}\hbox{\kern 1.0pt\raise 0.0pt\hbox{\lx@xy@droprule}}}}\ignorespaces{}{\hbox{\hbox{\kern-1.0pt\raise 0.0pt\hbox{\lx@xy@droprule}}\hbox{\kern 1.0pt\raise 0.0pt\hbox{\lx@xy@droprule}}}}{\hbox{\hbox{\kern-1.0pt\raise 0.0pt\hbox{\lx@xy@droprule}}\hbox{\kern 1.0pt\raise 0.0pt\hbox{\lx@xy@droprule}}}}\ignorespaces}}}}\ignorespaces\end{gathered}

where the vertical isomorphism is an iteration of (159). If F=0F=\emptyset^{0}, then necessarily G=0G=\emptyset^{0} and γ=()\gamma=(\,), and we agree that the map μG/Fγ\mu_{G/F}^{\gamma} is the identity of 𝕜\Bbbk.

Recall that if FF and GG are compositions, then the splitting γ\gamma is uniquely determined by (F,G)(F,G). In this situation we write μG/F\mu_{G/F} instead of μG/Fγ\mu_{G/F}^{\gamma}.

Higher associativity is the following result.

Proposition 45.

Let 𝐚\mathbf{a} be a monoid. Let FF and GG be decompositions of II with FGF\leq G. Then, for any splitting γ\gamma of the pair (F,G)(F,G), the diagram

(162)
𝐚(G)μGμG/Fγ𝐚[I]𝐚(F)μF
\begin{gathered}\lx@xy@svg{\hbox{\raise 2.5pt\hbox{\kern 25.29028pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&\\\crcr}}}\ignorespaces{\hbox{\kern-13.61525pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{a}(G)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 17.27399pt\raise 5.1875pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.8264pt\hbox{$\scriptstyle{\mu_{G}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 37.61525pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern-25.29028pt\raise-20.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.29085pt\hbox{$\scriptstyle{\mu_{G/F}^{\gamma}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 0.0pt\raise-32.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 37.61525pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{a}[I]}$}}}}}}}{\hbox{\kern-13.59373pt\raise-40.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{a}(F)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 22.90076pt\raise-25.18748pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.8264pt\hbox{$\scriptstyle{\mu_{F}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 39.0206pt\raise-8.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces}}}}\ignorespaces\end{gathered}

commutes.

Considering on the one hand F=(RS,T)F=(R\sqcup S,T), G1=(R,S)G_{1}=(R,S), G2=(T)G_{2}=(T), and on the other F=(R,ST)F=(R,S\sqcup T), G1=(R)G_{1}=(R), G2=(S,T)G_{2}=(S,T), we see that  (162) implies the associativity axiom (33). The unit axioms (44) also follow from (162); to obtain the left unit axiom one chooses F=(,I)F=(\emptyset,I), G1=0G_{1}=\emptyset^{0} and G2=(I)G_{2}=(I). Conversely, (162) follows by repeated use of (33) and (44).

Thus, higher associativity encompasses both associativity and unitality. In fact, the preceding discussion leads to the following result.

Proposition 46.

Let 𝐚\mathbf{a} be a species equipped with a collection of maps

μF:𝐚(F)𝐚[I],\mu_{F}:\mathbf{a}(F)\to\mathbf{a}[I],

one map for each decomposition FF of a finite set II. Then 𝐚\mathbf{a} is a monoid with higher product maps μF\mu_{F} if and only if naturality (160) and higher associativity (162) hold.

10.2. Higher unitality

We continue to assume that 𝐚\mathbf{a} is a monoid and F=(I1,,Ik)F=(I_{1},\ldots,I_{k}) is a decomposition of II. Recall that F+{F}_{+} denotes the composition of II obtained by removing from FF those subsets IiI_{i} which are empty. For any such FF, there is a canonical isomorphism

𝐚(F+)V1Vk,\mathbf{a}({F}_{+})\cong V_{1}\otimes\cdots\otimes V_{k},

where

Vi:={𝐚[Ii] if Ii,𝕜 if Ii=.V_{i}:=\begin{cases}\mathbf{a}[I_{i}]&\text{ if $I_{i}\neq\emptyset$,}\\ \Bbbk&\text{ if $I_{i}=\emptyset$.}\end{cases}

For each i=1,,ki=1,\ldots,k, let ιi:Vi𝐚[Ii]\iota_{i}:V_{i}\to\mathbf{a}[I_{i}] be the map defined by

ιi:={id if Ii,ι if Ii=,\iota_{i}:=\begin{cases}\mathrm{id}&\text{ if $I_{i}\neq\emptyset$,}\\ \iota_{\emptyset}&\text{ if $I_{i}=\emptyset$,}\end{cases}

where ι\iota_{\emptyset} is the unit map of 𝐚\mathbf{a}. We then define a map ιF\iota_{F} as follows.

𝐚(F+)\textstyle{\mathbf{a}({F}_{+})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ιF\scriptstyle{\iota_{F}}\scriptstyle{\cong}𝐚(F)\textstyle{\mathbf{a}(F)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}V1Vk\textstyle{V_{1}\otimes\cdots\otimes V_{k}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ι1ιk\scriptstyle{\iota_{1}\otimes\cdots\otimes\iota_{k}}𝐚[I1]𝐚[Ik]\textstyle{\mathbf{a}[I_{1}]\otimes\cdots\otimes\mathbf{a}[I_{k}]}

The following result is higher unitality.

Proposition 47.

Let 𝐚\mathbf{a} be a monoid. For any decomposition FF of II, the diagram

(163)
𝐚(F)μF𝐚[I]𝐚(F+)μF+ιF
\begin{gathered}\lx@xy@svg{\hbox{\raise 2.5pt\hbox{\kern 16.9132pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&\\\crcr}}}\ignorespaces{\hbox{\kern-13.59373pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{a}(F)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 18.96985pt\raise 5.1875pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.8264pt\hbox{$\scriptstyle{\mu_{F}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 40.9132pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 40.9132pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{a}[I]}$}}}}}}}{\hbox{\kern-16.9132pt\raise-40.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{a}({F}_{+})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 23.45758pt\raise-26.23198pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise 0.2181pt\hbox{$\scriptstyle{\mu_{{F}_{+}}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 41.6623pt\raise-8.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern-14.66444pt\raise-20.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.00417pt\hbox{$\scriptstyle{\iota_{F}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 0.0pt\raise-8.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces}}}}\ignorespaces\end{gathered}

commutes.

This result is in fact a special case of that in Proposition 45. To see this, note that for any decomposition FF of II there is a canonical splitting can=(G1,,Gk)\operatorname{\mathrm{can}}=(G_{1},\dots,G_{k}) of (F,F+)(F,F_{+}); namely,

Gj={0 if Ij=,(Ij) otherwise.G_{j}=\begin{cases}\emptyset^{0}&\text{ if $I_{j}=\emptyset$,}\\ (I_{j})&\text{ otherwise.}\end{cases}

One then has that

ιF=μF+/Fcan\iota_{F}=\mu_{F_{+}/F}^{\operatorname{\mathrm{can}}}

and therefore (163) is the special case of (162) in which G=F+G=F_{+} and γ=can\gamma=\operatorname{\mathrm{can}}.

We emphasize that, in view of the preceding discussion, higher unitality is a special case of higher associativity.

10.3. Higher commutativity

Let F=(I1,,Ik)F=(I_{1},\ldots,I_{k}) and F=(I1,,Ik)F^{\prime}=(I^{\prime}_{1},\ldots,I^{\prime}_{k}) be two decompositions of II which consist of the same subsets, possibly listed in different orders. Let σSk\sigma\in\mathrm{S}_{k} be any permutation such that

Ii=Iσ(i)I^{\prime}_{i}=I_{\sigma(i)}

for each i=1,,ki=1,\ldots,k. The permutation σ\sigma may not be unique due to the presence of empty subsets. For any species 𝐩\mathbf{p}, there is an isomorphism

𝐩(F)𝐩(F),x1xkxσ(1)xσ(k)\mathbf{p}(F)\cong\mathbf{p}(F^{\prime}),\quad x_{1}\otimes\cdots\otimes x_{k}\mapsto x_{\sigma(1)}\otimes\cdots\otimes x_{\sigma(k)}

obtained by reordering the tensor factors according to σ\sigma. Fix a scalar q𝕜q\in\Bbbk. Let

(164) βqσ:𝐩(F)𝐩(F)\beta_{q}^{\sigma}:\mathbf{p}(F)\to\mathbf{p}(F^{\prime})

be the scalar multiple of the previous map by the factor qdist(F,F),q^{\operatorname{dist}(F,F^{\prime})}, with the distance function as in (4).

If FF and FF^{\prime} are compositions of II, then σ\sigma is unique, and we write βq\beta_{q} instead of βqσ\beta_{q}^{\sigma}.

We then have the following higher qq-commutativity.

Proposition 48.

Let 𝐚\mathbf{a} be a qq-commutative monoid. For any decompositions FF and FF^{\prime} of II and permutation σ\sigma as above, the diagram

(165) 𝐚(F)μFβqσ𝐚(F)μF𝐚[I]\begin{gathered}\lx@xy@svg{\hbox{\raise 2.5pt\hbox{\kern 13.59373pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&\\&&\\}}}\ignorespaces{\hbox{\kern-13.59373pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{a}(F)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 6.51pt\raise-22.19194pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.8264pt\hbox{$\scriptstyle{\mu_{F}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 32.71002pt\raise-26.00891pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 35.50272pt\raise 6.5714pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.59918pt\hbox{$\scriptstyle{\beta_{q}^{\sigma}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 71.92006pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 39.7569pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 71.92006pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{a}(F^{\prime})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 62.61594pt\raise-22.43085pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.5875pt\hbox{$\scriptstyle{\mu_{F^{\prime}}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 53.14752pt\raise-26.00891pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}{\hbox{\kern-3.0pt\raise-34.00891pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 31.59373pt\raise-34.00891pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{a}[I]}$}}}}}}}{\hbox{\kern 83.91658pt\raise-34.00891pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}\ignorespaces}}}}\ignorespaces\end{gathered}

commutes.

When F=(S,T)F=(S,T), F=(T,S)F^{\prime}=(T,S) and σ\sigma is the transposition (1,2)(1,2), the map (164) reduces to (26), and (165) specializes to (48). Conversely, (165) follows by repeated use of (48).

Proposition 49.

In the situation of Proposition 46, the monoid 𝐚\mathbf{a} is commutative if and only if (165) holds.

10.4. Higher coassociativity and counitality

Similar considerations to those in the preceding sections apply to a comonoid 𝐜\mathbf{c}. In particular, given a splitting γ\gamma of the pair (F,G)(F,G), there is a map

ΔG/Fγ:𝐜(F)𝐜(G).\Delta_{G/F}^{\gamma}:\mathbf{c}(F)\to\mathbf{c}(G).

For any decomposition FF, there is a map

ϵF:𝐜(F)𝐜(F+);\epsilon_{F}:\mathbf{c}(F)\to\mathbf{c}({F}_{+});

we have ϵF=ΔF+/Fcan\epsilon_{F}=\Delta_{F_{+}/F}^{\operatorname{\mathrm{can}}}. If FF and GG are compositions, then there is a unique choice γ\gamma and we write ΔG/F\Delta_{G/F} instead of ΔG/Fγ\Delta_{G/F}^{\gamma}.

The diagrams dual to (162) and (163) commute. A species 𝐜\mathbf{c} equipped with a collection of maps

ΔF:𝐜[I]𝐜(F)\Delta_{F}:\mathbf{c}[I]\to\mathbf{c}(F)

is a comonoid with higher coproduct maps ΔF\Delta_{F} if and only if the dual conditions to (160) and (162) hold. The comonoid is cocommutative if and only if the dual of (165) holds.

10.5. Higher compatibility

We turn to the compatibility between the higher product and coproduct of a qq-bimonoid. The Tits product plays a crucial role in this discussion.

Let F=(S1,,Sp)F=(S_{1},\ldots,S_{p}) and G=(T1,,Tq)G=(T_{1},\ldots,T_{q}) be two decompositions of II and consider the situation in (9). We see from (10) that the Tits products FGFG and GFGF may only differ in the order of the subsets. Moreover, there is a canonical permutation ‘can\operatorname{\mathrm{can}}’ that reorders the subsets AijA_{ij} in FGFG into those in GFGF, namely can(i,j)=(j,i)\operatorname{\mathrm{can}}(i,j)=(j,i).

Let 𝐩\mathbf{p} be a species and let

βqcan:𝐩(FG)𝐩(GF)\beta_{q}^{\operatorname{\mathrm{can}}}:\mathbf{p}(FG)\to\mathbf{p}(GF)

be the map (164) for this particular choice of reordering. When F=(S1,S2)F=(S_{1},S_{2}) and G=(T1,T2)G=(T_{1},T_{2}), the map βqcan\beta_{q}^{\operatorname{\mathrm{can}}} coincides with the map in the top of diagram (54).

For any decompositions FF and GG of II, there is a canonical splitting (H1,,Hp)(H_{1},\ldots,H_{p}) for (F,FG)(F,FG). Namely,

(166) Hi:=(Ai1,,Aiq),H_{i}:=(A_{i1},\ldots,A_{iq}),

the ii-th row in the matrix (9). Let ‘can\operatorname{\mathrm{can}}’ also denote this splitting.

We then have the following higher compatibility.

Proposition 50.

Let 𝐡\mathbf{h} be a qq-bimonoid. For any decompositions FF and GG of II, the diagram

(167) 𝐡(FG)βqcan𝐡(GF)μGF/Gcan𝐡(F)μFΔFG/Fcan𝐡[I]ΔG𝐡(G)\begin{gathered}\lx@xy@svg{\hbox{\raise 2.5pt\hbox{\kern 32.20236pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&\\&&\\}}}\ignorespaces{\hbox{\kern-17.9243pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{h}(FG)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 46.2326pt\raise 6.5714pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.59918pt\hbox{$\scriptstyle{\beta_{q}^{\operatorname{\mathrm{can}}}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 89.04927pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 50.48679pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 89.04927pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{h}(GF)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 106.97357pt\raise-26.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.29085pt\hbox{$\scriptstyle{\mu_{GF/G}^{\operatorname{\mathrm{can}}}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 106.97357pt\raise-44.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-13.99306pt\raise-52.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{h}(F)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 19.67506pt\raise-57.18748pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.8264pt\hbox{$\scriptstyle{\mu_{F}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 41.9243pt\raise-52.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern-32.20236pt\raise-26.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.29085pt\hbox{$\scriptstyle{\Delta_{FG/F}^{\operatorname{\mathrm{can}}}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 0.0pt\raise-8.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 41.9243pt\raise-52.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{h}[I]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 69.8093pt\raise-57.89445pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.88889pt\hbox{$\scriptstyle{\Delta_{G}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 92.959pt\raise-52.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 92.959pt\raise-52.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{h}(G)}$}}}}}}}\ignorespaces}}}}\ignorespaces\end{gathered}

commutes.

Consider the case F=(S1,S2)F=(S_{1},S_{2}) and G=(T1,T2)G=(T_{1},T_{2}). Let AA, BB, CC, and DD be as in (53). Then FG=(A,B,C,D)FG=(A,B,C,D), GF=(A,C,B,D)GF=(A,C,B,D), and (167) specializes to the compatibility axiom (54).

Now consider F=0F=\emptyset^{0} and G=2G=\emptyset^{2}. Then FG=GF=0FG=GF=\emptyset^{0}, and following (161) we find that the maps ΔFG/Fγ\Delta_{FG/F}^{\gamma} and μGF/Gγ\mu_{GF/G}^{\gamma} are as follows.

𝐡(0)ΔFG/Fγ=Δ0/0𝐡(0)𝕜id𝕜\displaystyle\begin{gathered}\lx@xy@svg{\hbox{\raise 2.5pt\hbox{\kern 14.8264pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&\\&\crcr}}}\ignorespaces{\hbox{\kern-14.8264pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{h}(\emptyset^{0})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 22.3362pt\raise 7.35196pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.81862pt\hbox{$\scriptstyle{\Delta_{FG/F}^{\gamma}=\Delta_{\emptyset^{0}/\emptyset^{0}}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 93.8264pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\hbox{\kern 1.0pt\raise 0.0pt\hbox{\lx@xy@droprule}}\hbox{\kern-1.0pt\raise 0.0pt\hbox{\lx@xy@droprule}}}}\ignorespaces{}{\hbox{\hbox{\kern 1.0pt\raise 0.0pt\hbox{\lx@xy@droprule}}\hbox{\kern-1.0pt\raise 0.0pt\hbox{\lx@xy@droprule}}}}{\hbox{\hbox{\kern 1.0pt\raise 0.0pt\hbox{\lx@xy@droprule}}\hbox{\kern-1.0pt\raise 0.0pt\hbox{\lx@xy@droprule}}}}{\hbox{\kern 93.8264pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{h}(\emptyset^{0})}$}}}}}}}{\hbox{\kern-5.77779pt\raise-38.76445pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\Bbbk\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 47.98611pt\raise-44.19499pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.43056pt\hbox{$\scriptstyle{\mathrm{id}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 102.87502pt\raise-38.76445pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 102.87502pt\raise-38.76445pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\Bbbk\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\hbox{\kern-1.0pt\raise 0.0pt\hbox{\lx@xy@droprule}}\hbox{\kern 1.0pt\raise 0.0pt\hbox{\lx@xy@droprule}}}}\ignorespaces{}{\hbox{\hbox{\kern-1.0pt\raise 0.0pt\hbox{\lx@xy@droprule}}\hbox{\kern 1.0pt\raise 0.0pt\hbox{\lx@xy@droprule}}}}{\hbox{\hbox{\kern-1.0pt\raise 0.0pt\hbox{\lx@xy@droprule}}\hbox{\kern 1.0pt\raise 0.0pt\hbox{\lx@xy@droprule}}}}\ignorespaces}}}}\ignorespaces\end{gathered} 𝐡(0)μGF/Gγ=μ0/2(0,0)𝐡(2)𝕜𝕜ιι𝐡[]𝐡[]\displaystyle\begin{gathered}\lx@xy@svg{\hbox{\raise 2.5pt\hbox{\kern 14.8264pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&\\&\crcr}}}\ignorespaces{\hbox{\kern-14.8264pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{h}(\emptyset^{0})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 29.21832pt\raise 8.6228pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.08946pt\hbox{$\scriptstyle{\mu_{GF/G}^{\gamma}=\mu_{\emptyset^{0}/\emptyset^{2}}^{(\emptyset^{0},\emptyset^{0})}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 103.94443pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern-11.25pt\raise-20.16pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{\cong}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 0.0pt\raise-32.93112pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 103.94443pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{h}(\emptyset^{2})}$}}}}}}}{\hbox{\kern-14.66664pt\raise-40.32pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\Bbbk\otimes\Bbbk\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 40.98141pt\raise-46.29501pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.35834pt\hbox{$\scriptstyle{\iota_{\emptyset}\otimes\iota_{\emptyset}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 93.8264pt\raise-40.32pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 93.8264pt\raise-40.32pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{h}[\emptyset]\otimes\mathbf{h}[\emptyset]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\hbox{\kern-1.0pt\raise 0.0pt\hbox{\lx@xy@droprule}}\hbox{\kern 1.0pt\raise 0.0pt\hbox{\lx@xy@droprule}}}}\ignorespaces{}{\hbox{\hbox{\kern-1.0pt\raise 0.0pt\hbox{\lx@xy@droprule}}\hbox{\kern 1.0pt\raise 0.0pt\hbox{\lx@xy@droprule}}}}{\hbox{\hbox{\kern-1.0pt\raise 0.0pt\hbox{\lx@xy@droprule}}\hbox{\kern 1.0pt\raise 0.0pt\hbox{\lx@xy@droprule}}}}\ignorespaces}}}}\ignorespaces\end{gathered}

Also, μF=μ0=ι\mu_{F}=\mu_{\emptyset^{0}}=\iota_{\emptyset} and ΔG=Δ,\Delta_{G}=\Delta_{\emptyset,\emptyset}. It follows that  (167) specializes in this case to the right diagram in the compatibility axiom (65).

Similarly, F=2F=\emptyset^{2} and G=0G=\emptyset^{0} yields the left diagram in (65), and F=0F=\emptyset^{0} and G=0G=\emptyset^{0} yields (66).

Thus, all compatibility axioms (54)–(66) are special cases of (167). Conversely, the latter follows from the former.

Proposition 51.

Let 𝐡\mathbf{h} be a species equipped with two collections of maps

μF:𝐡(F)𝐡[I]andΔF:𝐡[I]𝐡(F),\mu_{F}:\mathbf{h}(F)\to\mathbf{h}[I]\qquad\text{and}\qquad\Delta_{F}:\mathbf{h}[I]\to\mathbf{h}(F),

one map for each decomposition FF of a finite set II. Then 𝐡\mathbf{h} is a bimonoid with higher (co)product maps μF\mu_{F} (ΔF\Delta_{F}) if and only if the following conditions hold: naturality (160), higher associativity (162), their duals, and higher compatibility (167).

The unit conditions have been subsumed under (162) and (167). Nevertheless, certain compatibilities involving the maps ιF\iota_{F} and ϵF\epsilon_{F} are worth-stating.

Proposition 52.

Let 𝐡\mathbf{h} be a qq-bimonoid. For any decomposition FF of II, the diagram

(168) 𝐡(F)ϵF𝐡(F+)ιF𝐡(F+)\begin{gathered}\lx@xy@svg{\hbox{\raise 2.5pt\hbox{\kern 17.31252pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&\\&&\crcr}}}\ignorespaces{\hbox{\kern-3.0pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 35.31252pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{h}(F)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 71.62338pt\raise-11.99026pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.00417pt\hbox{$\scriptstyle{\epsilon_{F}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 87.0174pt\raise-26.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}{\hbox{\kern-17.31252pt\raise-34.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{h}({F}_{+})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\hbox{\kern 0.0pt\raise 1.0pt\hbox{\lx@xy@droprule}}\hbox{\kern 0.0pt\raise-1.0pt\hbox{\lx@xy@droprule}}}}\ignorespaces{}{\hbox{\hbox{\kern 0.0pt\raise 1.0pt\hbox{\lx@xy@droprule}}\hbox{\kern 0.0pt\raise-1.0pt\hbox{\lx@xy@droprule}}}}{\hbox{\hbox{\kern 0.0pt\raise 1.0pt\hbox{\lx@xy@droprule}}\hbox{\kern 0.0pt\raise-1.0pt\hbox{\lx@xy@droprule}}}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 12.26535pt\raise-11.99026pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.00417pt\hbox{$\scriptstyle{\iota_{F}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 37.70401pt\raise-8.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}{\hbox{\kern 46.30557pt\raise-34.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 81.29863pt\raise-34.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{h}({F}_{+})}$}}}}}}}\ignorespaces}}}}\ignorespaces\end{gathered}

commutes.

Axiom (66) is the special case of (168) in which F=1F=\emptyset^{1}.

For the next result, we consider a special type of refinement for set decompositions. Let F=(I1,,Ik)F=(I_{1},\ldots,I_{k}) be a decomposition of II. Let GG be a decomposition of II refining FF and with the property that the nonempty subsets in FF are refined by GG into nonempty subsets, and each empty set in FF is refined by GG into a nonnegative number of empty sets. In this situation, there is a canonical choice of splitting (G1,,Gk)(G_{1},\ldots,G_{k}) for FGF\leq G. Namely, we choose each GiG_{i} to consist either of a maximal run of contiguous nonempty sets in GG, or of a maximal run of contiguous empty sets. We denote this splitting by max\max.

Proposition 53.

Let 𝐡\mathbf{h} be a qq-bimonoid. For any decompositions FF and GG as above, the diagrams

(179) 𝐡(G)ϵGμG/Fmax𝐡(G+)μG+/F+𝐡(F)ϵF+𝐡(F+)\displaystyle\begin{gathered}\lx@xy@svg{\hbox{\raise 2.5pt\hbox{\kern 25.29028pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&\\&\\}}}\ignorespaces{\hbox{\kern-14.01457pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{h}(G)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 30.43797pt\raise 5.00974pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.00417pt\hbox{$\scriptstyle{\epsilon_{G}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 62.01457pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern-25.29028pt\raise-20.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.29085pt\hbox{$\scriptstyle{\mu_{G/F}^{\operatorname{\mathrm{max}}}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 0.0pt\raise-32.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 62.01457pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{h}({G}_{+})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 79.3486pt\raise-20.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise 0.38475pt\hbox{$\scriptstyle{\mu_{{G}_{+}/{F}_{+}}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 79.3486pt\raise-32.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-13.99306pt\raise-40.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{h}(F)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 27.67613pt\raise-46.23198pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise 0.2181pt\hbox{$\scriptstyle{\epsilon_{{F}_{+}}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 62.03609pt\raise-40.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 62.03609pt\raise-40.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{h}({F}_{+})}$}}}}}}}\ignorespaces}}}}\ignorespaces\end{gathered} 𝐡(F+)ΔG+/F+ιF𝐡(F)ΔG/Fmax𝐡(G+)ιG𝐡(G)\displaystyle\begin{gathered}\lx@xy@svg{\hbox{\raise 2.5pt\hbox{\kern 38.27539pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&\\&\crcr}}}\ignorespaces{\hbox{\kern-17.31252pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{h}({F}_{+})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern-38.27539pt\raise-20.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.49997pt\hbox{$\scriptstyle{\Delta_{{G}_{+}/{F}_{+}}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 0.0pt\raise-32.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 34.00182pt\raise 5.00974pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.00417pt\hbox{$\scriptstyle{\iota_{F}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 65.35555pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 65.35555pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{h}(F)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 79.3486pt\raise-20.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.29085pt\hbox{$\scriptstyle{\Delta_{G/F}^{\operatorname{\mathrm{max}}}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 79.3486pt\raise-32.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-17.33403pt\raise-40.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{h}({G}_{+})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 33.94417pt\raise-45.00972pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.00417pt\hbox{$\scriptstyle{\iota_{G}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 65.33403pt\raise-40.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 65.33403pt\raise-40.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{h}(G)}$}}}}}}}\ignorespaces}}}}\ignorespaces\end{gathered}

commute.

Axioms (65) are the special case of (179) in which F=()F=(\emptyset) and G=(,)G=(\emptyset,\emptyset).

10.6. The connected case

The preceding discussion carries over to connected species. The statements are simpler. There are additional results that are specific to this setting.

First of all, note that a connected species 𝐩\mathbf{p} can be recovered from its positive part by setting 𝐩[]=𝕜\mathbf{p}[\emptyset]=\Bbbk.

If 𝐚\mathbf{a} is a connected monoid, then for any decomposition FF the map ιF:𝐚(F+)𝐚(F)\iota_{F}:\mathbf{a}({F}_{+})\to\mathbf{a}(F) is invertible. Together with (163) this implies that the collection of higher product maps μF\mu_{F} is uniquely determined by the subcollection indexed by compositions FF.

Proposition 54.

Let 𝐚\mathbf{a} be a connected species equipped with a collection of maps

μF:𝐚(F)𝐚[I],\mu_{F}:\mathbf{a}(F)\to\mathbf{a}[I],

one map for each composition FF of a nonempty finite set II. Then 𝐚\mathbf{a} is a connected monoid with higher product maps μF\mu_{F} if and only if naturality (160) holds and the diagram

(180)
𝐚(G)μGμG/F𝐚[I]𝐚(F)μF
\begin{gathered}\lx@xy@svg{\hbox{\raise 2.5pt\hbox{\kern 25.29028pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&\\\crcr}}}\ignorespaces{\hbox{\kern-13.61525pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{a}(G)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 17.27399pt\raise 5.1875pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.8264pt\hbox{$\scriptstyle{\mu_{G}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 37.61525pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern-25.29028pt\raise-20.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.2125pt\hbox{$\scriptstyle{\mu_{G/F}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 0.0pt\raise-32.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 37.61525pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{a}[I]}$}}}}}}}{\hbox{\kern-13.59373pt\raise-40.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{a}(F)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 22.90076pt\raise-25.18748pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.8264pt\hbox{$\scriptstyle{\mu_{F}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 39.0206pt\raise-8.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces}}}}\ignorespaces\end{gathered}

commutes, for each compositions FF and GG of II with FGF\leq G. The monoid 𝐚\mathbf{a} is commutative if and only if

(181) 𝐚(F)μFβq𝐚(F)μF𝐚[I]\begin{gathered}\lx@xy@svg{\hbox{\raise 2.5pt\hbox{\kern 13.59373pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&\\&&\\}}}\ignorespaces{\hbox{\kern-13.59373pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{a}(F)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 9.29967pt\raise-25.19194pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.8264pt\hbox{$\scriptstyle{\mu_{F}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 39.01471pt\raise-32.00891pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 41.50272pt\raise 6.41666pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.44444pt\hbox{$\scriptstyle{\beta_{q}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 83.92006pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 45.7569pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 83.92006pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{a}(F^{\prime})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 71.87943pt\raise-25.43085pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.5875pt\hbox{$\scriptstyle{\mu_{F^{\prime}}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 58.78815pt\raise-32.00891pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}{\hbox{\kern-3.0pt\raise-40.00891pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 37.59373pt\raise-40.00891pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{a}[I]}$}}}}}}}{\hbox{\kern 95.91658pt\raise-40.00891pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}\ignorespaces}}}}\ignorespaces\end{gathered}

commutes, for any compositions FF and FF^{\prime} with suppF=suppF\operatorname{supp}F=\operatorname{supp}F^{\prime}.

This follows from Propositions 46 and 48. Since splittings are unique for compositions, diagrams (162) and (165) simplify to (180) and (181).

For a connected comonoid 𝐜\mathbf{c}, the map ϵF:𝐜(F)𝐜(F+)\epsilon_{F}:\mathbf{c}(F)\to\mathbf{c}({F}_{+}) is invertible, and we have the dual statement to Proposition 54.

Proposition 55.

Let 𝐡\mathbf{h} be a connected species equipped with two collections of maps

μF:𝐡(F)𝐡[I]andΔF:𝐡[I]𝐡(F),\mu_{F}:\mathbf{h}(F)\to\mathbf{h}[I]\qquad\text{and}\qquad\Delta_{F}:\mathbf{h}[I]\to\mathbf{h}(F),

one map for each composition FF of a nonempty finite set II. Then 𝐡\mathbf{h} is a bimonoid with higher (co)product maps μF\mu_{F} (ΔF\Delta_{F}) if and only if the following conditions hold: naturality (160), higher associativity (180), their duals, and the diagram

(182) 𝐡(FG)βq𝐡(GF)μGF/G𝐡(F)μFΔFG/F𝐡[I]ΔG𝐡(G)\begin{gathered}\lx@xy@svg{\hbox{\raise 2.5pt\hbox{\kern 32.20236pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&\\&&\\}}}\ignorespaces{\hbox{\kern-17.9243pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{h}(FG)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 46.2326pt\raise 6.41666pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.44444pt\hbox{$\scriptstyle{\beta_{q}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 89.04927pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 50.48679pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 89.04927pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{h}(GF)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 106.97357pt\raise-26.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.2125pt\hbox{$\scriptstyle{\mu_{GF/G}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 106.97357pt\raise-44.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-13.99306pt\raise-52.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{h}(F)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 19.67506pt\raise-57.18748pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.8264pt\hbox{$\scriptstyle{\mu_{F}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 41.9243pt\raise-52.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern-32.20236pt\raise-26.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.09723pt\hbox{$\scriptstyle{\Delta_{FG/F}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 0.0pt\raise-8.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 41.9243pt\raise-52.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{h}[I]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 69.8093pt\raise-57.89445pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.88889pt\hbox{$\scriptstyle{\Delta_{G}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 92.959pt\raise-52.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 92.959pt\raise-52.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{h}(G)}$}}}}}}}\ignorespaces}}}}\ignorespaces\end{gathered}

commutes for any pair of compositions FF and GG of a nonempty finite set II.

This follows from Proposition 50. The Tits products FGFG and GFGF in (182) are those for set compositions (Section 1.6).

Connectedness has further implications on the higher structure maps.

Proposition 56.

Let 𝐡\mathbf{h} be a connected qq-bimonoid. For any decomposition FF of II, the diagram

(183)
𝐡(F)ϵF𝐡(F)𝐡(F+)ιF
\begin{gathered}\lx@xy@svg{\hbox{\raise 2.5pt\hbox{\kern 13.99306pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&\\&\crcr}}}\ignorespaces{\hbox{\kern-13.99306pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{h}(F)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\hbox{\kern 0.0pt\raise 1.0pt\hbox{\lx@xy@droprule}}\hbox{\kern 0.0pt\raise-1.0pt\hbox{\lx@xy@droprule}}}}\ignorespaces{}{\hbox{\hbox{\kern 0.0pt\raise 1.0pt\hbox{\lx@xy@droprule}}\hbox{\kern 0.0pt\raise-1.0pt\hbox{\lx@xy@droprule}}}}{\hbox{\hbox{\kern 0.0pt\raise 1.0pt\hbox{\lx@xy@droprule}}\hbox{\kern 0.0pt\raise-1.0pt\hbox{\lx@xy@droprule}}}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 11.94986pt\raise-22.00972pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.00417pt\hbox{$\scriptstyle{\epsilon_{F}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 37.71182pt\raise-26.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}{\hbox{\kern 46.30557pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 84.61809pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{h}(F)}$}}}}}}}{\hbox{\kern-3.0pt\raise-34.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 31.99306pt\raise-34.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{h}({F}_{+})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 71.68137pt\raise-22.00972pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.00417pt\hbox{$\scriptstyle{\iota_{F}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 87.00958pt\raise-8.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces}}}}\ignorespaces\end{gathered}

commutes.

Together with Proposition 52, this says that for a connected qq-bimonoid the maps ιF\iota_{F} and ϵF\epsilon_{F} are inverse.

Proposition 57.

Let 𝐡\mathbf{h} be a connected qq-bimonoid. For any compositions FF and GG of II with suppF=suppG\operatorname{supp}F=\operatorname{supp}G, the diagram

(184)
𝐡(F)βqμF𝐡(G)𝐡[I]ΔG
\begin{gathered}\lx@xy@svg{\hbox{\raise 2.5pt\hbox{\kern 13.99306pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&\\&\crcr}}}\ignorespaces{\hbox{\kern-13.99306pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{h}(F)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 36.30136pt\raise 6.41666pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.44444pt\hbox{$\scriptstyle{\beta_{q}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 73.11803pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 7.02258pt\raise-22.18748pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.8264pt\hbox{$\scriptstyle{\mu_{F}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 33.31335pt\raise-26.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}{\hbox{\kern 40.55554pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 73.11803pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{h}(G)}$}}}}}}}{\hbox{\kern-3.0pt\raise-34.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 31.99306pt\raise-34.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{h}[I]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 63.31474pt\raise-22.89445pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.88889pt\hbox{$\scriptstyle{\Delta_{G}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 76.8826pt\raise-8.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces}}}}\ignorespaces\end{gathered}

commutes.

This follows from (182), since in this case FG=FFG=F and GF=GGF=G.

The following special cases are worth-stating.

Corollary 58.

Let 𝐡\mathbf{h} be a connected qq-bimonoid. For any composition FF of II, the diagrams

𝐡(F)μF𝐡(F)𝐡[I]ΔF
\displaystyle\begin{gathered}\lx@xy@svg{\hbox{\raise 2.5pt\hbox{\kern 13.99306pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&\\&\crcr}}}\ignorespaces{\hbox{\kern-13.99306pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{h}(F)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\hbox{\kern 0.0pt\raise 1.0pt\hbox{\lx@xy@droprule}}\hbox{\kern 0.0pt\raise-1.0pt\hbox{\lx@xy@droprule}}}}\ignorespaces{}{\hbox{\hbox{\kern 0.0pt\raise 1.0pt\hbox{\lx@xy@droprule}}\hbox{\kern 0.0pt\raise-1.0pt\hbox{\lx@xy@droprule}}}}{\hbox{\hbox{\kern 0.0pt\raise 1.0pt\hbox{\lx@xy@droprule}}\hbox{\kern 0.0pt\raise-1.0pt\hbox{\lx@xy@droprule}}}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 7.02258pt\raise-22.18748pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.8264pt\hbox{$\scriptstyle{\mu_{F}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 33.31335pt\raise-26.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}{\hbox{\kern 40.55554pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 73.11803pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{h}(F)}$}}}}}}}{\hbox{\kern-3.0pt\raise-34.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 31.99306pt\raise-34.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{h}[I]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 63.31671pt\raise-22.89445pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.88889pt\hbox{$\scriptstyle{\Delta_{F}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 76.86108pt\raise-8.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces}}}}\ignorespaces\end{gathered}
𝐡(F)βqωμF𝐡(F¯)𝐡[I]ΔF¯
\displaystyle\begin{gathered}\lx@xy@svg{\hbox{\raise 2.5pt\hbox{\kern 13.99306pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&\\&\crcr}}}\ignorespaces{\hbox{\kern-13.99306pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{h}(F)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 35.82246pt\raise 6.5714pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.59918pt\hbox{$\scriptstyle{\beta^{\omega}_{q}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 73.11803pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 7.02258pt\raise-22.18748pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.8264pt\hbox{$\scriptstyle{\mu_{F}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 33.31335pt\raise-26.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}{\hbox{\kern 40.55554pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 73.11803pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{h}(\overline{F})}$}}}}}}}{\hbox{\kern-3.0pt\raise-34.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 31.99306pt\raise-34.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{h}[I]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 62.8815pt\raise-24.025pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.75835pt\hbox{$\scriptstyle{\Delta_{\overline{F}}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 75.7873pt\raise-8.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces}}}}\ignorespaces\end{gathered}

commute.

These follow from (184) by setting G=FG=F and G=F¯G=\overline{F}. The map βqω\beta^{\omega}_{q} is as in (164) for ω\omega the longest permutation. Explicitly, the conditions in Corollary 58 are

(185) ΔFμF(h)=handΔF¯μF(h)=qdist(F,F¯)h¯\Delta_{F}\mu_{F}(h)=h\qquad\text{and}\qquad\Delta_{\overline{F}}\mu_{F}(h)=q^{\operatorname{dist}(F,\overline{F})}\,\overline{h}

for any h𝐡(F)h\in\mathbf{h}(F), where, if h=x1xkh=x_{1}\otimes\cdots\otimes x_{k}, then h¯:=xkx1\overline{h}:=x_{k}\otimes\cdots\otimes x_{1}.

11. The bimonoids of set (de)compositions

We now discuss two important bimonoids 𝚺\mathbf{\Sigma} and 𝚺^\mathbf{\widehat{\Sigma}} indexed by set compositions and set decompositions respectively. The former is connected and hence a Hopf monoid, while the latter is not a Hopf monoid. Both structures are set-theoretic. We also write down formulas for the higher (co)product maps. This is particularly compelling since the higher (co)product maps are also indexed by set decompositions (and the Tits product appears in the coproduct description).

We make use of notions and notation for (de)compositions discussed in Section 1. We work over a characteristic 0 field.

11.1. The Hopf monoid of set compositions

Recall that Σ[I]\Sigma[I] denotes the set of compositions of a finite set II.

The species Σ\Sigma of compositions is a set-theoretic connected Hopf monoid with product and coproduct defined by

(186) Σ[S]×Σ[T]\displaystyle\Sigma[S]\times\Sigma[T] μS,TΣ[I]\displaystyle\xrightarrow{\mu_{S,T}}\Sigma[I] Σ[I]\displaystyle\Sigma[I] ΔS,TΣ[S]×Σ[T]\displaystyle\xrightarrow{\Delta_{S,T}}\Sigma[S]\times\Sigma[T]
(F1,F2)\displaystyle(F_{1},F_{2}) F1F2\displaystyle\xmapsto{\phantom{\mu_{S,T}}}F_{1}\cdot F_{2}\qquad F\displaystyle F (F|S,F|T).\displaystyle\xmapsto{\phantom{\Delta_{S,T}}}(F|_{S},F|_{T}).

We have employed the operations of concatenation and restriction of compositions.

The Hopf monoid Σ\Sigma is cocommutative but not commutative.

We let 𝚺:=𝕜Σ\mathbf{\Sigma}:=\Bbbk\Sigma denote the linearization of Σ\Sigma. It is a connected Hopf monoid. The product and coproduct are

(187) μS,T(𝙷F1𝙷F2)=𝙷F1F2andΔS,T(𝙷F)=𝙷F|S𝙷F|T.\mu_{S,T}(\mathtt{H}_{F_{1}}\otimes\mathtt{H}_{F_{2}})=\mathtt{H}_{F_{1}\cdot F_{2}}\qquad\text{and}\qquad\Delta_{S,T}(\mathtt{H}_{F})=\mathtt{H}_{F|_{S}}\otimes\mathtt{H}_{F|_{T}}.

For the antipode of 𝚺\mathbf{\Sigma} on the basis {𝙷}\{\mathtt{H}\}, set q=1q=1 in Theorem 60 below.

For the dual Hopf monoid 𝚺=𝕜Σ\mathbf{\Sigma}^{*}=\Bbbk^{\Sigma}, we have

μS,T(𝙼F1𝙼F2)=F:F a quasi-shuffle of F1 and F2𝙼F\mu_{S,T}(\mathtt{M}_{F_{1}}\otimes\mathtt{M}_{F_{2}})=\sum_{F:\,\text{$F$ a quasi-shuffle of $F_{1}$ and $F_{2}$}}\mathtt{M}_{F}

and

ΔS,T(𝙼F)={𝙼F|S𝙼F|T if S is an initial segment of F,0 otherwise.\Delta_{S,T}(\mathtt{M}_{F})=\begin{cases}\mathtt{M}_{F|_{S}}\otimes\mathtt{M}_{F|_{T}}&\text{ if $S$ is an initial segment of $F$,}\\ 0&\text{ otherwise.}\end{cases}

The monoid 𝚺\mathbf{\Sigma} is free on the positive part of the exponential species: there is an isomorphism of monoids

𝒯(𝐄+)𝚺,𝙷I1𝙷Ik𝙷F\mathcal{T}(\mathbf{E}_{+})\cong\mathbf{\Sigma},\quad\mathtt{H}_{I_{1}}\otimes\cdots\otimes\mathtt{H}_{I_{k}}\leftrightarrow\mathtt{H}_{F}

for F=(I1,,Ik)F=(I_{1},\ldots,I_{k}) a composition of II. The isomorphism does not preserve coproducts, since ΔS,T(𝙷I1𝙷Ik)=0\Delta_{S,T}(\mathtt{H}_{I_{1}}\otimes\cdots\otimes\mathtt{H}_{I_{k}})=0 when SS is not FF-admissible.

Define a linear basis {𝚀}\{\mathtt{Q}\} of 𝚺[I]\mathbf{\Sigma}[I] by

(188) 𝙷F=G:FG1(G/F)!𝚀G.\mathtt{H}_{F}=\sum_{G:\,F\leq G}\frac{1}{(G/F)!}\,\mathtt{Q}_{G}.

The basis {𝚀}\{\mathtt{Q}\} is determined by triangularity. In fact, one may show that

(189) 𝚀F=G:FG(1)l(G)l(F)1l(G/F)𝙷G.\mathtt{Q}_{F}=\sum_{G:\,F\leq G}(-1)^{l(G)-l(F)}\frac{1}{l(G/F)}\,\mathtt{H}_{G}.
Proposition 59.

We have

(190) μS,T(𝚀F1𝚀F2)=𝚀F1F2,\displaystyle\mu_{S,T}(\mathtt{Q}_{F_{1}}\otimes\mathtt{Q}_{F_{2}})=\mathtt{Q}_{F_{1}\cdot F_{2}},
(191) ΔS,T(𝚀F)={𝚀F|S𝚀F|T if S is F-admissible,0 otherwise,\displaystyle\Delta_{S,T}(\mathtt{Q}_{F})=\begin{cases}\mathtt{Q}_{F|_{S}}\otimes\mathtt{Q}_{F|_{T}}&\text{ if $S$ is $F$-admissible,}\\ 0&\text{ otherwise,}\end{cases}
(192) sI(𝚀F)=(1)|F|𝚀F¯.\displaystyle\operatorname{\textsc{s}}_{I}(\mathtt{Q}_{F})=(-1)^{\lvert F\rvert}\,\mathtt{Q}_{\overline{F}}.

There is an isomorphism of Hopf monoids

𝒯(𝐄+)𝚺,𝙷I1𝙷Ik𝚀F\mathcal{T}(\mathbf{E}_{+})\cong\mathbf{\Sigma},\quad\mathtt{H}_{I_{1}}\otimes\cdots\otimes\mathtt{H}_{I_{k}}\leftrightarrow\mathtt{Q}_{F}

for F=(I1,,Ik)F=(I_{1},\ldots,I_{k}) a composition of II. It follows that the primitive part of 𝚺\mathbf{\Sigma} is the Lie submonoid generated by the elements 𝚀(I)\mathtt{Q}_{(I)}. For instance,

𝚀(I),𝚀(S,T)𝚀(T,S),𝚀(R,S,T)𝚀(R,T,S)𝚀(S,T,R)+𝚀(T,S,R)\mathtt{Q}_{(I)},\ \mathtt{Q}_{(S,T)}-\mathtt{Q}_{(T,S)},\ \mathtt{Q}_{(R,S,T)}-\mathtt{Q}_{(R,T,S)}-\mathtt{Q}_{(S,T,R)}+\mathtt{Q}_{(T,S,R)}

are primitive elements.

Fix a scalar q𝕜q\in\Bbbk. Let 𝚺q\mathbf{\Sigma}_{q} denote the same monoid as 𝚺\mathbf{\Sigma}, but endowed with the following coproduct:

ΔS,T:𝚺q[I]𝚺q[S]𝚺q[T],𝙷FqschS,T(F)𝙷F|S𝙷F|T,\Delta_{S,T}:\mathbf{\Sigma}_{q}[I]\to\mathbf{\Sigma}_{q}[S]\otimes\mathbf{\Sigma}_{q}[T],\qquad\mathtt{H}_{F}\mapsto q^{\operatorname{sch}_{S,T}(F)}\,\mathtt{H}_{F|_{S}}\otimes\mathtt{H}_{F|_{T}},

where the Schubert cocycle schS,T\operatorname{sch}_{S,T} is as in (2). Then 𝚺q\mathbf{\Sigma}_{q} is a connected qq-Hopf monoid.

Theorem 60.

The antipode of 𝚺q\mathbf{\Sigma}_{q} is given by

sI(𝙷F)=qdist(F,F¯)G:F¯G(1)l(G)𝙷G.\operatorname{\textsc{s}}_{I}(\mathtt{H}_{F})=q^{\operatorname{dist}(F,\overline{F})}\sum_{G:\,\overline{F}\leq G}(-1)^{l(G)}\,\mathtt{H}_{G}.

This result is proven in [6, Theorems 12.21 and 12.24]. The distance function is as in (5).

Generically, the qq-Hopf monoid 𝚺q\mathbf{\Sigma}_{q} is self-dual. In fact, we have the following result. Define a map ψq:𝚺q(𝚺q)\psi_{q}:\mathbf{\Sigma}_{q}\to(\mathbf{\Sigma}_{q})^{*} by

(193) ψq(𝙷F):=F(FF)!qdist(F,F)𝙼F.\psi_{q}(\mathtt{H}_{F}):=\sum_{F^{\prime}}(FF^{\prime})!\,q^{\operatorname{dist}(F,F^{\prime})}\,\mathtt{M}_{F^{\prime}}.
Proposition 61.

The map ψq:𝚺q(𝚺q)\psi_{q}:\mathbf{\Sigma}_{q}\to(\mathbf{\Sigma}_{q})^{*} is a morphism of qq-Hopf monoids. If qq is not an algebraic number, then it is an isomorphism. Moreover, for any qq, ψq=(ψq)\psi_{q}=(\psi_{q})^{*}.

Proposition 61 is proven in [6, Proposition 12.26]. See [6, Section 10.15.2] for related information.

With q=1q=1, the map in (193) is not invertible. It satisfies

ψ(𝚀F)=(1)|I|l(F)(suppF)!G:suppG=suppF𝙿G,\psi(\mathtt{Q}_{F})=(-1)^{\lvert I\rvert-l(F)}\,(\operatorname{supp}F)\begin{picture}(3.0,5.0)(0.0,0.0)\put(0.0,0.0){{!}}\put(1.5,4.8){\circle{3.0}} \end{picture}\sum_{G:\,\operatorname{supp}G=\operatorname{supp}F}\mathtt{P}_{G},

where {𝙿}\{\mathtt{P}\} is the basis of 𝚺\mathbf{\Sigma}^{*} dual to the basis {𝚀}\{\mathtt{Q}\} of 𝚺\mathbf{\Sigma}. The coefficient is the Möbius function value (17). The support of a composition is defined in Section 1.9.

Regarding a linear order as a composition into singletons, we may view L\mathrm{L} as a subspecies of Σ\Sigma. The analogy between the present discussion and that for linear orders in Section 9.2 is explained by the observation that in fact 𝐋q\mathbf{L}_{q} is in this manner a qq-Hopf submonoid of 𝚺q\mathbf{\Sigma}_{q}. Let j:𝐋q𝚺qj:\mathbf{L}_{q}\hookrightarrow\mathbf{\Sigma}_{q} be the inclusion. The diagram

𝚺q\textstyle{\mathbf{\Sigma}_{q}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ψq\scriptstyle{\psi_{q}}(𝚺q)\textstyle{(\mathbf{\Sigma}_{q})^{*}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}j\scriptstyle{j^{*}}𝐋q\textstyle{\mathbf{L}_{q}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ψq\scriptstyle{\psi_{q}}j\scriptstyle{j}(𝐋q)\textstyle{(\mathbf{L}_{q})^{*}}

commutes. The maps ψ\psi are as in (140) and (193).

Let π:𝚺𝚷\pi:\mathbf{\Sigma}\twoheadrightarrow\mathbf{\Pi} be the map defined by

(194) π(𝙷F):=𝙷suppF.\pi(\mathtt{H}_{F}):=\mathtt{H}_{\operatorname{supp}F}.
Proposition 62.

The map π:𝚺𝚷\pi:\mathbf{\Sigma}\twoheadrightarrow\mathbf{\Pi} is a surjective morphism of Hopf monoids. Moreover, we have

π(𝚀F)=𝚀suppF\pi(\mathtt{Q}_{F})=\mathtt{Q}_{\operatorname{supp}F}

and the diagram

𝚺\textstyle{\mathbf{\Sigma}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ψ\scriptstyle{\psi}π\scriptstyle{\pi}𝚺\textstyle{\mathbf{\Sigma}^{*}}𝚷\textstyle{\mathbf{\Pi}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ψ\scriptstyle{\psi}𝚷\textstyle{\mathbf{\Pi}^{*}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}π\scriptstyle{\pi^{*}}

commutes.

The maps ψ\psi are as in (141) and (193) (with q=1q=1). The map π\pi is an instance of abelianization: in the notation of Section 7.6, π=π𝐄+\pi=\pi_{\mathbf{E}_{+}}.

11.2. The bimonoid of set decompositions

Some of the considerations of Section 11.1 can be extended to all decompositions of finite sets, as opposed to only those into nonempty subsets (compositions).

Recall that Σ^[I]\widehat{\Sigma}[I] denotes the set of decompositions of a finite set II. The set-theoretic bimonoid structure on Σ\Sigma can be extended to Σ^\widehat{\Sigma} by means of the same formulas as in (186): the product is given by concatenation and the coproduct by restriction of decompositions.

The set Σ^[]\widehat{\Sigma}[\emptyset] consists of the decompositions p\emptyset^{p}, where pp is a nonnegative integer. As with any set-theoretic bimonoid, this set is an ordinary monoid under μ,\mu_{\emptyset,\emptyset} and the map Δ,\Delta_{\emptyset,\emptyset} must be the diagonal. The latter statement is witnessed by the fact that p|=p\emptyset^{p}|_{\emptyset}=\emptyset^{p} for all pp. The product μ,\mu_{\emptyset,\emptyset} is concatenation, so as discussed in (19), Σ^[]\widehat{\Sigma}[\emptyset] is isomorphic to the monoid of nonnegative integers under addition. Since this is not a group, the set-theoretic bimonoid Σ^\widehat{\Sigma} is not a Hopf monoid.

Let 𝚺^:=𝕜Σ^\mathbf{\widehat{\Sigma}}:=\Bbbk\widehat{\Sigma}. Then 𝚺^\mathbf{\widehat{\Sigma}} is a bimonoid but not a Hopf monoid. The product and coproduct are as for 𝚺\mathbf{\Sigma}:

μS,T(𝙷F1𝙷F2)=𝙷F1F2andΔS,T(𝙷F)=𝙷F|S𝙷F|T,\mu_{S,T}(\mathtt{H}_{F_{1}}\otimes\mathtt{H}_{F_{2}})=\mathtt{H}_{F_{1}\cdot F_{2}}\qquad\text{and}\qquad\Delta_{S,T}(\mathtt{H}_{F})=\mathtt{H}_{F|_{S}}\otimes\mathtt{H}_{F|_{T}},

where F1F_{1}, F2F_{2} and FF are decompositions.

The map υ:𝚺^𝚺\upsilon:\mathbf{\widehat{\Sigma}}\to\mathbf{\Sigma} defined by

(195) υ(𝙷F):=𝙷F+\upsilon(\mathtt{H}_{F}):=\mathtt{H}_{{F}_{+}}

is a surjective morphism of bimonoids. (It is set-theoretic.)

11.3. The higher (co)product in 𝚺\mathbf{\Sigma} and 𝚺^\mathbf{\widehat{\Sigma}}

The following result describes the higher product and coproduct of the Hopf monoid 𝚺\mathbf{\Sigma} of compositions, namely

μF:𝚺(F)𝚺[I]andΔF:𝚺[I]𝚺(F).\mu_{F}:\mathbf{\Sigma}(F)\to\mathbf{\Sigma}[I]\quad\text{and}\quad\Delta_{F}:\mathbf{\Sigma}[I]\to\mathbf{\Sigma}(F).

Here FF is a composition of II and the notation is as in (45) and (47); see also Section 10.1. It suffices to consider compositions because 𝚺\mathbf{\Sigma} is connected (see Section 10.6).

Let F=(I1,,Ik)IF=(I_{1},\ldots,I_{k})\vDash I. Given a composition GG refining FF, let Gi:=G|IiG_{i}:=G|_{I_{i}}. Define an element

𝙷G/F:=𝙷G1𝙷Gk𝚺[I1]𝚺[Ik]=𝚺(F).\mathtt{H}_{G/F}:=\mathtt{H}_{G_{1}}\otimes\cdots\otimes\mathtt{H}_{G_{k}}\in\mathbf{\Sigma}[I_{1}]\otimes\cdots\otimes\mathbf{\Sigma}[I_{k}]=\mathbf{\Sigma}(F).

In view of (8), the elements 𝙷G/F\mathtt{H}_{G/F} form a linear basis of 𝚺(F)\mathbf{\Sigma}(F) as GG varies over the refinements of FF.

Proposition 63.

For any compositions FGF\leq G of II,

(196) μF(𝙷G/F)=𝙷G.\mu_{F}(\mathtt{H}_{G/F})=\mathtt{H}_{G}.

For any pair of compositions FF and GG of II,

(197) ΔF(𝙷G)=𝙷FG/F.\Delta_{F}(\mathtt{H}_{G})=\mathtt{H}_{FG/F}.

Formulas (187) are the special case of (196) and (197) for which F=(S,T)F=(S,T). Note that in this case FG=G|SG|TFG=G|_{S}\cdot G|_{T}.

Now consider the bimonoid 𝚺^\mathbf{\widehat{\Sigma}} of decompositions. The higher product and coproduct of 𝚺^\mathbf{\widehat{\Sigma}} are given by essentially the same formulas as (196) and (197), but adjustments are necessary. We turn to them.

Let F=(I1,,Ik)F=(I_{1},\ldots,I_{k}) be a decomposition of II. Let GG be a decomposition of II such that FGF\leq G and let γ=(G1,,Gk)\gamma=(G_{1},\dots,G_{k}) be a splitting of (F,G)(F,G). Define an element

𝙷G/Fγ:=𝙷G1𝙷Gk𝚺^[I1]𝚺^[Ik]=𝚺^(F).\mathtt{H}_{G/F}^{\gamma}:=\mathtt{H}_{G_{1}}\otimes\cdots\otimes\mathtt{H}_{G_{k}}\in\mathbf{\widehat{\Sigma}}[I_{1}]\otimes\cdots\otimes\mathbf{\widehat{\Sigma}}[I_{k}]=\mathbf{\widehat{\Sigma}}(F).

In view of (22), the elements 𝙷G/Fγ\mathtt{H}_{G/F}^{\gamma} form a linear basis of 𝚺^(F)\mathbf{\widehat{\Sigma}}(F) as GG varies over decompositions satisfying FGF\leq G and γ\gamma over all splittings of (F,G)(F,G).

Now let FF and GG be two arbitrary decompositions of II. Recall from (166) that there is a canonical choice of splitting for (F,FG)(F,FG), denoted ‘can\operatorname{\mathrm{can}}’. Hence the element 𝙷FG/Fcan𝚺^(F)\mathtt{H}_{FG/F}^{\operatorname{\mathrm{can}}}\in\mathbf{\widehat{\Sigma}}(F) is defined.

Proposition 64.

Let FF and GG be decompositions of II with FGF\leq G. Then, for any splitting γ\gamma of (F,G)(F,G),

(198) μF(𝙷G/Fγ)=𝙷G.\mu_{F}(\mathtt{H}_{G/F}^{\gamma})=\mathtt{H}_{G}.

For any pair of decompositions FF and GG of II,

(199) ΔF(𝙷G)=𝙷FG/Fcan.\Delta_{F}(\mathtt{H}_{G})=\mathtt{H}_{FG/F}^{\operatorname{\mathrm{can}}}.

12. Series and functional calculus

Every species gives rise to a vector space of series, which is an algebra when the species is a monoid. For the exponential species, this identifies with the algebra of formal power series. When the species is a connected bimonoid, one can define group-like series and primitive series. The former constitutes a group and the latter a Lie algebra, and they are in correspondence by means of the exponential and the logarithm.

We work over a field 𝕜\Bbbk of characteristic 0.

12.1. Series of a species

Let 𝐪\mathbf{q} be a species. Define the space of series of 𝐪\mathbf{q} as

𝒮(𝐪):=lim𝐪,\mathscr{S}(\mathbf{q}):=\lim\mathbf{q},

the limit of the functor 𝐪:𝗌𝖾𝗍×𝖵𝖾𝖼𝕜\mathbf{q}:\mathsf{set^{\times}}\to\mathsf{Vec}_{\Bbbk}. Explicitly, a series ss of 𝐪\mathbf{q} is a collection of elements

sI𝐪[I],s_{I}\in\mathbf{q}[I],

one for each finite set II, such that

(200) 𝐪[σ](sI)=sJ\mathbf{q}[\sigma](s_{I})=s_{J}

for each bijection σ:IJ\sigma:I\to J. The vector space structure is given by

(s+t)I:=sI+tIand(cs)I:=csI(s+t)_{I}:=s_{I}+t_{I}\qquad\text{and}\qquad(c\cdot s)_{I}:=c\,s_{I}

for s,t𝒮(𝐪)s,t\in\mathscr{S}(\mathbf{q}) and c𝕜c\in\Bbbk.

Condition (200) implies that each s[n]s_{[n]} is an Sn\mathrm{S}_{n}-invariant element of 𝐪[n]\mathbf{q}[n], and in fact there is a linear isomorphism

(201) 𝒮(𝐪)n0𝐪[n]Sn,s(s[n])n0.\mathscr{S}(\mathbf{q})\cong\prod_{n\geq 0}\mathbf{q}[n]^{\mathrm{S}_{n}},\qquad s\mapsto(s_{[n]})_{n\geq 0}.

Let 𝐄\mathbf{E} be the exponential species (74). We have an isomorphism of vector spaces

(202) 𝒮(𝐪)Hom𝖲𝗉𝕜(𝐄,𝐪).\mathscr{S}(\mathbf{q})\cong\operatorname{Hom}_{\mathsf{Sp}_{\Bbbk}}(\mathbf{E},\mathbf{q}).

Explicitly, a series ss of 𝐪\mathbf{q} corresponds to the morphism of species

𝐄𝐪,𝙷IsI.\mathbf{E}\to\mathbf{q},\quad\mathtt{H}_{I}\mapsto s_{I}.

Let f:𝐩𝐪f:\mathbf{p}\to\mathbf{q} be a morphism of species and ss a series of 𝐩\mathbf{p}. Define f(s)f(s) by

f(s)I:=fI(sI).f(s)_{I}:=f_{I}(s_{I}).

Since ff commutes with bijections (23), f(s)f(s) is a series of 𝐪\mathbf{q}. In this manner, 𝒮\mathscr{S} defines a functor from species to vector spaces. Moreover, for any species 𝐩\mathbf{p} and 𝐪\mathbf{q}, there is a linear map

(203) 𝒮(𝐩)𝒮(𝐪)𝒮(𝐩𝐪)\mathscr{S}(\mathbf{p})\otimes\mathscr{S}(\mathbf{q})\to\mathscr{S}(\mathbf{p}\bm{\cdot}\mathbf{q})

which sends sts\otimes t to the series whose II-component is

I=STsStT.\sum_{I=S\sqcup T}s_{S}\otimes t_{T}.

This turns 𝒮\mathscr{S} into a braided lax monoidal functor. Such a functor preserves monoids, commutative monoids, and Lie monoids (see, for instance, [6, Propositions 3.37 and 4.13]). These facts are elaborated below.

Let 𝐚\mathbf{a} be a monoid. The Cauchy product sts\ast t of two series ss and tt of 𝐚\mathbf{a} is defined by

(204) (st)I:=I=STμS,T(sStT).(s\ast t)_{I}:=\sum_{I=S\sqcup T}\mu_{S,T}(s_{S}\otimes t_{T}).

This turns the space of series 𝒮(𝐚)\mathscr{S}(\mathbf{a}) into an algebra. The unit is the series uu defined by

(205) uI={ι(1) if I=,0 otherwise.u_{I}=\begin{cases}\iota_{\emptyset}(1)&\text{ if $I=\emptyset$,}\\ 0&\text{ otherwise.}\end{cases}

In this case, Hom𝖲𝗉𝕜(𝐄,𝐚)\operatorname{Hom}_{\mathsf{Sp}_{\Bbbk}}(\mathbf{E},\mathbf{a}) is an algebra under the convolution product of Section 2.7, and (202) is an isomorphism of algebras

𝒮(𝐚)Hom𝖲𝗉𝕜(𝐄,𝐚).\mathscr{S}(\mathbf{a})\cong\operatorname{Hom}_{\mathsf{Sp}_{\Bbbk}}(\mathbf{E},\mathbf{a}).

If the monoid 𝐚\mathbf{a} is commutative, then the algebra 𝒮(𝐚)\mathscr{S}(\mathbf{a}) is commutative.

If 𝐠\mathbf{g} is a Lie monoid, then 𝒮(𝐠)\mathscr{S}(\mathbf{g}) is a Lie algebra. The Lie bracket [s,t][s,t] of two series ss and tt of 𝐠\mathbf{g} is defined by

(206) [s,t]I:=I=ST[sS,tT]S,T.[s,t]_{I}:=\sum_{I=S\sqcup T}[s_{S},t_{T}]_{S,T}.

In view of (200), a series ss of 𝐄\mathbf{E} is of the form

sI=a|I|𝙷I,s_{I}=a_{\lvert I\rvert}\mathtt{H}_{I},

where ana_{n} is an arbitrary scalar sequence. The species 𝐄\mathbf{E} is a Hopf monoid (Section 9.1) and hence 𝒮(𝐄)\mathscr{S}(\mathbf{E}) is an algebra. If we identify ss with the formal power series

n0an𝓍𝓃n!,\sum_{n\geq 0}a_{n}\frac{\mathpzc{x}^{n}}{n!},

then the Cauchy product (204) corresponds to the usual product of formal power series, and we obtain an isomorphism of algebras

(207) 𝒮(𝐄)𝕜[[𝓍]].\mathscr{S}(\mathbf{E})\cong\Bbbk{[\![}\mathpzc{x}{]\!]}.

In this sense, series of 𝐄\mathbf{E} are exponential generating functions.

Let s1s_{1} and s2s_{2} be series of 𝐪1\mathbf{q}_{1} and 𝐪2\mathbf{q}_{2}, respectively. Their Hadamard product s1×s2s_{1}\times s_{2} is defined by

(s1×s2)I:=(s1)I(s2)I.(s_{1}\times s_{2})_{I}:=(s_{1})_{I}\otimes(s_{2})_{I}.

It is a series of 𝐪1×𝐪2\mathbf{q}_{1}\times\mathbf{q}_{2}. This gives rise to a linear map

(208) 𝒮(𝐪1)𝒮(𝐪2)𝒮(𝐪1×𝐪2),s1s2s1×s2.\mathscr{S}(\mathbf{q}_{1})\otimes\mathscr{S}(\mathbf{q}_{2})\to\mathscr{S}(\mathbf{q}_{1}\times\mathbf{q}_{2}),\qquad s_{1}\otimes s_{2}\mapsto s_{1}\times s_{2}.

In general, this map is not injective and not a morphism of algebras under the Cauchy product (when the 𝐪i\mathbf{q}_{i} are monoids). This occurs already for 𝐪1=𝐪2=𝐄\mathbf{q}_{1}=\mathbf{q}_{2}=\mathbf{E}; indeed, the Hadamard product (208) reduces in this case to the familiar Hadamard product (of exponential generating functions).

12.2. Exponential series

Let 𝐚\mathbf{a} be a monoid. A series ee of 𝐚\mathbf{a} is exponential if

(209) μS,T(eSeT)=eI\mu_{S,T}(e_{S}\otimes e_{T})=e_{I}

for each I=STI=S\sqcup T, and

(210) ι(1)=e.\iota_{\emptyset}(1)=e_{\emptyset}.

The unit series uu (205) is exponential.

Let (𝐚)\mathscr{E}(\mathbf{a}) be the set of exponential series of 𝐚\mathbf{a}. Under (202), exponential series correspond to morphisms of monoids 𝐄𝐚\mathbf{E}\to\mathbf{a}. Since 𝐄\mathbf{E} is generated by 𝐗\mathbf{X}, such a series is completely determined by the element

e[1]𝐚[1].e_{[1]}\in\mathbf{a}[1].

Conversely, for an element e1𝐚[1]e_{1}\in\mathbf{a}[1] to give rise to an exponential series, it is necessary and sufficient that

(211) μ{1},{2}(e1e2)=μ{2},{1}(e2e1),\mu_{\{1\},\{2\}}(e_{1}\otimes e_{2})=\mu_{\{2\},\{1\}}(e_{2}\otimes e_{1}),

where e2:=𝐚[σ](e1)e_{2}:=\mathbf{a}[\sigma](e_{1}) and σ\sigma is the unique bijection {1}{2}\{1\}\to\{2\}.

If the monoid 𝐚\mathbf{a} is free, then the only element that satisfies (211) is e1=0e_{1}=0, and the corresponding exponential series is uu. Thus,

(𝐚)={u}\mathscr{E}(\mathbf{a})=\{u\}

in this case.

If the monoid 𝐚\mathbf{a} is commutative, then any element satisfies (211). Moreover, exponential series are closed under the Cauchy product, and this corresponds to addition in 𝐚[1]\mathbf{a}[1]. Thus, in this case,

((𝐚),)(𝐚[1],+).(\mathscr{E}(\mathbf{a}),\ast)\cong(\mathbf{a}[1],+).

In particular, (𝐚)\mathscr{E}(\mathbf{a}) is a group (a subgroup of the group of invertible elements of the algebra 𝒮(𝐚)\mathscr{S}(\mathbf{a})). The inverse of ee is given by

(e1)I:=(1)|I|eI.(e^{-1})_{I}:=(-1)^{\lvert I\rvert}e_{I}.

These statements can be deduced from more general properties of convolution products (see the end of Section 2.8).

For the exponential species 𝐄\mathbf{E}, we have

(212) ((𝐄),)(𝕜,+).(\mathscr{E}(\mathbf{E}),\ast)\cong(\Bbbk,+).

If e(c)(𝐄)e(c)\in\mathscr{E}(\mathbf{E}) corresponds to c𝕜c\in\Bbbk, then

(213) e(c)I=c|I|𝙷I.e(c)_{I}=c^{\lvert I\rvert}\mathtt{H}_{I}.

Under the identification (207), e(c)e(c) corresponds to the formal power series

exp(c𝓍)=𝓃0𝒸𝓃𝓍𝓃𝓃!.\exp(c\mathpzc{x})=\sum_{n\geq 0}c^{n}\frac{\mathpzc{x}^{n}}{n!}.

Suppose 𝐚1\mathbf{a}_{1} and 𝐚2\mathbf{a}_{2} are monoids. If e1e_{1} and e2e_{2} are exponential series of 𝐚1\mathbf{a}_{1} and 𝐚2\mathbf{a}_{2}, respectively, then e1×e2e_{1}\times e_{2} is an exponential series of 𝐚1×𝐚2\mathbf{a}_{1}\times\mathbf{a}_{2}. In general, the map

(214) (𝐚1)×(𝐚2)(𝐚1×𝐚2),(e1,e2)e1×e2\mathscr{E}(\mathbf{a}_{1})\times\mathscr{E}(\mathbf{a}_{2})\to\mathscr{E}(\mathbf{a}_{1}\times\mathbf{a}_{2}),\qquad(e_{1},e_{2})\mapsto e_{1}\times e_{2}

is not injective and not a morphism of groups (when the 𝐚i\mathbf{a}_{i} are commutative monoids). This occurs already for 𝐚1=𝐚2=𝐄\mathbf{a}_{1}=\mathbf{a}_{2}=\mathbf{E}; in this case (214) identifies under (212) with the multiplication of 𝕜\Bbbk. The Hadamard product

(𝐚1)×𝒮(𝐚2)𝒮(𝐚1×𝐚2)\mathscr{E}(\mathbf{a}_{1})\times\mathscr{S}(\mathbf{a}_{2})\to\mathscr{S}(\mathbf{a}_{1}\times\mathbf{a}_{2})

distributes over the Cauchy product:

e×(st)=(e×s)(e×t).e\times(s\ast t)=(e\times s)\ast(e\times t).

Recall that 𝐄×𝐪𝐪\mathbf{E}\times\mathbf{q}\cong\mathbf{q} for any species 𝐪\mathbf{q}. If s𝒮(𝐪)s\in\mathscr{S}(\mathbf{q}) and c𝕜c\in\Bbbk, then the Hadamard product

e(c)×s𝒮(𝐄×𝐪)e(c)\times s\in\mathscr{S}(\mathbf{E}\times\mathbf{q})

corresponds to the series of 𝐪\mathbf{q} given by

(e(c)×s)I:=c|I|sI.(e(c)\times s)_{I}:=c^{\lvert I\rvert}\,s_{I}.

In this manner, series of 𝐪\mathbf{q} arise in one-parameter families.

Let Q\mathrm{Q} be a finite set-theoretic comonoid and consider the monoid 𝕜Q\Bbbk^{\mathrm{Q}} as in Section 4.5. This monoid contains a distinguished exponential series ee defined by

(215) eI:=xQ[I]𝙼x.e_{I}:=\sum_{x\in\mathrm{Q}[I]}\mathtt{M}_{x}.

12.3. Group-like series

Let 𝐜\mathbf{c} be a comonoid. A series gg of 𝐜\mathbf{c} is group-like if

(216) ΔS,T(gI)=gSgT\Delta_{S,T}(g_{I})=g_{S}\otimes g_{T}

for each I=STI=S\sqcup T, and

(217) ϵ(g)=1.\epsilon_{\emptyset}(g_{\emptyset})=1.

Note that it follows from (216) plus counitality that either (217) holds, or gI=0g_{I}=0 for every II.

Let 𝒢(𝐜)\mathscr{G}(\mathbf{c}) be the set of group-like series of 𝐜\mathbf{c}. Under (202), group-like series correspond to morphisms of comonoids 𝐄𝐜\mathbf{E}\to\mathbf{c}.

Let 𝐡\mathbf{h} be a bimonoid. The unit series uu (205) is group-like. It follows from (54) that 𝒢(𝐡)\mathscr{G}(\mathbf{h}) is closed under the Cauchy product (204). Thus, 𝒢(𝐡)\mathscr{G}(\mathbf{h}) is an ordinary monoid (a submonoid of the multiplicative monoid of the algebra 𝒮(𝐡)\mathscr{S}(\mathbf{h})). If 𝐡\mathbf{h} is a Hopf monoid, then 𝒢(𝐡)\mathscr{G}(\mathbf{h}) is a group. The inverse of gg is obtained by composing with the antipode of 𝐡\mathbf{h}:

(g1)I=sI(gI).(g^{-1})_{I}=\operatorname{\textsc{s}}_{I}(g_{I}).

This follows from (67). (These statements can also be deduced from more general properties of convolution products; see the end of Section 2.8.)

Suppose the bimonoid 𝐡\mathbf{h} is connected. It follows from (66) and (108) that if a series of 𝐡\mathbf{h} is exponential, then it is group-like. Thus,

(218) (𝐡)𝒢(𝐡).\mathscr{E}(\mathbf{h})\subseteq\mathscr{G}(\mathbf{h}).

For the Hopf monoid 𝐄\mathbf{E}, the maps μS,T\mu_{S,T} and ΔS,T\Delta_{S,T} are inverse, and hence a series of 𝐄\mathbf{E} is exponential if and only if it is group-like. Therefore, under the identification (207), group-like series of 𝐄\mathbf{E} correspond to the formal power series of the form exp(c𝓍)\exp(c\mathpzc{x}), where c𝕜c\in\Bbbk is an arbitrary scalar, and we have an isomorphism of groups

(219) (𝒢(𝐄),)(𝕜,+).(\mathscr{G}(\mathbf{E}),\ast)\cong(\Bbbk,+).

Suppose 𝐜1\mathbf{c}_{1} and 𝐜2\mathbf{c}_{2} are comonoids. If g1g_{1} and g2g_{2} are group-like series of 𝐜1\mathbf{c}_{1} and 𝐜2\mathbf{c}_{2}, respectively, then g1×g2g_{1}\times g_{2} is a group-like series of 𝐜1×𝐜2\mathbf{c}_{1}\times\mathbf{c}_{2}, and we obtain a map

(220) 𝒢(𝐜1)×𝒢(𝐜2)𝒢(𝐜1×𝐜2).\mathscr{G}(\mathbf{c}_{1})\times\mathscr{G}(\mathbf{c}_{2})\to\mathscr{G}(\mathbf{c}_{1}\times\mathbf{c}_{2}).

In particular, if gg is a group-like series of 𝐜\mathbf{c} and cc is a scalar, then e(c)×ge(c)\times g is another group-like series of 𝐜\mathbf{c}. Group-like series thus arise in one-parameter families.

Let P\mathrm{P} be a finite set-theoretic monoid and consider the comonoid 𝕜P\Bbbk^{\mathrm{P}} as in Section 4.5. This comonoid contains a distinguished group-like series gg defined by

(221) gI:=xP[I]𝙼x.g_{I}:=\sum_{x\in\mathrm{P}[I]}\mathtt{M}_{x}.

12.4. Primitive series

Let 𝐜\mathbf{c} be a comonoid and gg and hh two group-like series of 𝐜\mathbf{c}. A series xx of 𝐜\mathbf{c} is (g,h)(g,h)-primitive if

(222) ΔS,T(xI)=gSxT+xShT\Delta_{S,T}(x_{I})=g_{S}\otimes x_{T}+x_{S}\otimes h_{T}

for each I=STI=S\sqcup T, and

(223) ϵ(x)=0.\epsilon_{\emptyset}(x_{\emptyset})=0.

Let 𝐜\mathbf{c} be a connected comonoid. In this case, 𝐜\mathbf{c} possesses a distinguished group-like series dd determined by

(224) dI:={ϵ1(1) if I=,0 if I.d_{I}:=\begin{cases}\epsilon_{\emptyset}^{-1}(1)&\text{ if $I=\emptyset$,}\\ 0&\text{ if $I\neq\emptyset$.}\end{cases}

A series xx of 𝐜\mathbf{c} is (d,d)(d,d)-primitive if and only if

(225) ΔS,T(xI)=0\Delta_{S,T}(x_{I})=0

for each I=STI=S\sqcup T with S,TS,T\neq\emptyset, and

(226) x=0.x_{\emptyset}=0.

In this case, we simply say that the series xx is primitive.

Let 𝒫(𝐜)\mathscr{P}(\mathbf{c}) be the set of primitive series of 𝐜\mathbf{c}. Under (202), primitive series correspond to morphisms of species 𝐄𝒫(𝐜)\mathbf{E}\to\mathcal{P}(\mathbf{c}), where 𝒫(𝐜)\mathcal{P}(\mathbf{c}) is the primitive part of 𝐜\mathbf{c} (Section 5.5). In other words,

(227) 𝒫(𝐜)=𝒮(𝒫(𝐜)).\mathscr{P}(\mathbf{c})=\mathscr{S}\bigl{(}\mathcal{P}(\mathbf{c})\bigr{)}.

The primitive part of the exponential species is 𝒫(𝐄)=𝐗\mathcal{P}(\mathbf{E})=\mathbf{X}; hence we have an isomorphism of abelian Lie algebras

𝒫(𝐄)𝕜.\mathscr{P}(\mathbf{E})\cong\Bbbk.

The Hadamard product of an arbitrary series with a primitive series is primitive. We obtain a map

𝒮(𝐜1)×𝒫(𝐜2)𝒫(𝐜1×𝐜2),\mathscr{S}(\mathbf{c}_{1})\times\mathscr{P}(\mathbf{c}_{2})\to\mathscr{P}(\mathbf{c}_{1}\times\mathbf{c}_{2}),

where the 𝐜i\mathbf{c}_{i} are connected comonoids.

Let 𝐡\mathbf{h} be a bimonoid. The series uu of 𝐡\mathbf{h} is group-like, regardless of whether 𝐡\mathbf{h} is connected. A series xx of 𝐡\mathbf{h} is (u,u)(u,u)-primitive if and only if (225) holds, and in addition

(228) Δ,(x)=xι(1)+ι(1)x,ΔI,(xI)=xIι(1),Δ,I(xI)=ι(1)xI,\begin{gathered}\Delta_{\emptyset,\emptyset}(x_{\emptyset})=x_{\emptyset}\otimes\iota_{\emptyset}(1)+\iota_{\emptyset}(1)\otimes x_{\emptyset},\\ \Delta_{I,\emptyset}(x_{I})=x_{I}\otimes\iota_{\emptyset}(1),\\ \Delta_{\emptyset,I}(x_{I})=\iota_{\emptyset}(1)\otimes x_{I},\end{gathered}

for II nonempty. In particular, xx_{\emptyset} must be a primitive element of the bialgebra 𝐡[]\mathbf{h}[\emptyset].

If in addition 𝐡\mathbf{h} is connected, then u=du=d, so (u,u)(u,u)-primitive series coincide with primitive series. Note also that, in this case, the last two conditions in (228) follow from counitality (the duals of (44)), and the first one is equivalent to (226).

Proposition 65.

Let 𝐡\mathbf{h} be a bimonoid. Let ff, gg and hh be group-like series of 𝐡\mathbf{h}, and xx a (g,h)(g,h)-primitive series of 𝐡\mathbf{h}. Then the series fxf\ast x and xfx\ast f are (fg,fh)(f\ast g,f\ast h)- and (gf,hf)(g\ast f,h\ast f)-primitive, respectively.

Proof.

Let I=STI=S^{\prime}\sqcup T^{\prime}. We calculate using (54), (216) and (222).

ΔS,T((fx)I)=I=STΔS,TμS,T(fSxT)=S=ACT=BD(μA,CμB,D)(idβid)(ΔA,BΔC,D)(fSxT)=S=ACT=BDμA,C(fAgC)μB,D(fBxD)+μA,C(fAxC)μB,D(fBhD)=(fg)S(fx)T+(fx)S(fh)T.\Delta_{S^{\prime},T^{\prime}}\bigl{(}(f\ast x)_{I}\bigr{)}=\sum_{I=S\sqcup T}\Delta_{S^{\prime},T^{\prime}}\mu_{S,T}(f_{S}\otimes x_{T})\\ =\sum_{\begin{subarray}{c}S^{\prime}=A\sqcup C\\ T^{\prime}=B\sqcup D\end{subarray}}(\mu_{A,C}\otimes\mu_{B,D})(\mathrm{id}\otimes\beta\otimes\mathrm{id})(\Delta_{A,B}\otimes\Delta_{C,D})(f_{S}\otimes x_{T})\\ =\sum_{\begin{subarray}{c}S^{\prime}=A\sqcup C\\ T^{\prime}=B\sqcup D\end{subarray}}\mu_{A,C}(f_{A}\otimes g_{C})\otimes\mu_{B,D}(f_{B}\otimes x_{D})+\mu_{A,C}(f_{A}\otimes x_{C})\otimes\mu_{B,D}(f_{B}\otimes h_{D})\\ =(f\ast g)_{S^{\prime}}\otimes(f\ast x)_{T^{\prime}}+(f\ast x)_{S^{\prime}}\otimes(f\ast h)_{T^{\prime}}.

This proves (222) for fxf\ast x. Condition (223) follows similarly, using (65). ∎

Let 𝐡\mathbf{h} be a connected bimonoid. Since 𝒫(𝐡)\mathcal{P}(\mathbf{h}) is a Lie monoid (Proposition 13), we have that 𝒫(𝐡)\mathscr{P}(\mathbf{h}) is a Lie algebra under the bracket (206). It is a Lie subalgebra of 𝒮(𝐡)\mathscr{S}(\mathbf{h}), where the latter is equipped with the commutator bracket corresponding to the Cauchy product. Explicitly,

(229) [x,y]I:=I=STμS,T(xSyT)μT,S(yTxS)[x,y]_{I}:=\sum_{I=S\sqcup T}\mu_{S,T}(x_{S}\otimes y_{T})-\mu_{T,S}(y_{T}\otimes x_{S})

for x,y𝒫(𝐡)x,y\in\mathscr{P}(\mathbf{h}).

12.5. Complete Hopf algebras

Let 𝐡\mathbf{h} be a Hopf monoid. In view of (201), the space of series of 𝐡\mathbf{h} identifies with the completion of the graded space

𝒦¯(𝐡):=n0𝐡[n]Sn\overline{\mathcal{K}}^{\vee}(\mathbf{h}):=\bigoplus_{n\geq 0}\mathbf{h}[n]^{\mathrm{S}_{n}}

(with respect to the filtration by degree). The summand is the invariant subspace of 𝐡[n]\mathbf{h}[n] under the action of Sn\mathrm{S}_{n}. In [6, Chapter 15], it is shown that 𝒦¯(𝐡)\overline{\mathcal{K}}^{\vee}(\mathbf{h}) carries a structure of graded Hopf algebra. One may thus turn the space 𝒮(𝐡)\mathscr{S}(\mathbf{h}) into a complete Hopf algebra in the sense of Quillen [57, Appendix A.2]. Then 𝒢(𝐡)\mathscr{G}(\mathbf{h}) and 𝒫(𝐡)\mathscr{P}(\mathbf{h}) identify with the group of group-like elements and the Lie algebra of primitive elements of this complete Hopf algebra, respectively.

12.6. Series of the linear order species

Consider the Hopf monoid 𝐋\mathbf{L} of linear orders from Section 9.2.

In view of (200), a series ss of 𝐋\mathbf{L} is of the form

sI=a|I|L[I]𝙷,s_{I}=a_{\lvert I\rvert}\sum_{\ell\in\mathrm{L}[I]}\mathtt{H}_{\ell},

where ana_{n} is an arbitrary scalar sequence. If we identify ss with the formal power series

n0an𝓍𝓃,\sum_{n\geq 0}a_{n}\,\mathpzc{x}^{n},

then the Cauchy product (204) corresponds to the usual product of formal power series, and we obtain an isomorphism of algebras

(230) 𝒮(𝐋)𝕜[[𝓍]].\mathscr{S}(\mathbf{L})\cong\Bbbk{[\![}\mathpzc{x}{]\!]}.

In this sense, series of 𝐋\mathbf{L} are ordinary generating functions. Contrast with (207).

Since 𝐋\mathbf{L} is free, the only exponential series is the unit series uu (205). The corresponding formal power series is the constant 11.

For a series ss as above we have

ΔS,T(sI)=a|I|(|I||S|)1L[S]2L[T]𝙷1𝙷2.\Delta_{S,T}(s_{I})=a_{\lvert I\rvert}\binom{\lvert I\rvert}{\lvert S\rvert}\sum_{\begin{subarray}{c}\ell_{1}\in\mathrm{L}[S]\\ \ell_{2}\in\mathrm{L}[T]\end{subarray}}\mathtt{H}_{\ell_{1}}\otimes\mathtt{H}_{\ell_{2}}.

For ss to be group-like, we must have

anam=(n+mn)an+ma_{n}a_{m}=\binom{n+m}{n}a_{n+m}

for all n,m0n,m\geq 0, and a0=1a_{0}=1. Therefore, each scalar c𝕜c\in\Bbbk gives rise to a group-like series g(c)𝒢(𝐋)g(c)\in\mathscr{G}(\mathbf{L}) defined by

g(c)I:=c|I||I|!L[I]𝙷,g(c)_{I}:=\frac{c^{\lvert I\rvert}}{\lvert I\rvert!}\sum_{\ell\in\mathrm{L}[I]}\mathtt{H}_{\ell},

and every group-like series is of this form. This gives rise to an isomorphism of groups

(𝒢(𝐋),)(𝕜,+).(\mathscr{G}(\mathbf{L}),\ast)\cong(\Bbbk,+).

For ss to be primitive, we must have an=0a_{n}=0 for every n>1n>1, and a0=0a_{0}=0. Therefore, each scalar c𝕜c\in\Bbbk gives rise to a primitive series x(c)𝒫(𝐋)x(c)\in\mathscr{P}(\mathbf{L}) defined by

x(c)I:={c𝙷i if I={i},0 if not,x(c)_{I}:=\begin{cases}c\,\mathtt{H}_{i}&\text{ if $I=\{i\}$,}\\ 0&\text{ if not,}\end{cases}

and every primitive series is of this form. This gives rise to an isomorphism of (abelian) Lie algebras

𝒫(𝐋)𝕜.\mathscr{P}(\mathbf{L})\cong\Bbbk.

Note that, by (227),

𝒫(𝐋)=𝒮(𝐋𝐢𝐞),\mathscr{P}(\mathbf{L})=\mathscr{S}(\mathbf{Lie}),

since the species 𝐋𝐢𝐞\mathbf{Lie} is the primitive part of 𝐋\mathbf{L}. We deduce from the above and (201) the well-known result that

𝐋𝐢𝐞[n]Sn={𝕜 if n=1,0 if not.\mathbf{Lie}[n]^{\mathrm{S}_{n}}=\begin{cases}\Bbbk&\text{ if $n=1$,}\\ 0&\text{ if not.}\end{cases}

The formal power series corresponding under (230) to g(c)g(c) and x(c)x(c) are, respectively,

exp(c𝓍)and𝒸𝓍.\exp(c\mathpzc{x})\quad\text{and}\quad c\mathpzc{x}.

In Theorem 69 below we show that, for any connected bimonoid 𝐡\mathbf{h}, group-like and primitive series of 𝐡\mathbf{h} are in correspondence by means of suitable extensions of the logarithm and the exponential.

12.7. Formal functional calculus

Let 𝐚\mathbf{a} be a monoid. Recall from (45) and (117) that given a composition F=(I1,,Ik)F=(I_{1},\ldots,I_{k}) of a finite set II, the space 𝐚(F)\mathbf{a}(F) and the map

μF:𝐚(F)𝐚[I]\mu_{F}:\mathbf{a}(F)\to\mathbf{a}[I]

are defined (see also Section 10.1). In this situation, given a series ss of 𝐚\mathbf{a}, define an element sF𝐚(F)s_{F}\in\mathbf{a}(F) by

sF:=sI1sIk.s_{F}:=s_{I_{1}}\otimes\cdots\otimes s_{I_{k}}.

Let

a(𝓍)=𝓃0𝒶𝓃𝓍𝓃a(\mathpzc{x})=\sum_{n\geq 0}a_{n}\mathpzc{x}^{n}

be a formal power series. Given a series ss of 𝐚\mathbf{a} such that

(231) s=0,s_{\emptyset}=0,

define another series a(s)a(s) of 𝐚\mathbf{a} by

(232) a(s)I:=FIal(F)μF(sF)a(s)_{I}:=\sum_{F\vDash I}a_{l(F)}\mu_{F}(s_{F})

for every finite set II. In particular, a(s)=a0ι(1)a(s)_{\emptyset}=a_{0}\,\iota_{\emptyset}(1). It follows that formal power series with a0=0a_{0}=0 operate in this manner on the space of series of 𝐚\mathbf{a} satisfying (231).

Proposition 66.

If a(𝓍)=𝓍𝓀a(\mathpzc{x})=\mathpzc{x}^{k} for a nonnegative integer kk, then a(s)=ska(s)=s^{\ast k}. In particular, if a(𝓍)=1a(\mathpzc{x})=1, then a(s)=ua(s)=u, the unit series (205), and if a(𝓍)=𝓍a(\mathpzc{x})=\mathpzc{x}, then a(s)=sa(s)=s.

Proof.

It follows from (204) that

(sk)I=FI,l(F)=kμF(sF).(s^{\ast k})_{I}=\sum_{\begin{subarray}{c}F\vDash I,\\ l(F)=k\end{subarray}}\mu_{F}(s_{F}).

Since s=0s_{\emptyset}=0, the sum is over compositions rather than decompositions. Now compare with (232). ∎

If b(𝓍)b(\mathpzc{x}) is another formal power series, the sum (a+b)(𝓍)(a+b)(\mathpzc{x}) and the product (ab)(𝓍)(a\,b)(\mathpzc{x}) are defined. If in addition b0=0b_{0}=0, the composition (ab)(𝓍)(a\circ b)(\mathpzc{x}) is defined.

Proposition 67 (Functional calculus).

Let a(𝓍)a(\mathpzc{x}) and b(𝓍)b(\mathpzc{x}) be formal power series and ss a series of 𝐚\mathbf{a} satisfying (231).

  1. (i)

    If cc is a scalar, then (ca)(s)=ca(s)(c\,a)(s)=c\,a(s).

  2. (ii)

    (a+b)(s)=a(s)+b(s)(a+b)(s)=a(s)+b(s).

  3. (iii)

    (ab)(s)=a(s)b(s)(a\,b)(s)=a(s)\ast b(s).

  4. (iv)

    If b0=0b_{0}=0, then (ab)(s)=a(b(s))(a\circ b)(s)=a\bigl{(}b(s)\bigr{)}.

  5. (v)

    If f:𝐚𝐛f:\mathbf{a}\to\mathbf{b} is a morphism of monoids, then f(a(s))=a(f(s))f\bigl{(}a(s)\bigr{)}=a\bigl{(}f(s)\bigr{)}.

Proof.

We verify assertion (iii). According to (204) and (232), we have

(a(s)b(s))I\displaystyle\bigl{(}a(s)\ast b(s)\bigr{)}_{I} =I=STFS,GTal(F)bl(G)μS,T(μF(sF)μG(sG))\displaystyle=\sum_{\begin{subarray}{c}I=S\sqcup T\\ F\vDash S,\,G\vDash T\end{subarray}}\!\!a_{l(F)}b_{l(G)}\mu_{S,T}\bigl{(}\mu_{F}(s_{F})\otimes\mu_{G}(s_{G})\bigr{)}
=HIi+j=l(H)aibjμH(sH)\displaystyle=\sum_{\begin{subarray}{c}H\vDash I\\ i+j=l(H)\end{subarray}}\!\!\!a_{i}b_{j}\mu_{H}(s_{H})
=(ab)(s)I.\displaystyle=(a\,b)(s)_{I}.

We used associativity in the form μS,T(μFμG)=μH\mu_{S,T}(\mu_{F}\otimes\mu_{G})=\mu_{H} for H=FGH=F\cdot G, and the fact that in this case sH=sFsGs_{H}=s_{F}\otimes s_{G}. ∎

12.8. Exponential, logarithm, and powers

Consider the formal power series

exp(𝓍)=𝓃0𝓍𝓃𝓃!andl(𝓍):=log(1𝓍)=𝓃1𝓍𝓃𝓃.\exp(\mathpzc{x})=\sum_{n\geq 0}\frac{\mathpzc{x}^{n}}{n!}\qquad\text{and}\qquad\mathrm{l}(\mathpzc{x}):=\log(1-\mathpzc{x})=-\sum_{n\geq 1}\frac{\mathpzc{x}^{n}}{n}.

Let 𝐚\mathbf{a} be a monoid. If tt is a series of 𝐚\mathbf{a} such that

(233) t=ι(1),t_{\emptyset}=\iota_{\emptyset}(1),

define

log(t):=l(ut).\log(t):=\mathrm{l}(u-t).

Then log(t)\log(t) is a series satisfying (231), and for nonempty II,

(234) log(t)I=FI(1)l(F)l(F)μF(tF).\log(t)_{I}=-\sum_{F\vDash I}\frac{(-1)^{l(F)}}{l(F)}\,\mu_{F}(t_{F}).

If ss is a series of 𝐚\mathbf{a} satisfying (231), then exp(s)\exp(s) is a series satisfying (233), and more generally,

(235) exp(s)I=FI1l(F)!μF(sF).\exp(s)_{I}=\sum_{F\vDash I}\frac{1}{l(F)!}\,\mu_{F}(s_{F}).

The following is a basic property of functional calculus.

Proposition 68.

Let s1s_{1} and s2s_{2} be series of 𝐚\mathbf{a} satisfying (231). If [s1,s2]=0[s_{1},s_{2}]=0, then

(236) exp(s1+s2)=exp(s1)exp(s2).\exp(s_{1}+s_{2})=\exp(s_{1})\ast\exp(s_{2}).

Let t1t_{1} and t2t_{2} be series of 𝐚\mathbf{a} satisfying (233). If [t1,t2]=0[t_{1},t_{2}]=0, then

(237) log(t1t2)=log(t1)+log(t2).\log(t_{1}\ast t_{2})=\log(t_{1})+\log(t_{2}).
Theorem 69.

For any monoid 𝐚\mathbf{a}, the maps

(238) {s𝒮(𝐚)s=0}\textstyle{\{s\in\mathscr{S}(\mathbf{a})\mid s_{\emptyset}=0\}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}exp\scriptstyle{\exp}{t𝒮(𝐚)t=ι(1)}\textstyle{\ignorespaces\ignorespaces\ignorespaces\ignorespaces\{t\in\mathscr{S}(\mathbf{a})\mid t_{\emptyset}=\iota_{\emptyset}(1)\}}log\scriptstyle{\log}

are inverse bijections. Moreover, if 𝐡\mathbf{h} is a connected bimonoid, these maps restrict to inverse bijections

(239) 𝒫(𝐡)\textstyle{\mathscr{P}(\mathbf{h})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}exp\scriptstyle{\exp}𝒢(𝐡).\textstyle{\ignorespaces\ignorespaces\ignorespaces\ignorespaces\mathscr{G}(\mathbf{h}).}log\scriptstyle{\log}
Proof.

The first assertion follows from statement (iv) in Proposition 67. The second assertion is a special case of (254) (the case 𝐜=𝐄\mathbf{c}=\mathbf{E}), for which we provide a direct proof below. ∎

Remark.

Theorem 69 may be seen as a special case of a result of Quillen for complete Hopf algebras [57, Appendix A, Proposition 2.6], in view of the considerations in Section 12.5.

Let c𝕜c\in\Bbbk be a scalar. Consider the formal power series

pc(x):=(1+x)c=n0(cn)xn,p_{c}(x):=(1+x)^{c}=\sum_{n\geq 0}\binom{c}{n}\,x^{n},

where

(240) (cn):=1n!c(c1)(c(n1))𝕜.\binom{c}{n}:=\frac{1}{n!}c(c-1)\ldots\bigl{(}c-(n-1)\bigr{)}\in\Bbbk.

Let 𝐚\mathbf{a} be a monoid. If tt is a series of 𝐚\mathbf{a} satisfying (233), define

tc:=pc(tu).t^{c}:=p_{c}(t-u).

Then tct^{c} is a series satisfying (233), and for nonempty II,

(241) tIc=FI(cl(F))μF(tF).t^{c}_{I}=\sum_{F\vDash I}\binom{c}{l(F)}\,\mu_{F}(t_{F}).

In view of Proposition 67, the identities

(1+x)c+d=(1+x)c(1+x)d,((1+x)c)d=(1+x)cd and (1+x)c=exp(clog(1+x))(1+x)^{c+d}=(1+x)^{c}\,(1+x)^{d},\ \bigl{(}(1+x)^{c}\bigr{)}^{d}=(1+x)^{cd}\text{ and }(1+x)^{c}=\exp\bigl{(}c\log(1+x)\bigr{)}

in the algebra of formal power series imply the identities

(242) tc+d=tctd,(tc)d=tcdandtc=exp(clogt)t^{c+d}=t^{c}\ast t^{d},\quad(t^{c})^{d}=t^{cd}\quad\text{and}\quad t^{c}=\exp(c\,\log t)

in the algebra of series of 𝐚\mathbf{a}. In particular, tt is invertible in the algebra 𝒮(𝐚)\mathscr{S}(\mathbf{a}), with t1t^{-1} satisfying (233) and

tI1=FI(1)l(F)μF(tF).t^{-1}_{I}=\sum_{F\vDash I}(-1)^{l(F)}\,\mu_{F}(t_{F}).

In addition, tc=tct^{c}=t^{\ast c} for all integers cc.

Let 𝐡\mathbf{h} be a connected bimonoid and gg a group-like series of 𝐡\mathbf{h}. It follows from (239) and the third identity in (242) that

(243) gc𝒢(𝐡)g^{c}\in\mathscr{G}(\mathbf{h})

for every c𝕜c\in\Bbbk. Thus, group-like series are closed under powers by arbitrary scalars.

12.9. Curves and derivatives

Let 𝐩\mathbf{p} be a species. A (polynomial) curve on 𝐩\mathbf{p} is a function

γ:𝕜𝒮(𝐩)\gamma:\Bbbk\to\mathscr{S}(\mathbf{p})

whose components γI:𝕜𝐩[I]\gamma_{I}:\Bbbk\to\mathbf{p}[I] are polynomial, for all finite sets II. The component γI\gamma_{I} is defined by γI(c):=γ(c)I\gamma_{I}(c):=\gamma(c)_{I} for all c𝕜c\in\Bbbk.

The derivative γ\gamma^{\prime} of a curve γ\gamma is defined by

γI(c):=ddcγI(c),\gamma^{\prime}_{I}(c):=\frac{d}{dc}\gamma_{I}(c),

where the latter is the usual derivative of a polynomial function. When 𝕜=\Bbbk=\mathbb{R} is the field of real numbers, one may also speak of smooth curves γ:(a,b)𝒮(𝐩)\gamma:(a,b)\to\mathscr{S}(\mathbf{p}) defined on a real interval, and of their derivatives.

The derivative of a formal power series a(𝓍)=𝓃0𝒶𝓃𝓍𝓃a(\mathpzc{x})=\sum_{n\geq 0}a_{n}\mathpzc{x}^{n} is the formal power series

(244) a(𝓍):=𝓃0(𝓃+1)𝒶𝓃+1𝓍𝓃.a^{\prime}(\mathpzc{x}):=\sum_{n\geq 0}(n+1)a_{n+1}\mathpzc{x}^{n}.

Let γ\gamma be a curve on a monoid 𝐚\mathbf{a} for which each series γ(c)\gamma(c) satisfies (231). Given a formal power series a(𝓍)a(\mathpzc{x}), the curve aγa\circ\gamma is defined (by means of functional calculus) as

(aγ)(c):=a(γ(c)),(a\circ\gamma)(c):=a\bigl{(}\gamma(c)\bigr{)},

for each c𝕜c\in\Bbbk.

Derivatives of curves and of power series are linked by the chain rule. This requires a commutativity assumption.

Proposition 70 (Chain rule).

Let γ\gamma be a curve as above. Suppose that

[γ(c),γ(c)]=0[\gamma(c),\gamma^{\prime}(c)]=0

for all c𝕜c\in\Bbbk. Then

(245) (aγ)(c)=a(γ(c))γ(c)=γ(c)a(γ(c)).(a\circ\gamma)^{\prime}(c)=a^{\prime}\bigl{(}\gamma(c)\bigr{)}\ast\gamma^{\prime}(c)=\gamma^{\prime}(c)\ast a^{\prime}\bigl{(}\gamma(c)\bigr{)}.
Proof.

The \emptyset-components are zero, so we assume II to be nonempty. Applying (232) to (244),

a(s)I=FI(l(F)+1)al(F)+1μF(sF).a^{\prime}(s)_{I}=\sum_{F\vDash I}\,\bigl{(}l(F)+1\bigr{)}a_{l(F)+1}\mu_{F}(s_{F}).

Substituting s=γ(c)s=\gamma(c) and calculating using (204),

(246) (a(γ(c))γ(c))I=I=STμS,T(FS(l(F)+1)al(F)+1μF(γF(c))γT(c)).\Bigl{(}a^{\prime}\bigl{(}\gamma(c)\bigr{)}\ast\gamma^{\prime}(c)\Bigr{)}_{I}=\sum_{I=S\sqcup T}\mu_{S,T}\bigg{(}\sum_{F\vDash S}\,\bigl{(}l(F)+1\bigr{)}a_{l(F)+1}\mu_{F}\bigl{(}\gamma_{F}(c)\bigr{)}\otimes\gamma_{T}^{\prime}(c)\bigg{)}.

Hypothesis (231) implies that γ=0\gamma^{\prime}_{\emptyset}=0. Thus, we may assume that TT\neq\emptyset in the previous sum.

On the other hand, the derivative of (aγ)(c)(a\circ\gamma)(c) is

(247) (aγ)I(c)=GIal(G)μG(γG(c))=GIal(G)μG((γG)(c)).(a\circ\gamma)^{\prime}_{I}(c)=\sum_{G\vDash I}a_{l(G)}\mu_{G}\bigl{(}\gamma_{G}(c)\bigr{)}^{\prime}=\sum_{G\vDash I}a_{l(G)}\mu_{G}\bigl{(}(\gamma_{G})^{\prime}(c)\bigr{)}.

(Since μG\mu_{G} is linear, it commutes with the derivative.) If G=(I1,,Ik)G=(I_{1},\ldots,I_{k}), then

γG(c)=γI1(c)γIk(c)\gamma_{G}(c)=\gamma_{I_{1}}(c)\otimes\cdots\otimes\gamma_{I_{k}}(c)

and

(γG)(c)=i=1kγI1(c)γIi(c)γIk(c).(\gamma_{G})^{\prime}(c)=\sum_{i=1}^{k}\gamma_{I_{1}}(c)\otimes\cdots\otimes\gamma_{I_{i}}^{\prime}(c)\otimes\cdots\otimes\gamma_{I_{k}}(c).

Commutativity allows us to move the differentiated factor in (247) to the right end, as we now verify. By hypothesis,

I=S1S2μS1,S2(γS1(c)γS2(c))=I=S1S2μS1,S2(γS1(c)γS2(c)).\sum_{I=S_{1}\sqcup S_{2}}\mu_{S_{1},S_{2}}\bigl{(}\gamma_{S_{1}}^{\prime}(c)\otimes\gamma_{S_{2}}(c)\bigr{)}=\sum_{I=S_{1}\sqcup S_{2}}\mu_{S_{1},S_{2}}\bigl{(}\gamma_{S_{1}}(c)\otimes\gamma_{S_{2}}^{\prime}(c)\bigr{)}.

It follows that, for any i=1,,ki=1,\ldots,k,

G:l(G)=kμG(γI1(c)γIi(c)γIk(c))=G:l(G)=kμG(γI1(c)γIk(c)),\sum_{G:\,l(G)=k}\mu_{G}\bigl{(}\gamma_{I_{1}}(c)\otimes\cdots\otimes\gamma_{I_{i}}^{\prime}(c)\otimes\cdots\otimes\gamma_{I_{k}}(c)\bigr{)}=\sum_{G:\,l(G)=k}\mu_{G}\bigl{(}\gamma_{I_{1}}(c)\otimes\cdots\otimes\gamma_{I_{k}}^{\prime}(c)\bigr{)},

and hence

G:l(G)=kμG(γG(c))=k(G:l(G)=kμG(γI1(c)γIk(c))).\sum_{G:\,l(G)=k}\mu_{G}\bigl{(}\gamma_{G}^{\prime}(c)\bigr{)}=k\bigg{(}\sum_{G:\,l(G)=k}\mu_{G}\bigl{(}\gamma_{I_{1}}(c)\otimes\cdots\otimes\gamma_{I_{k}}^{\prime}(c)\bigr{)}\bigg{)}.

Substituting back in (247) we obtain

(aγ)I(c)=GIl(G)al(G)μG(γI1(c)γIk(c)).(a\circ\gamma)^{\prime}_{I}(c)=\sum_{G\vDash I}l(G)a_{l(G)}\mu_{G}\bigl{(}\gamma_{I_{1}}(c)\otimes\cdots\otimes\gamma_{I_{k}}^{\prime}(c)\bigr{)}.

Letting T=IkT=I_{k}, S=ITS=I\setminus T, and F=(I1,,Ik1)SF=(I_{1},\ldots,I_{k-1})\vDash S, and employing associativity, we obtain (246), as needed. ∎

Let 𝐜\mathbf{c} be a comonoid and γ\gamma a curve on 𝒮(𝐜)\mathscr{S}(\mathbf{c}). When the series γ(c)\gamma(c) is group-like for every c𝕜c\in\Bbbk, we say that γ\gamma is a group-like curve.

Proposition 71.

Let γ\gamma be a group-like curve on a comonoid 𝐜\mathbf{c}. For any c0𝕜c_{0}\in\Bbbk, the series γ(c0)\gamma^{\prime}(c_{0}) is (γ(c0),γ(c0))(\gamma(c_{0}),\gamma(c_{0}))-primitive.

Proof.

We argue in the smooth case, where we have

γI(c0)=limc0γI(c+c0)γI(c0)c.\gamma^{\prime}_{I}(c_{0})=\lim_{c\to 0}\,\frac{\gamma_{I}(c+c_{0})-\gamma_{I}(c_{0})}{c}.

Since ΔS,T\Delta_{S,T} is linear, it commutes with limits. Hence,

ΔS,T(γI(c0))\displaystyle\Delta_{S,T}\bigl{(}\gamma^{\prime}_{I}(c_{0})\bigr{)} =limc01cΔS,T(γI(c+c0)γI(c0))\displaystyle=\lim_{c\to 0}\,\frac{1}{c}\Delta_{S,T}\bigl{(}\gamma_{I}(c+c_{0})-\gamma_{I}(c_{0})\bigr{)}
=limc01c(γS(c+c0)γT(c+c0)γS(c0)γT(c0))\displaystyle=\lim_{c\to 0}\,\frac{1}{c}\bigl{(}\gamma_{S}(c+c_{0})\otimes\gamma_{T}(c+c_{0})-\gamma_{S}(c_{0})\otimes\gamma_{T}(c_{0})\bigr{)}
=limc01cγS(c+c0)(γT(c+c0)γT(c0))\displaystyle=\lim_{c\to 0}\,\frac{1}{c}\,\gamma_{S}(c+c_{0})\otimes\bigl{(}\gamma_{T}(c+c_{0})-\gamma_{T}(c_{0})\bigr{)}
+limc01c(γS(c+c0)γS(c0))γT(c0)\displaystyle\qquad\qquad\qquad+\lim_{c\to 0}\,\frac{1}{c}\,\bigl{(}\gamma_{S}(c+c_{0})-\gamma_{S}(c_{0})\bigr{)}\otimes\gamma_{T}(c_{0})
=γS(c0)γT(c0)+γS(c0)γT(c0),\displaystyle=\gamma_{S}(c_{0})\otimes\gamma^{\prime}_{T}(c_{0})+\gamma^{\prime}_{S}(c_{0})\otimes\gamma_{T}(c_{0}),

proving (222). Condition (223) follows similarly. ∎

Corollary 72.

Let 𝐡\mathbf{h} be a Hopf monoid and γ\gamma a group-like curve on 𝐡\mathbf{h}. Fix c0𝕜c_{0}\in\Bbbk, let g:=γ(c0)g:=\gamma(c_{0}) and x:=γ(c0)x:=\gamma^{\prime}(c_{0}). Then the series

g1xandxg1g^{-1}\ast x\quad\text{and}\quad x\ast g^{-1}

are (u,u)(u,u)-primitive. In particular, if 𝐡\mathbf{h} is connected, then both series are primitive.

Proof.

By Proposition 71, xx is (g,g)(g,g)-primitive. Transporting it by g1g^{-1} on either side we obtain a series that is (u,u)(u,u)-primitive, according to Proposition 65. ∎

Corollary 72 affords a construction of primitive series out of group-like curves.

\psfrag{u}{u}\psfrag{g}{g}\psfrag{x}{\small x}\psfrag{y}{\small g^{-1}\ast x}\includegraphics[width=216.81pt]{curve-tan}

In the next section we study the result of this construction when applied to certain special curves.

12.10. Two canonical curves

Let tt be a series of a species 𝐩\mathbf{p}. There is a curve {t}\{t\} on 𝐩\mathbf{p} defined by

(248) {t}I(c):=c|I|tI\{t\}_{I}(c):=c^{\lvert I\rvert}\,t_{I}

for every finite set II. It is clearly polynomial.

Let 𝐚\mathbf{a} be a monoid and assume that tt satisfies (233). There is then another curve t\langle t\rangle on 𝐚\mathbf{a} defined by

(249) t(c):=tc.\langle t\rangle(c):=t^{c}.

Formulas (240) and (241) show that t\langle t\rangle is polynomial. We say that t\langle t\rangle is the one-parameter subgroup generated by tt.

We have

{t}(1)=t=t(1)and{t}(0)=u=t(0).\{t\}(1)=t=\langle t\rangle(1)\qquad\text{and}\qquad\{t\}(0)=u=\langle t\rangle(0).

This is illustrated below.

\psfrag{0}{\tiny(c=0)}\psfrag{1}{\tiny(c=1)}\psfrag{u}{u}\psfrag{t}{t}\psfrag{A}{\langle t\rangle}\psfrag{B}{\{t\}}\includegraphics[width=158.99377pt]{two-curves}

We proceed to apply the construction of Corollary 72 to these curves.

We first describe the derivative of the curve {t}\{t\}. The number operator is the morphism of species n:𝐩𝐩\textsc{n}:\mathbf{p}\to\mathbf{p} defined by

(250) nI:𝐩[I]𝐩[I],nI(x)=|I|x.\textsc{n}_{I}:\mathbf{p}[I]\to\mathbf{p}[I],\quad\textsc{n}_{I}(x)=\lvert I\rvert\,x.

Note that

(251) {t}(1)=n(t).\{t\}^{\prime}(1)=\textsc{n}(t).
Corollary 73.

Let gg be a group-like series of a Hopf monoid 𝐡\mathbf{h}. Then the series

g1n(g)andn(g)g1g^{-1}\ast\textsc{n}(g)\quad\text{and}\quad\textsc{n}(g)\ast g^{-1}

are (u,u)(u,u)-primitive. In particular, if 𝐡\mathbf{h} is connected, then both series are primitive.

Proof.

We apply Corollary 72 to the curve {g}\{g\}. In view of (220), this is a group-like curve. Since {g}(1)=g\{g\}(1)=g and {g}(1)=n(g)\{g\}^{\prime}(1)=\textsc{n}(g), the result follows. ∎

We turn to the derivative of the one-parameter subgroup t\langle t\rangle.

Lemma 74.

Let tt be a series of a monoid 𝐚\mathbf{a} satisfying (233). Then, for any c𝕜c\in\Bbbk,

(252) t(c)=tclogt=logttc.\langle t\rangle^{\prime}(c)=t^{c}\ast\log t=\log t\ast t^{c}.
Proof.

Let γ\gamma be the curve defined by

γ(c)=clogt.\gamma(c)=c\log t.

We have

t(c)=tc=exp(clogt)=exp(γ(c)).\langle t\rangle(c)=t^{c}=\exp(c\log t)=\exp\bigl{(}\gamma(c)\bigr{)}.

Since γ(c)=logt\gamma^{\prime}(c)=\log t, we have [γ(c),γ(c)]=0[\gamma(c),\gamma^{\prime}(c)]=0, and the chain rule (245) applies. We deduce that

t(c)=exp(γ(c))γ(c)=tclogt.\langle t\rangle^{\prime}(c)=\exp\bigl{(}\gamma(c)\bigr{)}\ast\gamma^{\prime}(c)=t^{c}\ast\log t.

For the same reason, t(c)=logttc\langle t\rangle^{\prime}(c)=\log t\ast t^{c}. ∎

Let us apply the construction of Corollary 72 to the curve g\langle g\rangle, where gg is a group-like series of a connected Hopf monoid 𝐡\mathbf{h}. First of all, the curve is group-like by (243). Lemma 74 implies that g(1)=glogg\langle g\rangle^{\prime}(1)=g\ast\log g. The conclusion is then that logg\log g is a primitive series of 𝐡\mathbf{h}. We thus recover a part of Theorem 69.

The curves t\langle t\rangle enjoy special properties, as discussed next.

Proposition 75.

Let 𝐡\mathbf{h} be a connected bimonoid and γ\gamma a curve on 𝐡\mathbf{h} such that γ(0)=u\gamma(0)=u. The following conditions are equivalent.

  1. (i)

    γ(c+d)=γ(c)γ(d)\gamma(c+d)=\gamma(c)\ast\gamma(d) for all cc and d𝕜d\in\Bbbk.

  2. (ii)

    There is a series ss satisfying (231) such that γ(c)=γ(c)s\gamma^{\prime}(c)=\gamma(c)\ast s for all c𝕜c\in\Bbbk.

  3. (iii)

    There is a series tt satisfying (233) such that γ=t\gamma=\langle t\rangle.

Assume (any) one of these conditions holds. Then

t=γ(1),s=γ(0)ands=logt.t=\gamma(1),\quad s=\gamma^{\prime}(0)\quad\text{and}\quad s=\log t.

In addition,

γ is a group-like curvet𝒢(𝐡)s𝒫(𝐡).\text{$\gamma$ is a group-like curve}\iff t\in\mathscr{G}(\mathbf{h})\iff s\in\mathscr{P}(\mathbf{h}).
Proof.

Assume (i) holds. Fixing cc and taking derivatives at d=0d=0 we obtain (ii). Assume the latter holds. If t=expst=\exp s, then t\langle t\rangle is a solution of the differential equation in  (ii), according to (252). Since γ(0)=u=t(0)\gamma(0)=u=\langle t\rangle(0), uniqueness of solutions of such equations guarantees that γ=t\gamma=\langle t\rangle, proving that (iii) holds. Finally, the latter implies (i) by the first identity in (242).

The last statement follows from (239) and (243). ∎

Note also that, in the situation of Proposition 75, γ(c)s=sγ(c)\gamma(c)\ast s=s\ast\gamma(c) for all c𝕜c\in\Bbbk.

12.11. Series of the internal Hom species

Recall the functors \mathcal{H} and \mathcal{E} from Section 3.2. Let 𝐩\mathbf{p} and 𝐪\mathbf{q} be species. A series of the species (𝐩,𝐪)\mathcal{H}(\mathbf{p},\mathbf{q}) is precisely a morphism of species from 𝐩\mathbf{p} to 𝐪\mathbf{q}:

(253) 𝒮((𝐩,𝐪))=Hom𝖲𝗉𝕜(𝐩,𝐪).\mathscr{S}\bigl{(}\mathcal{H}(\mathbf{p},\mathbf{q})\bigr{)}=\operatorname{Hom}_{\mathsf{Sp}_{\Bbbk}}(\mathbf{p},\mathbf{q}).

This follows by comparing (23) and (75), or by using (76) and (202). We may also recover (202) by setting 𝐩=𝐄\mathbf{p}=\mathbf{E} in (253). Setting 𝐩=𝐪\mathbf{p}=\mathbf{q} we obtain

𝒮((𝐩))=End𝖲𝗉𝕜(𝐩).\mathscr{S}\bigl{(}\mathcal{E}(\mathbf{p})\bigr{)}=\operatorname{End}_{\mathsf{Sp}_{\Bbbk}}(\mathbf{p}).

If 𝐚\mathbf{a} is a monoid and 𝐜\mathbf{c} is a comonoid, then (𝐜,𝐚)\mathcal{H}(\mathbf{c},\mathbf{a}) is a monoid (Section 3.2) and hence 𝒮((𝐜,𝐚))\mathscr{S}\bigl{(}\mathcal{H}(\mathbf{c},\mathbf{a})\bigr{)} is an algebra under the Cauchy product (204). On the other hand, the space Hom𝖲𝗉𝕜(𝐜,𝐚)\operatorname{Hom}_{\mathsf{Sp}_{\Bbbk}}(\mathbf{c},\mathbf{a}) is an algebra under the convolution product of Section 2.7. Building on (253), we have that these two are the same algebra: 𝒮((𝐜,𝐚))=Hom𝖲𝗉𝕜(𝐜,𝐚)\mathscr{S}\bigl{(}\mathcal{H}(\mathbf{c},\mathbf{a})\bigr{)}=\operatorname{Hom}_{\mathsf{Sp}_{\Bbbk}}(\mathbf{c},\mathbf{a}). In particular, the unit series uu (205) coincides in this case with the morphism (50).

Let 𝐡\mathbf{h} and 𝐤\mathbf{k} be connected bimonoids. Assume that 𝐡\mathbf{h} is finite-dimensional. As explained in Section 3.2, (𝐡,𝐤)\mathcal{H}(\mathbf{h},\mathbf{k}) is then a finite-dimensional connected bimonoid. We then have, by (218),

((𝐡,𝐤))𝒢((𝐡,𝐤)).\mathscr{E}\bigl{(}\mathcal{H}(\mathbf{h},\mathbf{k})\bigr{)}\subseteq\mathscr{G}\bigl{(}\mathcal{H}(\mathbf{h},\mathbf{k})\bigr{)}.

This inclusion can be refined as follows. We let

Hom𝖬𝗈𝗇(𝖲𝗉𝕜)(𝐡,𝐤)\operatorname{Hom}_{\mathsf{Mon}(\mathsf{Sp}_{\Bbbk})}(\mathbf{h},\mathbf{k})

denote the subset of Hom𝖲𝗉𝕜(𝐡,𝐤)\operatorname{Hom}_{\mathsf{Sp}_{\Bbbk}}(\mathbf{h},\mathbf{k}) consisting of morphisms of monoids. We similarly use Hom𝖢𝗈𝗆𝗈𝗇(𝖲𝗉𝕜)(𝐡,𝐤)\operatorname{Hom}_{\mathsf{Comon}(\mathsf{Sp}_{\Bbbk})}(\mathbf{h},\mathbf{k}) for comonoid morphisms.

Proposition 76.

For 𝐡\mathbf{h} and 𝐤\mathbf{k} as above, we have

((𝐡,𝐤))Hom𝖬𝗈𝗇(𝖲𝗉𝕜)(𝐡,𝐤)𝒢((𝐡,𝐤))\mathscr{E}\bigl{(}\mathcal{H}(\mathbf{h},\mathbf{k})\bigr{)}\subseteq\operatorname{Hom}_{\mathsf{Mon}(\mathsf{Sp}_{\Bbbk})}(\mathbf{h},\mathbf{k})\subseteq\mathscr{G}\bigl{(}\mathcal{H}(\mathbf{h},\mathbf{k})\bigr{)}

and

((𝐡,𝐤))Hom𝖢𝗈𝗆𝗈𝗇(𝖲𝗉𝕜)(𝐡,𝐤)𝒢((𝐡,𝐤)).\mathscr{E}\bigl{(}\mathcal{H}(\mathbf{h},\mathbf{k})\bigr{)}\subseteq\operatorname{Hom}_{\mathsf{Comon}(\mathsf{Sp}_{\Bbbk})}(\mathbf{h},\mathbf{k})\subseteq\mathscr{G}\bigl{(}\mathcal{H}(\mathbf{h},\mathbf{k})\bigr{)}.
Proof.

Let f𝒮((𝐡,𝐤))=Hom𝖲𝗉𝕜(𝐡,𝐤)f\in\mathscr{S}\bigl{(}\mathcal{H}(\mathbf{h},\mathbf{k})\bigr{)}=\operatorname{Hom}_{\mathsf{Sp}_{\Bbbk}}(\mathbf{h},\mathbf{k}). In view of (78) and (79), the conditions expressing that ff belongs to each of the sets

((𝐡,𝐤)),Hom𝖬𝗈𝗇(𝖲𝗉𝕜)(𝐡,𝐤),Hom𝖢𝗈𝗆𝗈𝗇(𝖲𝗉𝕜)(𝐡,𝐤), and 𝒢((𝐡,𝐤))\mathscr{E}\bigl{(}\mathcal{H}(\mathbf{h},\mathbf{k})\bigr{)},\ \operatorname{Hom}_{\mathsf{Mon}(\mathsf{Sp}_{\Bbbk})}(\mathbf{h},\mathbf{k}),\ \operatorname{Hom}_{\mathsf{Comon}(\mathsf{Sp}_{\Bbbk})}(\mathbf{h},\mathbf{k}),\text{ and }\mathscr{G}\bigl{(}\mathcal{H}(\mathbf{h},\mathbf{k})\bigr{)}

are, respectively,

μS,T(fSfT)ΔS,T=fI,\displaystyle\mu_{S,T}(f_{S}\otimes f_{T})\Delta_{S,T}=f_{I},
μS,T(fSfT)=fIμS,T,\displaystyle\mu_{S,T}(f_{S}\otimes f_{T})=f_{I}\mu_{S,T},
(fSfT)ΔS,T=ΔS,TfI,\displaystyle(f_{S}\otimes f_{T})\Delta_{S,T}=\Delta_{S,T}f_{I},
fSfT=ΔS,TfIμS,T,\displaystyle f_{S}\otimes f_{T}=\Delta_{S,T}f_{I}\mu_{S,T},

in addition to f=ιϵf_{\emptyset}=\iota_{\emptyset}\epsilon_{\emptyset}. The first condition implies the second and the third, and either of these implies the fourth, in view of (108). ∎

Let 𝐡\mathbf{h} and 𝐤\mathbf{k} be connected bimonoids with 𝐡\mathbf{h} finite-dimensional, and f:𝐡𝐤f:\mathbf{h}\to\mathbf{k} a morphism of species. Proposition 76 implies that if ff is a morphism of either monoids or comonoids, then it is a group-like series of (𝐡,𝐤)\mathcal{H}(\mathbf{h},\mathbf{k}). The same conclusion holds if ff is an antimorphism of either monoids or comonoids. For this one may use a similar argument to that in the proof of Proposition 76, using the second identity in (108). In particular, both the identity and the antipode of 𝐡\mathbf{h} are group-like series of (𝐡)\mathcal{E}(\mathbf{h}).

Let us denote the antipodes of 𝐡\mathbf{h}, 𝐤\mathbf{k}, and (𝐡,𝐤)\mathcal{H}(\mathbf{h},\mathbf{k}) by s𝐡\operatorname{\textsc{s}}^{\mathbf{h}}, s𝐤\operatorname{\textsc{s}}^{\mathbf{k}}, and s\operatorname{\textsc{s}}^{\mathcal{H}}, respectively.

Corollary 77.

Let 𝐡\mathbf{h} and 𝐤\mathbf{k} be as above. If f:𝐡𝐤f:\mathbf{h}\to\mathbf{k} is a morphism of monoids, then s(f)=fs𝐡\operatorname{\textsc{s}}^{\mathcal{H}}(f)=f\operatorname{\textsc{s}}^{\mathbf{h}}. If ff is a morphism of comonoids, then s(f)=s𝐤f\operatorname{\textsc{s}}^{\mathcal{H}}(f)=\operatorname{\textsc{s}}^{\mathbf{k}}f.

Proof.

Since in both cases ff is a group-like series of (𝐡,𝐤)\mathcal{H}(\mathbf{h},\mathbf{k}), the series s(f)\operatorname{\textsc{s}}^{\mathcal{H}}(f) is its inverse with respect to convolution. But we know from Section 2.8 that this inverse is as stated. ∎

The previous result can also be shown using Takeuchi’s formula (111) and Corollary 58: For ff a morphism of monoids,

sI(fI)=FI(1)l(F)μFΔFfIμFΔF=FI(1)l(F)μFΔFμFfFΔF=FI(1)l(F)μFfFΔF=FI(1)l(F)fIμFΔF=fIsI𝐡.\operatorname{\textsc{s}}^{\mathcal{H}}_{I}(f_{I})=\sum_{F\vDash I}(-1)^{l(F)}\mu_{F}\Delta_{F}f_{I}\mu_{F}\Delta_{F}=\sum_{F\vDash I}(-1)^{l(F)}\mu_{F}\Delta_{F}\mu_{F}f_{F}\Delta_{F}\\ =\sum_{F\vDash I}(-1)^{l(F)}\mu_{F}f_{F}\Delta_{F}=\sum_{F\vDash I}(-1)^{l(F)}f_{I}\mu_{F}\Delta_{F}=f_{I}\operatorname{\textsc{s}}^{\mathbf{h}}_{I}.

Takeuchi’s formula is used in the first and last steps, fIμF=μFfFf_{I}\mu_{F}=\mu_{F}f_{F} is used twice, and ΔFμF=id\Delta_{F}\mu_{F}=\mathrm{id} is used once.

Remark.

Connectedness is essential in Corollary 77. If HH and KK are Hopf algebras, with HH finite-dimensional, then

Hom(H,K)HK\operatorname{Hom}(H,K)\cong H^{*}\otimes K

is a Hopf algebra, and the antipode sends any linear map f:HKf:H\to K to sKfsH\operatorname{\textsc{s}}^{K}f\operatorname{\textsc{s}}^{H}, in contrast to Corollary 77.

From Proposition 14 we know that

(𝐡,𝒫(𝐤))𝒫((𝐡,𝐤))and(𝒬(𝐡),𝐤)𝒫((𝐡,𝐤)).\mathcal{H}\bigl{(}\mathbf{h},\mathcal{P}(\mathbf{k})\bigr{)}\subseteq\mathcal{P}\bigl{(}\mathcal{H}(\mathbf{h},\mathbf{k})\bigr{)}\quad\text{and}\quad\mathcal{H}\bigl{(}\mathcal{Q}(\mathbf{h}),\mathbf{k}\bigr{)}\subseteq\mathcal{P}\bigl{(}\mathcal{H}(\mathbf{h},\mathbf{k})\bigr{)}.

Passing to series we obtain, in view of (227) and (253),

Hom𝖲𝗉𝕜(𝐡,𝒫(𝐤))𝒫((𝐡,𝐤))andHom𝖲𝗉𝕜(𝒬(𝐡),𝐤)𝒫((𝐡,𝐤)).\operatorname{Hom}_{\mathsf{Sp}_{\Bbbk}}\bigl{(}\mathbf{h},\mathcal{P}(\mathbf{k})\bigr{)}\subseteq\mathscr{P}\bigl{(}\mathcal{H}(\mathbf{h},\mathbf{k})\bigr{)}\quad\text{and}\quad\operatorname{Hom}_{\mathsf{Sp}_{\Bbbk}}\bigl{(}\mathcal{Q}(\mathbf{h}),\mathbf{k}\bigr{)}\subseteq\mathscr{P}\bigl{(}\mathcal{H}(\mathbf{h},\mathbf{k})\bigr{)}.

We now show that under the exp\exp-log\log correspondence of Section 12.8

𝒫((𝐡,𝐤))\textstyle{\mathscr{P}\bigl{(}\mathcal{H}(\mathbf{h},\mathbf{k})\bigr{)}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}exp\scriptstyle{\exp}𝒢((𝐡,𝐤))\textstyle{\ignorespaces\ignorespaces\ignorespaces\ignorespaces\mathscr{G}\bigl{(}\mathcal{H}(\mathbf{h},\mathbf{k})\bigr{)}}log\scriptstyle{\log}

the space Hom𝖲𝗉𝕜(𝐡,𝒫(𝐤))\operatorname{Hom}_{\mathsf{Sp}_{\Bbbk}}\bigl{(}\mathbf{h},\mathcal{P}(\mathbf{k})\bigr{)} corresponds with Hom𝖢𝗈𝗆𝗈𝗇(𝖲𝗉𝕜)(𝐡,𝐤)\operatorname{Hom}_{\mathsf{Comon}(\mathsf{Sp}_{\Bbbk})}(\mathbf{h},\mathbf{k}) (provided 𝐡\mathbf{h} is cocommutative), and the space Hom𝖲𝗉𝕜(𝒬(𝐡),𝐤)\operatorname{Hom}_{\mathsf{Sp}_{\Bbbk}}\bigl{(}\mathcal{Q}(\mathbf{h}),\mathbf{k}\bigr{)} corresponds with Hom𝖬𝗈𝗇(𝖲𝗉𝕜)(𝐡,𝐤)\operatorname{Hom}_{\mathsf{Mon}(\mathsf{Sp}_{\Bbbk})}(\mathbf{h},\mathbf{k}) (provided 𝐤\mathbf{k} is commutative). These results hold in greater generality, as stated below. In particular, we no longer require finite-dimensionality.

Let 𝐚\mathbf{a} be a monoid and 𝐜\mathbf{c} be a comonoid. Then (𝐡,𝐚)\mathcal{H}(\mathbf{h},\mathbf{a}) and (𝐜,𝐤)\mathcal{H}(\mathbf{c},\mathbf{k}) are monoids under convolution. The exp\exp and log\log maps below act on the spaces of series of these monoids, namely Hom𝖲𝗉𝕜(𝐡,𝐚)\operatorname{Hom}_{\mathsf{Sp}_{\Bbbk}}(\mathbf{h},\mathbf{a}) and Hom𝖲𝗉𝕜(𝐜,𝐤)\operatorname{Hom}_{\mathsf{Sp}_{\Bbbk}}(\mathbf{c},\mathbf{k}).

Theorem 78.

Let 𝐜\mathbf{c} be a cocommutative comonoid and 𝐤\mathbf{k} a connected bimonoid. The maps exp\exp and log\log restrict to inverse bijections

(254) Hom𝖲𝗉𝕜(𝐜,𝒫(𝐤))\textstyle{\operatorname{Hom}_{\mathsf{Sp}_{\Bbbk}}\bigl{(}\mathbf{c},\mathcal{P}(\mathbf{k})\bigr{)}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}exp\scriptstyle{\exp}Hom𝖢𝗈𝗆𝗈𝗇(𝖲𝗉𝕜)(𝐜,𝐤).\textstyle{\ignorespaces\ignorespaces\ignorespaces\ignorespaces\operatorname{Hom}_{\mathsf{Comon}(\mathsf{Sp}_{\Bbbk})}(\mathbf{c},\mathbf{k}).}log\scriptstyle{\log}

Let 𝐡\mathbf{h} be a connected bimonoid and 𝐚\mathbf{a} a commutative monoid. The maps exp\exp and log\log restrict to inverse bijections

(255) Hom𝖲𝗉𝕜(𝒬(𝐡),𝐚))\textstyle{\operatorname{Hom}_{\mathsf{Sp}_{\Bbbk}}\bigl{(}\mathcal{Q}(\mathbf{h}),\mathbf{a}\bigr{)}\Bigr{)}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}exp\scriptstyle{\exp}Hom𝖬𝗈𝗇(𝖲𝗉𝕜)(𝐡,𝐚).\textstyle{\ignorespaces\ignorespaces\ignorespaces\ignorespaces\operatorname{Hom}_{\mathsf{Mon}(\mathsf{Sp}_{\Bbbk})}(\mathbf{h},\mathbf{a}).}log\scriptstyle{\log}

We provide two proofs of this result, each one with its own advantage. The first one employs the higher forms of the bimonoid axioms of Section 10 and the combinatorics of the Tits algebra. It extends to more general settings (beyond the scope of this paper, but hinted at in Section 1.10) where the Tits product is defined. The second proof relies on functional calculus and extends to a context such as that of complete Hopf algebras. It is essentially the same proof as those in [57, Appendix A, Proposition 2.6] and [66, Theorem 9.4].

First proof of Theorem 78.

In view of (238), it suffices to show that exp\exp and log\log map as stated. We show that if f:𝐜𝒫(𝐤)f:\mathbf{c}\to\mathcal{P}(\mathbf{k}) is a morphism of species, then exp(f):𝐜𝐤\exp(f):\mathbf{c}\to\mathbf{k} is a morphism of comonoids. The remaining verifications are similar.

We have to show that

ΔS,Texp(f)I=(exp(f)Sexp(f)T)ΔS,T\Delta_{S,T}\exp(f)_{I}=\bigl{(}\exp(f)_{S}\otimes\exp(f)_{T}\bigr{)}\Delta_{S,T}

for I=STI=S\sqcup T. We may assume that SS and TT are nonempty.

According to (79) and (235),

exp(f)I=FI1l(F)!μFfFΔF.\exp(f)_{I}=\sum_{F\vDash I}\frac{1}{l(F)!}\,\mu_{F}f_{F}\Delta_{F}.

Let GG denote the composition (S,T)(S,T). In the following calculation, we make use of the higher compatibility (182) for 𝐤\mathbf{k}.

ΔS,Texp(f)I=FI1l(F)!ΔGμFfFΔF=FI1l(F)!μGF/GβΔFG/FfFΔF.\Delta_{S,T}\exp(f)_{I}=\sum_{F\vDash I}\frac{1}{l(F)!}\,\Delta_{G}\mu_{F}f_{F}\Delta_{F}=\sum_{F\vDash I}\frac{1}{l(F)!}\,\mu_{GF/G}\beta\Delta_{FG/F}f_{F}\Delta_{F}.

Since ff maps to the primitive part, ΔFG/FfF=0\Delta_{FG/F}f_{F}=0 unless FG=FFG=F. In this case, letting F1:=F|SF_{1}:=F|_{S} and F2:=F|TF_{2}:=F|_{T}, we have

GF=F1F2andμGF/G=μF1μF2,GF=F_{1}\cdot F_{2}\quad\text{and}\quad\mu_{GF/G}=\mu_{F_{1}}\otimes\mu_{F_{2}},

and also

βΔFG/FfF=βfF=(fF1fF2)β.\beta\Delta_{FG/F}f_{F}=\beta f_{F}=(f_{F_{1}}\otimes f_{F_{2}})\beta.

Therefore,

ΔS,Texp(f)I=F1SF2T1(l(F1)+l(F2))!(μF1μF2)(fF1fF2)F:FG=FF|S=F1,F|T=F2βΔF.\Delta_{S,T}\exp(f)_{I}=\sum_{\begin{subarray}{c}F_{1}\vDash S\\ F_{2}\vDash T\end{subarray}}\frac{1}{\bigl{(}l(F_{1})+l(F_{2})\bigr{)}!}(\mu_{F_{1}}\otimes\mu_{F_{2}})(f_{F_{1}}\otimes f_{F_{2}})\sum_{\begin{subarray}{c}F:\,FG=F\\ F|_{S}=F_{1},\,F|_{T}=F_{2}\end{subarray}}\beta\Delta_{F}.

Since 𝐜\mathbf{c} is cocommutative,

βΔF=ΔF1F2=(ΔF1ΔF2)ΔG,\beta\Delta_{F}=\Delta_{F_{1}\cdot F_{2}}=(\Delta_{F_{1}}\otimes\Delta_{F_{2}})\Delta_{G},

by the dual of (181). The number of terms in the last sum is

(l(F1)+l(F2)l(F1)).\binom{l(F_{1})+l(F_{2})}{l(F_{1})}.

Therefore,

ΔS,Texp(f)I\displaystyle\Delta_{S,T}\exp(f)_{I} =F1SF2T1l(F1)!1l(F2)!((μF1fF1ΔF1)(μF2fF2ΔF2))ΔG\displaystyle=\sum_{\begin{subarray}{c}F_{1}\vDash S\\ F_{2}\vDash T\end{subarray}}\frac{1}{l(F_{1})!}\,\frac{1}{l(F_{2})!}\,\bigl{(}(\mu_{F_{1}}f_{F_{1}}\Delta_{F_{1}})\otimes(\mu_{F_{2}}f_{F_{2}}\Delta_{F_{2}})\bigr{)}\Delta_{G}
=(exp(f)Sexp(f)T)ΔS,T,\displaystyle=\bigl{(}\exp(f)_{S}\otimes\exp(f)_{T}\bigr{)}\Delta_{S,T},

as needed. ∎

We remark that a morphism of species 𝒬(𝐡)𝐚\mathcal{Q}(\mathbf{h})\to\mathbf{a} is the same as a derivation 𝐡𝐚\mathbf{h}\to\mathbf{a} when 𝐚\mathbf{a} is endowed with the trivial 𝐡\mathbf{h}-bimodule structure. Dually, a morphism of species f:𝐜𝒫(𝐤)f:\mathbf{c}\to\mathcal{P}(\mathbf{k}) is the same as a morphism of species f:𝐜𝐤f:\mathbf{c}\to\mathbf{k} such that

(256) Δf=(fu+uf)Δ,\Delta f=(f\bm{\cdot}u+u\bm{\cdot}f)\Delta,

where uu is the unit in the convolution algebra Hom𝖲𝗉𝕜(𝐜,𝐤)\operatorname{Hom}_{\mathsf{Sp}_{\Bbbk}}(\mathbf{c},\mathbf{k}), as in (50). This says that ff is a coderivation from 𝐜\mathbf{c} viewed as a trivial 𝐤\mathbf{k}-bicomodule to 𝐤\mathbf{k}.

Second proof of Theorem 78.

As in the first proof, we start from f:𝐜𝒫(𝐤)f:\mathbf{c}\to\mathcal{P}(\mathbf{k}) and show that exp(f):𝐜𝐤\exp(f):\mathbf{c}\to\mathbf{k} is a morphism of comonoids. We deduce this fact by calculating

Δexp(f)=exp(Δf)=exp((fu+uf)Δ)=exp(fu+uf)Δ=(exp(fu)exp(uf))Δ=(exp(f)exp(f))Δ.\Delta\exp(f)=\exp(\Delta f)=\exp\bigl{(}(f\bm{\cdot}u+u\bm{\cdot}f)\Delta\bigr{)}=\exp(f\bm{\cdot}u+u\bm{\cdot}f)\Delta=\\ \bigl{(}\exp(f\bm{\cdot}u)\ast\exp(u\bm{\cdot}f)\bigr{)}\Delta=\bigl{(}\exp(f)\bm{\cdot}\exp(f)\bigr{)}\Delta.

The exponentials in the middle terms are calculated in the convolution algebra Hom𝖲𝗉𝕜(𝐜𝐜,𝐤𝐤)\operatorname{Hom}_{\mathsf{Sp}_{\Bbbk}}(\mathbf{c}\bm{\cdot}\mathbf{c},\mathbf{k}\bm{\cdot}\mathbf{k}). The Cauchy product of (co)monoids is as in (46) (with q=1q=1).

The first equality holds by functoriality of the convolution algebra (51) and naturality of functional calculus (item (v) in Proposition 67), since Δ:𝐤𝐤𝐤\Delta:\mathbf{k}\to\mathbf{k}\bm{\cdot}\mathbf{k} is a morphism of monoids. The third holds by the same reason, since Δ:𝐜𝐜𝐜\Delta:\mathbf{c}\to\mathbf{c}\bm{\cdot}\mathbf{c} is a morphism of comonoids (this uses that 𝐜\mathbf{c} is cocommutative). The second holds by (256). The fourth holds by (236), since fuf\bm{\cdot}u and ufu\bm{\cdot}f commute in the convolution algebra Hom𝖲𝗉𝕜(𝐜𝐜,𝐤𝐤)\operatorname{Hom}_{\mathsf{Sp}_{\Bbbk}}(\mathbf{c}\bm{\cdot}\mathbf{c},\mathbf{k}\bm{\cdot}\mathbf{k}) by (52). We complete the proof by justifying the last equality.

In this same algebra, we have

(fu)n=fnu.(f\bm{\cdot}u)^{\ast n}=f^{\ast n}\bm{\cdot}u.

This follows again from (52). This implies

exp(fu)=exp(f)u and similarly exp(uf)=uexp(f).\exp(f\bm{\cdot}u)=\exp(f)\bm{\cdot}u\quad\text{ and similarly }\quad\exp(u\bm{\cdot}f)=u\bm{\cdot}\exp(f).

Hence,

exp(fu)exp(uf)=(exp(f)u)(uexp(f))=exp(f)exp(f)\exp(f\bm{\cdot}u)\ast\exp(u\bm{\cdot}f)=\bigl{(}\exp(f)\bm{\cdot}u\bigr{)}\ast\bigl{(}u\bm{\cdot}\exp(f)\bigr{)}=\exp(f)\bm{\cdot}\exp(f)

by another application of (52). ∎

Proposition 79.

Let 𝐡\mathbf{h} be a connected bimonoid and f:𝐡𝐡f:\mathbf{h}\to\mathbf{h} a morphism of species with f=ιϵf_{\emptyset}=\iota_{\emptyset}\epsilon_{\emptyset}. Then log(f)\log(f) and ff agree when restricted to the primitive part 𝒫(𝐡)\mathcal{P}(\mathbf{h}), and also when followed by the canonical projection to 𝒬(𝐡)\mathcal{Q}(\mathbf{h}).

𝐡flog(f)𝐡𝒫(𝐡)f=log(f)
\displaystyle\begin{gathered}\lx@xy@svg{\hbox{\raise 2.5pt\hbox{\kern 13.48611pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&\\\crcr}}}\ignorespaces{\hbox{\kern-6.19443pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{h}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 36.49823pt\raise 8.69444pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{f}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 77.48611pt\raise 2.58334pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 27.97562pt\raise-9.08334pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{\log(f)}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 77.48611pt\raise-2.58334pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 77.48611pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{h}}$}}}}}}}{\hbox{\kern-13.48611pt\raise-38.47221pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathcal{P}(\mathbf{h})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 0.0pt\raise-30.47221pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@hook{1}}}}}}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 0.0pt\raise-5.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{}{}{{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}}{}\ignorespaces\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{{}{}{{}}{{}{}{}}{}}}}\ignorespaces{}\ignorespaces{}{}{}{{}{}}\ignorespaces\ignorespaces{\hbox{\kern 33.91884pt\raise-31.18716pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{f=\log(f)}$}}}\kern 3.0pt}}}}}}\ignorespaces{}{}{}{{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}}{\hbox{\kern 77.48863pt\raise-4.86017pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{{}{}{}{{}}{{}{}{}\lx@xy@spline@}{}}}}\ignorespaces{}\ignorespaces\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{{}{}{{}}{{}{}{}}{}}}}\ignorespaces{}\ignorespaces}}}}\ignorespaces\end{gathered}
𝐡flog(f)f=log(f)𝐡𝒬(𝐡)\displaystyle\begin{gathered}\lx@xy@svg{\hbox{\raise 2.5pt\hbox{\kern 6.19443pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&\\&\crcr}}}\ignorespaces{\hbox{\kern-6.19443pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{h}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 36.74129pt\raise 8.69444pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{f}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 77.97223pt\raise 2.58334pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 28.21867pt\raise-9.08334pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{\log(f)}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 77.97223pt\raise-2.58334pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{}{}{{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}}{}\ignorespaces\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{{}{}{{}}{{}{}{}}{}}}}\ignorespaces{}\ignorespaces{}{}{}{{}{}}\ignorespaces\ignorespaces{\hbox{\kern 11.50331pt\raise-31.1932pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{f=\log(f)}$}}}\kern 3.0pt}}}}}}\ignorespaces{}{}{}{{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}}{\hbox{\kern 70.18962pt\raise-35.46414pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{{}{}{}{{}}{{}{}{}\lx@xy@spline@}{}}}}\ignorespaces{}\ignorespaces\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{{}{}{{}}{{}{}{}}{}}}}\ignorespaces{}{\hbox{\kern 77.97223pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{h}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 84.16666pt\raise-30.47221pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\lower-2.04439pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-3.0pt\raise-38.47221pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 70.19443pt\raise-38.47221pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathcal{Q}(\mathbf{h})}$}}}}}}}\ignorespaces}}}}\ignorespaces\end{gathered}
Proof.

Let x𝒫(𝐡)[I]x\in\mathcal{P}(\mathbf{h})[I]. From (234), we calculate

log(f)I(x)=FI(1)l(F)l(F)μFfFΔF(x)=fI(x),\log(f)_{I}(x)=-\sum_{F\vDash I}\frac{(-1)^{l(F)}}{l(F)}\,\mu_{F}f_{F}\Delta_{F}(x)=f_{I}(x),

using (113). ∎

If f:𝐡𝐡f:\mathbf{h}\to\mathbf{h} is a morphism of comonoids, then it preserves the primitive part, and we deduce from Proposition 79 that log(f)\log(f) and ff restrict to the same map on 𝒫(𝐡)\mathcal{P}(\mathbf{h}).

𝐡flog(f)𝐡𝒫(𝐡)f=log(f)𝒫(𝐡)\displaystyle\begin{gathered}\lx@xy@svg{\hbox{\raise 2.5pt\hbox{\kern 13.48611pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&\\&\crcr}}}\ignorespaces{\hbox{\kern-6.19443pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{h}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 30.14407pt\raise 8.69444pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{f}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 64.7778pt\raise 2.58334pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 21.62146pt\raise-9.08334pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{\log(f)}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 64.7778pt\raise-2.58334pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 64.7778pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{h}}$}}}}}}}{\hbox{\kern-13.48611pt\raise-38.47221pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathcal{P}(\mathbf{h})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 0.0pt\raise-30.47221pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@hook{1}}}}}}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 0.0pt\raise-5.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 16.20996pt\raise-44.97221pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{f=\log(f)}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 57.48611pt\raise-38.47221pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 57.48611pt\raise-38.47221pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathcal{P}(\mathbf{h})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 70.97223pt\raise-30.47221pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@hook{1}}}}}}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 70.97223pt\raise-5.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces}}}}\ignorespaces\end{gathered} 𝐡flog(f)𝐡𝒬(𝐡)f=log(f)𝒬(𝐡)\displaystyle\begin{gathered}\lx@xy@svg{\hbox{\raise 2.5pt\hbox{\kern 13.97223pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&\\&\crcr}}}\ignorespaces{\hbox{\kern-6.19443pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{h}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 30.63019pt\raise 8.69444pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{f}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 65.75003pt\raise 2.58334pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 22.10757pt\raise-9.08334pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{\log(f)}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 65.75003pt\raise-2.58334pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 0.0pt\raise-30.47221pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\lower-1.99997pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 65.75003pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathbf{h}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 71.94446pt\raise-30.47221pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\lower-1.99997pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-13.97223pt\raise-38.47221pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathcal{Q}(\mathbf{h})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 16.69608pt\raise-44.97221pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{f=\log(f)}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 57.97223pt\raise-38.47221pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 57.97223pt\raise-38.47221pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathcal{Q}(\mathbf{h})}$}}}}}}}\ignorespaces}}}}\ignorespaces\end{gathered}

If ff is a morphism of monoids, then log(f)\log(f) and ff induce the same map on the indecomposable quotient 𝒬(𝐡)\mathcal{Q}(\mathbf{h}). Specializing further, and combining with Theorem 78, we obtain the following result.

Corollary 80.

Let 𝐡\mathbf{h} be a connected bimonoid. If 𝐡\mathbf{h} is cocommutative, then log(id)\log(\mathrm{id}) maps to 𝒫(𝐡)\mathcal{P}(\mathbf{h}) and is in fact a projection from 𝐡\mathbf{h} onto 𝒫(𝐡)\mathcal{P}(\mathbf{h}). If 𝐡\mathbf{h} is commutative, then log(id)\log(\mathrm{id}) factors through 𝒬(𝐡)\mathcal{Q}(\mathbf{h}) and splits the canonical projection 𝐡𝒬(𝐡)\mathbf{h}\twoheadrightarrow\mathcal{Q}(\mathbf{h}).

We provide another (though similar) proof of this result in Corollary 101.

13. The characteristic operations (Hopf powers)

The considerations of Section 10 show that the combinatorics of set decompositions is intimately linked to the notion of bimonoid, with set compositions playing the same role in relation to connected bimonoids. On the other hand, in Section 11 we discussed two particular bimonoids 𝚺\mathbf{\Sigma} and 𝚺^\mathbf{\widehat{\Sigma}} which themselves are built out of set (de)compositions. This double occurrence of set (de)compositions acquires formal meaning in this section, where we show that elements of 𝚺\mathbf{\Sigma} give rise to operations on connected bimonoids, and elements of 𝚺^\mathbf{\widehat{\Sigma}} to operations on arbitrary bimonoids.

13.1. The characteristic operations on a bimonoid

Let 𝐡\mathbf{h} be a bimonoid and h𝐡[I]h\in\mathbf{h}[I]. Given an element z𝚺^[I]z\in\mathbf{\widehat{\Sigma}}[I], write

z=FaF𝙷Fz=\sum_{F}a_{F}\mathtt{H}_{F}

for some aF𝕜a_{F}\in\Bbbk, with FF running over the decompositions of II (and all but a finite number of aFa_{F} equal to zero). Define an element zh𝐡[I]z\triangleright h\in\mathbf{h}[I] by

(257) zh:=FaF(μFΔF)(h).z\triangleright h:=\sum_{F}a_{F}(\mu_{F}\Delta_{F})(h).

Here μF\mu_{F} and ΔF\Delta_{F} denote the higher product and coproduct of 𝐡\mathbf{h}. We refer to zhz\triangleright h as the characteristic operation of zz on hh.

In particular, for a decomposition FF of II, we have

(258) 𝙷Fh:=(μFΔF)(h).\mathtt{H}_{F}\triangleright h:=(\mu_{F}\Delta_{F})(h).

We may take 𝐡=𝚺^\mathbf{h}=\mathbf{\widehat{\Sigma}}, and (257) results in an operation on each space 𝚺^[I]\mathbf{\widehat{\Sigma}}[I]. According to the following result, this is simply the linearization of the Tits product of Section 1.11.

Proposition 81.

For any decompositions FF and GG of II,

(259) 𝙷F𝙷G=𝙷FG.\mathtt{H}_{F}\triangleright\mathtt{H}_{G}=\mathtt{H}_{FG}.
Proof.

We have, by (198) and (199),

𝙷F𝙷G=(μFΔF)(𝙷G)=μF(𝙷FG/Fcan)=𝙷FG.\mathtt{H}_{F}\triangleright\mathtt{H}_{G}=(\mu_{F}\Delta_{F})(\mathtt{H}_{G})=\mu_{F}(\mathtt{H}_{FG/F}^{\operatorname{\mathrm{can}}})=\mathtt{H}_{FG}.\qed

Endow 𝚺^[I]\mathbf{\widehat{\Sigma}}[I] with the corresponding algebra structure (the monoid algebra of the monoid of compositions under the Tits product). The unit element is 𝙷(I)\mathtt{H}_{(I)} and the product is as in (259). We call 𝚺^[I]\mathbf{\widehat{\Sigma}}[I] the Tits algebra of decompositions.

Consider the map

(260) 𝚺^[I]𝐡[I]𝐡[I],zhzh.\mathbf{\widehat{\Sigma}}[I]\otimes\mathbf{h}[I]\to\mathbf{h}[I],\quad z\otimes h\mapsto z\triangleright h.

The result below shows that, when 𝐡\mathbf{h} is cocommutative, \triangleright is a left action of the algebra 𝚺^[I]\mathbf{\widehat{\Sigma}}[I] on the space 𝐡[I]\mathbf{h}[I] (and a right action when 𝐡\mathbf{h} is commutative).

Theorem 82.

The following properties hold.

  1. (i)

    For any h𝐡[I]h\in\mathbf{h}[I],

    (261) 𝙷(I)h=h.\mathtt{H}_{(I)}\triangleright h=h.
  2. (ii)

    If 𝐡\mathbf{h} is cocommutative, then for any z,w𝚺^[I]z,w\in\mathbf{\widehat{\Sigma}}[I] and h𝐡[I]h\in\mathbf{h}[I],

    (262) (zw)h=z(wh).(z\triangleright w)\triangleright h=z\triangleright(w\triangleright h).
  3. (iii)

    If 𝐡\mathbf{h} is commutative, then for any z,w𝚺^[I]z,w\in\mathbf{\widehat{\Sigma}}[I] and h𝐡[I]h\in\mathbf{h}[I],

    (263) (zw)h=w(zh).(z\triangleright w)\triangleright h=w\triangleright(z\triangleright h).
Proof.

We show (262). By linearity, we may assume z=𝙷Fz=\mathtt{H}_{F} and w=𝙷Gw=\mathtt{H}_{G}, where FF and GG are decompositions of II. We then have, by (259),

(zw)h=𝙷FGh=(μFGΔFG)(h).(z\triangleright w)\triangleright h=\mathtt{H}_{FG}\triangleright h=(\mu_{FG}\Delta_{FG})(h).

On the other hand,

z(wh)=(μFΔF)((μGΔG)(h))=(μF(ΔFμG)ΔG)(h).z\triangleright(w\triangleright h)=(\mu_{F}\Delta_{F})\bigl{(}(\mu_{G}\Delta_{G})(h)\bigr{)}=\bigl{(}\mu_{F}(\Delta_{F}\mu_{G})\Delta_{G}\bigr{)}(h).

By higher compatibility (167), the preceding equals

(μFμFG/FβcanΔGF/GΔG)(h)\bigl{(}\mu_{F}\mu_{FG/F}\beta^{\operatorname{\mathrm{can}}}\Delta_{GF/G}\Delta_{G})(h)

and by higher (co)associativity (162) and cocommutativity (the dual of (165)) this equals

(μFGβcanΔGF)(h)=(μFGΔFG)(h),(\mu_{FG}\beta^{\operatorname{\mathrm{can}}}\Delta_{GF})(h)=(\mu_{FG}\Delta_{FG})(h),

as needed. ∎

The following result links the bimonoid structures of 𝚺^\mathbf{\widehat{\Sigma}} and 𝐡\mathbf{h} through the characteristic operations. First, we extend (260) to a map

𝚺^(F)𝐡(F)𝐡(F)\mathbf{\widehat{\Sigma}}(F)\otimes\mathbf{h}(F)\to\mathbf{h}(F)

for any decomposition F=(I1,,Ik)F=(I_{1},\ldots,I_{k}), by defining

(264) (z1zk)(h1hk):=(z1h1)(zkhk)(z_{1}\otimes\cdots\otimes z_{k})\triangleright(h_{1}\otimes\cdots\otimes h_{k}):=(z_{1}\triangleright h_{1})\otimes\cdots\otimes(z_{k}\triangleright h_{k})

for zi𝚺^[Ii]z_{i}\in\mathbf{\widehat{\Sigma}}[I_{i}] and hi𝐡[Ii]h_{i}\in\mathbf{h}[I_{i}]. Let GG be a decomposition such that F+G+F_{+}\leq G_{+}. It follows that

(265) 𝙷G/Fγh=(μG/FγΔG/Fγ)(h)\mathtt{H}_{G/F}^{\gamma}\triangleright h=(\mu_{G/F}^{\gamma}\Delta_{G/F}^{\gamma})(h)

for all splittings γ\gamma of (F,G)(F,G), and h𝐡(F)h\in\mathbf{h}(F).

Theorem 83.

Let 𝐡\mathbf{h} be a bimonoid and FF a decomposition of II. The following properties are satisfied.

  1. (i)

    For any z𝚺^(F)z\in\mathbf{\widehat{\Sigma}}(F) and h𝐡[I]h\in\mathbf{h}[I],

    (266) μF(z)h=μF(zΔF(h)),\mu_{F}(z)\triangleright h=\mu_{F}\bigl{(}z\triangleright\Delta_{F}(h)\bigr{)},
  2. (ii)

    If 𝐡\mathbf{h} is commutative, then for any z𝚺^[I]z\in\mathbf{\widehat{\Sigma}}[I] and h𝐡(F)h\in\mathbf{h}(F),

    (267) zμF(h)=μF(ΔF(z)h).z\triangleright\mu_{F}(h)=\mu_{F}\bigl{(}\Delta_{F}(z)\triangleright h\bigr{)}.
  3. (iii)

    If 𝐡\mathbf{h} is cocommutative, then for any z𝚺^[I]z\in\mathbf{\widehat{\Sigma}}[I] and h𝐡[I]h\in\mathbf{h}[I],

    (268) ΔF(zh)=ΔF(z)ΔF(h).\Delta_{F}(z\triangleright h)=\Delta_{F}(z)\triangleright\Delta_{F}(h).
Proof.

We prove (266). We may assume z=𝙷G/Fγz=\mathtt{H}_{G/F}^{\gamma} for γ\gamma a splitting of (F,G)(F,G), F+G+F_{+}\leq G_{+}. We have

μF(zΔF(h))=(μFμG/FγΔG/FγΔF)(h)=(μGΔG)(h)=𝙷Gh=μF(z)h.\mu_{F}\bigl{(}z\triangleright\Delta_{F}(h)\bigr{)}=(\mu_{F}\mu_{G/F}^{\gamma}\Delta_{G/F}^{\gamma}\Delta_{F})(h)=(\mu_{G}\Delta_{G})(h)=\mathtt{H}_{G}\triangleright h=\mu_{F}(z)\triangleright h.

We used (265), higher (co)associativity (162) and formula (196).

The remaining identities can be proven by similar arguments. ∎

Remark.

The conditions in Theorem 83 may be interpreted as axioms for a module over a ring in the setting of 22-monoidal categories, with (266) and (267) playing the role of right and left distributivity of multiplication over addition. We do not pursue this point here. Related results are given by Hazewinkel [31, Section 11], Patras and Schocker [54, Corollary 22], and Thibon [73, Formula (52)], among others.

Let 𝐡\mathbf{h} be a bimonoid and z𝚺^[I]z\in\mathbf{\widehat{\Sigma}}[I]. Let ΨI(z):𝐡[I]𝐡[I]\Psi_{I}(z):\mathbf{h}[I]\to\mathbf{h}[I] be the map defined by

(269) ΨI(z)(h):=zh.\Psi_{I}(z)(h):=z\triangleright h.

We have ΨI(z)End𝕜(𝐡[I])\Psi_{I}(z)\in\operatorname{End}_{\Bbbk}(\mathbf{h}[I]), and we obtain a morphism of species

Ψ:𝚺^(𝐡).\Psi:\mathbf{\widehat{\Sigma}}\to\mathcal{E}(\mathbf{h}).

Recall from Section 3.2 that (𝐡)\mathcal{E}(\mathbf{h}) is a monoid.

Proposition 84.

The map Ψ\Psi is a morphism of monoids. If 𝐡\mathbf{h} is cocommutative, then each

ΨI:𝚺^[I]End𝕜(𝐡[I])\Psi_{I}:\mathbf{\widehat{\Sigma}}[I]\to\operatorname{End}_{\Bbbk}(\mathbf{h}[I])

is a morphism from the Tits algebra to the algebra of linear endomorphisms (under ordinary composition). If 𝐡\mathbf{h} is commutative, then it is an antimorphism.

Proof.

The fact that Ψ\Psi is a morphism of monoids follows from (266). The last statements rephrase the fact that in these cases the Tits algebra acts (from the left or from the right) on 𝐡[I]\mathbf{h}[I] (Theorem 82). ∎

13.2. The characteristic operations on arbitrary bialgebras

Let HH be an arbitrary bialgebra over 𝕜\Bbbk. Let μ,ι,Δ,ϵ\mu,\iota,\Delta,\epsilon denote the structure maps. We employ Sweedler’s notation in the form

Δ(h)=h1h2\Delta(h)=\sum h_{1}\otimes h_{2}

for hHh\in H.

For each integer n1n\geq 1, the higher product

μ(n):H(n+1)H\mu^{(n)}:H^{\otimes(n+1)}\to H

is well-defined by associativity. One also defines

μ(1)=ιandμ(0)=id.\mu^{(-1)}=\iota\quad\text{and}\quad\mu^{(0)}=\mathrm{id}.

The higher coproducts are defined dually.

Given hHh\in H and pp\in\mathbb{N}, define an element h(p)Hh^{(p)}\in H by

h(p):=(μ(p1)Δ(p1))(h).h^{(p)}:=(\mu^{(p-1)}\Delta^{(p-1)})(h).

In the recent Hopf algebra literature, the operations hh(p)h\mapsto h^{(p)} are called Hopf powers [46] or Sweedler powers [36, 37]. The term characteristic is used in [28, Section 1] and [50, Section 1] for these operations on graded bialgebras. They enjoy the following properties. Let h,kHh,k\in H and p,qp,q\in\mathbb{N}.

  1. (i)

    h(1)=hh^{(1)}=h.

  2. (ii)

    If HH is either commutative or cocommutative, then h(pq)=(h(p))(q)h^{(pq)}=(h^{(p)})^{(q)}.

  3. (iii)

    h(p+q)=h1(p)h2(q)h^{(p+q)}=\sum h_{1}^{(p)}h_{2}^{(q)}.

  4. (iv)

    If HH is commutative, then (hk)(p)=h(p)k(p)(hk)^{(p)}=h^{(p)}k^{(p)}.

  5. (v)

    If HH is cocommutative, then Δ(h(p))=h1(p)h2(p)\Delta(h^{(p)})=\sum h_{1}^{(p)}\otimes h_{2}^{(p)}.

These properties are special cases of those in Theorems 82 and 83. They arise by choosing 𝐡=𝟏H\mathbf{h}=\mathbf{1}_{H} (as in Section 2.10) and F=2F=\emptyset^{2}. In this case, 𝐡[]=H\mathbf{h}[\emptyset]=H, μF=μ\mu_{F}=\mu, and ΔF=Δ\Delta_{F}=\Delta. For instance, (ii) follows from (262) in view of the fact that the Tits product in Σ^[]\widehat{\Sigma}[\emptyset] corresponds to multiplication in \mathbb{N}. More general properties follow by choosing F=pF=\emptyset^{p}.

13.3. The characteristic operations on a connected bimonoid

Let 𝐡\mathbf{h} be a connected bimonoid and h𝐡[I]h\in\mathbf{h}[I]. Given an element z𝚺[I]z\in\mathbf{\Sigma}[I], formula (257) defines an element zh𝐡[I]z\triangleright h\in\mathbf{h}[I] (the sum is now over the compositions of II). As before, we refer to this element as the characteristic operation of zz on hh.

The set Σ[I]\Sigma[I] of compositions of II is a monoid under the Tits product (10) and 𝚺[I]\mathbf{\Sigma}[I] is the algebra of this monoid. We use \triangleright to denote its product, as in (259). We call 𝚺[I]\mathbf{\Sigma}[I] the Tits algebra of compositions.

The results of Proposition 81 and Theorem 82 continue to hold for the characteristic operations of 𝚺\mathbf{\Sigma} on 𝐡\mathbf{h}, with the same proofs. In particular, when 𝐡\mathbf{h} is cocommutative, \triangleright defines an action of the algebra 𝚺[I]\mathbf{\Sigma}[I] on the space 𝐡[I]\mathbf{h}[I].

To the result of Proposition 81 we may add the following.

Proposition 85.

For any compositions FF and GG of II,

(270) 𝙷F𝚀G={𝚀FG if GF=G,0 if GF>G.\mathtt{H}_{F}\triangleright\mathtt{Q}_{G}=\begin{cases}\mathtt{Q}_{FG}&\text{ if }GF=G,\\ 0&\text{ if }GF>G.\end{cases}

In particular, if FF and GG have the same support, then 𝙷G𝚀F=𝚀G\mathtt{H}_{G}\triangleright\mathtt{Q}_{F}=\mathtt{Q}_{G}.

Proof.

This follows from Proposition 59 and (259). ∎

Consider the morphism of bimonoids υ:𝚺^𝚺\upsilon:\mathbf{\widehat{\Sigma}}\to\mathbf{\Sigma} of (195). As noted in (20), the map υ:𝚺^[I]𝚺[I]\upsilon:\mathbf{\widehat{\Sigma}}[I]\to\mathbf{\Sigma}[I] preserves Tits products. The following result shows that, when specialized to connected bimonoids, the characteristic operations factor through υ\upsilon.

Proposition 86.

Let 𝐡\mathbf{h} be a connected bimonoid. For any z𝚺^[I]z\in\mathbf{\widehat{\Sigma}}[I] and h𝐡[I]h\in\mathbf{h}[I],

zh=υ(z)h.z\triangleright h=\upsilon(z)\triangleright h.
Proof.

We may assume z=𝙷Fz=\mathtt{H}_{F} for FF a decomposition of II. We then have

υ(z)h=𝙷F+h=(μF+ΔF+)(h)=(μFιFϵFΔF)(h)=(μFΔF)(h)=zh.\upsilon(z)\triangleright h=\mathtt{H}_{{F}_{+}}\triangleright h=(\mu_{{F}_{+}}\Delta_{{F}_{+}})(h)=(\mu_{F}\iota_{F}\epsilon_{F}\Delta_{F})(h)=(\mu_{F}\Delta_{F})(h)=z\triangleright h.

We used (163), its dual, and (183). (The latter uses connectedness.) ∎

On connected bimonoids, the characteristic operations enjoy additional properties to those in Theorem 83.

Proposition 87.

Let 𝐡\mathbf{h} be a connected bimonoid and FF a composition of II. The following properties are satisfied.

  1. (i)

    For any z𝚺(F)z\in\mathbf{\Sigma}(F) and h𝐡[I]h\in\mathbf{h}[I],

    (271) zΔF(h)=ΔF(μF(z)h).z\triangleright\Delta_{F}(h)=\Delta_{F}\bigl{(}\mu_{F}(z)\triangleright h\bigr{)}.
  2. (ii)

    For any z𝚺[I]z\in\mathbf{\Sigma}[I] and h𝐡(F)h\in\mathbf{h}(F),

    (272) ΔF(z)h=ΔF(zμF(h)),\Delta_{F}(z)\triangleright h=\Delta_{F}\bigl{(}z\triangleright\mu_{F}(h)\bigr{)},
  3. (iii)

    For any z𝚺(F)z\in\mathbf{\Sigma}(F) and h𝐡(F)h\in\mathbf{h}(F),

    (273) μF(zh)=μF(z)μF(h).\mu_{F}(z\triangleright h)=\mu_{F}(z)\triangleright\mu_{F}(h).
Proof.

Formula (271) follows by applying ΔF\Delta_{F} to both sides of (266), in view of the first formula in (185). Formula (273) follows by replacing hh in (266) for μF(h)\mu_{F}(h) and employing (185).

We prove (272). We may assume z=𝙷Gz=\mathtt{H}_{G} for GG a composition of II. We have

ΔF(zμF(h))=(ΔFμGΔGμF)(h)=(μFG/FβΔGF/GμGF/GβΔFG/F)(h)=(μFG/Fβ2ΔFG/F)(h)=(μFG/FΔFG/F)(h)=𝙷FG/Fh=ΔF(z)h.\Delta_{F}\bigl{(}z\triangleright\mu_{F}(h)\bigr{)}=(\Delta_{F}\mu_{G}\Delta_{G}\mu_{F})(h)=\\ (\mu_{FG/F}\beta\Delta_{GF/G}\mu_{GF/G}\beta\Delta_{FG/F})(h)=(\mu_{FG/F}\beta^{2}\Delta_{FG/F})(h)=\\ (\mu_{FG/F}\Delta_{FG/F})(h)=\mathtt{H}_{FG/F}\triangleright h=\Delta_{F}(z)\triangleright h.

We used the higher compatibility (167) and (185) for GF/GGF/G, as well as the fact that β2=id\beta^{2}=\mathrm{id}. ∎

Let 𝐡\mathbf{h} be a connected bimonoid. By Proposition 86, the map Ψ:𝚺^(𝐡)\Psi:\mathbf{\widehat{\Sigma}}\to\mathcal{E}(\mathbf{h}) factors through υ:𝚺^𝚺\upsilon:\mathbf{\widehat{\Sigma}}\to\mathbf{\Sigma}. We also use Ψ\Psi to denote the resulting map

Ψ:𝚺(𝐡).\Psi:\mathbf{\Sigma}\to\mathcal{E}(\mathbf{h}).

Recall from Section 3.2 that (𝐡)\mathcal{E}(\mathbf{h}) is a monoid, and moreover a Hopf monoid if 𝐡\mathbf{h} is finite-dimensional.

Proposition 88.

The map Ψ\Psi is a morphism of monoids, and moreover of Hopf monoids if 𝐡\mathbf{h} is finite-dimensional. If 𝐡\mathbf{h} is cocommutative, then each

ΨI:𝚺[I]End𝕜(𝐡[I])\Psi_{I}:\mathbf{\Sigma}[I]\to\operatorname{End}_{\Bbbk}(\mathbf{h}[I])

is a morphism from the Tits algebra to the algebra of linear endomorphisms (under ordinary composition). If 𝐡\mathbf{h} is commutative, then it is an antimorphism.

Proof.

The fact that Ψ\Psi is a morphism of comonoids follows from (272). The remaining statements follow from Proposition 84 and the fact that υ\upsilon preserves all the structure. ∎

Remark.

Connected graded Hopf algebras also carry characteristic operations. In this context, the role of the Hopf monoid 𝚺\mathbf{\Sigma} is played by the Hopf algebra of noncommutative symmetric functions, and that of the Tits algebra by Solomon’s descent algebra of the symmetric group. The latter is the invariant subalgebra of 𝚺[n]\mathbf{\Sigma}[n] under the action of Sn\mathrm{S}_{n} and hence has a linear basis indexed by compositions of the integer nn.

Noncommutative symmetric functions are studied in a series of papers starting with [26] by Gelfand et al and including [73] by Thibon. The descent algebra (of a finite Coxeter group) is introduced by Solomon in [67]. The theory of characteristic operations on graded Hopf algebras appears in work of Patras [51]. It also occurs implicitly in a number of places in the literature. The operation of Solomon’s descent algebra on the Hopf algebra of noncommutative symmetric functions is considered in [26, Section 5.1].

13.4. Primitive operations

We study the effect of operating on a cocommutative connected bimonoid 𝐡\mathbf{h} by primitive elements of 𝚺\mathbf{\Sigma}. We write

(274) z=FIaF𝙷Fz=\sum_{F\vDash I}a_{F}\mathtt{H}_{F}

for a typical element of 𝚺[I]\mathbf{\Sigma}[I].

Theorem 89.

Let 𝐡\mathbf{h} and zz be as above, and h𝐡[I]h\in\mathbf{h}[I].

  1. (i)

    If z𝒫(𝚺)[I]z\in\mathcal{P}(\mathbf{\Sigma})[I], then zh𝒫(𝐡)[I]z\triangleright h\in\mathcal{P}(\mathbf{h})[I].

  2. (ii)

    If in addition h𝒫(𝐡)[I]h\in\mathcal{P}(\mathbf{h})[I], then zh=a(I)hz\triangleright h=a_{(I)}h.

Proof.

Part (i) follows from (268). Regarding (ii), we have

zh=a(I)(𝙷(I)h)+FIF(I)aF(𝙷Fh)=a(I)h.z\triangleright h=a_{(I)}(\mathtt{H}_{(I)}\triangleright h)+\sum_{\begin{subarray}{c}F\vDash I\\ F\neq(I)\end{subarray}}a_{F}(\mathtt{H}_{F}\triangleright h)=a_{(I)}h.

We used (261) and the fact that ΔF(h)=0\Delta_{F}(h)=0 for F(I)F\neq(I), which holds by (113) since hh is primitive. ∎

It is convenient to restate the above result in terms of the map ΨI(z)\Psi_{I}(z) of (269).

Theorem 90.

Let 𝐡\mathbf{h} and zz be as in Theorem 89.

  1. (i)

    If z𝒫(𝚺)[I]z\in\mathcal{P}(\mathbf{\Sigma})[I], then ΨI(z)(𝐡[I])𝒫(𝐡)[I]\Psi_{I}(z)(\mathbf{h}[I])\subseteq\mathcal{P}(\mathbf{h})[I].

  2. (ii)

    If in addition a(I)0a_{(I)}\neq 0, then ΨI(a(I)1z)\Psi_{I}(a_{(I)}^{-1}z) is a projection from 𝐡[I]\mathbf{h}[I] onto 𝒫(𝐡)[I]\mathcal{P}(\mathbf{h})[I].

Remark.

Statement (i) in Theorem 90 says that Ψ(𝒫(𝚺))(𝐡,𝒫(𝐡))\Psi\bigl{(}\mathcal{P}(\mathbf{\Sigma})\bigr{)}\subseteq\mathcal{H}\bigl{(}\mathbf{h},\mathcal{P}(\mathbf{h})). Since morphisms of comonoids preserve primitive elements, Proposition 88 implies that (when 𝐡\mathbf{h} is finite-dimensional) Ψ(𝒫(𝚺))𝒫((𝐡))\Psi\bigl{(}\mathcal{P}(\mathbf{\Sigma})\bigr{)}\subseteq\mathcal{P}\bigl{(}\mathcal{H}(\mathbf{h})\bigr{)}. This inclusion, however, is weaker than the previous, in view of Proposition 14.

The above result has a converse:

Proposition 91.

Let z𝚺[I]z\in\mathbf{\Sigma}[I] be an element such that

ΨI(z)(𝐡[I])𝒫(𝐡)[I]\Psi_{I}(z)(\mathbf{h}[I])\subseteq\mathcal{P}(\mathbf{h})[I]

for every cocommutative connected bimonoid 𝐡\mathbf{h}. Then

z𝒫(𝚺)[I].z\in\mathcal{P}(\mathbf{\Sigma})[I].
Proof.

Since 𝚺\mathbf{\Sigma} is a cocommutative connected bimonoid, we may apply the hypothesis to 𝐡=𝚺\mathbf{h}=\mathbf{\Sigma}. Hence z𝙷G𝒫(𝚺)[I]z\triangleright\mathtt{H}_{G}\in\mathcal{P}(\mathbf{\Sigma})[I] for all compositions GG. But in view of (259) we have z=z𝙷(I)z=z\triangleright\mathtt{H}_{(I)}, so z𝒫(𝚺)[I]z\in\mathcal{P}(\mathbf{\Sigma})[I]. ∎

We may consider the operation of 𝚺\mathbf{\Sigma} on itself.

Corollary 92.

Let zz be as in (274). If zz is a primitive element of 𝚺[I]\mathbf{\Sigma}[I], then zz=a(I)zz\triangleright z=a_{(I)}z.

Proof.

This follows from item (ii) in Theorem 89 by letting 𝐡=𝚺\mathbf{h}=\mathbf{\Sigma}, h=zh=z. ∎

Thus, a primitive element in the Hopf monoid 𝚺\mathbf{\Sigma} either satisfies zz=0z\triangleright z=0, or (if a(I)0a_{(I)}\neq 0) is a quasi-idempotent in the Tits algebra (𝚺[I],)(\mathbf{\Sigma}[I],\triangleright). If a(I)=1a_{(I)}=1, it is an idempotent.

The link between the Hopf monoid structure of 𝚺\mathbf{\Sigma} and the algebra structure of (𝚺[I],)(\mathbf{\Sigma}[I],\triangleright) is further witnessed by the following result.

Corollary 93.

The primitive part 𝒫(𝚺)[I]\mathcal{P}(\mathbf{\Sigma})[I] is a right ideal of the Tits algebra (𝚺[I],)(\mathbf{\Sigma}[I],\triangleright). Moreover, if zz as in (274) is any primitive element with a(I)0a_{(I)}\neq 0, then 𝒫(𝚺)[I]\mathcal{P}(\mathbf{\Sigma})[I] is the right ideal of (𝚺[I],)(\mathbf{\Sigma}[I],\triangleright) generated by zz.

Proof.

Applying statement (i) in Theorem 89 with 𝐡=𝚺\mathbf{h}=\mathbf{\Sigma} and hh an arbitrary element of 𝚺[I]\mathbf{\Sigma}[I], we deduce that the right ideal generated by zz is contained in 𝒫(𝚺)[I]\mathcal{P}(\mathbf{\Sigma})[I]. Applying item (ii) to an arbitrary element hh of 𝒫(𝚺)[I]\mathcal{P}(\mathbf{\Sigma})[I], we deduce h=a(I)1(zh)h=a_{(I)}^{-1}(z\triangleright h), and hence the converse inclusion. ∎

Such primitive elements do exist; examples are given in Sections 14.1 and 14.5.

The following is a necessary condition for an element of 𝚺\mathbf{\Sigma} to be primitive.

Proposition 94.

Suppose zz as in (274) is any primitive element with a(I)=1a_{(I)}=1. Then for any partition XX of II,

(275) F:suppF=XaF=μ({I},X),\sum_{F:\,\operatorname{supp}F=X}a_{F}=\mu(\{I\},X),

where μ\mu denotes the Möbius function of the partition lattice (17).

Proof.

Denote the left-hand side of (275) by f(X)f(X). Since a(I)=1a_{(I)}=1, we have f({I})=1f(\{I\})=1. Moreover, for any Y>{I}Y>\{I\},

X:XYf(X)=0.\sum_{X:\,X\leq Y}f(X)=0.

(Let FF be any face with support YY. Then the coefficient of 𝙷F\mathtt{H}_{F} in 𝙷Fz\mathtt{H}_{F}\triangleright z is the left-hand side above, and it is zero since zz is primitive.) These conditions imply f(X)=μ({I},X)f(X)=\mu(\{I\},X) as required. ∎

13.5. The cumulants of a connected bimonoid

Let 𝐡\mathbf{h} be a finite-dimensional connected bimonoid. Recall from (124) that

𝐡(X)=BX𝐡[B]\mathbf{h}(X)=\bigotimes_{B\in X}\mathbf{h}[B]

for each partition XX of II. The cumulants of 𝐡\mathbf{h} are the integers kX(𝐡)k_{X}(\mathbf{h}) defined by

(276) Y:YXkY(𝐡)=dim𝕜𝐡(X),\sum_{Y:\,Y\geq X}k_{Y}(\mathbf{h})=\dim_{\Bbbk}\mathbf{h}(X),

or equivalently, by

(277) kX(𝐡)=Y:YXμ(X,Y)dim𝕜𝐡(Y),k_{X}(\mathbf{h})=\sum_{Y:\,Y\geq X}\mu(X,Y)\,\dim_{\Bbbk}\mathbf{h}(Y),

where μ\mu denotes the Möbius function of the partition lattice. The nn-th cumulant is

kn(𝐡):=k{I}(𝐡),k_{n}(\mathbf{h}):=k_{\{I\}}(\mathbf{h}),

where |I|=n\lvert I\rvert=n and {I}\{I\} is the partition of II with one block. Thus,

(278) kn(𝐡)=YIμ({I},Y)dim𝕜𝐡(Y).k_{n}(\mathbf{h})=\sum_{Y\vdash I}\mu(\{I\},Y)\,\dim_{\Bbbk}\mathbf{h}(Y).

One can deduce from (16) that

(279) kX(𝐡)=BXk|B|(𝐡).k_{X}(\mathbf{h})=\prod_{B\in X}k_{\lvert B\rvert}(\mathbf{h}).
Proposition 95.

For any finite-dimensional cocommutative connected bimonoid 𝐡\mathbf{h}, the dimension of its primitive part is

(280) dim𝕜𝒫(𝐡)[I]=k|I|(𝐡).\dim_{\Bbbk}\mathcal{P}(\mathbf{h})[I]=k_{\lvert I\rvert}(\mathbf{h}).
Proof.

Let zz as in (274) be any primitive element of 𝚺[I]\mathbf{\Sigma}[I] with a(I)=1a_{(I)}=1. (As mentioned above, such elements exist.) Then ΨI(z)\Psi_{I}(z) is a projection onto 𝒫(𝐡)[I]\mathcal{P}(\mathbf{h})[I], by Theorem 90. Hence the dimension of its image equals its trace, and

dim𝕜𝒫(𝐡)[I]=FaFtrΨI(𝙷F).\dim_{\Bbbk}\mathcal{P}(\mathbf{h})[I]=\sum_{F}a_{F}\operatorname{\mathrm{tr}}\Psi_{I}(\mathtt{H}_{F}).

Since 𝙷F\mathtt{H}_{F} is idempotent, the trace of ΨI(𝙷F)\Psi_{I}(\mathtt{H}_{F}) equals the dimension of its image. Now, ΨI(𝙷F)=μFΔF\Psi_{I}(\mathtt{H}_{F})=\mu_{F}\Delta_{F} and ΔFμF=id𝐡(F)\Delta_{F}\mu_{F}=\mathrm{id}_{\mathbf{h}(F)} by (185). Hence the dimension of the image of ΨI(𝙷F)\Psi_{I}(\mathtt{H}_{F}) equals the dimension of 𝐡(F)\mathbf{h}(F). So

trΨI(𝙷F)=dim𝕜𝐡(F).\operatorname{\mathrm{tr}}\Psi_{I}(\mathtt{H}_{F})=\dim_{\Bbbk}\mathbf{h}(F).

Since 𝐡(F)𝐡(suppF)\mathbf{h}(F)\cong\mathbf{h}(\operatorname{supp}F), we have

dim𝕜𝒫(𝐡)[I]=FaFdim𝕜𝐡(F)=X(F:suppF=XaF)dim𝕜𝐡(X).\dim_{\Bbbk}\mathcal{P}(\mathbf{h})[I]=\sum_{F}a_{F}\dim_{\Bbbk}\mathbf{h}(F)=\sum_{X}\Bigl{(}\sum_{F:\,\operatorname{supp}F=X}a_{F}\Bigr{)}\,\dim_{\Bbbk}\mathbf{h}(X).

Now, by Proposition 94 and (278),

dim𝕜𝒫(𝐡)[I]=Xμ({I},X)dim𝕜𝐡(X)=k|I|(𝐡).\dim_{\Bbbk}\mathcal{P}(\mathbf{h})[I]=\sum_{X}\mu(\{I\},X)\,\dim_{\Bbbk}\mathbf{h}(X)=k_{\lvert I\rvert}(\mathbf{h}).\qed

It follows from (279) and (280) that the integers kn(𝐡)k_{n}(\mathbf{h}) are nonnegative, a fact not evident from their definition. Here are some simple examples, for the Hopf monoids 𝐄\mathbf{E}, 𝐋\mathbf{L} and 𝚷\mathbf{\Pi} of Section 9.

kn(𝐋)=(n1)!,kn(𝐄)={1 if n=1,0 otherwise,kn(𝚷)=1.k_{n}(\mathbf{L})=(n-1)!,\qquad k_{n}(\mathbf{E})=\begin{cases}1&\text{ if $n=1$,}\\ 0&\text{ otherwise,}\end{cases}\qquad k_{n}(\mathbf{\Pi})=1.
Remark.

Suppose the integer dim𝕜𝐡[n]\dim_{\Bbbk}\mathbf{h}[n] is the nn-th moment of a random variable ZZ. Then the integer kn(𝐡)k_{n}(\mathbf{h}) is the nn-th cumulant of ZZ in the classical sense [22, 23]. Proposition 95 implies that if 𝐡\mathbf{h} is cocommutative, then all cumulants are nonnegative. For example, dim𝕜𝚷[n]\dim_{\Bbbk}\mathbf{\Pi}[n] is the nn-th Bell number. This is the nn-th moment of a Poisson variable of parameter 11. Also, dim𝕜𝐋[n]=n!\dim_{\Bbbk}\mathbf{L}[n]=n! is the nn-th moment of an exponential variable of parameter 11, and dim𝕜𝐄[n]=1\dim_{\Bbbk}\mathbf{E}[n]=1 is the nn-th moment of the Dirac measure δ1\delta_{1}.

13.6. Group-like operations

Let ss be a series of 𝚺^\mathbf{\widehat{\Sigma}} and 𝐡\mathbf{h} a bimonoid. Building on (269), the operation Ψ(s):𝐡𝐡\Psi(s):\mathbf{h}\to\mathbf{h} is defined by

ΨI(sI):𝐡[I]𝐡[I],hsIh.\Psi_{I}(s_{I}):\mathbf{h}[I]\to\mathbf{h}[I],\quad h\mapsto s_{I}\triangleright h.

If 𝐡\mathbf{h} is connected, the same formula defines the operation of a series ss of 𝚺\mathbf{\Sigma} on 𝐡\mathbf{h}.

Theorem 96.

Let gg be a group-like series of 𝚺^\mathbf{\widehat{\Sigma}}. If 𝐡\mathbf{h} is (co)commutative, then Ψ(g)\Psi(g) is a morphism of (co)monoids.

Proof.

The fact that Ψ(g)\Psi(g) preserves products follows from (267), and that it preserves coproducts from (268). These formulas in fact show that all higher (co)products are preserved; in particular (co)units are preserved. ∎

The universal series 𝙶^\hat{\mathtt{G}} of 𝚺^\mathbf{\widehat{\Sigma}} is defined by

(281) 𝙶^I:=𝙷(I)\hat{\mathtt{G}}_{I}:=\mathtt{H}_{(I)}

for all finite sets II. In particular, 𝙶^:=𝙷1\hat{\mathtt{G}}_{\emptyset}:=\mathtt{H}_{\emptyset^{1}}.

Lemma 97.

The universal series 𝙶^\hat{\mathtt{G}} is group-like.

Proof.

Indeed, by (187), ΔS,T(𝙷(I))=𝙷(S)𝙷(T)\Delta_{S,T}(\mathtt{H}_{(I)})=\mathtt{H}_{(S)}\otimes\mathtt{H}_{(T)}. ∎

By (261), the universal series operates on 𝐡\mathbf{h} as the identity:

(282) Ψ(𝙶^)=id.\Psi(\hat{\mathtt{G}})=\mathrm{id}.

The terminology is justified by the following results.

Theorem 98.

Let ss be a series of a monoid 𝐚\mathbf{a}. Then there exists a unique morphism of monoids ζ:𝚺^𝐚\zeta:\mathbf{\widehat{\Sigma}}\to\mathbf{a} such that

(283) ζ(𝙶^)=s.\zeta(\hat{\mathtt{G}})=s.

Moreover, ζI:𝚺^[I]𝐚[I]\zeta_{I}:\mathbf{\widehat{\Sigma}}[I]\to\mathbf{a}[I] is given by

(284) ζI(𝙷F):=μF(sF)\zeta_{I}(\mathtt{H}_{F}):=\mu_{F}(s_{F})

for any decomposition FF of II

Proof.

This is a reformulation of the fact that 𝚺^\mathbf{\widehat{\Sigma}} is the free monoid on the species 𝐄\mathbf{E}. ∎

Theorem 99.

Let gg be a group-like series of a bimonoid 𝐡\mathbf{h}. Then the unique morphism of monoids ζ:𝚺^𝐡\zeta:\mathbf{\widehat{\Sigma}}\to\mathbf{h} such that

(285) ζ(𝙶^)=g\zeta(\hat{\mathtt{G}})=g

is in fact a morphism of bimonoids. Moreover, ζI:𝚺^[I]𝐡[I]\zeta_{I}:\mathbf{\widehat{\Sigma}}[I]\to\mathbf{h}[I] is given by

(286) ζI(z):=zgI.\zeta_{I}(z):=z\triangleright g_{I}.
Proof.

Let FF be a decomposition of II. We have, by (285),

ζI(𝙷F)=μF(gF)=μFΔF(gI)=𝙷FgI,\zeta_{I}(\mathtt{H}_{F})=\mu_{F}(g_{F})=\mu_{F}\Delta_{F}(g_{I})=\mathtt{H}_{F}\triangleright g_{I},

and this proves (286). To prove that ζ\zeta is a morphism of comonoids, we may assume that 𝐡\mathbf{h} is cocommutative, since gg belongs to the coabelianization of 𝐡\mathbf{h}. In this case we may apply (268) and this yields

ΔFζI(z)=ΔF(zgI)=ΔF(z)ΔF(gI)=ΔF(z)gF=ζFΔF(z),\Delta_{F}\zeta_{I}(z)=\Delta_{F}(z\triangleright g_{I})=\Delta_{F}(z)\triangleright\Delta_{F}(g_{I})=\Delta_{F}(z)\triangleright g_{F}=\zeta_{F}\Delta_{F}(z),

as required. ∎

From Theorem 98 we deduce a bijection between the set of series of 𝐚\mathbf{a} and the set of monoid morphisms from 𝚺^\mathbf{\widehat{\Sigma}} to 𝐚\mathbf{a} given by

Hom𝖬𝗈𝗇(𝖲𝗉𝕜)(𝚺^,𝐚)𝒮(𝐚),ζζ(𝙶^).\operatorname{Hom}_{\mathsf{Mon}(\mathsf{Sp}_{\Bbbk})}(\mathbf{\widehat{\Sigma}},\mathbf{a})\to\mathscr{S}(\mathbf{a}),\quad\zeta\mapsto\zeta(\hat{\mathtt{G}}).

The inverse maps a series ss to the morphism ζ\zeta in (284).

The set 𝒮(𝐚)\mathscr{S}(\mathbf{a}) is an algebra under the Cauchy product (204) and the space of species morphisms Hom𝖲𝗉𝕜(𝚺^,𝐚)\operatorname{Hom}_{\mathsf{Sp}_{\Bbbk}}(\mathbf{\widehat{\Sigma}},\mathbf{a}) is an algebra under the convolution product (49). These operations do not correspond to each other. Indeed, the subset Hom𝖬𝗈𝗇(𝖲𝗉𝕜)(𝚺^,𝐚)\operatorname{Hom}_{\mathsf{Mon}(\mathsf{Sp}_{\Bbbk})}(\mathbf{\widehat{\Sigma}},\mathbf{a}) is not closed under either addition or convolution.

Similarly, from Theorem 99 we deduce a bijection between the set of group-like series of 𝐡\mathbf{h} and the set of bimonoid morphisms from 𝚺^\mathbf{\widehat{\Sigma}} to 𝐡\mathbf{h} given by

(287) Hom𝖡𝗂𝗆𝗈𝗇(𝖲𝗉𝕜)(𝚺^,𝐡)𝒢(𝐡),ζζ(𝙶^).\operatorname{Hom}_{\mathsf{Bimon}(\mathsf{Sp}_{\Bbbk})}(\mathbf{\widehat{\Sigma}},\mathbf{h})\to\mathscr{G}(\mathbf{h}),\quad\zeta\mapsto\zeta(\hat{\mathtt{G}}).

If 𝐡\mathbf{h} is commutative, then Hom𝖡𝗂𝗆𝗈𝗇(𝖲𝗉𝕜)(𝚺^,𝐡)\operatorname{Hom}_{\mathsf{Bimon}(\mathsf{Sp}_{\Bbbk})}(\mathbf{\widehat{\Sigma}},\mathbf{h}) is a group under convolution, and the above bijection is an isomorphism of monoids. This follows from (267).

The results of this section hold for group-like series of 𝚺\mathbf{\Sigma} in relation to connected bimonoids 𝐡\mathbf{h}. The role of the universal series is played by 𝙶:=υ(𝙶^)\mathtt{G}:=\upsilon(\hat{\mathtt{G}}). As in (281), we have

(288) 𝙶I:=𝙷(I)\mathtt{G}_{I}:=\mathtt{H}_{(I)}

for nonempty II, and 𝙶=𝙷0\mathtt{G}_{\emptyset}=\mathtt{H}_{\emptyset^{0}} (where 0\emptyset^{0} is the composition of \emptyset with no blocks).

Remark.

Theorem 99 is analogous to [2, Theorem 4.1]. The latter result is formulated in dual terms and for graded connected Hopf algebras. In this context, the expression for the morphism ζ\zeta in terms of the characteristic operations appears in [32, Proposition 3.7]. Many of these ideas appear in work of Hazewinkel [31, Section 11]. (Warning: Hazewinkel uses curve for what we call group-like series.) One may consider the bijection (287) in the special case 𝐡=𝚺^\mathbf{h}=\mathbf{\widehat{\Sigma}}. The analogue for graded connected Hopf algebras is then a bijection between endomorphisms of the Hopf algebra of noncommutative symmetric functions, and group-like series therein. This is used extensively in [38] under the name transformations of alphabets.

14. Classical idempotents

This section introduces a number of idempotent elements of the Tits algebra of compositions. We start by studying the first Eulerian idempotent. This is in fact a primitive element of 𝚺\mathbf{\Sigma} and it operates on cocommutative connected bimonoids as the logarithm of the identity.

We then introduce a complete orthogonal family of idempotents for the Tits algebra. The family is indexed by set partitions. We call these the Garsia-Reutenauer idempotents. The idempotent indexed by the partition with one block is the first Eulerian. Lumping according to the length of the partitions yields the higher Eulerian idempotents.

In the Tits algebra of compositions, we define elements indexed by integers pp, whose characteristic operation on a connected bimonoid 𝐡\mathbf{h} is the pp-th convolution power of the identity. There is a simple expression for these elements in terms of the higher Eulerian idempotents which diagonalizes their operation on 𝐡\mathbf{h}.

We introduce the Dynkin quasi-idempotent and describe its operation on connected bimonoids. We establish the Dynkin-Specht-Wever theorem for connected Hopf monoids.

14.1. The first Eulerian idempotent

We proceed to define a primitive series of 𝚺\mathbf{\Sigma}. We call it the first Eulerian idempotent and denote it by 𝙴\mathtt{E}.

Set 𝙴=0\mathtt{E}_{\emptyset}=0, and for each nonempty finite set II define an element 𝙴I𝚺[I]\mathtt{E}_{I}\in\mathbf{\Sigma}[I] by

(289) 𝙴I:=FI(1)l(F)11l(F)𝙷F.\mathtt{E}_{I}:=\sum_{F\vDash I}(-1)^{l(F)-1}\frac{1}{l(F)}\,\mathtt{H}_{F}.

Recall the group-like series 𝙶\mathtt{G} of 𝚺\mathbf{\Sigma} (288). It is given by 𝙶I:=𝙷(I)\mathtt{G}_{I}:=\mathtt{H}_{(I)}. It follows that

(290) 𝙴=log(𝙶),\mathtt{E}=\log(\mathtt{G}),

with the logarithm of a series as in (234).

Proposition 100.

The series 𝙴\mathtt{E} of 𝚺\mathbf{\Sigma} is primitive and the element 𝙴I\mathtt{E}_{I} is an idempotent of the Tits algebra (𝚺[I],)(\mathbf{\Sigma}[I],\triangleright).

Proof.

As the logarithm of a group-like series, the series 𝙴\mathtt{E} is primitive (Theorem 69). Thus, each 𝙴I𝒫(𝚺)[I]\mathtt{E}_{I}\in\mathcal{P}(\mathbf{\Sigma})[I], and by Corollary 92 the element 𝙴I\mathtt{E}_{I} is an idempotent of (𝚺[I],)(\mathbf{\Sigma}[I],\triangleright) (since the coefficient of 𝙷(I)\mathtt{H}_{(I)} in 𝙴I\mathtt{E}_{I} is 11). ∎

Comparing (289) with the definition of the basis {𝚀}\{\mathtt{Q}\} of 𝚺\mathbf{\Sigma} (189), we see that, for II nonempty,

(291) 𝙴I=𝚀(I).\mathtt{E}_{I}=\mathtt{Q}_{(I)}.

The primitivity of the 𝙴I\mathtt{E}_{I} may be deduced in other ways. We may derive it from (291) and the coproduct formula (191), using the fact that no proper subset of II is (I)(I)-admissible. Alternatively, applying (270) with G=(I)G=(I), we have μF(ΔF(𝙴I))=𝙷F𝙴I=0\mu_{F}(\Delta_{F}(\mathtt{E}_{I}))=\mathtt{H}_{F}\triangleright\mathtt{E}_{I}=0 for F(I)F\not=(I), so 𝙴I\mathtt{E}_{I} is primitive since μF\mu_{F} is injective by Corollary 58.

We turn to the characteristic operation (257) of 𝙴I\mathtt{E}_{I} on connected bimonoids.

Corollary 101.

For any connected bimonoid 𝐡\mathbf{h},

(292) Ψ(𝙶)=idandΨ(𝙴)=log(id).\Psi(\mathtt{G})=\mathrm{id}\quad\text{and}\quad\Psi(\mathtt{E})=\log(\mathrm{id}).

Moreover, if 𝐡\mathbf{h} is cocommutative, then log(id):𝐡𝐡\log(\mathrm{id}):\mathbf{h}\to\mathbf{h} is a projection onto the primitive part 𝒫(𝐡)\mathcal{P}(\mathbf{h}).

Proof.

The assertion about 𝙶\mathtt{G} follows from (282). Formula (292) then follows from naturality of functional calculus (statement (v) in Proposition 67), since Ψ\Psi is a morphism of monoids (Proposition 88). The last statement follows from Theorem 90. ∎

Remark.

Recall from (275) that for an element of 𝚺[I]\mathbf{\Sigma}[I] to be primitive, the sum of the coefficients of compositions with support XX must be μ({I},X)\mu(\{I\},X). So a natural way to construct a primitive is to let these coefficients be equal. Since there are l(X)!l(X)! such compositions, each coefficient must be

μ({I},X)l(X)!=(1)l(X)11l(X)\frac{\mu(\{I\},X)}{l(X)!}=(-1)^{l(X)-1}\frac{1}{l(X)}

by (17). This is precisely the coefficient used to define 𝙴I\mathtt{E}_{I} in (289). This observation may be used to extend the definition of the first Eulerian idempotent to more general settings (beyond the scope of this paper, but hinted at in Section 1.10).

Remark.

The first Eulerian idempotent belongs to Solomon’s descent algebra (and hence to the symmetric group algebra). As such, it appears in work of Hain [29]. Its action on graded Hopf algebras is considered by Schmitt [66, Section 9]. Patras and Schocker [54, Definition 31] consider this element in the same context as here. It is the first among the higher Eulerian idempotents. These elements are discussed in Section 14.3 below, and additional references to the literature (which also pertain to the first Eulerian idempotent) are given there.

14.2. The Garsia-Reutenauer idempotents

Fix a nonempty set II. The element 𝙴I\mathtt{E}_{I} is a part of a family of elements indexed by partitions of II: For each XIX\vdash I, let 𝙴X𝚺[I]\mathtt{E}_{X}\in\mathbf{\Sigma}[I] be the element defined by

(293) 𝙴X:=1l(X)!F:suppF=X𝚀F.\mathtt{E}_{X}:=\frac{1}{l(X)!}\sum_{F:\,\operatorname{supp}F=X}\mathtt{Q}_{F}.

We call these elements the Garsia-Reutenauer idempotents. It follows from (189) that

(294) 𝙴X=1l(X)!F:suppF=XG:FG(1)l(G)l(F)1l(G/F)𝙷G.\mathtt{E}_{X}=\frac{1}{l(X)!}\sum_{F:\,\operatorname{supp}F=X}\ \sum_{G:\,F\leq G}(-1)^{l(G)-l(F)}\frac{1}{l(G/F)}\,\mathtt{H}_{G}.

Setting X={I}X=\{I\} recovers the first Eulerian: 𝙴{I}=𝙴I\mathtt{E}_{\{I\}}=\mathtt{E}_{I}.

Theorem 102.

For any nonempty set II, we have

(295) XI𝙴X=𝙷{I},\displaystyle\sum_{X\vdash I}\mathtt{E}_{X}=\mathtt{H}_{\{I\}},
(296) 𝙴X𝙴Y={𝙴X if X=Y,0 if XY.\displaystyle\mathtt{E}_{X}\triangleright\mathtt{E}_{Y}=\begin{cases}\mathtt{E}_{X}&\text{ if }X=Y,\\ 0&\text{ if }X\not=Y.\end{cases}

Theorem 102 states that the family {𝙴X}\{\mathtt{E}_{X}\}, as XX runs over the partitions of II, is a complete system of orthogonal idempotents in the Tits algebra (𝚺[I],)(\mathbf{\Sigma}[I],\triangleright). (They are moreover primitive in the sense that they cannot be written as a sum of nontrivial orthogonal idempotents.)

Proposition 85 and (293) imply that for any composition FF with support XX,

(297) 𝙷F𝙴X=𝚀F.\mathtt{H}_{F}\triangleright\mathtt{E}_{X}=\mathtt{Q}_{F}.

Note from (18) and (189) that 𝚀G𝙷F=𝚀G\mathtt{Q}_{G}\triangleright\mathtt{H}_{F}=\mathtt{Q}_{G} whenever FF and GG have the same support; so we also have 𝙴X𝙷F=𝙴X\mathtt{E}_{X}\triangleright\mathtt{H}_{F}=\mathtt{E}_{X}. One can now deduce that 𝚀F\mathtt{Q}_{F} is an idempotent and

(298) 𝙴X𝚀F=𝙴Xand𝚀F𝙴X=𝚀F.\mathtt{E}_{X}\triangleright\mathtt{Q}_{F}=\mathtt{E}_{X}\quad\text{and}\quad\mathtt{Q}_{F}\triangleright\mathtt{E}_{X}=\mathtt{Q}_{F}.
Remark.

The Garsia-Reutenauer idempotents 𝙴X\mathtt{E}_{X} (indexed by set partitions) possess analogues indexed by integer partitions which play the same role for graded Hopf algebras as the 𝙴X\mathtt{E}_{X} do for Hopf monoids. They are elements of Solomon’s descent algebra and appear in [25, Theorem 3.2] and [61, Section 9.2].

Brown [17, Equations (24) and (27)] and Saliola [62, Section 1.5.1] or [63, Section 5.1] construct many families of orthogonal idempotents for the Tits algebra of a central hyperplane arrangement. The Garsia-Reutenauer idempotents constitute one particular family that occurs for the braid arrangement. Brown worked in the generality of left regular bands; for further generalizations, see the work of Steinberg [70].

14.3. The higher Eulerian idempotents

Let k1k\geq 1 be any integer. Set 𝙴k,=0\mathtt{E}_{k,\emptyset}=0, and for each nonempty set II define

(299) 𝙴k,I:=X:l(X)=k𝙴X.\mathtt{E}_{k,I}:=\sum_{X:\,l(X)=k}\mathtt{E}_{X}.

The sum is over all partitions of II of length kk. This defines the series 𝙴k\mathtt{E}_{k} of 𝚺\mathbf{\Sigma}. We call it the kk-th Eulerian idempotent. The series 𝙴1\mathtt{E}_{1} is the first Eulerian idempotent as defined in Section 14.1. By convention, we set 𝙴0\mathtt{E}_{0} to be the unit series (205).

The Cauchy product (204) of the series 𝙴1\mathtt{E}_{1} with itself can be computed using (190) and (291):

(𝙴1𝙴1)I=I=STS,TμS,T(𝚀{S}𝚀{T})=I=STS,T𝚀(S,T)=2!𝙴2,I.(\mathtt{E}_{1}\ast\mathtt{E}_{1})_{I}=\sum_{\begin{subarray}{c}I=S\sqcup T\\ S,T\neq\emptyset\end{subarray}}\mu_{S,T}(\mathtt{Q}_{\{S\}}\otimes\mathtt{Q}_{\{T\}})=\sum_{\begin{subarray}{c}I=S\sqcup T\\ S,T\neq\emptyset\end{subarray}}\mathtt{Q}_{(S,T)}=2!\,\mathtt{E}_{2,I}.

The last step used (293) and (299). More generally, by the same argument, we deduce

(300) 𝙴k=1k!𝙴1k.\mathtt{E}_{k}=\frac{1}{k!}\,\mathtt{E}_{1}^{\ast k}.

The right-hand side involves the kk-fold Cauchy power of 𝙴1\mathtt{E}_{1}.

Recall from Corollary 101 that the characteristic operation of 𝙴1\mathtt{E}_{1} on a connected bimonoid is logid\log\mathrm{id}. Since Ψ\Psi is a morphism of monoids (Proposition 88), it preserves Cauchy products of series and we obtain the following result.

Proposition 103.

The characteristic operation of 𝙴k\mathtt{E}_{k} on a connected bimonoid is

(301) Ψ(𝙴k)=1k!(logid)k.\Psi(\mathtt{E}_{k})=\frac{1}{k!}(\log\mathrm{id})^{\ast k}.
Remark.

The higher Eulerian idempotents appear in the works of Gerstenhaber and Schack [27, Theorem 1.2],  [28, Section 3], Hanlon [30], Loday [40, Proposition 2.8], Patras [49, Section II.2], and Reutenauer [60, Section 3][61, Section 3.2], among other places. A related idempotent (the sum of all higher Eulerian idempotents except the first) goes back to Barr [9]; see [27, Theorem 1.3].

These idempotents give rise to various Hodge-type decompositions including the λ\lambda-decomposition of Hochschild and cyclic homology of commutative algebras [20, 28, 40] and a similar decomposition of Hadwiger’s group of polytopes [49].

14.4. The convolution powers of the identity

In the Tits algebra of decompositions 𝚺^[I]\mathbf{\widehat{\Sigma}}[I], define for any nonnegative integer pp,

(302) 𝙷^p,I:=F:l(F)=p𝙷F.\hat{\mathtt{H}}_{p,I}:=\sum_{F:\,l(F)=p}\mathtt{H}_{F}.

The sum is over all decompositions FF of II of length pp. The resulting series of 𝚺^\mathbf{\widehat{\Sigma}} is denoted 𝙷^p\hat{\mathtt{H}}_{p}.

Proposition 104.

We have

(303) 𝙷^p,I𝙷^q,I=𝙷^pq,I.\hat{\mathtt{H}}_{p,I}\triangleright\hat{\mathtt{H}}_{q,I}=\hat{\mathtt{H}}_{pq,I}.
Proof.

Let FF be a decomposition of II of length pp, and GG one of length qq. Then their Tits product FGFG has length pqpq. If we arrange the blocks of FGFG in a matrix as in (9), we recover FF by taking the union of the blocks in each row of this matrix, and we similarly recover GG from the columns. Thus, the Tits product sets up a bijection between pairs of decompositions of lengths pp and qq, and decompositions of length pqpq. The result follows. ∎

It is clear from the definitions (257) and (302) that the characteristic operation of 𝙷^p\hat{\mathtt{H}}_{p} is the pp-th convolution power of the identity:

Proposition 105.

For any bimonoid, we have

(304) Ψ(𝙷^p)=idp.\Psi(\hat{\mathtt{H}}_{p})=\mathrm{id}^{\ast p}.

We deduce that when composing convolution powers of the identity of a bimonoid that is either commutative or cocommutative, the exponents multiply:

(305) idpidq=idpq.\mathrm{id}^{\ast p}\mathrm{id}^{\ast q}=\mathrm{id}^{\ast pq}.

This follows by applying Ψ\Psi to (303), using (304), and the fact that in this situation

ΨI:𝚺[I]End𝕜(𝐡[I])\Psi_{I}:\mathbf{\Sigma}[I]\to\operatorname{End}_{\Bbbk}(\mathbf{h}[I])

either preserves or reverses products (Proposition 84).

Formula (305) generalizes property (ii) of Hopf powers (Section 13.2).

Under the morphism υ:𝚺^[I]𝚺[I]\upsilon:\mathbf{\widehat{\Sigma}}[I]\twoheadrightarrow\mathbf{\Sigma}[I], the element 𝙷^p,I\hat{\mathtt{H}}_{p,I} maps to

(306) 𝙷p,I:=FI(pl(F))𝙷F.\mathtt{H}_{p,I}:=\sum_{F\vDash I}\,\binom{p}{l(F)}\,\mathtt{H}_{F}.

The sum is over all compositions FF of II; the binomial coefficient accounts for the number of ways to turn FF into a decomposition of II of length pp by adding empty blocks. Since υ\upsilon preserves Tits products, it follows from (303) that

(307) 𝙷p,I𝙷q,I=𝙷pq,I.\mathtt{H}_{p,I}\triangleright\mathtt{H}_{q,I}=\mathtt{H}_{pq,I}.

It follows from (304) that on a connected bimonoid,

(308) Ψ(𝙷p)=idp.\Psi(\mathtt{H}_{p})=\mathrm{id}^{\ast p}.

Comparing with (288), we see that 𝙷1=𝙶\mathtt{H}_{1}=\mathtt{G}, and more generally

(309) 𝙷p=𝙶p.\mathtt{H}_{p}=\mathtt{G}^{\ast p}.

The latter is the Cauchy product in the algebra of series of 𝚺\mathbf{\Sigma}.

Theorem 106.

We have

(310) 𝙷p=k0pk𝙴k.\mathtt{H}_{p}=\sum_{k\geq 0}\,p^{k}\,\mathtt{E}_{k}.
Proof.

Consider the identity

xp=exp(plogx)=k0pkk!(logx)kx^{p}=\exp(p\log x)=\sum_{k\geq 0}\frac{p^{k}}{k!}(\log x)^{k}

in the algebra of formal power series. Now apply functional calculus with x=𝙶x=\mathtt{G} in the algebra of series of 𝚺\mathbf{\Sigma}, and use (290), (300), and (309). ∎

Observe that (306) defines 𝙷p\mathtt{H}_{p} for any integer pp. In particular, for p=1p=-1,

(311) 𝙷1,I=FI(1l(F))𝙷F=FI(1)l(F)𝙷F.\mathtt{H}_{-1,I}=\sum_{F\vDash I}\,\binom{-1}{l(F)}\,\mathtt{H}_{F}=\sum_{F\vDash I}\,(-1)^{l(F)}\,\mathtt{H}_{F}.

By polynomiality, the identities (307)–(310) continue to hold for all scalars pp and qq. In particular, from (310) we deduce that

(312) 𝙷1=k1(1)k𝙴k,\mathtt{H}_{-1}=\sum_{k\geq 1}(-1)^{k}\mathtt{E}_{k},

and from (308) that this element operates on a connected bimonoid as the antipode:

(313) Ψ(𝙷1)=s.\Psi(\mathtt{H}_{-1})=\operatorname{\textsc{s}}.

Together with (311), this yields another proof of Takeuchi’s formula (111).

Remark.

The elements 𝙷p,[n]\mathtt{H}_{p,[n]} belong to Solomon’s descent algebra (and hence to the symmetric group algebra). In connection to the higher Eulerian idempotents, they are considered in  [28, Section 1][40, Definition 1.6 and Theorem 1.7], and [49, Section II]. They are also considered in [11, Lemma 1] and [14, Proposition 2.3] in connection to riffle shuffles. The connection to convolution powers of the identity of a graded Hopf algebra is made in [28, Section 1],  [41, Section 4.5] and [50, Section 1]. A discussion from the point of view of λ\lambda-rings is given in [52, Section 5].

14.5. The Dynkin quasi-idempotent

Fix a nonempty finite set II. Given a composition F=(I1,,Ik)F=(I_{1},\ldots,I_{k}) of II, let

ω(F):=Ik\omega(F):=I_{k}

denote its last block.

For each iIi\in I, define an element 𝙳i𝚺[I]\mathtt{D}_{i}\in\mathbf{\Sigma}[I] by

(314) 𝙳i:=F:iω(F)(1)l(F)1𝙷F.\mathtt{D}_{i}:=\sum_{F:\,i\in\omega(F)}\,(-1)^{l(F)-1}\,\mathtt{H}_{F}.

The sum is over all compositions FF of II whose last block contains ii. The sum of these elements defines another element of 𝚺[I]\mathbf{\Sigma}[I]

(315) 𝙳I:=iI𝙳i.\mathtt{D}_{I}:=\sum_{i\in I}\mathtt{D}_{i}.

We call it the Dynkin quasi-idempotent. It follows that

(316) 𝙳I=FI(1)l(F)1|ω(F)|𝙷F,\mathtt{D}_{I}=\sum_{F\vDash I}\,(-1)^{l(F)-1}\,\lvert\omega(F)\rvert\,\mathtt{H}_{F},

where |ω(F)|\lvert\omega(F)\rvert denotes the size of the last block of FF. The elements 𝙳I\mathtt{D}_{I} define a series 𝙳\mathtt{D} of 𝚺\mathbf{\Sigma}. By convention, 𝙳=0\mathtt{D}_{\emptyset}=0. The following result shows that this series is primitive.

Proposition 107.

The elements 𝙳i\mathtt{D}_{i} (and hence 𝙳I\mathtt{D}_{I}) are primitive elements of 𝚺[I]\mathbf{\Sigma}[I].

Proof.

Let I=STI=S\sqcup T be a decomposition with S,TS,T\not=\emptyset. Let FSF\vDash S and GTG\vDash T. Then by (187), the coefficient of 𝙷F𝙷G\mathtt{H}_{F}\otimes\mathtt{H}_{G} in ΔS,T(𝙳i)\Delta_{S,T}(\mathtt{D}_{i}) is

K(1)l(K)1.\sum_{K}\,(-1)^{l(K)-1}.

The sum is over all quasi-shuffles KK of FF and GG such that iω(K)i\in\omega(K). (Quasi-shuffles are defined in Section 1.2.) We show below that this sum is zero.

We refer to the KK which appear in the sum as admissible quasi-shuffles. If ii does not belong to either ω(F)\omega(F) or ω(G)\omega(G), then there is no admissible KK and the sum is zero. So suppose that ii belongs to (say) ω(G)\omega(G). For any admissible quasi-shuffle KK in which ω(F)\omega(F) appears by itself, merging this last block of FF with the next block (which exists and belongs to GG) yields another admissible quasi-shuffle say KK^{\prime}. Note that KK can be recovered from KK^{\prime}. Admissible quasi-shuffles can be paired off in this manner and those in a pair contribute opposite signs to the above sum. ∎

Combining Proposition 107 with Theorem 90 and Corollary 92 we obtain the following result.

Corollary 108.

For each iIi\in I, the element 𝙳i\mathtt{D}_{i} is an idempotent of the Tits algebra 𝚺[I]\mathbf{\Sigma}[I]. The element 𝙳I\mathtt{D}_{I} is a quasi-idempotent of the Tits algebra:

𝙳I𝙳I=|I|𝙳I.\mathtt{D}_{I}\triangleright\mathtt{D}_{I}=\lvert I\rvert\,\mathtt{D}_{I}.

For any cocommutative connected bimonoid 𝐡\mathbf{h}, the characteristic operations ΨI(𝙳i)\Psi_{I}(\mathtt{D}_{i}) and ΨI(1|I|𝙳I)\Psi_{I}(\frac{1}{\lvert I\rvert}\mathtt{D}_{I}) are projections from 𝐡[I]\mathbf{h}[I] onto 𝒫(𝐡)[I]\mathcal{P}(\mathbf{h})[I].

The operations of 𝙳i\mathtt{D}_{i} and 𝙳I\mathtt{D}_{I} on 𝐡\mathbf{h} can be described in terms of the antipode of 𝐡\mathbf{h}; these results do not require cocommutativity.

Proposition 109.

For any connected bimonoid and any iIi\in I,

(317) ΨI(𝙳i)=I=STiTμS,T(sSidT)ΔS,T.\Psi_{I}(\mathtt{D}_{i})=\sum_{\begin{subarray}{c}I=S\sqcup T\\ i\in T\end{subarray}}\mu_{S,T}(\operatorname{\textsc{s}}_{S}\otimes\mathrm{id}_{T})\Delta_{S,T}.
Proof.

According to (314), we have

ΨI(𝙳i)=F:iω(F)(1)l(F)1μFΔF,\Psi_{I}(\mathtt{D}_{i})=\sum_{F:\,i\in\omega(F)}(-1)^{l(F)-1}\mu_{F}\Delta_{F},

where the sum is over those compositions FF of II for which ii lies in the last block. Given such FF, let T:=ω(F)T:=\omega(F) be its last block and let SS be the union of the other blocks. Note that SS may be empty. Then FF consists of a composition GG of SS followed by TT. By (co)associativity (180),

μF=μS,T(μGidT)andΔF=(ΔGidT)ΔS,T.\mu_{F}=\mu_{S,T}(\mu_{G}\otimes\mathrm{id}_{T})\quad\text{and}\quad\Delta_{F}=(\Delta_{G}\otimes\mathrm{id}_{T})\Delta_{S,T}.

Therefore,

ΨI(𝙳i)\displaystyle\Psi_{I}(\mathtt{D}_{i}) =I=STiTG(1)l(G)μS,T(μGidT)(ΔGidT)ΔS,T\displaystyle=\sum_{\begin{subarray}{c}I=S\sqcup T\\ i\in T\end{subarray}}\sum_{G}(-1)^{l(G)}\mu_{S,T}(\mu_{G}\otimes\mathrm{id}_{T})(\Delta_{G}\otimes\mathrm{id}_{T})\Delta_{S,T}
=I=STiTμS,T(G(1)l(G)(μGΔG)idT)ΔS,T\displaystyle=\sum_{\begin{subarray}{c}I=S\sqcup T\\ i\in T\end{subarray}}\mu_{S,T}\Bigl{(}\sum_{G}(-1)^{l(G)}(\mu_{G}\Delta_{G})\otimes\mathrm{id}_{T}\Bigr{)}\Delta_{S,T}
=I=STiTμS,T(sSidT)ΔS,T,\displaystyle=\sum_{\begin{subarray}{c}I=S\sqcup T\\ i\in T\end{subarray}}\mu_{S,T}(\operatorname{\textsc{s}}_{S}\otimes\mathrm{id}_{T})\Delta_{S,T},

by Takeuchi’s formula (111). ∎

Corollary 110.

For any connected bimonoid,

(318) Ψ(𝙳)=sn,\Psi(\mathtt{D})=\operatorname{\textsc{s}}\ast\textsc{n},

the convolution product (2.7) between the antipode and the number operator (250).

Proof.

In view of (317),

ΨI(𝙳I)\displaystyle\Psi_{I}(\mathtt{D}_{I}) =iII=STiTμS,T(sSidT)ΔS,T\displaystyle=\sum_{i\in I}\sum_{\begin{subarray}{c}I=S\sqcup T\\ i\in T\end{subarray}}\mu_{S,T}(\operatorname{\textsc{s}}_{S}\otimes\mathrm{id}_{T})\Delta_{S,T}
=I=STiTμS,T(sSidT)ΔS,T\displaystyle=\sum_{I=S\sqcup T}\sum_{i\in T}\mu_{S,T}(\operatorname{\textsc{s}}_{S}\otimes\mathrm{id}_{T})\Delta_{S,T}
=I=STμS,T(sSnT)ΔS,T\displaystyle=\sum_{I=S\sqcup T}\mu_{S,T}(\operatorname{\textsc{s}}_{S}\otimes\textsc{n}_{T})\Delta_{S,T}
=(sn)I.\displaystyle=(\operatorname{\textsc{s}}\ast\textsc{n})_{I}.\qed

It follows from (313) and (318) that

(319) 𝙳=𝙶1n(𝙶).\mathtt{D}=\mathtt{G}^{-1}\ast\textsc{n}(\mathtt{G}).

In other words, the Dynkin quasi-idempotent arises from the construction of Corollary 73 applied to the universal series.

Remark.

The Dynkin quasi-idempotent is classical. The analogue of formula (318) for graded Hopf algebras appears in work of Patras and Reutenauer [53, Section 3] and (less explicitly) in work of von Waldenfels [75]. The analogue of (319) is the definition of the Dynkin quasi-idempotent by Thibon et al [38, Section 2.1][73, Section 2.1]. (In these references, this element is also called the power sum of the first kind.) Aubry studies the operator ΨI(𝙳I)\Psi_{I}(\mathtt{D}_{I}) in [8, Section 6]. The operators ΨI(𝙳i)\Psi_{I}(\mathtt{D}_{i}) are considered in unpublished notes of Nantel Bergeron; related ideas appear in Fisher’s thesis [21]. The idempotents 𝙳i\mathtt{D}_{i} are specific to the setting of Hopf monoids.

14.6. The Dynkin-Specht-Wever theorem

Recall the bimonoid of linear orders 𝐋\mathbf{L} (Section 9.2). We proceed to describe the characteristic operation of the Dynkin quasi-idempotent on 𝐋\mathbf{L}. In the discussion, II always denotes a nonempty set.

To begin with, note that the commutator bracket (72) of 𝐋\mathbf{L} satisfies

(320) [𝙷l1,𝙷l2]:=𝙷l1l2𝙷l2l1[\mathtt{H}_{l_{1}},\mathtt{H}_{l_{2}}]:=\mathtt{H}_{l_{1}\cdot l_{2}}-\mathtt{H}_{l_{2}\cdot l_{1}}

for any I=STI=S\sqcup T, and linear orders 1\ell_{1} on SS and 2\ell_{2} on TT.

Lemma 111.

Let =i1i2in\ell=i_{1}i_{2}\cdots i_{n} be a linear order on II. Then

(321) [[𝙷i1,𝙷i2],,𝙷in]=I=STi1T(1)|S|𝙷|S¯|T.[\dots[\mathtt{H}_{i_{1}},\mathtt{H}_{i_{2}}],\dots,\mathtt{H}_{i_{n}}]=\sum_{\begin{subarray}{c}I=S\sqcup T\\ i_{1}\in T\end{subarray}}(-1)^{\lvert S\rvert}\,\mathtt{H}_{\overline{\ell|_{S}}\cdot\ell|_{T}}.
Proof.

Expanding [[𝙷i1,𝙷i2],,𝙷in]\bigl{[}[\mathtt{H}_{i_{1}},\mathtt{H}_{i_{2}}],\ldots,\mathtt{H}_{i_{n}}\bigr{]} using (320) we obtain a sum of 2n12^{n-1} elements of the form ±𝙷\pm\mathtt{H}_{\ell^{\prime}}. The linear orders \ell^{\prime} are characterized by the following property: In \ell^{\prime}, any iji_{j} either precedes all of i1,,ij1i_{1},\ldots,i_{j-1} or succeeds all of them. Write I=STI=S\sqcup T, where SS consists of those iji_{j} for which iji_{j} preceeds i1,,ij1i_{1},\ldots,i_{j-1}. By convention, i1Ti_{1}\in T, so the sign in front of \ell^{\prime} is the parity of |S|\lvert S\rvert. Also note that =|S¯|T\ell^{\prime}=\overline{\ell|_{S}}\cdot\ell|_{T}, that is, in \ell^{\prime}, the elements of SS appear first but reversed from the order in which they appear in \ell, followed by the elements of TT appearing in the same order as in \ell. ∎

Recall the element 𝙳i\mathtt{D}_{i} from (314).

Proposition 112.

Let i1i2ini_{1}i_{2}\cdots i_{n} be a linear order on II. Then, for any jIj\in I,

(322) 𝙳j𝙷i1i2in={[[𝙷i1,𝙷i2],,𝙷in] if i1=j,0 otherwise.\mathtt{D}_{j}\triangleright\mathtt{H}_{i_{1}i_{2}\cdots i_{n}}=\begin{cases}[\dots[\mathtt{H}_{i_{1}},\mathtt{H}_{i_{2}}],\dots,\mathtt{H}_{i_{n}}]&\text{ if }i_{1}=j,\\ 0&\text{ otherwise}.\end{cases}
Proof.

Put :=i1i2in\ell:=i_{1}i_{2}\cdots i_{n}. By (317),

𝙳j𝙷=I=STjTμS,T(sSidT)ΔS,T(𝙷)=I=STjT(1)|S|𝙷|S¯|T.\mathtt{D}_{j}\triangleright\mathtt{H}_{\ell}=\sum_{\begin{subarray}{c}I=S\sqcup T\\ j\in T\end{subarray}}\mu_{S,T}(\operatorname{\textsc{s}}_{S}\otimes\mathrm{id}_{T})\Delta_{S,T}(\mathtt{H}_{\ell})=\sum_{\begin{subarray}{c}I=S\sqcup T\\ j\in T\end{subarray}}(-1)^{\lvert S\rvert}\,\mathtt{H}_{\overline{\ell|_{S}}\cdot\ell|_{T}}.

The second step used the explicit formulas for the product, coproduct and antipode of 𝐋\mathbf{L}. The claim in the case i1=ji_{1}=j follows from Lemma 111. Now suppose i1ji_{1}\neq j. Then i1i_{1} may appear either in SS or in TT. In the former case, i1i_{1} is the last element of |S¯\overline{\ell|_{S}}, while in the latter, i1i_{1} is the first element of |T\ell|_{T}. Thus, for two decompositions I=STI=S\sqcup T and I=STI=S^{\prime}\sqcup T^{\prime} which differ only in the location of i1i_{1}, we have |S¯|T=|S¯|T\overline{\ell|_{S}}\cdot\ell|_{T}=\overline{\ell|_{S^{\prime}}}\cdot\ell|_{T^{\prime}} and (1)|S|+(1)|S|=0(-1)^{\lvert S\rvert}+(-1)^{\lvert S^{\prime}\rvert}=0. Thus 𝙳j𝙷=0\mathtt{D}_{j}\triangleright\mathtt{H}_{\ell}=0. ∎

Combining (315) and (322), we obtain the following result.

Theorem 113.

For any linear order i1i2ini_{1}i_{2}\cdots i_{n} on II,

(323) 𝙳I𝙷i1i2in=[[𝙷i1,𝙷i2],,𝙷in].\mathtt{D}_{I}\triangleright\mathtt{H}_{i_{1}i_{2}\cdots i_{n}}=[\dots[\mathtt{H}_{i_{1}},\mathtt{H}_{i_{2}}],\dots,\mathtt{H}_{i_{n}}].

This result shows that 𝙳I\mathtt{D}_{I} operates on 𝐋[I]\mathbf{L}[I] as the left bracketing

𝙷i1i2in[[𝙷i1,𝙷i2],,𝙷in].\mathtt{H}_{i_{1}i_{2}\cdots i_{n}}\mapsto[\dots[\mathtt{H}_{i_{1}},\mathtt{H}_{i_{2}}],\dots,\mathtt{H}_{i_{n}}].

This operator on 𝐋[I]\mathbf{L}[I] (rather than the element 𝙳I\mathtt{D}_{I}) is sometimes taken as the definition of the Dynkin quasi-idempotent.

As a special case of Corollary 108, we have the following result. Recall that 𝐋𝐢𝐞[I]=𝒫(𝐋)[I]\mathbf{Lie}[I]=\mathcal{P}(\mathbf{L})[I].

Corollary 114.

The image of the left bracketing operator on 𝐋[I]\mathbf{L}[I] is 𝐋𝐢𝐞[I]\mathbf{Lie}[I]. In addition, 𝐋𝐢𝐞[I]\mathbf{Lie}[I] is the eigenspace of eigenvalue |I|\lvert I\rvert of this operator.

This is the analogue for Hopf monoids of the classical Dynkin-Specht-Wever theorem  [59, Theorem 2.3].

We turn to the left bracketing operator on an arbitrary connected bimonoid 𝐡\mathbf{h}.

Given a composition F=(I1,,Ik)F=(I_{1},\ldots,I_{k}) of a finite set II and elements xi𝐡[Ii]x_{i}\in\mathbf{h}[I_{i}]. Recall that μF:𝐡(F)𝐡[I]\mu_{F}:\mathbf{h}(F)\to\mathbf{h}[I] denotes the higher product of 𝐡\mathbf{h} (45). Let us write

(x)F:=μF(x1xk).(x)_{F}:=\mu_{F}(x_{1}\otimes\cdots\otimes x_{k}).

Thus, (x)F𝐡[I](x)_{F}\in\mathbf{h}[I] is the product of the xix_{i} in the order specified by FF. The left bracketing of the xix_{i} is the element [x]F𝐡[I][x]_{F}\in\mathbf{h}[I] defined by

[x]F:=[[x1,x2],,xk].[x]_{F}:=[\dots[x_{1},x_{2}],\dots,x_{k}].

It is obtained by iterating the commutator bracket (72) of 𝐡\mathbf{h}.

Let α(F):=I1\alpha(F):=I_{1} denote the first block of FF.

We then have the following results, generalizing (321)–(323). (Similar proofs apply.)

(324) [x]F=(1)|S|(x)F|S¯F|T,[x]_{F}=\sum(-1)^{\lvert S\rvert}\,(x)_{\overline{F|_{S}}\cdot F|_{T}},

where the sum is over all decompositions I=STI=S\sqcup T for which TT is FF-admissible and α(F)T\alpha(F)\subseteq T. (Note that SS may be empty.) If the xix_{i} are primitive, then, for any jIj\in I,

(325) 𝙳j(x)F={[x]F if jα(F),0 otherwise.\mathtt{D}_{j}\triangleright(x)_{F}=\begin{cases}[x]_{F}&\text{ if }j\in\alpha(F),\\ 0&\text{ otherwise}.\end{cases}

Under the same hypothesis,

(326) 𝙳I(x)F=|α(F)|[x]F.\mathtt{D}_{I}\triangleright(x)_{F}=\lvert\alpha(F)\rvert\,[x]_{F}.

Recall the cocommutative Hopf monoid 𝒯(𝐪)\mathcal{T}(\mathbf{q}) from Section 6.2.

Corollary 115.

The primitive part 𝒫(𝒯(𝐪))\mathcal{P}(\mathcal{T}(\mathbf{q})) is the smallest Lie submonoid of 𝒯(𝐪)\mathcal{T}(\mathbf{q}) containing 𝐪\mathbf{q}.

Proof.

Recall from Proposition 13 that 𝒫(𝒯(𝐪))\mathcal{P}(\mathcal{T}(\mathbf{q})) is a Lie submonoid of 𝒯(𝐪)\mathcal{T}(\mathbf{q}). Moreover, 𝐪𝒫(𝒯(𝐪))\mathbf{q}\subseteq\mathcal{P}(\mathcal{T}(\mathbf{q})), so it only remains to show that every primitive element belongs to the Lie submonoid generated by 𝐪\mathbf{q}. Accordingly, pick a primitive element yy. The elements (x)F𝐪(F)(x)_{F}\in\mathbf{q}(F) span 𝒯(𝐪)\mathcal{T}(\mathbf{q}), as the xi𝐪[Ii]x_{i}\in\mathbf{q}[I_{i}] vary. So express yy as a linear combination of these elements. Now apply Ψ(𝙳I)\Psi(\mathtt{D}_{I}) to this equation and use Corollary 108 and (326). This expresses |I|y\lvert I\rvert\,y (and hence yy) as a linear combination of the [x]F[x]_{F}. ∎

Remark.

There is a “right version” of the Dynkin quasi-idempotent. It is defined as follows. Let 𝙳¯i\overline{\mathtt{D}}_{i} be as in (314), where the sum is now over all set compositions FF whose first block α(F)\alpha(F) contains ii. Let 𝙳¯I\overline{\mathtt{D}}_{I} be the sum of these over all ii:

𝙳¯I=FI(1)l(F)1|α(F)|𝙷F.\overline{\mathtt{D}}_{I}=\sum_{F\vDash I}\,(-1)^{l(F)-1}\,\lvert\alpha(F)\rvert\,\mathtt{H}_{F}.

This defines another primitive series 𝙳¯\overline{\mathtt{D}} of 𝚺\mathbf{\Sigma}. It satisfies

(327) 𝙳¯=n(𝙶)𝙶1.\overline{\mathtt{D}}=\textsc{n}(\mathtt{G})\ast\mathtt{G}^{-1}.

Its characteristic operation on a product of primitive elements is given by “right bracketing”.

15. The Poincaré-Birkhoff-Witt and Cartier-Milnor-Moore theorems

We establish analogues of the Poincaré-Birkhoff-Witt (PBW) and Cartier-Milnor-Moore (CMM) theorems for connected Hopf monoids. These results appeared in the work of Joyal [35] and Stover [71], with a precursor in the work of Barratt [10]. We provide here an approach based on the Garsia-Reutenauer idempotents. For connected Hopf algebras, proofs of these classical results can be found in [44, Section 7] and [57, Appendix B].

Let 𝕜\Bbbk be a field of characteristic 0.

15.1. The canonical decomposition of a cocommutative connected bimonoid

Let 𝐡\mathbf{h} be a cocommutative connected bimonoid. Let II be any nonempty set. Consider the characteristic operation of the first Eulerian idempotent 𝙴I\mathtt{E}_{I} on 𝐡\mathbf{h}. By Corollary 101,

(328) ΨI(𝙴I)(𝐡[I])=𝒫(𝐡)[I].\Psi_{I}(\mathtt{E}_{I})(\mathbf{h}[I])=\mathcal{P}(\mathbf{h})[I].

More generally, the characteristic operation of the Garsia-Reutenauer idempotent 𝙴X\mathtt{E}_{X} on 𝐡\mathbf{h} is related to the primitive part of 𝐡\mathbf{h} as follows.

Proposition 116.

For any composition FF of II with support XX, the map ΔF\Delta_{F} restricts to an isomorphism

ΨI(𝙴X)(𝐡[I])𝒫(𝐡)(F).\Psi_{I}(\mathtt{E}_{X})(\mathbf{h}[I])\xrightarrow{\cong}\mathcal{P}(\mathbf{h})(F).
Proof.

Write F=(I1,,Ik)F=(I_{1},\dots,I_{k}). Since 𝚀F=𝚀F𝙷F\mathtt{Q}_{F}=\mathtt{Q}_{F}\triangleright\mathtt{H}_{F},

𝚀Fh\displaystyle\mathtt{Q}_{F}\triangleright h =𝚀F𝙷Fh\displaystyle=\mathtt{Q}_{F}\triangleright\mathtt{H}_{F}\triangleright h
=μF(𝚀(I1)𝚀(Ik))(μF(ΔF(h)))\displaystyle=\mu_{F}(\mathtt{Q}_{(I_{1})}\otimes\dots\otimes\mathtt{Q}_{(I_{k})})\triangleright(\mu_{F}(\Delta_{F}(h)))
=μF((𝚀(I1)𝚀(Ik))ΔF(h))\displaystyle=\mu_{F}((\mathtt{Q}_{(I_{1})}\otimes\dots\otimes\mathtt{Q}_{(I_{k})})\triangleright\Delta_{F}(h))

for any h𝐡[I]h\in\mathbf{h}[I]. This used (190), (258) and (273). Now by Corollary 58, ΔFμF\Delta_{F}\mu_{F} is the identity, so ΔF\Delta_{F} is surjective (onto 𝐡(F)\mathbf{h}(F)) and μF\mu_{F} is injective, and by (291) and (328),

ΨIj(𝚀(Ij))(𝐡[Ij])=𝒫(𝐡)[Ij].\Psi_{I_{j}}(\mathtt{Q}_{(I_{j})})(\mathbf{h}[I_{j}])=\mathcal{P}(\mathbf{h})[I_{j}].

One can deduce from here that the maps ΔF\Delta_{F} and μF\mu_{F} restrict to inverse isomorphisms:

ΔF:ΨI(𝚀F)(𝐡[I])𝒫(𝐡)(F)andμF:𝒫(𝐡)(F)ΨI(𝚀F).\Delta_{F}:\Psi_{I}(\mathtt{Q}_{F})(\mathbf{h}[I])\xrightarrow{\cong}\mathcal{P}(\mathbf{h})(F)\quad\text{and}\quad\mu_{F}:\mathcal{P}(\mathbf{h})(F)\xrightarrow{\cong}\Psi_{I}(\mathtt{Q}_{F}).

We know from (298) that ΨI(𝙴X)\Psi_{I}(\mathtt{E}_{X}) and ΨI(𝚀F)\Psi_{I}(\mathtt{Q}_{F}) are canonically isomorphic under 𝙴Xh𝚀Fh\mathtt{E}_{X}\triangleright h\leftrightarrow\mathtt{Q}_{F}\triangleright h. Further,

ΔF(𝙴Xh)=ΔFμFΔF(𝙴Xh)=ΔF(𝙷F𝙴Xh)=ΔF(𝚀Fh).\Delta_{F}(\mathtt{E}_{X}\triangleright h)=\Delta_{F}\mu_{F}\Delta_{F}(\mathtt{E}_{X}\triangleright h)=\Delta_{F}(\mathtt{H}_{F}\triangleright\mathtt{E}_{X}\triangleright h)=\Delta_{F}(\mathtt{Q}_{F}\triangleright h).

The last step used (297). The claim follows. ∎

Theorem 117.

For any cocommutative connected bimonoid 𝐡\mathbf{h},

(329) 𝐡[I]=XΨI(𝙴X)(𝐡[I]),\mathbf{h}[I]=\bigoplus_{X}\Psi_{I}(\mathtt{E}_{X})(\mathbf{h}[I]),

and, if 𝐡\mathbf{h} is finite-dimensional, then

(330) dimΨI(𝙴X)(𝐡[I])=kX(𝐡),\dim\Psi_{I}(\mathtt{E}_{X})(\mathbf{h}[I])=k_{X}(\mathbf{h}),

with kX(𝐡)k_{X}(\mathbf{h}) as in (277).

Proof.

The decomposition (329) follows from Theorem 102. For the second part, let F=(I1,,Ik)F=(I_{1},\dots,I_{k}) be any composition with support XX. By Proposition 116, the dimension of the XX-summand is the dimension of 𝒫(𝐡)(F)\mathcal{P}(\mathbf{h})(F). The latter is the product of the dimensions of 𝒫(𝐡)[Ij]\mathcal{P}(\mathbf{h})[I_{j}]. Applying Proposition 95 and (279) yields (330). ∎

Theorem 118.

For any cocommutative connected bimonoid 𝐡\mathbf{h}, there is an isomorphism of comonoids

(331) 𝒮(𝒫(𝐡))𝐡.\mathcal{S}(\mathcal{P}(\mathbf{h}))\stackrel{{\scriptstyle\cong}}{{\longrightarrow}}\mathbf{h}.

Explicitly, the isomorphism is given by the composite

(332) 𝒫(𝐡)(X)𝐡(X)1l(X)!FβFF:suppF=X𝐡(F)FμF𝐡[I],\mathcal{P}(\mathbf{h})(X)\hookrightarrow\mathbf{h}(X)\xrightarrow{\frac{1}{l(X)!}\sum_{F}\beta_{F}}\bigoplus_{F:\,\operatorname{supp}F=X}\mathbf{h}(F)\xrightarrow{\sum_{F}\mu_{F}}\mathbf{h}[I],

where, for F=(I1,,Ik)F=(I_{1},\ldots,I_{k}) with suppF=X\operatorname{supp}F=X, the map βF\beta_{F} is the canonical isomorphism

(333) 𝐡(X)=BX𝐡[B]𝐡[I1]𝐡[Ik]=𝐡(F).\mathbf{h}(X)=\bigotimes_{B\in X}\mathbf{h}[B]\stackrel{{\scriptstyle\cong}}{{\longrightarrow}}\mathbf{h}[I_{1}]\otimes\dots\otimes\mathbf{h}[I_{k}]=\mathbf{h}(F).
Proof.

Let VV be the (isomorphic) image of 𝒫(𝐡)(X)\mathcal{P}(\mathbf{h})(X) inside the direct sum in (332). Consider the composite map

ΨI(𝙴X)(𝐡[I])(1l(F)!ΔF)FVFμFΨI(𝙴X)(𝐡[I]).\Psi_{I}(\mathtt{E}_{X})(\mathbf{h}[I])\xrightarrow{(\frac{1}{l(F)!}\Delta_{F})_{F}}V\xrightarrow{\sum_{F}\mu_{F}}\Psi_{I}(\mathtt{E}_{X})(\mathbf{h}[I]).

In both maps FF ranges over all compositions with support XX. The first map is an isomorphism by Proposition 116. Using (293) and (297), one can deduce that the composite is the identity:

F:suppF=X1l(F)!μFΔF(𝙴Xh)\displaystyle\sum_{F:\,\operatorname{supp}F=X}\frac{1}{l(F)!}\,\mu_{F}\Delta_{F}(\mathtt{E}_{X}\triangleright h) =F:suppF=X1l(F)!𝙷F𝙴Xh\displaystyle=\sum_{F:\,\operatorname{supp}F=X}\frac{1}{l(F)!}\,\mathtt{H}_{F}\triangleright\mathtt{E}_{X}\triangleright h
=F:suppF=X1l(F)!𝚀Fh=𝙴Xh.\displaystyle=\sum_{F:\,\operatorname{supp}F=X}\frac{1}{l(F)!}\,\mathtt{Q}_{F}\triangleright h=\mathtt{E}_{X}\triangleright h.

So the second map is an isomorphism as well. It follows that the image of (332) is precisely ΨI(𝙴X)(𝐡[I])\Psi_{I}(\mathtt{E}_{X})(\mathbf{h}[I]). Combining with the decomposition (329) establishes the isomorphism (331).

To check that this is a morphism of comonoids, we employ the coproduct formula of 𝒮(𝒫(𝐡))\mathcal{S}(\mathcal{P}(\mathbf{h})) given in Section 7.2. The calculation is split into two cases, depending on whether SS is XX-admissible or not. Both cases can be handled using the higher compatibility axiom (167) for FF arbitrary and G=(S,T)G=(S,T). We omit the details. ∎

Remark.

The analogue of Theorem 118 for graded Hopf algebras can be proved using the analogues of the Garsia-Reutenauer idempotents indexed by integer partitions. A proof of a similar nature is given by Patras [50, Proposition III.5] and Cartier [18, Section 3.8].

15.2. PBW and CMM

Let 𝐠\mathbf{g} be any positive species. For any partition XX, consider the map

𝐠(X)1l(X)!FβFF:suppF=X𝐠(F),\mathbf{g}(X)\xrightarrow{\frac{1}{l(X)!}\sum_{F}\beta_{F}}\bigoplus_{F:\,\operatorname{supp}F=X}\mathbf{g}(F),

where βF\beta_{F} is as in (333). Summing over all XX yields a map

(334) 𝒮(𝐠)𝒯(𝐠).\mathcal{S}(\mathbf{g})\to\mathcal{T}(\mathbf{g}).

It is straightforward to check that this is a morphism of comonoids.

Now let 𝐠\mathbf{g} be a positive Lie monoid. Composing the above map with the quotient map 𝒯(𝐠)𝒰(𝐠)\mathcal{T}(\mathbf{g})\to\mathcal{U}(\mathbf{g}) yields a morphism

(335) 𝒮(𝐠)𝒰(𝐠)\mathcal{S}(\mathbf{g})\to\mathcal{U}(\mathbf{g})

of comonoids.

Theorem 119 (PBW).

For any positive Lie monoid 𝐠\mathbf{g}, the map (335) is an isomorphism of comonoids. In particular, the canonical map η𝐠:𝐠𝒰(𝐠)\eta_{\mathbf{g}}:\mathbf{g}\to\mathcal{U}(\mathbf{g}) is injective.

Proof.

The first step is to construct a surjective map ψ𝐠\psi_{\mathbf{g}} fitting into a commutative diagram

𝒯(𝐠)\textstyle{\mathcal{T}(\mathbf{g})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ψ𝐠\scriptstyle{\psi_{\mathbf{g}}}π𝐠\scriptstyle{\pi_{\mathbf{g}}}𝒮(𝐠)\textstyle{\mathcal{S}(\mathbf{g})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝒰(𝐠).\textstyle{\mathcal{U}(\mathbf{g}).}

The map on each summand 𝐠(F)\mathbf{g}(F) is defined by an induction on the rank of FF. We omit the details. The existence of ψ𝐠\psi_{\mathbf{g}} shows that (335) is surjective.

To show that (335) is injective, we need to show that 𝒥(𝐠)\mathcal{J}(\mathbf{g}), the kernel of π𝐠\pi_{\mathbf{g}}, is contained in the kernel of ψ𝐠\psi_{\mathbf{g}}. Suppose 𝐠𝐠\mathbf{g}^{\prime}\twoheadrightarrow\mathbf{g} is a surjective map of Lie monoids, and suppose that this result holds for 𝐠\mathbf{g}^{\prime}. Then the result holds for 𝐠\mathbf{g} as well. To see this, consider the commutative diagram

𝒥(𝐠)\textstyle{\mathcal{J}(\mathbf{g}^{\prime})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝒯(𝐠)\textstyle{\mathcal{T}(\mathbf{g}^{\prime})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ψ𝐠\scriptstyle{\psi_{\mathbf{g}^{\prime}}}𝒮(𝐠)\textstyle{\mathcal{S}(\mathbf{g}^{\prime})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝒥(𝐠)\textstyle{\mathcal{J}(\mathbf{g})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝒯(𝐠)\textstyle{\mathcal{T}(\mathbf{g})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ψ𝐠\scriptstyle{\psi_{\mathbf{g}}}𝒮(𝐠).\textstyle{\mathcal{S}(\mathbf{g}).}

The key observation is that the map 𝒥(𝐠)𝒥(𝐠)\mathcal{J}(\mathbf{g}^{\prime})\to\mathcal{J}(\mathbf{g}) is surjective. (This can be deduced using the generating relations (134).) Then the top composite being zero implies that the bottom composite is also zero as required.

Next note that for any positive Lie monoid 𝐠\mathbf{g}, the canonical map ie(𝐠)𝐠\mathcal{L}ie(\mathbf{g})\to\mathbf{g} (defined using the Lie structure of 𝐠\mathbf{g}) is a surjective morphism of Lie monoids. So it suffices to prove injectivity for free Lie monoids. Accordingly, let 𝐠=ie(𝐪)\mathbf{g}=\mathcal{L}ie(\mathbf{q}). The map (335) is the composite

𝒮(𝐠)𝒮(𝒫(𝒰(𝐠)))𝒰(𝐠).\mathcal{S}(\mathbf{g})\to\mathcal{S}(\mathcal{P}(\mathcal{U}(\mathbf{g})))\xrightarrow{\cong}\mathcal{U}(\mathbf{g}).

The second map is an isomorphism by Theorem 118. The first map is induced by 𝐠𝒫(𝒰(𝐠))\mathbf{g}\to\mathcal{P}(\mathcal{U}(\mathbf{g})). In the free Lie monoid case, 𝒰(𝐠)=𝒯(𝐪)\mathcal{U}(\mathbf{g})=\mathcal{T}(\mathbf{q}) by (136). So by Lemma 27, this map (and hence the induced map) is injective. ∎

Theorem 120 (CMM).

The functors

{positive Lie monoids}\textstyle{\{\textup{positive Lie monoids}\}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝒰\scriptstyle{\mathcal{U}}{cocommutative connected bimonoids}\textstyle{\ignorespaces\ignorespaces\ignorespaces\ignorespaces\{\textup{cocommutative connected bimonoids}\}}𝒫\scriptstyle{\mathcal{P}}

form an adjoint equivalence.

In other words, the functors form an adjunction for which the unit and counit are isomorphisms

(336) 𝒰(𝒫(𝐡))𝐡and𝐠𝒫(𝒰(𝐠)).\mathcal{U}(\mathcal{P}(\mathbf{h}))\stackrel{{\scriptstyle\cong}}{{\longrightarrow}}\mathbf{h}\quad\text{and}\quad\mathbf{g}\stackrel{{\scriptstyle\cong}}{{\longrightarrow}}\mathcal{P}(\mathcal{U}(\mathbf{g})).
Proof.

The adjunction follows from (135), since (connected) cocommutative bimonoids form a full subcategory of the category of (connected) bimonoids.

The isomorphism (331) can be expressed as the composite

𝒮(𝒫(𝐡))𝒰(𝒫(𝐡))𝐡.\mathcal{S}(\mathcal{P}(\mathbf{h}))\to\mathcal{U}(\mathcal{P}(\mathbf{h}))\to\mathbf{h}.

The first map is obtained by setting 𝐠:=𝒫(𝐡)\mathbf{g}:=\mathcal{P}(\mathbf{h}) in (335) and hence is an isomorphism by Theorem 119. Hence the second map which is as in (336) is also an isomorphism.

By the adjunction property,

𝒰(𝐠)𝒰(𝒫(𝒰(𝐠)))𝒰(𝐠)\mathcal{U}(\mathbf{g})\to\mathcal{U}(\mathcal{P}(\mathcal{U}(\mathbf{g})))\to\mathcal{U}(\mathbf{g})

is the identity. From the above, we know that the second map is an isomorphism. Hence so is the first. Now by Theorem 119, a Lie monoid embeds in its universal enveloping monoid. So this map restricts to an isomorphism 𝐠𝒫(𝒰(𝐠))\mathbf{g}\stackrel{{\scriptstyle\cong}}{{\longrightarrow}}\mathcal{P}(\mathcal{U}(\mathbf{g})) as required. ∎

Applying 𝒫\mathcal{P} to (136) and using (336), we deduce:

Corollary 121.

There is an isomorphism of Lie monoids

(337) 𝒫(𝒯(𝐪))ie(𝐪).\mathcal{P}(\mathcal{T}(\mathbf{q}))\cong\mathcal{L}ie(\mathbf{q}).

More precisely, the image of the map (132) identifies ie(𝐪)\mathcal{L}ie(\mathbf{q}) with the primitive part of 𝒯(𝐪)\mathcal{T}(\mathbf{q}). In particular, 𝒫(𝒯(𝐪))\mathcal{P}(\mathcal{T}(\mathbf{q})) is the Lie submonoid of 𝒯(𝐪)\mathcal{T}(\mathbf{q}) generated by 𝐪\mathbf{q}. This latter result was obtained by different means in Corollary 115.

Remark.

Theorem 120 is due to Stover [71, Proposition 7.10 and Theorem 8.4]. This result does not require characteristic 0. The map (335) in the PBW isomorphism is the analogue of Quillen’s map in the classical theory  [57, Appendix B, Theorem 2.3]. Theorem 119 is due to Joyal [35, Section 4.2, Theorem 2]. He deduces it from the classical PBW; he does not mention comonoids though. Stover [71, Theorem 11.3] uses a different map to show that 𝒮(𝐠)\mathcal{S}(\mathbf{g}) and 𝒰(𝐠)\mathcal{U}(\mathbf{g}) are isomorphic; his map is not a morphism of comonoids.

16. The dimension sequence of a connected Hopf monoid

In this section, all species are assumed to be finite-dimensional.

We consider three formal power series associated to a species 𝐩\mathbf{p}:

𝖤𝐩(𝓍)\displaystyle\mathsf{E}_{\mathbf{p}}(\mathpzc{x}) :=n0dim𝕜𝐩[n]𝓍𝓃n!,\displaystyle:=\sum_{n\geq 0}\dim_{\Bbbk}\mathbf{p}[n]\,\frac{\mathpzc{x}^{n}}{n!},
𝖳𝐩(𝓍)\displaystyle\mathsf{T}_{\mathbf{p}}(\mathpzc{x}) :=n0dim𝕜𝐩[n]Sn𝓍𝓃,\displaystyle:=\sum_{n\geq 0}\dim_{\Bbbk}\mathbf{p}[n]_{S_{n}}\,\mathpzc{x}^{n},
𝖮𝐩(𝓍)\displaystyle\mathsf{O}_{\mathbf{p}}(\mathpzc{x}) :=n0dim𝕜𝐩[n]𝓍𝓃.\displaystyle:=\sum_{n\geq 0}\dim_{\Bbbk}\mathbf{p}[n]\,\mathpzc{x}^{n}.

They are the exponential, type, and ordinary generating functions, respectively. In the second function, the coefficient of tnt^{n} is the dimension of the space of coinvariants of 𝐩[n]\mathbf{p}[n] under the action of Sn\mathrm{S}_{n}.

For example,

𝖤𝐄(𝓍)\displaystyle\mathsf{E}_{\mathbf{E}}(\mathpzc{x}) =exp(𝓍),\displaystyle=\exp(\mathpzc{x}), 𝖤𝐋(𝓍)\displaystyle\mathsf{E}_{\mathbf{L}}(\mathpzc{x}) =11𝓍,\displaystyle=\frac{1}{1-\mathpzc{x}}, 𝖤𝚷(𝓍)\displaystyle\mathsf{E}_{\mathbf{\Pi}}(\mathpzc{x}) =exp(exp(𝓍)1),\displaystyle=\exp\bigl{(}\exp(\mathpzc{x})-1),
𝖳𝐄(𝓍)\displaystyle\mathsf{T}_{\mathbf{E}}(\mathpzc{x}) =11𝓍,\displaystyle=\frac{1}{1-\mathpzc{x}}, 𝖳𝐋(𝓍)\displaystyle\mathsf{T}_{\mathbf{L}}(\mathpzc{x}) =11𝓍,\displaystyle=\frac{1}{1-\mathpzc{x}}, 𝖳𝚷(𝓍)\displaystyle\mathsf{T}_{\mathbf{\Pi}}(\mathpzc{x}) =k111𝓍𝓀.\displaystyle=\prod_{k\geq 1}\frac{1}{1-\mathpzc{x}^{k}}.

These results are given in [12]. More generally, for any positive species 𝐪\mathbf{q},

𝖤𝒮(𝐪)(𝓍)\displaystyle\mathsf{E}_{\mathcal{S}(\mathbf{q})}(\mathpzc{x}) =exp(𝖤𝐪(𝓍)),\displaystyle=\exp\bigl{(}\mathsf{E}_{\mathbf{q}}(\mathpzc{x})\bigr{)}, 𝖤𝒯(𝐪)(𝓍)\displaystyle\mathsf{E}_{\mathcal{T}(\mathbf{q})}(\mathpzc{x}) =11𝖤𝐪(𝓍),\displaystyle=\frac{1}{1-\mathsf{E}_{\mathbf{q}}(\mathpzc{x})},
𝖳𝒮(𝐪)(𝓍)\displaystyle\mathsf{T}_{\mathcal{S}(\mathbf{q})}(\mathpzc{x}) =k1exp(1k𝖳𝐪(𝓍𝓀)),\displaystyle=\prod_{k\geq 1}\exp\bigl{(}\frac{1}{k}\mathsf{T}_{\mathbf{q}}(\mathpzc{x}^{k})\bigr{)}, 𝖳𝒯(𝐪)(𝓍)\displaystyle\mathsf{T}_{\mathcal{T}(\mathbf{q})}(\mathpzc{x}) =11𝖳𝐪(𝓍).\displaystyle=\frac{1}{1-\mathsf{T}_{\mathbf{q}}(\mathpzc{x})}.

These follow from [12, Theorem 1.4.2].

As for the ordinary generating function, note that for any species 𝐩\mathbf{p}

𝖮𝐩(𝓍)=𝖤𝐩×𝐋(𝓍)=𝖳𝐩×𝐋(𝓍).\mathsf{O}_{\mathbf{p}}(\mathpzc{x})=\mathsf{E}_{\mathbf{p}\times\mathbf{L}}(\mathpzc{x})=\mathsf{T}_{\mathbf{p}\times\mathbf{L}}(\mathpzc{x}).

The following results assert that certain power series associated to a connected Hopf monoid 𝐡\mathbf{h} have nonnegative coefficients. They impose nontrivial inequalities on the dimension sequence of 𝐡\mathbf{h}.

Theorem 122.

Let 𝐡\mathbf{h} be a connected qq-Hopf monoid. Then

11𝖮𝐡(𝓍)[[𝓍]].1-\frac{1}{\mathsf{O}_{\mathbf{h}}(\mathpzc{x})}\in\mathbb{N}{[\![}\mathpzc{x}{]\!]}.

Theorem 122 is given in [7, Theorem 4.4]. The proof goes as follows. By Theorem 20, 𝐡×𝐋\mathbf{h}\times\mathbf{L} is free. Hence there is a positive species 𝐪\mathbf{q} such that

𝖮𝐡(𝓍)=𝖳𝐡×𝐋(𝓍)=𝖳𝒯(𝐪)(𝓍)=11𝖳𝐪(𝓍),\mathsf{O}_{\mathbf{h}}(\mathpzc{x})=\mathsf{T}_{\mathbf{h}\times\mathbf{L}}(\mathpzc{x})=\mathsf{T}_{\mathcal{T}(\mathbf{q})}(\mathpzc{x})=\frac{1}{1-\mathsf{T}_{\mathbf{q}}(\mathpzc{x})},

and this gives the result. It can be stated as follows: the Boolean transform of the dimension sequence of 𝐡\mathbf{h} is nonnegative.

Theorem 123.

Let 𝐡\mathbf{h} be a connected Hopf monoid. Then

𝖮𝐡(𝓍)/𝖳𝐡(𝓍)[[𝓍]].\mathsf{O}_{\mathbf{h}}(\mathpzc{x})\Big{/}\mathsf{T}_{\mathbf{h}}(\mathpzc{x})\in\mathbb{N}{[\![}\mathpzc{x}{]\!]}.

This result is given in [4, Corollary 3.4]. For the proof one applies the dual of Theorem 15 to the surjective morphism of Hopf monoids

𝐡×𝐋id×π𝐗𝐡×𝐄𝐡.\mathbf{h}\times\mathbf{L}\xrightarrow{\mathrm{id}\times\pi_{\mathbf{X}}}\mathbf{h}\times\mathbf{E}\cong\mathbf{h}.

The same argument yields

𝖮𝐡(𝓍)/𝖤𝐡(𝓍)0[[𝓍]],\mathsf{O}_{\mathbf{h}}(\mathpzc{x})\Big{/}\mathsf{E}_{\mathbf{h}}(\mathpzc{x})\in\mathbb{Q}_{\geq 0}{[\![}\mathpzc{x}{]\!]},

but as shown in [7, Section 4.6], this result follows from Theorem 122.

Theorem 124.

Let H\mathrm{H} be a nontrivial set-theoretic connected Hopf monoid and 𝐡=𝕜H\mathbf{h}=\Bbbk\mathrm{H}. Then

exp(𝓍)𝖤𝐡(𝓍)0[[𝓍]]and(1𝓍)𝖳𝐡(𝓍)[[𝓍]].\exp(-\mathpzc{x})\mathsf{E}_{\mathbf{h}}(\mathpzc{x})\in\mathbb{Q}_{\geq 0}{[\![}\mathpzc{x}{]\!]}\qquad\text{and}\qquad(1-\mathpzc{x})\mathsf{T}_{\mathbf{h}}(\mathpzc{x})\in\mathbb{N}{[\![}\mathpzc{x}{]\!]}.

This is given in [4, Corollary 3.6]. Nontrivial means that H1\mathrm{H}\neq 1. In this case one must have H[I]\mathrm{H}[I]\neq\emptyset for all II. Then 𝐡\mathbf{h} surjects onto 𝐄\mathbf{E} canonically (as Hopf monoids) and one may again apply Theorem 15 to conclude the result. The first condition states that the binomial transform of the sequence dim𝕜𝐡=|H[n]|\dim_{\Bbbk}\mathbf{h}=\lvert\mathrm{H}[n]\rvert is nonnegative. The second that the sequence dim𝕜𝐡[n]Sn=|H[n]Sn|\dim_{\Bbbk}\mathbf{h}[n]_{\mathrm{S}_{n}}=\lvert\mathrm{H}[n]^{\mathrm{S}_{n}}\rvert is weakly increasing.

Theorem 125.

Let 𝐡\mathbf{h} be a cocommutative connected Hopf monoid. Then

log𝖤𝐡(𝓍)0[[𝓍]].\log\mathsf{E}_{\mathbf{h}}(\mathpzc{x})\in\mathbb{Q}_{\geq 0}{[\![}\mathpzc{x}{]\!]}.

Theorem 118 implies log𝖤𝐡(𝓍)=𝖤𝒫(𝐡)(𝓍)\log\mathsf{E}_{\mathbf{h}}(\mathpzc{x})=\mathsf{E}_{\mathcal{P}(\mathbf{h})}(\mathpzc{x}), whence the result.

Remark.

Let 𝐡\mathbf{h} be a connected Hopf monoid. Suppose the integer dim𝕜𝐡[n]\dim_{\Bbbk}\mathbf{h}[n] is the nn-th moment of a random variable ZZ (possibly noncommutative) in the classical sense. Theorem 125 may be rephrased as follows: if 𝐡\mathbf{h} is cocommutative, then the classical cumulants of ZZ are nonnegative. See the remark at the end of Section Remark. There is a notion of Boolean cumulants and another of free cumulants [39, 68]. Lehner obtains expressions for these as sums of classical cumulants [39, Theorem 4.1]; hence their nonnegativity holds for cocommutative 𝐡\mathbf{h}. However, Theorem 122 yields the stronger assertion that the Boolean cumulants are nonnegative for any connected Hopf monoid 𝐡\mathbf{h}. We do not know if nonnegativity of the free cumulants continues to hold for arbitrary 𝐡\mathbf{h}. For information on free cumulants, see [47].

References

  • [1] Marcelo Aguiar and Federico Ardila. The Hopf monoid of generalized permutahedra, 2012. In preparation.
  • [2] Marcelo Aguiar, Nantel Bergeron, and Frank Sottile. Combinatorial Hopf algebras and generalized Dehn–Sommerville relations. Compos. Math., 142(1):1–30, 2006.
  • [3] Marcelo Aguiar, Nantel Bergeron, and Nathaniel Thiem. Hopf monoids from class functions on unitriangular matrices, 2012. Available at arXiv:1203.1572v1.
  • [4] Marcelo Aguiar and Aaron Lauve. Lagrange’s theorem for Hopf monoids in species. Canadian Journal of Mathematics. Published electronically on April 19, 2012.
  • [5] Marcelo Aguiar and Swapneel Mahajan. Coxeter groups and Hopf algebras, volume 23 of Fields Inst. Monogr. Amer. Math. Soc., Providence, RI, 2006.
  • [6] Marcelo Aguiar and Swapneel Mahajan. Monoidal functors, species and Hopf algebras, volume 29 of CRM Monograph Series. American Mathematical Society, Providence, RI, 2010.
  • [7] Marcelo Aguiar and Swapneel Mahajan. On the Hadamard product of Hopf monoids, 2012. Available at arXiv:1209.1363.
  • [8] Marc Aubry. Twisted Lie algebras and idempotent of Dynkin. Sém. Lothar. Combin., 62:Art. B62b, 22, 2009/10.
  • [9] Michael Barr. Harrison homology, Hochschild homology and triples. J. Algebra, 8:314–323, 1968.
  • [10] Michael G. Barratt. Twisted Lie algebras. In Geometric Applications of Homotopy Theory. II (Evanston, IL, 1977), volume 658 of Lecture Notes in Math., pages 9–15. Springer, Berlin, 1978.
  • [11] Dave Bayer and Persi Diaconis. Trailing the dovetail shuffle to its lair. Ann. Appl. Probab., 2(2):294–313, 1992.
  • [12] François Bergeron, Gilbert Labelle, and Pierre Leroux. Combinatorial species and tree-like structures, volume 67 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 1998. Translated from the 1994 French original by Margaret Readdy, with a foreword by Gian-Carlo Rota.
  • [13] T. Patrick Bidigare. Hyperplane arrangement face algebras and their associated Markov chains. PhD thesis, University of Michigan, 1997.
  • [14] T. Patrick Bidigare, Phil Hanlon, and Daniel N. Rockmore. A combinatorial description of the spectrum for the Tsetlin library and its generalization to hyperplane arrangements. Duke Math. J., 99(1):135–174, 1999.
  • [15] Louis J. Billera, Ning Jia, and Victor Reiner. A quasisymmetric function for matroids. European J. Combin., 30(8):1727–1757, 2009.
  • [16] Robert G. Bland. Complementary Subspaces of Rn{R}^{n} and Orientability of Matroids. PhD thesis, Cornell University, 1974.
  • [17] Kenneth S. Brown. Semigroups, rings, and Markov chains. J. Theoret. Probab., 13(3):871–938, 2000.
  • [18] Pierre Cartier. A primer of Hopf algebras. In Frontiers in number theory, physics, and geometry. II, pages 537–615. Springer, Berlin, 2007.
  • [19] Thomas A. Dowling and Richard M. Wilson. Whitney number inequalities for geometric lattices. Proc. Amer. Math. Soc., 47:504–512, 1975.
  • [20] Boris L. Feĭgin and Boris L. Tsygan. Additive KK-theory. In KK-theory, arithmetic and geometry (Moscow, 1984–1986), volume 1289 of Lecture Notes in Math., pages 67–209. Springer, Berlin, 1987.
  • [21] Forest Fisher. CoZinbiel Hopf algebras in combinatorics. ProQuest LLC, Ann Arbor, MI, 2010. Thesis (Ph.D.)–The George Washington University.
  • [22] Ronald A. Fisher. Moments and Product Moments of Sampling Distributions. Proc. London Math. Soc., S2-30(1):199–238, 1929.
  • [23] Ronald A. Fisher and John Wishart. The Derivation of the Pattern Formulae of Two-Way Partitions from those of Simpler Patterns. Proc. London Math. Soc., S2-33(1):195–208, 1931.
  • [24] Satoru Fujishige. Submodular functions and optimization, volume 58 of Annals of Discrete Mathematics. Elsevier B. V., Amsterdam, second edition, 2005.
  • [25] Adriano M. Garsia and Christophe Reutenauer. A decomposition of Solomon’s descent algebra. Adv. Math., 77(2):189–262, 1989.
  • [26] Israel M. Gelfand, Daniel Krob, Alain Lascoux, Bernard Leclerc, Vladimir S. Retakh, and Jean-Yves Thibon. Noncommutative symmetric functions. Adv. Math., 112(2):218–348, 1995.
  • [27] Murray Gerstenhaber and Samuel D. Schack. A Hodge-type decomposition for commutative algebra cohomology. J. Pure Appl. Algebra, 48(3):229–247, 1987.
  • [28] Murray Gerstenhaber and Samuel D. Schack. The shuffle bialgebra and the cohomology of commutative algebras. J. Pure Appl. Algebra, 70(3):263–272, 1991.
  • [29] Richard M. Hain. On the indecomposable elements of the bar construction. Proc. Amer. Math. Soc., 98(2):312–316, 1986.
  • [30] Phil Hanlon. The action of SnS_{n} on the components of the Hodge decomposition of Hochschild homology. Michigan Math. J., 37(1):105–124, 1990.
  • [31] Michiel Hazewinkel. Witt vectors. I. In Handbook of algebra. Vol. 6, volume 6 of Handb. Algebr., pages 319–472. Elsevier/North-Holland, Amsterdam, 2009.
  • [32] Patricia Hersh and Samuel K. Hsiao. Random walks on quasisymmetric functions. Adv. Math., 222(3):782–808, 2009.
  • [33] Brandon Humpert and Jeremy L. Martin. The incidence Hopf algebra of graphs. SIAM J. Discrete Math., 26(2):555–570, 2012.
  • [34] André Joyal. Une théorie combinatoire des séries formelles. Adv. in Math., 42(1):1–82, 1981.
  • [35] André Joyal. Foncteurs analytiques et espèces de structures. In Combinatoire énumérative (Montréal, QC, 1985/Québec, QC, 1985), volume 1234 of Lecture Notes in Math., pages 126–159. Springer, Berlin, 1986.
  • [36] Yevgenia Kashina, Susan Montgomery, and Siu-Hung Ng. On the trace of the antipode and higher indicators. Israel J. Math., 188:57–89, 2012.
  • [37] Yevgenia Kashina, Yorck Sommerhäuser, and Yongchang Zhu. On higher Frobenius-Schur indicators. Mem. Amer. Math. Soc., 181(855):viii+65, 2006.
  • [38] D. Krob, B. Leclerc, and J.-Y. Thibon. Noncommutative symmetric functions. II. Transformations of alphabets. Internat. J. Algebra Comput., 7(2):181–264, 1997.
  • [39] Franz Lehner. Free cumulants and enumeration of connected partitions. European J. Combin., 23(8):1025–1031, 2002.
  • [40] Jean-Louis Loday. Opérations sur l’homologie cyclique des algèbres commutatives. Invent. Math., 96(1):205–230, 1989.
  • [41] Jean-Louis Loday. Cyclic homology, volume 301 of Grundlehren Math. Wiss. Springer, Berlin, 2nd edition, 1998.
  • [42] Jean-Louis Loday and María O. Ronco. On the structure of cofree Hopf algebras. J. Reine Angew. Math., 592:123–155, 2006.
  • [43] Saunders Mac Lane. Categories for the working mathematician, volume 5 of Grad. Texts in Math. Springer, New York, 2nd edition, 1998.
  • [44] John W. Milnor and John C. Moore. On the structure of Hopf algebras. Ann. of Math. (2), 81:211–264, 1965.
  • [45] Susan Montgomery. Hopf algebras and their actions on rings, volume 82 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1993.
  • [46] Siu-Hung Ng and Peter Schauenburg. Central invariants and higher indicators for semisimple quasi-Hopf algebras. Trans. Amer. Math. Soc., 360(4):1839–1860, 2008.
  • [47] Alexandru Nica and Roland Speicher. Lectures on the combinatorics of free probability, volume 335 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 2006.
  • [48] Peter Orlik and Hiroaki Terao. Arrangements of hyperplanes, volume 300 of Grundlehren Math. Wiss. Springer, Berlin, 1992.
  • [49] Frédéric Patras. Construction géométrique des idempotents eulériens. Filtration des groupes de polytopes et des groupes d’homologie de Hochschild. Bull. Soc. Math. France, 119(2):173–198, 1991.
  • [50] Frédéric Patras. La décomposition en poids des algèbres de Hopf. Ann. Inst. Fourier (Grenoble), 43(4):1067–1087, 1993.
  • [51] Frédéric Patras. L’algèbre des descentes d’une bigèbre graduée. J. Algebra, 170(2):547–566, 1994.
  • [52] Frédéric Patras. Lambda-rings. In Handbook of algebra, Vol. 3, pages 961–986. North-Holland, Amsterdam, 2003.
  • [53] Frédéric Patras and Christophe Reutenauer. On Dynkin and Klyachko idempotents in graded bialgebras. Adv. in Appl. Math., 28(3-4):560–579, 2002. Special issue in memory of Rodica Simion.
  • [54] Frédéric Patras and Manfred Schocker. Twisted descent algebras and the Solomon-Tits algebra. Adv. Math., 199(1):151–184, 2006.
  • [55] Alex Postnikov, Victor Reiner, and Lauren Williams. Faces of generalized permutohedra. Doc. Math., 13:207–273, 2008.
  • [56] Alexander Postnikov. Permutohedra, associahedra, and beyond. Int. Math. Res. Not. IMRN, 2009(6):1026–1106, 2009.
  • [57] Daniel Quillen. Rational homotopy theory. Ann. of Math. (2), 90:205–295, 1969.
  • [58] David E. Radford. Hopf algebras, volume 49 of Series on Knots and Everything. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2012.
  • [59] Rimhak Ree. Lie elements and an algebra associated with shuffles. Ann. of Math. (2), 68:210–220, 1958.
  • [60] Christophe Reutenauer. Theorem of Poincaré-Birkhoff-Witt, logarithm and symmetric group representations of degrees equal to Stirling numbers. In Combinatoire énumérative (Montreal, Que., 1985/Quebec, Que., 1985), volume 1234 of Lecture Notes in Math., pages 267–284. Springer, Berlin, 1986.
  • [61] Christophe Reutenauer. Free Lie algebras, volume 7 of London Math. Soc. Monogr. (N.S.). The Clarendon Press, Oxford Univ. Press, New York, 1993.
  • [62] Franco V. Saliola. The face semigroup algebra of a hyperplane arrangement. ProQuest LLC, Ann Arbor, MI, 2006. Thesis (Ph.D.)–Cornell University.
  • [63] Franco V. Saliola. The face semigroup algebra of a hyperplane arrangement. Canad. J. Math., 61(4):904–929, 2009.
  • [64] Peter Schauenburg. On the braiding on a Hopf algebra in a braided category. New York J. Math., 4:259–263 (electronic), 1998.
  • [65] William R. Schmitt. Hopf algebras of combinatorial structures. Canad. J. Math., 45(2):412–428, 1993.
  • [66] William R. Schmitt. Incidence Hopf algebras. J. Pure Appl. Algebra, 96(3):299–330, 1994.
  • [67] Louis Solomon. A Mackey formula in the group ring of a Coxeter group. J. Algebra, 41(2):255–264, 1976.
  • [68] Roland Speicher and Reza Woroudi. Boolean convolution. In Free probability theory (Waterloo, ON, 1995), volume 12 of Fields Inst. Commun., pages 267–279. Amer. Math. Soc., Providence, RI, 1997.
  • [69] Richard P. Stanley. Acyclic orientations of graphs. Discrete Math., 5:171–178, 1973.
  • [70] Benjamin Steinberg. Möbius functions and semigroup representation theory. J. Combin. Theory Ser. A, 113(5):866–881, 2006.
  • [71] Christopher R. Stover. The equivalence of certain categories of twisted Lie and Hopf algebras over a commutative ring. J. Pure Appl. Algebra, 86(3):289–326, 1993.
  • [72] Mitsuhiro Takeuchi. Free Hopf algebras generated by coalgebras. J. Math. Soc. Japan, 23:561–582, 1971.
  • [73] Jean-Yves Thibon. Lectures on noncommutative symmetric functions. In Interaction of combinatorics and representation theory, volume 11 of MSJ Mem., pages 39–94. Math. Soc. Japan, Tokyo, 2001.
  • [74] Jacques Tits. Buildings of spherical type and finite BN-pairs, volume 386 of Lecture Notes in Math. Springer, Berlin, 1974.
  • [75] Wilhelm von Waldenfels. Zur Charakterisierung Liescher Elemente in freien Algebren. Arch. Math. (Basel), 17:44–48, 1966.
  • [76] Günter M. Ziegler. Lectures on polytopes, volume 152 of Grad. Texts in Math. Springer, New York, 1995.