This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Horoboundaries of coarsely convex spaces

Ikkei Sato Ikkei Sato Department of Mathematical Sciences Tokyo Metropolitan University Minami-osawa Hachioji Tokyo 192-0397 Japan sato-ikkei@tmu.ac.jp
Abstract.

A horoboundary is one of the attempts to compactify metric spaces, and is constructed using continuous functions on metric spaces. It is a concept that includes global information of metric spaces, and its correspondence with an ideal boundary constructed using geodesics has been studied in nonpositive curvature spaces such as CAT(0) spaces and geodesic Gromov hyperbolic spaces. We will introduce a certain correspondence between the horoboundary and the ideal boundary of coarsely convex spaces, which can be regarded as a generalization of spaces of nonpositive curvature.

Key words and phrases:
coarse geometry, coarsely convex space, horoboundary

1. Introduction

1.1. Introduction

Coarse geometry is the field of studying invariant properties of metric spaces under quasi-isometry. The geodesic Gromov hyperbolic spaces introduced by Gromov are invariant under quasi-isometry and have been studied as the coarse geometric analogues of Riemannian manifolds with negative sectional curvature. Subsequently, the construction of analogues in the metric geometry of Riemannian manifolds with nonpositive sectional curvature was advanced, and CAT(0) spaces and Busemann spaces were introduced. However, these spaces are not invariant under quasi-isometry. Coarsely convex spaces introduced by Fukaya and Oguni in [FO20] are coarse geometric analogues of simply connected Riemannian manifolds of nonpositive sectional curvature. They are a class that includes not only CAT(0) spaces and Busemann spaces, but also geodesic hyperbolic spaces, finite-dimensional systolic complexes, proper injective spaces. Furthermore, in coarsely convex spaces, as in other non-positive curvature spaces, ideal boundaries are defined by using (quasi-)geodesic rays, the coarse Cartan-Hadamard theorem, which states that the open cones defined on the ideal boundary and the coarsely convex spaces themselves are coarse homotopy equivalence, and coarsely convex spaces satisfy various properties that allow them to be regarded as generalizations of nonpositive curvature spaces.

The horoboundary was introduced by Gromov in [Gro81], as a way to compactify proper metric spaces. In particular, he constructed it as a concept that includes Busemann functions constructed using geodesic rays. The elements of the horoboundary are called horofunctions, and in CAT(0) spaces all horofunctions are Busemann functions. In particular, for the CAT(0) space, there exists a bijection between the set of Busemann functions and that of geodesic rays. That is, the horoboundary is homeomorphic to the ideal boundary.

So what about in other non-positive curvature spaces? This is not viable. For example, in geodesic hyperbolic spaces, by Webster and Winchester [WW03], it was shown that there exists a surjective continuous map from the horoboundary to the ideal boundary. However, Arosio, Fiacchi, Gontard and Guerini [AFGG22] gave an example of Gromov hyperbolic space whose horoboundary differs from the ideal boundary. Other similar results were shown in the Busemann spaces by Andreev [And08]. However, in [And18], Andreev introduced the cone metric dcd_{c} for Busemann spaces (X,d)(X,d), and he showed that the horoboundary of (X,dc)(X,d_{c}) is homeomorphic to the ideal boundary of (X,d)(X,d).

We note that the cone metric defined by Andreev is similar to the Euclidean cone metric for open cones, and show the following results on coarsely convex spaces.

Theorem 1.1.

Let XX be a proper coarsely convex space and oXo\in X be a base point of XX. Let oX\partial_{o}X be the ideal boundary of XX with respect to the base point oo and let 𝒪oX\mathcal{O}\partial_{o}X be an open cone over oX\partial_{o}X. Then, the horoboundary h𝒪oX\partial_{h}\mathcal{O}\partial_{o}X of the open cone 𝒪oX\mathcal{O}\partial_{o}X is homeomorphic to the ideal boundary oX\partial_{o}X of XX.

We construct the cone metric dcd_{c} on a coarsely convex space XX. Due to the coarse geometric nature of coarsely convex spaces, we need to modify the formulation of the horoboundary hcX\partial^{c}_{h}X of XX with the cone metric dcd_{c}. When XX is a Busemann space, dcd_{c} coincide with the one defined by Andreev in [And18], and hcX\partial^{c}_{h}X coincide with the one studied in [And18].

We compare the horoboundary with the ideal boundary. Since the ideal boundary of the coarsely convex space is the set of asymptotic classes of quasi-geodesic rays, we need to take a quotient by bounded functions. The quotient is called the reduced horoboundary denoted by hcX/\partial^{c}_{h}X/\sim. For more detail, see Definition 6.9. We show that the ideal boundary coincides with the reduced horoboundary.

Theorem 1.2.

Let (X,d)(X,d) be a coarsely convex space and let oXo\in X be a base point of XX. Let dcd_{c} be the cone metric of (X,d)(X,d). Let oX\partial_{o}X be the ideal boundary of XX with respect to the base point oo and hcX/\partial^{c}_{h}X/\sim be the reduced horoboundary of (X,dc)(X,d_{c}). Then oX\partial_{o}X and hcX/\partial^{c}_{h}X/\sim are homeomorphic.

In geodesic Gromov hyperbolic spaces, by [WW03], the ideal boundary coincides with the reduced horoboundary in the usual sense. Theorem 1.2 generalize this fact to geodesic coarsely convex spaces in a sense.

Furthermore, in geodesic (1,0)(1,0)-coarsely convex spaces such as Busemann spaces, the reduced horoboundary with the cone metric and the horoboundary with the cone metric coincide, so Theorem 1.2 generalize a result in [And18] by Andreev.

1.2. Outline

In Section 2, we introduce coarsely convex spaces and give some examples according to [FO20, FM24].

In Section 3, we describe the construction of the ideal boundaries for coarsely convex spaces, and we discuss their properties.

In Section 4, we summarize some known facts on horoboundary

In Section 5, we define open cones, and we study the horoboundary of open cones. We give a proof of Theorem 1.1.

In Section 6, we define the cone metric for coarsely convex spaces, and we analyze the horoboundary of the coarsely convex space associated with the cone metric. We complete the proof of Theorem 1.2.

2. Coarsely convex space

Let (X,d)(X,d) be a metric space. A bicombing on XX is a map Γ:X×X×[0,1]X\Gamma\colon X\times X\times[0,1]\rightarrow X such that for x,yXx,y\in X, we have Γ(x,y,0)=x\Gamma(x,y,0)=x, Γ(x,y,1)=y\Gamma(x,y,1)=y.

Let λ1\lambda\geq 1 and k0k\geq 0 be constants. A bicombing Γ\Gamma is a (λ,k)(\lambda,k)-quasi-geodesic bicombing if

1λ|ts|d(x,y)kd(Γ(x,y,t),Γ(x,y,s))λ|ts|d(x,y)+k\frac{1}{\lambda}|t-s|d(x,y)-k\leq d(\Gamma(x,y,t),\Gamma(x,y,s))\leq\lambda|t-s|d(x,y)+k

holds for t,s[0,1]t,s\in[0,1]. In particular, Γ:X×X×[0,1]X\Gamma\colon X\times X\times[0,1]\rightarrow X is a geodesic-bicombing if λ=1\lambda=1, k=0k=0 is satisfied, that is,

d(Γ(x,y,t),Γ(x,y,s))=|ts|d(x,y)d(\Gamma(x,y,t),\Gamma(x,y,s))=|t-s|d(x,y)

holds for t,s[0,1]t,s\in[0,1].

Definition 2.1.

Let (X,d)(X,d) be a metric space, and let λ1\lambda\geq 1, k0k\geq 0, E1E\geq 1, C0C\geq 0 be constants. Let θ:00\theta\colon\mathbb{R}_{\geq 0}\rightarrow\mathbb{R}_{\geq 0} be a non-decreasing function. A (λ,k,E,C,θ)(\lambda,k,E,C,\theta)-coarsely convex bicombing on a metric space (X,d)(X,d) is a (λ,k)(\lambda,k)-quasi-geodesic bicombing Γ:X×X×[0,1]X\Gamma\colon X\times X\times[0,1]\rightarrow X with the following items (i) and (ii):

  1. (i)

    Let x1,x2,y1,y2Xx_{1},x_{2},y_{1},y_{2}\in X and let a,b[0,1]a,b\in[0,1]. Let y1Γ(x1,y1,a)y^{\prime}_{1}\coloneqq\Gamma(x_{1},y_{1},a) and y2Γ(x2,y2,b)y^{\prime}_{2}\coloneqq\Gamma(x_{2},y_{2},b). Then, for c[0,1]c\in[0,1], we have

    d(Γ(x1,y1,ca),Γ(x2,y2,cb))(1c)Ed(x1,x2)+cEd(y1,y2)+C.d(\Gamma(x_{1},y_{1},ca),\Gamma(x_{2},y_{2},cb))\leq(1-c)Ed(x_{1},x_{2})+cEd(y^{\prime}_{1},y^{\prime}_{2})+C.
  2. (ii)

    Let x1,x2,y1,y2Xx_{1},x_{2},y_{1},y_{2}\in X. Then for t,s[0,1]t,s\in[0,1] we have

    |td(x1,y1)sd(x2,y2)|θ(d(x1,x2)+d(Γ(x1,y1,t),Γ(x2,y2,s))).|td(x_{1},y_{1})-sd(x_{2},y_{2})|\leq\theta(d(x_{1},x_{2})+d(\Gamma(x_{1},y_{1},t),\Gamma(x_{2},y_{2},s))).

A geodesic (E,C)(E,C)-coarsely convex bicombing is a geodesic bicombing Γ\Gamma satisfying item (i) in the above.

Remark 2.2.

If Γ\Gamma is a geodesic bicombing, then Γ\Gamma satisfies item (ii) in Definition 2.1 due to the triangle inequality.

Definition 2.3.

We say that XX is a coarsely convex space if there are constants λ1\lambda\geq 1, k0k\geq 0, E1E\geq 1, C0C\geq 0 and non-decreasing function θ:00\theta\colon\mathbb{R}_{\geq 0}\rightarrow\mathbb{R}_{\geq 0} such that XX admits a (λ,k,E,C,θ)(\lambda,k,E,C,\theta)-coarsely convex bicombing Γ\Gamma. In particular, XX is a geodesic coarsely (E,C)(E,C)-coarsely convex space if XX admits a geodesic (E,C)(E,C)-coarsely convex bicombing Γ\Gamma.

Example 2.4.

Let VV be a normed vector space. The bicombing of VV is given by affine lines. So VV is a geodesic (1,0)(1,0)-coarsely convex space.

Example 2.5.

We say that a geodesic space (X,d)(X,d) is a Busemann space if any two geodesics γ1:[0,a1]X\gamma_{1}\colon[0,a_{1}]\rightarrow X and γ2:[0,a2]X\gamma_{2}\colon[0,a_{2}]\rightarrow X satisfy the following inequality

d(γ1(ta1),γ2(ta2))(1t)d(γ1(0),γ2(0))+td(γ1(a1),γ2(a2))d(\gamma_{1}(ta_{1}),\gamma_{2}(ta_{2}))\leq(1-t)d(\gamma_{1}(0),\gamma_{2}(0))+td(\gamma_{1}(a_{1}),\gamma_{2}(a_{2}))

for any t[0,1]t\in[0,1]. It follows that a Busemann space (X,d)(X,d) is a unique geodesic space. So XX admits the canonical (1,0)(1,0)-coarsely convex bicombing. Then the Busemann space (X,d)(X,d) is a geodesic (1,0)(1,0)-coarsely convex space.

The following reparametrization is used to construct ideal boundaries in Section 3 and cone metrics in Section 6.

Definition 2.6.

Let (X,d)(X,d) be a metric space and let Γ:X×X×[0,1]X\Gamma\colon X\times X\times[0,1]\rightarrow X be a (λ,k)(\lambda,k)-quasi-geodesic bicombing on XX. A reparametrised bicombing of Γ\Gamma is a map rpΓ:X×X×0X\texttt{rp}\Gamma\colon X\times X\times\mathbb{R}_{\geq 0}\rightarrow X defined by

rpΓ(x,y,t){Γ(x,y,td(x,y))iftd(x,y)yift>d(x,y).\texttt{rp}\Gamma(x,y,t)\coloneqq\begin{cases}\Gamma\left(x,y,\frac{t}{d(x,y)}\right)&\text{if}\>t\leq d(x,y)\\ y&\text{if}\>t>d(x,y).\end{cases}

In particular, for any x,yXx,y\in X, rpΓ(x,y,)|[0,d(x,y)]:[0,d(x,y)]X\texttt{rp}\Gamma(x,y,-)|_{[0,d(x,y)]}\colon[0,d(x,y)]\rightarrow X is a (λ,k)(\lambda,k)-quasi-geodesic connecting xx and yy. If Γ\Gamma is a geodesic bicombing, rpΓ(x,y,)|[0,d(x,y)]\Gamma(x,y,-)|_{[0,d(x,y)]} is a geodesic connecting xx and yy.

3. Ideal boundary

For more details on the proof of the statements in this section, see [FM24, Section 4] and [FO20, Section 4].

Let (X,d)(X,d) be a coarsely convex space with a (λ,k,E,C,θ)(\lambda,k,E,C,\theta)-coarsely convex bicombing Γ\Gamma, and let rpΓ\texttt{rp}\Gamma be a reparametrised bicombing of Γ\Gamma. We fix oXo\in X as the base point of XX.

Definition 3.1.

Set k1=λ+kk_{1}=\lambda+k, D=2(1+E)k1+CD=2(1+E)k_{1}+C, and D1=2D+2D_{1}=2D+2. We define a product (|)o:X×X0(-\>|\>-)_{o}\colon X\times X\rightarrow\mathbb{R}_{\geq 0} by

(x|y)omin{d(o,x),d(o,y),sup{t0|d(rpΓ(o,x,t),rpΓ(o,y,t))D1}}.(x\>|\>y)_{o}\coloneqq\min\{d(o,x),d(o,y),\sup\{t\in\mathbb{R}_{\geq 0}\>|\>d(\texttt{rp}\Gamma(o,x,t),\texttt{rp}\Gamma(o,y,t))\leq D_{1}\}\}.
Lemma 3.2.

Set D2E(D1+2k)D_{2}\coloneqq E(D_{1}+2k). For x,y,zXx,y,z\in X, we have

(x|z)o1D2min{(x|y)o,(y|z)o}.(x\>|\>z)_{o}\geq\frac{1}{D_{2}}\min\{(x\>|\>y)_{o},(y\>|\>z)_{o}\}.

Following [FOY22], we construct the ideal boundary of coarsely convex space XX by a set of sequences in XX tending to infinity.

We let

SoX{{xn}n|{xn}n is a sequence such that (xn|xm)o as n,m},S^{\infty}_{o}X\coloneqq\{\{x_{n}\}_{n\in\mathbb{N}}\>|\>\{x_{n}\}_{n\in\mathbb{N}}\text{ is a sequence such that }(x_{n}\>|\>x_{m})_{o}\rightarrow\infty\text{ as }n,m\rightarrow\infty\},

and we define the relation \sim on SoXS^{\infty}_{o}X as follows. For every {xn}n,{yn}nSoX\{x_{n}\}_{n\in\mathbb{N}},\{y_{n}\}_{n\in\mathbb{N}}\in S^{\infty}_{o}X, we define {xn}n{yn}n\{x_{n}\}_{n\in\mathbb{N}}\sim\{y_{n}\}_{n\in\mathbb{N}} if and only if

(xn|yn)o as n.(x_{n}\>|\>y_{n})_{o}\rightarrow\infty\text{ as }n\rightarrow\infty.

Then the relation \sim is an equivalence relation on SoXS^{\infty}_{o}X.

Definition 3.3.

The ideal boundary of a coarsely convex space XX, denote by oX\partial_{o}X is the quotient of the set SoXS^{\infty}_{o}X by the equivalence relation \sim. We denote by X¯\bar{X} the disjoint union of XX and oX\partial_{o}X. Namely,

oXSoX/,X¯XoX.\partial_{o}X\coloneqq S^{\infty}_{o}X/\sim,\quad\bar{X}\coloneqq X\cup\partial_{o}X.

For xXx\in X and a sequence {xn}n\{x_{n}\}_{n\in\mathbb{N}} in XX, we write {xn}nx\{x_{n}\}_{n\in\mathbb{N}}\in x if xn=xx_{n}=x for every nn\in\mathbb{N}. We extend (|)o:X×X×0(-\>|\>-)_{o}\colon X\times X\times\rightarrow\mathbb{R}_{\geq 0} to the function (|)o:X¯×X¯0(-\>|\>-)_{o}\colon\bar{X}\times\bar{X}\rightarrow\mathbb{R}_{\geq 0} as follows

(x|y)osup{lim infn(xn|yn)o|{xn}nx,{yn}ny}(x\>|\>y)_{o}\coloneqq\sup\{\liminf_{n\rightarrow\infty}(x_{n}\>|\>y_{n})_{o}\>|\>\{x_{n}\}_{n\in\mathbb{N}}\in x,\{y_{n}\}_{n\in\mathbb{N}}\in y\}

for any x,yX¯x,y\in\bar{X}.

For nn\in\mathbb{N}, let

Vn{(x,y)X¯×X¯|(x|y)o>n}{(x,y)X×X|d(x,y)<1n}.V_{n}\coloneqq\{(x,y)\in\bar{X}\times\bar{X}\>|\>(x\>|\>y)_{o}>n\}\cup\left\{(x,y)\in X\times X\>|\>d(x,y)<\frac{1}{n}\right\}.

Then {Vn}n\{V_{n}\}_{n\in\mathbb{N}} is a base of a metrizable uniformly topology on X¯\bar{X}. For any xX¯x\in\bar{X}, we define Vn[x]X¯V_{n}[x]\subset\bar{X} as follows

Vn[x]{yX¯|(x,y)Vn}.V_{n}[x]\coloneqq\{y\in\bar{X}\>|\>(x,y)\in V_{n}\}.

Then the family {Vn[x]}n\{V_{n}[x]\}_{n\in\mathbb{N}} is a fundamental system of neighborhoods of xx.

Proposition 3.4 ([FO20, Proposition 4.19.]).

For sufficiently small ϵ>0\epsilon>0, there exists a constant K1K\geq 1 depending on D,θ(0)D,\theta(0) and ϵ\epsilon, and there exists a metric dϵd_{\epsilon} on oX\partial_{o}X such that, for all x,yoXx,y\in\partial_{o}X,

1Keϵ(xy)dϵ(x,y)eϵ(xy)\displaystyle\frac{1}{K}e^{-\epsilon(x\mid y)}\leq d_{\epsilon}(x,y)\leq e^{-\epsilon(x\mid y)}

Especially, dϵd_{\epsilon} is compatible with the topology of oX\partial_{o}X, and the diameter of (oX,dϵ)(\partial_{o}X,d_{\epsilon}) is less than or equal to 1.

We extend the reparametrised bicombing rpΓ:X×X×0X\texttt{rp}\Gamma\colon X\times X\times\mathbb{R}_{\geq 0}\rightarrow X to rpΓ¯:X×X¯×0X\texttt{rp}\bar{\Gamma}\colon X\times\bar{X}\times\mathbb{R}_{\geq 0}\rightarrow X.

Lemma 3.5 ([FM24, Lemma 4.8.]).

Suppose that XX is proper. Then there exists a map rpΓ¯:X×X¯×0X\texttt{rp}\bar{\Gamma}\colon X\times\bar{X}\times\mathbb{R}_{\geq 0}\to X satisfying the following.

  1. (i)

    For x,yXx,y\in X, we have rpΓ¯(x,y,)=rpΓ(x,y,)\texttt{rp}\bar{\Gamma}(x,y,-)=\texttt{rp}\Gamma(x,y,-).

  2. (ii)

    For (o,x)X×oX(o,x)\in X\times\partial_{o}X, there exists a sequence {xn}n\{x_{n}\}_{n\in\mathbb{N}} in XX such that the sequence of maps {rpΓ(o,xn,)|:X}n\{\texttt{rp}\Gamma(o,x_{n},-)|_{\mathbb{N}}\colon\mathbb{N}\rightarrow X\}_{n\in\mathbb{N}} converges to rpΓ¯(o,x,)|\texttt{rp}\bar{\Gamma}(o,x,-)|_{\mathbb{N}} pointwise. In particular, if Γ\Gamma is a geodesic bicombing, the sequence of maps {rpΓ(o,xn,):0X}n\{\texttt{rp}\Gamma(o,x_{n},-)\colon\mathbb{R}_{\geq 0}\rightarrow X\}_{n\in\mathbb{N}} converges to rpΓ¯(o,x,)\texttt{rp}\bar{\Gamma}(o,x,-) uniformly on compact sets.

  3. (iii)

    For (o,x)X×oX(o,x)\in X\times\partial_{o}X, we have

    (rpΓ¯(o,x,t)|x)o(t).(\text{rp}\bar{\Gamma}(o,x,t)\>|\>x)_{o}\rightarrow\infty\>(t\rightarrow\infty).
  4. (iv)

    For (o,x)X×oX(o,x)\in X\times\partial_{o}X, the map rpΓ¯(o,x,):0X\texttt{rp}\bar{\Gamma}(o,x,-)\colon\mathbb{R}_{\geq 0}\rightarrow X is a (λ,k1)(\lambda,k_{1})-quasi geodesic, where k1λ+kk_{1}\coloneqq\lambda+k. In particular, if Γ\Gamma is a geodesic bicombing, rpΓ¯(o,x,):0X\texttt{rp}\bar{\Gamma}(o,x,-)\colon\mathbb{R}_{\geq 0}\rightarrow X is a geodesic.

Definition 3.6.

We call the map rpΓ¯\texttt{rp}\bar{\Gamma} given in Lemma 3.4 an extended bicombing on X×X¯X\times\bar{X} corresponding to Γ\Gamma. For (o,x)X×oX(o,x)\in X\times\partial_{o}X, we abbreviate rpΓ¯(o,x,)\texttt{rp}\bar{\Gamma}(o,x,-) by γox()\gamma^{x}_{o}(-).

Lemma 3.7 ([FM24, Lemma 4.10.]).

The extended bicombing rpΓ¯\texttt{rp}\bar{\Gamma} on X×X¯X\times\bar{X} satisfies the following

  1. (i)

    Let (o1,x1),(o2,x2)X×oX(o_{1},x_{1}),(o_{2},x_{2})\in X\times\partial_{o}X and let a,b0a,b\in\mathbb{R}_{\geq 0}. Set x1rpΓ¯(o1,x1,a){x_{1}}^{\prime}\coloneqq\texttt{rp}\bar{\Gamma}(o_{1},x_{1},a) and x2rpΓ¯(o2,x2,b){x_{2}}^{\prime}\coloneqq\texttt{rp}\bar{\Gamma}(o_{2},x_{2},b). Then, for c[0,1]c\in[0,1], we have

    d(rpΓ¯(o1,x1,ca),rpΓ¯(o2,x2,cb))(1c)Ed(o1,o2)+cEd(x1,x2)+Dd(\texttt{rp}\bar{\Gamma}(o_{1},x_{1},ca),\texttt{rp}\bar{\Gamma}(o_{2},x_{2},cb))\leq(1-c)Ed(o_{1},o_{2})+cEd({x_{1}}^{\prime},{x_{2}}^{\prime})+D
  2. (ii)

    We define a non-decreasing function θ~(t)θ(t+1)+1\tilde{\theta}(t)\coloneqq\theta(t+1)+1. Let (o1,x1),(o2,x2)X×oX(o_{1},x_{1}),(o_{2},x_{2})\in X\times\partial_{o}X. Then for t,s0t,s\in\mathbb{R}_{\geq 0}, we have

    |ts|θ~(d(o1,o2)+d(rpΓ¯(o1,x1,t),rpΓ¯(o2,x2,s))).|t-s|\leq\tilde{\theta}(d(o_{1},o_{2})+d(\texttt{rp}\bar{\Gamma}(o_{1},x_{1},t),\texttt{rp}\bar{\Gamma}(o_{2},x_{2},s))).
Definition 3.8.

For x,yoXx,y\in\partial_{o}X, we define

(γox|γoy)osup{t0|d(γox(t),γoy(t))D1}.(\gamma^{x}_{o}\>|\>\gamma^{y}_{o})_{o}\coloneqq\sup\{t\in\mathbb{R}_{\geq 0}\>|\>d(\gamma^{x}_{o}(t),\gamma^{y}_{o}(t))\leq D_{1}\}.

For xoXx\in\partial_{o}X and pXp\in X, we define

(γox|p)omin{d(o,p),sup{t0|d(Γ(o,p,t),γox(t))D1}}.(\gamma^{x}_{o}\>|\>p)_{o}\coloneqq\min\{d(o,p),\sup\{t\in\mathbb{R}_{\geq 0}\>|\>d(\Gamma(o,p,t),\gamma^{x}_{o}(t))\leq D_{1}\}\}.
Lemma 3.9 ([FM24, Lemma 4.12.]).

There exists a constant Ω1\Omega\geq 1 depending on λ\lambda, kk, EE, CC, θ(0)\theta(0) such that the following holds

  1. (1)

    For x,yoXx,y\in\partial_{o}X, we have

    (γox|γoy)o(x|y)oΩ(γox|γoy)o.(\gamma^{x}_{o}\>|\>\gamma^{y}_{o})_{o}\leq(x\>|\>y)_{o}\leq\Omega(\gamma^{x}_{o}\>|\>\gamma^{y}_{o})_{o}.
  2. (2)

    For x,y,zoXx,y,z\in\partial_{o}X, we have

    (γox|γoy)oΩ1min{(γox|γoy)o,(γoy|γoz)o}.(\gamma^{x}_{o}\>|\>\gamma^{y}_{o})_{o}\geq\Omega^{-1}\min\{(\gamma^{x}_{o}\>|\>\gamma^{y}_{o})_{o},(\gamma^{y}_{o}\>|\>\gamma^{z}_{o})_{o}\}.
  3. (3)

    For x,y,zX¯x,y,z\in\bar{X}, we have

    (x|z)oΩ1min{(x|y)o,(y|z)o}.(x\>|\>z)_{o}\geq\Omega^{-1}\min\{(x\>|\>y)_{o},(y\>|\>z)_{o}\}.
  4. (4)

    Let x,yoXx,y\in\partial_{o}X. For all t0t\in\mathbb{R}_{\geq 0} with t(γox|γoy)t\leq(\gamma^{x}_{o}\>|\>\gamma^{y}_{o}), we have

    d(γox(t),γoy(t))Ω.d(\gamma^{x}_{o}(t),\gamma^{y}_{o}(t))\leq\Omega.
  5. (5)

    Let oXo\in X and let x,yX¯x,y\in\bar{X}. If rpΓ¯(o,x,a)=rpΓ¯(o,y,b)\texttt{rp}\bar{\Gamma}(o,x,a)=\texttt{rp}\bar{\Gamma}(o,y,b) for some a,b0a,b\in\mathbb{R}_{\geq 0}, then for all t[0,max{a,b}]t\in[0,\max\{a,b\}] we have

    d(rpΓ¯(o,x,t),rpΓ¯(o,y,t))Ω.d(\texttt{rp}\bar{\Gamma}(o,x,t),\texttt{rp}\bar{\Gamma}(o,y,t))\leq\Omega.
  6. (6)

    Let oXo\in X and xoXx\in\partial_{o}X. For vXv\in X and t[0,1]t\in[0,1], we have

    (x|Γ(o,v,t))oΩ1min{(x|v)o,td(o,v)}.(x\>|\>\Gamma(o,v,t))_{o}\geq\Omega^{-1}\min\{(x\>|\>v)_{o},td(o,v)\}.

4. Horoboundary

4.1. Horoboundary

Let (X,d)(X,d) be a proper metric space and fix oXo\in X as the base point. Also, let C(X)C(X) be the set of all \mathbb{R}-valued continuous functions on XX, and equip with the topology of uniform convergence on compact sets. It is a standard fact that the space C(X)C(X) is Hausdorff.

We define ϕ:XC(X)\phi\colon X\rightarrow C(X) as follows. For xXx\in X, let

xϕxd(,x)d(o,x).x\mapsto\phi_{x}\coloneqq d(-,x)-d(o,x).
Proposition 4.1.

The map ϕ\phi is injective and continuous.

Proof..

The triangle inequality implies that ϕx(u)ϕy(u)2d(x,y)\phi_{x}(u)-\phi_{y}(u)\leq 2d(x,y), for all u,x,yXu,x,y\in X. The continuity of ϕ\phi follows.

Let xx and yy be distinct points in XX such that d(o,x)d(o,y)d(o,x)\geq d(o,y). We have

ϕy(x)ϕx(x)\displaystyle\phi_{y}(x)-\phi_{x}(x) =d(x,y)d(o,y)d(x,x)+d(o,x)\displaystyle=d(x,y)-d(o,y)-d(x,x)+d(o,x)
d(x,y),\displaystyle\geq d(x,y),

which shows that ϕx\phi_{x} and ϕy\phi_{y} are distinct. ∎

Definition 4.2.

Let (X,d)(X,d) be a proper metric space and fix oXo\in X as the base point. Let ϕ:XC(X)\phi\colon X\rightarrow C(X) be the map defined above. We define the horoboundary hX\partial_{h}X of (X,d)(X,d) as follows

hXclϕ(X)ϕ(X).\partial_{h}X\coloneqq\operatorname{cl}\phi(X)\setminus\phi(X).

Here clϕ(X)\operatorname{cl}\phi(X) denotes the closure of ϕ(X)\phi(X) in C(X)C(X). Since C(X)C(X) with the topology of uniform convergence on compact sets is Hausdorff, the horoboundary hX\partial_{h}X is Hausdorff.

Lemma 4.3.

Let (X,d)(X,d) be a proper metric space. If the sequence of maps {ϕxn}n\{\phi_{x_{n}}\}_{n\in\mathbb{N}} converges to ξhX\xi\in\partial_{h}X, then only finitely many of the points of {xn}n\{x_{n}\}_{n\in\mathbb{N}} lie in any bounded subset of XX.

Proof..

If there is an infinite number of points of {xn}n\{x_{n}\}_{n\in\mathbb{N}} contained some closed ball B¯(o,R)\bar{B}(o,R), we can take a subsequence {xn(k)}k\{x_{n(k)}\}_{k\in\mathbb{N}} of {xn}n\{x_{n}\}_{n\in\mathbb{N}} such that {xn(k)}k\{x_{n(k)}\}_{k\in\mathbb{N}} converges to some point x~B¯(o,R)\tilde{x}\in\bar{B}(o,R). By hypothesis, a sequence of maps {ϕxn(k)}k\{\phi_{x_{n(k)}}\}_{k\in\mathbb{N}} converges to ξhX\xi\in\partial_{h}X. On the other hand, by Proposition 4.1, {ϕxn(k)}k\{\phi_{x_{n(k)}}\}_{k\in\mathbb{N}} converges to ϕx~\phi_{\tilde{x}}. Therefore, we have ξ=ϕx~\xi=\phi_{\tilde{x}}. This contradicts to ξϕ(X)\xi\notin\phi(X).

Proposition 4.4.

The horoboundary does not depend on the choice of the base point.

Proof..

We take o,oXo,o^{\prime}\in X arbitrarily. We define ϕ:XC(X)\phi\colon X\rightarrow C(X) and ϕ:XC(X)\phi^{\prime}\colon X\rightarrow C(X) by

xϕx()d(,x)d(o,x) and xϕx()d(,x)d(o,x).x\mapsto\phi_{x}(-)\coloneqq d(-,x)-d(o,x)\text{$\quad$ and $\quad$}x\mapsto\phi^{\prime}_{x}(-)\coloneqq d(-,x)-d(o^{\prime},x).

Then, we have ϕx=ϕxϕx(o) and ϕx=ϕxϕx(o)\phi^{\prime}_{x}=\phi_{x}-\phi_{x}(o^{\prime})\text{$\quad$ and $\quad$}\phi_{x}=\phi^{\prime}_{x}-\phi^{\prime}_{x}(o) for any xXx\in X.

Let hXclϕ(X)ϕ(X)\partial_{h}X\coloneqq\mathrm{cl}\phi(X)\setminus\phi(X) and hXclϕ(X)ϕ(X)\partial^{\prime}_{h}X\coloneqq\mathrm{cl}\phi^{\prime}(X)\setminus\phi^{\prime}(X). We define F:hXC(X)F\colon\partial_{h}X\rightarrow C(X) by

ξξξ(o).\xi\mapsto\xi-\xi(o^{\prime}).

We show F(ξ)hXF(\xi)\in\partial^{\prime}_{h}X for any ξhX\xi\in\partial_{h}X. Let {xn}nX\{x_{n}\}_{n\in\mathbb{N}}\subset X be a sequence such that d(o,xn)d(o,x_{n})\rightarrow\infty as nn\rightarrow\infty and a sequence of maps {ϕxn}n\{\phi_{x_{n}}\}_{n\in\mathbb{N}} converges uniformly to ξ\xi on compact sets. For any R>0R>0, we have

supuB¯(o,R)|F(ξ)(u)ϕxn(u)|\displaystyle\sup_{u\in\bar{B}(o,R)}|F(\xi)(u)-\phi^{\prime}_{x_{n}}(u)| =supuB¯(o,R)|{ξ(u)ξ(o)}{ϕxn(u)ϕxn(o)}|\displaystyle=\sup_{u\in\bar{B}(o,R)}|\{\xi(u)-\xi(o^{\prime})\}-\{\phi_{x_{n}}(u)-\phi_{x_{n}}(o^{\prime})\}|
supuB¯(o,R)|ξ(u)ϕxn(u)|+|ξ(o)ϕxn(o)|\displaystyle\leq\sup_{u\in\bar{B}(o,R)}|\xi(u)-\phi_{x_{n}}(u)|+|\xi(o^{\prime})-\phi_{x_{n}}(o^{\prime})|
0 as n.\displaystyle\rightarrow 0\text{ as }n\rightarrow\infty.

So we have F(ξ)clϕ(X)F(\xi)\in\operatorname{cl}\phi^{\prime}(X). We assume F(ξ)ϕ(X)F(\xi)\in\phi^{\prime}(X). Then there is some zXz\in X such that

F(ξ)=ξξ(o)=ϕz=ϕzϕz(o).F(\xi)=\xi-\xi(o^{\prime})=\phi^{\prime}_{z}=\phi_{z}-\phi_{z}(o^{\prime}).

Since ξ(o)=ϕz(o)=0\xi(o)=\phi_{z}(o)=0, we have ξ(o)=ϕz(o)\xi(o^{\prime})=\phi_{z}(o^{\prime}). Thus, we get ξ=ϕz\xi=\phi_{z}, but this contradicts to ξϕ(X)\xi\notin\phi(X). Therefore, ξϕ(X)\xi^{\prime}\notin\phi^{\prime}(X) and ξ=F(ξ)hX\xi^{\prime}=F(\xi)\in\partial^{\prime}_{h}X. Thus, the map F:hXhXF\colon\partial_{h}X\to\partial^{\prime}_{h}X is well-defined.

Similarly, we define F~:hXhX\tilde{F}\colon\partial^{\prime}_{h}X\to\partial_{h}X by

ξξξ(o).\xi^{\prime}\mapsto\xi^{\prime}-\xi(o).

We show that F~\tilde{F} and FF are the inverse of each other. Since ξ(o)=ξ(o)=0\xi(o)=\xi^{\prime}(o^{\prime})=0, we have

F~F(ξ)=F~(ξξ(o))=(ξξ(o))(ξ(o)ξ(o))=ξ\displaystyle\tilde{F}\circ F(\xi)=\tilde{F}(\xi-\xi(o^{\prime}))=(\xi-\xi(o^{\prime}))-(\xi(o)-\xi^{\prime}(o))=\xi
FF~(ξ)=F(ξξ(o))=(ξξ(o))(ξ(o)ξ(o))=ξ.\displaystyle F\circ\tilde{F}(\xi^{\prime})=F(\xi^{\prime}-\xi^{\prime}(o))=(\xi^{\prime}-\xi(o^{\prime}))-(\xi^{\prime}(o^{\prime})-\xi(o^{\prime}))=\xi^{\prime}.

We show F:hXhXF\colon\partial_{h}X\rightarrow\partial^{\prime}_{h}X is continuous. Let {ξm}mhX\{\xi_{m}\}_{m\in\mathbb{N}}\subset\partial_{h}X be a sequence of maps such that ξm\xi_{m} converges uniformly to some ξhX\xi\in\partial_{h}X on compact sets. For any L>0L>0, we have

supuB¯(o,L)|F(ξm)(u)F(ξ)(u)|\displaystyle\sup_{u\in\bar{B}(o,L)}|F(\xi_{m})(u)-F(\xi)(u)| =supuB¯(o,L)|{ξm(u)ξm(o)}{ξ(u)ξ(o)}|\displaystyle=\sup_{u\in\bar{B}(o,L)}|\{\xi_{m}(u)-\xi_{m}(o^{\prime})\}-\{\xi(u)-\xi(o^{\prime})\}|
supuB¯(o,L)|ξm(u)ξ(u)|+|ξm(o)ξ(o)|\displaystyle\leq\sup_{u\in\bar{B}(o,L)}|\xi_{m}(u)-\xi(u)|+|\xi_{m}(o^{\prime})-\xi(o^{\prime})|
0 as m.\displaystyle\rightarrow 0\text{ as }m\rightarrow\infty.

Thus, a sequence of maps {F(ξm)}m\{F(\xi_{m})\}_{m\in\mathbb{N}} converges uniformly to F(ξ)F(\xi) on compact sets. Therefore, F:hXhXF\colon\partial_{h}X\rightarrow\partial^{\prime}_{h}X is continuous. In the same way, we can show F~:hXhX\tilde{F}\colon\partial^{\prime}_{h}X\rightarrow\partial_{h}X is continuous. Hence, hX\partial_{h}X and hX\partial^{\prime}_{h}X are homeomorphic. ∎

Example 4.5.

Let (2,l1)(\mathbb{R}^{2},l^{1}) be the space 2\mathbb{R}^{2} with l1l^{1} metric. Here, l1l^{1} is defined as follows. For (x1,y1),(x2,y2)2(x_{1},y_{1}),\>(x_{2},y_{2})\in\mathbb{R}^{2}

l1((x1,y1),(x2,y2))=|x1x2|+|y1y2|.l^{1}((x_{1},y_{1}),(x_{2},y_{2}))=|x_{1}-x_{2}|+|y_{1}-y_{2}|.

Then horoboundary h(2,l1)\partial_{h}(\mathbb{R}^{2},l^{1}) is homeomorphic to [,]2\partial[-\infty,\infty]^{2}.

Proposition 4.6.

If XX is a geodesic space, then ϕ:XC(X)\phi\colon X\rightarrow C(X) is a topological embedding.

Proof..

First, we show the following claim.

Claim.

Let {xn}n\{x_{n}\}_{n\in\mathbb{N}} be a sequence on XX such that d(o,xn)d(o,x_{n})\rightarrow\infty and ϕxn\phi_{x_{n}} converges to ξclϕ(X)\xi\in\operatorname{cl}\phi(X) uniformly on compact sets. Then we show that there is no yXy\in X such that ξ=ϕy\xi=\phi_{y}.

We prove this by contradiction. That is, suppose there is some yXy\in X and ϕxn\phi_{x_{n}} converges uniformly on a compact set to ϕy\phi_{y}.

Since d(y,xn)d(o,xn)d(o,y)d(y,x_{n})\geq d(o,x_{n})-d(o,y) from the triangle inequality, d(y,xn)d(y,x_{n}) diverges to infinity. We let γn:[0,d(y,xn)]X\gamma_{n}\colon[0,d(y,x_{n})]\rightarrow X be a geodesic connecting yy and xnx_{n}. That is, γn(0)=y\gamma_{n}(0)=y and γn(d(y,xn))=xn\gamma_{n}(d(y,x_{n}))=x_{n}. We take xnx^{\prime}_{n} to be a point on the image γn([0,d(y,xn)])\gamma_{n}([0,d(y,x_{n})]) of the geodesic γn\gamma_{n}, satisfying d(y,xn)=d(o,y)+1d(y,x^{\prime}_{n})=d(o,y)+1. For any nn\in\mathbb{N}, xnx^{\prime}_{n} is contained in B¯(y,d(o,y)+1)\bar{B}(y,d(o,y)+1). Since ϕxn\phi_{x_{n}} converges uniformly to ϕy\phi_{y} on compact sets, the following holds.

|ϕy(xn)ϕxn(xn)|\displaystyle|\phi_{y}(x^{\prime}_{n})-\phi_{x_{n}}(x^{\prime}_{n})| supuB¯(y,d(o,y)+1)|ϕy(u)ϕxn(u)|\displaystyle\leq\sup_{u\in\bar{B}(y,d(o,y)+1)}|\phi_{y}(u)-\phi_{x_{n}}(u)|
0 as n.\displaystyle\rightarrow 0\text{ as }n\rightarrow\infty.

For any nn\in\mathbb{N}, since xn,xn,yXx_{n},x^{\prime}_{n},y\in X lie on the geodesic γn\gamma_{n}, we have

ϕy(xn)ϕxn(xn)\displaystyle\phi_{y}(x^{\prime}_{n})-\phi_{x_{n}}(x^{\prime}_{n}) ={d(xn,y)d(o,y)}{d(xn,xn)d(o,xn)}\displaystyle=\{d(x^{\prime}_{n},y)-d(o,y)\}-\{d(x^{\prime}_{n},x_{n})-d(o,x_{n})\}
=1d(xn,xn)+d(o,xn)\displaystyle=1-d(x^{\prime}_{n},x_{n})+d(o,x_{n})
1d(xn,xn)+d(xn,y)d(o,y)\displaystyle\geq 1-d(x^{\prime}_{n},x_{n})+d(x_{n},y)-d(o,y)
=1+d(y,xn)d(o,y)\displaystyle=1+d(y,x^{\prime}_{n})-d(o,y)
=2.\displaystyle=2.

This contradicts the results above, so the claim holds. Now we show that if a sequence of maps {ϕxn}n\{\phi_{x_{n}}\}_{n\in\mathbb{N}} converges uniformly to ϕx\phi_{x} (xX)(x\in X) on compact sets, a sequence {xn}n\{x_{n}\}_{n\in\mathbb{N}} converges to xx.

By the claim, the set {xn}\{x_{n}\} is bounded. Set

Rmax{d(o,x),supnd(o,xn)}.R\coloneqq\max\{d(o,x),\,\sup_{n\in\mathbb{N}}d(o,x_{n})\}.

Since ϕxn\phi_{x_{n}} converges pointwise to ϕx\phi_{x}, we have

|ϕxn(x)ϕx(x)|\displaystyle|\phi_{x_{n}}(x)-\phi_{x}(x)| =|(d(x,xn)d(o,xn))(d(x,x)d(o,x))|\displaystyle=|(d(x,x_{n})-d(o,x_{n}))-(d(x,x)-d(o,x))|
=|d(x,xn)d(o,xn)+d(o,x)|\displaystyle=|d(x,x_{n})-d(o,x_{n})+d(o,x)|
0 as n.\displaystyle\rightarrow 0\text{ as }n\rightarrow\infty.

On the other hand, ϕxn\phi_{x_{n}} converges uniformly to ϕx\phi_{x} on compact sets, so we obtain

|ϕxn(xn)ϕx(xn)|\displaystyle|\phi_{x_{n}}(x_{n})-\phi_{x}(x_{n})| supuB¯(o,R)|ϕxn(u)ϕx(u)|\displaystyle\leq\sup_{u\in\bar{B}(o,R)}|\phi_{x_{n}}(u)-\phi_{x}(u)|
0 as n.\displaystyle\rightarrow 0\text{ as }n\rightarrow\infty.

Thus, we obtain the following

|ϕxn(xn)ϕx(xn)|\displaystyle|\phi_{x_{n}}(x_{n})-\phi_{x}(x_{n})| =|d(xn,xn)d(o,xn)d(xn,x)+d(o,x)|\displaystyle=|d(x_{n},x_{n})-d(o,x_{n})-d(x_{n},x)+d(o,x)|
=|d(o,xn)d(xn,x)+d(o,x)|\displaystyle=|-d(o,x_{n})-d(x_{n},x)+d(o,x)|
=|d(o,xn)+d(xn,x)d(o,x)|\displaystyle=|d(o,x_{n})+d(x_{n},x)-d(o,x)|
0 as n.\displaystyle\rightarrow 0\text{ as }n\rightarrow\infty.

By triangle inequality, we have

2d(xn,x)\displaystyle 2d(x_{n},x) |d(x,xn)d(o,xn)+d(o,x)|\displaystyle\leq|d(x,x_{n})-d(o,x_{n})+d(o,x)|
+|d(o,xn)+d(xn,x)d(o,x)|\displaystyle\phantom{+\quad}+|d(o,x_{n})+d(x_{n},x)-d(o,x)|
0 as n.\displaystyle\rightarrow 0\text{ as }n\rightarrow\infty.

4.2. Reduced horoboundary

Definition 4.7.

Let (X,d)(X,d) be a proper metric space and let hX\partial_{h}X be the horoboundary. We define that two functions ξ\xi and η\eta in hX\partial_{h}X are equivalent, denoted by ξη\xi\sim\eta, if

supxX|ξ(x)η(x)|<.\sup_{x\in X}|\xi(x)-\eta(x)|<\infty.

This determines an equivalence relation on hX\partial_{h}X. A reduced horoboundary of XX, denoted by hX/\partial_{h}X/\sim, is the quotient of hX\partial_{h}X by the equivalence relation \sim with the quotient topology.

In general, a geodesic Gromov hyperbolic space does not necessarily coincide with its horoboundary and its ideal boundary.

On the other hand, in geodesic Gromov hyperbolic spaces, Webster and Winchester [WW03] showed the following.

Theorem 4.8 ([WW03, Theorem 4.5.]).

Let (X,d)(X,d) be a proper geodesic Gromov hyperbolic space with the base point oXo\in X. Let oX\partial_{o}X be an ideal boundary with respect to the base point oo and let hX\partial_{h}X be a horoboundary of XX. Then there is a natural continuous quotient map from hX\partial_{h}X onto oX\partial_{o}X.

It is well known that the reduced horoboundary coincides with the ideal boundary in proper geodesic Gromov hyperbolic spaces as a corollary of Theorem 4.8.

The same result does not hold for coarsely convex spaces. For example, we have seen that all normed spaces are geodesic coarsely convex spaces in Example 2.4. There are examples such as the following. Here, we remark that an ideal boundary of a proper coarsely convex space is compact and metrizable

Example 4.9.

The reduced horoboundary of (2,l1)(\mathbb{R}^{2},l^{1}) is not Hausdorff.

5. Open cone and horoboundary

Definition 5.1.

Let (Y,dY)(Y,d_{Y}) be a compact metric space with diameter less than or equal to 1. Let the open cone over YY be the following quotient topological space.

𝒪Y=([0,)×Y)/({0}×Y)\mathcal{O}Y=([0,\infty)\times Y)/(\{0\}\times Y)

For (t,y)[0,]×Y(t,y)\in[0,\infty]\times Y, we denote by txtx the point in 𝒪Y\mathcal{O}Y represented by (t,y)(t,y). We define a metric d𝒪Yd_{\mathcal{O}Y} on 𝒪Y\mathcal{O}Y by

d𝒪Y(tx,sy)|ts|+min{t,s}dY(x,y).d_{\mathcal{O}Y}(tx,sy)\coloneqq|t-s|+\min\{t,s\}d_{Y}(x,y).

Set o0y𝒪Yo\coloneqq 0y\in\mathcal{O}Y as the base point of 𝒪Y\mathcal{O}Y.

Proposition 5.2.

Let (Y,dY)(Y,d_{Y}) be a compact metric space with diameter less than or equal to 1 and 𝒪Y\mathcal{O}Y be an open cone over YY. Then 𝒪Y\mathcal{O}Y is a proper metric space.

Proof..

Let K𝒪YK\subset\mathcal{O}Y be a closed bounded subset. There exists R0R\geq 0 such that KK is contained in [0,R]×Y/({0}×Y)[0,R]\times Y/(\{0\}\times Y). Since [0,R]×Y[0,R]\times Y is compact, the quotient [0,R]×Y/({0}×Y)[0,R]\times Y/(\{0\}\times Y) is compact. Therefore, KK is compact. ∎

As in the following example, 𝒪Y\mathcal{O}Y is not necessarily a geodesic space.

Example 5.3.

We consider a two-points set Y={a,b}Y=\{a,b\} and define d:Y×Y0d\colon Y\times Y\rightarrow\mathbb{R}_{\geq 0} to satisfy d(a,a)=0,d(b,b)=0,d(a,b)=d(b,a)=1d(a,a)=0,d(b,b)=0,d(a,b)=d(b,a)=1. Then dd is a metric on YY, and (Y,d)(Y,d) is a compact metric space with diameter less than or equal to 1.

Then 𝒪Y\mathcal{O}Y is not a geodesic space. We prove this by contradiction.

We assume there exists some geodesic γ:[0,1]𝒪Y\gamma\colon[0,1]\rightarrow\mathcal{O}Y such that γ(0)=1a\gamma(0)=1a and γ(1)=1b\gamma(1)=1b. In this case, there is a map f:[0,1]0f\colon[0,1]\rightarrow\mathbb{R}_{\geq 0} and a map g:[0,1]Yg\colon[0,1]\rightarrow Y such that γ(t)=f(t)g(t)\gamma(t)=f(t)g(t) for any t[0,1]t\in[0,1].

We show f:[0,1]0f\colon[0,1]\rightarrow\mathbb{R}_{\geq 0} is a continuous function. By the continuity of γ:[0,1]𝒪Y\gamma\colon[0,1]\rightarrow\mathcal{O}Y, for any t1[0,1]t_{1}\in[0,1] and any ϵ>0\epsilon>0, there exists some δ>0\delta>0 and for any t[0,1]t\in[0,1] with |tt1|<δ|t-t_{1}|<\delta, we have

d𝒪Y(γ(t),γ(t1))=|f(t)f(t1)|+min{f(t),f(t1)}d(g(t),g(t1))<ϵ.d_{\mathcal{O}Y}(\gamma(t),\gamma(t_{1}))=|f(t)-f(t_{1})|+\min\{f(t),f(t_{1})\}d(g(t),g(t_{1}))<\epsilon.

So we have |f(t)f(t1)|<ϵ|f(t)-f(t_{1})|<\epsilon.

By the compactness of [0,1][0,1] and the continuity of ff, there exists minimum value mmint[0,1]f(t)m\coloneqq\min_{t\in[0,1]}f(t). Then, the minimum value mm is equal to 0. We prove this by contradiction. Since f(t)0f(t)\geq 0 for all t[0,1]t\in[0,1], we may assume that m>0m>0. From the continuity of γ:[0,1]𝒪Y\gamma\colon[0,1]\rightarrow\mathcal{O}Y, for any t1[0,1]{t_{1}}^{\prime}\in[0,1] and any ϵ>0\epsilon^{\prime}>0, there exists some δ>0\delta^{\prime}>0 and for any t[0,1]t^{\prime}\in[0,1] with |tt1|<δ|t^{\prime}-{t_{1}}^{\prime}|<\delta, we have

d𝒪Y(γ(t),γ(t1))=|f(t)f(t1)|+min{f(t),f(t1)}dY(g(t),g(t1))<mϵ.d_{\mathcal{O}Y}(\gamma(t^{\prime}),\gamma({t_{1}}^{\prime}))=|f(t^{\prime})-f({t_{1}}^{\prime})|+\min\{f(t^{\prime}),f({t_{1}}^{\prime})\}d_{Y}(g(t^{\prime}),g({t_{1}}^{\prime}))<m\epsilon.

So we have

mdY(g(t),g(t1))<mϵ.md_{Y}(g(t^{\prime}),g({t_{1}}^{\prime}))<m\epsilon.

By the hypothesis of m>0m>0, we get

dY(g(t),g(t1))<ϵ.d_{Y}(g(t^{\prime}),g({t_{1}}^{\prime}))<\epsilon.

Therefore, g:[0,1]Yg\colon[0,1]\rightarrow Y is a continuous map. Since [0,1][0,1] is connected and YY is discrete, the map g:[0,1]Yg\colon[0,1]\rightarrow Y is a constant map. We assume that g(t)=1ag(t)=1a for any t[0,1]t\in[0,1]. Then, we have

0=d𝒪Y(γ(1),γ(1))\displaystyle 0=d_{\mathcal{O}Y}(\gamma(1),\gamma(1)) =d𝒪Y(1b,f(1)g(1))=d𝒪Y(1b,f(1)a)\displaystyle=d_{\mathcal{O}Y}(1b,f(1)g(1))=d_{\mathcal{O}Y}(1b,f(1)a)
=|1f(1)|+min{1,f(1)}dY(a,b)\displaystyle=|1-f(1)|+\min\{1,f(1)\}d_{Y}(a,b)
min{1,m}>0.\displaystyle\geq\min\{1,m\}>0.

This is contradiction. So we have m=0m=0. In particular, there exists some t0[0,1]t_{0}\in[0,1] such that f(t0)=0f(t_{0})=0. It follows that γ(t0)=f(t0)g(t0)=o\gamma(t_{0})=f(t_{0})g(t_{0})=o. Since 1bo1b\neq o, we have t01t_{0}\neq 1. On the other hand, since γ:[0,1]𝒪Y\gamma\colon[0,1]\rightarrow\mathcal{O}Y is a geodesic, we have t0=d𝒪Y(γ(0),γ(t0))=d𝒪Y(1a,o)=1t_{0}=d_{\mathcal{O}Y}(\gamma(0),\gamma(t_{0}))=d_{\mathcal{O}Y}(1a,o)=1. This is a contradiction.

We will show that 𝒪Y\mathcal{O}Y can be topologically embedded in C(𝒪Y)C(\mathcal{O}Y). As stated in the above, 𝒪Y\mathcal{O}Y is not necessarily geodesic spaces. So, we cannot apply directly Proposition 4.6.

Proposition 5.4.

Let (Y,dY)(Y,d_{Y}) be a compact metric space with diameter less than or equal to 1 and 𝒪Y\mathcal{O}Y be an open cone over YY. Let C(𝒪Y)C(\mathcal{O}Y) be the space of continuous functions on 𝒪Y\mathcal{O}Y equipped with the topology of uniform convergence on compact sets. For each sx𝒪Ysx\in\mathcal{O}Y, we consider the function ϕsx:𝒪Y\phi_{sx}\colon\mathcal{O}Y\rightarrow\mathbb{R} as following,

ϕsx(ty)\displaystyle\phi_{sx}(ty) d𝒪Y(ty,sx)d𝒪Y(o,sx)\displaystyle\coloneqq d_{\mathcal{O}Y}(ty,sx)-d_{\mathcal{O}Y}(o,sx)
=d𝒪Y(ty,sx)s\displaystyle=d_{\mathcal{O}Y}(ty,sx)-s

Then the map ϕ:𝒪YC(𝒪Y),sxϕsx\phi\colon\mathcal{O}Y\rightarrow C(\mathcal{O}Y),sx\mapsto\phi_{sx} is a topological embedding.

Proof..

Let {zn}n={tnyn}n,(tn0,ynY)\{z_{n}\}_{n\in\mathbb{N}}=\{t_{n}y_{n}\}_{n\in\mathbb{N}},(t_{n}\in\mathbb{R}_{\geq 0},\>y_{n}\in Y) be a sequence in 𝒪Y\mathcal{O}Y escaping to infinity, that is tnt_{n}\rightarrow\infty.

We claim that no subsequence of ϕzn\phi_{z_{n}} converges to a function ϕz\phi_{z} with zty𝒪Yz\coloneqq ty\in\mathcal{O}Y. Suppose contrarily, there exists a subsequence of ϕzn\phi_{z_{n}} which converges to ϕz\phi_{z} with z=ty𝒪Yz=ty\in\mathcal{O}Y. By replacing the subsequence, we suppose that ϕzn\phi_{z_{n}} converges to ϕz\phi_{z}.

First we consider the case t=0t=0.

We have ϕz(1y)=ϕo(1y)=1\phi_{z}(1y)=\phi_{o}(1y)=1. On the other hand, for any nn\in\mathbb{N} with tn1t_{n}\geq 1, we have ϕzn(1y)=1+dY(yn,y)0\phi_{z_{n}}(1y)=-1+d_{Y}(y_{n},y)\leq 0. This contradicts that ϕzn\phi_{z_{n}} converges pointwise to ϕo\phi_{o}.

Next we consider the case t0t\neq 0.

Let R>0R>0 be a constant that satisfies R>t+1R>t+1. Set x=(t+1)y𝒪Yx=(t+1)y\in\mathcal{O}Y.

Since the topology of C(𝒪Y)C(\mathcal{O}Y) is given by the uniform convergence on compact sets, ϕzn\phi_{z_{n}} converges uniformly on B¯(0,R)\bar{B}(0,R) to ϕz\phi_{z}. By taking nn\in\mathbb{N} large enough, we have

|ϕzn(z)ϕz(z)|\displaystyle|\phi_{z_{n}}(z)-\phi_{z}(z)| =|(d𝒪Y(zn,z)d𝒪Y(0,zn))(d𝒪Y(z,z)d𝒪Y(0,z))|\displaystyle=|(d_{\mathcal{O}Y}(z_{n},z)-d_{\mathcal{O}Y}(0,z_{n}))-(d_{\mathcal{O}Y}(z,z)-d_{\mathcal{O}Y}(0,z))|
=|(|tnt|+min{tn,t}dY(yn,y)tn)(t)|\displaystyle=|(|t_{n}-t|+\min\{t_{n},t\}d_{Y}(y_{n},y)-t_{n})-(-t)|
=tdY(yn,y)0 as n.\displaystyle=td_{Y}(y_{n},y)\rightarrow 0\text{ as }n\rightarrow\infty.

Since t0t\neq 0, we have dY(yn,y)0 as nd_{Y}(y_{n},y)\rightarrow 0\text{ as }n\rightarrow\infty. On the other hand, for nn\in\mathbb{N} with tnt+1t_{n}\geq t+1,

|ϕzn(x)ϕz(x)|\displaystyle|\phi_{z_{n}}(x)-\phi_{z}(x)|
=|(|tn(t+1)|+min{tn,t}dY(yn,y)tn)(1+tdY(y,y)t)|\displaystyle=|(|t_{n}-(t+1)|+\min\{t_{n},t\}d_{Y}(y_{n},y)-t_{n})-(1+td_{Y}(y,y)-t)|
=|2+tdY(yn,y)|20 as n.\displaystyle=|-2+td_{Y}(y_{n},y)|\rightarrow 2\neq 0\text{ as }n\rightarrow\infty.

This contradicts the fact that ϕzn\phi_{z_{n}} converges pointwise to ϕz\phi_{z}. This completes the proof of the claim.

The rest of the proof can be shown as in Proposition 4.6.

Proposition 5.5.

Let (Y,dY)(Y,d_{Y}) be a compact metric space with diameter less than or equal to 1, and let 𝒪Y\mathcal{O}Y be an open cone over YY. Let {tnyn}n\{t_{n}y_{n}\}_{n\in\mathbb{N}} be a sequence satisfying tnt_{n}\rightarrow\infty on 𝒪Y\mathcal{O}Y. If ϕtnynC(𝒪Y)\phi_{t_{n}y_{n}}\in C(\mathcal{O}Y) converges uniformly on compact sets to ξcl{ϕsx|sx𝒪Y}\xi\in\mathrm{cl}\{\phi_{s}x\>|\>sx\in\mathcal{O}Y\}, then yny_{n} converges to some point on YY.

Proof..

Since YY is compact, it is enough to show that {yn}n\{y_{n}\}_{n\in\mathbb{N}} is a Cauchy sequence.

Let mm and nn be arbitrary natural numbers. Since ϕtnyn\phi_{t_{n}y_{n}} converges uniformly to ξh𝒪Y\xi\in\partial_{h}\mathcal{O}Y on compact sets, we have

|ϕtmym(1yn)ϕtnyn(1yn)|\displaystyle|\phi_{t_{m}y_{m}}(1y_{n})-\phi_{t_{n}y_{n}}(1y_{n})| |ϕtmym(1yn)ξ(1yn)|+|ϕtnyn(1yn)ξ(1yn)|\displaystyle\leq|\phi_{t_{m}y_{m}}(1y_{n})-\xi(1y_{n})|+|\phi_{t_{n}y_{n}}(1y_{n})-\xi(1y_{n})|
supuB¯(o,1)|ϕtmym(u)ξ(u)|+supuB¯(o,1)|ϕtnyn(u)ξ(u)|\displaystyle\leq\sup_{u\in\bar{B}(o,1)}|\phi_{t_{m}y_{m}}(u)-\xi(u)|+\sup_{u\in\bar{B}(o,1)}|\phi_{t_{n}y_{n}}(u)-\xi(u)|
0 as m,n.\displaystyle\rightarrow 0\text{ as }m,n\rightarrow\infty.

On the other hand, by taking mm and nn large enough, we have

|ϕtmym(1yn)ϕtnyn(1yn)|\displaystyle|\phi_{t_{m}y_{m}}(1y_{n})-\phi_{t_{n}y_{n}}(1y_{n})| =|d𝒪Y(1yn,tmym)d𝒪Y(o,tmym)d𝒪Y(1yn,tnyn)+d𝒪Y(o,tnyn)|\displaystyle=|d_{\mathcal{O}Y}(1y_{n},t_{m}y_{m})-d_{\mathcal{O}Y}(o,t_{m}y_{m})-d_{\mathcal{O}Y}(1y_{n},t_{n}y_{n})+d_{\mathcal{O}Y}(o,t_{n}y_{n})|
=|(tm1)+dY(ym,yn)tm(tn1)dY(yn,yn)+tn|\displaystyle=|(t_{m}-1)+d_{Y}(y_{m},y_{n})-t_{m}-(t_{n}-1)-d_{Y}(y_{n},y_{n})+t_{n}|
=dY(ym,yn).\displaystyle=d_{Y}(y_{m},y_{n}).

So we have dY(ym,yn)0 as m,nd_{Y}(y_{m},y_{n})\rightarrow 0\text{ as }m,n\rightarrow\infty. ∎

Proposition 5.6.

Let (Y,dY)(Y,d_{Y}) be a compact metric space with diameter less than or equal to 1. Let (𝒪Y,d𝒪Y)(\mathcal{O}Y,d_{\mathcal{O}Y}) be an open cone over YY. Then YY and h𝒪Y\partial_{h}\mathcal{O}Y are homeomorphic.

Proof..

We define F:YC(𝒪Y)F\colon Y\rightarrow C(\mathcal{O}Y) as follows,

y(F(y)(sx)s+sd(x,y)).y\mapsto(F(y)(sx)\coloneqq-s+sd(x,y)).

For any yYy\in Y, we show F(y)h𝒪YF(y)\in\partial_{h}\mathcal{O}Y.

We observe that a sequence {ϕny}n\{\phi_{ny}\}_{n\in\mathbb{N}} converges to F(y)F(y). We fix R>0R>0. For all n>Rn>R, we have

supsxB¯(o,R)|ϕny(sx)F(y)(sx)|\displaystyle\sup_{sx\in\bar{B}(o,R)}|\phi_{ny}(sx)-F(y)(sx)|
=supsxB¯(o,R)|{d𝒪Y(sx,ny)d𝒪Y(o,ny)}{s+sdY(x,y)}|\displaystyle=\sup_{sx\in\bar{B}(o,R)}|\{d_{\mathcal{O}Y}(sx,ny)-d_{\mathcal{O}Y}(o,ny)\}-\{-s+sd_{Y}(x,y)\}|
=supsxB¯(o,R)|{ns+sdY(x,y)n}{s+sdY(x,y)}|\displaystyle=\sup_{sx\in\bar{B}(o,R)}|\{n-s+sd_{Y}(x,y)-n\}-\{-s+sd_{Y}(x,y)\}|
=0.\displaystyle=0.

Thus, the sequence of maps {ϕny}n\{\phi_{ny}\}_{n\in\mathbb{N}} converges uniformly to F(y)F(y) on compact sets. Since the sequence {ny}n\{ny\}_{n\in\mathbb{N}} is unbounded, we have F(y)=limnϕnyh𝒪YF(y)=\lim_{n\rightarrow\infty}\phi_{ny}\in\partial_{h}\mathcal{O}Y by Proposition 5.4.

We show F:Yh𝒪YF\colon Y\rightarrow\partial_{h}\mathcal{O}Y is continuous.

We take a sequence {yn}nY\{y_{n}\}_{n\in\mathbb{N}}\subset Y such that yny_{n} converges to some yYy\in Y. We take L>0L>0 arbitrarily. Then we have

supsxB¯(o,L)|F(yn)(sx)F(y)(sx)|\displaystyle\sup_{sx\in\bar{B}(o,L)}|F(y_{n})(sx)-F(y)(sx)|
=supsxB¯(o,L)|{s+sdY(x,yn)}{s+sdY(x,y)}|\displaystyle=\sup_{sx\in\bar{B}(o,L)}|\{-s+sd_{Y}(x,y_{n})\}-\{-s+sd_{Y}(x,y)\}|
supsxB¯(o,L)sdY(yn,y)\displaystyle\leq\sup_{sx\in\bar{B}(o,L)}sd_{Y}(y_{n},y)
LdY(yn,y)0 as n.\displaystyle\leq Ld_{Y}(y_{n},y)\rightarrow 0\text{ as }n\rightarrow\infty.

Thus, a sequence of maps {F(yn)}n\{F(y_{n})\}_{n\in\mathbb{N}} converges uniformly to F(y)F(y) on compact sets, so F:Yh𝒪YF\colon Y\rightarrow\partial_{h}\mathcal{O}Y is continuous.

We show F:Yh𝒪YF\colon Y\rightarrow\partial_{h}\mathcal{O}Y is injective. For any y,zYy,z\in Y, we assume F(y)=F(z)F(y)=F(z). Then we have

F(y)(1z)=1+dY(y,z)=1=F(z)(1z).F(y)(1z)=-1+d_{Y}(y,z)=-1=F(z)(1z).

Therefore, we have dY(y,z)=0d_{Y}(y,z)=0, that is, F:Yh𝒪YF\colon Y\rightarrow\partial_{h}\mathcal{O}Y is injective.

We show F:Yh𝒪YF\colon Y\rightarrow\partial_{h}\mathcal{O}Y is surjective. We take ξh𝒪Y\xi\in\partial_{h}\mathcal{O}Y arbitrarily. Then, there is a sequence {tnyn}n𝒪Y\{t_{n}y_{n}\}_{n\in\mathbb{N}}\subset\mathcal{O}Y such that tnt_{n}\rightarrow\infty as nn\rightarrow\infty and a sequence of maps {ϕtnyn}n\{\phi_{t_{n}y_{n}}\}_{n\in\mathbb{N}} converges uniformly to ξ\xi on compact sets. By Proposition 5.5, the sequence {yn}n\{y_{n}\}_{n\in\mathbb{N}} converges to some point yYy\in Y. For any sx𝒪Ysx\in\mathcal{O}Y, we have

ξ(sx)\displaystyle\xi(sx) =limnϕtnyn(sx)\displaystyle=\lim_{n\rightarrow\infty}\phi_{t_{n}y_{n}}(sx)
=limnd𝒪Y(sx,tnyn)d𝒪Y(o,tnyn)\displaystyle=\lim_{n\rightarrow\infty}d_{\mathcal{O}Y}(sx,t_{n}y_{n})-d_{\mathcal{O}Y}(o,t_{n}y_{n})
=limntns+sdY(x,yn)tn\displaystyle=\lim_{n\rightarrow\infty}t_{n}-s+sd_{Y}(x,y_{n})-t_{n}
=s+sd(x,y)\displaystyle=-s+sd(x,y)
=F(y)(sx).\displaystyle=F(y)(sx).

Therefore, we have ξ=F(y)\xi=F(y), that is, F:Yh𝒪YF\colon Y\rightarrow\partial_{h}\mathcal{O}Y is surjective. Since YY is compact and h𝒪Y\partial_{h}\mathcal{O}Y is Hausdorff, F:Yh𝒪YF\colon Y\rightarrow\partial_{h}\mathcal{O}Y is a homeomorphism. ∎

By Proposition 3.4, an ideal boundary of a proper coarsely convex space is a compact metric space with its diameter if less than or equal to 1. Applying Proposition 5.6, we obtain Theorem 1.1.

6. Cone metric and horoboundary

Andreev defined a cone metric for Busemann spaces [And18]. In this section, we construct a cone metric for coarsely convex spaces. Then we construct the horoboundary using the cone metric.

6.1. Cone metric

For tt\in\mathbb{R}, we denote by t\lfloor t\rfloor the greatest integer less than or equal to tt.

Definition 6.1.

Let (X,d)(X,d) be a (λ,k,E,C,θ)(\lambda,k,E,C,\theta)-coarsely convex space with a base point oXo\in X. Let Γ\Gamma be a (λ,k,E,C,θ)(\lambda,k,E,C,\theta)-coarsely convex bicombing on XX. For given points x,yXx,y\in X. The cone metric dc(x,y)d_{c}(x,y) is defined by

dc(x,y)\displaystyle d_{c}(x,y)\coloneqq |d(o,x)d(o,y)|\displaystyle|d(o,x)-d(o,y)|
+d(rpΓ(o,x,min{d(o,x),d(o,y)}),rpΓ(o,y,min{d(o,x),d(o,y)})).\displaystyle\>+d(\texttt{rp}\Gamma(o,x,\lfloor\min\{d(o,x),d(o,y)\}\rfloor),\texttt{rp}\Gamma(o,y,\lfloor\min\{d(o,x),d(o,y)\}\rfloor)).

By the definition of the cone metric, for any xXx\in X, we have dc(o,x)=d(o,x)d_{c}(o,x)=d(o,x). Also, the cone metric is non-negative, symmetric.

Remark 6.2.

If (X,d)(X,d) is a geodesic (E,C)(E,C)-coarsely convex space with a geodesic (E,C)(E,C)-coarsely convex bicombing Γ\Gamma and a base point oXo\in X, we define cone metric as follows

dc(x,y)\displaystyle d_{c}(x,y)\coloneqq |d(o,x)d(o,y)|\displaystyle|d(o,x)-d(o,y)|
+d(rpΓ(o,x,min{d(o,x),d(o,y)}),rpΓ(o,y,min{d(o,x),d(o,y)}))\displaystyle\>+d(\texttt{rp}\Gamma(o,x,\min\{d(o,x),d(o,y)\}),\texttt{rp}\Gamma(o,y,\min\{d(o,x),d(o,y)\}))

for any x,yXx,y\in X. From Example 2.5, a Busemann space is a geodesic (1,0)(1,0)-coarsely convex space. Then, the cone metric defined above coincides with the definition given by Andreev in [And18]. Furthermore, Definition 6.1 is an extension of the cone metric defined above to quasi-geodesic spaces.

Lemma 6.3.

Let (X,d)(X,d) be a (λ,k,E,C,θ)(\lambda,k,E,C,\theta)-coarsely convex space with (λ,k,E,C,θ)(\lambda,k,E,C,\theta)-coarsely convex bicombing Γ\Gamma. For any three points x,y,zXx,y,z\in X, we have

dc(x,z)λEdc(x,y)+λEdc(y,z)+4λ+2k+C.d_{c}(x,z)\leq\lambda Ed_{c}(x,y)+\lambda Ed_{c}(y,z)+4\lambda+2k+C.
Proof..

We consider three points x,y,zXx,y,z\in X satisfy d(o,x)d(o,y)d(o,z)d(o,x)\leq d(o,y)\leq d(o,z). Since Γ\Gamma is a (λ,k,E,C,θ)(\lambda,k,E,C,\theta)-coarsely convex bicombing, we have

d(rpΓ(o,y,d(o,x)),rpΓ(o,z,d(o,x)))\displaystyle d(\texttt{rp}\Gamma(o,y,\lfloor d(o,x)\rfloor),\texttt{rp}\Gamma(o,z,\lfloor d(o,x)\rfloor))
=d(Γ(o,y,d(o,x)d(o,y)),Γ(o,z,d(o,x)d(o,z)))\displaystyle=d\left(\Gamma\left(o,y,\frac{\lfloor d(o,x)\rfloor}{d(o,y)}\right),\Gamma\left(o,z,\frac{\lfloor d(o,x)\rfloor}{d(o,z)}\right)\right)
d(o,x)d(o,y)Ed(Γ(o,y,d(o,y)d(o,y)),Γ(o,z,d(o,y)d(o,z)))+C\displaystyle\leq\frac{\lfloor d(o,x)\rfloor}{\lfloor d(o,y)\rfloor}Ed\left(\Gamma\left(o,y,\frac{\lfloor d(o,y)\rfloor}{d(o,y)}\right),\Gamma\left(o,z,\frac{\lfloor d(o,y)\rfloor}{d(o,z)}\right)\right)+C
Ed(rpΓ(o,y,d(o,y)),rpΓ(o,z,d(o,y)))+C.\displaystyle\leq Ed(\texttt{rp}\Gamma(o,y,\lfloor d(o,y)\rfloor),\texttt{rp}\Gamma(o,z,\lfloor d(o,y)\rfloor))+C.

Thus, we have the following

dc(x,y)\displaystyle d_{c}(x,y) =d(o,y)d(o,x)+d(rpΓ(o,x,d(o,x)),rpΓ(o,y,d(o,x)))\displaystyle=d(o,y)-d(o,x)+d(\texttt{rp}\Gamma(o,x,\lfloor d(o,x)\rfloor),\texttt{rp}\Gamma(o,y,\lfloor d(o,x)\rfloor))
d(o,z)d(o,x)+d(rpΓ(o,x,d(o,x)),rpΓ(o,z,d(o,x)))\displaystyle\leq d(o,z)-d(o,x)+d(\texttt{rp}\Gamma(o,x,\lfloor d(o,x)\rfloor),\texttt{rp}\Gamma(o,z,\lfloor d(o,x)\rfloor))
+d(rpΓ(o,y,d(o,x)),rpΓ(o,z,d(o,x)))\displaystyle\phantom{\leq\quad}+d(\texttt{rp}\Gamma(o,y,\lfloor d(o,x)\rfloor),\texttt{rp}\Gamma(o,z,\lfloor d(o,x)\rfloor))
=dc(x,z)+d(rpΓ(o,y,d(o,x)),rpΓ(o,z,d(o,x)))\displaystyle=d_{c}(x,z)+d(\texttt{rp}\Gamma(o,y,\lfloor d(o,x)\rfloor),\texttt{rp}\Gamma(o,z,\lfloor d(o,x)\rfloor))
dc(x,z)+d(o,z)d(o,y)+Ed(rpΓ(o,y,d(o,y)),rpΓ(o,z,d(o,y)))+C\displaystyle\leq d_{c}(x,z)+d(o,z)-d(o,y)+Ed(\texttt{rp}\Gamma(o,y,\lfloor d(o,y)\rfloor),\texttt{rp}\Gamma(o,z,\lfloor d(o,y)\rfloor))+C
Edc(x,z)+Edc(y,z)+C.\displaystyle\leq Ed_{c}(x,z)+Ed_{c}(y,z)+C.

Similarly, we have

dc(x,z)\displaystyle d_{c}(x,z) =d(o,z)d(o,x)+d(rpΓ(o,x,d(o,x)),rpΓ(o,z,d(o,x)))\displaystyle=d(o,z)-d(o,x)+d(\texttt{rp}\Gamma(o,x,\lfloor d(o,x)\rfloor),\texttt{rp}\Gamma(o,z,\lfloor d(o,x)\rfloor))
d(o,z)d(o,x)+d(o,y)d(o,y)+d(rpΓ(o,x,d(o,x)),rpΓ(o,y,d(o,x)))\displaystyle\leq d(o,z)-d(o,x)+d(o,y)-d(o,y)+d(\texttt{rp}\Gamma(o,x,\lfloor d(o,x)\rfloor),\texttt{rp}\Gamma(o,y,\lfloor d(o,x)\rfloor))
+d(rpΓ(o,y,d(o,x)),rpΓ(o,z,d(o,x)))\displaystyle\phantom{\leq\quad}+d(\texttt{rp}\Gamma(o,y,\lfloor d(o,x)\rfloor),\texttt{rp}\Gamma(o,z,\lfloor d(o,x)\rfloor))
=dc(x,y)+d(o,z)d(o,y)+d(rpΓ(o,y,d(o,x)),rpΓ(o,z,d(o,x)))\displaystyle=d_{c}(x,y)+d(o,z)-d(o,y)+d(\texttt{rp}\Gamma(o,y,\lfloor d(o,x)\rfloor),\texttt{rp}\Gamma(o,z,\lfloor d(o,x)\rfloor))
dc(x,y)+d(o,z)d(o,y)+Ed(rpΓ(o,y,d(o,y)),rpΓ(o,z,d(o,y)))+C\displaystyle\leq d_{c}(x,y)+d(o,z)-d(o,y)+Ed(\texttt{rp}\Gamma(o,y,\lfloor d(o,y)\rfloor),\texttt{rp}\Gamma(o,z,\lfloor d(o,y)\rfloor))+C
Edc(x,y)+Edc(y,z)+C.\displaystyle\leq Ed_{c}(x,y)+Ed_{c}(y,z)+C.

Since Γ\Gamma is a (λ,k)(\lambda,k)-quasi geodesic bicombing, we have

d(rpΓ(o,y,d(o,x)),rpΓ(o,y,d(o,y)))\displaystyle d(\texttt{rp}\Gamma(o,y,\lfloor d(o,x)\rfloor),\texttt{rp}\Gamma(o,y,\lfloor d(o,y)\rfloor)) λ(d(o,y)d(o,y)d(o,x)d(o,y))d(o,y)+k\displaystyle\leq\lambda\left(\frac{\lfloor d(o,y)\rfloor}{d(o,y)}-\frac{\lfloor d(o,x)\rfloor}{d(o,y)}\right)d(o,y)+k
λ(d(o,y)d(o,x))+2λ+k.\displaystyle\leq\lambda(d(o,y)-d(o,x))+2\lambda+k.

Similarly, we have

d(rpΓ(o,z,d(o,x)),rpΓ(o,z,d(o,y)))\displaystyle d(\texttt{rp}\Gamma(o,z,\lfloor d(o,x)\rfloor),\texttt{rp}\Gamma(o,z,\lfloor d(o,y)\rfloor)) λ(d(o,y)d(o,z)d(o,x)d(o,z))d(o,z)+k\displaystyle\leq\lambda\left(\frac{\lfloor d(o,y)\rfloor}{d(o,z)}-\frac{\lfloor d(o,x)\rfloor}{d(o,z)}\right)d(o,z)+k
λ(d(o,y)d(o,x))+2λ+k.\displaystyle\leq\lambda(d(o,y)-d(o,x))+2\lambda+k.

So we have

dc(y,z)\displaystyle d_{c}(y,z) =d(o,z)d(o,y)+d(rpΓ(o,y,d(o,y)),rpΓ(o,z,d(o,y)))\displaystyle=d(o,z)-d(o,y)+d(\texttt{rp}\Gamma(o,y,\lfloor d(o,y)\rfloor),\texttt{rp}\Gamma(o,z,\lfloor d(o,y)\rfloor))
d(o,z)d(o,y)+d(rpΓ(o,y,d(o,x)),rpΓ(o,y,d(o,y)))\displaystyle\leq d(o,z)-d(o,y)+d(\texttt{rp}\Gamma(o,y,\lfloor d(o,x)\rfloor),\texttt{rp}\Gamma(o,y,\lfloor d(o,y)\rfloor))
+d(rpΓ(o,y,d(o,x)),rpΓ(o,x,d(o,x)))\displaystyle\phantom{\leq\quad}+d(\texttt{rp}\Gamma(o,y,\lfloor d(o,x)\rfloor),\texttt{rp}\Gamma(o,x,\lfloor d(o,x)\rfloor))
+d(rpΓ(o,x,d(o,x)),rpΓ(o,z,d(o,x)))\displaystyle\phantom{\leq\quad}+d(\texttt{rp}\Gamma(o,x,\lfloor d(o,x)\rfloor),\texttt{rp}\Gamma(o,z,\lfloor d(o,x)\rfloor))
+d(rpΓ(o,z,d(o,x)),rpΓ(o,z,d(o,y)))\displaystyle\phantom{\leq\quad}+d(\texttt{rp}\Gamma(o,z,\lfloor d(o,x)\rfloor),\texttt{rp}\Gamma(o,z,\lfloor d(o,y)\rfloor))
d(o,z)d(o,y)+λ(d(o,y)d(o,x))+2λ+k\displaystyle\leq d(o,z)-d(o,y)+\lambda(d(o,y)-d(o,x))+2\lambda+k
+d(rpΓ(o,y,d(o,x)),rpΓ(o,x,d(o,x)))\displaystyle\phantom{\leq\quad}+d(\texttt{rp}\Gamma(o,y,\lfloor d(o,x)\rfloor),\texttt{rp}\Gamma(o,x,\lfloor d(o,x)\rfloor))
+d(rpΓ(o,x,d(o,x)),rpΓ(o,z,d(o,x)))+λ(d(o,y)d(o,x))+2λ+k\displaystyle\phantom{\leq\quad}+d(\texttt{rp}\Gamma(o,x,\lfloor d(o,x)\rfloor),\texttt{rp}\Gamma(o,z,\lfloor d(o,x)\rfloor))+\lambda(d(o,y)-d(o,x))+2\lambda+k
λ(d(o,z)d(o,y))+λ(d(o,y)d(o,x))+2λ+k\displaystyle\leq\lambda(d(o,z)-d(o,y))+\lambda(d(o,y)-d(o,x))+2\lambda+k
+d(rpΓ(o,y,d(o,x)),rpΓ(o,x,d(o,x)))\displaystyle\phantom{\leq\quad}+d(\texttt{rp}\Gamma(o,y,\lfloor d(o,x)\rfloor),\texttt{rp}\Gamma(o,x,\lfloor d(o,x)\rfloor))
+d(rpΓ(o,x,d(o,x)),rpΓ(o,z,d(o,x)))+λ(d(o,y)d(o,x))+2λ+k\displaystyle\phantom{\leq\quad}+d(\texttt{rp}\Gamma(o,x,\lfloor d(o,x)\rfloor),\texttt{rp}\Gamma(o,z,\lfloor d(o,x)\rfloor))+\lambda(d(o,y)-d(o,x))+2\lambda+k
λdc(x,y)+λdc(x,z)+4λ+2k.\displaystyle\leq\lambda d_{c}(x,y)+\lambda d_{c}(x,z)+4\lambda+2k.

Lemma 6.4.

Let (X,d)(X,d) be a (λ,k,E,C,θ)(\lambda,k,E,C,\theta)-coarsely convex space and let dcd_{c} be a cone metric on XX. For any x,yXx,y\in X, we have

dc(x,y)(λ+2)d(x,y)+2λ+2k.d_{c}(x,y)\leq(\lambda+2)d(x,y)+2\lambda+2k.
Proof..

We do not lose generality by assuming d(o,x)d(o,y)d(o,x)\leq d(o,y). Since Γ\Gamma is a (λ,k)(\lambda,k)-quasi geodesic bicombing, we have

d(rpΓ(o,x,d(o,x)),rpΓ(o,y,d(o,x)))\displaystyle d(\texttt{rp}\Gamma(o,x,\lfloor d(o,x)\rfloor),\texttt{rp}\Gamma(o,y,\lfloor d(o,x)\rfloor))
d(rpΓ(o,x,d(o,x)),x)+d(x,y)+d(y,rpΓ(o,y,d(o,x)))\displaystyle\leq d(\texttt{rp}\Gamma(o,x,\lfloor d(o,x)\rfloor),x)+d(x,y)+d(y,\texttt{rp}\Gamma(o,y,\lfloor d(o,x)\rfloor))
=d(Γ(o,x,d(o,x)d(o,x)),Γ(o,x,1))+d(x,y)+d(Γ(o,y,1),Γ(o,y,d(o,x)d(o,y)))\displaystyle=d\left(\Gamma\left(o,x,\frac{\lfloor d(o,x)\rfloor}{d(o,x)}\right),\Gamma(o,x,1)\right)+d(x,y)+d\left(\Gamma(o,y,1),\Gamma\left(o,y,\frac{\lfloor d(o,x)\rfloor}{d(o,y)}\right)\right)
λ+k+d(x,y)+λ(d(o,y)d(o,x)+1)+k\displaystyle\leq\lambda+k+d(x,y)+\lambda(d(o,y)-d(o,x)+1)+k
(λ+1)d(x,y)+2λ+2k.\displaystyle\leq(\lambda+1)d(x,y)+2\lambda+2k.

So we have

dc(x,y)\displaystyle d_{c}(x,y) =d(o,y)d(o,x)+d(rpΓ(o,x,d(o,x)),rpΓ(o,y,d(o,x)))\displaystyle=d(o,y)-d(o,x)+d(\texttt{rp}\Gamma(o,x,\lfloor d(o,x)\rfloor),\texttt{rp}\Gamma(o,y,\lfloor d(o,x)\rfloor))
(λ+2)d(x,y)+2λ+2k.\displaystyle\leq(\lambda+2)d(x,y)+2\lambda+2k.

6.2. Horoboundary

Now, we consider horoboundary for the cone metric, and study the relation with the ideal boundary. Let B(X)B(X) be the set of all \mathbb{R}-valued functions on XX, and equip with the topology of uniform convergence on compact sets. We define ψ:XB(X)\psi\colon X\rightarrow B(X) as follows. For xXx\in X, let

xψx\displaystyle x\mapsto\psi_{x} dc(,x)dc(o,x)\displaystyle\coloneqq d_{c}(-,x)-d_{c}(o,x)
dc(,x)d(o,x).\displaystyle\coloneqq d_{c}(-,x)-d(o,x).
Definition 6.5.

Let (X,d)(X,d) be a proper (λ,k,E,C,θ)(\lambda,k,E,C,\theta)-coarsely convex space and let Bb(X)B_{b}(X) be the set of all \mathbb{R}-valued bounded functions on XX. Let ψ:XB(X)\psi\colon X\rightarrow B(X) be the map defined above. Let

Bb,λ,E(X){fB(X)|1λEψxβfλEψx+β,xX,βBb(X)}.B_{b,\lambda,E}(X)\coloneqq\left\{f\in B(X)\mathrel{}\middle|\mathrel{}\frac{1}{\lambda E}\psi_{x}-\beta\leq f\leq\lambda E\psi_{x}+\beta,\>\exists x\in X,\exists\beta\in B_{b}(X)\right\}.

We define the horoboundary of XX with cone metric, denoted by hcX\partial^{c}_{h}X as follows

hcXclψ(X)Bb,λ,E(X).\partial^{c}_{h}X\coloneqq\operatorname{cl}\psi(X)\setminus B_{b,\lambda,E}(X).

We also say that hcX\partial^{c}_{h}X is a horoboundary of (X,dc)(X,d_{c}). Here clψ(X)\operatorname{cl}\psi(X) denotes the closure of ψ(X)\psi(X) in B(X)B(X).

We call a function which belongs to hcX\partial^{c}_{h}X a horofunction with cone metric, or we simply call it horofunction if there is no risk of misunderstanding.

Lemma 6.6.

Let (X,d)(X,d) be a proper (λ,k,E,C,θ)(\lambda,k,E,C,\theta)-coarsely convex space. If the sequence ψxn\psi_{x_{n}} converges to ξhcX\xi\in\partial^{c}_{h}X, then only finitely many of the points xnx_{n} lie in any bounded subset of XX.

Proof..

We assume that infinitely many xnx_{n} contained in some ball B¯(o,R)\bar{B}(o,R) where R>0R>0.

Since XX is proper, B¯(o,R)\bar{B}(o,R) is compact. By taking a subsequence, we can assume that {xn}n\{x_{n}\}_{n\in\mathbb{N}} converges to x~B¯(o,R)\tilde{x}\in\bar{B}(o,R) as nn\rightarrow\infty. By hypothesis, ψxn\psi_{x_{n}} converges pointwise to ξ\xi on XX. By Lemma 6.3 and Lemma 6.4, we have

ψxn(x)λEψx~(x)\displaystyle\psi_{x_{n}}(x)-\lambda E\psi_{\tilde{x}}(x) ={dc(x,xn)dc(o,xn)}λE{dc(x,x~)dc(o,x~)}\displaystyle=\{d_{c}(x,x_{n})-d_{c}(o,x_{n})\}-\lambda E\{d_{c}(x,\tilde{x})-d_{c}(o,\tilde{x})\}
={dc(x,xn)λEdc(x,x~)}+{λEdc(o,x~)dc(o,xn)}\displaystyle=\{d_{c}(x,x_{n})-\lambda Ed_{c}(x,\tilde{x})\}+\{\lambda Ed_{c}(o,\tilde{x})-d_{c}(o,x_{n})\}
λEdc(xn,x~)+4λ+2k+C+{λEd(o,x~)d(o,xn)}\displaystyle\leq\lambda Ed_{c}(x_{n},\tilde{x})+4\lambda+2k+C+\{\lambda Ed(o,\tilde{x})-d(o,x_{n})\}
λE{(λ+2)d(xn,x~)+2λ+2k}+4λ+2k+C\displaystyle\leq\lambda E\{(\lambda+2)d(x_{n},\tilde{x})+2\lambda+2k\}+4\lambda+2k+C
+{λEd(o,x~)d(o,xn)}\displaystyle\phantom{\leq\quad}+\{\lambda Ed(o,\tilde{x})-d(o,x_{n})\}

for all xXx\in X. Since d(xn,x~)0d(x_{n},\tilde{x})\rightarrow 0 and ψxn(x)ξ(x)\psi_{x_{n}}(x)\rightarrow\xi(x) for all xXx\in X, we get

ξ(x)λEψx~(x)\displaystyle\xi(x)-\lambda E\psi_{\tilde{x}}(x) =limnψxn(x)λEψx~(x)\displaystyle=\lim_{n\rightarrow\infty}\psi_{x_{n}}(x)-\lambda E\psi_{\tilde{x}}(x)
limnλE{(λ+2)d(xn,x~)+2λ+2k}+4λ+2k+C\displaystyle\leq\lim_{n\rightarrow\infty}\lambda E\{(\lambda+2)d(x_{n},\tilde{x})+2\lambda+2k\}+4\lambda+2k+C
+{λEd(o,x~)d(o,xn)}\displaystyle\phantom{\leq\quad\quad\quad}+\{\lambda Ed(o,\tilde{x})-d(o,x_{n})\}
=(λE1)d(o,x~)+2λ2E+2λkE+4λ+2k+C\displaystyle=(\lambda E-1)d(o,\tilde{x})+2\lambda^{2}E+2\lambda kE+4\lambda+2k+C
(λE1)R+2λ2E+2λkE+4λ+2k+C.\displaystyle\leq(\lambda E-1)R+2\lambda^{2}E+2\lambda kE+4\lambda+2k+C.

So we have

ξ(x)λEψx~(x)+(λE1)R+2λ2E+2λkE+4λ+2k+C\xi(x)\leq\lambda E\psi_{\tilde{x}}(x)+(\lambda E-1)R+2\lambda^{2}E+2\lambda kE+4\lambda+2k+C

for any xXx\in X.

Similarly, we have

ψx~(x)λEξ(x)(λE1)R+2λ2E+2λkE+4λ+2k+C\psi_{\tilde{x}}(x)-\lambda E\xi(x)\leq(\lambda E-1)R+2\lambda^{2}E+2\lambda kE+4\lambda+2k+C

for any xXx\in X, that is,

1λEψx~(x)1λE{(λE1)R+2λ2E+2λkE+4λ+2k+C}ξ(x)\frac{1}{\lambda E}\psi_{\tilde{x}}(x)-\frac{1}{\lambda E}\{(\lambda E-1)R+2\lambda^{2}E+2\lambda kE+4\lambda+2k+C\}\leq\xi(x)

for any xXx\in X. This contradicts to ξhcX\xi\in\partial^{c}_{h}X. ∎

In the rest of this section, let (X,d)(X,d) be a proper metric space with a (λ,k,E,C,θ)(\lambda,k,E,C,\theta)-coarsely convex bicombing Γ\Gamma, fix the base point oXo\in X and let oX\partial_{o}X be the ideal boundary of XX with respect to the base point oo. We construct a continuous map from hcX\partial^{c}_{h}X to oX\partial_{o}X.

Lemma 6.7.

Let ξhcX\xi\in\partial^{c}_{h}X and let {xn}n\{x_{n}\}_{n\in\mathbb{N}} on XX be a sequence such that ψxn\psi_{x_{n}} converges uniformly to ξ\xi on compact sets.

  1. (1)

    The sequence {xn}n\{x_{n}\}_{n\in\mathbb{N}} belongs to SoXS^{\infty}_{o}X. That is, (xn|xm)o(x_{n}\>|\>x_{m})_{o}\rightarrow\infty as n,mn,m\rightarrow\infty.

  2. (2)

    Let {yn}n\{y_{n}\}_{n\in\mathbb{N}} be another sequence on XX such that ψyn\psi_{y_{n}} converges uniformly to ξ\xi on compact sets. Then we have (xn|yn)o(x_{n}\>|\>y_{n})_{o}\rightarrow\infty as nn\rightarrow\infty.

Proof..

We take R>0R>0 arbitrarily. Set x~n=rpΓ(o,xn,R)\tilde{x}_{n}=\texttt{rp}\Gamma(o,x_{n},R). By the definition of Γ\Gamma, for any nn\in\mathbb{N}, we have

d(o,x~n)=d(o,rpΓ(o,xn,R))λR+k.d(o,\tilde{x}_{n})=d\left(o,\texttt{rp}\Gamma(o,x_{n},R)\right)\leq\lambda R+k.

So we have x~nB¯(o,λR+k)\tilde{x}_{n}\in\bar{B}(o,\lambda R+k) for any nn\in\mathbb{N}. Since XX is proper, B¯(o,λR+k)\bar{B}(o,\lambda R+k) is compact.

Since ψxn\psi_{x_{n}} converges uniformly to ξ\xi on B¯(o,λR+k)\bar{B}(o,\lambda R+k), we have

|ψxn(x~n)ψxm(x~n)|\displaystyle|\psi_{x_{n}}(\tilde{x}_{n})-\psi_{x_{m}}(\tilde{x}_{n})| |ψxn(x~n)ξ(x~n)|+|ψxm(x~n)ξ(x~n)|\displaystyle\leq|\psi_{x_{n}}(\tilde{x}_{n})-\xi(\tilde{x}_{n})|+|\psi_{x_{m}}(\tilde{x}_{n})-\xi(\tilde{x}_{n})|
supuB¯(o,λR+k)|ψxn(u)ξ(u)|+supuB¯(o,λR+k)|ψxm(u)ξ(u)|\displaystyle\leq\sup_{u\in\bar{B}(o,\lambda R+k)}|\psi_{x_{n}}(u)-\xi(u)|+\sup_{u\in\bar{B}(o,\lambda R+k)}|\psi_{x_{m}}(u)-\xi(u)|
0 as n,m.\displaystyle\rightarrow 0\text{ as }n,m\rightarrow\infty.

On the other hand, for any n,mn,m\in\mathbb{N} with d(o,xn),d(o,xm)>Rd(o,x_{n}),d(o,x_{m})>R, we have

(6.1) |ψxn(x~n)ψxm(x~n)|\displaystyle|\psi_{x_{n}}(\tilde{x}_{n})-\psi_{x_{m}}(\tilde{x}_{n})|
=|{dc(x~n,xn)d(o,xn)}{dc(x~n,xm)d(o,xm)}|\displaystyle=|\{d_{c}(\tilde{x}_{n},x_{n})-d(o,x_{n})\}-\{d_{c}(\tilde{x}_{n},x_{m})-d(o,x_{m})\}|
=|{d(o,xn)d(o,x~n)+d(rpΓ(o,x~n,d(o,x~n)),rpΓ(o,xn,d(o,x~n)))d(o,xn)}\displaystyle=|\{d(o,x_{n})-d(o,\tilde{x}_{n})+d(\texttt{rp}\Gamma(o,\tilde{x}_{n},\lfloor d(o,\tilde{x}_{n})\rfloor),\texttt{rp}\Gamma(o,x_{n},\lfloor d(o,\tilde{x}_{n})\rfloor))-d(o,x_{n})\}
{d(o,xm)d(o,x~n)+d(rpΓ(o,x~n,d(o,x~n)),rpΓ(o,xm,d(o,x~n)))d(o,xm)}|\displaystyle\phantom{{=}\quad}-\{d(o,x_{m})-d(o,\tilde{x}_{n})+d(\texttt{rp}\Gamma(o,\tilde{x}_{n},\lfloor d(o,\tilde{x}_{n})\rfloor),\texttt{rp}\Gamma(o,x_{m},\lfloor d(o,\tilde{x}_{n})\rfloor))-d(o,x_{m})\}|
=|d(rpΓ(o,x~n,d(o,x~n)),rpΓ(o,xn,d(o,x~n)))\displaystyle=|d(\texttt{rp}\Gamma(o,\tilde{x}_{n},\lfloor d(o,\tilde{x}_{n})\rfloor),\texttt{rp}\Gamma(o,x_{n},\lfloor d(o,\tilde{x}_{n})\rfloor))
d(rpΓ(o,x~n,d(o,x~n)),rpΓ(o,xm,d(o,x~n)))|.\displaystyle\phantom{{=}\quad}-d(\texttt{rp}\Gamma(o,\tilde{x}_{n},\lfloor d(o,\tilde{x}_{n})\rfloor),\texttt{rp}\Gamma(o,x_{m},\lfloor d(o,\tilde{x}_{n})\rfloor))|.

Since Γ\Gamma is a (λ,k,E,C,θ)(\lambda,k,E,C,\theta)-coarsely convex bicombing, we have

|Rd(o,x~n)|\displaystyle|R-d(o,\tilde{x}_{n})| =|Rd(o,xn)d(o,xn)d(o,x~n)|\displaystyle=\left|\frac{R}{d(o,x_{n})}d(o,x_{n})-d(o,\tilde{x}_{n})\right|
θ(d(Γ(o,xn,Rd(o,xn)),Γ(o,x~n,1)))\displaystyle\leq\theta\left(d\left(\Gamma\left(o,x_{n},\frac{R}{d(o,x_{n})}\right),\Gamma(o,\tilde{x}_{n},1)\right)\right)
=θ(0).\displaystyle=\theta(0).

So we have

(6.2) d(rpΓ(o,x~n,d(o,x~n)),rpΓ(o,xn,d(o,x~n)))\displaystyle d(\texttt{rp}\Gamma(o,\tilde{x}_{n},\lfloor d(o,\tilde{x}_{n})\rfloor),\texttt{rp}\Gamma(o,x_{n},\lfloor d(o,\tilde{x}_{n})\rfloor))
d(rpΓ(o,x~n,d(o,x~n)),rpΓ(o,x~n,d(o,x~n)))+d(rpΓ(o,x~n,d(o,x~n)),rpΓ(o,xn,R))\displaystyle\leq d(\texttt{rp}\Gamma(o,\tilde{x}_{n},\lfloor d(o,\tilde{x}_{n})\rfloor),\texttt{rp}\Gamma(o,\tilde{x}_{n},d(o,\tilde{x}_{n})))+d(\texttt{rp}\Gamma(o,\tilde{x}_{n},d(o,\tilde{x}_{n})),\texttt{rp}\Gamma(o,x_{n},R))
+d(rpΓ(o,xn,R),rpΓ(o,xn,d(o,x~n)))+d(rpΓ(o,xn,d(o,x~n)),rpΓ(o,xn,d(o,x~n)))\displaystyle\phantom{\leq\quad}+d(\texttt{rp}\Gamma(o,x_{n},R),\texttt{rp}\Gamma(o,x_{n},d(o,\tilde{x}_{n})))+d(\texttt{rp}\Gamma(o,x_{n},d(o,\tilde{x}_{n})),\texttt{rp}\Gamma(o,x_{n},\lfloor d(o,\tilde{x}_{n})\rfloor))
λ+k+λ|Rd(o,x~n)|+k+λ+k\displaystyle\leq\lambda+k+\lambda|R-d(o,\tilde{x}_{n})|+k+\lambda+k
λ(θ(0)+2)+3k.\displaystyle\leq\lambda(\theta(0)+2)+3k.

By eq. 6.1 and eq. 6.2, there is some NN\in\mathbb{N} such that we have

d(rpΓ(o,x~n,d(o,x~n)),rpΓ(o,xm,d(o,x~n)))\displaystyle d(\texttt{rp}\Gamma(o,\tilde{x}_{n},\lfloor d(o,\tilde{x}_{n})\rfloor),\texttt{rp}\Gamma(o,x_{m},\lfloor d(o,\tilde{x}_{n})\rfloor))
d(rpΓ(o,x~n,d(o,x~n)),rpΓ(o,xn,d(o,x~n)))+1\displaystyle\leq d(\texttt{rp}\Gamma(o,\tilde{x}_{n},\lfloor d(o,\tilde{x}_{n})\rfloor),\texttt{rp}\Gamma(o,x_{n},\lfloor d(o,\tilde{x}_{n})\rfloor))+1
λ(θ(0)+2)+3k+1\displaystyle\leq\lambda(\theta(0)+2)+3k+1

for any n,mn,m\in\mathbb{N} with n,mNn,m\geq N. Therefore, we have

d(rpΓ(o,xn,R),rpΓ(o,xm,R))\displaystyle d(\texttt{rp}\Gamma(o,x_{n},R),\texttt{rp}\Gamma(o,x_{m},R))
d(rpΓ(o,xn,R),rpΓ(o,xn,d(o,x~n)))+d(rpΓ(o,xn,d(o,x~n)),rpΓ(o,xn,d(o,x~n)))\displaystyle\leq d(\texttt{rp}\Gamma(o,x_{n},R),\texttt{rp}\Gamma(o,x_{n},d(o,\tilde{x}_{n})))+d(\texttt{rp}\Gamma(o,x_{n},d(o,\tilde{x}_{n})),\texttt{rp}\Gamma(o,x_{n},\lfloor d(o,\tilde{x}_{n})\rfloor))
+d(rpΓ(o,xn,d(o,x~n)),rpΓ(o,x~n,d(o,x~n)))\displaystyle\phantom{\leq\quad}+d(\texttt{rp}\Gamma(o,x_{n},\lfloor d(o,\tilde{x}_{n})\rfloor),\texttt{rp}\Gamma(o,\tilde{x}_{n},\lfloor d(o,\tilde{x}_{n})\rfloor))
+d(rpΓ(o,x~n,d(o,x~n)),rpΓ(o,xm,d(o,x~n)))\displaystyle\phantom{\leq\quad}+d(\texttt{rp}\Gamma(o,\tilde{x}_{n},\lfloor d(o,\tilde{x}_{n})\rfloor),\texttt{rp}\Gamma(o,x_{m},\lfloor d(o,\tilde{x}_{n})\rfloor))
+d(rpΓ(o,xm,d(o,x~n)),rpΓ(o,xm,d(o,x~n)))\displaystyle\phantom{\leq\quad}+d(\texttt{rp}\Gamma(o,x_{m},\lfloor d(o,\tilde{x}_{n})\rfloor),\texttt{rp}\Gamma(o,x_{m},d(o,\tilde{x}_{n})))
+d(rpΓ(o,xm,d(o,x~n)),rpΓ(o,xm,R))\displaystyle\phantom{\leq\quad}+d(\texttt{rp}\Gamma(o,x_{m},d(o,\tilde{x}_{n})),\texttt{rp}\Gamma(o,x_{m},R))
λθ(0)+k+λ+k+λ(θ(0)+2)+3k+λ(θ(0)+2)+3k+1+λ+k+λθ(0)+k\displaystyle\leq\lambda\theta(0)+k+\lambda+k+\lambda(\theta(0)+2)+3k+\lambda(\theta(0)+2)+3k+1+\lambda+k+\lambda\theta(0)+k
=λ(4θ(0)+6)+10k+1\displaystyle=\lambda(4\theta(0)+6)+10k+1

for any n,mn,m\in\mathbb{N} with n,mNn,m\geq N.

Set L:-λ(4θ(0)+6)+10k+1L\coloneq\lambda(4\theta(0)+6)+10k+1. Note that L>1L>1. Then, for any R>0R>0, there is some NN\in\mathbb{N} such that for any n,mn,m\in\mathbb{N} with n,mNn,m\geq N, we have

d(rpΓ(o,xn,R),rpΓ(o,xm,R))L.d(\texttt{rp}\Gamma(o,x_{n},R),\texttt{rp}\Gamma(o,x_{m},R))\leq L.

We show, for any s0s\in\mathbb{R}_{\geq 0}, there is some NN^{\prime}\in\mathbb{N} such that for any n,mn,m\in\mathbb{N} with n,mNn,m\geq N^{\prime}, we have (xn|xm)os(x_{n}\>|\>x_{m})_{o}\geq s. From above, there is some NN^{\prime}\in\mathbb{N} such that for any n,mn,m\in\mathbb{N} with n,mNn,m\geq N^{\prime}, we have

d(rpΓ(o,xn,ELs),rpΓ(o,xm,ELs))L.d(\texttt{rp}\Gamma(o,x_{n},ELs),\texttt{rp}\Gamma(o,x_{m},ELs))\leq L.

Since Γ\Gamma is a (λ,k,E,C,θ)(\lambda,k,E,C,\theta)-coarsely convex bicombing, we have

d(rpΓ(o,xn,s),rpΓ(o,xm,s))\displaystyle d(\texttt{rp}\Gamma(o,x_{n},s),\texttt{rp}\Gamma(o,x_{m},s)) =d(rpΓ(o,xn,1ELELs),rpΓ(o,xm,1ELELs))\displaystyle=d\left(\texttt{rp}\Gamma\left(o,x_{n},\frac{1}{EL}ELs\right),\texttt{rp}\Gamma\left(o,x_{m},\frac{1}{EL}ELs\right)\right)
1ELEd(rpΓ(o,xn,ELs),rpΓ(o,xm,ELs))+C\displaystyle\leq\frac{1}{EL}Ed(\texttt{rp}\Gamma(o,x_{n},ELs),\texttt{rp}\Gamma(o,x_{m},ELs))+C
1+CD1.\displaystyle\leq 1+C\leq D_{1}.

So we have

(xn|xm)o=sup{t0|d(rpΓ(o,xn,t),rpΓ(o,xm,t))D1}s(x_{n}\>|\>x_{m})_{o}=\sup\{t\in\mathbb{R}_{\geq 0}\>|\>d(\texttt{rp}\Gamma(o,x_{n},t),\texttt{rp}\Gamma(o,x_{m},t))\leq D_{1}\}\geq s

for any n,mn,m\in\mathbb{N} with n,mNn,m\geq N^{\prime}. This completes the proof of item (1).

Now we will show item (2). Since both ψxn\psi_{x_{n}} and ψyn\psi_{y_{n}} converge uniformly to ξ\xi on B¯(o,λR+k)\bar{B}(o,\lambda R+k), we have

|ψxn(x~n)ψyn(x~n)|\displaystyle|\psi_{x_{n}}(\tilde{x}_{n})-\psi_{y_{n}}(\tilde{x}_{n})| |ψxn(x~n)ξ(x~n)|+|ψyn(x~n)ξ(x~n)|\displaystyle\leq|\psi_{x_{n}}(\tilde{x}_{n})-\xi(\tilde{x}_{n})|+|\psi_{y_{n}}(\tilde{x}_{n})-\xi(\tilde{x}_{n})|
supuB¯(o,λR+k)|ψxn(u)ξ(u)|+supuB¯(o,λR+k)|ψyn(u)ξ(u)|\displaystyle\leq\sup_{u\in\bar{B}(o,\lambda R+k)}|\psi_{x_{n}}(u)-\xi(u)|+\sup_{u\in\bar{B}(o,\lambda R+k)}|\psi_{y_{n}}(u)-\xi(u)|
0 as n.\displaystyle\rightarrow 0\text{ as }n\rightarrow\infty.

On the other hand, for any nn\in\mathbb{N} with d(o,xn),d(o,yn)>Rd(o,x_{n}),d(o,y_{n})>R, we have

(6.3) |ψxn(x~n)ψyn(x~n)|\displaystyle|\psi_{x_{n}}(\tilde{x}_{n})-\psi_{y_{n}}(\tilde{x}_{n})|
=|{dc(x~n,xn)d(o,xn)}{dc(x~n,yn)d(o,yn)}|\displaystyle=|\{d_{c}(\tilde{x}_{n},x_{n})-d(o,x_{n})\}-\{d_{c}(\tilde{x}_{n},y_{n})-d(o,y_{n})\}|
=|{d(o,xn)d(o,x~n)+d(rpΓ(o,x~n,d(o,x~n)),rpΓ(o,xn,d(o,x~n)))d(o,xn)}\displaystyle=|\{d(o,x_{n})-d(o,\tilde{x}_{n})+d(\texttt{rp}\Gamma(o,\tilde{x}_{n},\lfloor d(o,\tilde{x}_{n})\rfloor),\texttt{rp}\Gamma(o,x_{n},\lfloor d(o,\tilde{x}_{n})\rfloor))-d(o,x_{n})\}
{d(o,yn)d(o,x~n)+d(rpΓ(o,x~n,d(o,x~n)),rpΓ(o,yn,d(o,x~n)))d(o,yn)}|\displaystyle\phantom{{=}\quad}-\{d(o,y_{n})-d(o,\tilde{x}_{n})+d(\texttt{rp}\Gamma(o,\tilde{x}_{n},\lfloor d(o,\tilde{x}_{n})\rfloor),\texttt{rp}\Gamma(o,y_{n},\lfloor d(o,\tilde{x}_{n})\rfloor))-d(o,y_{n})\}|
=|d(rpΓ(o,x~n,d(o,x~n)),rpΓ(o,xn,d(o,x~n)))\displaystyle=|d(\texttt{rp}\Gamma(o,\tilde{x}_{n},\lfloor d(o,\tilde{x}_{n})\rfloor),\texttt{rp}\Gamma(o,x_{n},\lfloor d(o,\tilde{x}_{n})\rfloor))
d(rpΓ(o,x~n,d(o,x~n)),rpΓ(o,yn,d(o,x~n)))|.\displaystyle\phantom{{=}\quad}-d(\texttt{rp}\Gamma(o,\tilde{x}_{n},\lfloor d(o,\tilde{x}_{n})\rfloor),\texttt{rp}\Gamma(o,y_{n},\lfloor d(o,\tilde{x}_{n})\rfloor))|.

By eq. 6.2 and eq. 6.3, there is some NN\in\mathbb{N} such that we have

d(rpΓ(o,x~n,d(o,x~n)),rpΓ(o,yn,d(o,x~n)))\displaystyle d(\texttt{rp}\Gamma(o,\tilde{x}_{n},\lfloor d(o,\tilde{x}_{n})\rfloor),\texttt{rp}\Gamma(o,y_{n},\lfloor d(o,\tilde{x}_{n})\rfloor))
d(rpΓ(o,x~n,d(o,x~n)),rpΓ(o,xn,d(o,x~n)))+1\displaystyle\leq d(\texttt{rp}\Gamma(o,\tilde{x}_{n},\lfloor d(o,\tilde{x}_{n})\rfloor),\texttt{rp}\Gamma(o,x_{n},\lfloor d(o,\tilde{x}_{n})\rfloor))+1
λ(θ(0)+2)+3k+1\displaystyle\leq\lambda(\theta(0)+2)+3k+1

for any nn\in\mathbb{N} with nNn\geq N. Therefore, we have

d(rpΓ(o,xn,R),rpΓ(o,yn,R))\displaystyle d(\texttt{rp}\Gamma(o,x_{n},R),\texttt{rp}\Gamma(o,y_{n},R))
d(rpΓ(o,xn,R),rpΓ(o,xn,d(o,x~n)))+d(rpΓ(o,xn,d(o,x~n)),rpΓ(o,xn,d(o,x~n)))\displaystyle\leq d(\texttt{rp}\Gamma(o,x_{n},R),\texttt{rp}\Gamma(o,x_{n},d(o,\tilde{x}_{n})))+d(\texttt{rp}\Gamma(o,x_{n},d(o,\tilde{x}_{n})),\texttt{rp}\Gamma(o,x_{n},\lfloor d(o,\tilde{x}_{n})\rfloor))
+d(rpΓ(o,xn,d(o,x~n)),rpΓ(o,x~n,d(o,x~n)))\displaystyle\phantom{\leq\quad}+d(\texttt{rp}\Gamma(o,x_{n},\lfloor d(o,\tilde{x}_{n})\rfloor),\texttt{rp}\Gamma(o,\tilde{x}_{n},\lfloor d(o,\tilde{x}_{n})\rfloor))
+d(rpΓ(o,x~n,d(o,x~n)),rpΓ(o,yn,d(o,x~n)))\displaystyle\phantom{\leq\quad}+d(\texttt{rp}\Gamma(o,\tilde{x}_{n},\lfloor d(o,\tilde{x}_{n})\rfloor),\texttt{rp}\Gamma(o,y_{n},\lfloor d(o,\tilde{x}_{n})\rfloor))
+d(rpΓ(o,yn,d(o,x~n)),rpΓ(o,yn,d(o,x~n)))\displaystyle\phantom{\leq\quad}+d(\texttt{rp}\Gamma(o,y_{n},\lfloor d(o,\tilde{x}_{n})\rfloor),\texttt{rp}\Gamma(o,y_{n},d(o,\tilde{x}_{n})))
+d(rpΓ(o,yn,d(o,x~n)),rpΓ(o,yn,R))\displaystyle\phantom{\leq\quad}+d(\texttt{rp}\Gamma(o,y_{n},d(o,\tilde{x}_{n})),\texttt{rp}\Gamma(o,y_{n},R))
λθ(0)+k+λ+k+λ(θ(0)+2)+3k+λ(θ(0)+2)+3k+1+λ+k+λθ(0)+k\displaystyle\leq\lambda\theta(0)+k+\lambda+k+\lambda(\theta(0)+2)+3k+\lambda(\theta(0)+2)+3k+1+\lambda+k+\lambda\theta(0)+k
=λ(4θ(0)+6)+10k+1=L\displaystyle=\lambda(4\theta(0)+6)+10k+1=L

for any nn\in\mathbb{N} with nNn\geq N. The rest of the proof of item (2) can be shown as in item (1). ∎

By Lemma 6.7, we define Pr:hcXoX\mathrm{Pr}\colon\partial^{c}_{h}X\rightarrow\partial_{o}X as follows. For any ξhcX\xi\in\partial^{c}_{h}X, there is a sequence {xn}nSoX\{x_{n}\}_{n\in\mathbb{N}}\in S^{\infty}_{o}X such that ψxn\psi_{x_{n}} converges uniformly to ξ\xi on compact sets. Let xoXx\in\partial_{o}X be the equivalence class of the sequence {xn}n\{x_{n}\}_{n\in\mathbb{N}}. Then we define Pr(ξ)x\mathrm{Pr}(\xi)\coloneqq x. By item (2) of Lemma 6.7, Pr(ξ)\mathrm{Pr}(\xi) does not depend on the choice of a sequence {xn}n\{x_{n}\}_{n\in\mathbb{N}} such that ξ=limnψxn\xi=\lim_{n\rightarrow\infty}\psi_{x_{n}}.

Proposition 6.8.

Pr:hcXoX\mathrm{Pr}\colon\partial^{c}_{h}X\rightarrow\partial_{o}X is continuous.

Proof..

We take ξhcX\xi\in\partial^{c}_{h}X arbitrarily and assume that the sequence of maps {ξm}m\{\xi_{m}\}_{m\in\mathbb{N}} in hcX\partial^{c}_{h}X converges uniformly to ξ\xi on compact sets.

We take {xn}n\{x_{n}\}_{n\in\mathbb{N}} to be a sequence on XX such that {ψxn}n\{\psi_{x_{n}}\}_{n\in\mathbb{N}} converges uniformly to ξ\xi on compact sets. By Lemma 6.7, the sequence {xn}n\{x_{n}\}_{n\in\mathbb{N}} belongs to SoXS^{\infty}_{o}X, and we denote by xx the equivalence class of {xn}n\{x_{n}\}_{n\in\mathbb{N}} on oX\partial_{o}X. By the definition of the map Pr\mathrm{Pr}, we get Pr(ξ)=x\mathrm{Pr}(\xi)=x.

Similarly, we take {ym,l}l\{y_{m,l}\}_{l\in\mathbb{N}} to be a sequence on XX such that {ψym,l}l\{\psi_{y_{m,l}}\}_{l\in\mathbb{N}} converges uniformly to ξm\xi_{m} on compact sets for each mm\in\mathbb{N}. Lemma 6.7, the sequence {ym,l}l\{y_{m,l}\}_{l\in\mathbb{N}} belongs to SoXS^{\infty}_{o}X each ll\in\mathbb{N}, and we denote by ymy_{m} the equivalence class of {ym,l}l\{y_{m,l}\}_{l\in\mathbb{N}} on oX\partial_{o}X. By the definition of the map Pr\mathrm{Pr}, we get Pr(ξm)=ym\mathrm{Pr}(\xi_{m})=y_{m} for any mm\in\mathbb{N}.

Here, we show limm(x|ym)o=\lim_{m\rightarrow\infty}(x\>|\>y_{m})_{o}=\infty. Since we have limn(x|xn)o=\lim_{n\rightarrow\infty}(x\>|\>x_{n})_{o}=\infty and liml(ym,l|ym)o=\lim_{l\rightarrow\infty}(y_{m,l}\>|\>y_{m})_{o}=\infty, it is enough to show limmlim infn,l(xn|ym,l)o=\lim_{m\rightarrow\infty}\liminf_{n,l\rightarrow\infty}(x_{n}\>|\>y_{m,l})_{o}=\infty.

We take R>0R>0 arbitrarily. Set x~nrpΓ(o,xn,R)\tilde{x}_{n}\coloneqq\texttt{rp}\Gamma(o,x_{n},R). We have x~nB¯(o,λR+k)\tilde{x}_{n}\in\bar{B}(o,\lambda R+k) for any nn\in\mathbb{N}. Since ψxn\psi_{x_{n}} converges uniformly to ξ\xi on compact sets and ψym,l\psi_{y_{m,l}} converges uniformly to ξm\xi_{m} on compact sets for each mm\in\mathbb{N}, we have

lim infn,l|ψxn(x~n)ψym,l(x~n)|\displaystyle\liminf_{n,l\rightarrow\infty}|\psi_{x_{n}}(\tilde{x}_{n})-\psi_{y_{m,l}}(\tilde{x}_{n})|
lim infn,l|ψxn(x~n)ξ(x~n)|+|ξ(x~n)ξm(x~n)|+|ξm(x~n)ψym,l(x~n)|\displaystyle\leq\liminf_{n,l\rightarrow\infty}|\psi_{x_{n}}(\tilde{x}_{n})-\xi(\tilde{x}_{n})|+|\xi(\tilde{x}_{n})-\xi_{m}(\tilde{x}_{n})|+|\xi_{m}(\tilde{x}_{n})-\psi_{y_{m,l}}(\tilde{x}_{n})|
limnsupuB¯(o,λR+k)|ψxn(u)ξ(u)|+supuB¯(o,λR+k)|ξ(u)ξm(u)|\displaystyle\leq\lim_{n\rightarrow\infty}\sup_{u\in\bar{B}(o,\lambda R+k)}|\psi_{x_{n}}(u)-\xi(u)|+\sup_{u\in\bar{B}(o,\lambda R+k)}|\xi(u)-\xi_{m}(u)|
+limlsupuB¯(o,λR+k)|ξm(u)ψym,l(u)|\displaystyle\phantom{\lim_{n\rightarrow\infty}\quad}+\lim_{l\rightarrow\infty}\sup_{u\in\bar{B}(o,\lambda R+k)}|\xi_{m}(u)-\psi_{y_{m,l}}(u)|
=supuB¯(o,λR+k)|ξ(u)ξm(u)|.\displaystyle=\sup_{u\in\bar{B}(o,\lambda R+k)}|\xi(u)-\xi_{m}(u)|.

Since ξm\xi_{m} converges uniformly to ξ\xi on compact sets, for any R>0R>0, there is some M>0M>0 such that for any mm\in\mathbb{N} with mMm\geq M and for a sufficiently small ϵ\epsilon, we have

supuB¯(o,λR+k)|ξ(u)ξm(u)|1ϵ.\sup_{u\in\bar{B}(o,\lambda R+k)}|\xi(u)-\xi_{m}(u)|\leq 1-\epsilon.

We fix mm\in\mathbb{N} with mMm\geq M. Then, we have

lim infn,l|ψxn(x~n)ψym,l(x~n)|1ϵ.\liminf_{n,l\rightarrow\infty}|\psi_{x_{n}}(\tilde{x}_{n})-\psi_{y_{m,l}}(\tilde{x}_{n})|\leq 1-\epsilon.

There is some NmN_{m}\in\mathbb{N} such that for any ii\in\mathbb{N} with iNmi\geq N_{m}, there are some n,ln,l\in\mathbb{N} such that n,lin,l\geq i and we have |ψxn(x~n)ψym,l(x~n)|<1|\psi_{x_{n}}(\tilde{x}_{n})-\psi_{y_{m,l}}(\tilde{x}_{n})|<1.

On the other hand, by Lemma 6.6, for large enough nn\in\mathbb{N}, we have d(o,xn)>λR+kd(o,x_{n})>\lambda R+k. Similarly, for large enough ll\in\mathbb{N}, we have d(o,ym,l)>λR+kd(o,y_{m,l})>\lambda R+k. So we have

|ψxn(x~n)ψym,l(x~n)|\displaystyle|\psi_{x_{n}}(\tilde{x}_{n})-\psi_{y_{m,l}}(\tilde{x}_{n})|
=|{d(o,xn)d(o,x~n)+d(rpΓ(o,xn,d(o,x~n)),rpΓ(o,x~n,d(o,x~n)))d(o,xn)}\displaystyle=|\{d(o,x_{n})-d(o,\tilde{x}_{n})+d(\texttt{rp}\Gamma(o,x_{n},\lfloor d(o,\tilde{x}_{n})\rfloor),\texttt{rp}\Gamma(o,\tilde{x}_{n},\lfloor d(o,\tilde{x}_{n})\rfloor))-d(o,x_{n})\}
{d(o,ym,l)d(o,x~n)+d(rpΓ(o,ym,l,d(o,x~n)),rpΓ(o,x~n,d(o,x~n))d(o,ym,l)}|\displaystyle\phantom{{=}\quad}-\{d(o,y_{m,l})-d(o,\tilde{x}_{n})+d(\texttt{rp}\Gamma(o,y_{m,l},\lfloor d(o,\tilde{x}_{n})\rfloor),\texttt{rp}\Gamma(o,\tilde{x}_{n},\lfloor d(o,\tilde{x}_{n})\rfloor)-d(o,y_{m,l})\}|
=|d(rpΓ(o,xn,d(o,x~n)),rpΓ(o,x~n,d(o,x~n)))\displaystyle=|d(\texttt{rp}\Gamma(o,x_{n},\lfloor d(o,\tilde{x}_{n})\rfloor),\texttt{rp}\Gamma(o,\tilde{x}_{n},\lfloor d(o,\tilde{x}_{n})\rfloor))
d(rpΓ(o,ym,l,d(o,x~n)),rpΓ(o,x~n,d(o,x~n)))|\displaystyle\phantom{{=}\quad}-d(\texttt{rp}\Gamma(o,y_{m,l},\lfloor d(o,\tilde{x}_{n})\rfloor),\texttt{rp}\Gamma(o,\tilde{x}_{n},\lfloor d(o,\tilde{x}_{n})\rfloor))|

for large enough n,ln,l\in\mathbb{N}. By the proof of Lemma 6.7, we have

d(rpΓ(o,xn,d(o,x~n)),rpΓ(o,x~n,d(o,x~n)))λ(θ(0)+2)+3kd(\texttt{rp}\Gamma(o,x_{n},\lfloor d(o,\tilde{x}_{n})\rfloor),\texttt{rp}\Gamma(o,\tilde{x}_{n},\lfloor d(o,\tilde{x}_{n})\rfloor))\leq\lambda(\theta(0)+2)+3k

for each nn\in\mathbb{N}. Thus, for any ii\in\mathbb{N} with iNmi\geq N_{m}, there is some n,ln,l\in\mathbb{N} such that n,lin,l\geq i and we have

d(rpΓ(o,ym,l,d(o,x~n)),rpΓ(o,x~n,d(o,x~n)))λ(θ(0)+2)+3k+1.d(\texttt{rp}\Gamma(o,y_{m,l},\lfloor d(o,\tilde{x}_{n})\rfloor),\texttt{rp}\Gamma(o,\tilde{x}_{n},\lfloor d(o,\tilde{x}_{n})\rfloor))\leq\lambda(\theta(0)+2)+3k+1.

By the proof of Lemma 6.7, we have |Rd(o,x~n)|θ(0)|R-d(o,\tilde{x}_{n})|\leq\theta(0). Therefore, for any ii\in\mathbb{N} with iNmi\geq N_{m}, there is some n,ln,l\in\mathbb{N} such that n,lin,l\geq i and we have

d(rpΓ(o,ym,l,R),rpΓ(o,xn,R))\displaystyle d(\texttt{rp}\Gamma(o,y_{m,l},R),\texttt{rp}\Gamma(o,x_{n},R))
d(rpΓ(o,ym,l,R),rpΓ(o,ym,l,d(o,x~n)))+d(rpΓ(o,ym,l,d(o,x~n)),rpΓ(o,ym,l,d(o,x~n)))\displaystyle\leq d(\texttt{rp}\Gamma(o,y_{m,l},R),\texttt{rp}\Gamma(o,y_{m,l},d(o,\tilde{x}_{n})))+d(\texttt{rp}\Gamma(o,y_{m,l},d(o,\tilde{x}_{n})),\texttt{rp}\Gamma(o,y_{m,l},\lfloor d(o,\tilde{x}_{n})\rfloor))
+d(rpΓ(o,ym,l,d(o,x~n)),rpΓ(o,x~n,d(o,x~n)))\displaystyle\phantom{\leq\quad}+d(\texttt{rp}\Gamma(o,y_{m,l},\lfloor d(o,\tilde{x}_{n})\rfloor),\texttt{rp}\Gamma(o,\tilde{x}_{n},\lfloor d(o,\tilde{x}_{n})\rfloor))
+d(rpΓ(o,x~n,d(o,x~n)),rpΓ(o,xn,d(o,x~n))\displaystyle\phantom{\leq\quad}+d(\texttt{rp}\Gamma(o,\tilde{x}_{n},\lfloor d(o,\tilde{x}_{n})\rfloor),\texttt{rp}\Gamma(o,x_{n},\lfloor d(o,\tilde{x}_{n})\rfloor)
+d(rpΓ(o,xn,d(o,x~n)),rpΓ(o,xn,d(o,x~n)))+d(rpΓ(o,xn,d(o,x~n)),rpΓ(o,xn,R))\displaystyle\phantom{\leq\quad}+d(\texttt{rp}\Gamma(o,x_{n},\lfloor d(o,\tilde{x}_{n})\rfloor),\texttt{rp}\Gamma(o,x_{n},d(o,\tilde{x}_{n})))+d(\texttt{rp}\Gamma(o,x_{n},d(o,\tilde{x}_{n})),\texttt{rp}\Gamma(o,x_{n},R))
λ(4θ(0)+6)+10k+1.\displaystyle\leq\lambda(4\theta(0)+6)+10k+1.

Set Lλ(4θ(0)+6)+10k+1L\coloneqq\lambda(4\theta(0)+6)+10k+1. Note L>1L>1. For any R>0R>0, there is some MM\in\mathbb{N} such that for any mm\in\mathbb{N} with mMm\geq M, there is some NmN_{m}\in\mathbb{N} such that for any ii\in\mathbb{N} with iNmi\geq N_{m}, there are some n,ln,l\in\mathbb{N} such that n,lin,l\geq i and we have

d(rpΓ(o,ym,l,R),rpΓ(o,xn,R))L.d(\texttt{rp}\Gamma(o,y_{m,l},R),\texttt{rp}\Gamma(o,x_{n},R))\leq L.

We show, for any s0s\in\mathbb{R}_{\geq 0}, there is some MM^{\prime}\in\mathbb{N} such that for any mm\in\mathbb{N} with mMm\geq M^{\prime}, we have lim infn,l(xn|ym,l)os\liminf_{n,l\rightarrow\infty}(x_{n}\>|\>y_{m,l})_{o}\geq s. From above, there is some MM^{\prime}\in\mathbb{N} such that for any mm\in\mathbb{N} with mMm\geq M^{\prime}, there is some NmN_{m}\in\mathbb{N} such that for any ii\in\mathbb{N} with iNmi\geq N_{m}, there are some n,ln,l\in\mathbb{N} such that n,lin,l\geq i and we have

d(rpΓ(o,ym,l,ELs),rpΓ(o,xn,ELs))L.d(\texttt{rp}\Gamma(o,y_{m,l},ELs),\texttt{rp}\Gamma(o,x_{n},ELs))\leq L.

Since Γ\Gamma is a (λ,k,E,C,θ)(\lambda,k,E,C,\theta)-coarsely convex bicombing, we have

d(rpΓ(o,ym,l,s),rpΓ(o,xn,s))\displaystyle d(\texttt{rp}\Gamma(o,y_{m,l},s),\texttt{rp}\Gamma(o,x_{n},s)) =d(rpΓ(o,ym,l,1ELELs),rpΓ(o,xn,1ELELs))\displaystyle=d\left(\texttt{rp}\Gamma\left(o,y_{m,l},\frac{1}{EL}ELs\right),\texttt{rp}\Gamma\left(o,x_{n},\frac{1}{EL}ELs\right)\right)
1ELEd(rpΓ(o,ym,l,ELs),rpΓ(o,xn,ELs))+C\displaystyle\leq\frac{1}{EL}Ed(\texttt{rp}\Gamma(o,y_{m,l},ELs),\texttt{rp}\Gamma(o,x_{n},ELs))+C
1+CD1.\displaystyle\leq 1+C\leq D_{1}.

This means that for any s0s\in\mathbb{R}_{\geq 0}, there is some MM^{\prime}\in\mathbb{N} such that for any mm\in\mathbb{N} with mMm\geq M^{\prime}, we have lim infn,l(xn|ym,l)os\liminf_{n,l\rightarrow\infty}(x_{n}\>|\>y_{m,l})_{o}\geq s. Therefore, we have

limmlim infn,l(xn|ym,l)o=.\lim_{m\rightarrow\infty}\liminf_{n,l\rightarrow\infty}(x_{n}\>|\>y_{m,l})_{o}=\infty.

6.3. Reduced horoboundary

Definition 6.9.

Let (X,d)(X,d) be a proper (λ,k,E,C,θ)(\lambda,k,E,C,\theta)-coarsely convex space and let hcX\partial^{c}_{h}X be the horoboundary defined above, using the cone metric.

We define that two functions ξ\xi and η\eta in hcX\partial^{c}_{h}X are equivalent, denoted by ξη\xi\sim\eta, if

supuX|ξ(u)η(u)|<.\sup_{u\in X}|\xi(u)-\eta(u)|<\infty.

This determines an equivalence relation on hcX\partial^{c}_{h}X. A reduced horoboundary of XX with cone metric, denoted by hcX/\partial^{c}_{h}X/\sim, is the quotient of hcX\partial^{c}_{h}X by the equivalence relation \sim with the quotient topology. We also say that hcX/\partial^{c}_{h}X/\sim is a reduced horoboundary of (X,dc)(X,d_{c}).

Let π:hcXhcX/\pi\colon\partial^{c}_{h}X\rightarrow\partial^{c}_{h}X/\sim be the natural projection. If ξη\xi\sim\eta, we have Pr(ξ)=Pr(η)\mathrm{Pr}(\xi)=\mathrm{Pr}(\eta). So there uniquely exists a continuous map f:hcX/oXf\colon\partial^{c}_{h}X/\sim\,\rightarrow\partial_{o}X such that Pr=fπ\mathrm{Pr}=f\circ\pi. We construct the inverse of ff.

Definition 6.10.

For any xoXx\in\partial_{o}X, we define a (λ,k1)(\lambda,k_{1})-quasi geodesic ray γx:0X\gamma_{x}\colon\mathbb{R}_{\geq 0}\rightarrow X as follows

γx()rpΓ¯(o,x,)\gamma_{x}(-)\coloneqq\texttt{rp}\bar{\Gamma}(o,x,-)

where k1λ+kk_{1}\coloneqq\lambda+k. Then we define bx:Xb_{x}\colon X\rightarrow\mathbb{R} as the Busemann function respect to the cone metric by

ud(o,u)+d(rpΓ(o,u,d(o,u)),γx(d(o,u))).u\mapsto-d(o,u)+d(\texttt{rp}\Gamma(o,u,\lfloor d(o,u)\rfloor),\gamma_{x}(\lfloor d(o,u)\rfloor)).
Proposition 6.11.

The Busemann function respect to the cone metric is a horofunction.

Proof..

Let xoXx\in\partial_{o}X and define γx:0X\gamma_{x}\colon\mathbb{R}_{\geq 0}\rightarrow X by γx()=rpΓ¯(o,x,)\gamma_{x}(-)=\texttt{rp}\bar{\Gamma}(o,x,-). Then, there is a sequence {xn}nSoX\{x_{n}\}_{n\in\mathbb{N}}\in S^{\infty}_{o}X such that we have (xn|x)o(x_{n}\>|\>x)_{o}\rightarrow\infty as nn\rightarrow\infty and the sequence of maps {rpΓ(o,xn,)|:X}n\{\texttt{rp}\Gamma(o,x_{n},-)|_{\mathbb{N}}\colon\mathbb{N}\rightarrow X\}_{n\in\mathbb{N}} converges pointwise to γx()=rpΓ¯(o,x,)\gamma_{x}(-)=\texttt{rp}\bar{\Gamma}(o,x,-).

First, we show bxclψ(X)b_{x}\in\operatorname{cl}\psi(X). For any R>0R>0, by taking nn\in\mathbb{N} large enough, we have

supuB¯(o,R)|ψxn(u)bx(u)|\displaystyle\sup_{u\in\bar{B}(o,R)}|\psi_{x_{n}}(u)-b_{x}(u)|
=supuB¯(o,R)|{d(o,xn)d(o,u)+d(rpΓ(o,xn,d(o,u)),rpΓ(o,u,d(o,u)))d(o,xn)}\displaystyle=\sup_{u\in\bar{B}(o,R)}|\{d(o,x_{n})-d(o,u)+d(\texttt{rp}\Gamma(o,x_{n},\lfloor d(o,u)\rfloor),\texttt{rp}\Gamma(o,u,\lfloor d(o,u)\rfloor))-d(o,x_{n})\}
{d(o,u)+d(rpΓ(o,u,d(o,u)),γx(d(o,u)))}\displaystyle\phantom{\sup_{u\in\bar{B}(o,R)}\quad\quad}-\{-d(o,u)+d(\texttt{rp}\Gamma(o,u,\lfloor d(o,u)\rfloor),\gamma_{x}(\lfloor d(o,u)\rfloor))\}
=supuB¯(o,R)|d(rpΓ(o,xn,d(o,u)),rpΓ(o,u,d(o,u))d(rpΓ(o,u,d(o,u),γx(d(o,u)))|\displaystyle=\sup_{u\in\bar{B}(o,R)}|d(\texttt{rp}\Gamma(o,x_{n},\lfloor d(o,u)\rfloor),\texttt{rp}\Gamma(o,u,\lfloor d(o,u)\rfloor)-d(\texttt{rp}\Gamma(o,u,\lfloor d(o,u)\rfloor,\gamma_{x}(\lfloor d(o,u)\rfloor))|
supuB¯(o,R)d(rpΓ(o,xn,d(o,u)),γx(d(o,u)))\displaystyle\leq\sup_{u\in\bar{B}(o,R)}d(\texttt{rp}\Gamma(o,x_{n},\lfloor d(o,u)\rfloor),\gamma_{x}(\lfloor d(o,u)\rfloor))
=maxt{1,2,,R}d(rpΓ(o,xn,t),γx(t))0 as n.\displaystyle=\max_{t\in\{1,2,\cdots,\lfloor R\rfloor\}}d(\texttt{rp}\Gamma(o,x_{n},t),\gamma_{x}(t))\rightarrow 0\text{ as }n\rightarrow\infty.

Second, we show bxBb,λ,E(X)b_{x}\notin B_{b,\lambda,E}(X) by contradiction. That is, there are some yXy\in X and βBb(X)\beta\in B_{b}(X) such that we have

(6.4) 1λEψybxβ.\displaystyle\frac{1}{\lambda E}\psi_{y}-b_{x}\leq\beta.

We take R>0R>0 with

d(o,y)1λRk.d(o,y)\leq\frac{1}{\lambda}R-k.

Set x~nrpΓ(o,xn,R)\tilde{x}_{n}\coloneqq\texttt{rp}\Gamma(o,x_{n},R). Then, for any nn\in\mathbb{N}, we have

d(o,y)1λRkd(o,x~n)λR+k.d(o,y)\leq\frac{1}{\lambda}R-k\leq d(o,\tilde{x}_{n})\leq\lambda R+k.

For large enough nn\in\mathbb{N}, we have d(o,xn)>λR+kd(o,x_{n})>\lambda R+k.

By the proof of Lemma 6.7, we have

d(rpΓ(o,xn,d(o,x~n)),rpΓ(o,x~n,d(o,x~n)))λ(θ(0)+2)+3k.d(\texttt{rp}\Gamma(o,x_{n},\lfloor d(o,\tilde{x}_{n})\rfloor),\texttt{rp}\Gamma(o,\tilde{x}_{n},\lfloor d(o,\tilde{x}_{n})\rfloor))\leq\lambda(\theta(0)+2)+3k.

Thus, we have

1λEψy(x~n)ψxn(x~n)\displaystyle\frac{1}{\lambda E}\psi_{y}(\tilde{x}_{n})-\psi_{x_{n}}(\tilde{x}_{n})
=1λE{d(o,x~n)d(o,y)+d(rpΓ(o,x~n,d(o,y)),rpΓ(o,y,d(o,y)))d(o,y)}\displaystyle=\frac{1}{\lambda E}\{d(o,\tilde{x}_{n})-d(o,y)+d(\texttt{rp}\Gamma(o,\tilde{x}_{n},\lfloor d(o,y)\rfloor),\texttt{rp}\Gamma(o,y,\lfloor d(o,y)\rfloor))-d(o,y)\}
{d(o,xn)d(o,x~n)+d(rpΓ(o,xn,d(o,x~n)),rpΓ(o,x~n,d(o,x~n)))d(o,xn)}\displaystyle\phantom{{=}\quad}-\{d(o,x_{n})-d(o,\tilde{x}_{n})+d(\texttt{rp}\Gamma(o,x_{n},\lfloor d(o,\tilde{x}_{n})\rfloor),\texttt{rp}\Gamma(o,\tilde{x}_{n},\lfloor d(o,\tilde{x}_{n})\rfloor))-d(o,x_{n})\}
=(1λE+1)d(o,x~n)2λEd(o,y)+1λEd(rpΓ(o,x~n,d(o,y)),rpΓ(o,y,d(o,y)))\displaystyle=\left(\frac{1}{\lambda E}+1\right)d(o,\tilde{x}_{n})-\frac{2}{\lambda E}d(o,y)+\frac{1}{\lambda E}d(\texttt{rp}\Gamma(o,\tilde{x}_{n},\lfloor d(o,y)\rfloor),\texttt{rp}\Gamma(o,y,\lfloor d(o,y)\rfloor))
d(rpΓ(o,xn,d(o,x~n)),rpΓ(o,x~n,d(o,x~n)))\displaystyle\phantom{{=}\quad}-d(\texttt{rp}\Gamma(o,x_{n},\lfloor d(o,\tilde{x}_{n})\rfloor),\texttt{rp}\Gamma(o,\tilde{x}_{n},\lfloor d(o,\tilde{x}_{n})\rfloor))
(1λE+1)(1λRk)2λEd(o,y)λ(θ(0)+2)3k.\displaystyle\geq\left(\frac{1}{\lambda E}+1\right)\left(\frac{1}{\lambda}R-k\right)-\frac{2}{\lambda E}d(o,y)-\lambda(\theta(0)+2)-3k.

Therefore, we have

supuB¯(o,λR+k)1λEψy(u)ψxn(u)(1λE+1)(1λRk)2λEd(o,y)λ(θ(0)+2)3k\displaystyle\sup_{u\in\bar{B}(o,\lambda R+k)}\frac{1}{\lambda E}\psi_{y}(u)-\psi_{x_{n}}(u)\geq\left(\frac{1}{\lambda E}+1\right)\left(\frac{1}{\lambda}R-k\right)-\frac{2}{\lambda E}d(o,y)-\lambda(\theta(0)+2)-3k

for large enough nn\in\mathbb{N}.

On the other hand, since ψxn\psi_{x_{n}} converges uniformly to bxb_{x} on compact sets, we have

limnsupuB¯(o,λR+k)1λEψy(u)ψxn(u)=supuB¯(o,λR+k)1λEψy(u)bx(u).\lim_{n\rightarrow\infty}\sup_{u\in\bar{B}(o,\lambda R+k)}\frac{1}{\lambda E}\psi_{y}(u)-\psi_{x_{n}}(u)=\sup_{u\in\bar{B}(o,\lambda R+k)}\frac{1}{\lambda E}\psi_{y}(u)-b_{x}(u).

So we have

supuB¯(o,λR+k)1λEψy(u)bx(u)(1λE+1)(1λRk)2λEd(o,y)λ(θ(0)+2)3k.\sup_{u\in\bar{B}(o,\lambda R+k)}\frac{1}{\lambda E}\psi_{y}(u)-b_{x}(u)\geq\left(\frac{1}{\lambda E}+1\right)\left(\frac{1}{\lambda}R-k\right)-\frac{2}{\lambda E}d(o,y)-\lambda(\theta(0)+2)-3k.

Since the right-hand side of the above equation contains R>0R>0 which can be arbitrary large, this contradicts to eq. 6.4. ∎

For xoXx\in\partial_{o}X, we define g:oXhcX/g\colon\partial_{o}X\rightarrow\partial^{c}_{h}X/\sim as g(x)π(bx)g(x)\coloneqq\pi(b_{x}).

Proposition 6.12.

The map gg is the inverse of ff.

Proof..

First, we show fg=idoXf\circ g=\mathrm{id}_{\partial_{o}X}. We take xoXx\in\partial_{o}X arbitrarily. Then, we have g(x)=π(bx)g(x)=\pi(b_{x}). By Proposition 6.11, there is a sequence {xn}nSoX\{x_{n}\}_{n\in\mathbb{N}}\in S^{\infty}_{o}X such that we have (xn|x)o(x_{n}\>|\>x)_{o}\rightarrow\infty as nn\rightarrow\infty and limnψxn=bx\lim_{n\rightarrow\infty}\psi_{x_{n}}=b_{x}.

Thus, we obtain

fg(x)=f(π(bx))=Pr(bx)=x.f\circ g(x)=f(\pi(b_{x}))=\mathrm{Pr}(b_{x})=x.

Second, we show gf=idhcX/g\circ f=\mathrm{id}_{\partial^{c}_{h}X/\sim}. We take ξhcX\xi\in\partial^{c}_{h}X arbitrarily. By Lemma 6.7, there is a sequence of maps {ψyn}n\{\psi_{y_{n}}\}_{n\in\mathbb{N}} converges uniformly to ξ\xi on compact sets, and we have {yn}nSoX\{y_{n}\}_{n\in\mathbb{N}}\in S^{\infty}_{o}X. Let yoXy\in\partial_{o}X be an equivalence class of a sequence {yn}nSoX\{y_{n}\}_{n\in\mathbb{N}}\in S^{\infty}_{o}X. By the definition of Pr\mathrm{Pr}, we have Pr(ξ)=y\mathrm{Pr}(\xi)=y.

There is a sequence {zn}nSoX\{z_{n}\}_{n\in\mathbb{N}}\in S^{\infty}_{o}X such that we have (zn|y)o(z_{n}\>|\>y)_{o}\rightarrow\infty as nn\rightarrow\infty and the sequence of maps {ψzn}n\{\psi_{z_{n}}\}_{n\in\mathbb{N}} converges uniformly to byb_{y} on compact sets. By the definition of ff and gg, we have

gf(π(ξ))=g(Pr(ξ))=g(y)=π(by).g\circ f(\pi(\xi))=g(\mathrm{Pr}(\xi))=g(y)=\pi(b_{y}).

Thus, it is enough to show

supuX|ξ(u)by(u)|=supuXlimn|ψyn(u)ψzn(u)|<.\sup_{u\in X}|\xi(u)-b_{y}(u)|=\sup_{u\in X}\lim_{n\rightarrow\infty}|\psi_{y_{n}}(u)-\psi_{z_{n}}(u)|<\infty.

We take uXu\in X arbitrarily. For large enough nn\in\mathbb{N}, we have

|ψyn(u)ψzn(u)|\displaystyle|\psi_{y_{n}}(u)-\psi_{z_{n}}(u)|
=|{d(o,yn)d(o,u)+d(rpΓ(o,yn,d(o,u)),rpΓ(o,u,d(o,u)))d(o,yn)}\displaystyle=|\{d(o,y_{n})-d(o,u)+d(\texttt{rp}\Gamma(o,y_{n},\lfloor d(o,u)\rfloor),\texttt{rp}\Gamma(o,u,\lfloor d(o,u)\rfloor))-d(o,y_{n})\}
{d(o,zn)d(o,u)+d(rpΓ(o,zn,d(o,u)),rpΓ(o,u,d(o,u)))d(o,zn)}|\displaystyle\phantom{=\quad}-\{d(o,z_{n})-d(o,u)+d(\texttt{rp}\Gamma(o,z_{n},\lfloor d(o,u)\rfloor),\texttt{rp}\Gamma(o,u,\lfloor d(o,u)\rfloor))-d(o,z_{n})\}|
d(rpΓ(o,yn,d(o,u)),rpΓ(o,zn,d(o,u)))\displaystyle\leq d(\texttt{rp}\Gamma(o,y_{n},\lfloor d(o,u)\rfloor),\texttt{rp}\Gamma(o,z_{n},\lfloor d(o,u)\rfloor))

By (yn|y)o(y_{n}\>|\>y)_{o}\rightarrow\infty and (zn|y)o(z_{n}\>|\>y)_{o}\rightarrow\infty as nn\rightarrow\infty, we have

lim infn(yn|zn)o=.\liminf_{n\rightarrow\infty}(y_{n}\>|\>z_{n})_{o}=\infty.

Thus, there is some NN\in\mathbb{N} such that for any nn\in\mathbb{N} with nNn\geq N, there is some nn^{\prime}\in\mathbb{N} with nnn^{\prime}\geq n such that we have

sup{t0|d(rpΓ(o,yn,t),rpΓ(o,zn,t))D1}d(o,u).\sup\{t\in\mathbb{R}_{\geq 0}\>|\>d(\texttt{rp}\Gamma(o,y_{n^{\prime}},t),\texttt{rp}\Gamma(o,z_{n^{\prime}},t))\leq D_{1}\}\geq\lfloor d(o,u)\rfloor.

So, there is some sd(o,u)s\geq\lfloor d(o,u)\rfloor such that we have

d(rpΓ(o,yn,s),rpΓ(o,zn,s))D1.d(\texttt{rp}\Gamma(o,y_{n^{\prime}},s),\texttt{rp}\Gamma(o,z_{n^{\prime}},s))\leq D_{1}.

Therefore, there is some NN\in\mathbb{N} such that for any nn\in\mathbb{N} with nNn\geq N, there is some nn^{\prime}\in\mathbb{N} with nnn^{\prime}\geq n such that we have

d(rpΓ(o,yn,d(o,u)),rpΓ(o,zn,d(o,u))\displaystyle d(\texttt{rp}\Gamma(o,y_{n^{\prime}},\lfloor d(o,u)\rfloor),\texttt{rp}\Gamma(o,z_{n^{\prime}},\lfloor d(o,u)\rfloor)
=d(rpΓ(o,yn,d(o,u)ss),rpΓ(o,zn,d(o,u)ss))\displaystyle=d\left(\texttt{rp}\Gamma\left(o,y_{n^{\prime}},\frac{\lfloor d(o,u)\rfloor}{s}s\right),\texttt{rp}\Gamma\left(o,z_{n^{\prime}},\frac{\lfloor d(o,u)\rfloor}{s}s\right)\right)
d(o,u)sEd(rpΓ(o,yn,s),rpΓ(o,zn,s))+C\displaystyle\leq\frac{\lfloor d(o,u)\rfloor}{s}Ed(\texttt{rp}\Gamma(o,y_{n^{\prime}},s),\texttt{rp}\Gamma(o,z_{n^{\prime}},s))+C
ED1+C.\displaystyle\leq ED_{1}+C.

From the above, we obtain

|ξ(u)by(u)|\displaystyle|\xi(u)-b_{y}(u)| =limn|ψyn(u)ψzn(u)|\displaystyle=\lim_{n\rightarrow\infty}|\psi_{y_{n}}(u)-\psi_{z_{n}}(u)|
=lim infn|ψyn(u)ψzn(u)|\displaystyle=\liminf_{n\rightarrow\infty}|\psi_{y_{n}}(u)-\psi_{z_{n}}(u)|
lim infnd(rpΓ(o,yn,d(o,u)),rpΓ(o,zn,d(o,u)))\displaystyle\leq\liminf_{n\rightarrow\infty}d(\texttt{rp}\Gamma(o,y_{n},\lfloor d(o,u)\rfloor),\texttt{rp}\Gamma(o,z_{n},\lfloor d(o,u)\rfloor))
ED1+C\displaystyle\leq ED_{1}+C

for any uXu\in X. So, we have

supuX|ξ(u)by(u)|ED1+C.\sup_{u\in X}|\xi(u)-b_{y}(u)|\leq ED_{1}+C.

We show that g:oXhcX/g\colon\partial_{o}X\rightarrow\partial^{c}_{h}X/\sim is continuous. We recall the following lemma from general topology.

Lemma 6.13.

Let (Z,𝒪)(Z,\mathcal{O}) be a topological space and let αZ\alpha\in Z be a point on ZZ. Let {an}n\{a_{n}\}_{n\in\mathbb{N}} be a sequence on ZZ such that for any subsequence {an(m)}m\{a_{n(m)}\}_{m\in\mathbb{N}} has a subsequence {an(m)(k)}k\{a_{n(m)(k)}\}_{k\in\mathbb{N}} such that an(m)(k)a_{n(m)(k)} converges to α\alpha. Then ana_{n} converges to α\alpha.

Proof..

We prove this by contradiction. That is, there is an open set U𝒪U\in\mathcal{O} such that αU\alpha\in U and for any NN\in\mathbb{N}, there is some nn\in\mathbb{N}, nNn\geq N and anUa_{n}\notin U. We construct a subsequence {an(m)}m\{a_{n(m)}\}_{m\in\mathbb{N}} of {an}n\{a_{n}\}_{n\in\mathbb{N}} by induction as follows.

By the assumption, there is n(1)n(1)\in\mathbb{N} such that n(1)1n(1)\geq 1 and an(1)Ua_{n(1)}\notin U. Also, there is n(2)n(2)\in\mathbb{N} such that n(2)>n(1)n(2)>n(1) and an(2)Ua_{n(2)}\notin U. In the same way, for any mm\in\mathbb{N}, there is n(m+1)n(m+1)\in\mathbb{N} such that n(m+1)>n(m)n(m+1)>n(m) and an(m+1)Ua_{n(m+1)}\notin U. Thus, we obtain a subsequence {an(m)}m\{a_{n(m)}\}_{m\in\mathbb{N}} that does not intersect with UU. By the construction of {an(m)}m\{a_{n(m)}\}_{m\in\mathbb{N}}, there is no subsequence of {an(m)}m\{a_{n(m)}\}_{m\in\mathbb{N}} that converges to α\alpha. This is a contradiction. ∎

Proposition 6.14.

g:oXhcX/g\colon\partial_{o}X\rightarrow\partial^{c}_{h}X/\sim is continuous.

Proof..

We take xoXx\in\partial_{o}X arbitrarily, and we take a sequence {xn}noX\{x_{n}\}_{n\in\mathbb{N}}\subset\partial_{o}X arbitrarily such that lim infn(xn|x)o=\liminf_{n\rightarrow\infty}(x_{n}\>|\>x)_{o}=\infty. By Proposition 6.11, we have bxhcXb_{x}\in\partial^{c}_{h}X and bxnhcXb_{x_{n}}\in\partial^{c}_{h}X for any nn\in\mathbb{N}. Then we show limnπ(bxn)=π(bx)\lim_{n\rightarrow\infty}\pi(b_{x_{n}})=\pi(b_{x}).

Set γx()rpΓ¯(o,x,)\gamma_{x}(-)\coloneqq\text{rp}\bar{\Gamma}(o,x,-) and γxn()rpΓ¯(o,xn,)\gamma_{x_{n}}(-)\coloneqq\text{rp}\bar{\Gamma}(o,x_{n},-) for any nn\in\mathbb{N}. By Lemma 3.9, we have lim infn(γxn|γx)o=\liminf_{n\rightarrow\infty}(\gamma_{x_{n}}\>|\>\gamma_{x})_{o}=\infty.

We take any subsequence {π(bxn(m))}m\{\pi(b_{x_{n(m)}})\}_{m\in\mathbb{N}} of {π(bxn)}n\{\pi(b_{x_{n}})\}_{n\in\mathbb{N}}. Correspondingly, we take a sequence of (λ,k1)(\lambda,k_{1})-quasi geodesic rays {γxn(m)}m\{\gamma_{x_{n(m)}}\}_{m\in\mathbb{N}} where k1=λ+kk_{1}=\lambda+k. By the properness of XX and induction, we can take a subsequence {γxn(m)(l)}l\{\gamma_{x_{n(m)(l)}}\}_{l\in\mathbb{N}} of {γxn(m)}m\{\gamma_{x_{n(m)}}\}_{m\in\mathbb{N}} such that {γxn(m)(l)}l\{\gamma_{x_{n(m)(l)}}\}_{l\in\mathbb{N}} converges uniformly to some (λ,k1)(\lambda,k_{1})-quasi geodesic ray γ~\tilde{\gamma} on compact sets. For details, see [FO20, Proposition 4.17]. We define bγ~:Xb_{\tilde{\gamma}}\colon X\rightarrow\mathbb{R} as follows

ud(o,u)+d(rpΓ(o,u,d(o,u)),γ~(d(o,u)))u\mapsto-d(o,u)+d(\texttt{rp}\Gamma(o,u,\lfloor d(o,u)\rfloor),\tilde{\gamma}(\lfloor d(o,u)\rfloor))

for any uXu\in X. Then, for any R>0R>0, we have

supuB¯(o,R)|bxn(m)(l)(u)bγ~(u)|\displaystyle\sup_{u\in\bar{B}(o,R)}|b_{x_{n(m)(l)}}(u)-b_{\tilde{\gamma}}(u)|
=supuB¯(o,R)|{d(o,u)+d(rpΓ(o,u,d(o,u)),γxn(m)(l)(d(o,u)))}\displaystyle=\sup_{u\in\bar{B}(o,R)}|\{-d(o,u)+d(\texttt{rp}\Gamma(o,u,\lfloor d(o,u)\rfloor),\gamma_{x_{n(m)(l)}}(\lfloor d(o,u)\rfloor))\}
{d(o,u)+d(rpΓ(o,u,d(o,u)),γ~(d(o,u))}|\displaystyle\phantom{=\quad}-\{-d(o,u)+d(\texttt{rp}\Gamma(o,u,\lfloor d(o,u)\rfloor),\tilde{\gamma}(\lfloor d(o,u)\rfloor)\}|
supuB¯(o,R)d(γxn(m)(l)(d(o,u)),γ~(d(o,u)))\displaystyle\leq\sup_{u\in\bar{B}(o,R)}d(\gamma_{x_{n(m)(l)}}(\lfloor d(o,u)\rfloor),\tilde{\gamma}(\lfloor d(o,u)\rfloor))
maxt{1,,R}d(γxn(m)(l)(t),γ~(t))0 as l.\displaystyle\leq\max_{t\in\{1,\cdots,\lfloor R\rfloor\}}d(\gamma_{x_{n(m)(l)}}(t),\tilde{\gamma}(t))\rightarrow 0\text{ as }l\rightarrow\infty.

Thus, {bxn(m)(l)}l\{b_{x_{n(m)(l)}}\}_{l\in\mathbb{N}} converges uniformly to bγ~b_{\tilde{\gamma}} on compact sets. Since bxn(m)(l)hcXclψ(X)b_{x_{n(m)(l)}}\in\partial^{c}_{h}X\subset\operatorname{cl}\psi(X) for any ll\in\mathbb{N}, we have limlbxn(m)(l)=bγ~clψ(X)\lim_{l\rightarrow\infty}b_{x_{n(m)(l)}}=b_{\tilde{\gamma}}\in\operatorname{cl}\psi(X). Also, we have bγ~Bb,λ,Eb_{\tilde{\gamma}}\notin B_{b,\lambda,E}. We take R>0R>0 and yXy\in X arbitrarily. By the proof of Proposition 6.11, we have

supuB¯(o,λR+k)1λEψy(u)bxn(m)(l)(u)(1λE+1)(1λRk)2λEd(o,y)λ(θ(0)+2)3k\sup_{u\in\bar{B}(o,\lambda R+k)}\frac{1}{\lambda E}\psi_{y}(u)-b_{x_{n(m)(l)}}(u)\geq\left(\frac{1}{\lambda E}+1\right)\left(\frac{1}{\lambda}R-k\right)-\frac{2}{\lambda E}d(o,y)-\lambda(\theta(0)+2)-3k

for any ll\in\mathbb{N}. Since bxn(m)(l)b_{x_{n(m)(l)}} converges uniformly to bγ~b_{\tilde{\gamma}} on compact sets, we have

supuB¯(o,λR+k)1λEψy(u)bγ~(u)(1λE+1)(1λRk)2λEd(o,y)λ(θ(0)+2)3k\sup_{u\in\bar{B}(o,\lambda R+k)}\frac{1}{\lambda E}\psi_{y}(u)-b_{\tilde{\gamma}}(u)\geq\left(\frac{1}{\lambda E}+1\right)\left(\frac{1}{\lambda}R-k\right)-\frac{2}{\lambda E}d(o,y)-\lambda(\theta(0)+2)-3k

for any R>0R>0 and yXy\in X. This means bγ~Bb,λ,E(X)b_{\tilde{\gamma}}\notin B_{b,\lambda,E}(X) and we have bγ~hcXb_{\tilde{\gamma}}\in\partial^{c}_{h}X.

We show π(bγ~)=π(bx)\pi(b_{\tilde{\gamma}})=\pi(b_{x}), that is supuX|bγ~(u)bx(u)|<\sup_{u\in X}|b_{\tilde{\gamma}}(u)-b_{x}(u)|<\infty. We prove this by contradiction. We assume that

supuX|bγ~(u)bx(u)|=supuXliml|bxn(m)(l)(x)bx(u)|=.\sup_{u\in X}|b_{\tilde{\gamma}}(u)-b_{x}(u)|=\sup_{u\in X}\lim_{l\rightarrow\infty}|b_{x_{n(m)(l)}}(x)-b_{x}(u)|=\infty.

For any M>D1+CM>D_{1}+C, there is xMXx_{M}\in X such that for any LL\in\mathbb{N}, there is some ll\in\mathbb{N}, lLl\geq L such that

|bγ~(xM)bxn(m)(l)(xM)|=|d(xM,γ~(d(o,xM)))d(xM,γxn(m)(l)(d(o,xM)))|>M.|b_{\tilde{\gamma}}(x_{M})-b_{x_{n(m)(l)}}(x_{M})|=|d(x_{M},\tilde{\gamma}(d(o,x_{M})))-d(x_{M},\gamma_{x_{n(m)(l)}}(d(o,x_{M})))|>M.

By the triangle inequality, for any LL\in\mathbb{N} there is some ll\in\mathbb{N} such that lLl\geq L and we have

d(γ~(d(o,xM)),γxn(m)(l)(d(o,xM)))>M>D1+C.d(\tilde{\gamma}(d(o,x_{M})),\gamma_{x_{n(m)(l)}}(d(o,x_{M})))>M>D_{1}+C.

On the other hand, since {γxn(m)(l)}l\{\gamma_{x_{n(m)(l)}}\}_{l\in\mathbb{N}} is a subsequence of {γxn}n\{\gamma_{x_{n}}\}_{n\in\mathbb{N}}, we have

lim infl(γxn(m)(l)|γx)o=.\liminf_{l\rightarrow\infty}(\gamma_{x_{n(m)(l)}}\>|\>\gamma_{x})_{o}=\infty.

Thus, there is some L~\tilde{L}\in\mathbb{N} such that for any l~\tilde{l}\in\mathbb{N}, l~L~\tilde{l}\geq\tilde{L}, there is tM>d(o,xM)t_{M}>d(o,x_{M}) such that d(γxn(m)(l~)(tM),γx(tM))D1d(\gamma_{x_{n(m)(\tilde{l})}}(t_{M}),\gamma_{x}(t_{M}))\leq D_{1}. Thus, we have

d(γxn(m)(l~)(d(o,xM)),γx(d(o,xM))\displaystyle d(\gamma_{x_{n(m)(\tilde{l})}}(d(o,x_{M})),\gamma_{x}(d(o,x_{M})) =d(rpΓ¯(o,xn(m)(l~),d(o,xM)),rpΓ¯(o,x,d(o,xM)))\displaystyle=d(\texttt{rp}\bar{\Gamma}(o,x_{n(m)(\tilde{l})},d(o,x_{M})),\texttt{rp}\bar{\Gamma}(o,x,d(o,x_{M})))
d(o,xM)tMd(rpΓ¯(o,xn(m)(l~),tM),rpΓ¯(o,x,tM))+C\displaystyle\leq\frac{d(o,x_{M})}{t_{M}}d(\texttt{rp}\bar{\Gamma}(o,x_{n(m)(\tilde{l})},t_{M}),\texttt{rp}\bar{\Gamma}(o,x,t_{M}))+C
=d(o,xM)tMd(γxn(m)(l~)(tM),γx(tM))+C\displaystyle=\frac{d(o,x_{M})}{t_{M}}d(\gamma_{x_{n(m)(\tilde{l})}}(t_{M}),\gamma_{x}(t_{M}))+C
D1+C<M.\displaystyle\leq D_{1}+C<M.

This is a contradiction. So we have

supuX|bγ~(u)bx(u)|<.\sup_{u\in X}|b_{\tilde{\gamma}}(u)-b_{x}(u)|<\infty.

In particular, we have

limlπ(bxn(m)(l))=π(limlbxn(m)(l))=π(bγ~)=π(bx).\lim_{l\rightarrow\infty}\pi(b_{x_{n(m)(l)}})=\pi(\lim_{l\rightarrow\infty}b_{x_{n(m)(l)}})=\pi(b_{\tilde{\gamma}})=\pi(b_{x}).

From above, any subsequence {π(bxn(m))}m\{\pi(b_{x_{n(m)}})\}_{m\in\mathbb{N}} of {π(bxn)}n\{\pi(b_{x_{n}})\}_{n\in\mathbb{N}} has a subsequence which converges to π(bx)\pi(b_{x}). By Lemma 6.13, we have limnπ(bxn)=π(bx)\lim_{n\rightarrow\infty}\pi(b_{x_{n}})=\pi(b_{x}). ∎

Combining Propositions 6.8, 6.12 and 6.14, we complete the proof of Theorem 1.2.

Acknowledgement

I would like to thank Professor Tomohiro Fukaya for giving me tremendous opportunities for growth through weekly instruction and off-campus placements over the past four years.

I would like to thank Dr. Kenshiro Tashiro for providing us with very useful information on horoboundary and for his very careful guidance.

I would also like to thank Dr. Yoshito Ishiki, Dr. Yuya Kodama, and Dr. Takumi Matsuka for their constant encouragement.

Finally, I would like to thank my parents for allowing me to study for a total of six years at the university and graduate school.

References

  • [AFGG22] Leandro Arosio, Matteo Fiacchi, Sebastien Gontard, and Lorenzo Guerini. The horofunction boundary of a gromov hyperbolic space. Mathematische Annalen, 388:1–42, 12 2022.
  • [And08] P. D. Andreev. Geometry of ideal boundaries of geodesic spaces with nonpositive curvature in the sense of busemann. Siberian Advances in Mathematics, 18(2):95–102, 2008.
  • [And18] Pavel Andreev. The cone metric of a busemann space. Journal of Geometry, 109(1):25, 2018.
  • [FM24] Tomohiro Fukaya and Takumi Matsuka. Boundary of free products of metric spaces. arXiv:2402.06862, 2024.
  • [FO20] Tomohiro Fukaya and Shin-ichi Oguni. A coarse Cartan-Hadamard theorem with application to the coarse Baum-Connes conjecture. J. Topol. Anal., 12(3):857–895, 2020.
  • [FOY22] Tomohiro Fukaya, Shin-ichi Oguni, and Takamitsu Yamauchi. Coarse compactifications and controlled products. Journal of Topology and Analysis, 14(04):875–900, 2022.
  • [Gro81] M. Gromov. Hyperbolic Manifolds, Groups and Actions, pages 183–214. Princeton University Press, Princeton, 1981.
  • [WW03] Corran Webster and Adam Jeremiah Winchester. Boundaries of hyperbolic metric spaces. Pacific Journal of Mathematics, 221:147–158, 2003.