This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

How to Construct Random Unitaries

Fermi Ma Simons Institute &\& UC Berkeley. Email: fermima1@gmail.com    Hsin-Yuan Huang Google Quantum AI, Caltech, &\& MIT. This work was conducted while Hsin-Yuan Huang was visiting the Simons Institute for the Theory of Computing. Email: hsinyuan@google.com, hsinyuan@caltech.edu
Abstract

The existence of pseudorandom unitaries (PRUs)—efficient quantum circuits that are computationally indistinguishable from Haar-random unitaries—has been a central open question, with significant implications for cryptography, complexity theory, and fundamental physics. In this work, we close this question by proving that PRUs exist, assuming that any quantum-secure one-way function exists. We establish this result for both (1) the standard notion of PRUs, which are secure against any efficient adversary that makes queries to the unitary UU, and (2) a stronger notion of PRUs, which are secure even against adversaries that can query both the unitary UU and its inverse UU^{\dagger}. In the process, we prove that any algorithm that makes queries to a Haar-random unitary can be efficiently simulated on a quantum computer, up to inverse-exponential trace distance.

1 Introduction

This paper resolves the question: can efficient quantum circuits behave like truly random unitaries? Specifically, we prove that pseudorandom unitaries (PRUs) exist assuming the existence of any quantum-secure one-way function. First proposed by Ji, Liu, and Song in 2017 [ji2017pseudorandom], a PRU is the unitary analogue of a pseudorandom function (PRF) [goldreich1986construct]. A PRU consists of a family of efficiently computable quantum circuits with the guarantee that no polynomial-time quantum algorithm can distinguish between queries to a unitary sampled from the PRU family and a unitary sampled from the Haar measure.

Random unitaries play an essential role throughout quantum information science, arising in quantum algorithms, quantum supremacy experiments, quantum learning, cryptographic protocols, and much more [hayden2004randomizing, knill2008randomized, arute2019quantum, bouland2019complexity, huang2020predicting, ananth2022cryptography, huang2022provably, elben2022randomized, huang2022quantum, movassagh2023hardness, kretschmer2023quantum, lombardi2024one]. In physics, highly chaotic systems such as black holes are often modeled as Haar-random unitary transformations [cotler2017black, nahum2018operator, cotler2017chaos, kim2020ghost, choi2023preparing]. However, this approach has a fundamental problem: Haar-random unitaries are inherently unphysical, requiring exponential complexity to even specify. The notion of a PRU offers a tantalizing solution: efficient circuits that are as good as Haar-random. In fact, the idea that PRUs are a more accurate model of black hole dynamics is behind recent advances in fundamental physics [kim2020ghost, yang2023complexity, engelhardt2024cryptographic].

Despite considerable interest, the question of whether PRUs actually exist has remained open. In the past couple of years, a series of works has established that weaker notions are possible [lu2023quantum, brakerski2024real, haug2023pseudorandom, metger2024simple, ananth2024pseudorandom]. For example, [metger2024simple, chen2024efficient] constructed non-adaptive PRUs, which are secure against restricted adversaries that makes all of their queries at once in parallel. While these works represent important progress, the broader goal remains elusive, and constructing a PRU remains one of the central challenges in quantum cryptography.

1.1 Our results

In this work, we give the first proof that PRUs exist.

Theorem 1.

PRUs exist assuming the existence of any quantum-secure one-way function.

In fact, we go one step further. Theorem 1 is about PRUs that satisfy the original definition of [ji2018pseudorandom], which are secure against adversaries that can query an oracle for UU, but not the inverse unitary UU^{\dagger}. We therefore define strong PRUs, which are indistinguishable from Haar-random even to adverasaries that can query both UU and UU^{\dagger}. Our second main result builds strong PRUs from one-way functions.111The notion of strong PRUs is also discussed in [metger2024simple] as an open question.

Theorem 2.

Strong PRUs exist assuming the existence of any quantum-secure one-way function.

While Theorem 2 technically subsumes Theorem 1, the proof of Theorem 2 is significantly more involved. Since Theorem 1 may suffice for many applications, we present them separately. By establishing the existence of PRUs, our work provides the foundation for new avenues of research in quantum computation, cryptography, and fundamental physics.

1.2 Our techniques

We achieve our results on PRUs by proving that any quantum oracle algorithm 𝒜U\mathcal{A}^{U} that queries an nn-qubit Haar-random unitary UU can be efficiently simulated with a remarkably simple procedure:

  1. 1.

    Initialize an external register 𝖤\mathsf{E} to the state |\ket*{\varnothing}, where \varnothing denotes the empty set. (Aside: When we write a set inside a ket, e.g., |S𝖤\ket*{S}_{\mathsf{E}}, we are simply using the set SS as a label for a unit vector. The inner product R|S\innerproduct*{R}{S} equals 11 if R=SR=S and 0 otherwise.)

  2. 2.

    Run the oracle algorithm 𝒜\mathcal{A}, replacing each query to UU with the following linear map:

    V:|x|S𝖤12n|S|y{0,1}n:ySY|y|S{(x,y)}𝖤,\displaystyle V:\ket*{x}\ket*{S}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{E}}}}\mapsto\frac{1}{\sqrt{2^{n}-\absolutevalue{S}}}\sum_{\begin{subarray}{c}y\in\{0,1\}^{n}:\\ y\not\in S_{Y}\end{subarray}}\ket*{y}\ket*{S\cup\{(x,y)\}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{E}}}}, (1.1)

    where SYS_{Y} denotes the set of all yy such that (x,y)S(x,y)\in S for some xx. In words, VV maps xx to a uniform superposition over y{0,1}ny\in\{0,1\}^{n}, except those that already appear in SS, and simultaneously “records” (x,y)(x,y) by inserting it into SS. We refer to VV as the path-recording oracle.

We prove that the following mixed states have trace distance O(t2/2n)O(t^{2}/2^{n}):

  • 𝔼U|𝒜U𝒜U|\operatorname*{{\mathbb{E}}}_{U}\outerproduct*{\mathcal{A}^{U}}{\mathcal{A}^{U}}, the state of 𝒜\mathcal{A} after tt queries to a Haar-random unitary UU, where |𝒜UUAtUA1|0\ket*{\mathcal{A}^{U}}\coloneqq U\cdot A_{t}\cdots U\cdot A_{1}\ket*{0} denotes the state of the algorithm after tt queries to UU, and |0\ket*{0} denotes an arbitrary initial state.

  • Tr𝖤(|𝒜V𝒜V|)\Tr_{\mathsf{E}}(\outerproduct*{\mathcal{A}^{V}}{\mathcal{A}^{V}}), where |𝒜V𝖠𝖤VAtVA1|0|𝖤\ket*{\mathcal{A}^{V}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{E}}}}\coloneqq V\cdot A_{t}\cdot\cdots V\cdot A_{1}\ket*{0}\ket*{\varnothing}_{\mathsf{E}} denotes the global state of the algorithm and the external register 𝖤\mathsf{E} after tt queries to VV.

Despite the extensive literature on Haar-random unitaries, to the best of our knowledge, this “path-recording” characterization was not known before.222We note that [alagic2020efficient] proves that there exists a space-efficient (but otherwise inefficient) way to exactly simulate Haar-random unitaries. Moreover, their proof is non-constructive, i.e., they do not give a simulator.333This can also be viewed as an analog of Zhandry’s compressed oracles for Haar-random unitaries [zhandry2019record]. Furthermore, it is easy to show that VV can be efficiently implemented on a quantum computer; see LABEL:sec:efficient-implementation-pro. This establishes the following fact:

Any algorithm that queries a Haar-random unitary can be efficiently simulated
on a quantum computer up to inverse-exponential trace distance.

As we now explain, this new path-recording perspective is the key to our PRU proof.

How to construct PRUs.

The main technical step in our PRU proof is to show that a tt-query oracle algorithm 𝒜\mathcal{A} can only distinguish between

  • PπFfCP_{\pi}\cdot F_{f}\cdot C, where Pπ=x|π(x)x|P_{\pi}=\sum_{x}\outerproduct*{\pi(x)}{x} for a random permutation πS2n\pi\leftarrow S_{2^{n}}, Ff=x(1)f(x)|xx|F_{f}=\sum_{x}(-1)^{f(x)}\outerproduct*{x}{x} for a random function f{0,1}2nf\leftarrow\{0,1\}^{2^{n}}, and CC is a random nn-qubit Clifford.444This PFCPFC construction was introduced by [metger2024simple], who proved security against non-adaptive adversaries, i.e., adversaries that make all of their oracle queries at once, in parallel.

  • a Haar-random nn-qubit unitary UU,

with probability 1/2+t2/2n1/2+t^{2}/2^{n}.

Our proof works by purifying the randomness of the PRU. Ignoring CC for now, suppose we initialize an external register to the uniform superposition πS2n|πf{0,1}2n|f\propto\sum_{\pi\in S_{2^{n}}}\ket*{\pi}\otimes\sum_{f\in\{0,1\}^{2^{n}}}\ket*{f} over all permutations π\pi and functions ff. In this view, a query to a random PπFfP_{\pi}\cdot F_{f} is equivalent to a query to a fixed unitary that applies PπFfP_{\pi}\cdot F_{f} controlled on |π|f\ket*{\pi}\ket*{f}, i.e., the map

|x|π,f(1)f(x)|π(x)|π,f.\displaystyle\ket*{x}\otimes\ket*{\pi,f}\mapsto(-1)^{f(x)}\cdot\ket*{\pi(x)}\otimes\ket*{\pi,f}. (1.2)

Equivalently, we can view this map as sending xx to a superposition over all yy, while simultaneously multiplying the purifying register by the coefficient δπ(x)=y(1)f(x)\delta_{\pi(x)=y}\cdot(-1)^{f(x)}:

|x|π,fy{0,1}n|y(δπ(x)=y(1)f(x)|π,f).\displaystyle\ket*{x}\otimes\ket*{\pi,f}\mapsto\sum_{y\in\{0,1\}^{n}}\ket*{y}\otimes\Big{(}{\color[rgb]{0.15,0.25,0.8}\definecolor[named]{pgfstrokecolor}{rgb}{0.15,0.25,0.8}\delta_{\pi(x)=y}\cdot(-1)^{f(x)}}\cdot\ket*{\pi,f}\Big{)}. (1.3)

After tt queries to the purified PπFfP_{\pi}\cdot F_{f}, the global state including the purifying registers is (proportional to) a sum of terms

|ytxt|At|y1x1|A1|0nπS2n|π,fδπ(x1)=y1δπ(xt)=yt(1)f(x1)++f(xt)|𝗉𝖿{(x1,y1),,(xt,yt)},\outerproduct*{y_{t}}{x_{t}}\cdot A_{t}\cdots\outerproduct*{y_{1}}{x_{1}}\cdot A_{1}\ket*{0^{n}}\otimes\underbrace{\sum_{\pi\in S_{2^{n}}}\ket*{\pi,f}\cdot{\color[rgb]{0.15,0.25,0.8}\definecolor[named]{pgfstrokecolor}{rgb}{0.15,0.25,0.8}\delta_{\pi(x_{1})=y_{1}}\cdots\delta_{\pi(x_{t})=y_{t}}\cdot(-1)^{f(x_{1})+\cdots+f(x_{t})}}}_{\propto\ket*{\mathsf{pf}_{\{(x_{1},y_{1}),\dots,(x_{t},y_{t})\}}}}, (1.4)

over all possible x1,y1,,xt,yt{0,1}nx_{1},y_{1},\dots,x_{t},y_{t}\in\{0,1\}^{n}, i.e., over all Feynman paths.

Crucially, when all the x1,,xtx_{1},\dots,x_{t} are distinct, these |𝗉𝖿{(x1,y1),,(xt,yt)}\ket*{\mathsf{pf}_{\{(x_{1},y_{1}),\dots,(x_{t},y_{t})\}}} states are orthogonal and is isometric to |{(x1,y1),,(xt,yt)}\ket*{\{(x_{1},y_{1}),\dots,(x_{t},y_{t})\}}. Since the algorithm is not given the purifying registers, a query to a random PπFfP_{\pi}\cdot F_{f} is identical to a query to the path-recording oracle VV described earlier—except on paths where there is a collision among the inputs x1,,xtx_{1},\dots,x_{t}.

This is where CC comes in. We prove that VV satisfies a key property: for any nn-qubit unitary CC,

(VC)At(VC)A1|0n|𝖤=((C𝖨𝖽)t)𝖤VAtVA1|0n|𝖤.(V\cdot C)\cdot A_{t}\cdots(V\cdot C)\cdot A_{1}\ket*{0^{n}}\ket*{\varnothing}_{\mathsf{E}}=((C\otimes\mathsf{Id})^{\otimes t})_{\mathsf{E}}\cdot V\cdot A_{t}\cdots V\cdot A_{1}\ket*{0^{n}}\ket*{\varnothing}_{\mathsf{E}}. (1.5)

This says that applying CC to the adversary’s register before each query to VV is equivalent to applying CC to each xix_{i} in the purifying register |{(x1,y1),,(xt,yt)}\ket*{\{(x_{1},y_{1}),\dots,(x_{t},y_{t})\}}. When CC is sampled from any 22-design, the randomness of CC ensures there are no collisions in the x1,,xtx_{1},\dots,x_{t} with overwhelming probability. Consequently, we show that queries to VV are indistinguishable from queries to PπFfCP_{\pi}\cdot F_{f}\cdot C, as long as CC is sampled from any 22-design. By instantiating the 22-design to be either (1) a random Clifford or (2) a Haar-random unitary, we show that both PπFfCP_{\pi}\cdot F_{f}\cdot C and Haar-random unitaries are indistinguishable from VV, and thus, from each other.

Strong PRUs and a symmetrized path-recording oracle V~\widetilde{V}.

To obtain strong PRUs, we use the construction: DPπFfCD\cdot P_{\pi}\cdot F_{f}\cdot C, where D,CD,C are both random nn-qubit Cliffords, PπP_{\pi} is the same as before, and FfF_{f} is a random qq-ary phase (for any q3q\geq 3). By analyzing the purification of PπFfP_{\pi}\cdot F_{f}, we show that when 𝒜\mathcal{A} makes forward and inverse queries, the purifying registers, viewed in the right basis, “record” information from two Feynman paths: one set S𝖿𝗈𝗋S^{\mathsf{for}} consists of (x,y)(x,y) tuples corresponding to the forward queries, and another set S𝗂𝗇𝗏S^{\mathsf{inv}} of tuples (x,y)(x,y) corresponds to the inverse queries. Whereas each query in the standard PRU proof always inserts a tuple (x,y)(x,y) into the set SS, when both forward and inverse queries are allowed, the effect is more intricate:

  • A forward query will sometimes add a tuple to S𝖿𝗈𝗋S^{\mathsf{for}}, but other times delete a tuple from S𝗂𝗇𝗏S^{\mathsf{inv}}.

  • An inverse query will sometimes add a tuple to S𝗂𝗇𝗏S^{\mathsf{inv}}, but other times delete a tuple from S𝖿𝗈𝗋S^{\mathsf{for}}.

We prove that this behavior corresponds to a more general “symmetrized” path recording oracle V~\widetilde{V}. Moreover, as long as D,CD,C are sampled from any 22-design, the adversary cannot distinguish between queries to DPπFfCD\cdot P_{\pi}\cdot F_{f}\cdot C and queries to V~\widetilde{V}, and using similar reasoning as the standard PRU proof, conclude both of the following (1) strong PRUs exist and (2) V~\widetilde{V} is indistinguishable from Haar-random even under inverse queries. As we show in LABEL:sec:efficient-implementation-pro, V~\widetilde{V} can also be implemented efficiently, and consequently any algorithm that makes forward and inverse queries to a Haar-random unitary can also be simulated to inverse exponential error.

Our proof leverages the following property of 22-designs: if one samples CC from a 22-design and applies CC¯C\otimes\overline{C} to any state (where C¯\overline{C} denotes the complex conjugate), then with overwhelmingly high probability, the result is either (a) a pair of distinct elements, or (b) the maximally entangled state. At a very high level, the fact that there are two kinds of outcomes after twirling by CC¯C\otimes\overline{C} is related to how the purification “decides” whether it should add or delete a tuple (x,y)(x,y).

We remark that the strong PRU proof is significantly more involved than standard PRU proof, and the reader may find it beneficial to start with the standard PRU proof.

A new approach to random unitaries.

More broadly, the path-recording oracle unlocks a new way to proving theorems about random unitaries. Before this work, analyzing mixed states such as 𝔼U|AdvUAdvU|\mathbb{E}_{U}\outerproduct*{\text{Adv}^{U}}{\text{Adv}^{U}} often necessitated the use of Weingarten calculus, involving intricate asymptotic bounds on Weingarten functions through sophisticated combinatorial and representation-theoretic calculations. Our approach circumvents this complexity entirely.555Alternatively, one can view our technique as deriving a simplified and approximate version of the Weingarten calculus from purely elementary arguments.

We demonstrate the power of this approach by giving an elementary proof of the “gluing lemma” recently proven by [schuster2024random]. This lemma states that if two Haar-random unitaries U1U_{1} and U2U_{2} overlap, with U1U_{1} acting on systems 𝖠,𝖡\mathsf{A},\mathsf{B} and U2U_{2} on 𝖡,𝖢\mathsf{B},\mathsf{C} (where 𝖡\mathsf{B} has a super-logarithmic number of qubits), then queries to U2U1U_{2}\cdot U_{1} are indistinguishable from queries to a larger Haar-random unitary UU acting on 𝖠,𝖡,𝖢\mathsf{A},\mathsf{B},\mathsf{C}. Using this lemma (and our Theorem 1), [schuster2024random] constructed low-depth PRUs secure against forward queries. However, their proof of the gluing lemma is highly technical, relying on careful representation-theoretic analysis and tight bounds on Weingarten functions.

The path-recording oracle yields an elementary proof of the gluing lemma (see LABEL:part:app). The key insight is to replace the Haar-random unitaries with path-recording oracles. This reduces to showing that the composition of two independent path-recording oracles V2V1V_{2}\cdot V_{1}, where V1V_{1} acts on (𝖠,𝖡,𝖤1)(\mathsf{A},\mathsf{B},\mathsf{E}_{1}) and V2V_{2} acts on (𝖡,𝖢,𝖤2)(\mathsf{B},\mathsf{C},\mathsf{E}_{2}), approximates a single path-recording oracle VV acting on (𝖠,𝖡,𝖢,𝖤)(\mathsf{A},\mathsf{B},\mathsf{C},\mathsf{E}).

Given the central role of random unitaries in physics and quantum computing, we expect the path-recording framework to have broad applications in the future.

1.3 Acknowledgments

Special thanks to John Wright for many helpful suggestions and extensive discussions at every stage of this project, and to Ewin Tang for providing significant feedback on the manuscript. We also thank Thiago Bergamaschi, John Bostanci, Adam Bouland, Chi-Fang (Anthony) Chen, Lijie Chen, Tudor Giurgica-Tiron, Jeongwan Haah, Jonas Haferkamp, William Kretschmer, Alex Lombardi, Tony Metger, Thomas Schuster, Joseph Slote, Xinyu (Norah) Tan, Umesh Vazirani, Henry Yuen, and Mark Zhandry for valuable discussions and feedback.

Fermi Ma is supported by the U.S. Department of Energy, Office of Science, National Quantum Information Science Research Centers, Quantum Systems Accelerator. Hsin-Yuan Huang acknowledges the visiting position at Center for Theoretical Physics, MIT. This work was conducted while both authors were at the Simons Institute for the Theory of Computing, supported by DOE QSA grant FP00010905.

2 Preliminaries

This section establishes basic notation, definitions, and lemmas that we use throughout the paper.

Notation.

We write N2nN\coloneqq 2^{n}, where nn typically denotes the number of qubits. We write [N]{1,,N}[N]\coloneqq\{1,\ldots,N\} to denote the set of integers from 11 to NN, and we will identify [N][N] with {0,1}n\{0,1\}^{n} by associating each integer i[N]i\in[N] with the string x{0,1}nx\in\{0,1\}^{n} corresponding to the binary representation of i1i-1. For any integer 1tN1\leq t\leq N, let [N]tdist[N]^{t}_{\operatorname{{dist}}} denote the set of length-tt sequences of distinct integers from 11 to NN, i.e.,

[N]tdist{(x1,,xt)[N]t:xixjfor allij}.[N]^{t}_{\operatorname{{dist}}}\coloneqq\{(x_{1},\dots,x_{t})\in[N]^{t}:x_{i}\neq x_{j}\ \text{for all}\ i\neq j\}. (2.1)

For t=0t=0, we adopt the convention that [N]tdist{()}[N]^{t}_{\operatorname{{dist}}}\coloneqq\{()\} is a set with a single element ()() denoting a length-0 sequence. For any permutation π𝖲𝗒𝗆t\pi\in\mathsf{Sym}_{t}, let SπS_{\pi} be a unitary that acts on (N)t(\mathbb{C}^{N})^{t} as follows:

Sπ:|x1,,xt|xπ1(1),,xπ1(t).S_{\pi}:\ket*{x_{1},\dots,x_{t}}\mapsto\ket*{x_{\pi^{-1}(1)},\dots,x_{\pi^{-1}(t)}}. (2.2)
Quantum registers.

We use capital sans-serif letters to label quantum registers. For a register 𝖠\mathsf{A}, the associated Hilbert space is denoted 𝖠\mathcal{H}_{\mathsf{A}}. When a quantum state is supported on multiple registers, such as (𝖠,𝖡)(\mathsf{A},\mathsf{B}), this means that |ψ𝖠𝖡\ket*{\psi}\in\mathcal{H}_{\mathsf{A}}\otimes\mathcal{H}_{\mathsf{B}}. To clarify which systems a state is defined on, we sometimes include the register labels as subscripts in dark gray sans-serif font, e.g., |ψ𝖠𝖡\ket*{\psi}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}}. If a linear operator UU acts only on subsystem 𝖠\mathsf{A}, we may write this as U𝖠U_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}. Such an operator can be extended to a larger system by acting trivially on other registers; for example, (U𝖠𝖨𝖽𝖡)|ψ𝖠𝖡(U_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\otimes\mathsf{Id}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}})\cdot\ket*{\psi}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}}. To reduce notational clutter, we often omit the “𝖨𝖽𝖡\otimes\mathsf{Id}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}}” and simply write U𝖠|ψ𝖠𝖡U_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\cdot\ket*{\psi}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}}. Similarly, when summing operators that act on different registers, such as U𝖠U_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}} and V𝖠𝖡V_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}}, we write U𝖠+V𝖠𝖡U_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}+V_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}} to mean U𝖠𝖨𝖽𝖡+V𝖠𝖡U_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\otimes\mathsf{Id}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}}+V_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}}.

Given a projector Π\Pi acting on register 𝖠\mathsf{A}, we say that a state |ψ𝖠\ket*{\psi}\in\mathcal{H}_{\mathsf{A}} is in the image of Π\Pi if Π|ψ=|ψ\Pi\ket*{\psi}=\ket*{\psi}. For a state |ψ𝖠𝖡\ket*{\psi}\in\mathcal{H}_{\mathsf{A}}\otimes\mathcal{H}_{\mathsf{B}}, we similarly say that |ψ\ket*{\psi} is in the image of Π𝖠\Pi_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}} if Π𝖠|ψ𝖠𝖡=(Π𝖠𝖨𝖽𝖡)|ψ𝖠𝖡=|ψ𝖠𝖡\Pi_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\ket*{\psi}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}}=(\Pi_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\otimes\mathsf{Id}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}})\cdot\ket*{\psi}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}}=\ket*{\psi}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}}.

Given a state |ψ\ket*{\psi} on systems (𝖠,𝖡)(\mathsf{A},\mathsf{B}), we denote the partial trace over system 𝖡\mathsf{B} as Tr𝖡(|ψψ|)\Tr_{\mathsf{B}}(\outerproduct{\psi}{\psi}). Occasionally, we will write this as Tr𝖠(|ψψ|)\Tr_{-\mathsf{A}}(\outerproduct{\psi}{\psi}), where the minus sign indicates tracing out all systems except 𝖠\mathsf{A}.

2.1 Relations and variable-length registers

Fix a choice of N=2nN=2^{n}. A relation RR is defined as a multiset R={(x1,y1),,(xt,yt)}R=\{(x_{1},y_{1}),\dots,(x_{t},y_{t})\} of ordered pairs (xi,yi)[N]2(x_{i},y_{i})\in[N]^{2}. This definition deviates slightly from the standard notion of a relation, which is typically an ordinary set of ordered pairs without repeated elements. The size of the relation refers to the number of ordered pairs in the relation, including multiplicities. We denote this by |R|\absolutevalue{R}, as the size corresponds to the cardinality of RR as a multiset.

Definition 1.

Let \mathcal{R} denote the infinite set of all relations RR. For any t0t\geq 0, let t\mathcal{R}_{t} denote the set of all size-tt relations.

Definition 2.

For a relation RR, we use Dom(R)\operatorname{Dom}(R) to denote the set

Dom(R)={x:x[N],ys.t.(x,y)R},\operatorname{Dom}(R)=\{x:x\in[N],\exists y\ \text{s.t.}(x,y)\in R\}, (2.3)

and Im(R)\imaginary(R) to denote the set

Im(R)={y:y[N],xs.t.(x,y)R}.\imaginary(R)=\{y:y\in[N],\exists x\ \text{s.t.}(x,y)\in R\}. (2.4)

Note that while RR may be a multi-set, Dom(R)\operatorname{Dom}(R) and Im(R)\imaginary(R) are ordinary sets, i.e., they will not have repeated elements.

Each relation RR\in\mathcal{R} is associated with a relation state |R\ket*{R}, defined as follows.

Notation 1 (Relation states).

For a relation R={(x1,y1),,(xt,yt)}R=\{(x_{1},y_{1}),\dots,(x_{t},y_{t})\}, define the corresponding relation state |R\ket*{R} to be the state

|Rπ𝖲𝗒𝗆t|xπ(1),yπ(1),,xπ(t),yπ(t)t!(x,y)[N]2𝗇𝗎𝗆(R,(x,y))!.\displaystyle\ket*{R}\coloneqq\frac{\sum_{\pi\in\mathsf{Sym}_{t}}\ket*{x_{\pi(1)},y_{\pi(1)},\dots,x_{\pi(t)},y_{\pi(t)}}}{\sqrt{t!\cdot\sum_{(x,y)\in[N]^{2}}\mathsf{num}(R,(x,y))!}}. (2.5)

where 𝗇𝗎𝗆(R,(x,y))\mathsf{num}(R,(x,y)) denotes the number of times the tuple (x,y)(x,y) appears in RR.

An elementary counting argument yields the following result.

Fact 1.

For any relation RR\in\mathcal{R}, the state |R\ket*{R} is a unit vector.

The relation states |R\ket*{R} for RtR\in\mathcal{R}_{t} can also be viewed as the standard basis for the symmetric subspace of (N2)t(\mathbb{C}^{N^{2}})^{\otimes t}. Note that this is only true because we allow for multi-set relations. Specifically, if Π𝗌𝗒𝗆N2,t\Pi_{\mathsf{sym}}^{N^{2},t} denotes the projector onto the symmetric subspace of (N2)t(\mathbb{C}^{N^{2}})^{\otimes t}, we have the equality

Π𝗌𝗒𝗆N2,t=Rt|RR|.\displaystyle\Pi_{\mathsf{sym}}^{N^{2},t}=\sum_{R\in\mathcal{R}_{t}}\outerproduct{R}{R}. (2.6)

However, we will typically use the following notation to refer to this projector.

Notation 2.

For any integer t0t\geq 0, we define

Πt:-R:|R|=t|RR|=ΠN2,t𝗌𝗒𝗆.\displaystyle\Pi^{\mathcal{R}}_{t}\coloneq\sum_{R\in\mathcal{R}:\absolutevalue{R}=t}\outerproduct*{R}{R}=\Pi^{N^{2},t}_{\mathsf{sym}}. (2.7)
Notation 3 (Restricted sets of relations).

Define the following restricted sets of relations:

  • Let t𝗂𝗇𝗃\mathcal{R}_{t}^{\mathsf{inj}} be the set of all injective relations, i.e., relations R={(x1,y1),,(xt,yt)}R=\{(x_{1},y_{1}),\dots,(x_{t},y_{t})\} of size tt, where (y1,,yt)[N]tdist(y_{1},\dots,y_{t})\in[N]^{t}_{\operatorname{{dist}}}. Let 𝗂𝗇𝗃t=0Nt𝗂𝗇𝗃\mathcal{R}^{\mathsf{inj}}\coloneqq\cup_{t=0}^{N}\mathcal{R}_{t}^{\mathsf{inj}}.

  • Let t𝖻𝗂𝗃\mathcal{R}_{t}^{\mathsf{bij}} be the set of all bijective relations, i.e., relations R={(x1,y1),,(xt,yt)}R=\{(x_{1},y_{1}),\dots,(x_{t},y_{t})\} of size tt, where (x1,,xt)[N]tdist(x_{1},\dots,x_{t})\in[N]^{t}_{\operatorname{{dist}}} and (y1,,yt)[N]tdist(y_{1},\dots,y_{t})\in[N]^{t}_{\operatorname{{dist}}}. Let 𝖻𝗂𝗃t=0Nt𝖻𝗂𝗃\mathcal{R}^{\mathsf{bij}}\coloneqq\cup_{t=0}^{N}\mathcal{R}_{t}^{\mathsf{bij}}.

If the tuples in a relation R={(x1,y1),,(xt,yt)}R=\{(x_{1},y_{1}),\dots,(x_{t},y_{t})\} are distinct, i.e., (xi,yi)(xj,yj)(x_{i},y_{i})\neq(x_{j},y_{j}) for iji\neq j, the normalization factor simplifies to 1/t!1/\sqrt{t!}, i.e.,

|R=1t!π𝖲𝗒𝗆t|xπ(1),yπ(1),,xπ(t),yπ(t).\displaystyle\ket*{R}=\frac{1}{\sqrt{t!}}\sum_{\pi\in\mathsf{Sym}_{t}}\ket*{x_{\pi(1)},y_{\pi(1)},\dots,x_{\pi(t)},y_{\pi(t)}}. (2.8)

Note that any relation R𝗂𝗇𝗃R\in\mathcal{R}^{\mathsf{inj}} or R𝖻𝗂𝗃R\in\mathcal{R}^{\mathsf{bij}} satisfies this condition.

In both Parts I and II, we will consider linear maps that send superpositions of |R\ket*{R} for RtR\in\mathcal{R}_{t} to superpositions of |R\ket*{R^{\prime}} for Rt+1R^{\prime}\in\mathcal{R}_{t+1}. This motivates the definition of variable-length registers.

2.1.1 Variable-length registers

For every integer t0t\geq 0 let 𝖱(t)\mathsf{R}^{(t)} be a register associated with the Hilbert space 𝖱(t)(NN)t\mathcal{H}_{\mathsf{R}^{(t)}}\coloneqq(\mathbb{C}^{N}\otimes\mathbb{C}^{N})^{\otimes t}. Let 𝖱\mathsf{R} be a register corresponding to the infinite dimensional Hilbert space

𝖱t=0𝖱(t)=t=0(NN)t.\displaystyle\mathcal{H}_{\mathsf{R}}\coloneqq\bigoplus_{t=0}^{\infty}\mathcal{H}_{\mathsf{R}^{(t)}}=\bigoplus_{t=0}^{\infty}(\mathbb{C}^{N}\otimes\mathbb{C}^{N})^{\otimes t}. (2.9)

When t=0t=0, the space (NN)0=(\mathbb{C}^{N}\otimes\mathbb{C}^{N})^{\otimes 0}=\mathbb{C} is a one-dimensional Hilbert space. Thus, 𝖱(t)\mathcal{H}_{\mathsf{R}^{(t)}} is spanned by the states |x1,y1,,xt,yt\ket*{x_{1},y_{1},\dots,x_{t},y_{t}} where xi,yi[N]x_{i},y_{i}\in[N]. Note that the relation states |R\ket*{R} for RtR\in\mathcal{R}_{t} span the symmetric subspace of 𝖱(t)\mathcal{H}_{\mathsf{R}^{(t)}}.

We will sometimes divide up the 𝖱(t)\mathsf{R}^{(t)} register into 𝖱(t)(𝖱(t)𝖷,𝖱(t)𝖸)\mathsf{R}^{(t)}\coloneqq(\mathsf{R}^{(t)}_{\mathsf{X}},\mathsf{R}^{(t)}_{\mathsf{Y}}) where 𝖱(t)𝖷\mathsf{R}^{(t)}_{\mathsf{X}} refers to the registers containing |x1,,xt\ket*{x_{1},\dots,x_{t}} and 𝖱(t)𝖸\mathsf{R}^{(t)}_{\mathsf{Y}} refers to the registers containing |y1,,yt\ket*{y_{1},\dots,y_{t}}. We denote 𝖱(t)𝖷,i\mathsf{R}^{(t)}{\mathsf{X},i} as the register containing |xi\ket*{x_{i}} and 𝖱(t)𝖸,i\mathsf{R}^{(t)}{\mathsf{Y},i} as the register containing |yi\ket*{y_{i}}. Following our convention for defining the length/size of a relation RR, we say that a state |x1,y1,,xt,yt\ket*{x_{1},y_{1},\dots,x_{t},y_{t}} has length/size tt. Two states of different lengths are orthogonal by definition, since 𝖱\mathcal{H}_{\mathsf{R}} is a direct sum t=0𝖱(t)\bigoplus_{t=0}^{\infty}\mathcal{H}_{\mathsf{R}^{(t)}}.

Notation 4 (Extending fixed-length operators to variable-length).

For any operator OO defined on the fixed-size Hilbert space 𝖱(t)\mathcal{H}_{\mathsf{R}^{(t)}}, we abuse notation by using OO to also refer to its extension on all of 𝖱\mathcal{H}_{\mathsf{R}}. The extended operator is the direct sum of OO and the 0 operator on 𝖱(t)\mathcal{H}_{\mathsf{R}^{(t^{\prime})}} for all ttt^{\prime}\neq t.

Hence, if two operators O1O_{1} and O2O_{2} act on 𝖱(t)\mathcal{H}_{\mathsf{R}^{(t)}} and 𝖱(t)\mathcal{H}_{\mathsf{R}^{(t^{\prime})}}, respectively, then O1+O2O_{1}+O_{2} is the sum of their extensions over all of 𝖱\mathcal{H}_{\mathsf{R}}. We can now define the projector Π\Pi^{\mathcal{R}} that projects onto the span of all relation states.

Notation 5.

We define the projector

Πt=0Πt=R|RR|,\displaystyle\Pi^{\mathcal{R}}\coloneqq\sum_{t=0}^{\infty}\Pi^{\mathcal{R}}_{t}=\sum_{R\in\mathcal{R}}\outerproduct*{R}{R}, (2.10)

that projects onto the span of all relation states |R\ket*{R} for all RR\in\mathcal{R}.

Finally, we introduce the notion of variable-length tensor powers, which will be useful to describe applying an operator to each |xi,yi\ket*{x_{i},y_{i}} in a state |x1,y1,,xt,yt\ket*{x_{1},y_{1},\dots,x_{t},y_{t}}, in settings where tt is not explicitly known.

Notation 6 (Variable-length tensor powers).

For any unitary U𝒰(N2)U\in\mathcal{U}(N^{2}), let

Ut=0Ut\displaystyle U^{\otimes*}\coloneqq\sum_{t=0}^{\infty}U^{\otimes t} (2.11)

be a unitary that acts on the Hilbert space 𝖱\mathcal{H}_{\mathsf{R}}.

2.1.2 Pairs of variable-length registers

In Part II, we will consider states of the form |L𝖫|R𝖱\ket*{L}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}}\ket*{R}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}, where |L\ket*{L} and |R\ket*{R} are both relation states, and 𝖫\mathsf{L} is another variable-length register defined analogously to 𝖱\mathsf{R}. Throughout Part II, we will use the following definitions.

Notation 7 (Fixed-length projectors).

For any integers ,r0\ell,r\geq 0, let Π,r\Pi_{\ell,r} denote the projector acting on 𝖫𝖱\mathcal{H}_{\mathsf{L}}\otimes\mathcal{H}_{\mathsf{R}} that projects onto the fixed-length Hilbert space 𝖫()𝖱(r)\mathcal{H}_{\mathsf{L}^{(\ell)}}\otimes\mathcal{H}_{\mathsf{R}^{(r)}}.

Notation 8 (Maximum-length projectors).

For any integer t0t\geq 0, let Πt\Pi_{\leq t} denote the projector acting on 𝖫𝖱\mathcal{H}_{\mathsf{L}}\otimes\mathcal{H}_{\mathsf{R}} onto the Hilbert space ,r0:+rt𝖫()𝖱(r)\bigoplus_{\ell,r\geq 0:\ell+r\leq t}\mathcal{H}_{\mathsf{L}^{(\ell)}}\otimes\mathcal{H}_{\mathsf{R}^{(r)}}.

Notation 9 (Length-restricted operators).

For any operator BB that acts on the variable-length registers 𝖱\mathsf{R} and 𝖱\mathsf{R}, let B,rBΠ,rB_{\ell,r}\coloneqq B\cdot\Pi_{\ell,r} denote the restriction of BB to input states where registers 𝖱\mathsf{R} and 𝖱\mathsf{R} have lengths \ell and rr. Let BtBΠtB_{\leq t}\coloneqq B\cdot\Pi_{\leq t} denote the restriction of BB to inputs states where the combined length of 𝖫\mathsf{L} and 𝖱\mathsf{R} is at most tt.

Note that, with this notation, (Bt)(B{\leq t})^{\dagger} does not necessarily equal (B)t(B^{\dagger})_{\leq t}. We adopt the convention that BtB_{\leq t}^{\dagger} refers to (Bt)(B_{\leq t})^{\dagger}.

2.2 The Haar measure, unitary tt-designs, and twirling channels

Definition 3 (Haar measure).

The Haar measure over the nn-qubit unitary group 𝒰(2n)\mathcal{U}(2^{n}) is the unique probability measure μ\mu on 𝒰(2n)\mathcal{U}(2^{n}) that is:

  1. 1.

    Left-invariant: For any measurable set S𝒰(2n)S\subseteq\mathcal{U}(2^{n}) and any V𝒰(2n)V\in\mathcal{U}(2^{n}), μ(VS)=μ(S)\mu(VS)=\mu(S).

  2. 2.

    Right-invariant: For any measurable set S𝒰(2n)S\subseteq\mathcal{U}(2^{n}) and any V𝒰(2n)V\in\mathcal{U}(2^{n}), μ(SV)=μ(S)\mu(SV)=\mu(S).

  3. 3.

    Normalized: μ(𝒰(2n))=1\mu(\mathcal{U}(2^{n}))=1.

The Haar measure provides a notion of uniform distribution over the unitary group.

We will refer to the Haar measure as μ𝖧𝖺𝖺𝗋\mu_{\mathsf{Haar}}.

Definition 4 (Unitary tt-design).

A distribution 𝔇\mathfrak{D} on nn-qubit unitaries is a unitary tt-design if

𝔼U𝔇[UtU,t]=𝒰(2n)UtU,tdμ(U),\operatorname*{{\mathbb{E}}}_{U\sim\mathfrak{D}}[U^{\otimes t}\otimes U^{\dagger,\otimes t}]=\int_{\mathcal{U}(2^{n})}U^{\otimes t}\otimes U^{\dagger,\otimes t}d\mu(U), (2.12)

where μ\mu is the Haar measure over the unitary group 𝒰(2n)\mathcal{U}(2^{n}).

Notation 10.

Define the equality projector

Π𝖾𝗊=x[N]|xx||xx|.\Pi^{\mathsf{eq}}=\sum_{x\in[N]}\outerproduct*{x}{x}\otimes\outerproduct*{x}{x}. (2.13)

In the following, when we write 𝔼ψ\mathbb{E}_{\psi} and 𝔼U\mathbb{E}_{U} without any specified distribution, we always refer to the uniform distribution over pure states and the Haar measure over unitary groups, respectively. We will use the following standard fact about Haar-random states and the symmetric subspace.

Fact 2.

The expectation over Haar measure satisfies

𝔼ψN|ψψ|2=Π𝗌𝗒𝗆N,2Tr(Π𝗌𝗒𝗆N,2)=Π𝗌𝗒𝗆N,2(N+12),\displaystyle\operatorname*{{\mathbb{E}}}_{\psi\leftarrow\mathbb{C}^{N}}\outerproduct*{\psi}{\psi}^{\otimes 2}=\frac{\Pi_{\mathsf{sym}}^{N,2}}{\Tr(\Pi_{\mathsf{sym}}^{N,2})}=\frac{\Pi_{\mathsf{sym}}^{N,2}}{\binom{N+1}{2}}, (2.14)

where Π𝗌𝗒𝗆N,k\Pi_{\mathsf{sym}}^{N,k} is the projector onto the symmetric subspace of (N)k(\mathbb{C}^{N})^{\otimes k}.

We will use the following elementary claim about unitary 22-designs in Parts I and II.

Claim 1 (Standard twirling).

For any nn-qubit unitary 22-design 𝔇\mathfrak{D},

𝔼U𝔇[(UU)Π𝖾𝗊(UU)]=2N+1Π𝗌𝗒𝗆N,2.\displaystyle\operatorname*{{\mathbb{E}}}_{U\leftarrow\mathfrak{D}}\Big{[}(U\otimes U)^{\dagger}\cdot\Pi^{\mathsf{eq}}\cdot(U\otimes U)\Big{]}=\frac{2}{N+1}\cdot\Pi_{\mathsf{sym}}^{N,2}. (2.15)
Proof.
𝔼U𝔇[(UU)Π𝖾𝗊(UU)]\displaystyle\operatorname*{{\mathbb{E}}}_{U\leftarrow\mathfrak{D}}\Big{[}(U^{\dagger}\otimes U^{\dagger})\cdot\Pi^{\mathsf{eq}}\cdot(U\otimes U)\Big{]} =𝔼U𝔇x[N]U|xx|UU|xx|U\displaystyle=\operatorname*{{\mathbb{E}}}_{U\leftarrow\mathfrak{D}}\sum_{x\in[N]}U^{\dagger}\outerproduct*{x}{x}U\otimes U^{\dagger}\outerproduct*{x}{x}U (definition of Π𝖾𝗊\Pi^{\mathsf{eq}})
=𝔼Ux[N]U|xx|UU|xx|U\displaystyle=\operatorname*{{\mathbb{E}}}_{U}\sum_{x\in[N]}U^{\dagger}\outerproduct*{x}{x}U\otimes U^{\dagger}\outerproduct*{x}{x}U (𝔇\mathfrak{D} is a 22-design)
=N𝔼ψ|ψψ||ψψ|\displaystyle=N\cdot\operatorname*{{\mathbb{E}}}_{\psi}\outerproduct*{\psi}{\psi}\otimes\outerproduct*{\psi}{\psi} (U|xU^{\dagger}\ket*{x} is a Haar-random state)
=2N+1Π𝗌𝗒𝗆N,2.\displaystyle=\frac{2}{N+1}\cdot\Pi_{\mathsf{sym}}^{N,2}. (2)

From the above claim, we immediately obtain the following lemma, which was also also used by [metger2024simple] to construct non-adaptive PRUs.

Lemma 2.1 (Twirling into the distinct subspace).

Given two integers n,t>0n,t>0. Define the distinct subspace projector acting on ntnt qubits as follows,

Πdist:-(x1,,xt)[N]distt|x1x1||xtxt|.\Pi^{\operatorname{{dist}}}\coloneq\sum_{(x_{1},\ldots,x_{t})\in[N]_{\operatorname{{dist}}}^{t}}\outerproduct*{x_{1}}{x_{1}}\otimes\ldots\otimes\outerproduct*{x_{t}}{x_{t}}. (2.16)

For any nn-qubit unitary 22-design 𝔇\mathfrak{D} and any state ρ\rho on at least ntnt qubits, we have

Tr(𝔼C𝔇(Πdist𝖨𝖽)(Ct𝖨𝖽)ρ(C,t𝖨𝖽)(Πdist𝖨𝖽))1t(t1)N+1.\Tr(\operatorname*{{\mathbb{E}}}_{C\leftarrow\mathfrak{D}}(\Pi^{\operatorname{{dist}}}\otimes\mathsf{Id})\cdot(C^{\otimes t}\otimes\mathsf{Id})\cdot\rho\cdot(C^{\dagger,\otimes t}\otimes\mathsf{Id})\cdot(\Pi^{\operatorname{{dist}}}\otimes\mathsf{Id}))\geq 1-\frac{t(t-1)}{N+1}. (2.17)
Proof.

From the definition of the distinct subspace projector, we have

𝖨𝖽Πdist=(x1,,xt)[N]t[N]distt|x1,,xtx1,,xt|.\mathsf{Id}-\Pi^{\operatorname{{dist}}}=\sum_{(x_{1},\ldots,x_{t})\in[N]^{t}\setminus[N]_{\operatorname{{dist}}}^{t}}\outerproduct*{x_{1},\ldots,x_{t}}{x_{1},\ldots,x_{t}}. (2.18)

Because for any (x1,,xt)[N]t[N]distt(x_{1},\ldots,x_{t})\in[N]^{t}\setminus[N]_{\operatorname{{dist}}}^{t}, there exists iji\neq j, such that xi=xjx_{i}=x_{j}, we have

(x1,,xt)[N]t[N]distt|x1,,xtx1,,xt|1i<jtΠ𝖾𝗊𝖷i,𝖷j,\sum_{(x_{1},\ldots,x_{t})\in[N]^{t}\setminus[N]_{\operatorname{{dist}}}^{t}}\outerproduct*{x_{1},\ldots,x_{t}}{x_{1},\ldots,x_{t}}\preceq\sum_{1\leq i<j\leq t}\Pi^{\mathsf{eq}}_{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{X}_{i}},{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{X}_{j}}}, (2.19)

where \preceq here denotes the PSD order and Π𝖾𝗊𝖷i,𝖷j\Pi^{\mathsf{eq}}_{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{X}_{i}},{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{X}_{j}}} is the equality projector in Eq. (2.13) on the ii-th and jj-th nn-qubit register 𝖷i,𝖷j\mathsf{X}_{i},\mathsf{X}_{j}. This implies the following:

1Tr(𝔼C𝔇(Πdist𝖨𝖽)(Ct𝖨𝖽)ρ(C,t𝖨𝖽)(Πdist𝖨𝖽))\displaystyle 1-\Tr(\operatorname*{{\mathbb{E}}}_{C\leftarrow\mathfrak{D}}(\Pi^{\operatorname{{dist}}}\otimes\mathsf{Id})\cdot(C^{\otimes t}\otimes\mathsf{Id})\cdot\rho\cdot(C^{\dagger,\otimes t}\otimes\mathsf{Id})\cdot(\Pi^{\operatorname{{dist}}}\otimes\mathsf{Id})) (2.20)
=1Tr(𝔼C𝔇(Πdist𝖨𝖽)(Ct𝖨𝖽)ρ(C,t𝖨𝖽))\displaystyle=1-\Tr(\operatorname*{{\mathbb{E}}}_{C\leftarrow\mathfrak{D}}(\Pi^{\operatorname{{dist}}}\otimes\mathsf{Id})\cdot(C^{\otimes t}\otimes\mathsf{Id})\cdot\rho\cdot(C^{\dagger,\otimes t}\otimes\mathsf{Id})) (2.21)
=Tr(𝔼C𝔇((x1,,xt)[N]t[N]distt|x1,,xtx1,,xt|𝖨𝖽)(Ct𝖨𝖽)ρ(C,t𝖨𝖽))\displaystyle=\Tr(\operatorname*{{\mathbb{E}}}_{C\leftarrow\mathfrak{D}}\left(\sum_{(x_{1},\ldots,x_{t})\in[N]^{t}\setminus[N]_{\operatorname{{dist}}}^{t}}\outerproduct*{x_{1},\ldots,x_{t}}{x_{1},\ldots,x_{t}}\otimes\mathsf{Id}\right)\cdot(C^{\otimes t}\otimes\mathsf{Id})\cdot\rho\cdot(C^{\dagger,\otimes t}\otimes\mathsf{Id})) (2.22)
1i<jt𝔼C𝔇Tr((Π𝖾𝗊𝖷i,𝖷j𝖨𝖽)(Ct𝖨𝖽)ρ(C,t𝖨𝖽))\displaystyle\leq\sum_{1\leq i<j\leq t}\operatorname*{{\mathbb{E}}}_{C\leftarrow\mathfrak{D}}\Tr((\Pi^{\mathsf{eq}}_{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{X}_{i}},{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{X}_{j}}}\otimes\mathsf{Id})\cdot(C^{\otimes t}\otimes\mathsf{Id})\cdot\rho\cdot(C^{\dagger,\otimes t}\otimes\mathsf{Id})) (2.23)
=1i<jt𝔼C𝔇Tr(Π𝖾𝗊𝖷i,𝖷jC2ρ𝖷i,𝖷jC,2)\displaystyle=\sum_{1\leq i<j\leq t}\operatorname*{{\mathbb{E}}}_{C\leftarrow\mathfrak{D}}\Tr(\Pi^{\mathsf{eq}}_{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{X}_{i}},{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{X}_{j}}}\cdot C^{\otimes 2}\cdot\rho_{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{X}_{i}},{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{X}_{j}}}\cdot C^{\dagger,\otimes 2}) (where ρ𝖷i,𝖷j:-Tr𝖷i,𝖷j(ρ)\rho_{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{X}_{i}},{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{X}_{j}}}\coloneq\Tr_{-\mathsf{X}_{i},\mathsf{X}_{j}}(\rho))
=1i<jt2N+1Tr(Π𝗌𝗒𝗆N,2ρ𝖷i,𝖷j)1i<jt2N+1=t(t1)N.\displaystyle=\sum_{1\leq i<j\leq t}\frac{2}{N+1}\Tr(\Pi_{\mathsf{sym}}^{N,2}\cdot\rho_{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{X}_{i}},{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{X}_{j}}})\leq\sum_{1\leq i<j\leq t}\frac{2}{N+1}=\frac{t(t-1)}{N}. (2.24)

This completes the proof. ∎

The following claim will only be used in Part II.

Notation 11.

Let

|𝖤𝖯𝖱N1Nx[N]|x|x.\displaystyle\ket*{\mathsf{EPR}_{N}}\coloneqq\frac{1}{\sqrt{N}}\sum_{x\in[N]}\ket*{x}\ket*{x}. (2.25)
Claim 2 (Mixed twirling).

For any nn-qubit unitary 22-design 𝔇\mathfrak{D},

𝔼U𝔇[(UU¯)Π𝖾𝗊(UU¯)]=|𝖤𝖯𝖱N𝖤𝖯𝖱N|+1N+1(𝖨𝖽|𝖤𝖯𝖱N𝖤𝖯𝖱N|).\displaystyle\operatorname*{{\mathbb{E}}}_{U\leftarrow\mathfrak{D}}\Big{[}(U\otimes\overline{U})^{\dagger}\cdot\Pi^{\mathsf{eq}}\cdot(U\otimes\overline{U})\Big{]}=\outerproduct*{\mathsf{EPR}_{N}}{\mathsf{EPR}_{N}}+\frac{1}{N+1}(\mathsf{Id}-\outerproduct*{\mathsf{EPR}_{N}}{\mathsf{EPR}_{N}}). (2.26)
Proof.

Label the registers that UU and U¯\overline{U} act on as AA and BB respectively. For any operator XX acting on A,BA,B, define the partial transpose as

XTB=(i,j,k,Xijkl|ij|A|k|B)TB=i,j,k,Xijkl|ij|A|k|B.\displaystyle X^{T_{B}}=\Big{(}\sum_{i,j,k,\ell}X_{ijkl}\outerproduct*{i}{j}_{A}\otimes\outerproduct*{k}{\ell}_{B}\Big{)}^{T_{B}}=\sum_{i,j,k,\ell}X_{ijkl}\outerproduct*{i}{j}_{A}\otimes\outerproduct*{\ell}{k}_{B}. (2.27)

We will use the identity

(UU¯)X(UU¯)=((UU)XTB(UU))TB.\displaystyle(U\otimes\overline{U})^{\dagger}\cdot X\cdot(U\otimes\overline{U})=\Big{(}(U\otimes U)^{\dagger}\cdot X^{T_{B}}\cdot(U\otimes U)\Big{)}^{T_{B}}. (2.28)

Since (Π𝖾𝗊)TB=Π𝖾𝗊(\Pi^{\mathsf{eq}})^{T_{B}}=\Pi^{\mathsf{eq}},

𝔼U𝔇(UU¯)Π𝖾𝗊(UU¯)\displaystyle\operatorname*{{\mathbb{E}}}_{U\leftarrow\mathfrak{D}}(U\otimes\overline{U})^{\dagger}\cdot\Pi^{\mathsf{eq}}\cdot(U\otimes\overline{U}) (2.29)
=(𝔼U𝔇(UU)Π𝖾𝗊(UU))TB\displaystyle=\Big{(}\operatorname*{{\mathbb{E}}}_{U\leftarrow\mathfrak{D}}(U\otimes U)^{\dagger}\cdot\Pi^{\mathsf{eq}}\cdot(U\otimes U)\Big{)}^{T_{B}} (2.30)
=(2N+1ΠN,2𝗌𝗒𝗆)TB\displaystyle=\Big{(}\frac{2}{N+1}\cdot\Pi^{N,2}_{\mathsf{sym}}\Big{)}^{T_{B}} (by Claim 1)
=2N+1(x[N]|xxxx|+x,y[N],x<y(|xy+|yx2)(xy|+yx|2))TB\displaystyle=\frac{2}{N+1}\cdot\Bigg{(}\sum_{x\in[N]}\outerproduct*{xx}{xx}+\sum_{x,y\in[N],x<y}\Big{(}\frac{\ket*{xy}+\ket*{yx}}{\sqrt{2}}\Big{)}\Big{(}\frac{\bra*{xy}+\bra*{yx}}{\sqrt{2}}\Big{)}\Bigg{)}^{T_{B}} (2.31)
=2N+1(x[N]|xxxx|+12x,y[N],x<y(|xyxy|+|xyyx|+|yxxy|+|yxyx|))TB\displaystyle=\frac{2}{N+1}\cdot\Bigg{(}\sum_{x\in[N]}\outerproduct*{xx}{xx}+\frac{1}{2}\sum_{x,y\in[N],x<y}\Big{(}\outerproduct*{xy}{xy}+\outerproduct*{xy}{yx}+\outerproduct*{yx}{xy}+\outerproduct*{yx}{yx}\Big{)}\Bigg{)}^{T_{B}} (2.32)
=2N+1(x[N]|xxxx|+12x,y[N],x<y(|xyxy|+|xxyy|+|yyxx|+|yxyx|))\displaystyle=\frac{2}{N+1}\cdot\Bigg{(}\sum_{x\in[N]}\outerproduct*{xx}{xx}+\frac{1}{2}\sum_{x,y\in[N],x<y}\Big{(}\outerproduct*{xy}{xy}+\outerproduct*{xx}{yy}+\outerproduct*{yy}{xx}+\outerproduct*{yx}{yx}\Big{)}\Bigg{)} (2.33)
=2N+1(12x,y[N]|xxyy|+12x,y[N]|xyxy|)\displaystyle=\frac{2}{N+1}\cdot\Bigg{(}\frac{1}{2}\sum_{x,y\in[N]}\outerproduct*{xx}{yy}+\frac{1}{2}\sum_{x,y\in[N]}\outerproduct*{xy}{xy}\Bigg{)} (2.34)
=1N+1𝖨𝖽+NN+1|𝖤𝖯𝖱N𝖤𝖯𝖱N|\displaystyle=\frac{1}{N+1}\cdot\mathsf{Id}+\frac{N}{N+1}\outerproduct*{\mathsf{EPR}_{N}}{\mathsf{EPR}_{N}} (2.35)
=|𝖤𝖯𝖱N𝖤𝖯𝖱N|+1N+1(𝖨𝖽|𝖤𝖯𝖱N𝖤𝖯𝖱N|).\displaystyle=\outerproduct*{\mathsf{EPR}_{N}}{\mathsf{EPR}_{N}}+\frac{1}{N+1}(\mathsf{Id}-\outerproduct*{\mathsf{EPR}_{N}}{\mathsf{EPR}_{N}}). (2.36)

This completes the proof. ∎

2.3 Oracle adversaries

We first define oracle adversaries that make only forward queries to an nn-qubit unitary oracle 𝒪\mathcal{O}. This definition will be used exclusively in Part I.

Definition 5 (Oracle adversaries with forward queries, used in Part I).

A tt-query oracle adversary 𝒜\mathcal{A} that makes only forward queries is parameterized by a sequence of (n+m)(n+m)-qubit unitaries (A1,,At)(A_{1},\dots,A_{t}), which act on registers (𝖠,𝖡)(\mathsf{A},\mathsf{B}), where 𝖠\mathsf{A} is the nn-qubit query register and 𝖡\mathsf{B} is an mm-qubit ancilla. We assume without loss of generality that the adversary’s initial state is |0n+m𝖠𝖡\ket*{0^{n+m}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}}. The state of the algorithm after tt queries to 𝒪\mathcal{O} is

|𝒜t𝒪𝖠𝖡i=1t(𝒪𝖠Ai,𝖠𝖡)|0n+m𝖠𝖡.\displaystyle\ket*{\mathcal{A}_{t}^{\mathcal{O}}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}}\coloneqq\prod_{i=1}^{t}\Big{(}\mathcal{O}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\cdot A_{i,{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}}\Big{)}\ket*{0^{n+m}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}}. (2.37)

We also define an oracle adversary that can make both forward and inverse queries to an nn-qubit unitary oracle 𝒪\mathcal{O}. This definition will be used exclusively in Part II.

Definition 6 (Oracle adversaries with forward and inverse queries, used in Part II).

A tt-query oracle adversary 𝒜\mathcal{A} that makes both forward and inverse queries is parameterized by

  • a sequence of (n+m)(n+m)-qubit unitaries (A1,,At)(A_{1},\dots,A_{t}), which act on registers (𝖠,𝖡)(\mathsf{A},\mathsf{B}), where 𝖠\mathsf{A} is the nn-qubit query register and 𝖡\mathsf{B} is an mm-qubit ancilla, and

  • a sequence of bits (b1,,bt)(b_{1},\dots,b_{t}) where bi=0b_{i}=0 means that the adversary’s iith oracle query is to 𝒪\mathcal{O}, and bi=1b_{i}=1 means that query is to 𝒪\mathcal{O}^{\dagger}.

We assume without loss of generality that the adversary’s initial state is |0n+m𝖠𝖡\ket*{0^{n+m}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}}. The state of the algorithm after tt queries to 𝒪\mathcal{O} is

|𝒜t𝒪𝖠𝖡i=1t(((1bi)𝒪𝖠+bi𝒪𝖠)Ai,𝖠𝖡)|0n+m𝖠𝖡.\displaystyle\ket*{\mathcal{A}_{t}^{\mathcal{O}}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}}\coloneqq\prod_{i=1}^{t}\Bigg{(}\Big{(}(1-b_{i})\cdot\mathcal{O}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}+b_{i}\cdot\mathcal{O}^{\dagger}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\Big{)}\cdot A_{i,{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}}\Bigg{)}\ket*{0^{n+m}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}}. (2.38)

2.4 Pseudorandom unitaries

Definition 7 (pseudorandom unitaries).

We say {𝒰n}n\{\mathcal{U}_{n}\}_{n\in\mathbb{N}} is a secure PRU if, for all nn\in\mathbb{N}, 𝒰n={Uk}k𝒦n\mathcal{U}_{n}=\{U_{k}\}_{k\in\mathcal{K}_{n}} is a set of nn-qubit unitaries where 𝒦n\mathcal{K}_{n} denotes the keyspace, satisfying the following:

  • Efficient computation: There exists a poly(n)\mathrm{poly}(n)-time quantum algorithm that implements the nn-qubit unitary UkU_{k} for all k𝒦nk\in\mathcal{K}_{n}.

  • Indistinguishability from Haar: For any oracle adversary 𝒜\mathcal{A} that runs in time poly(n)\operatorname{poly}(n) (the runtime is the total number of gates that 𝒜\mathcal{A} uses, counting oracle gates as 11), and measures a two-outcome observable D𝒜D_{\mathcal{A}} with eigenvalues {0,1}\{0,1\} after the queries, we have

    |𝔼𝒪𝒰nTr(D𝒜|𝒜𝒪𝒜𝒪|𝖠𝖡)𝔼𝒪𝖧𝖺𝖺𝗋Tr(D𝒜|𝒜𝒪𝒜𝒪|𝖠𝖡)|𝗇𝖾𝗀𝗅(n),\left|\operatorname*{{\mathbb{E}}}_{\mathcal{O}\leftarrow\mathcal{U}_{n}}\Tr\left(\,D_{\mathcal{A}}\cdot\outerproduct*{\mathcal{A}^{\mathcal{O}}}{\mathcal{A}^{\mathcal{O}}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}}\,\right)-\operatorname*{{\mathbb{E}}}_{\mathcal{O}\sim\mathsf{Haar}}\Tr\left(\,D_{\mathcal{A}}\cdot\outerproduct*{\mathcal{A}^{\mathcal{O}}}{\mathcal{A}^{\mathcal{O}}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}}\,\right)\right|\leq\mathsf{negl}(n), (2.39)

    where 𝗇𝖾𝗀𝗅(n)\mathsf{negl}(n) is any function that is o(1/nc)o(1/n^{c}) for all c>0c>0.

A standard PRU (i.e., the original [ji2018pseudorandom] notion) is one where indistinguishability holds against oracle adversaries that only make forward queries to 𝒪\mathcal{O}. A strong PRU is one where indistinguishability holds against oracle adversaries that make both forward and inverse queries to 𝒪\mathcal{O}.

2.5 Useful lemmas

The following lemma will be used in Part I to bound the distance between a pair of mixed states who purifications are related by a projection that acts only on the purifying register.

Lemma 2.2.

Let ρ𝖢𝖣\rho_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}} be a density matrix on registers 𝖢,𝖣\mathsf{C},\mathsf{D} and let Π𝖣\Pi_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}} be a projector that acts on register 𝖣\mathsf{D}. Then

Tr𝖣(ρ𝖢𝖣)Tr𝖣(Π𝖣ρ𝖢𝖣Π𝖣)1=1Tr(Π𝖣ρ𝖢𝖣).\displaystyle\norm{\Tr_{\mathsf{D}}(\rho_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}})-\Tr_{\mathsf{D}}(\Pi_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}}\cdot\rho_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}}\cdot\Pi_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}})}_{1}=1-\Tr(\Pi_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}}\cdot\rho_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}}). (2.40)
Proof.

We can decompose Tr𝖣(ρ𝖢𝖣)\Tr_{\mathsf{D}}(\rho_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}}) as follows:

Tr𝖣(ρ𝖢𝖣)\displaystyle\Tr_{\mathsf{D}}(\rho_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}}) =Tr𝖣(ρ𝖢𝖣Π𝖣)+Tr𝖣(ρ𝖢𝖣(𝖨𝖽Π𝖣))\displaystyle=\Tr_{\mathsf{D}}(\rho_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}}\cdot\Pi_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}})+\Tr_{\mathsf{D}}(\rho_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}}\cdot(\mathsf{Id}-\Pi_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}})) (2.41)
=Tr𝖣(Π𝖣ρ𝖢𝖣Π𝖣)+Tr𝖣((𝖨𝖽Π𝖣)ρ𝖢𝖣(𝖨𝖽Π𝖣))\displaystyle=\Tr_{\mathsf{D}}(\Pi_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}}\cdot\rho_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}}\cdot\Pi_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}})+\Tr_{\mathsf{D}}((\mathsf{Id}-\Pi_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}})\cdot\rho_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}}\cdot(\mathsf{Id}-\Pi_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}})) (2.42)

where the second equality uses the fact that Π𝖣=𝖨𝖽𝖢Π𝖣\Pi_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}}=\mathsf{Id}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}}\otimes\Pi^{\prime}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}}, which allows us to invoke the cyclic property of Tr𝖣\Tr_{\mathsf{D}}. Using Eq. 2.42, we have

Tr𝖣(ρ𝖢𝖣)Tr𝖣(Π𝖣ρ𝖢𝖣Π𝖣)1\displaystyle\norm{\Tr_{\mathsf{D}}(\rho_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}})-\Tr_{\mathsf{D}}(\Pi_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}}\cdot\rho_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}}\cdot\Pi_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}})}_{1} (2.43)
=Tr𝖣((𝖨𝖽Π𝖣)ρ𝖢𝖣(𝖨𝖽Π𝖣))1\displaystyle=\norm{\Tr_{\mathsf{D}}((\mathsf{Id}-\Pi_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}})\cdot\rho_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}}\cdot(\mathsf{Id}-\Pi_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}}))}_{1} (2.44)
=Tr((𝖨𝖽Π𝖣)ρ𝖢𝖣(𝖨𝖽Π𝖣))\displaystyle=\Tr((\mathsf{Id}-\Pi_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}})\cdot\rho_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}}\cdot(\mathsf{Id}-\Pi_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}})) (since M1=Tr(M)\norm{M}_{1}=\Tr(M) for PSD MM)
=Tr((𝖨𝖽Π𝖣)ρ𝖢𝖣)\displaystyle=\Tr((\mathsf{Id}-\Pi_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}})\cdot\rho_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}}) (2.45)
=1Tr(Π𝖣ρ𝖢𝖣).\displaystyle=1-\Tr(\Pi_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}}\cdot\rho_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}}). (2.46)

We will use the following “sequential” gentle measurement lemma in Part II.

Lemma 2.3 (sequential gentle measurement).

Let |ψ\ket*{\psi} be a normalized state, P1,,PtP_{1},\dots,P_{t} be projectors, and U1,,UtU_{1},\dots,U_{t} be unitaries.

UtU1|ψPtUtP1U1|ψ2t1PtUtP1U1|ψ22.\displaystyle\norm{U_{t}\ldots U_{1}\ket*{\psi}-P_{t}U_{t}\ldots P_{1}U_{1}\ket*{\psi}}_{2}\leq t\sqrt{1-\norm{P_{t}U_{t}\ldots P_{1}U_{1}\ket*{\psi}}_{2}^{2}}. (2.47)

To prove this, we will need the following version of the standard gentle measurement lemma.

Lemma 2.4 (gentle measurement).

For any projector Π\Pi and sub-normalized state |ψ\ket*{\psi} satisfying ψ|ψ1\innerproduct{\psi}{\psi}\leq 1, we have

(𝖨𝖽Π)|ψ21Π|ψ22.\norm{(\mathsf{Id}-\Pi)\ket*{\psi}}_{2}\leq\sqrt{1-\norm{\Pi\ket*{\psi}}_{2}^{2}}. (2.48)
Proof of Lemma 2.4.

By direct expansion, we have

|ψΠ|ψ22=ψ|(𝖨𝖽Π)|ψ=ψ|ψψ|Π|ψ1Π|ψ22.\displaystyle\norm{\ket*{\psi}-\Pi\ket*{\psi}}_{2}^{2}=\bra*{\psi}(\mathsf{Id}-\Pi)\ket*{\psi}=\innerproduct{\psi}{\psi}-\bra*{\psi}\Pi\ket*{\psi}\leq 1-\norm{\Pi\ket*{\psi}}^{2}_{2}. (2.49)

Proof of Lemma 2.3.

We prove this lemma by induction. For t=0t=0, we have |ψ|ψ2=0=1|ψ22\norm{\ket*{\psi}-\ket*{\psi}}_{2}=0=1-\norm{\ket*{\psi}}_{2}^{2}. So the base case holds. Suppose the inductive hypothesis holds for t1t-1, i.e.,

Ut1U1|ψPt1Ut1P1U1|ψ2\displaystyle\norm{U_{t-1}\ldots U_{1}\ket*{\psi}-P_{t-1}U_{t-1}\ldots P_{1}U_{1}\ket*{\psi}}_{2} (t1)1Pt1Ut1P1U1|ψ22\displaystyle\leq(t-1)\sqrt{1-\norm{P_{t-1}U_{t-1}\ldots P_{1}U_{1}\ket*{\psi}}_{2}^{2}} (2.50)
=(t1)1UtPt1Ut1P1U1|ψ22\displaystyle=(t-1)\sqrt{1-\norm{U_{t}P_{t-1}U_{t-1}\ldots P_{1}U_{1}\ket*{\psi}}_{2}^{2}} (2.51)
(t1)1PtUtPt1Ut1P1U1|ψ22.\displaystyle\leq(t-1)\sqrt{1-\norm{P_{t}U_{t}P_{t-1}U_{t-1}\ldots P_{1}U_{1}\ket*{\psi}}_{2}^{2}}. (2.52)

The second line uses the unitary invariance of 2\norm{\cdot}_{2}. The third line uses the fact that PtP_{t} is a projector and hence cannot increase the norm. We can use the unitary invariance of 2\norm{\cdot}_{2} to obtain

Ut1U1|ψPt1Ut1P1U1|ψ2=UtU1|ψUtPt1Ut1P1U1|ψ2.\norm{U_{t-1}\ldots U_{1}\ket*{\psi}-P_{t-1}U_{t-1}\ldots P_{1}U_{1}\ket*{\psi}}_{2}=\norm{U_{t}\ldots U_{1}\ket*{\psi}-U_{t}P_{t-1}U_{t-1}\ldots P_{1}U_{1}\ket*{\psi}}_{2}. (2.53)

Next we use Lemma 2.4 to obtain

(𝖨𝖽Pt)UtPt1Ut1P1U1|ψ21PtUtP1U1|ψ22.\norm{(\mathsf{Id}-P_{t})U_{t}P_{t-1}U_{t-1}\ldots P_{1}U_{1}\ket*{\psi}}_{2}\leq\sqrt{1-\norm{P_{t}U_{t}\ldots P_{1}U_{1}\ket*{\psi}}_{2}^{2}}. (2.54)

Together, we have

UtU1|ψPtUtP1U1|ψ2\displaystyle\norm{U_{t}\ldots U_{1}\ket*{\psi}-P_{t}U_{t}\ldots P_{1}U_{1}\ket*{\psi}}_{2} (2.55)
Ut1U1|ψPt1Ut1P1U1|ψ2+(𝖨𝖽Pt)UtPt1Ut1P1U1|ψ2\displaystyle\leq\norm{U_{t-1}\ldots U_{1}\ket*{\psi}-P_{t-1}U_{t-1}\ldots P_{1}U_{1}\ket*{\psi}}_{2}+\norm{(\mathsf{Id}-P_{t})U_{t}P_{t-1}U_{t-1}\ldots P_{1}U_{1}\ket*{\psi}}_{2} (2.56)
(t1)1PtUtP1U1|ψ22+1PtUtP1U1|ψ22.\displaystyle\leq(t-1)\sqrt{1-\norm{P_{t}U_{t}\ldots P_{1}U_{1}\ket*{\psi}}_{2}^{2}}+\sqrt{1-\norm{P_{t}U_{t}\ldots P_{1}U_{1}\ket*{\psi}}_{2}^{2}}. (2.57)

This concludes the proof. ∎

Part I Standard PRUs

The goal of Part I is to construct standard PRUs (i.e., the definition of [ji2018pseudorandom]), which are secure against adversaries that only make forward queries to the unitary oracle.

3 The purified permutation-function oracle

In this section, we analyze the view of an adversary that makes forward queries to an oracle for PπFfP_{\pi}\cdot F_{f}, for uniformly random π𝖲𝗒𝗆N\pi\leftarrow\mathsf{Sym}_{N} and f{0,1}Nf\leftarrow\{0,1\}^{N}. These operators are defined as

Pπx[N]|π(x)x|andFfx[N](1)f(x)|xx|.\displaystyle P_{\pi}\coloneqq\sum_{x\in[N]}\outerproduct{\pi(x)}{x}\quad\text{and}\quad F_{f}\coloneqq\sum_{x\in[N]}(-1)^{f(x)}\outerproduct{x}{x}. (3.1)

Our first step will be to consider a purification of the adversary’s state where the randomness of π\pi and ff is replaced by the uniform superposition

1N!π𝖲𝗒𝗆N|π𝖯12Nf{0,1}N|f𝖥,\displaystyle\frac{1}{\sqrt{N!}}\sum_{\pi\in\mathsf{Sym}_{N}}\ket*{\pi}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}}\otimes\frac{1}{\sqrt{2^{N}}}\sum_{f\in\{0,1\}^{N}}\ket*{f}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}}, (3.2)

and each query is implemented by the purified permutation-function oracle 𝗉𝖿𝖮\mathsf{pfO}, which applies PπFfP_{\pi}\cdot F_{f} controlled on |π|f\ket*{\pi}\ket*{f}.

Definition 8 (purified permutation-function oracle).

The purified permutation-function oracle 𝗉𝖿𝖮\mathsf{pfO} is a unitary acting on registers 𝖠,𝖯,𝖥\mathsf{A},\mathsf{P},\mathsf{F}, where

  • 𝖯\mathsf{P} is a register associated with the Hilbert space 𝖯\mathcal{H}_{\mathsf{P}}, defined to be the span of the orthonormal states |π\ket*{\pi} for all π𝖲𝗒𝗆N\pi\in\mathsf{Sym}_{N}.

  • 𝖥\mathsf{F} is a register associated with the Hilbert space 𝖥\mathcal{H}_{\mathsf{F}}, defined to be the span of the orthonormal states |f\ket*{f} for all f{0,1}Nf\in\{0,1\}^{N}.

The unitary 𝗉𝖿𝖮\mathsf{pfO} is defined to act as follows:

𝗉𝖿𝖮𝖠𝖯𝖥|x𝖠|π𝖯|f𝖥(1)f(x)|π(x)𝖠|π𝖯|f𝖥,\mathsf{pfO}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}}\ket*{x}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\ket*{\pi}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}}\ket*{f}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}}\coloneqq(-1)^{f(x)}\ket*{\pi(x)}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\ket*{\pi}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}}\ket*{f}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}}, (3.3)

for all x[N],π𝖲𝗒𝗆N,x\in[N],\pi\in\mathsf{Sym}_{N}, and f{0,1}Nf\in\{0,1\}^{N}.

When 𝖯\mathsf{P} and 𝖥\mathsf{F} are initialized to the uniform superposition over permutations and functions respectively, the view of an adversary that queries the 𝗉𝖿𝖮\mathsf{pfO} is equivalent to the view of an adversary that queries the standard oracle PπFfP_{\pi}\cdot F_{f}, for uniformly random π𝖲𝗒𝗆N\pi\leftarrow\mathsf{Sym}_{N} and f{0,1}Nf\leftarrow\{0,1\}^{N}.

Claim 3 (Equivalence of the purified and standard oracles).

For any oracle adversary 𝒜\mathcal{A}, the following oracle instantiations are perfectly indistinguishable:

  • (Queries to a random PπFfP_{\pi}\cdot F_{f}) Sample a uniformly random π𝖲𝗒𝗆N,f{0,1}N\pi\leftarrow\mathsf{Sym}_{N},f\leftarrow\{0,1\}^{N}. On each query, apply PπFfP_{\pi}\cdot F_{f} to register 𝖠\mathsf{A}.

  • (Queries to 𝗉𝖿𝖮\mathsf{pfO}) Initialize registers 𝖯,𝖥\mathsf{P},\mathsf{F} to 1N!π𝖲𝗒𝗆N|π𝖯12Nf{0,1}N|f𝖥\frac{1}{\sqrt{N!}}\sum_{\pi\in\mathsf{Sym}_{N}}\ket*{\pi}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}}\otimes\frac{1}{\sqrt{2^{N}}}\sum_{f\in\{0,1\}^{N}}\ket*{f}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}}. At each query, apply 𝗉𝖿𝖮\mathsf{pfO} to registers 𝖠,𝖯,𝖥\mathsf{A},\mathsf{P},\mathsf{F}.

Proof.

Since the adversary’s view does not contain the 𝖯,𝖥\mathsf{P},\mathsf{F} registers, the adversary’s view in the second case is unchanged if the 𝖯,𝖥\mathsf{P},\mathsf{F} registers are measured at the end. Since 𝗉𝖿𝖮\mathsf{pfO} is controlled on the 𝖯,𝖥\mathsf{P},\mathsf{F} registers, the queries to 𝗉𝖿𝖮\mathsf{pfO} commute with the measurement of the 𝖯,𝖥\mathsf{P},\mathsf{F} registers. Hence, measuring the 𝖯,𝖥\mathsf{P},\mathsf{F} registers at the end produces the same view as measuring at the beginning, which is equivalent to the first case. ∎

The key to understanding the oracle 𝗉𝖿𝖮\mathsf{pfO} is to consider how it acts on the following “𝗉𝖿\mathsf{pf}-relation states”, defined below.

Definition 9 (𝗉𝖿\mathsf{pf}-relation state).

For 0tN0\leq t\leq N and R={(x1,y1),,(xt,yt)}tR=\{(x_{1},y_{1}),\dots,(x_{t},y_{t})\}\in\mathcal{R}_{t}, let

|𝗉𝖿R𝖯𝖥1(Nt)!π𝖲𝗒𝗆Nδπ,R|π𝖯12Nf{0,1}N(1)f(x1)++f(xt)|f𝖥,\displaystyle\ket*{\mathsf{pf}_{R}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}}\coloneqq\frac{1}{\sqrt{(N-t)!}}\sum_{\pi\in\mathsf{Sym}_{N}}\delta_{\pi,R}\ket*{\pi}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}}\otimes\frac{1}{\sqrt{2^{N}}}\sum_{f\in\{0,1\}^{N}}(-1)^{f(x_{1})+\cdots+f(x_{t})}\ket*{f}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}}, (3.4)

where δπ,R\delta_{\pi,R} is an indicator variable that equals 11 if π(x)=y\pi(x)=y for all (x,y)R(x,y)\in R, and is 0 otherwise.

Note that for t=0t=0 and R=R=\varnothing, the 𝗉𝖿\mathsf{pf}-relation state |𝗉𝖿𝖯𝖥\ket*{\mathsf{pf}_{\varnothing}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}} is the uniform superposition over all permutations π𝖲𝗒𝗆N\pi\in\mathsf{Sym}_{N} and all functions f{0,1}Nf\in\{0,1\}^{N},

|𝗉𝖿𝖯𝖥1N!π𝖲𝗒𝗆N|π𝖯12Nf{0,1}N|f𝖥.\displaystyle\ket*{\mathsf{pf}_{\varnothing}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}}\coloneqq\frac{1}{\sqrt{N!}}\sum_{\pi\in\mathsf{Sym}_{N}}\ket*{\pi}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}}\otimes\frac{1}{\sqrt{2^{N}}}\sum_{f\in\{0,1\}^{N}}\ket*{f}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}}. (3.5)

3.1 Orthonormality of the 𝗉𝖿\mathsf{pf}-relation states

Claim 4 (Orthonormality of the distinct sets of 𝗉𝖿\mathsf{pf}-relation states).

{|𝗉𝖿R}R𝖻𝗂𝗃\{\ket*{\mathsf{pf}_{R}}\}_{R\in\mathcal{R}^{\mathsf{bij}}} forms a set of orthonormal vectors.

Proof of Claim 4.

We first recall the definition of |𝗉𝖿R\ket*{\mathsf{pf}_{R}}:

|𝗉𝖿R𝖯𝖥=1(Nt)!π𝖲𝗒𝗆Nδπ,R|π𝖯12Nf{0,1}N(1)f(x1)++f(xt)|f𝖥.\displaystyle\ket*{\mathsf{pf}_{R}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}}=\frac{1}{\sqrt{(N-t)!}}\sum_{\pi\in\mathsf{Sym}_{N}}\delta_{\pi,R}\ket*{\pi}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}}\otimes\frac{1}{\sqrt{2^{N}}}\sum_{f\in\{0,1\}^{N}}(-1)^{f(x_{1})+\cdots+f(x_{t})}\ket*{f}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}}. (3.6)

For x[N]x\in[N], let ex{0,1}Ne_{x}\in\{0,1\}^{N} denote the NN-dimensional vector that has a 11 in the xx-th position, and is 0 everywhere else. Then by writing f(x)f(x) as f(x)=fexf(x)=f\cdot e_{x}, we get

12Nf{0,1}N(1)f(x1)++f(xt)|f𝖥\displaystyle\frac{1}{\sqrt{2^{N}}}\sum_{f\in\{0,1\}^{N}}(-1)^{f(x_{1})+\cdots+f(x_{t})}\ket*{f}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}} =12Nf{0,1}N(1)f(ex1++ext)|f𝖥\displaystyle=\frac{1}{\sqrt{2^{N}}}\sum_{f\in\{0,1\}^{N}}(-1)^{f\cdot(e_{x_{1}}+\cdots+e_{x_{t}})}\ket*{f}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}} (3.7)
=HN|ex1++ext(mod 2)𝖥.\displaystyle=H^{\otimes N}\ket*{e_{x_{1}}+\cdots+e_{x_{t}}\ (\mathrm{mod}\ 2)}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}}. (3.8)

When x1,,xtx_{1},\dots,x_{t} are distinct, ex1++ext(mod2)e_{x_{1}}+\cdots+e_{x_{t}}(\mod 2) is a vector in {0,1}N\{0,1\}^{N} whose xx-th entry is 11 if x{x1,,xt}x\in\{x_{1},\dots,x_{t}\}, and 0 otherwise. Since this is simply the indicator vector for the set {x1,,xt}\{x_{1},\dots,x_{t}\}, there exists an isometry that maps

12Nf{0,1}N(1)f(x1)++f(xt)|f𝖥|{x1,,xt}.\displaystyle\frac{1}{\sqrt{2^{N}}}\sum_{f\in\{0,1\}^{N}}(-1)^{f(x_{1})+\cdots+f(x_{t})}\ket*{f}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}}\mapsto\ket*{\{x_{1},\dots,x_{t}\}}. (3.9)

Applying this to the 𝖥\mathsf{F} register of |𝗉𝖿R\ket*{\mathsf{pf}_{R}}, this tells us there is an isometry MM such that for all R𝖻𝗂𝗃R\in\mathcal{R}^{\mathsf{bij}},

M:|𝗉𝖿R1(Nt)!π𝖲𝗒𝗆Nδπ,R|π𝖯|{x1,,xt}.\displaystyle M:\ket*{\mathsf{pf}_{R}}\mapsto\frac{1}{\sqrt{(N-t)!}}\sum_{\pi\in\mathsf{Sym}_{N}}\delta_{\pi,R}\ket*{\pi}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}}\otimes\ket*{\{x_{1},\dots,x_{t}\}}. (3.10)

Consider R,S𝖻𝗂𝗃R,S\in\mathcal{R}^{\mathsf{bij}}, where R={(x1,y1),,(x|R|,y|R|)}R=\{(x_{1},y_{1}),\dots,(x_{\absolutevalue{R}},y_{\absolutevalue{R}})\} and S={(x1,y1),,(x|S|,y|S|)}S=\{(x^{\prime}_{1},y^{\prime}_{1}),\dots,(x^{\prime}_{\absolutevalue{S}},y^{\prime}_{\absolutevalue{S}})\}.

𝗉𝖿R|𝗉𝖿S\displaystyle\innerproduct{\mathsf{pf}_{R}}{\mathsf{pf}_{S}} =𝗉𝖿R|MM|𝗉𝖿S\displaystyle=\bra*{\mathsf{pf}_{R}}M^{\dagger}\cdot M\ket*{\mathsf{pf}_{S}} (3.11)
=1(N|R|)!(N|S|)!π𝖲𝗒𝗆Nδπ,Rδπ,S{x1,,x|R|}|{x1,,x|S|}.\displaystyle=\frac{1}{\sqrt{(N-\absolutevalue{R})!(N-\absolutevalue{S})!}}\sum_{\pi\in\mathsf{Sym}_{N}}\delta_{\pi,R}\cdot\delta_{\pi,S}\innerproduct*{\{x_{1},\dots,x_{\absolutevalue{R}}\}}{\{x^{\prime}_{1},\dots,x^{\prime}_{\absolutevalue{S}}\}}. (3.12)

This expression is equal to zero if Dom(R)Dom(S)\operatorname{Dom}(R)\neq\operatorname{Dom}(S) due to the {x1,,x|R|}|{x1,,x|S|}\innerproduct*{\{x_{1},\dots,x_{\absolutevalue{R}}\}}{\{x^{\prime}_{1},\dots,x^{\prime}_{\absolutevalue{S}}\}} term. Thus, it remains to consider R,SR,S such that Dom(R)=Dom(S)\operatorname{Dom}(R)=\operatorname{Dom}(S). This means that |R|=|S|\absolutevalue{R}=\absolutevalue{S} and thus Eq. 3.12 simplifies to

1(N|R|)!π𝖲𝗒𝗆Nδπ,Rδπ,S.\displaystyle\frac{1}{(N-\absolutevalue{R})!}\sum_{\pi\in\mathsf{Sym}_{N}}\delta_{\pi,R}\cdot\delta_{\pi,S}. (3.13)

There are two cases to consider:

  • In the first case, RSR\neq S. Then there exists x,y,yx,y,y^{\prime} such that (x,y)R(x,y)\in R, (x,y)S(x,y^{\prime})\in S, and yyy\neq y^{\prime}. But then the above expression will be 0, since there are no permutations π\pi satisfying both π(x)=y\pi(x)=y and π(x)=y\pi(x)=y^{\prime}.

  • In the other case, R=SR=S. Then the sum is over all permutations PP such that π(x)=y\pi(x)=y for all (x,y)R(x,y)\in R. There are (N|R|)!(N-\absolutevalue{R})! such permutations, and so in this case the sum becomes 11.

This completes the proof. ∎

3.2 How 𝗉𝖿𝖮\mathsf{pfO} acts on the 𝗉𝖿\mathsf{pf}-relation states

Claim 5 (Action of 𝗉𝖿𝖮\mathsf{pfO} on 𝗉𝖿\mathsf{pf}-relation states).

For 0t<N0\leq t<N, RtR\in\mathcal{R}_{t} and x[N]x\in[N],

𝗉𝖿𝖮|x𝖠|𝗉𝖿R𝖯𝖥=1N|R|y[N]|y𝖠|𝗉𝖿R{(x,y)}𝖯𝖥.\displaystyle\mathsf{pfO}\ket*{x}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\ket*{\mathsf{pf}_{R}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}}=\frac{1}{\sqrt{N-\absolutevalue{R}}}\sum_{y\in[N]}\ket*{y}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\ket*{\mathsf{pf}_{R\cup\{(x,y)\}}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}}. (3.14)
Proof of Claim 5.

From the definitions of 𝗉𝖿𝖮\mathsf{pfO} and |𝗉𝖿R\ket*{\mathsf{pf}_{R}} (Eq. 3.3 and Eq. 3.4), we have

𝗉𝖿𝖮|x𝖠|𝗉𝖿R𝖯𝖥\displaystyle\mathsf{pfO}\ket*{x}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\ket*{\mathsf{pf}_{R}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}}
=π𝖲𝗒𝗆N(1)f(x)|π(x)𝖠1(Nt)!δπ,R|π𝖯12Nf{0,1}N(1)f(x1)++f(xt)|f𝖥.\displaystyle=\sum_{\pi\in\mathsf{Sym}_{N}}(-1)^{f(x)}\ket*{\pi(x)}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\frac{1}{\sqrt{(N-t)!}}\delta_{\pi,R}\ket*{\pi}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}}\otimes\frac{1}{\sqrt{2^{N}}}\sum_{f\in\{0,1\}^{N}}(-1)^{f(x_{1})+\cdots+f(x_{t})}\ket*{f}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}}. (3.15)

We now rewrite the right-hand side of Eq. 3.15 using the substitution |π(x)=y[N]δπ(x)=y|y\ket*{\pi(x)}=\sum_{y\in[N]}\delta_{\pi(x)=y}\ket*{y}. This gives

(3.15)\displaystyle(\ref{eq:plug-in-pfo}) =π𝖲𝗒𝗆N(1)f(x)y[N]δπ,{(x,y)}|y𝖠1(Nt)!δπ,R|π𝖯\displaystyle=\sum_{\pi\in\mathsf{Sym}_{N}}(-1)^{f(x)}\sum_{y\in[N]}\delta_{\pi,\{(x,y)\}}\ket*{y}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\frac{1}{\sqrt{(N-t)!}}\delta_{\pi,R}\ket*{\pi}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}}
12Nf{0,1}N(1)f(x1)++f(xt)|f𝖥.\displaystyle\quad\otimes\frac{1}{\sqrt{2^{N}}}\sum_{f\in\{0,1\}^{N}}(-1)^{f(x_{1})+\cdots+f(x_{t})}\ket*{f}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}}. (3.16)

Since δπ,Rδπ,{(x,y)}=δπ,R{(x,y)}\delta_{\pi,R}\cdot\delta_{\pi,\{(x,y)\}}=\delta_{\pi,R\cup\{(x,y)\}}, we can rearrange the expression to get

(3.16)\displaystyle(\ref{eq:plug-in-pfo-2}) =1Nty[N]|y𝖠1(Nt1)!π𝖲𝗒𝗆Nδπ,R{(x,y)}|π\displaystyle=\frac{1}{\sqrt{N-t}}\sum_{y\in[N]}\ket*{y}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\frac{1}{\sqrt{(N-t-1)!}}\sum_{\pi\in\mathsf{Sym}_{N}}\delta_{\pi,R\cup\{(x,y)\}}\ket*{\pi}
12Nf{0,1}N(1)f(x1)++f(xt)+f(x)|f𝖥\displaystyle\quad\otimes\frac{1}{\sqrt{2^{N}}}\sum_{f\in\{0,1\}^{N}}(-1)^{f(x_{1})+\cdots+f(x_{t})+f(x)}\ket*{f}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}} (3.17)
=1Nty[N]|y𝖠|𝗉𝖿R{(x,y)}𝖯𝖥,\displaystyle=\frac{1}{\sqrt{N-t}}\sum_{y\in[N]}\ket*{y}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\ket*{\mathsf{pf}_{R\cup\{(x,y)\}}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}}, (3.18)

which completes the proof. ∎

4 The path-recording oracle VV

In this section, we define the path-recording oracle. The path-recording oracle VV acts on an nn-qubit query register 𝖠\mathsf{A} held by the adversary, as well as a variable-length relation 𝖱\mathsf{R} containing a relation state |R\ket*{R} (see Section 2.1). In section Section 4.3, we connect the path-recording oracle VV to the 𝗉𝖿𝖮\mathsf{pfO} oracle. In LABEL:subsec:imp-forward-q, we sketch how to implement VV efficiently.

4.1 Defining VV

Definition 10 (Path-recording oracle).

The path-recording oracle VV is a linear map V:𝖠𝖱𝖠𝖱V:\mathcal{H}_{\mathsf{A}}\otimes\mathcal{H}_{\mathsf{R}}\rightarrow\mathcal{H}_{\mathsf{A}}\otimes\mathcal{H}_{\mathsf{R}} defined as follows. For all x[N]x\in[N] and R𝗂𝗇𝗃R\in\mathcal{R}^{\mathsf{inj}} such that |R|<N\absolutevalue{R}<N,

V:|x𝖠|R𝖱1N|R|y[N],yIm(R)|y𝖠|R{(x,y)}𝖱.V:\ket*{x}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\ket*{R}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\mapsto\frac{1}{\sqrt{N-\absolutevalue{R}}}\sum_{\begin{subarray}{c}y\in[N],\\ y\not\in\imaginary(R)\end{subarray}}\ket*{y}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\ket*{R\cup\{(x,y)\}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}. (4.1)

Note that R{(x,y)}𝗂𝗇𝗃R\cup\{(x,y)\}\in\mathcal{R}^{\mathsf{inj}} since yIm(R)y\notin\imaginary(R).

Lemma 4.1 (Partial isometry).

The path-recording oracle VV is an isometry on the subspace of 𝖠𝖱\mathcal{H}_{\mathsf{A}}\otimes\mathcal{H}_{\mathsf{R}} spanned by the states |x|R\ket*{x}\ket*{R} for x[N]x\in[N] and R𝗂𝗇𝗃R\in\mathcal{R}^{\mathsf{inj}} such that |R|<N\absolutevalue{R}<N.

Proof of Lemma 4.1.

To prove that VV is an isometry on the specified subspace, it suffices to show that for all x,x[N]x,x^{\prime}\in[N] and R,R𝗂𝗇𝗃R,R^{\prime}\in\mathcal{R}^{\mathsf{inj}} with |R|,|R|<N\absolutevalue{R},\absolutevalue{R^{\prime}}<N,

x|𝖠R|𝖱VV|x𝖠|R𝖱=x|x𝖠R|R𝖱.\bra*{x^{\prime}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\bra*{R^{\prime}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}V^{\dagger}\cdot V\ket*{x}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\ket*{R}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}=\innerproduct*{x^{\prime}}{x}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\cdot\innerproduct*{R^{\prime}}{R}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}. (4.2)

We proceed by considering two cases:

  • Case 1: |R||R|\absolutevalue{R}\neq\absolutevalue{R^{\prime}}. V|x𝖠|R𝖱V\ket*{x}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\ket*{R}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}} and V|x𝖠|R𝖱V\ket*{x^{\prime}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\ket*{R^{\prime}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}} are orthogonal because, by the definition of VV, these two states are supported on relation states of different sizes. Therefore, the left-hand side of Eq. 4.2 is zero, which equals the right-hand side, since R|R𝖱=0\innerproduct*{R^{\prime}}{R}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}=0 for |R||R|\absolutevalue{R}\neq\absolutevalue{R^{\prime}}.

  • Case 2: |R|=|R|=t\absolutevalue{R}=\absolutevalue{R^{\prime}}=t for some 0tN10\leq t\leq N-1. In this case, we expand the left-hand side:

    x|𝖠R|𝖱VV|x𝖠|R𝖱\displaystyle\bra*{x^{\prime}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\bra*{R^{\prime}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}V^{\dagger}\cdot V\ket*{x}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\ket*{R}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}
    =(1Nty[N],yIm(R)y|𝖠R{(x,y)}|𝖱)(1Nty[N],yIm(R)|y𝖠|R{(x,y)}𝖱)\displaystyle=\Bigg{(}\frac{1}{\sqrt{N-t}}\sum_{\begin{subarray}{c}y^{\prime}\in[N],\\ y^{\prime}\not\in\imaginary(R^{\prime})\end{subarray}}\bra*{y^{\prime}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\bra*{R^{\prime}\cup\{(x^{\prime},y^{\prime})\}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\Bigg{)}\cdot\Bigg{(}\frac{1}{\sqrt{N-t}}\sum_{\begin{subarray}{c}y\in[N],\\ y\not\in\imaginary(R)\end{subarray}}\ket*{y}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\ket*{R\cup\{(x,y)\}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\Bigg{)} (4.3)
    =1Nty[N]yIm(R)Im(R)R{(x,y)}|R{(x,y)}𝖱\displaystyle=\frac{1}{N-t}\sum_{\begin{subarray}{c}y\in[N]\\ y\not\in\imaginary(R^{\prime})\cup\imaginary(R)\end{subarray}}\innerproduct*{R^{\prime}\cup\{(x^{\prime},y)\}}{R\cup\{(x,y)\}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}} (4.4)

    Now, we consider two sub-cases:

    • Case 2a: (x,R)(x,R)(x,R)\neq(x^{\prime},R^{\prime}). For yIm(R)Im(R)y\not\in\imaginary(R)\cup\imaginary(R^{\prime}), the term R{(x,y)}|R{(x,y)}𝖱\innerproduct*{R^{\prime}\cup\{(x^{\prime},y)\}}{R\cup\{(x,y)\}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}} is always zero because either xxx\neq x^{\prime} or RRR\neq R^{\prime}. Therefore, Eq. (4.4) is equal to zero, which matches the right-hand side of the original equation.

    • Case 2b: (x,R)=(x,R)(x,R)=(x^{\prime},R^{\prime}). In this case, we have:

      (4.4)\displaystyle\eqref{eq:chot-is-isometry} =1Nty[N]Im(R)R{(x,y)}|R{(x,y)}𝖱\displaystyle=\frac{1}{N-t}\sum_{y\in[N]\setminus\imaginary(R)}\innerproduct*{R\cup\{(x,y)\}}{R\cup\{(x,y)\}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}} (4.5)
      =1Nt(Nt)1=1,\displaystyle=\frac{1}{N-t}\cdot(N-t)\cdot 1=1, (4.6)

      which again matches the right-hand side of the original equation.

This shows that Eq. 4.2 holds in all cases, completing the proof. ∎

Next, we define the state |𝒜Vt𝖠𝖡𝖱\ket*{\mathcal{A}^{V}_{t}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}} to be the state of the state of the entire system after the adversary has made tt queries to the path recording oracle, with the 𝖱\mathsf{R} register initialized to |\ket*{\varnothing}, the state associated with the empty set.

Definition 11.

Given a tt-query adversary 𝒜\mathcal{A} specified by a tt-tuple of unitaries (A1,𝖠𝖡,,At,𝖠𝖡)(A_{1,{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}},\dots,A_{t,{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}}), define the state

|𝒜Vt𝖠𝖡𝖱i=1t(VAi,𝖠𝖡)|0𝖠𝖡|𝖱.\ket*{\mathcal{A}^{V}_{t}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\coloneqq\prod_{i=1}^{t}\Big{(}V\cdot A_{i,{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}}\Big{)}\ket*{0}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}}\ket*{\varnothing}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}. (4.7)

In fact, it will be useful to define a version of this state in which an arbitrary nn-qubit unitary GG is applied to the adversary’s query register 𝖠\mathsf{A} before each query to VV.

Definition 12.

Given an nn-qubit unitary GG and a tt-query adversary 𝒜\mathcal{A} specified by a tt-tuple of unitaries (A1,𝖠𝖡,,At,𝖠𝖡)(A_{1,{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}},\dots,A_{t,{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}}), define the state

|𝒜VGt𝖠𝖡𝖱i=1t(VG𝖠Ai,𝖠𝖡)|0𝖠𝖡|𝖱.\ket*{\mathcal{A}^{V\cdot G}_{t}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\coloneqq\prod_{i=1}^{t}\Big{(}V\cdot G_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\cdot A_{i,{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}}\Big{)}\ket*{0}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}}\ket*{\varnothing}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}. (4.8)

One consequence of Lemma 4.1 is that |𝒜VGt𝖠𝖡𝖱\ket*{\mathcal{A}^{V\cdot G}_{t}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}} has unit norm as long as tNt\leq N.

Lemma 4.2 (|𝒜VGt𝖠𝖡𝖱\ket*{\mathcal{A}^{V\cdot G}_{t}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}} has unit norm).

For any adversary 𝒜\mathcal{A} making tNt\leq N forward queries, and any nn-qubit unitary GG, |𝒜VGt𝖠𝖡𝖱\ket*{\mathcal{A}^{V\cdot G}_{t}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}} has unit norm.

Proof of Lemma 4.2.

We say that a state on registers (𝖠,𝖡,𝖱)(\mathsf{A},\mathsf{B},\mathsf{R}) is supported on 𝗂𝗇𝗃\mathcal{R}^{\mathsf{inj}} if the state is contained in the span of |x𝖠|z𝖡|R𝖱\ket*{x}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\ket*{z}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}}\ket*{R}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}} for R𝗂𝗇𝗃R\in\mathcal{R}^{\mathsf{inj}} and any x,zx,z. We will prove by induction on tt that for all 0tN0\leq t\leq N, |𝒜VGt𝖠𝖡𝖱\ket*{\mathcal{A}^{V\cdot G}_{t}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}} is a unit-norm state supported on t𝗂𝗇𝗃\mathcal{R}_{t}^{\mathsf{inj}}.

Base case (t=0t=0): |𝒜VG0=|0𝖠𝖡|𝖱\ket*{\mathcal{A}^{V\cdot G}_{0}}=\ket*{0}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}}\ket*{\varnothing}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}. This state clearly has unit norm, and |𝖱0𝗂𝗇𝗃\ket*{\varnothing}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\in\mathcal{R}_{0}^{\mathsf{inj}}, so the claim holds for t=0t=0.

Inductive step: Assume the claim is true for some 0t<N0\leq t<N, i.e., |𝒜VGt𝖠𝖡𝖱\ket*{\mathcal{A}^{V\cdot G}_{t}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}} is a unit-norm state supported on t𝗂𝗇𝗃\mathcal{R}_{t}^{\mathsf{inj}}. We will prove that it must hold for t+1t+1. By definition, we have:

|𝒜VGt+1=VG𝖠At+1,𝖠𝖡|𝒜VGt\ket*{\mathcal{A}^{V\cdot G}_{t+1}}=V\cdot G_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\cdot A_{t+1,{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}}\ket*{\mathcal{A}^{V\cdot G}_{t}} (4.9)

This state is unit norm because:

  1. 1.

    G𝖠At+1,𝖠𝖡G_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\cdot A_{t+1,{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}} is a unitary that acts only on the 𝖠\mathsf{A} and 𝖡\mathsf{B} registers, and so G𝖠At+1,𝖠𝖡|𝒜VGtG_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\cdot A_{t+1,{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}}\ket*{\mathcal{A}^{V\cdot G}_{t}} is still a unit-norm state supported on t𝗂𝗇𝗃\mathcal{R}_{t}^{\mathsf{inj}}.

  2. 2.

    By Lemma 4.1, VV is an isometry on states supported on t𝗂𝗇𝗃\mathcal{R}_{t}^{\mathsf{inj}}. Moreover, the definition of VV, ensures that it maps states supported on t𝗂𝗇𝗃\mathcal{R}_{t}^{\mathsf{inj}} to states supported on t+1𝗂𝗇𝗃\mathcal{R}_{t+1}^{\mathsf{inj}} for 0t<N0\leq t<N. Thus, |Ψt+1G\ket*{\Psi_{t+1}^{G}} is a unit-norm state supported on t+1𝗂𝗇𝗃\mathcal{R}_{t+1}^{\mathsf{inj}}.

Hence, for all 0tN0\leq t\leq N, |𝒜VGt𝖠𝖡𝖱\ket*{\mathcal{A}^{V\cdot G}_{t}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}} is a unit-norm state supported on t𝗂𝗇𝗃\mathcal{R}_{t}^{\mathsf{inj}}. ∎

4.2 Right unitary invariance

Our next step is to prove that VV satisfies right unitary invariance: for any unitary GG, queries to VG𝖠V\cdot G_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}} are perfectly indistinguishable from queries to VV, from the point of view of the adversary who cannot access the purifying register 𝖱\mathsf{R}. This is captured by the following lemma.

Lemma 4.3 (Right unitary invariance).

For any nn-qubit unitary GG, we have

|𝒜VGt𝖠𝖡𝖱=(G𝖱𝖷,1(t)G𝖱𝖷,t(t))|𝒜Vt𝖠𝖡𝖱.\ket*{\mathcal{A}^{V\cdot G}_{t}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}=(G_{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}_{\mathsf{X},1}^{(t)}}}\otimes\ldots\otimes G_{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}_{\mathsf{X},t}^{(t)}}})\ket*{\mathcal{A}^{V}_{t}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}. (4.10)

Note that

Tr𝖱(|𝒜VGt𝒜VGt|𝖠𝖡𝖱)\displaystyle\Tr_{\mathsf{R}}(\outerproduct*{\mathcal{A}^{V\cdot G}_{t}}{\mathcal{A}^{V\cdot G}_{t}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}})
=Tr𝖱((G𝖱𝖷,1(t)G𝖱𝖷,t(t))|𝒜Vt𝒜Vt|𝖠𝖡𝖱(G𝖱𝖷,1(t)G𝖱𝖷,t(t)))\displaystyle=\Tr_{\mathsf{R}}((G_{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}_{\mathsf{X},1}^{(t)}}}\otimes\ldots\otimes G_{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}_{\mathsf{X},t}^{(t)}}})\outerproduct*{\mathcal{A}^{V}_{t}}{\mathcal{A}^{V}_{t}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}(G_{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}_{\mathsf{X},1}^{(t)}}}\otimes\ldots\otimes G_{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}_{\mathsf{X},t}^{(t)}}})^{\dagger}) (by Lemma 4.3)
=Tr𝖱(|𝒜Vt𝒜Vt|𝖠𝖡𝖱),\displaystyle=\Tr_{\mathsf{R}}(\outerproduct*{\mathcal{A}^{V}_{t}}{\mathcal{A}^{V}_{t}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}), (by the cyclic property of Tr𝖱\Tr_{\mathsf{R}})

where the first line corresponds to the adversary’s view after making tt queries to VG𝖠V\cdot G_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}, and the last line corresponds to its view after making tt queries to VV.

Fact 3 (Explicit form).

From the definition of VV and |R𝖱\ket*{R}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}, we can expand out |𝒜VGt𝖠𝖡𝖱\ket*{\mathcal{A}^{V\cdot G}_{t}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}} to obtain

|𝒜VGt𝖠𝖡𝖱\displaystyle\ket*{\mathcal{A}^{V\cdot G}_{t}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}} =(Nt)!N!(x1,,xt)[N]t(y1,,yt)[N]distt[i=1t(|yixi|𝖠G𝖠Ai,𝖠𝖡)|0𝖠𝖡]|{(xi,yi)}i=1t𝖱\displaystyle=\sqrt{\frac{(N-t)!}{N!}}\sum_{\begin{subarray}{c}(x_{1},\ldots,x_{t})\in[N]^{t}\\ (y_{1},\ldots,y_{t})\in[N]_{\operatorname{{dist}}}^{t}\end{subarray}}\left[\,\prod_{i=1}^{t}\Big{(}\outerproduct*{y_{i}}{x_{i}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\cdot G_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\cdot A_{i,{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}}\Big{)}\ket*{0}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}}\,\right]\otimes\ket*{\{(x_{i},y_{i})\}_{i=1}^{t}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}} (4.11)
=(Nt)!N!(x1,,xt)[N]t(y1,,yt)[N]distt[i=1t(|yixi|𝖠G𝖠Ai,𝖠𝖡)|0𝖠𝖡]\displaystyle=\sqrt{\frac{(N-t)!}{N!}}\sum_{\begin{subarray}{c}(x_{1},\ldots,x_{t})\in[N]^{t}\\ (y_{1},\ldots,y_{t})\in[N]_{\operatorname{{dist}}}^{t}\end{subarray}}\left[\,\prod_{i=1}^{t}\Big{(}\outerproduct*{y_{i}}{x_{i}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\cdot G_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\cdot A_{i,{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}}\Big{)}\ket*{0}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}}\,\right]
1t!π𝖲𝗒𝗆t(Sπ|x1𝖱𝖷,1(t)|xt𝖱𝖷,t(t))(Sπ|y1𝖱𝖸,1(t)|yt𝖱𝖸,t(t)),\displaystyle\otimes\frac{1}{\sqrt{t!}}\sum_{\pi\in\mathsf{Sym}_{t}}\left(S_{\pi}\ket*{x_{1}}_{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}_{\mathsf{X},1}^{(t)}}}\dots\ket*{x_{t}}_{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}_{\mathsf{X},t}^{(t)}}}\right)\otimes\left(S_{\pi}\ket*{y_{1}}_{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}_{\mathsf{Y},1}^{(t)}}}\dots\ket*{y_{t}}_{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}_{\mathsf{Y},t}^{(t)}}}\right), (4.12)
Proof of Lemma 4.3.

Our proof will use the following trivial identities for registers 𝖠\mathsf{A} and (𝖱𝖷,i(t))i[N](\mathsf{R}_{\mathsf{X},i}^{(t)})_{i\in[N]}:

z[N]|zz|𝖠\displaystyle\sum_{z\in[N]}\outerproduct*{z}{z}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}} =𝖨𝖽𝖠,\displaystyle=\mathsf{Id}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}, (4.13)
z[N]|zz|𝖱𝖷,i(t)\displaystyle\sum_{z\in[N]}\outerproduct*{z}{z}_{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}_{\mathsf{X},i}^{(t)}}} =𝖨𝖽𝖱𝖷,i(t).\displaystyle=\mathsf{Id}_{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}_{\mathsf{X},i}^{(t)}}}. (4.14)

For any nn-qubit unitary GG and x,z[N]x,z\in[N], we have

x|𝖠G𝖠|z𝖠=x|𝖱𝖷,i(t)G𝖱𝖷,i(t)|z𝖱𝖷,i(t).\bra*{x}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}G_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\ket*{z}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}=\bra*{x}_{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}_{\mathsf{X},i}^{(t)}}}G_{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}_{\mathsf{X},i}^{(t)}}}\ket*{z}_{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}_{\mathsf{X},i}^{(t)}}}. (4.15)

Therefore, we have

x[N]|x𝖱𝖷,i(t)x|𝖠G𝖠\displaystyle\sum_{x\in[N]}\ket*{x}_{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}_{\mathsf{X},i}^{(t)}}}\otimes\bra*{x}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}G_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}} =x,z[N]|x𝖱𝖷,i(t)(x|𝖠G𝖠|z𝖠)z|𝖠\displaystyle=\sum_{x,z\in[N]}\ket*{x}_{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}_{\mathsf{X},i}^{(t)}}}\otimes\left(\bra*{x}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}G_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\ket*{z}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\right)\bra*{z}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}} (Using Eq. (4.13))
=x,z[N]|x𝖱𝖷,i(t)(x|𝖱𝖷,i(t)G𝖱𝖷,i(t)|z𝖱𝖷,i(t))z|𝖠\displaystyle=\sum_{x,z\in[N]}\ket*{x}_{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}_{\mathsf{X},i}^{(t)}}}\otimes\left(\bra*{x}_{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}_{\mathsf{X},i}^{(t)}}}G_{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}_{\mathsf{X},i}^{(t)}}}\ket*{z}_{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}_{\mathsf{X},i}^{(t)}}}\right)\bra*{z}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}} (Using Eq. (4.15))
=x,z[N](|xx|𝖱𝖷,i(t)G𝖱𝖷,i(t)|z𝖱𝖷,i(t))z|𝖠\displaystyle=\sum_{x,z\in[N]}\left(\outerproduct*{x}{x}_{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}_{\mathsf{X},i}^{(t)}}}G_{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}_{\mathsf{X},i}^{(t)}}}\ket*{z}_{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}_{\mathsf{X},i}^{(t)}}}\right)\otimes\bra*{z}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}} (4.16)
=z[N]G𝖱𝖷,i(t)|z𝖱𝖷,i(t)z|𝖠\displaystyle=\sum_{z\in[N]}G_{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}_{\mathsf{X},i}^{(t)}}}\ket*{z}_{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}_{\mathsf{X},i}^{(t)}}}\otimes\bra*{z}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}} (Using Eq. (4.14))
=x[N]G𝖱𝖷,i(t)|x𝖱𝖷,i(t)x|𝖠.\displaystyle=\sum_{x\in[N]}G_{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}_{\mathsf{X},i}^{(t)}}}\ket*{x}_{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}_{\mathsf{X},i}^{(t)}}}\otimes\bra*{x}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}. (Relabeling zz with xx)

Applying the above identity to registers 𝖱𝖷,1(t),,𝖱𝖷,t(t){\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}_{\mathsf{X},1}^{(t)}},\ldots,{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}_{\mathsf{X},t}^{(t)}} to 3 yields

|𝒜VGt\displaystyle\ket*{\mathcal{A}^{V\cdot G}_{t}} =(Nt)!N!(x1,,xt)[N]t(y1,,yt)[N]distt[i=1t(|yi𝖠xi|𝖠G𝖠Ai,𝖠𝖡)|0𝖠𝖡]\displaystyle=\sqrt{\frac{(N-t)!}{N!}}\sum_{\begin{subarray}{c}(x_{1},\ldots,x_{t})\in[N]^{t}\\ (y_{1},\ldots,y_{t})\in[N]_{\operatorname{{dist}}}^{t}\end{subarray}}\left[\,\prod_{i=1}^{t}\Big{(}\ket*{y_{i}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\otimes\bra*{x_{i}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}G_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\cdot A_{i,{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}}\Big{)}\ket*{0}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}}\,\right]\otimes (4.17)
1t!π𝖲𝗒𝗆t(Sπ|x1𝖱𝖷,1(t)|xt𝖱𝖷,t(t))(Sπ|y1𝖱𝖸,1(t)|yt𝖱𝖸,t(t))\displaystyle\frac{1}{\sqrt{t!}}\sum_{\pi\in\mathsf{Sym}_{t}}\left(S_{\pi}\ket*{x_{1}}_{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}_{\mathsf{X},1}^{(t)}}}\dots\ket*{x_{t}}_{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}_{\mathsf{X},t}^{(t)}}}\right)\otimes\left(S_{\pi}\ket*{y_{1}}_{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}_{\mathsf{Y},1}^{(t)}}}\dots\ket*{y_{t}}_{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}_{\mathsf{Y},t}^{(t)}}}\right) (4.18)
=(Nt)!N!(x1,,xt)[N]t(y1,,yt)[N]distt[i=1t(|yixi|𝖠Ai,𝖠𝖡)|0𝖠𝖡]\displaystyle=\sqrt{\frac{(N-t)!}{N!}}\sum_{\begin{subarray}{c}(x_{1},\ldots,x_{t})\in[N]^{t}\\ (y_{1},\ldots,y_{t})\in[N]_{\operatorname{{dist}}}^{t}\end{subarray}}\left[\,\prod_{i=1}^{t}\Big{(}\outerproduct*{y_{i}}{x_{i}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\cdot A_{i,{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}}\Big{)}\ket*{0}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}}\,\right]\otimes (4.19)
1t!π𝖲𝗒𝗆t(SπG𝖱𝖷,1(t)|x1𝖱𝖷,1(t)G𝖱𝖷,t(t)|xt𝖱𝖷,t(t))(Sπ|y1𝖱𝖸,1(t)|yt𝖱𝖸,t(t))\displaystyle\frac{1}{\sqrt{t!}}\sum_{\pi\in\mathsf{Sym}_{t}}\left(S_{\pi}\,G_{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}_{\mathsf{X},1}^{(t)}}}\ket*{x_{1}}_{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}_{\mathsf{X},1}^{(t)}}}\dots G_{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}_{\mathsf{X},t}^{(t)}}}\ket*{x_{t}}_{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}_{\mathsf{X},t}^{(t)}}}\right)\otimes\left(S_{\pi}\ket*{y_{1}}_{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}_{\mathsf{Y},1}^{(t)}}}\dots\ket*{y_{t}}_{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}_{\mathsf{Y},t}^{(t)}}}\right) (4.20)
=(G𝖱𝖷,1(t)G𝖱𝖷,t(t))|𝒜Vt\displaystyle=(G_{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}_{\mathsf{X},1}^{(t)}}}\otimes\ldots\otimes G_{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}_{\mathsf{X},t}^{(t)}}})\ket*{\mathcal{A}^{V}_{t}} (4.21)

The last line follows from the fact that (G𝖱𝖷,1(t)G𝖱𝖷,t(t))(G_{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}_{\mathsf{X},1}^{(t)}}}\otimes\ldots\otimes G_{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}_{\mathsf{X},t}^{(t)}}}) acts identically on all tt registers, so

Sπ(G𝖱𝖷,1(t)G𝖱𝖷,t(t))=(G𝖱𝖷,1(t)G𝖱𝖷,t(t))Sπ.S_{\pi}\cdot(G_{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}_{\mathsf{X},1}^{(t)}}}\otimes\ldots\otimes G_{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}_{\mathsf{X},t}^{(t)}}})=(G_{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}_{\mathsf{X},1}^{(t)}}}\otimes\ldots\otimes G_{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}_{\mathsf{X},t}^{(t)}}})\cdot S_{\pi}. (4.22)

This concludes the proof. ∎

Corollary 4.1 (Trace distance between original state and the projected state).
Tr𝖱(Πdist𝖱X(t)𝔼C𝔇|𝒜VCt𝒜VCt|𝖠𝖡𝖱Πdist𝖱X(t))Tr𝖱(𝔼C𝔇|𝒜VCt𝒜VCt|𝖠𝖡𝖱)1t(t1)N+1.\norm{\Tr_{\mathsf{R}}\left(\Pi^{\operatorname{{dist}}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}_{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}X}}^{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}(t)}}}\cdot\operatorname*{{\mathbb{E}}}_{C\leftarrow\mathfrak{D}}\outerproduct*{\mathcal{A}^{V\cdot C}_{t}}{\mathcal{A}^{V\cdot C}_{t}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\cdot\Pi^{\operatorname{{dist}}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}_{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}X}}^{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}(t)}}}\right)-\Tr_{\mathsf{R}}\left(\operatorname*{{\mathbb{E}}}_{C\leftarrow\mathfrak{D}}\outerproduct*{\mathcal{A}^{V\cdot C}_{t}}{\mathcal{A}^{V\cdot C}_{t}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\right)}_{1}\leq\frac{t(t-1)}{N+1}. (4.23)
Proof.

The trace distance can be bounded as follows,

Tr𝖱(Πdist𝖱X(t)𝔼C𝔇|𝒜VCt𝒜VCt|𝖠𝖡𝖱Πdist𝖱X(t))Tr𝖱(𝔼C𝔇|𝒜VCt𝒜VCt|𝖠𝖡𝖱)1\displaystyle\norm{\Tr_{\mathsf{R}}\left(\Pi^{\operatorname{{dist}}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}_{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}X}}^{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}(t)}}}\cdot\operatorname*{{\mathbb{E}}}_{C\leftarrow\mathfrak{D}}\outerproduct*{\mathcal{A}^{V\cdot C}_{t}}{\mathcal{A}^{V\cdot C}_{t}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\cdot\Pi^{\operatorname{{dist}}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}_{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}X}}^{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}(t)}}}\right)-\Tr_{\mathsf{R}}\left(\operatorname*{{\mathbb{E}}}_{C\leftarrow\mathfrak{D}}\outerproduct*{\mathcal{A}^{V\cdot C}_{t}}{\mathcal{A}^{V\cdot C}_{t}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\right)}_{1} (4.24)
=1Tr(𝔼C𝔇Πdist𝖱X(t)|𝒜VCt𝒜VCt|𝖠𝖡𝖱Πdist𝖱X(t))\displaystyle=1-\Tr\left(\operatorname*{{\mathbb{E}}}_{C\leftarrow\mathfrak{D}}\Pi^{\operatorname{{dist}}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}_{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}X}}^{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}(t)}}}\cdot\outerproduct*{\mathcal{A}^{V\cdot C}_{t}}{\mathcal{A}^{V\cdot C}_{t}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\cdot\Pi^{\operatorname{{dist}}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}_{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}X}}^{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}(t)}}}\right) (Lemma 2.2)
=1Tr(𝔼C𝔇Πdist𝖱𝖷(t)Ct𝖱(t)𝖷|𝒜Vt𝒜Vt|𝖠𝖡𝖯𝖥Ct𝖱(t)𝖷Πdist𝖱X(t))\displaystyle=1-\Tr\left(\operatorname*{{\mathbb{E}}}_{C\leftarrow\mathfrak{D}}\Pi^{\operatorname{{dist}}}_{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}_{\mathsf{X}}^{(t)}}}\cdot C^{\otimes t}_{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}^{(t)}_{\mathsf{X}}}}\cdot\outerproduct*{\mathcal{A}^{V}_{t}}{\mathcal{A}^{V}_{t}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}}\cdot C^{\otimes t}_{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}^{(t)}_{\mathsf{X}}}}\cdot\Pi^{\operatorname{{dist}}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}_{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}X}}^{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}(t)}}}\right) (By Lemma 4.3)
t(t1)N+1,\displaystyle\leq\frac{t(t-1)}{N+1}, (By Lemma 2.1)

which completes the proof of this corollary. ∎

4.3 Relating VV to 𝗉𝖿𝖮\mathsf{pfO}

We now connect the path-recording oracle VV to the 𝗉𝖿𝖮\mathsf{pfO} oracle defined previously. We begin by defining the 𝗉𝖿𝖮\mathsf{pfO} analog of |𝒜VGt𝖠𝖡𝖱\ket*{\mathcal{A}^{V\cdot G}_{t}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}.

Definition 13.

Given an nn-qubit unitary GG and a tt-query adversary 𝒜\mathcal{A} specified by a tt-tuple of unitaries (A1,𝖠𝖡,,At,𝖠𝖡)(A_{1,{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}},\dots,A_{t,{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}}), define

|𝒜𝗉𝖿𝖮Gt𝖠𝖡𝖯𝖥i=1t(𝗉𝖿𝖮G𝖠Ai,𝖠𝖡)|0𝖠𝖡|𝗉𝖿𝖯𝖥.\displaystyle\ket*{\mathcal{A}^{\mathsf{pfO}\cdot G}_{t}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}}\coloneqq\prod_{i=1}^{t}\Big{(}\mathsf{pfO}\cdot G_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\cdot A_{i,{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}}\Big{)}\ket*{0}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}}\ket*{\mathsf{pf}_{\varnothing}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}}. (4.25)

Recall that

|𝗉𝖿𝖯𝖥1N!π𝖲𝗒𝗆N|π𝖯12Nf{0,1}N|f𝖥.\displaystyle\ket*{\mathsf{pf}_{\varnothing}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}}\coloneqq\frac{1}{\sqrt{N!}}\sum_{\pi\in\mathsf{Sym}_{N}}\ket*{\pi}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}}\otimes\frac{1}{\sqrt{2^{N}}}\sum_{f\in\{0,1\}^{N}}\ket*{f}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}}. (4.26)

We can expand the definition of |𝒜𝗉𝖿𝖮Gt𝖠𝖡𝖯𝖥\ket*{\mathcal{A}^{\mathsf{pfO}\cdot G}_{t}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}} to obtain the following.

Fact 4 (Explicit form of |𝒜𝗉𝖿𝖮Gt𝖠𝖡𝖯𝖥\ket*{\mathcal{A}^{\mathsf{pfO}\cdot G}_{t}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}}).
|𝒜𝗉𝖿𝖮Gt𝖠𝖡𝖯𝖥\displaystyle\ket*{\mathcal{A}^{\mathsf{pfO}\cdot G}_{t}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}} =(Nt)!N!(x1,,xt)[N]t(y1,,yt)[N]t[i=1t(|yixi|𝖠G𝖠Ai,𝖠𝖡)|0𝖠𝖡]|𝗉𝖿{(xi,yi)}i=1t𝖯𝖥.\displaystyle=\sqrt{\frac{(N-t)!}{N!}}\sum_{\begin{subarray}{c}(x_{1},\ldots,x_{t})\in[N]^{t}\\ (y_{1},\ldots,y_{t})\in[N]^{t}\end{subarray}}\left[\,\prod_{i=1}^{t}\Big{(}\outerproduct*{y_{i}}{x_{i}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\cdot G_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\cdot A_{i,{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}}\Big{)}\ket*{0}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}}\,\right]\otimes\ket*{\mathsf{pf}_{\{(x_{i},y_{i})\}_{i=1}^{t}}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}}. (4.27)

While the state |𝗉𝖿{(xi,yi)}i=1t\ket*{\mathsf{pf}_{\{(x_{i},y_{i})\}_{i=1}^{t}}} is supported on an exponential number of qubits, we can compress the environment using the following linear operator 𝖢𝗈𝗆𝗉\mathsf{Comp}. By Claim 4, 𝖢𝗈𝗆𝗉\mathsf{Comp} is a partial isometry. Intuitively, 𝖢𝗈𝗆𝗉\mathsf{Comp} “compresses” the state |𝗉𝖿R\ket*{\mathsf{pf}_{R}}, which requires an exponential number of qubits nn, to |R\ket*{R}, which is only as big as the size of the relation.

Definition 14.

Define 𝖢𝗈𝗆𝗉:𝖯𝖥𝖱\mathsf{Comp}:\mathcal{H}_{\mathsf{P}}\otimes\mathcal{H}_{\mathsf{F}}\rightarrow\mathcal{H}_{\mathsf{R}} to be

𝖢𝗈𝗆𝗉R𝖻𝗂𝗃|R𝗉𝖿R|\displaystyle\mathsf{Comp}\coloneqq\sum_{R\in\mathcal{R}^{\mathsf{bij}}}\outerproduct*{R}{\mathsf{pf}_{R}} (4.28)

Next, we will use 𝖢𝗈𝗆𝗉\mathsf{Comp} to relate the path-recording oracle VV to the purified permutation-function oracle. To do so, we will need to define the following projectors.

Definition 15 (Distinct subspace projector).

Given 0tN0\leq t\leq N. Let

Πdist𝖱𝖷(t)\displaystyle\Pi^{\operatorname{{dist}}}_{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}_{\mathsf{X}}^{(t)}}} :-(x1,,xt)[N]distt|x1x1|𝖱𝖷,1(t)|xtxt|𝖱𝖷,t(t).\displaystyle\coloneq\sum_{(x_{1},\ldots,x_{t})\in[N]_{\operatorname{{dist}}}^{t}}\outerproduct*{x_{1}}{x_{1}}_{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}_{\mathsf{X},1}^{(t)}}}\otimes\ldots\otimes\outerproduct*{x_{t}}{x_{t}}_{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}_{\mathsf{X},t}^{(t)}}}. (4.29)
Definition 16 (Distinct subspace projector for 𝗉𝖿\mathsf{pf}-relation states).

Let

Π~dist𝖯𝖥R𝖻𝗂𝗃,|R|=t|𝗉𝖿R𝗉𝖿R|.\displaystyle\widetilde{\Pi}^{\operatorname{{dist}}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}}\coloneqq\sum_{\begin{subarray}{c}R\in\mathcal{R}^{\mathsf{bij}},\\ \absolutevalue{R}=t\end{subarray}}\outerproduct*{\mathsf{pf}_{R}}{\mathsf{pf}_{R}}. (4.30)
Lemma 4.4 (Relating VV and 𝗉𝖿𝖮\mathsf{pfO} states).

For all nn-qubit unitaries GG,

𝖢𝗈𝗆𝗉Π~dist𝖯𝖥|𝒜𝗉𝖿𝖮Gt𝖠𝖡𝖯𝖥=Πdist𝖱𝖷(t)|𝒜VGt\displaystyle\mathsf{Comp}\cdot\widetilde{\Pi}^{\operatorname{{dist}}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}}\cdot\ket*{\mathcal{A}^{\mathsf{pfO}\cdot G}_{t}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}}=\Pi^{\operatorname{{dist}}}_{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}_{\mathsf{X}}^{(t)}}}\cdot\ket*{\mathcal{A}^{V\cdot G}_{t}} (4.31)
Proof.

By 3, we have

|𝒜VGt\displaystyle\ket*{\mathcal{A}^{V\cdot G}_{t}} =(Nt)!N!(x1,,xt)[N]t(y1,,yt)[N]distt[i=1t(|yixi|𝖠G𝖠Ai,𝖠𝖡)|0𝖠𝖡]|{(xi,yi)}i=1t𝖱.\displaystyle=\sqrt{\frac{(N-t)!}{N!}}\sum_{\begin{subarray}{c}(x_{1},\ldots,x_{t})\in[N]^{t}\\ (y_{1},\ldots,y_{t})\in[N]_{\operatorname{{dist}}}^{t}\end{subarray}}\left[\,\prod_{i=1}^{t}\Big{(}\outerproduct*{y_{i}}{x_{i}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\cdot G_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\cdot A_{i,{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}}\Big{)}\ket*{0}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}}\,\right]\otimes\ket*{\{(x_{i},y_{i})\}_{i=1}^{t}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}. (4.32)

Applying Πdist𝖱𝖷(t)\Pi^{\operatorname{{dist}}}_{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}_{\mathsf{X}}^{(t)}}} to this state selects the terms corresponding to (x1,,xt)[N]tdist(x_{1},\dots,x_{t})\in[N]^{t}_{\operatorname{{dist}}}:

Πdist𝖱𝖷(t)|𝒜VGt\displaystyle\Pi^{\operatorname{{dist}}}_{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}_{\mathsf{X}}^{(t)}}}\cdot\ket*{\mathcal{A}^{V\cdot G}_{t}} =(Nt)!N!(x1,,xt)[N]distt(y1,,yt)[N]distt[i=1t(|yixi|𝖠G𝖠Ai,𝖠𝖡)|0𝖠𝖡]|{(xi,yi)}i=1t𝖱.\displaystyle=\sqrt{\frac{(N-t)!}{N!}}\sum_{\begin{subarray}{c}(x_{1},\ldots,x_{t})\in[N]_{\operatorname{{dist}}}^{t}\\ (y_{1},\ldots,y_{t})\in[N]_{\operatorname{{dist}}}^{t}\end{subarray}}\left[\,\prod_{i=1}^{t}\Big{(}\outerproduct*{y_{i}}{x_{i}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\cdot G_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\cdot A_{i,{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}}\Big{)}\ket*{0}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}}\,\right]\otimes\ket*{\{(x_{i},y_{i})\}_{i=1}^{t}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}. (4.33)

By 4,

|𝒜𝗉𝖿𝖮Gt𝖠𝖡𝖯𝖥\displaystyle\ket*{\mathcal{A}^{\mathsf{pfO}\cdot G}_{t}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}} =(Nt)!N!(x1,,xt)[N]t(y1,,yt)[N]t[i=1t(|yixi|𝖠G𝖠Ai,𝖠𝖡)|0𝖠𝖡]|𝗉𝖿{(xi,yi)}i=1t𝖯𝖥.\displaystyle=\sqrt{\frac{(N-t)!}{N!}}\sum_{\begin{subarray}{c}(x_{1},\ldots,x_{t})\in[N]^{t}\\ (y_{1},\ldots,y_{t})\in[N]^{t}\end{subarray}}\left[\,\prod_{i=1}^{t}\Big{(}\outerproduct*{y_{i}}{x_{i}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\cdot G_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\cdot A_{i,{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}}\Big{)}\ket*{0}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}}\,\right]\otimes\ket*{\mathsf{pf}_{\{(x_{i},y_{i})\}_{i=1}^{t}}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}}. (4.34)

Applying Π~dist𝖯𝖥\widetilde{\Pi}^{\operatorname{{dist}}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}} selects the terms corresponding to (x1,,xt)[N]tdist(x_{1},\dots,x_{t})\in[N]^{t}_{\operatorname{{dist}}} and (y1,,yt)[N]tdist(y_{1},\dots,y_{t})\in[N]^{t}_{\operatorname{{dist}}}:

Π~dist𝖯𝖥|𝒜𝗉𝖿𝖮Gt𝖠𝖡𝖯𝖥\displaystyle\widetilde{\Pi}^{\operatorname{{dist}}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}}\cdot\ket*{\mathcal{A}^{\mathsf{pfO}\cdot G}_{t}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}} (4.35)
=(Nt)!N!(x1,,xt)[N]distt(y1,,yt)[N]distt[i=1t(|yixi|𝖠G𝖠Ai,𝖠𝖡)|0𝖠𝖡]|𝗉𝖿{(xi,yi)}i=1t𝖯𝖥.\displaystyle=\sqrt{\frac{(N-t)!}{N!}}\sum_{\begin{subarray}{c}(x_{1},\ldots,x_{t})\in[N]_{\operatorname{{dist}}}^{t}\\ (y_{1},\ldots,y_{t})\in[N]_{\operatorname{{dist}}}^{t}\end{subarray}}\left[\,\prod_{i=1}^{t}\Big{(}\outerproduct*{y_{i}}{x_{i}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\cdot G_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\cdot A_{i,{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}}\Big{)}\ket*{0}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}}\,\right]\otimes\ket*{\mathsf{pf}_{\{(x_{i},y_{i})\}_{i=1}^{t}}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}}. (4.36)

Since 𝖢𝗈𝗆𝗉\mathsf{Comp} maps |𝗉𝖿R\ket*{\mathsf{pf}_{R}} to |R\ket*{R} for all R𝖻𝗂𝗃R\in\mathcal{R}^{\mathsf{bij}}, applying 𝖢𝗈𝗆𝗉\mathsf{Comp} to the right-hand side of Eq. 4.36 yields the right-hand side of Eq. 4.33, which proves the claim. ∎

Corollary 4.2 (Trace distance between original state and the projected state).
Tr𝖯𝖥(𝔼C𝔇|𝒜𝗉𝖿𝖮Ct𝒜𝗉𝖿𝖮Ct|𝖠𝖡𝖯𝖥)Tr𝖯𝖥(Π~dist𝖯𝖥𝔼C𝔇|𝒜𝗉𝖿𝖮Ct𝒜𝗉𝖿𝖮Ct|𝖠𝖡𝖯𝖥Π~dist𝖯𝖥)1t(t1)N+1.\displaystyle\norm{\Tr_{\mathsf{P}\mathsf{F}}\left(\operatorname*{{\mathbb{E}}}_{C\leftarrow\mathfrak{D}}\outerproduct*{\mathcal{A}^{\mathsf{pfO}\cdot C}_{t}}{\mathcal{A}^{\mathsf{pfO}\cdot C}_{t}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}}\right)-\Tr_{\mathsf{P}\mathsf{F}}\left(\widetilde{\Pi}^{\operatorname{{dist}}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}}\cdot\operatorname*{{\mathbb{E}}}_{C\leftarrow\mathfrak{D}}\outerproduct*{\mathcal{A}^{\mathsf{pfO}\cdot C}_{t}}{\mathcal{A}^{\mathsf{pfO}\cdot C}_{t}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}}\cdot\widetilde{\Pi}^{\operatorname{{dist}}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}}\right)}_{1}\leq\frac{t(t-1)}{N+1}. (4.37)
Proof.

By Lemma 2.2, we have

Tr𝖯𝖥(𝔼C𝔇|𝒜𝗉𝖿𝖮Ct𝒜𝗉𝖿𝖮Ct|𝖠𝖡𝖯𝖥)Tr𝖯𝖥(Π~dist𝖯𝖥𝔼C𝔇|𝒜𝗉𝖿𝖮Ct𝒜𝗉𝖿𝖮Ct|𝖠𝖡𝖯𝖥Π~dist𝖯𝖥)1\displaystyle\norm{\Tr_{\mathsf{P}\mathsf{F}}\left(\operatorname*{{\mathbb{E}}}_{C\leftarrow\mathfrak{D}}\outerproduct*{\mathcal{A}^{\mathsf{pfO}\cdot C}_{t}}{\mathcal{A}^{\mathsf{pfO}\cdot C}_{t}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}}\right)-\Tr_{\mathsf{P}\mathsf{F}}\left(\widetilde{\Pi}^{\operatorname{{dist}}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}}\cdot\operatorname*{{\mathbb{E}}}_{C\leftarrow\mathfrak{D}}\outerproduct*{\mathcal{A}^{\mathsf{pfO}\cdot C}_{t}}{\mathcal{A}^{\mathsf{pfO}\cdot C}_{t}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}}\cdot\widetilde{\Pi}^{\operatorname{{dist}}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}}\right)}_{1}
=1Tr(Π~dist𝖯𝖥𝔼C𝔇|𝒜𝗉𝖿𝖮Ct𝒜𝗉𝖿𝖮Ct|𝖠𝖡𝖯𝖥Π~dist𝖯𝖥)\displaystyle=1-\Tr\left(\widetilde{\Pi}^{\operatorname{{dist}}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}}\cdot\operatorname*{{\mathbb{E}}}_{C\leftarrow\mathfrak{D}}\outerproduct*{\mathcal{A}^{\mathsf{pfO}\cdot C}_{t}}{\mathcal{A}^{\mathsf{pfO}\cdot C}_{t}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}}\cdot\widetilde{\Pi}^{\operatorname{{dist}}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}}\right) (4.38)

Next, observe that Π~dist𝖯𝖥=𝖢𝗈𝗆𝗉𝖢𝗈𝗆𝗉Π~dist𝖯𝖥\widetilde{\Pi}^{\operatorname{{dist}}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}}=\mathsf{Comp}^{\dagger}\cdot\mathsf{Comp}\cdot\widetilde{\Pi}^{\operatorname{{dist}}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}} since

𝖢𝗈𝗆𝗉𝖢𝗈𝗆𝗉Π~dist𝖯𝖥\displaystyle\mathsf{Comp}^{\dagger}\cdot\mathsf{Comp}\cdot\widetilde{\Pi}^{\operatorname{{dist}}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}} (4.39)
=(R𝖻𝗂𝗃|𝗉𝖿RR|)(R𝖻𝗂𝗃|R𝗉𝖿R|)(R𝖻𝗂𝗃,|R|=t|𝗉𝖿R𝗉𝖿R|)\displaystyle=\Big{(}\sum_{R\in\mathcal{R}^{\mathsf{bij}}}\outerproduct*{\mathsf{pf}_{R}}{R}\Big{)}\cdot\Big{(}\sum_{R\in\mathcal{R}^{\mathsf{bij}}}\outerproduct*{R}{\mathsf{pf}_{R}}\Big{)}\cdot\Big{(}\sum_{\begin{subarray}{c}R\in\mathcal{R}^{\mathsf{bij}},\\ \absolutevalue{R}=t\end{subarray}}\outerproduct*{\mathsf{pf}_{R}}{\mathsf{pf}_{R}}\Big{)} (4.40)
=R𝖻𝗂𝗃,|R|=t|𝗉𝖿R𝗉𝖿R|=Π~dist𝖯𝖥.\displaystyle=\sum_{\begin{subarray}{c}R\in\mathcal{R}^{\mathsf{bij}},\\ \absolutevalue{R}=t\end{subarray}}\outerproduct*{\mathsf{pf}_{R}}{\mathsf{pf}_{R}}=\widetilde{\Pi}^{\operatorname{{dist}}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}}. (4.41)

By plugging this identity into (4.38), we get

(4.38)\displaystyle(\ref{eq:pre-compress}) =1Tr(𝖢𝗈𝗆𝗉𝖢𝗈𝗆𝗉Π~dist𝖯𝖥𝔼C𝔇|𝒜𝗉𝖿𝖮Ct𝒜𝗉𝖿𝖮Ct|𝖠𝖡𝖯𝖥Π~dist𝖯𝖥)\displaystyle=1-\Tr\left(\mathsf{Comp}^{\dagger}\cdot\mathsf{Comp}\cdot\widetilde{\Pi}^{\operatorname{{dist}}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}}\cdot\operatorname*{{\mathbb{E}}}_{C\leftarrow\mathfrak{D}}\outerproduct*{\mathcal{A}^{\mathsf{pfO}\cdot C}_{t}}{\mathcal{A}^{\mathsf{pfO}\cdot C}_{t}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}}\cdot\widetilde{\Pi}^{\operatorname{{dist}}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}}\right) (4.42)
=1Tr(𝖢𝗈𝗆𝗉Π~dist𝖯𝖥𝔼C𝔇|𝒜𝗉𝖿𝖮Ct𝒜𝗉𝖿𝖮Ct|𝖠𝖡𝖯𝖥Π~dist𝖯𝖥𝖢𝗈𝗆𝗉)\displaystyle=1-\Tr\left(\mathsf{Comp}\cdot\widetilde{\Pi}^{\operatorname{{dist}}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}}\cdot\operatorname*{{\mathbb{E}}}_{C\leftarrow\mathfrak{D}}\outerproduct*{\mathcal{A}^{\mathsf{pfO}\cdot C}_{t}}{\mathcal{A}^{\mathsf{pfO}\cdot C}_{t}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}}\cdot\widetilde{\Pi}^{\operatorname{{dist}}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}}\cdot\mathsf{Comp}^{\dagger}\right) (4.43)
=1Tr(𝔼C𝔇Πdist𝖱𝖷(t)|𝒜VCt𝒜VCt|𝖠𝖡𝖱Πdist𝖱X(t))\displaystyle=1-\Tr\left(\operatorname*{{\mathbb{E}}}_{C\leftarrow\mathfrak{D}}\Pi^{\operatorname{{dist}}}_{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}_{\mathsf{X}}^{(t)}}}\cdot\outerproduct*{\mathcal{A}^{V\cdot C}_{t}}{\mathcal{A}^{V\cdot C}_{t}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\cdot\Pi^{\operatorname{{dist}}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}_{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}X}}^{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}(t)}}}\right) (By Lemma 4.4)
t(t1)N+1,\displaystyle\leq\frac{t(t-1)}{N+1}, (By Corollary 4.1)

which completes the proof. ∎

5 The PRU proof

5.1 Setup

We define a distribution over nn-qubit unitaries parameterized by any nn-qubit unitary 22-design 𝔇\mathfrak{D}.

Definition 17 (𝖯𝖱𝖴(𝔇)\mathsf{PRU}(\mathfrak{D}) distribution).

Let 𝔇\mathfrak{D} be a distribution supported on 𝒰(N)\mathcal{U}(N). The distribution 𝖯𝖥(𝔇)\mathsf{PF}({\mathfrak{D}}) is defined as follows:

  1. 1.

    Sample a uniformly random permutation π𝖲𝗒𝗆N\pi\leftarrow\mathsf{Sym}_{N}, a uniformly random f{0,1}Nf\leftarrow\{0,1\}^{N}, and a uniformly random nn-qubit unitary C𝔇C\leftarrow\mathfrak{D}.

  2. 2.

    Output the unitary 𝒪PπFfC\mathcal{O}\coloneqq P_{\pi}\cdot F_{f}\cdot C.

The goal of this section is to prove the following theorem.

Theorem 3 (𝖯𝖥(𝔇)\mathsf{PF}(\mathfrak{D}) is indistinguishable from Haar-random).

Let 𝒜\mathcal{A} be a tt-query oracle adversary that only makes forward queries, and let 𝔇\mathfrak{D} be an exact unitary 22-design. Then

𝖳𝖣(𝔼𝒪𝖯𝖥(𝔇)|𝒜t𝒪𝒜t𝒪|,𝔼𝒪μ𝖧𝖺𝖺𝗋|𝒜t𝒪𝒜t𝒪|)4t(t1)N+1\displaystyle\mathsf{TD}\left(\operatorname*{{\mathbb{E}}}_{\mathcal{O}\leftarrow\mathsf{PF}(\mathfrak{D})}\outerproduct*{\mathcal{A}_{t}^{\mathcal{O}}}{\mathcal{A}_{t}^{\mathcal{O}}},\operatorname*{{\mathbb{E}}}_{\mathcal{O}\leftarrow\mu_{\mathsf{Haar}}}\outerproduct*{\mathcal{A}_{t}^{\mathcal{O}}}{\mathcal{A}_{t}^{\mathcal{O}}}\right)\leq\frac{4t(t-1)}{N+1} (5.1)

Since quantum-secure pseudorandom permutations and pseudorandom functions exist assuming one-way functions [zhandry2016note, zhandry2021construct], the existence of computationally-secure PRU follows immediately from Theorem 3.

Theorem 4.

If quantum-secure one-way functions exist, then pseudorandom unitaries exist.

The main technical component of the proof of Theorem 3 is the following lemma.

Lemma 5.1 (𝖯𝖱𝖴(𝔇)\mathsf{PRU}(\mathfrak{D}) is indistinguishable from VV).

Let 𝒜\mathcal{A} be a tt-query oracle adversary and let 𝔇\mathfrak{D} be an exact unitary 22-design. Then

𝖳𝖣(𝔼𝒪𝖯𝖥(𝔇)|𝒜t𝒪𝒜t𝒪|,Tr𝖱(|𝒜Vt𝒜Vt|𝖠𝖡𝖱))2t(t1)N+1\displaystyle\mathsf{TD}\left(\operatorname*{{\mathbb{E}}}_{\mathcal{O}\leftarrow\mathsf{PF}(\mathfrak{D})}\outerproduct*{\mathcal{A}_{t}^{\mathcal{O}}}{\mathcal{A}_{t}^{\mathcal{O}}},\,\,\,\Tr_{\mathsf{R}}\left(\outerproduct*{\mathcal{A}^{V}_{t}}{\mathcal{A}^{V}_{t}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\right)\right)\leq\frac{2t(t-1)}{N+1} (5.2)
Lemma 5.1 implies Theorem 3.

Lemma 5.1 implies Theorem 3 by the following argument. We can instantiate 𝔇=μ𝖧𝖺𝖺𝗋\mathfrak{D}=\mu_{\mathsf{Haar}}, i.e., 𝔇\mathfrak{D} outputs a Haar-random nn-qubit unitary. Then the output of 𝖯𝖱𝖴(𝔇)=𝖯𝖱𝖴(μ𝖧𝖺𝖺𝗋)\mathsf{PRU}(\mathfrak{D})=\mathsf{PRU}(\mu_{\mathsf{Haar}}) is PπFfCP_{\pi}\cdot F_{f}\cdot C for random π,f\pi,f and Haar-random CC. By invariance of the Haar measure, this is exactly the same as outputting a Haar-random unitary. Thus, we have the following corollary of Lemma 5.1.

Theorem 5 (VV is indistinguishable from Haar random).

Let 𝒜\mathcal{A} be a tt-query oracle adversary. Then

𝖳𝖣(𝔼𝒪μ𝖧𝖺𝖺𝗋|𝒜t𝒪𝒜t𝒪|,Tr𝖱(|𝒜Vt𝒜Vt|𝖠𝖡𝖱))2t(t1)N+1\displaystyle\mathsf{TD}\left(\operatorname*{{\mathbb{E}}}_{\mathcal{O}\sim\mu_{\mathsf{Haar}}}\outerproduct*{\mathcal{A}_{t}^{\mathcal{O}}}{\mathcal{A}_{t}^{\mathcal{O}}},\Tr_{\mathsf{R}}\left(\outerproduct*{\mathcal{A}^{V}_{t}}{\mathcal{A}^{V}_{t}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\right)\right)\leq\frac{2t(t-1)}{N+1} (5.3)

Theorem 3 follows from combining Lemmas 5.1 and 5 using the triangle inequality. It remains to prove Lemma 5.1.

5.2 Proof of Lemma 5.1

Proof of Lemma 5.1.

We will use a hybrid argument. Define the mixed states

ρ(𝔇)0\displaystyle\rho^{(\mathfrak{D})}_{0} 𝔼𝒪𝖯𝖥(𝔇)|𝒜t𝒪𝒜t𝒪|\displaystyle\coloneqq\operatorname*{{\mathbb{E}}}_{\mathcal{O}\leftarrow\mathsf{PF}(\mathfrak{D})}\outerproduct*{\mathcal{A}_{t}^{\mathcal{O}}}{\mathcal{A}_{t}^{\mathcal{O}}} (5.4)
ρ(𝔇)1\displaystyle\rho^{(\mathfrak{D})}_{1} Tr𝖯𝖥(𝔼C𝔇|𝒜𝗉𝖿𝖮Ct𝒜𝗉𝖿𝖮Ct|𝖠𝖡𝖯𝖥)\displaystyle\coloneqq\Tr_{\mathsf{P}\mathsf{F}}\left(\operatorname*{{\mathbb{E}}}_{C\leftarrow\mathfrak{D}}\outerproduct*{\mathcal{A}^{\mathsf{pfO}\cdot C}_{t}}{\mathcal{A}^{\mathsf{pfO}\cdot C}_{t}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}}\right) (5.5)
ρ(𝔇)2\displaystyle\rho^{(\mathfrak{D})}_{2} Tr𝖯𝖥(Π~dist𝖯𝖥𝔼C𝔇|𝒜𝗉𝖿𝖮Ct𝒜𝗉𝖿𝖮Ct|𝖠𝖡𝖯𝖥Π~dist𝖯𝖥)\displaystyle\coloneqq\Tr_{\mathsf{P}\mathsf{F}}\left(\widetilde{\Pi}^{\operatorname{{dist}}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}}\cdot\operatorname*{{\mathbb{E}}}_{C\leftarrow\mathfrak{D}}\outerproduct*{\mathcal{A}^{\mathsf{pfO}\cdot C}_{t}}{\mathcal{A}^{\mathsf{pfO}\cdot C}_{t}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}}\cdot\widetilde{\Pi}^{\operatorname{{dist}}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}}\right) (5.6)
ρ(𝔇)3\displaystyle\rho^{(\mathfrak{D})}_{3} Tr𝖱(Πdist𝖱X(t)𝔼C𝔇|𝒜VCt𝒜VCt|𝖠𝖡𝖱Πdist𝖱X(t))\displaystyle\coloneqq\Tr_{\mathsf{R}}\left(\Pi^{\operatorname{{dist}}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}_{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}X}}^{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}(t)}}}\cdot\operatorname*{{\mathbb{E}}}_{C\leftarrow\mathfrak{D}}\outerproduct*{\mathcal{A}^{V\cdot C}_{t}}{\mathcal{A}^{V\cdot C}_{t}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\cdot\Pi^{\operatorname{{dist}}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}_{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}X}}^{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}(t)}}}\right) (5.7)
ρ(𝔇)4\displaystyle\rho^{(\mathfrak{D})}_{4} Tr𝖱(𝔼C𝔇|𝒜VCt𝒜VCt|𝖠𝖡𝖱)\displaystyle\coloneqq\Tr_{\mathsf{R}}\left(\operatorname*{{\mathbb{E}}}_{C\leftarrow\mathfrak{D}}\outerproduct*{\mathcal{A}^{V\cdot C}_{t}}{\mathcal{A}^{V\cdot C}_{t}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\right) (5.8)
ρ5\displaystyle\rho_{5} Tr𝖱(|𝒜Vt𝒜Vt|𝖠𝖡𝖱).\displaystyle\coloneqq\Tr_{\mathsf{R}}\left(\outerproduct*{\mathcal{A}^{V}_{t}}{\mathcal{A}^{V}_{t}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\right). (5.9)

We argue indistinguishability between each consecutive pair of mixed states:

  • ρ(𝔇)0=ρ(𝔇)1\rho^{(\mathfrak{D})}_{0}=\rho^{(\mathfrak{D})}_{1} by Claim 3.

  • ρ(𝔇)1ρ(𝔇)21t(t1)/(N+1)\norm*{\rho^{(\mathfrak{D})}_{1}-\rho^{(\mathfrak{D})}_{2}}_{1}\leq t(t-1)/(N+1) by Corollary 4.2.

  • ρ(𝔇)2=ρ(𝔇)3\rho^{(\mathfrak{D})}_{2}=\rho^{(\mathfrak{D})}_{3}, since by Lemma 4.4, these are two mixed states whose purifications are related by the 𝖢𝗈𝗆𝗉\mathsf{Comp} isometry, which only acts on the purifying register.

  • ρ(𝔇)3ρ(𝔇)41t(t1)/(N+1)\norm*{\rho^{(\mathfrak{D})}_{3}-\rho^{(\mathfrak{D})}_{4}}_{1}\leq t(t-1)/(N+1) by Corollary 4.1.

  • ρ(𝔇)4=ρ(𝔇)5\rho^{(\mathfrak{D})}_{4}=\rho^{(\mathfrak{D})}_{5} since

    ρ(𝔇)4\displaystyle\rho^{(\mathfrak{D})}_{4} =𝔼C𝔇Tr𝖱(|𝒜VCt𝒜VCt|𝖠𝖡𝖱)=𝔼C𝔇Tr𝖱(|𝒜Vt𝒜Vt|𝖠𝖡𝖱)=ρ5,\displaystyle=\operatorname*{{\mathbb{E}}}_{C\leftarrow\mathfrak{D}}\Tr_{\mathsf{R}}\left(\outerproduct*{\mathcal{A}^{V\cdot C}_{t}}{\mathcal{A}^{V\cdot C}_{t}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\right)=\operatorname*{{\mathbb{E}}}_{C\leftarrow\mathfrak{D}}\Tr_{\mathsf{R}}\left(\outerproduct*{\mathcal{A}^{V}_{t}}{\mathcal{A}^{V}_{t}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\right)=\rho_{5}, (5.10)

    where the second equality follows from Lemma 4.3, which states that for any CC, |𝒜VCt𝒜VCt|\outerproduct*{\mathcal{A}^{V\cdot C}_{t}}{\mathcal{A}^{V\cdot C}_{t}} and |𝒜Vt𝒜Vt|\outerproduct*{\mathcal{A}^{V}_{t}}{\mathcal{A}^{V}_{t}} are related by a unitary on the purifying register.

Using the triangle inequality, we obtain Eq. 5.2, which completes the proof. ∎

Part II Strong PRUs

The goal of Part II is to construct strong PRUs, which are secure against adversaries that make both forward and inverse queries to the unitary oracle. It is important to note that several operators that were defined in Part I, including 𝗉𝖿𝖮,𝖢𝗈𝗆𝗉\mathsf{pfO},\mathsf{Comp} and VV, will be have new definitions in Part II.

6 The purified permutation-function oracle

In this section, we analyze the view of an adversary that makes queries to an oracle PπFfP_{\pi}\cdot F_{f}, for uniformly random π𝖲𝗒𝗆N\pi\leftarrow\mathsf{Sym}_{N} and a random ternary function f{0,1,2}Nf\leftarrow\{0,1,2\}^{N}. We will do this by analyzing the purified permutation-function permutation oracle, which uses a purification of π\pi and ff.

Definition 18 (Purified permutation-function oracle).

The purified permutation-function oracle 𝗉𝖿𝖮\mathsf{pfO} is a unitary acting on registers 𝖠,𝖯,𝖥\mathsf{A},\mathsf{P},\mathsf{F}, where

  • 𝖯\mathsf{P} is a register associated with the Hilbert space 𝖯\mathcal{H}_{\mathsf{P}}, defined to be the span of the orthonormal states |π\ket*{\pi} for all π𝖲𝗒𝗆N\pi\in\mathsf{Sym}_{N}.

  • 𝖥\mathsf{F} is a register associated with the Hilbert space 𝖥\mathcal{H}_{\mathsf{F}}, defined to be the span of the orthonormal states |f\ket*{f} for all f{0,1,2}Nf\in\{0,1,2\}^{N}.

The unitary 𝗉𝖿𝖮\mathsf{pfO} is defined to act as follows:

𝗉𝖿𝖮𝖠𝖯𝖥|x𝖠|π𝖯|f𝖥\displaystyle\mathsf{pfO}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}}\ket*{x}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\ket*{\pi}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}}\ket*{f}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}} ω3f(x)|π(x)𝖠|π𝖯|f𝖥,\displaystyle\coloneqq\omega_{3}^{f(x)}\ket*{\pi(x)}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\ket*{\pi}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}}\ket*{f}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}}, (6.1)
=y[N]|y𝖠δπ(x)=y|πω3f(x)|f,\displaystyle=\sum_{y\in[N]}\ket*{y}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\delta_{\pi(x)=y}\ket*{\pi}\omega_{3}^{f(x)}\ket*{f}, (6.2)

for all x[N],π𝖲𝗒𝗆N,x\in[N],\pi\in\mathsf{Sym}_{N}, and f{0,1,2}Nf\in\{0,1,2\}^{N}. Here, ω3=exp(2πi/3)\omega_{3}=\exp(2\pi i/3).

The action of 𝗉𝖿𝖮\mathsf{pfO}^{\dagger} is

𝗉𝖿𝖮|y𝖠|π|f\displaystyle\mathsf{pfO}^{\dagger}\ket*{y}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\ket*{\pi}\ket*{f} =x[N]|x𝖠δπ(x)=y|πω3f(x)|f.\displaystyle=\sum_{x\in[N]}\ket*{x}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\delta_{\pi(x)=y}\ket*{\pi}\omega_{3}^{-f(x)}\ket*{f}. (6.3)

The view of an adversary that queries the purified oracle is equivalent to the view of an adversary that queries the standard oracle PπFfP_{\pi}\cdot F_{f}, for uniformly random π𝖲𝗒𝗆N\pi\leftarrow\mathsf{Sym}_{N} and f{0,1,2}Nf\leftarrow\{0,1,2\}^{N}.

Claim 6 (Equivalence of purified and standard oracles).

For any oracle adversary 𝒜\mathcal{A}, the following oracle instantiations are perfectly indistinguishable:

  • (Queries to a random PπFfP_{\pi}\cdot F_{f}) Sample a uniformly random π𝖲𝗒𝗆N,f{0,1,2}N\pi\leftarrow\mathsf{Sym}_{N},f\leftarrow\{0,1,2\}^{N}. On each query, apply PπFfP_{\pi}\cdot F_{f} to register 𝖠\mathsf{A}.

  • (Queries to 𝗉𝖿𝖮\mathsf{pfO}) Initialize registers 𝖯,𝖥\mathsf{P},\mathsf{F} to 1N!π𝖲𝗒𝗆N|π𝖯12Nf{0,1,2}N|f𝖥\frac{1}{\sqrt{N!}}\sum_{\pi\in\mathsf{Sym}_{N}}\ket*{\pi}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}}\otimes\frac{1}{\sqrt{2^{N}}}\sum_{f\in\{0,1,2\}^{N}}\ket*{f}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}}. At each query, apply 𝗉𝖿𝖮\mathsf{pfO} to registers 𝖠,𝖯,𝖥\mathsf{A},\mathsf{P},\mathsf{F}.

The proof is the same as the proof of Claim 3 in Part I.

Next, we define the following states on the 𝖯,𝖥\mathsf{P},\mathsf{F} registers.

Definition 19 (𝗉𝖿\mathsf{pf}-relation state).

For L={(x1,y1),,(x,y)}L=\{(x_{1},y_{1}),\dots,(x_{\ell},y_{\ell})\}\in\mathcal{R}_{\ell} and R={(x1,y1),,(xr,yr)}rR=\{(x^{\prime}_{1},y^{\prime}_{1}),\dots,(x^{\prime}_{r},y^{\prime}_{r})\}\in\mathcal{R}_{r}, where \ell and rr are non-negative integers such that +rN\ell+r\leq N, let

|𝗉𝖿L,R1(Nr)!π𝖲𝗒𝗆Nδπ,LR|π13Nf{0,1,2}Nω3f(x1)++f(x)(f(x1)++f(xr))|f,\displaystyle\ket*{\mathsf{pf}_{L,R}}\coloneqq\frac{1}{\sqrt{(N-\ell-r)!}}\sum_{\pi\in\mathsf{Sym}_{N}}\delta_{\pi,L\cup R}\ket*{\pi}\frac{1}{\sqrt{3^{N}}}\sum_{f\in\{0,1,2\}^{N}}\omega_{3}^{f(x_{1})+\cdots+f(x_{\ell})-(f(x^{\prime}_{1})+\cdots+f(x^{\prime}_{r}))}\ket*{f}, (6.4)

where δπ,LR\delta_{\pi,L\cup R} is an indicator variable that equals 11 if π(x)=y\pi(x)=y for all (x,y)LR(x,y)\in L\cup R, and is 0 otherwise.

Note that when =r=0\ell=r=0, i.e., L=R=L=R=\varnothing are both the empty relation, the 𝗉𝖿\mathsf{pf}-relation state |𝗉𝖿,𝖯𝖥\ket*{\mathsf{pf}_{\varnothing,\varnothing}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}} is the uniform superposition over all permutations π𝖲𝗒𝗆N\pi\in\mathsf{Sym}_{N} and all ternary functions f{0,1,2}Nf\in\{0,1,2\}^{N},

|𝗉𝖿,𝖯𝖥1N!π𝖲𝗒𝗆N|π𝖯13Nf{0,1}N|f𝖥.\displaystyle\ket*{\mathsf{pf}_{\varnothing,\varnothing}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}}\coloneqq\frac{1}{\sqrt{N!}}\sum_{\pi\in\mathsf{Sym}_{N}}\ket*{\pi}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}}\otimes\frac{1}{\sqrt{3^{N}}}\sum_{f\in\{0,1\}^{N}}\ket*{f}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}}. (6.5)

Recall that a relation RR is bijective if and only if |Im(R)|=|Dom(R)|=|R|\absolutevalue{\imaginary(R)}=\absolutevalue{\operatorname{Dom}(R)}=\absolutevalue{R}. Equivalently, writing R={(x1,y1),,(xt,yt)}R=\{(x_{1},y_{1}),\dots,(x_{t},y_{t})\}, RR is bijective if x1,,xtx_{1},\dots,x_{t} are all distinct, and y1,,yty_{1},\dots,y_{t} are also all distinct.

Definition 20.

Let 2,dist\mathcal{R}^{2,\operatorname{{dist}}} be the set of all ordered pairs of relations (L,R)2(L,R)\in\mathcal{R}^{2} where LRL\cup R is a bijective relation.

6.1 Orthonormality of the 𝗉𝖿\mathsf{pf}-relation states

Claim 7 (Orthonormality of 𝗉𝖿\mathsf{pf}-relation states).

{|𝗉𝖿L,R}(L,R)2,dist\{\ket*{\mathsf{pf}_{L,R}}\}_{(L,R)\in\mathcal{R}^{2,\operatorname{{dist}}}} is an orthonormal set of vectors.

Proof of Claim 7.

For x[N]x\in[N], let ex{0,1,2}Ne_{x}\in\{0,1,2\}^{N} denote the NN-dimensional vector that has a 11 in the xx-th position, and is 0 everywhere else. Then by writing f(x)f(x) as f(x)=fexf(x)=f\cdot e_{x}, we get

13Nf{0,1,2}Nω3f(x1)++f(x)(f(x1)+f(xr))|f𝖥\displaystyle\frac{1}{\sqrt{3^{N}}}\sum_{f\in\{0,1,2\}^{N}}\omega_{3}^{f(x_{1})+\cdots+f(x_{\ell})-(f(x_{1}^{\prime})+\cdots f(x_{r}^{\prime}))}\ket*{f}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}} (6.6)
=13Nf{0,1,2}Nω3f(ex1++ex)f(ex1++exr)|f𝖥\displaystyle=\frac{1}{\sqrt{3^{N}}}\sum_{f\in\{0,1,2\}^{N}}\omega_{3}^{f\cdot(e_{x_{1}}+\cdots+e_{x_{\ell}})-f\cdot(e_{x_{1}^{\prime}}+\cdots+e_{x_{r}^{\prime}})}\ket*{f}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}} (6.7)
=𝖰𝖥𝖳3N|(ex1++ex)(ex1++exr)(mod 3)𝖥,\displaystyle=\mathsf{QFT}_{3}^{\otimes N}\ket*{(e_{x_{1}}+\cdots+e_{x_{\ell}})-(e_{x^{\prime}_{1}}+\cdots+e_{x^{\prime}_{r}})\ (\mathrm{mod}\ 3)}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}}, (6.8)

where 𝖰𝖥𝖳3\mathsf{QFT}_{3} denotes the 33-ary quantum Fourier transform. When {x1,,x,x1,,xr}\{x_{1},\dots,x_{\ell},x^{\prime}_{1},\dots,x^{\prime}_{r}\} are all distinct, there is a bijection between (ex1++ex)(ex1++exr)(e_{x_{1}}+\cdots+e_{x_{\ell}})-(e_{x^{\prime}_{1}}+\cdots+e_{x^{\prime}_{r}}) and the sets {x1,,x},{x1,,xr}\{x_{1},\dots,x_{\ell}\},\{x^{\prime}_{1},\dots,x^{\prime}_{r}\}: the first set corresponds to the indices where the vector is 11, and the second set is the indices where the vector is 12(mod 3)-1\equiv 2\ (\mathrm{mod}\ 3). Thus, there is an isometry that maps

13Nf{0,1,2}Nω3f(x1)++f(x)(f(x1)+f(xr))|f𝖥|{x1,,x}|{x1,,xr},\displaystyle\frac{1}{\sqrt{3^{N}}}\sum_{f\in\{0,1,2\}^{N}}\omega_{3}^{f(x_{1})+\cdots+f(x_{\ell})-(f(x_{1}^{\prime})+\cdots f(x_{r}^{\prime}))}\ket*{f}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}}\mapsto\ket*{\{x_{1},\dots,x_{\ell}\}}\ket*{\{x_{1}^{\prime},\dots,x_{r}^{\prime}\}}, (6.9)

whenever {x1,,x,x1,,xr}\{x_{1},\dots,x_{\ell},x^{\prime}_{1},\dots,x^{\prime}_{r}\} are all distinct. Thus, for any L={(x1,y1),,(x,y)}L=\{(x_{1},y_{1}),\dots,(x_{\ell},y_{\ell})\}, R={(x1,y1),,(xr,yr)}R=\{(x_{1}^{\prime},y_{1}^{\prime}),\dots,(x_{r}^{\prime},y_{r}^{\prime})\} where LRL\cup R is a bijective relation, applying this isometry to the 𝖥\mathsf{F} register of |𝗉𝖿L,R\ket*{\mathsf{pf}_{L,R}} yields

|𝗉𝖿L,R1(Nr)!π𝖲𝗒𝗆Nδπ,LR|π𝖯|{x1,,x}|{x1,,xr}.\displaystyle\ket*{\mathsf{pf}_{L,R}}\mapsto\frac{1}{\sqrt{(N-\ell-r)!}}\sum_{\pi\in\mathsf{Sym}_{N}}\delta_{\pi,L\cup R}\ket*{\pi}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}}\otimes\ket*{\{x_{1},\dots,x_{\ell}\}}\ket*{\{x_{1}^{\prime},\dots,x_{r}^{\prime}\}}. (6.10)

Next, we can apply an isometry that, controlled on |π\ket*{\pi}, sends each xix_{i} to the tuple (xi,π(xi))=(xi,yi)(x_{i},\pi(x_{i}))=(x_{i},y_{i}). The result is

1(Nr)!π𝖲𝗒𝗆Nδπ,LR|π𝖯|{(x1,y1),,(x,y)}|{(x1,y1),,(xr,yr)}.\displaystyle\frac{1}{\sqrt{(N-\ell-r)!}}\sum_{\pi\in\mathsf{Sym}_{N}}\delta_{\pi,L\cup R}\ket*{\pi}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}}\otimes\ket*{\{(x_{1},y_{1}),\dots,(x_{\ell},y_{\ell})\}}\ket*{\{(x_{1}^{\prime},y_{1}^{\prime}),\dots,(x_{r}^{\prime},y_{r}^{\prime})\}}. (6.11)

Finally, controlled on the last two registers, we can uncompute the superposition on the 𝖯\mathsf{P} register. The result is

|{(x1,y1),,(x,y)}|{(x1,y1),,(xr,yr)}=|L|R.\displaystyle\ket*{\{(x_{1},y_{1}),\dots,(x_{\ell},y_{\ell})\}}\ket*{\{(x_{1}^{\prime},y_{1}^{\prime}),\dots,(x_{r}^{\prime},y_{r}^{\prime})\}}=\ket*{L}\ket*{R}. (6.12)

This completes the proof. ∎

Definition 21.

Define the partial isometry 𝖢𝗈𝗆𝗉:𝖯𝖥𝖫𝖱\mathsf{Comp}:\mathcal{H}_{\mathsf{P}}\otimes\mathcal{H}_{\mathsf{F}}\rightarrow\mathcal{H}_{\mathsf{L}}\otimes\mathcal{H}_{\mathsf{R}} to be

𝖢𝗈𝗆𝗉(L,R)2,dist|L𝖫|R𝖱𝗉𝖿R|𝖯𝖥\displaystyle\mathsf{Comp}\coloneqq\sum_{(L,R)\in\mathcal{R}^{2,\operatorname{{dist}}}}\ket*{L}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}}\otimes\ket*{R}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\cdot\bra{\mathsf{pf}_{R}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}} (6.13)

Here, 𝖫\mathsf{L} and 𝖱\mathsf{R} are variable-length registers as defined in Section 2.1. Note that 𝖢𝗈𝗆𝗉\mathsf{Comp} is a partial isometry by Claim 7.

6.2 How 𝗉𝖿𝖮\mathsf{pfO} acts on the 𝗉𝖿\mathsf{pf}-relation states

Claim 8 (Action of 𝗉𝖿𝖮\mathsf{pfO}).

For any (L,R)2,dist(L,R)\in\mathcal{R}^{2,\operatorname{{dist}}} and x[N]x\in[N] such that xDom(LR)x\not\in\operatorname{Dom}(L\cup R), we have

𝗉𝖿𝖮|x𝖠|𝗉𝖿L,R𝖯𝖥=1N|LR|y[N]:yIm(LR)|y𝖠|𝗉𝖿L{(x,y)},R𝖯𝖥.\displaystyle\mathsf{pfO}\ket*{x}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\ket*{\mathsf{pf}_{L,R}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}}=\frac{1}{\sqrt{N-\absolutevalue{L\cup R}}}\sum_{\begin{subarray}{c}y\in[N]:\\ y\not\in\imaginary(L\cup R)\end{subarray}}\ket*{y}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\ket*{\mathsf{pf}_{L\cup\{(x,y)\},R}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}}. (6.14)

Similarly, for any (L,R)2,dist(L,R)\in\mathcal{R}^{2,\operatorname{{dist}}} and y[N]y\in[N] such that yIm(LR)y\not\in\imaginary(L\cup R), we have

𝗉𝖿𝖮|y𝖠|𝗉𝖿L,R𝖯𝖥=1N|LR|x[N]:xDom(LR)|x𝖠|𝗉𝖿L,R{(x,y)}𝖯𝖥.\displaystyle\mathsf{pfO}^{\dagger}\ket*{y}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\ket*{\mathsf{pf}_{L,R}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}}=\frac{1}{\sqrt{N-\absolutevalue{L\cup R}}}\sum_{\begin{subarray}{c}x\in[N]:\\ x\not\in\operatorname{Dom}(L\cup R)\end{subarray}}\ket*{x}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\ket*{\mathsf{pf}_{L,R\cup\{(x,y)\}}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}}. (6.15)
Proof of Claim 8.

Recall that

𝗉𝖿𝖮𝖠𝖯𝖥|x𝖠|π𝖯|f𝖥=y[N]|y𝖠δπ(x)=y|πω3f(x)|f.\displaystyle\mathsf{pfO}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}}\ket*{x}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\ket*{\pi}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}}\ket*{f}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}}=\sum_{y\in[N]}\ket*{y}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\delta_{\pi(x)=y}\ket*{\pi}\omega_{3}^{f(x)}\ket*{f}. (6.16)

Let us write L={(x1,y1),,(x,y)}L=\{(x_{1},y_{1}),\dots,(x_{\ell},y_{\ell})\} and R={(x1,y1),,(xr,yr)}R=\{(x^{\prime}_{1},y^{\prime}_{1}),\dots,(x^{\prime}_{r},y^{\prime}_{r})\}. Then

|𝗉𝖿L,R𝖯𝖥=1(Nr)!π𝖲𝗒𝗆Nδπ,LR|π𝖯13Nf{0,1,2}Nω3f(x1)++f(x)f(x1)f(xr))|f𝖥,\displaystyle\ket*{\mathsf{pf}_{L,R}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}}=\frac{1}{\sqrt{(N-\ell-r)!}}\sum_{\pi\in\mathsf{Sym}_{N}}\delta_{\pi,L\cup R}\ket*{\pi}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}}\frac{1}{\sqrt{3^{N}}}\sum_{f\in\{0,1,2\}^{N}}\omega_{3}^{f(x_{1})+\cdots+f(x_{\ell})-f(x^{\prime}_{1})-\cdots-f(x^{\prime}_{r}))}\ket*{f}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}}, (6.17)

Thus, we have

𝗉𝖿𝖮𝖠𝖯𝖥|x𝖠|𝗉𝖿L,R𝖯𝖥\displaystyle\mathsf{pfO}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}}\ket*{x}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\ket*{\mathsf{pf}_{L,R}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}} (6.18)
=y[N]|y𝖠1(Nr)!π𝖲𝗒𝗆Nδπ(x)=yδπ,LR|π𝖯\displaystyle=\sum_{y\in[N]}\ket*{y}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\frac{1}{\sqrt{(N-\ell-r)!}}\sum_{\pi\in\mathsf{Sym}_{N}}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\delta_{\pi(x)=y}}\cdot\delta_{\pi,L\cup R}\ket*{\pi}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}}
13Nf{0,1,2}Nω3f(x1)++f(x)+f(x)f(x1)f(xr))|f𝖥.\displaystyle\quad\frac{1}{\sqrt{3^{N}}}\sum_{f\in\{0,1,2\}^{N}}\omega_{3}^{f(x_{1})+\cdots+f(x_{\ell})+{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}f(x)}-f(x^{\prime}_{1})-\cdots-f(x^{\prime}_{r}))}\ket*{f}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}}. (6.19)

In this sum, |y\ket*{y} has a coefficient of 0 whenever yIm(LR)y\in\imaginary(L\cup R), since in that case the constraints that δπ,LR\delta_{\pi,L\cup R} and δπ(x)=y\delta_{\pi(x)=y} are impossible to satisfy since xDom(LR)x\not\in\operatorname{Dom}(L\cup R), and thus satisfying both constraints would require yy to have two different preimages under the permutation π\pi. We can therefore rewrite the above sum as

𝗉𝖿𝖮𝖠𝖯𝖥|x𝖠|𝗉𝖿L,R𝖯𝖥\displaystyle\mathsf{pfO}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}}\ket*{x}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\ket*{\mathsf{pf}_{L,R}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}} (6.20)
=1Nry[N]:yIm(LR)|y𝖠1(N1r)!π𝖲𝗒𝗆Nδπ,L{(x,y)}R|π𝖯\displaystyle=\frac{1}{\sqrt{N-\ell-r}}\sum_{\begin{subarray}{c}y\in[N]:\\ y\not\in\imaginary(L\cup R)\end{subarray}}\ket*{y}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\frac{1}{\sqrt{(N-\ell-1-r)!}}\sum_{\pi\in\mathsf{Sym}_{N}}\delta_{\pi,L\cup\{(x,y)\}\cup R}\ket*{\pi}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}}
13Nf{0,1,2}Nω3f(x1)++f(x)+f(x)f(x1)f(xr))|f𝖥\displaystyle\quad\frac{1}{\sqrt{3^{N}}}\sum_{f\in\{0,1,2\}^{N}}\omega_{3}^{f(x_{1})+\cdots+f(x_{\ell})+f(x)-f(x^{\prime}_{1})-\cdots-f(x^{\prime}_{r}))}\ket*{f}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}} (6.21)
=1Nry[N]|y𝖠|𝗉𝖿L{(x,y)},R𝖯𝖥.\displaystyle=\frac{1}{\sqrt{N-\ell-r}}\sum_{y\in[N]}\ket*{y}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\ket*{\mathsf{pf}_{L\cup\{(x,y)\},R}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}}. (6.22)

This completes the proof of Eq. 6.14. Since 𝗉𝖿𝖮\mathsf{pfO}^{\dagger} applies the map

𝗉𝖿𝖮|y𝖠|π|f\displaystyle\mathsf{pfO}^{\dagger}\ket*{y}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\ket*{\pi}\ket*{f} =x[N]|x𝖠δπ(x)=y|πω3f(x)|f,\displaystyle=\sum_{x\in[N]}\ket*{x}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\delta_{\pi(x)=y}\ket*{\pi}\omega_{3}^{-f(x)}\ket*{f}, (6.23)

the proof for Eq. 6.15 follows by a symmetric argument. ∎

7 The partial path-recording oracle WW

In the previous section, we proved Claim 8, which partially characterizes how the unitaries 𝗉𝖿𝖮\mathsf{pfO} and 𝗉𝖿𝖮\mathsf{pfO}^{\dagger} act in terms of states |x𝖠|𝗉𝖿L,R𝖯𝖥\ket*{x}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\ket*{\mathsf{pf}_{L,R}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}}. We also proved that there exists an isometry 𝖢𝗈𝗆𝗉\mathsf{Comp} that maps |𝗉𝖿L,R𝖯𝖥\ket*{\mathsf{pf}_{L,R}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}} to |L𝖫|R𝖱\ket*{L}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}}\ket*{R}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}} for all pairs of relations L,RL,R such that their union LRL\cup R is a bijective relation. In this section, we will define a linear operator WW that we call the partial path recording oracle. This WW operator, up to isometry, implements a restricted version of the 𝗉𝖿𝖮\mathsf{pfO} operator. In particular, we have the following.

  • On states of the form |x𝖠|L𝖫|R𝖱\ket*{x}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\ket*{L}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}}\ket*{R}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}} such that LRL\cup R is a bijection and xDom(LR)x\not\in\operatorname{Dom}(L\cup R), the linear map WW performs exactly the same map as 𝗉𝖿𝖮\mathsf{pfO} (up to isometry).

  • On states of the form |y𝖠|L𝖫|R𝖱\ket*{y}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\ket*{L}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}}\ket*{R}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}} such that LRL\cup R is a bijection and yIm(LR)y\not\in\imaginary(L\cup R), the linear map WW^{\dagger} performs exactly the same map as 𝗉𝖿𝖮\mathsf{pfO}^{\dagger} (up to isometry).

In the above, “up to isometry” refers to the isometry 𝖢𝗈𝗆𝗉\mathsf{Comp} that maps |𝗉𝖿L,R𝖯𝖥\ket*{\mathsf{pf}_{L,R}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}} to |L𝖫|R𝖱\ket*{L}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}}\ket*{R}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}. Formally, the registers 𝖫\mathsf{L} and 𝖱\mathsf{R} are both variable-length registers that store the two relations LL and RR. We refer the reader to Sections 2.1.1 and 2.1 in the Preliminaries section for our definitions of variable-length registers, relations, and relation states.

The role of the WW operator in our proof.

Looking ahead to our main proof, we will show that if C,DC,D are sampled from any nn-qubit 22-design, then an adversary (making both forward and inverse queries) cannot distinguish between an oracle that implements D𝖠𝗉𝖿𝖮C𝖠D_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\cdot\mathsf{pfO}\cdot C_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}} and an oracle that implements D𝖠WC𝖠D_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\cdot W\cdot C_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}, except with negligible advantage. Thus, even though WW only behaves like (a compressed version of) 𝗉𝖿𝖮\mathsf{pfO} on a restricted subspace, we will show that the twirling of C,DC,D prevents the adversary from detecting the difference.

In the next section, we will show that the WW operator can also be seen as a restricted version of another linear operator VV that we call the path-recording oracle. The connection between WW and VV plays a crucial role in our proof; see Section 8 for further discussion.

7.1 Defining WLW^{L} and WRW^{R}

Before we define WW, we will first define helper operators WLW^{L} and WRW^{R}. The WLW^{L} operator is defined to capture the (partial) characterization of 𝗉𝖿𝖮\mathsf{pfO} given in Eq. 6.14, while WRW^{R} is defined to capture the (partial) characterization of 𝗉𝖿𝖮\mathsf{pfO}^{\dagger} given in Eq. 6.15.

Definition 22 (WLW^{L} and WRW^{R}).

Define WLW^{L} to be the linear map such that for any (L,R)2,dist(L,R)\in\mathcal{R}^{2,\operatorname{{dist}}} and x[N]x\in[N] such that xDom(LR)x\not\in\operatorname{Dom}(L\cup R),

WL|x𝖠|L𝖫|R𝖱1N|LR|y[N]:yIm(LR)|y𝖠|L{(x,y)}𝖫|R𝖱.\displaystyle W^{L}\cdot\ket*{x}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\ket*{L}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}}\ket*{R}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\coloneqq\frac{1}{\sqrt{N-\absolutevalue{L\cup R}}}\sum_{\begin{subarray}{c}y\in[N]:\\ y\not\in\imaginary(L\cup R)\end{subarray}}\ket*{y}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\ket*{L\cup\{(x,y)\}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}}\ket*{R}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}. (7.1)

Similarly, define WRW^{R} be the linear map such that for any (L,R)2,dist(L,R)\in\mathcal{R}^{2,\operatorname{{dist}}} and y[N]y\in[N] such that yIm(LR)y\not\in\imaginary(L\cup R),

WR|y𝖠|L𝖫|R𝖱1N|LR|x[N]:xDom(LR)|x𝖠|L𝖫|R{(x,y)}𝖱.\displaystyle W^{R}\cdot\ket*{y}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\ket*{L}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}}\ket*{R}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\coloneqq\frac{1}{\sqrt{N-\absolutevalue{L\cup R}}}\sum_{\begin{subarray}{c}x\in[N]:\\ x\not\in\operatorname{Dom}(L\cup R)\end{subarray}}\ket*{x}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\ket*{L}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}}\ket*{R\cup\{(x,y)\}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}. (7.2)

It is useful to define the following projectors to describe the actions of WL,WRW^{L},W^{R}.

Definition 23 (Bijective-relation projectors).

Define the projectors

Π𝖻𝗂𝗃𝖫𝖱:-(L,R)2,dist|LL|𝖫|RR|𝖱,Π𝖻𝗂𝗃t,𝖫𝖱:-Π𝖻𝗂𝗃𝖫𝖱Πt,𝖫𝖱=Πt,𝖫𝖱Π𝖻𝗂𝗃𝖫𝖱,\displaystyle\Pi^{\mathsf{bij}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\coloneq\sum_{(L,R)\in\mathcal{R}^{2,\operatorname{{dist}}}}\outerproduct*{L}{L}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}}\otimes\outerproduct*{R}{R}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}},\quad\quad\Pi^{\mathsf{bij}}_{\leq t,{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\coloneq\Pi^{\mathsf{bij}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\cdot\Pi_{\leq t,{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}=\Pi_{\leq t,{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\cdot\Pi^{\mathsf{bij}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}, (7.3)

where the projector Πt,𝖫𝖱\Pi_{\leq t,{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}} is the maximum-length projector defined in 8.

By the definition of WLW^{L} and WRW^{R}, we have the following fact about the action of WLW^{L} and WRW^{R} on states with a bounded length.

Fact 5.

For any integer i0i\geq 0, WL,WRW^{L},W^{R} map states in the subspace associated to the projector 𝖨𝖽𝖠Π𝖻𝗂𝗃i,𝖫𝖱\mathsf{Id}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\otimes\Pi^{\mathsf{bij}}_{\leq i,{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}} into the subspace associated with the projector 𝖨𝖽𝖠Π𝖻𝗂𝗃i+1,𝖫𝖱\mathsf{Id}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\otimes\Pi^{\mathsf{bij}}_{\leq i+1,{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}.

The following property follows from the relation between WL,WRW^{L},W^{R} and 𝗉𝖿𝖮,𝗉𝖿𝖮\mathsf{pfO},\mathsf{pfO}^{\dagger}.

Claim 9.

WLW^{L} and WRW^{R} are both partial isometries.

Proof.

Since 𝗉𝖿𝖮\mathsf{pfO} is a unitary operator, the operator obtained by restricting the domain of 𝗉𝖿𝖮\mathsf{pfO} to the span of the states |x|𝗉𝖿L,R\ket*{x}\ket*{\mathsf{pf}_{L,R}} is a partial isometry. Up to relabeling |𝗉𝖿L,R\ket*{\mathsf{pf}_{L,R}} as |L,R\ket*{L,R} (i.e., applying the partial isometry 𝖢𝗈𝗆𝗉\mathsf{Comp}), this is WLW^{L}. Similarly, 𝗉𝖿𝖮\mathsf{pfO}^{\dagger} is a unitary, and the operator obtained by restricting 𝗉𝖿𝖮\mathsf{pfO}^{\dagger} to the span of states |y|𝗉𝖿L,R\ket*{y}\ket*{\mathsf{pf}_{L,R}} is a partial isometry. Up to relabeling |𝗉𝖿L,R\ket*{\mathsf{pf}_{L,R}} as |L,R\ket*{L,R}, this is WRW^{R}. ∎

Notation 12.

For a partial isometry GG, let 𝒟(G)\mathcal{D}(G) and (G)\mathcal{I}(G) denote its domain and image. Let Π𝒟(G)=GG\Pi^{\mathcal{D}(G)}=G^{\dagger}\cdot G and Π(G)=GG\Pi^{\mathcal{I}(G)}=G\cdot G^{\dagger} denote the orthogonal projectors onto 𝒟(G)\mathcal{D}(G) and (G)\mathcal{I}(G).

Claim 10.

For all integers t0t\geq 0, Πt\Pi_{\leq t} commutes with Π𝒟(WL)\Pi^{\mathcal{D}(W^{L})}, Π(WL)\Pi^{\mathcal{I}(W^{L})}, Π𝒟(WR)\Pi^{\mathcal{D}(W^{R})}, and Π(WR)\Pi^{\mathcal{I}(W^{R})}.

Proof.

By 5, Π𝒟(WL)=WL,WL\Pi^{\mathcal{D}(W^{L})}=W^{L,\dagger}\cdot W^{L} maps states from 𝖨𝖽𝖠Π𝖻𝗂𝗃t,𝖫𝖱\mathsf{Id}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\otimes\Pi^{\mathsf{bij}}_{\leq t,{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}} to 𝖨𝖽𝖠Π𝖻𝗂𝗃t,𝖫𝖱\mathsf{Id}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\otimes\Pi^{\mathsf{bij}}_{\leq t,{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}} for t0t\geq 0. This implies that Π𝒟(WL)\Pi^{\mathcal{D}(W^{L})} commutes with Πt\Pi_{\leq t} for all t0t\geq 0. By 5, Π(WL)=WLWL,\Pi^{\mathcal{I}(W^{L})}=W^{L}\cdot W^{L,\dagger} maps states from 𝖨𝖽𝖠Π𝖻𝗂𝗃t+1,𝖫𝖱\mathsf{Id}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\otimes\Pi^{\mathsf{bij}}_{\leq t+1,{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}} to 𝖨𝖽𝖠Π𝖻𝗂𝗃t+1,𝖫𝖱\mathsf{Id}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\otimes\Pi^{\mathsf{bij}}_{\leq t+1,{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}} for t+10t+1\geq 0. This implies that Π𝒟(WL)\Pi^{\mathcal{D}(W^{L})} commutes with Πt\Pi_{\leq t} for all t1t\geq 1. Additionally, Π(WL)=WLWL,\Pi^{\mathcal{I}(W^{L})}=W^{L}\cdot W^{L,\dagger} has no support on Π0\Pi_{\leq 0}, and thus it commutes with Π0\Pi_{\leq 0}. By symmetric arguments, we obtain the analogous statements for WRW^{R}. ∎

It will be useful to state the connection between the WL,WRW^{L},W^{R}, and 𝗉𝖿𝖮\mathsf{pfO} more formally.

Fact 6.

We have

WL\displaystyle W^{L} =𝖢𝗈𝗆𝗉𝗉𝖿𝖮𝖢𝗈𝗆𝗉Π𝒟(WL)=Π(WL)𝖢𝗈𝗆𝗉𝗉𝖿𝖮𝖢𝗈𝗆𝗉,\displaystyle=\mathsf{Comp}\cdot\mathsf{pfO}\cdot\mathsf{Comp}^{\dagger}\cdot\Pi^{\mathcal{D}(W^{L})}=\Pi^{\mathcal{I}(W^{L})}\cdot\mathsf{Comp}\cdot\mathsf{pfO}\cdot\mathsf{Comp}^{\dagger}, (7.4)
WR\displaystyle W^{R} =𝖢𝗈𝗆𝗉𝗉𝖿𝖮𝖢𝗈𝗆𝗉Π𝒟(WR)=Π(WR)𝖢𝗈𝗆𝗉𝗉𝖿𝖮𝖢𝗈𝗆𝗉.\displaystyle=\mathsf{Comp}\cdot\mathsf{pfO}^{\dagger}\cdot\mathsf{Comp}^{\dagger}\cdot\Pi^{\mathcal{D}(W^{R})}=\Pi^{\mathcal{I}(W^{R})}\cdot\mathsf{Comp}\cdot\mathsf{pfO}^{\dagger}\cdot\mathsf{Comp}^{\dagger}. (7.5)

7.2 Defining WW

We now use WLW^{L} and WRW^{R} to define the partial path-recording oracle WW.

Definition 24.

The partial path-recording oracle is the operator WW defined as

WWL+WR,.W\coloneqq W^{L}+W^{R,\dagger}. (7.6)

From 5, we immediately obtain the following fact.

Fact 7.

𝒟(W)\mathcal{D}(W), (W)\mathcal{I}(W) are subspaces of the image of 𝖨𝖽𝖠Π𝖻𝗂𝗃𝖫𝖱\mathsf{Id}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\otimes\Pi^{\mathsf{bij}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}. Moreover, for any integer i0i\geq 0, WW and WW^{\dagger} map states in the subspace associated to the projector 𝖨𝖽𝖠Π𝖻𝗂𝗃i,𝖫𝖱\mathsf{Id}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\otimes\Pi^{\mathsf{bij}}_{\leq i,{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}} into the subspace associated with the projector 𝖨𝖽𝖠Π𝖻𝗂𝗃i+1,𝖫𝖱\mathsf{Id}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\otimes\Pi^{\mathsf{bij}}_{\leq i+1,{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}.

Claim 11.

WW is a partial isometry.

Proof of Claim 11.

Since WLW^{L} and WRW^{R} (and hence WR,W^{R,\dagger}) are partial isometries, the operator W=WL+WR,W=W^{L}+W^{R,\dagger} is a partial isometry as long as both of the following are true:

  • The subspaces 𝒟(WL)\mathcal{D}(W^{L}) and 𝒟(WR,)=(WR)\mathcal{D}(W^{R,\dagger})=\mathcal{I}(W^{R}) are orthogonal, i.e., WW is a sum of two partial isometries with orthogonal domains.

  • The subspaces (WL)\mathcal{I}(W^{L}) and (WR,)=𝒟(WR)\mathcal{I}(W^{R,\dagger})=\mathcal{D}(W^{R}) are orthogonal, i.e., WW is a sum of two partial isometries with orthogonal images.

𝒟(WL)\mathcal{D}(W^{L}) and (WR)\mathcal{I}(W^{R}) are orthogonal because 𝒟(WL)\mathcal{D}(W^{L}) is only supported on states |x|L|R\ket*{x}\ket*{L}\ket*{R} where xDom(LR)x\not\in\operatorname{Dom}(L\cup R), while (WR)\mathcal{I}(W^{R}) is only supported on states |x|L|R\ket*{x}\ket*{L}\ket*{R} where xDom(LR)x\in\operatorname{Dom}(L\cup R) (this can be seen by inspecting the right-hand-side of Eq. 7.2). A symmetric argument shows that 𝒟(WR)\mathcal{D}(W^{R}) and (WL)\mathcal{I}(W^{L}) are also orthogonal, which completes the proof. ∎

In fact, our proof of Claim 11 establishes the following relationship between the domain and image of WW and the domain and image of WLW^{L} and WRW^{R}.

Fact 8.

The domain and image of WW are given by

Π𝒟(W)\displaystyle\Pi^{\mathcal{D}(W)} =Π𝒟(WL)+Π(WR),\displaystyle=\Pi^{\mathcal{D}(W^{L})}+\Pi^{\mathcal{I}(W^{R})}, (7.7)
Π(W)\displaystyle\Pi^{\mathcal{I}(W)} =Π𝒟(WR)+Π(WL).\displaystyle=\Pi^{\mathcal{D}(W^{R})}+\Pi^{\mathcal{I}(W^{L})}. (7.8)
Claim 12.

For all integers t0t\geq 0, Πt\Pi_{\leq t} commutes with Π𝒟(W)\Pi^{\mathcal{D}(W)} and Π(W)\Pi^{\mathcal{I}(W)}.

Proof.

This follows immediately from Claim 10, which states that the projector Πt\Pi_{\leq t} commutes with the projectors Π𝒟(WL)\Pi^{\mathcal{D}(W^{L})}, Π(WL)\Pi^{\mathcal{I}(W^{L})}, Π𝒟(WR)\Pi^{\mathcal{D}(W^{R})}, Π(WR)\Pi^{\mathcal{I}(W^{R})}. ∎

Corollary 7.1.

For all integers t0t\geq 0, the image of Π𝒟(W)t,𝖠𝖫𝖱\Pi^{\mathcal{D}(W)}_{\leq t,{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}} is a subspace of the image of 𝖨𝖽𝖠Π𝖻𝗂𝗃t,𝖫𝖱\mathsf{Id}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\otimes\Pi^{\mathsf{bij}}_{\leq t,{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}. Similarly, the image of Π(W)t,𝖠𝖫𝖱\Pi^{\mathcal{I}(W)}_{\leq t,{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}} is a subspace of the image of 𝖨𝖽𝖠Π𝖻𝗂𝗃t,𝖫𝖱\mathsf{Id}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\otimes\Pi^{\mathsf{bij}}_{\leq t,{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}.

Using 8, we can now establish the following relationship between WW and 𝗉𝖿𝖮\mathsf{pfO}.

Claim 13 (WW is a restriction of 𝗉𝖿𝖮\mathsf{pfO} up to isometry).

We have

W\displaystyle W =𝖢𝗈𝗆𝗉𝗉𝖿𝖮𝖢𝗈𝗆𝗉Π𝒟(W),\displaystyle=\mathsf{Comp}\cdot\mathsf{pfO}\cdot\mathsf{Comp}^{\dagger}\cdot\Pi^{\mathcal{D}(W)}, (7.9)
W\displaystyle W^{\dagger} =𝖢𝗈𝗆𝗉𝗉𝖿𝖮𝖢𝗈𝗆𝗉Π(W).\displaystyle=\mathsf{Comp}\cdot\mathsf{pfO}^{\dagger}\cdot\mathsf{Comp}^{\dagger}\cdot\Pi^{\mathcal{I}(W)}. (7.10)

In words, Claim 13 says that for any state in 𝒟(W)\mathcal{D}(W), the domain of WW, the action of WW is the same as 𝗉𝖿𝖮\mathsf{pfO} up to isometry. Additionally, it says that for any state in the image in (W)\mathcal{I}(W), the image of WW, the action of WW^{\dagger} is the same as 𝗉𝖿𝖮\mathsf{pfO}^{\dagger} up to isometry.

Proof of Claim 13.

We will prove the first equality, Eq. 7.9; the second equality, Eq. 7.10, follows from a symmetric argument. From Eq. 7.4 and Eq. 7.5, we have

𝖢𝗈𝗆𝗉𝗉𝖿𝖮𝖢𝗈𝗆𝗉Π𝒟(WL)\displaystyle\mathsf{Comp}\cdot\mathsf{pfO}\cdot\mathsf{Comp}^{\dagger}\cdot\Pi^{\mathcal{D}(W^{L})} =WL,\displaystyle=W^{L}, (7.11)
𝖢𝗈𝗆𝗉𝗉𝖿𝖮𝖢𝗈𝗆𝗉Π(WR)\displaystyle\mathsf{Comp}\cdot\mathsf{pfO}\cdot\mathsf{Comp}^{\dagger}\cdot\Pi^{\mathcal{I}(W^{R})} =WR,.\displaystyle=W^{R,\dagger}. (7.12)

Summing Eqs. 7.11 and 7.12 yields

𝖢𝗈𝗆𝗉𝗉𝖿𝖮𝖢𝗈𝗆𝗉(Π𝒟(WL)+Π(WR))=WL+WR,,\displaystyle\mathsf{Comp}\cdot\mathsf{pfO}\cdot\mathsf{Comp}^{\dagger}\cdot(\Pi^{\mathcal{D}(W^{L})}+\Pi^{\mathcal{I}(W^{R})})=W^{L}+W^{R,\dagger}, (7.13)

and plugging in Π𝒟(W)=Π𝒟(WL)+Π(WR)\Pi^{\mathcal{D}(W)}=\Pi^{\mathcal{D}(W^{L})}+\Pi^{\mathcal{I}(W^{R})} from Eq. 7.7 and W=WL+WR,W=W^{L}+W^{R,\dagger} yields Eq. 7.9. ∎

8 The path-recording oracle VV

In the previous section, we defined a linear operator WW and showed that WW acts as a restricted version of 𝗉𝖿𝖮\mathsf{pfO}, up to an application of the 𝖢𝗈𝗆𝗉\mathsf{Comp} isometry. In this section, we will introduce a second linear operator VV, which will satisfy a number of key properties that will be crucial for our proof. We will show that VV satisfies the following properties:

  • VV is indistinguishable from WW under twirling, i.e., for C,DC,D sampled from any nn-qubit unitary 22-design 𝔇\mathfrak{D}, an adversary making forward and inverse queries cannot distinguish between queries to D𝖠VC𝖠D_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\cdot V\cdot C_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}} and queries to D𝖠WC𝖠D_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\cdot W\cdot C_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}.

  • VV satisfies approximate unitary invariance, which we will use to conclude the following: an adversary making forward and inverse queries cannot distinguish between queries to D𝖠VC𝖠D_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\cdot V\cdot C_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}} for C,DC,D sampled from any nn-qubit unitary 22-design 𝔇\mathfrak{D}, and plain queries to VV.666For technical reasons, our main proof will handle both of these bullets in one argument.

We will refer to VV as the path-recording oracle. We remark that this definition of VV is different from the one given in Part I, as this VV will need to be designed to handle forward and inverse queries. In LABEL:subsec:imp-forward-inverse-q we describe how to implement VV efficiently.

8.1 Defining VLV^{L} and VRV^{R}

To define VV, we first introduce helper operators VLV^{L} and VRV^{R}.

Definition 25 (left and right partial isometries).

Let VLV^{L} be the linear operator that acts as follows. For x[N]x\in[N] and (L,R)2,N1(L,R)\in\mathcal{R}^{2,\leq N-1},

VL|x𝖠|L𝖫|R𝖱y[N]:yIm(LR)1N|Im(LR)||y𝖠|L{(x,y)}𝖫|R𝖱.\displaystyle V^{L}\cdot\ket*{x}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\ket*{L}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}}\ket*{R}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\coloneqq\sum_{\begin{subarray}{c}y\in[N]:\\ y\not\in\imaginary(L\cup R)\end{subarray}}\frac{1}{\sqrt{N-\absolutevalue{\imaginary(L\cup R)}}}\ket*{y}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\ket*{L\cup\{(x,y)\}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}}\ket*{R}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}. (8.1)

Define VRV^{R} to be the linear operator such that for all y[N]y\in[N] and (L,R)2,N1(L,R)\in\mathcal{R}^{2,\leq N-1},

VR|y𝖠|L𝖫|R𝖱x[N]:xDom(LR)1N|Dom(LR)||x𝖠|L𝖫|R{(x,y)}𝖱.\displaystyle V^{R}\cdot\ket*{y}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\ket*{L}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}}\ket*{R}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\coloneqq\sum_{\begin{subarray}{c}x\in[N]:\\ x\not\in\operatorname{Dom}(L\cup R)\end{subarray}}\frac{1}{\sqrt{N-\absolutevalue{\operatorname{Dom}(L\cup R)}}}\ket*{x}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\ket*{L}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}}\ket*{R\cup\{(x,y)\}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}. (8.2)

By construction, VLV^{L} and VRV^{R} take states in 𝖨𝖽𝖠Π2i,𝖫𝖱\mathsf{Id}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\otimes\Pi^{\mathcal{R}^{2}}_{\leq i,{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}} to 𝖨𝖽𝖠Π2i+1,𝖫𝖱\mathsf{Id}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\otimes\Pi^{\mathcal{R}^{2}}_{\leq i+1,{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}.

Why these definitions of VLV^{L} and VRV^{R}?

On states of the form |x|L|R\ket*{x}\ket*{L}\ket*{R} within the domain of WLW^{L}, the operators WLW^{L} and VLV^{L} act in the same way. However, the domain of WLW^{L} is limited to states |x|L|R\ket*{x}\ket*{L}\ket*{R} where LRL\cup R forms a bijection and xDom(LR)x\notin\operatorname{Dom}(L\cup R) (which also implies that |LR|N1\absolutevalue{L\cup R}\leq N-1). On the other hand, the definition of VLV^{L} extends WLW^{L} so that it acts on all |x|L|R\ket*{x}\ket*{L}\ket*{R} satisfying |LR|N1\absolutevalue{L\cup R}\leq N-1. In particular, we have dropped the requirement that LRL\cup R is a bijection and that xDom(LR)x\not\in\operatorname{Dom}(L\cup R). An analogous relationship holds between VRV^{R} and WRW^{R}. We define these extended operators, VLV^{L} and VRV^{R}, to establish a property known as (approximate) unitary invariance (see Claim 23). Importantly, this property holds only for the extended operators VLV^{L} and VRV^{R}, and not for the original WLW^{L} and WRW^{R} operators.

Claim 14.

VLV^{L} and VRV^{R} are partial isometries.

Proof.

We will give the proof for VLV^{L}; the proof for VRV^{R} follows by a symmetric argument. VLV^{L} is a partial isometry if and only if VLVL,V^{L}\cdot V^{L,\dagger} is the orthogonal projector onto 𝒟(VL)\mathcal{D}(V^{L}). From the definition of VLV^{L}, we can see that its domain is

𝒟(VL)=span{|x𝖠|L𝖫|R𝖱:x[N],(L,R)2,N1}.\displaystyle\mathcal{D}(V^{L})=\mathrm{span}\{\ket*{x}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\ket*{L}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}}\ket*{R}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}:x\in[N],(L,R)\in\mathcal{R}^{2,\leq N-1}\}. (8.3)

It suffices to show that for all x,x[N]x,x^{\prime}\in[N], and (L,R)2,N1(L,R)\in\mathcal{R}^{2,\leq N-1} and (L,R)2,N1(L^{\prime},R^{\prime})\in\mathcal{R}^{2,\leq N-1} that

x|𝖠L|𝖫R|𝖱VL,VL|x𝖠|L𝖫|R𝖱=x|x𝖠L|L𝖫R|R𝖱.\displaystyle\bra*{x^{\prime}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\bra*{L^{\prime}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}}\bra*{R^{\prime}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\cdot V^{L,\dagger}\cdot V^{L}\cdot\ket*{x}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\ket*{L}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}}\ket*{R}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}=\innerproduct*{x^{\prime}}{x}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\innerproduct*{L^{\prime}}{L}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}}\innerproduct*{R^{\prime}}{R}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}. (8.4)

We can expand out the LHS as

(yIm(LR)y|𝖠Lxy|𝖫R|𝖱N|Im(LR)|)(yIm(LR)|y𝖠|L{(x,y)}𝖫|R𝖱N|Im(LR)|)\displaystyle\Big{(}\sum_{y^{\prime}\not\in\imaginary(L^{\prime}\cup R^{\prime})}\frac{\bra*{y^{\prime}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\bra*{L^{\prime}\cup x^{\prime}y^{\prime}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}}\bra*{R^{\prime}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}}{\sqrt{N-\absolutevalue{\imaginary(L^{\prime}\cup R^{\prime})}}}\Big{)}\cdot\Big{(}\sum_{y\not\in\imaginary(L\cup R)}\frac{\ket*{y}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\ket*{L\cup\{(x,y)\}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}}\ket*{R}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}}{\sqrt{N-\absolutevalue{\imaginary(L\cup R)}}}\Big{)} (8.5)

The summand is zero unless y=yy^{\prime}=y, Lxy=L{(x,y)}L^{\prime}\cup x^{\prime}y^{\prime}=L\cup\{(x,y)\}, and R=RR^{\prime}=R. Combining the first two constraints, we have Lxy=L{(x,y)}L^{\prime}\cup x^{\prime}y=L\cup\{(x,y)\}. Since yy does not appear in either Im(L)\imaginary(L^{\prime}) or Im(L)\imaginary(L), this implies x=xx^{\prime}=x and L=LL^{\prime}=L. This means that the sum is 0 unless x=xx=x^{\prime}, L=LL=L^{\prime} and R=RR=R^{\prime}. When these constraints are satisfied, the sum becomes yIm(LR)1/(N|Im(LR)|)=1\sum_{y\not\in\imaginary(L\cup R)}1/(N-\absolutevalue{\imaginary(L\cup R)})=1. This completes the proof that VLV^{L} is a partial isometry. ∎

8.2 Defining VV

Definition 26.

The path-recording oracle is the operator VV defined as

V\displaystyle V =VL(𝖨𝖽VRVR,)+(𝖨𝖽VLVL,)VR,.\displaystyle=V^{L}\cdot(\mathsf{Id}-V^{R}\cdot V^{R,\dagger})+(\mathsf{Id}-V^{L}\cdot V^{L,\dagger})\cdot V^{R,\dagger}. (8.6)

By construction, VV and VV^{\dagger} take states in 𝖨𝖽𝖠Π2i,𝖫𝖱\mathsf{Id}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\otimes\Pi^{\mathcal{R}^{2}}_{\leq i,{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}} to 𝖨𝖽𝖠Π2i+1,𝖫𝖱\mathsf{Id}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\otimes\Pi^{\mathcal{R}^{2}}_{\leq i+1,{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}} for any integer i0i\geq 0.

Why this definition of VV?

Recall that since we defined WWL+WR,W\coloneqq W^{L}+W^{R,\dagger}, it might seem natural to define VVL+VR,V\coloneqq V^{L}+V^{R,\dagger}. However, if we defined VV this way, it would not be a partial isometry. As we showed in the proof of Claim 11, WL+WR,W^{L}+W^{R,\dagger} is a partial isometry because WLW^{L} and WR,W^{R,\dagger} do not “overlap”, i.e., they are partial isometries with orthogonal domains and orthogonal images . On the other hand, this is not true for VLV^{L} and VR,V^{R,\dagger}. Thus, in order to ensure that VV is a partial isometry, we need to “project out” the overlap between VLV^{L} and VR,V^{R,\dagger}.

Claim 15.

VV is a partial isometry.

Proof.

We will first show that VL(𝖨𝖽VRVR,)V^{L}\cdot(\mathsf{Id}-V^{R}\cdot V^{R,\dagger}) is a partial isometry. This is true if and only if (𝖨𝖽VRVR,)VL,VL(𝖨𝖽VRVR,)(\mathsf{Id}-V^{R}\cdot V^{R,\dagger})\cdot V^{L,\dagger}\cdot V^{L}\cdot(\mathsf{Id}-V^{R}\cdot V^{R,\dagger}) is a projector. To show that this operator is a projector, it suffices to show that Π𝒟(VL)=VL,VL\Pi^{\mathcal{D}(V^{L})}=V^{L,\dagger}\cdot V^{L} and Π(VR)=VRVR,\Pi^{\mathcal{I}(V^{R})}=V^{R}\cdot V^{R,\dagger} commute. From the definition of VLV^{L}, its domain is the image of the projector 𝖨𝖽𝖠Π2N1,𝖫𝖱\mathsf{Id}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\otimes\Pi^{\mathcal{R}^{2}}_{\leq N-1,{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}. Since VRV^{R} takes states in Π2i,𝖫𝖱\Pi^{\mathcal{R}^{2}}_{\leq i,{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}} to Π2i+1,𝖫𝖱\Pi^{\mathcal{R}^{2}}_{\leq i+1,{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}} (for 0iN10\leq i\leq N-1), it follows that VRVR,V^{R}\cdot V^{R,\dagger} takes states in Π2i+1,𝖫𝖱\Pi^{\mathcal{R}^{2}}_{\leq i+1,{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}} to Π2i+1,𝖫𝖱\Pi^{\mathcal{R}^{2}}_{\leq i+1,{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}} (for 0iN10\leq i\leq N-1). In particular, this means it commutes with 𝖨𝖽𝖠Π2N1\mathsf{Id}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\otimes\Pi^{\mathcal{R}^{2}}_{\leq N-1}. Using a symmetric argument, we can conclude that (𝖨𝖽VLVL,)VR,(\mathsf{Id}-V^{L}\cdot V^{L,\dagger})\cdot V^{R,\dagger} is also a partial isometry.

Now, we just need to show that the sum of these two partial isometries is a partial isometry. It suffices to show that their domains are orthogonal and their images are orthogonal. To see that their domains are orthogonal, note that the domain of VL(𝖨𝖽VRVR,)V^{L}\cdot(\mathsf{Id}-V^{R}\cdot V^{R,\dagger}) is a subspace of 𝖨𝖽Π(VR)\mathsf{Id}-\Pi^{\mathcal{I}(V^{R})}, while the domain of (𝖨𝖽VLVL,)VR,(\mathsf{Id}-V^{L}\cdot V^{L,\dagger})\cdot V^{R,\dagger} is a subspace of Π(VR)\Pi^{\mathcal{I}(V^{R})}, and hence they are orthogonal. A symmetric argument shows their images are orthogonal. This completes the proof. ∎

VV being a partial isometry implies that any state generated by an adversary that queries VV and VV^{\dagger} will have a norm at most 11. This is an important property that will be central to our strong PRU proof. Recall that in the standard PRU proof of Part I, the path-recording oracle acts as an isometry on all states that can be generated by querying the path-recording oracle. This first property of VV being a partial isometry is a relaxation of the isometric property of the standard path-recording oracle. While VV is a partial isometry, we will later show that the state generated by an adversary that queries VV and VV^{\dagger} will have a norm close to one for subexponential number of queries.

8.3 Two-sided unitary invariance

The path-recording oracle VV satisfies an (approximate) two-sided unitary invariance property, which we state below.

Definition 27.

For any nn-qubit unitary C,DC,D, define

Q[C,D]\displaystyle Q[C,D] (CDT)𝖫(C¯D)𝖱.\displaystyle\coloneqq(C\otimes D^{T})^{\otimes*}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}}\otimes(\overline{C}\otimes D^{\dagger})^{\otimes*}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}. (8.7)
Claim 16 (two-sided unitary invariance).

For any integer 0tN10\leq t\leq N-1 and any pair of nn-qubit unitaries C,DC,D,

D𝖠VtC𝖠Q[C,D]𝖫𝖱Q[C,D]𝖫𝖱Vtop\displaystyle\norm{D_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\cdot V_{\leq t}\cdot C_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\otimes Q[C,D]_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}-Q[C,D]_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\cdot V_{\leq t}}_{\mathrm{op}} 162t(t+1)N,\displaystyle\leq 16\sqrt{\frac{2t(t+1)}{N}}, (8.8)
C𝖠(V)tD𝖠Q[C,D]𝖫𝖱Q[C,D]𝖫𝖱(V)top\displaystyle\norm{C_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}^{\dagger}\cdot(V^{\dagger})_{\leq t}\cdot D_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}^{\dagger}\otimes Q[C,D]_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}-Q[C,D]_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\cdot(V^{\dagger})_{\leq t}}_{\mathrm{op}} 162t(t+1)N,\displaystyle\leq 16\sqrt{\frac{2t(t+1)}{N}}, (8.9)

Claim 16 is proven in Section 10. The two-sided unitary invariance of VV allows us to move the random unitaries CC and DD acting on system register 𝖠\mathsf{A} to the purifying registers 𝖫,𝖱\mathsf{L},\mathsf{R}.

8.4 WW is a restriction of VV

We now show that WW is a restriction of VV. First, we need the following basic facts relating WL,WR,VLW^{L},W^{R},V^{L}, and VRV^{R} that follow immediately from the definitions of these operators.

Fact 9.

We have

  • WLW^{L} is a restriction of VLV^{L} and WRW^{R} is a restriction of VRV^{R}:

    WL\displaystyle W^{L} =VLΠ𝒟(WL)=Π(WL)VL\displaystyle=V^{L}\cdot\Pi^{\mathcal{D}(W^{L})}=\Pi^{\mathcal{I}(W^{L})}\cdot V^{L} (8.10)
    WR\displaystyle W^{R} =VRΠ𝒟(WR)=Π(WR)VR\displaystyle=V^{R}\cdot\Pi^{\mathcal{D}(W^{R})}=\Pi^{\mathcal{I}(W^{R})}\cdot V^{R} (8.11)
  • The image of VRV^{R} is in the kernel of WLW^{L}, and the image of VLV^{L} is in the kernel of WRW^{R}, i.e.,

    WLVR=WRVL\displaystyle W^{L}\cdot V^{R}=W^{R}\cdot V^{L} =0,\displaystyle=0, (8.12)
Lemma 8.1.

If Π1\Pi_{1} and Π2\Pi_{2} are projectors, and Π1=Π1Π2Π1\Pi_{1}=\Pi_{1}\Pi_{2}\Pi_{1} then Π1\Pi_{1} is a subspace of Π2\Pi_{2}.

Proof.

Consider any normalized state |ψΠ1\ket*{\psi}\in\Pi_{1}, i.e., Π1|ψ=|ψ\Pi_{1}\ket*{\psi}=\ket*{\psi}. We have the following identity,

1=ψ|Π1|ψ=ψ|Π1Π2Π1|ψ=ψ|Π2|ψ.1=\bra*{\psi}\Pi_{1}\ket*{\psi}=\bra*{\psi}\Pi_{1}\Pi_{2}\Pi_{1}\ket*{\psi}=\bra*{\psi}\Pi_{2}\ket*{\psi}. (8.13)

Because Π2\Pi_{2} is a projector and ψ|Π2|ψ=1\bra*{\psi}\Pi_{2}\ket*{\psi}=1, we have |ψΠ2\ket*{\psi}\in\Pi_{2}. ∎

Lemma 8.2.

Consider any partial isometries V1,V2V_{1},V_{2}. If V2=V1Π𝒟(V2)V_{2}=V_{1}\cdot\Pi^{\mathcal{D}(V_{2})}, then 𝒟(V2)\mathcal{D}(V_{2}) is a subspace of 𝒟(V1)\mathcal{D}(V_{1}). And if V2=Π(V2)V1V_{2}=\Pi^{\mathcal{I}(V_{2})}\cdot V_{1}, then (V2)\mathcal{I}(V_{2}) is a subspace of (V1)\mathcal{I}(V_{1}).

Proof.

From V2=V1Π𝒟(V2)V_{2}=V_{1}\cdot\Pi^{\mathcal{D}(V_{2})}, we have

Π𝒟(V2)=V2V2=Π𝒟(V2)V1V1Π𝒟(V2)=Π𝒟(V2)Π𝒟(V1)Π𝒟(V2).\Pi^{\mathcal{D}(V_{2})}=V_{2}^{\dagger}\cdot V_{2}=\Pi^{\mathcal{D}(V_{2})}\cdot V_{1}^{\dagger}\cdot V_{1}\cdot\Pi^{\mathcal{D}(V_{2})}=\Pi^{\mathcal{D}(V_{2})}\cdot\Pi^{\mathcal{D}(V_{1})}\cdot\Pi^{\mathcal{D}(V_{2})}. (8.14)

Hence from Lemma 8.1, we have 𝒟(V2)\mathcal{D}(V_{2}) is a subspace of 𝒟(V1)\mathcal{D}(V_{1}).

From V2=Π(V2)V1V_{2}=\Pi^{\mathcal{I}(V_{2})}\cdot V_{1}, we have

Π(V2)=V2V2=Π(V2)V1V1Π(V2)=Π(V2)Π(V1)Π(V2).\Pi^{\mathcal{I}(V_{2})}=V_{2}\cdot V_{2}^{\dagger}=\Pi^{\mathcal{I}(V_{2})}\cdot V_{1}\cdot V_{1}^{\dagger}\cdot\Pi^{\mathcal{I}(V_{2})}=\Pi^{\mathcal{I}(V_{2})}\cdot\Pi^{\mathcal{I}(V_{1})}\cdot\Pi^{\mathcal{I}(V_{2})}. (8.15)

Hence from Lemma 8.1, we have (V2)\mathcal{I}(V_{2}) is a subspace of (V1)\mathcal{I}(V_{1}). ∎

Corollary 8.1.

(WL)\mathcal{I}(W^{L}) is a subspace of (VL)\mathcal{I}(V^{L}). And (WR)\mathcal{I}(W^{R}) is a subspace of (VR)\mathcal{I}(V^{R}).

Proof.

This follows immediately from Eq. 8.10, Eq. 8.11, and Lemma 8.2. ∎

Claim 17 (WW is a restriction of VV).

We have

W\displaystyle W =VΠ𝒟(W),\displaystyle=V\cdot\Pi^{\mathcal{D}(W)}, (8.16)
W\displaystyle W^{\dagger} =VΠ(W).\displaystyle=V^{\dagger}\cdot\Pi^{\mathcal{I}(W)}. (8.17)

In words, Claim 17 says that for any state in 𝒟(W)\mathcal{D}(W), the domain of WW, the action of WW is the same as VV. Additionally, it says that for any state in the image in (W)\mathcal{I}(W), the image of WW, the action of WW^{\dagger} is the same as VV^{\dagger}.

Proof of Claim 17.

To prove Eq. 8.16, it suffices to show that

VΠ𝒟(WL)\displaystyle V\cdot\Pi^{\mathcal{D}(W^{L})} =WL,\displaystyle=W^{L}, (8.18)
VΠ(WR)\displaystyle V\cdot\Pi^{\mathcal{I}(W^{R})} =WR,.\displaystyle=W^{R,\dagger}. (8.19)

This is because summing these two equations gives

V(Π𝒟(WL)+Π(WR))=WL+WR,,\displaystyle V\cdot(\Pi^{\mathcal{D}(W^{L})}+\Pi^{\mathcal{I}(W^{R})})=W^{L}+W^{R,\dagger}, (8.20)

and plugging in Π𝒟(W)=Π𝒟(WL)+Π(WR)\Pi^{\mathcal{D}(W)}=\Pi^{\mathcal{D}(W^{L})}+\Pi^{\mathcal{I}(W^{R})} from Eq. 7.7 and W=WL+WR,W=W^{L}+W^{R,\dagger} yields Eq. 8.16. It remains to prove Eqs. 8.18 and 8.19.

  • Proof of Eq. 8.18. By the definition of VV, we have

    VΠ𝒟(WL)=(VL(𝖨𝖽VRVR,)+(𝖨𝖽VLVL,)VR,)Π𝒟(WL).\displaystyle V\cdot\Pi^{\mathcal{D}(W^{L})}=\Big{(}V^{L}\cdot(\mathsf{Id}-V^{R}\cdot V^{R,\dagger})+(\mathsf{Id}-V^{L}\cdot V^{L,\dagger})\cdot V^{R,\dagger}\Big{)}\cdot\Pi^{\mathcal{D}(W^{L})}. (8.21)

    Note that VR,ΠD(WL)=VR,WL,WL=(WLVR)WL=0V^{R,\dagger}\cdot\Pi^{D({W^{L}})}=V^{R,\dagger}\cdot W^{L,\dagger}\cdot W^{L}=(W^{L}\cdot V^{R})^{\dagger}\cdot W^{L}=0, where the final equality uses Eq. 8.12. Thus,

    VΠ𝒟(WL)=VLΠ𝒟(WL)=WL,\displaystyle V\cdot\Pi^{\mathcal{D}(W^{L})}=V^{L}\cdot\Pi^{\mathcal{D}(W^{L})}=W^{L}, (8.22)

    where the second equality follows from Eq. 8.10.

  • Proof of Eq. 8.19. By the definition of VV,

    VΠ(WR)=(VL(𝖨𝖽VRVR,)+(𝖨𝖽VLVL,)VR,)Π(WR).\displaystyle V\cdot\Pi^{\mathcal{I}(W^{R})}=\Big{(}V^{L}\cdot(\mathsf{Id}-V^{R}\cdot V^{R,\dagger})+(\mathsf{Id}-V^{L}\cdot V^{L,\dagger})\cdot V^{R,\dagger}\Big{)}\cdot\Pi^{\mathcal{I}(W^{R})}. (8.23)

    Since (WR)\mathcal{I}(W^{R}) is a subspace of (VR)\mathcal{I}(V^{R}) by Corollary 8.1, we have VL(𝖨𝖽VRVR,)Π(WR)=0V^{L}\cdot(\mathsf{Id}-V^{R}\cdot V^{R,\dagger})\cdot\Pi^{\mathcal{I}(W^{R})}=0. Next, we have VR,Π(WR)=(Π(WR)VR)=WR,V^{R,\dagger}\cdot\Pi^{\mathcal{I}(W^{R})}=(\Pi^{\mathcal{I}(W^{R})}\cdot V^{R})^{\dagger}=W^{R,\dagger} by  Eq. 8.11. Thus, we have

    VΠ(WR)\displaystyle V\cdot\Pi^{\mathcal{I}(W^{R})} =(𝖨𝖽VLVL,)WR,\displaystyle=(\mathsf{Id}-V^{L}\cdot V^{L,\dagger})\cdot W^{R,\dagger} (8.24)
    =WR,VLVL,WR,\displaystyle=W^{R,\dagger}-V^{L}\cdot V^{L,\dagger}\cdot W^{R,\dagger} (8.25)
    =WR,,\displaystyle=W^{R,\dagger}, (8.26)

    where the last equality uses the fact that VL,WR,=(WRVL)=0V^{L,\dagger}\cdot W^{R,\dagger}=(W^{R}\cdot V^{L})^{\dagger}=0 from Eq. 8.12.

This completes the proof of Eq. 8.16. The proof of Eq. 8.17 follows by a symmetric argument. ∎

Corollary 8.2.

Π𝒟(W)\Pi^{\mathcal{D}(W)} is a subspace of Π𝒟(V)\Pi^{\mathcal{D}(V)}. And Π(W)\Pi^{\mathcal{I}(W)} is a subspace of Π(V)\Pi^{\mathcal{I}(V)}.

Proof.

This follows immediately from Claim 17 and Lemma 8.2. ∎

Corollary 8.3.

We have

WV\displaystyle W^{\dagger}\cdot V =Π𝒟(W)\displaystyle=\Pi^{\mathcal{D}(W)} (8.27)
WV\displaystyle W\cdot V^{\dagger} =Π(W).\displaystyle=\Pi^{\mathcal{I}(W)}. (8.28)
Proof.

From W=VΠ𝒟(W)W=V\cdot\Pi^{\mathcal{D}(W)}, we can multiply VV^{\dagger} on the left of both sides to obtain

VW=VVΠ𝒟(W).V^{\dagger}\cdot W=V^{\dagger}\cdot V\cdot\Pi^{\mathcal{D}(W)}. (8.29)

Using VV=Π𝒟(V)V^{\dagger}\cdot V=\Pi^{\mathcal{D}(V)}, we have

VW=Π𝒟(V)Π𝒟(W)=Π𝒟(W),V^{\dagger}\cdot W=\Pi^{\mathcal{D}(V)}\cdot\Pi^{\mathcal{D}(W)}=\Pi^{\mathcal{D}(W)}, (8.30)

since Π𝒟(W)\Pi^{\mathcal{D}(W)} is a subspace of Π𝒟(V)\Pi^{\mathcal{D}(V)} from Corollary 8.2. Taking dagger yields WV=Π𝒟(W)W^{\dagger}\cdot V=\Pi^{\mathcal{D}(W)}.

From W=VΠ(W)W^{\dagger}=V^{\dagger}\cdot\Pi^{\mathcal{I}(W)}, we can multiply VV on the left of both sides to obtain

VW=VVΠ(W).V\cdot W^{\dagger}=V\cdot V^{\dagger}\cdot\Pi^{\mathcal{I}(W)}. (8.31)

Using VV=Π(V)V\cdot V^{\dagger}=\Pi^{\mathcal{I}(V)}, we have

VW=Π(V)Π(W)=Π(W),V\cdot W^{\dagger}=\Pi^{\mathcal{I}(V)}\cdot\Pi^{\mathcal{I}(W)}=\Pi^{\mathcal{I}(W)}, (8.32)

since Π(W)\Pi^{\mathcal{I}(W)} is a subspace of Π(V)\Pi^{\mathcal{I}(V)} from Corollary 8.2. Taking dagger yields WV=Π(W)W\cdot V^{\dagger}=\Pi^{\mathcal{I}(W)}. ∎

9 The strong PRU proof

9.1 Setup

We define a distribution over nn-qubit unitaries parameterized by any nn-qubit unitary 22-design 𝔇\mathfrak{D}.

Definition 28 (𝗌𝖯𝖱𝖴(𝔇)\mathsf{sPRU}(\mathfrak{D}) distribution).

For any distribution 𝔇\mathfrak{D} supported on 𝒰(N)\mathcal{U}(N), define the distribution 𝗌𝖯𝖱𝖴(𝔇)\mathsf{sPRU}({\mathfrak{D}}) as follows:

  1. 1.

    Sample a uniformly random permutation π𝖲𝗒𝗆N\pi\leftarrow\mathsf{Sym}_{N}, a uniformly random f{0,1,2}Nf\leftarrow\{0,1,2\}^{N}, and two independently sampled nn-qubit unitaries C,D𝔇C,D\leftarrow\mathfrak{D}. Following the definitions in Section 6,

    Ffx[N]e2πf(x)i/3|xx|andPπx[N]|π(x)x|.\displaystyle F_{f}\coloneqq\sum_{x\in[N]}e^{2\pi\cdot f(x)\cdot i/3}\outerproduct*{x}{x}\quad\text{and}\quad P_{\pi}\coloneqq\sum_{x\in[N]}\outerproduct*{\pi(x)}{x}. (9.1)
  2. 2.

    Output the nn-qubit unitary 𝒪DPπFfC\mathcal{O}\coloneqq D\cdot P_{\pi}\cdot F_{f}\cdot C.

The goal of this section is to prove the following theorem.

Theorem 6 (𝗌𝖯𝖱𝖴(𝔇)\mathsf{sPRU}(\mathfrak{D}) is a statistical strong PRU).

Let 𝒜\mathcal{A} be a tt-query oracle adversary that can perform forward and inverse queries and let 𝔇\mathfrak{D} be an exact unitary 22-design. Then

𝖳𝖣(𝔼𝒪𝗌𝖯𝖱𝖴(𝔇)|𝒜t𝒪𝒜t𝒪|𝖠𝖡,𝔼𝒪μ𝖧𝖺𝖺𝗋|𝒜t𝒪𝒜t𝒪|𝖠𝖡)18t(t+1)N1/8\displaystyle\mathsf{TD}\left(\operatorname*{{\mathbb{E}}}_{\mathcal{O}\leftarrow\mathsf{sPRU}(\mathfrak{D})}\outerproduct*{\mathcal{A}_{t}^{\mathcal{O}}}{\mathcal{A}_{t}^{\mathcal{O}}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}},\operatorname*{{\mathbb{E}}}_{\mathcal{O}\leftarrow\mu_{\mathsf{Haar}}}\outerproduct*{\mathcal{A}_{t}^{\mathcal{O}}}{\mathcal{A}_{t}^{\mathcal{O}}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}}\right)\leq\frac{18t(t+1)}{N^{1/8}} (9.2)

Since quantum-secure pseudorandom permutations and pseudorandom functions exist assuming one-way functions by [zhandry2016note, zhandry2021construct], the existence of computationally-secure strong PRUs follows immediately from Theorem 6.

Theorem 7.

If quantum-secure one-way functions exist, then strong pseudorandom unitaries exist.

The main technical component of the proof of Theorem 6 is Lemma 9.1, which relates the PRU adversary to an adversary that queries the path-recording oracle VV, defined previously in Section 8. Recall that VV is a partial isometry that acts on registers (𝖠,𝖫,𝖱)(\mathsf{A},\mathsf{L},\mathsf{R}), where 𝖫\mathsf{L} and 𝖱\mathsf{R} are variable-length registers. Initially, 𝖫\mathsf{L} and 𝖱\mathsf{R} are both initialized to the length-0 state |\ket*{\varnothing}. To state Lemma 9.1, we will need the following definition.

Definition 29 (the global state after queries to VV).

For a tt-query oracle adversary 𝒜\mathcal{A} that can perform forward and inverse queries and any 0it0\leq i\leq t, let

|𝒜iV𝖠𝖡𝖫𝖱i=1t(((1bi)V𝖠𝖫𝖱+biV𝖠𝖫𝖱)Ai,𝖠𝖡)|0n+m𝖠𝖡|𝖫|𝖱\displaystyle\ket*{\mathcal{A}_{i}^{V}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\coloneqq\prod_{i=1}^{t}\Bigg{(}\Big{(}(1-b_{i})\cdot V_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}+b_{i}\cdot V_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}^{\dagger}\Big{)}\cdot A_{i,{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}}\Bigg{)}\ket*{0^{n+m}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}}\otimes\ket*{\varnothing}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}}\ket*{\varnothing}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}} (9.3)

denote the global state on registers 𝖠,𝖡,𝖫,𝖱\mathsf{A},\mathsf{B},\mathsf{L},\mathsf{R} after 𝒜\mathcal{A} makes ii queries to VV.

Lemma 9.1 (𝗌𝖯𝖱𝖴(𝔇)\mathsf{sPRU}(\mathfrak{D}) is indistinguishable from VV).

Let 𝔇\mathfrak{D} be any exact unitary 22-design. For any tt-query oracle adversary 𝒜\mathcal{A},

𝖳𝖣(𝔼𝒪𝗌𝖯𝖱𝖴(𝔇)|𝒜t𝒪𝒜t𝒪|𝖠𝖡,Tr𝖫𝖱(|𝒜Vt𝒜Vt|𝖠𝖡𝖫𝖱))9t(t+1)N1/8\displaystyle\mathsf{TD}\left(\operatorname*{{\mathbb{E}}}_{\mathcal{O}\leftarrow\mathsf{sPRU}(\mathfrak{D})}\outerproduct*{\mathcal{A}_{t}^{\mathcal{O}}}{\mathcal{A}_{t}^{\mathcal{O}}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}},\,\,\,\Tr_{\mathsf{L}\mathsf{R}}\left(\outerproduct*{\mathcal{A}^{V}_{t}}{\mathcal{A}^{V}_{t}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\right)\right)\leq\frac{9t(t+1)}{N^{1/8}} (9.4)
Lemma 9.1 implies Theorem 6.

Lemma 9.1 implies Theorem 6 by the following argument. We can instantiate 𝔇=μ𝖧𝖺𝖺𝗋\mathfrak{D}=\mu_{\mathsf{Haar}}, i.e., 𝔇\mathfrak{D} outputs a Haar-random nn-qubit unitary. Then the output of 𝗌𝖯𝖱𝖴(𝔇)=𝗌𝖯𝖱𝖴(μ𝖧𝖺𝖺𝗋)\mathsf{sPRU}(\mathfrak{D})=\mathsf{sPRU}(\mu_{\mathsf{Haar}}) is DPπFfCD\cdot P_{\pi}\cdot F_{f}\cdot C for random π,f\pi,f and Haar-random DD and CC. By invariance of the Haar measure, this is exactly the same as outputting a Haar-random unitary. Thus, we have the following corollary of Lemma 9.1.

Theorem 8 (VV is indistinguishable from a Haar-random unitary).

Let 𝒜\mathcal{A} be a tt-query oracle adversary that can perform forward and inverse queries. Then

𝖳𝖣(𝔼𝒪μ𝖧𝖺𝖺𝗋|𝒜t𝒪𝒜t𝒪|𝖠𝖡,Tr𝖫𝖱(|𝒜Vt𝒜Vt|𝖠𝖡𝖫𝖱))9t(t+1)N1/8.\displaystyle\mathsf{TD}\left(\operatorname*{{\mathbb{E}}}_{\mathcal{O}\leftarrow\mu_{\mathsf{Haar}}}\outerproduct*{\mathcal{A}_{t}^{\mathcal{O}}}{\mathcal{A}_{t}^{\mathcal{O}}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}},\,\,\,\Tr_{\mathsf{L}\mathsf{R}}\left(\outerproduct*{\mathcal{A}^{V}_{t}}{\mathcal{A}^{V}_{t}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\right)\right)\leq\frac{9t(t+1)}{N^{1/8}}. (9.5)

Theorem 6 follows from combining Lemmas 9.1 and 8 using the triangle inequality. The remainder of this section is devoted to proving Lemma 9.1.

9.2 VV is indistinguishable from twirled WW

Our first step towards proving Lemma 9.1 is to prove that an oracle adversary 𝒜\mathcal{A} that makes both forward and inverse queries cannot distinguish whether its query is implemented by the path-recording oracle VV (Definition 26), or as DWCD\cdot W\cdot C where C,D𝔇C,D\leftarrow\mathfrak{D} are sampled from a 22-design, and WW is the partial path-recording oracle (Definition 24).

We will require the following definitions. Let 𝖢\mathsf{C} and 𝖣\mathsf{D} be a pair of registers that each contain the description of an nn-qubit unitary. These registers will be part of the purification and will not be in the adversary’s view.

Definition 30.

For any distribution 𝔇\mathfrak{D} over nn-qubit unitaries, define the state

|𝗂𝗇𝗂𝗍(𝔇)𝖢𝖣:-C,Ddμ𝔇(C)dμ𝔇(D)|C𝖢|D𝖣,\displaystyle\ket*{\mathsf{init}(\mathfrak{D})}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}}\coloneq\int_{C,D}\sqrt{d\mu_{\mathfrak{D}}(C)d\mu_{\mathfrak{D}}(D)}\ket*{C}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}}\otimes\ket*{D}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}}, (9.6)

where μ𝔇(C)\mu_{\mathfrak{D}}(C) is the probability measure for which CC is sampled from 𝔇\mathfrak{D}.

Recall from Definition 27 that for any pair of nn-qubit unitaries C,DC,D, the operator Q[C,D]𝖫𝖱Q[C,D]_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}} is defined as

Q[C,D]\displaystyle Q[C,D] (CDT)𝖫(C¯D)𝖱.\displaystyle\coloneqq(C\otimes D^{T})^{\otimes*}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}}\otimes(\overline{C}\otimes D^{\dagger})^{\otimes*}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}. (9.7)
Definition 31 (Controlled C,DC,D and QQ).

Define the following operators

𝖼𝖢:-CC𝖠|CC|𝖢,𝖼𝖣:-DD𝖠|DD|𝖣,\displaystyle\mathsf{cC}\coloneq\int_{C}C_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\otimes\outerproduct*{C}{C}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}},\quad\mathsf{cD}\coloneq\int_{D}D_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\otimes\outerproduct*{D}{D}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}}, (9.8)
𝖼𝖰:-C,DQ[C,D]𝖫,𝖱|CC|𝖢|DD|𝖣.\displaystyle\mathsf{cQ}\coloneq\int_{C,D}Q[C,D]_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25},}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\otimes\outerproduct*{C}{C}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}}\otimes\outerproduct*{D}{D}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}}. (9.9)

We now state a key lemma that we will need for our proof.

Lemma 9.2 (Twirling).

For any unitary 22-design 𝔇\mathfrak{D}, and any integer 0tN10\leq t\leq N-1, we have

𝔼C,D𝔇(C𝖠Q[C,D]𝖫𝖱)(Π𝖻𝗂𝗃t,𝖫𝖱Π𝒟(W)t,𝖠𝖫𝖱)(C𝖠Q[C,D]𝖫𝖱)op\displaystyle\norm{\operatorname*{{\mathbb{E}}}_{C,D\leftarrow\mathfrak{D}}(C_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\otimes Q[C,D]_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}})^{\dagger}\cdot\Big{(}\Pi^{\mathsf{bij}}_{\leq t,{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}-\Pi^{\mathcal{D}(W)}_{\leq t,{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\Big{)}\cdot(C_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\otimes Q[C,D]_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}})}_{\mathrm{op}} 6ttN,\displaystyle\leq 6t\sqrt{\frac{t}{N}}, (9.10)
𝔼C,D𝔇(D𝖠Q[C,D]𝖫𝖱)(Π𝖻𝗂𝗃t,𝖫𝖱Π(W)t,𝖠𝖫𝖱)(D𝖠Q[C,D]𝖫𝖱)op\displaystyle\norm{\operatorname*{{\mathbb{E}}}_{C,D\leftarrow\mathfrak{D}}(D^{\dagger}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\otimes Q[C,D]_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}})^{\dagger}\cdot\Big{(}\Pi^{\mathsf{bij}}_{\leq t,{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}-\Pi^{\mathcal{I}(W)}_{\leq t,{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\Big{)}\cdot(D^{\dagger}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\otimes Q[C,D]_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}})}_{\mathrm{op}} 6ttN,\displaystyle\leq 6t\sqrt{\frac{t}{N}}, (9.11)

Note that in the statement of Lemma 9.2, Π𝖻𝗂𝗃t,𝖫𝖱\Pi^{\mathsf{bij}}_{\leq t,{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}} is shorthand for 𝖨𝖽𝖠Π𝖻𝗂𝗃t,𝖫𝖱\mathsf{Id}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\otimes\Pi^{\mathsf{bij}}_{\leq t,{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}, and thus the operators inside the op\norm{\cdot}_{\mathrm{op}} act on 𝖠,𝖫,𝖱\mathsf{A},\mathsf{L},\mathsf{R}. We prove Lemma 9.2 in Section 11.

Next, we define the following adversary states.

Definition 32 (Twirled-WW purification).

Define the states |𝒜iW,𝔇𝖠𝖡𝖫𝖱𝖢𝖣\ket*{\mathcal{A}_{i}^{W,\mathfrak{D}}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}} as follows:

|𝒜0W,𝔇\displaystyle\ket*{\mathcal{A}_{0}^{W,\mathfrak{D}}} |0n𝖠|0m𝖡|𝖫|𝖱|𝗂𝗇𝗂𝗍(𝔇)𝖢𝖣,\displaystyle\coloneqq\ket*{0^{n}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\ket*{0^{m}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}}\ket*{\varnothing}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}}\ket*{\varnothing}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\ket*{\mathsf{init}(\mathfrak{D})}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}}, (9.12)
Fori=1,,t:|𝒜iW,𝔇\displaystyle\mathrm{For}\quad i=1,\dots,t:\quad\ket*{\mathcal{A}_{i}^{W,\mathfrak{D}}} ((1bi)(𝖼𝖣W𝖼𝖢)+bi(𝖼𝖣W𝖼𝖢))Ai|𝒜W,𝔇i1.\displaystyle\coloneqq\Big{(}(1-b_{i})\cdot(\mathsf{cD}\cdot W\cdot\mathsf{cC})+b_{i}\cdot(\mathsf{cD}\cdot W\cdot\mathsf{cC})^{\dagger}\Big{)}\cdot A_{i}\cdot\ket*{\mathcal{A}^{W,\mathfrak{D}}_{i-1}}. (9.13)

For contrast, let us recall the definition of |𝒜iV\ket*{\mathcal{A}_{i}^{V}}.

Definition 33 (VV purification).

Define the states |𝒜iV𝖠𝖡𝖫𝖱\ket*{\mathcal{A}_{i}^{V}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}} for 0it0\leq i\leq t as follows:

|𝒜0V\displaystyle\ket*{\mathcal{A}_{0}^{V}} |0n𝖠|𝖫|𝖱,\displaystyle\coloneqq\ket*{0^{n}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\ket*{\varnothing}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}}\ket*{\varnothing}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}, (9.14)
Fori=1,,t:|𝒜iV\displaystyle\mathrm{For}\quad i=1,\dots,t:\quad\ket*{\mathcal{A}_{i}^{V}} ((1bi)V+biV)Ai|𝒜Vi1.\displaystyle\coloneqq\Big{(}(1-b_{i})\cdot V+b_{i}\cdot V^{\dagger}\Big{)}\cdot A_{i}\cdot\ket*{\mathcal{A}^{V}_{i-1}}. (9.15)

Note that because bi{0,1}b_{i}\in\{0,1\}, in the construction of these purified states, one either queries VV, 𝖼𝖣W𝖼𝖢\mathsf{cD}\cdot W\cdot\mathsf{cC} for bi=0b_{i}=0 or VV^{\dagger}, (𝖼𝖣W𝖼𝖢)(\mathsf{cD}\cdot W\cdot\mathsf{cC})^{\dagger} for bi=1b_{i}=1. Because WW and VV are partial isometries from Claim 11 and Claim 15, W,W,V,VW,W^{\dagger},V,V^{\dagger} are all equal to applying a projector followed by a unitary. Hence, |𝒜tV\ket*{\mathcal{A}_{t}^{V}}, |𝒜tW,𝔇\ket*{\mathcal{A}_{t}^{W,\mathfrak{D}}} are both states with norm at most 11.

Fact 10 (Norm of the purified states).

For any t0t\geq 0, |𝒜tV\ket*{\mathcal{A}_{t}^{V}}, |𝒜tW,𝔇\ket*{\mathcal{A}_{t}^{W,\mathfrak{D}}} both have norm at most 11.

Furthermore, from Definition 26, VV and VV^{\dagger} take states in the subspace associated with the projector 𝖨𝖽𝖠Π2i,𝖫𝖱\mathsf{Id}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\otimes\Pi^{\mathcal{R}^{2}}_{\leq i,{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}} to the the subspace associated with the projector 𝖨𝖽𝖠Π2i+1,𝖫𝖱\mathsf{Id}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\otimes\Pi^{\mathcal{R}^{2}}_{\leq i+1,{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}. Hence, after tt queries in total to VV and VV^{\dagger}, we have |𝒜tV\ket*{\mathcal{A}_{t}^{V}} is in the image of Π2t\Pi^{\mathcal{R}^{2}}_{\leq t}. Similarly, from 7, WW and WW^{\dagger} map states in 𝖨𝖽𝖠Π𝖻𝗂𝗃i,𝖫𝖱\mathsf{Id}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\otimes\Pi^{\mathsf{bij}}_{\leq i,{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}} to 𝖨𝖽𝖠Π𝖻𝗂𝗃i+1,𝖫𝖱\mathsf{Id}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\otimes\Pi^{\mathsf{bij}}_{\leq i+1,{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}. Hence, after tt queries to WW and WW^{\dagger}, we have |𝒜tW,𝔇\ket*{\mathcal{A}_{t}^{W,\mathfrak{D}}} is in the image of Π𝖻𝗂𝗃t\Pi^{\mathsf{bij}}_{\leq t}. We collect these two basic properties in 11.

Fact 11 (Spaces that the purified states are in).

For any t0t\geq 0, we have the following guarantees:

  • |𝒜tV\ket*{\mathcal{A}_{t}^{V}} is in the image of Π2t\Pi^{\mathcal{R}^{2}}_{\leq t}.

  • |𝒜tW,𝔇\ket*{\mathcal{A}_{t}^{W,\mathfrak{D}}} is in the image of Π𝖻𝗂𝗃t\Pi^{\mathsf{bij}}_{\leq t}.

The main technical claim of this subsection is the following.

Claim 18.

For any integer t0t\geq 0,

Re[𝒜tW,𝔇|𝖠𝖡𝖫𝖱𝖢𝖣𝖼𝖰𝖫𝖱𝖢𝖣(|𝒜tV𝖠𝖡𝖫𝖱|𝗂𝗇𝗂𝗍(𝔇)𝖢𝖣)]135t2N1/4\displaystyle\real\left[\bra*{\mathcal{A}_{t}^{W,\mathfrak{D}}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}}\cdot\mathsf{cQ}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}}\cdot\Big{(}\ket*{\mathcal{A}_{t}^{V}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\ket*{\mathsf{init}(\mathfrak{D})}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}}\Big{)}\right]\geq 1-\frac{35t^{2}}{N^{1/4}} (9.16)
Proof of Claim 18.

We prove this claim by induction. When t=0t=0, we have

𝖼𝖰𝖫𝖱𝖢𝖣(|𝒜0V𝖠𝖡𝖫𝖱|𝗂𝗇𝗂𝗍(𝔇)𝖢𝖣)\displaystyle\mathsf{cQ}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}}\cdot\Big{(}\ket*{\mathcal{A}_{0}^{V}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\ket*{\mathsf{init}(\mathfrak{D})}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}}\Big{)} =𝖼𝖰𝖫𝖱𝖢𝖣(|0n𝖠|𝖫|𝖱|𝗂𝗇𝗂𝗍(𝔇)𝖢𝖣)\displaystyle=\mathsf{cQ}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}}\cdot\Big{(}\ket*{0^{n}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\ket*{\varnothing}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}}\ket*{\varnothing}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\ket*{\mathsf{init}(\mathfrak{D})}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}}\Big{)} (9.17)
=|0n𝖠|𝖫|𝖱|𝗂𝗇𝗂𝗍(𝔇)𝖢𝖣\displaystyle=\ket*{0^{n}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\ket*{\varnothing}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}}\ket*{\varnothing}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\ket*{\mathsf{init}(\mathfrak{D})}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}} (9.18)
=|A0W,𝔇𝖠𝖡𝖫𝖱𝖢𝖣,\displaystyle=\ket*{A_{0}^{W,\mathfrak{D}}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}}, (9.19)

where the first equality is by the definition of |𝒜0V\ket*{\mathcal{A}_{0}^{V}} (Definition 33), the second is because 𝖼𝖰\mathsf{cQ} acts as identity on |𝖫|𝖱|𝗂𝗇𝗂𝗍(𝔇)𝖫𝖱\ket*{\varnothing}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}}\ket*{\varnothing}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\ket*{\mathsf{init}(\mathfrak{D})}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}, and the third equality is the definition of |𝒜0W,𝔇\ket*{\mathcal{A}_{0}^{W,\mathfrak{D}}} (Definition 32). This implies that

Re[𝒜0W,𝔇|𝖠𝖡𝖫𝖱𝖢𝖣𝖼𝖰𝖫𝖱𝖢𝖣(|𝒜0V𝖠𝖡𝖫𝖱|𝗂𝗇𝗂𝗍(𝔇)𝖢𝖣)]=1,\displaystyle\real\left[\bra*{\mathcal{A}_{0}^{W,\mathfrak{D}}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}}\cdot\mathsf{cQ}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}}\cdot\Big{(}\ket*{\mathcal{A}_{0}^{V}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\ket*{\mathsf{init}(\mathfrak{D})}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}}\Big{)}\right]=1, (9.20)

so the base case holds.

For the inductive step, assume that

Re[𝒜tW,𝔇|𝖠𝖡𝖫𝖱𝖢𝖣𝖼𝖰𝖫𝖱𝖢𝖣(|𝒜tV𝖠𝖡𝖫𝖱|𝗂𝗇𝗂𝗍(𝔇)𝖢𝖣)]135t2N1/4\displaystyle\real\left[\bra*{\mathcal{A}_{t}^{W,\mathfrak{D}}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}}\cdot\mathsf{cQ}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}}\cdot\Big{(}\ket*{\mathcal{A}_{t}^{V}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\ket*{\mathsf{init}(\mathfrak{D})}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}}\Big{)}\right]\geq 1-\frac{35t^{2}}{N^{1/4}} (9.21)

for some integer t0t\geq 0. We will prove that the claim holds for t+1t+1. To simplify notation, let us assume that the adversary makes a forward query at step t+1t+1, i.e., bt+1=0b_{t+1}=0; this is without loss of generality because the argument is symmetric if the adversary makes an inverse query at step t+1t+1. We have

|𝒜t+1W,𝔇\displaystyle\ket*{\mathcal{A}_{t+1}^{W,\mathfrak{D}}} =𝖼𝖣W𝖼𝖢At+1|𝒜tW,𝔇,\displaystyle=\mathsf{cD}\cdot W\cdot\mathsf{cC}\cdot A_{t+1}\cdot\ket*{\mathcal{A}_{t}^{W,\mathfrak{D}}}, (9.22)
𝖼𝖰(|𝒜t+1V|𝗂𝗇𝗂𝗍(𝔇))\displaystyle\mathsf{cQ}\cdot\Big{(}\ket*{\mathcal{A}_{t+1}^{V}}\ket*{\mathsf{init}(\mathfrak{D})}\Big{)} =𝖼𝖰VAt+1|𝒜tV|𝗂𝗇𝗂𝗍(𝔇)\displaystyle=\mathsf{cQ}\cdot V\cdot A_{t+1}\cdot\ket*{\mathcal{A}_{t}^{V}}\ket*{\mathsf{init}(\mathfrak{D})} (9.23)

and thus

Re[𝒜t+1W,𝔇|𝖼𝖰(|𝒜t+1V|𝗂𝗇𝗂𝗍(𝔇))]\displaystyle\real\left[\bra*{\mathcal{A}_{t+1}^{W,\mathfrak{D}}}\cdot\mathsf{cQ}\cdot\Big{(}\ket*{\mathcal{A}_{t+1}^{V}}\ket*{\mathsf{init}(\mathfrak{D})}\Big{)}\right] (9.24)
=Re[𝒜tW,𝔇|At+1𝖼𝖢W𝖼𝖣𝖼𝖰VAt+1|𝒜tV|𝗂𝗇𝗂𝗍(𝔇)]\displaystyle=\real\left[\bra*{\mathcal{A}_{t}^{W,\mathfrak{D}}}\cdot A_{t+1}^{\dagger}\cdot\mathsf{cC}^{\dagger}\cdot W^{\dagger}\cdot\mathsf{cD}^{\dagger}\cdot\mathsf{cQ}\cdot V\cdot A_{t+1}\cdot\ket*{\mathcal{A}_{t}^{V}}\ket*{\mathsf{init}(\mathfrak{D})}\right] (9.25)

By 11, the states |𝒜tW,𝔇\ket*{\mathcal{A}_{t}^{W,\mathfrak{D}}} and |𝒜tV\ket*{\mathcal{A}_{t}^{V}} are both in the image of Πt\Pi_{\leq t}. Following 9, we write Wt=WΠtW_{\leq t}=W\cdot\Pi_{\leq t} and Vt=VΠtV_{\leq t}=V\cdot\Pi_{\leq t}. We can then rewrite (9.25) as

(9.25)\displaystyle(\ref{eq:overlap-twirled-W-Q-plain-V-expand-1}) =Re[𝒜tW,𝔇|At+1𝖼𝖢Wt𝖼𝖣𝖼𝖰VtAt+1|𝒜tV|𝗂𝗇𝗂𝗍(𝔇)]\displaystyle=\real\left[\bra*{\mathcal{A}_{t}^{W,\mathfrak{D}}}\cdot A_{t+1}^{\dagger}\cdot\mathsf{cC}^{\dagger}\cdot W_{\leq t}^{\dagger}\cdot\mathsf{cD}^{\dagger}\cdot\mathsf{cQ}\cdot V_{\leq t}\cdot A_{t+1}\cdot\ket*{\mathcal{A}_{t}^{V}}\ket*{\mathsf{init}(\mathfrak{D})}\right] (9.26)

Next, we will write 𝖼𝖰Vt\mathsf{cQ}\cdot V_{\leq t} as

𝖼𝖰Vt=𝖼𝖣Vt𝖼𝖢𝖼𝖰.+(𝖼𝖰Vt𝖼𝖣Vt𝖼𝖢𝖼𝖰)\displaystyle\mathsf{cQ}\cdot V_{\leq t}=\mathsf{cD}\cdot V_{\leq t}\cdot\mathsf{cC}\cdot\mathsf{cQ}.+\Big{(}\mathsf{cQ}\cdot V_{\leq t}-\mathsf{cD}\cdot V_{\leq t}\cdot\mathsf{cC}\cdot\mathsf{cQ}\Big{)} (9.27)

This allows us to rewrite (9.26) as

Re[𝒜tW,𝔇|At+1𝖼𝖢WtVt𝖼𝖢𝖼𝖰At+1|𝒜tV|𝗂𝗇𝗂𝗍(𝔇)]\displaystyle\real\left[\bra*{\mathcal{A}_{t}^{W,\mathfrak{D}}}\cdot A_{t+1}^{\dagger}\cdot\mathsf{cC}^{\dagger}\cdot W_{\leq t}^{\dagger}\cdot V_{\leq t}\cdot\mathsf{cC}\cdot\mathsf{cQ}\cdot A_{t+1}\cdot\ket*{\mathcal{A}_{t}^{V}}\ket*{\mathsf{init}(\mathfrak{D})}\right]
+Re[𝒜tW,𝔇|At+1𝖼𝖢Wt𝖼𝖣(𝖼𝖰Vt𝖼𝖣Vt𝖼𝖢𝖼𝖰)At+1|𝒜tV|𝗂𝗇𝗂𝗍(𝔇)].\displaystyle\quad+\real\left[\bra*{\mathcal{A}_{t}^{W,\mathfrak{D}}}\cdot A_{t+1}^{\dagger}\cdot\mathsf{cC}^{\dagger}\cdot W_{\leq t}^{\dagger}\cdot\mathsf{cD}^{\dagger}\cdot\Big{(}\mathsf{cQ}\cdot V_{\leq t}-\mathsf{cD}\cdot V_{\leq t}\cdot\mathsf{cC}\cdot\mathsf{cQ}\Big{)}\cdot A_{t+1}\cdot\ket*{\mathcal{A}_{t}^{V}}\ket*{\mathsf{init}(\mathfrak{D})}\right]. (9.28)

We can lower bound the second term in the sum as follows. We know that At+1|𝒜tV|𝗂𝗇𝗂𝗍(𝔇)A_{t+1}\cdot\ket*{\mathcal{A}_{t}^{V}}\ket*{\mathsf{init}(\mathfrak{D})} and 𝒜tW,𝔇|At+1𝖼𝖢Wt𝖼𝖣\bra*{\mathcal{A}_{t}^{W,\mathfrak{D}}}\cdot A_{t+1}^{\dagger}\cdot\mathsf{cC}^{\dagger}\cdot W_{\leq t}^{\dagger}\cdot\mathsf{cD}^{\dagger} have at most unit norm by 10 and the fact that At+1,𝖼𝖢,𝖼𝖣,WtA_{t+1},\mathsf{cC},\mathsf{cD},W_{\leq t}^{\dagger} all have operator norm at most 11 (since Wt=(WΠt)W_{\leq t}^{\dagger}=(W\cdot\Pi_{\leq t})^{\dagger} and WW is a partial isometry by Claim 11). Then by Claim 16, the second term can be lower bounded by

(𝖼𝖣Vt𝖼𝖢𝖼𝖰𝖼𝖰Vt)op\displaystyle-\norm{\Big{(}\mathsf{cD}\cdot V_{\leq t}\cdot\mathsf{cC}\cdot\mathsf{cQ}-\mathsf{cQ}\cdot V_{\leq t}\Big{)}}_{\mathrm{op}} (9.29)
C,D(D𝖠VtC𝖠Q[C,D]𝖫𝖱Q[C,D]𝖫𝖱Vt)|C,DC,D|op\displaystyle-\norm{\sum_{C,D}\Big{(}D_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\cdot V_{\leq t}\cdot C_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\otimes Q[C,D]_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}-Q[C,D]_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\cdot V_{\leq t}\Big{)}\otimes\outerproduct*{C,D}{C,D}}_{\mathrm{op}} (9.30)
maxC,DD𝖠VtC𝖠Q[C,D]𝖫𝖱Q[C,D]𝖫𝖱Vtop\displaystyle-\max_{C,D}\norm{D_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\cdot V_{\leq t}\cdot C_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\otimes Q[C,D]_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}-Q[C,D]_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\cdot V_{\leq t}}_{\mathrm{op}} (9.31)
162t(t+1)N.\displaystyle\geq-16\sqrt{\frac{2t(t+1)}{N}}. (by Claim 16)

Combining this bound with the sequence of equalities (9.24)=(9.25)=(9.26)=(9.28)(\ref{eq:overlap-twirled-W-Q-plain-V-expand-0})=(\ref{eq:overlap-twirled-W-Q-plain-V-expand-1})=(\ref{eq:overlap-twirled-W-Q-plain-V-expand-2})=(\ref{eq:overlap-twirled-W-Q-plain-V-expand-3}), we get

Re[𝒜t+1W,𝔇|𝖼𝖰(|𝒜t+1V|𝗂𝗇𝗂𝗍(𝔇))]\displaystyle\real\left[\bra*{\mathcal{A}_{t+1}^{W,\mathfrak{D}}}\cdot\mathsf{cQ}\cdot\Big{(}\ket*{\mathcal{A}_{t+1}^{V}}\ket*{\mathsf{init}(\mathfrak{D})}\Big{)}\right] (9.32)
Re[𝒜tW,𝔇|At+1𝖼𝖢WtVt𝖼𝖢𝖼𝖰At+1|𝒜tV|𝗂𝗇𝗂𝗍(𝔇)]γt162t(t+1)N.\displaystyle\geq\underbrace{\real\left[\bra*{\mathcal{A}_{t}^{W,\mathfrak{D}}}\cdot A_{t+1}^{\dagger}\cdot\mathsf{cC}^{\dagger}\cdot W_{\leq t}^{\dagger}\cdot V_{\leq t}\cdot\mathsf{cC}\cdot\mathsf{cQ}\cdot A_{t+1}\cdot\ket*{\mathcal{A}_{t}^{V}}\ket*{\mathsf{init}(\mathfrak{D})}\right]}_{\coloneqq\gamma_{t}}-16\sqrt{\frac{2t(t+1)}{N}}. (9.33)

Next we can use properties of the WW and VV operators to rewrite

WtVt\displaystyle W_{\leq t}^{\dagger}\cdot V_{\leq t} =(WΠt)VΠt\displaystyle=\Big{(}W\cdot\Pi_{\leq t}\Big{)}^{\dagger}\cdot V\cdot\Pi_{\leq t} (9.34)
=ΠtWVΠt\displaystyle=\Pi_{\leq t}\cdot W^{\dagger}\cdot V\cdot\Pi_{\leq t} (9.35)
=ΠtΠ𝒟(W)Πt\displaystyle=\Pi_{\leq t}\cdot\Pi^{\mathcal{D}(W)}\cdot\Pi_{\leq t} (by Corollary 8.3)
=Πt(Π𝖻𝗂𝗃(Π𝖻𝗂𝗃Π𝒟(W)))Πt\displaystyle=\Pi_{\leq t}\cdot\Big{(}\Pi^{\mathsf{bij}}-(\Pi^{\mathsf{bij}}-\Pi^{\mathcal{D}(W)})\Big{)}\cdot\Pi_{\leq t} (9.36)
=Π𝖻𝗂𝗃t(Π𝖻𝗂𝗃tΠ𝒟(W)t)\displaystyle=\Pi^{\mathsf{bij}}_{\leq t}-\Big{(}\Pi^{\mathsf{bij}}_{\leq t}-\Pi^{\mathcal{D}(W)}_{\leq t}\Big{)} (Definition 23 and Claim 12)

Plugging this into γt\gamma_{t}, we get

γt\displaystyle\gamma_{t} =Re[𝒜tW,𝔇|At+1𝖼𝖢Π𝖻𝗂𝗃t𝖼𝖢𝖼𝖰At+1|𝒜tV|𝗂𝗇𝗂𝗍(𝔇)]αt\displaystyle=\underbrace{\real\left[\bra*{\mathcal{A}_{t}^{W,\mathfrak{D}}}\cdot A_{t+1}^{\dagger}\cdot\mathsf{cC}^{\dagger}\cdot\Pi^{\mathsf{bij}}_{\leq t}\cdot\mathsf{cC}\cdot\mathsf{cQ}\cdot A_{t+1}\cdot\ket*{\mathcal{A}_{t}^{V}}\ket*{\mathsf{init}(\mathfrak{D})}\right]}_{\coloneqq\alpha_{t}} (9.37)
Re[𝒜tW,𝔇|At+1𝖼𝖢(Π𝖻𝗂𝗃tΠ𝒟(W)t)𝖼𝖢𝖼𝖰At+1|𝒜tV|𝗂𝗇𝗂𝗍(𝔇)]βt\displaystyle\quad-\underbrace{\real\left[\bra*{\mathcal{A}_{t}^{W,\mathfrak{D}}}\cdot A_{t+1}^{\dagger}\cdot\mathsf{cC}^{\dagger}\cdot\Big{(}\Pi^{\mathsf{bij}}_{\leq t}-\Pi^{\mathcal{D}(W)}_{\leq t}\Big{)}\cdot\mathsf{cC}\cdot\mathsf{cQ}\cdot A_{t+1}\cdot\ket*{\mathcal{A}_{t}^{V}}\ket*{\mathsf{init}(\mathfrak{D})}\right]}_{\coloneqq\beta_{t}} (9.38)
Bounding αt\alpha_{t}.

Observe that

𝒜tW,𝔇|At+1𝖼𝖢Π𝖻𝗂𝗃t\displaystyle\bra*{\mathcal{A}_{t}^{W,\mathfrak{D}}}\cdot A_{t+1}^{\dagger}\cdot\mathsf{cC}^{\dagger}\cdot\Pi^{\mathsf{bij}}_{\leq t} (9.39)
=𝒜tW,𝔇|Π𝖻𝗂𝗃tAt+1𝖼𝖢\displaystyle=\bra*{\mathcal{A}_{t}^{W,\mathfrak{D}}}\cdot\Pi^{\mathsf{bij}}_{\leq t}\cdot A_{t+1}^{\dagger}\cdot\mathsf{cC}^{\dagger} ( Π𝖻𝗂𝗃t,𝖫𝖱\Pi^{\mathsf{bij}}_{\leq t,{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}} commutes with (At+1𝖼𝖢)𝖠(A_{t+1}^{\dagger}\cdot\mathsf{cC}^{\dagger})_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}})
=𝒜tW,𝔇|At+1𝖼𝖢.\displaystyle=\bra*{\mathcal{A}_{t}^{W,\mathfrak{D}}}\cdot A_{t+1}^{\dagger}\cdot\mathsf{cC}^{\dagger}. (by 11)

Thus,

αt=Re[𝒜tW,𝔇|𝖼𝖰|𝒜tV|𝗂𝗇𝗂𝗍(𝔇)]135t2N1/4,\displaystyle\alpha_{t}=\real\left[\bra*{\mathcal{A}_{t}^{W,\mathfrak{D}}}\cdot\mathsf{cQ}\cdot\ket*{\mathcal{A}_{t}^{V}}\ket*{\mathsf{init}(\mathfrak{D})}\right]\geq 1-\frac{35t^{2}}{N^{1/4}}, (9.40)

by the inductive hypothesis.

Bounding βt\beta_{t}.

We will lower bound βt-\beta_{t} by upper bounding βt\beta_{t}:

βt\displaystyle\beta_{t} |𝒜tW,𝔇|At+1𝖼𝖢(Π𝖻𝗂𝗃tΠ𝒟(W)t)𝖼𝖢𝖼𝖰At+1|𝒜tV|𝗂𝗇𝗂𝗍(𝔇)|\displaystyle\leq\absolutevalue{\bra*{\mathcal{A}_{t}^{W,\mathfrak{D}}}\cdot A_{t+1}^{\dagger}\cdot\mathsf{cC}^{\dagger}\cdot\Big{(}\Pi^{\mathsf{bij}}_{\leq t}-\Pi^{\mathcal{D}(W)}_{\leq t}\Big{)}\cdot\mathsf{cC}\cdot\mathsf{cQ}\cdot A_{t+1}\cdot\ket*{\mathcal{A}_{t}^{V}}\ket*{\mathsf{init}(\mathfrak{D})}} (9.41)
max|u𝖠𝖡𝖫𝖱𝖢𝖣:|u21|v𝖠𝖡𝖫𝖱:|v21|u|(Π𝖻𝗂𝗃tΠ𝒟(W)t)𝖼𝖢𝖼𝖰|v|𝗂𝗇𝗂𝗍(𝔇)|,\displaystyle\leq\max_{\begin{subarray}{c}\ket*{u}\in\mathcal{H}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}}:\norm{\ket*{u}}_{2}\leq 1\\ \ket*{v}\in\mathcal{H}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}:\norm{\ket*{v}}_{2}\leq 1\end{subarray}}\absolutevalue{\bra*{u}\cdot\Big{(}\Pi^{\mathsf{bij}}_{\leq t}-\Pi^{\mathcal{D}(W)}_{\leq t}\Big{)}\cdot\mathsf{cC}\cdot\mathsf{cQ}\cdot\ket*{v}\ket*{\mathsf{init}(\mathfrak{D})}}, (9.42)
=(max|v𝖠𝖡𝖫𝖱:|v21v|𝗂𝗇𝗂𝗍(𝔇)|𝖼𝖰𝖼𝖢(Π𝖻𝗂𝗃tΠ𝒟(W)t)𝖼𝖢𝖼𝖰|v|𝗂𝗇𝗂𝗍(𝔇))1/2\displaystyle=\Bigg{(}\max_{\begin{subarray}{c}\ket*{v}\in\mathcal{H}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}:\\ \norm{\ket*{v}}_{2}\leq 1\end{subarray}}\bra*{v}\bra*{\mathsf{init}(\mathfrak{D})}\cdot\mathsf{cQ}^{\dagger}\cdot\mathsf{cC}^{\dagger}\cdot\Big{(}\Pi^{\mathsf{bij}}_{\leq t}-\Pi^{\mathcal{D}(W)}_{\leq t}\Big{)}\cdot\mathsf{cC}\cdot\mathsf{cQ}\cdot\ket*{v}\ket*{\mathsf{init}(\mathfrak{D})}\Bigg{)}^{1/2} (9.43)
=𝔼C,D𝔇(C𝖠Q[C,D]𝖫𝖱)(Π𝖻𝗂𝗃tΠ𝒟(W)t)(C𝖠Q[C,D]𝖫𝖱)op1/2\displaystyle=\norm{\operatorname*{{\mathbb{E}}}_{C,D\leftarrow\mathfrak{D}}(C_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\otimes Q[C,D]_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}})^{\dagger}\cdot\Big{(}\Pi^{\mathsf{bij}}_{\leq t}-\Pi^{\mathcal{D}(W)}_{\leq t}\Big{)}\cdot(C_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\otimes Q[C,D]_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}})}_{\mathrm{op}}^{1/2} (9.44)
(6ttN)1/23t3/4N1/4\displaystyle\leq\Big{(}6t\sqrt{\frac{t}{N}}\Big{)}^{1/2}\leq\frac{3t^{3/4}}{N^{1/4}} (9.45)

where:

  • the first inequality uses the fact that Re(z)|z|\real(z)\leq\absolutevalue{z},

  • the second inequality holds because 𝖼𝖢At+1|𝒜tW,𝔇𝖠𝖡𝖫𝖱𝖢𝖣\mathsf{cC}\cdot A_{t+1}\cdot\ket*{\mathcal{A}_{t}^{W,\mathfrak{D}}}\in\mathcal{H}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}} and At+1|𝒜tV𝖠𝖡𝖫𝖱A_{t+1}\cdot\ket*{\mathcal{A}_{t}^{V}}\in\mathcal{H}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}} both have at most unit norm,

  • the third line uses the fact that

    max|u:|u21,|v:|v21|u|M|v|=(max|v:|v21v|MM|v)1/2,\displaystyle\max_{\begin{subarray}{c}\ket*{u}:\norm{\ket*{u}}_{2}\leq 1,\\ \ket*{v}:\norm{\ket*{v}}_{2}\leq 1\end{subarray}}\absolutevalue{\bra*{u}\cdot M\cdot\ket*{v}}=\Big{(}\max_{\ket*{v}:\norm{\ket*{v}}_{2}\leq 1}\bra*{v}\cdot M^{\dagger}\cdot M\cdot\ket*{v}\Big{)}^{1/2}, (9.46)

    and the fact that (Π𝖻𝗂𝗃tΠ𝒟(W)t)(Π𝖻𝗂𝗃tΠ𝒟(W)t)=Π𝖻𝗂𝗃tΠ𝒟(W)t\Big{(}\Pi^{\mathsf{bij}}_{\leq t}-\Pi^{\mathcal{D}(W)}_{\leq t}\Big{)}^{\dagger}\cdot\Big{(}\Pi^{\mathsf{bij}}_{\leq t}-\Pi^{\mathcal{D}(W)}_{\leq t}\Big{)}=\Pi^{\mathsf{bij}}_{\leq t}-\Pi^{\mathcal{D}(W)}_{\leq t}, since Π𝖻𝗂𝗃tΠ𝒟(W)t\Pi^{\mathsf{bij}}_{\leq t}-\Pi^{\mathcal{D}(W)}_{\leq t} is a projector.777By 7, Π𝖻𝗂𝗃Π𝒟(W)\Pi^{\mathsf{bij}}-\Pi^{\mathcal{D}(W)} is a projector. By Claim 12, Π𝒟(W)\Pi^{\mathcal{D}(W)} commutes with Πt\Pi_{\leq t} and by Claim 12, Π𝖻𝗂𝗃\Pi^{\mathsf{bij}} commutes with Πt\Pi_{\leq t} by Definition 23. Recall the fact that if Π1\Pi_{1} and Π2\Pi_{2} are projectors such that [Π1,Π2]=0[\Pi_{1},\Pi_{2}]=0, then Π1Π2\Pi_{1}\cdot\Pi_{2} is a projector. Thus, since Π𝖻𝗂𝗃tΠ𝒟(W)t=(Π𝖻𝗂𝗃Π𝒟(W))Πt\Pi^{\mathsf{bij}}_{\leq t}-\Pi^{\mathcal{D}(W)}_{\leq t}=(\Pi^{\mathsf{bij}}-\Pi^{\mathcal{D}(W)})\cdot\Pi_{\leq t}, we have that Π𝖻𝗂𝗃tΠ𝒟(W)t\Pi^{\mathsf{bij}}_{\leq t}-\Pi^{\mathcal{D}(W)}_{\leq t} is a projector.

  • the fourth line follows from the definitions of |𝗂𝗇𝗂𝗍(𝔇),𝖼𝖢,𝖼𝖰\ket*{\mathsf{init}(\mathfrak{D})},\mathsf{cC},\mathsf{cQ} (Definitions 30 and 31),

  • and the last line follows from Lemma 9.2.

Note that in the fourth line, we can drop the 𝖡\mathsf{B} register since the operator inside the op\norm{\cdot}_{\mathrm{op}} acts as identity on 𝖡\mathsf{B}. Putting everything together, we have

Re[𝒜t+1W,𝔇|𝖼𝖰(|𝒜t+1V|𝗂𝗇𝗂𝗍(𝔇))]\displaystyle\real\left[\bra*{\mathcal{A}_{t+1}^{W,\mathfrak{D}}}\cdot\mathsf{cQ}\cdot\Big{(}\ket*{\mathcal{A}_{t+1}^{V}}\ket*{\mathsf{init}(\mathfrak{D})}\Big{)}\right] αtβt162t(t+1)N\displaystyle\geq\alpha_{t}-\beta_{t}-16\sqrt{\frac{2t(t+1)}{N}} (9.47)
135t2N1/43t3/4N1/4162t(t+1)N\displaystyle\geq 1-\frac{35t^{2}}{N^{1/4}}-\frac{3t^{3/4}}{N^{1/4}}-16\sqrt{\frac{2t(t+1)}{N}} (9.48)
11N1/4(35t2+3t3/4+162tN1/4)\displaystyle\geq 1-\frac{1}{N^{1/4}}\cdot\Big{(}35t^{2}+3t^{3/4}+16\cdot\frac{2t}{N^{1/4}}\Big{)} (9.49)
11N1/4(35t2+35t)\displaystyle\geq 1-\frac{1}{N^{1/4}}\cdot\Big{(}35t^{2}+35t\Big{)} (9.50)
135(t+1)2N1/4,\displaystyle\geq 1-\frac{35(t+1)^{2}}{N^{1/4}}, (9.51)

which establishes the claim for t+1t+1. This concludes the proof. ∎

Lemma 9.3.

For any 0t<N0\leq t<N and any unitary 22-design 𝔇\mathfrak{D}, we have

𝖳𝖣(Tr𝖠𝖡|𝒜W,𝔇t𝒜W,𝔇t|𝖠𝖡𝖫𝖱𝖢𝖣,Tr𝖠𝖡|𝒜Vt𝒜Vt|𝖠𝖡𝖫𝖱)9tN1/8.\displaystyle\mathsf{TD}(\Tr_{-\mathsf{A}\mathsf{B}}\outerproduct*{\mathcal{A}^{W,\mathfrak{D}}_{t}}{\mathcal{A}^{W,\mathfrak{D}}_{t}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}},\Tr_{-\mathsf{A}\mathsf{B}}\outerproduct*{\mathcal{A}^{V}_{t}}{\mathcal{A}^{V}_{t}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}})\leq\frac{9t}{N^{1/8}}. (9.52)
Proof.

Using the fact that |𝒜W,𝔇t𝖠𝖡𝖫𝖱𝖢𝖣\ket*{\mathcal{A}^{W,\mathfrak{D}}_{t}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}} and |𝒜tV𝖠𝖡𝖫𝖱\ket*{\mathcal{A}_{t}^{V}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}} are subnormalized states from 10 and that 𝖳𝖣(|uu|,|vv|)|u|v2\mathsf{TD}(\outerproduct*{u}{u},\outerproduct*{v}{v})\leq\norm{\ket*{u}-\ket*{v}}_{2} for subnormalized states |u,|v\ket*{u},\ket*{v}, we have

𝖳𝖣(|𝒜W,𝔇t𝒜W,𝔇t|𝖠𝖡𝖫𝖱𝖢𝖣,𝖼𝖰𝖫𝖱𝖢𝖣(|𝒜tV𝒜tV|𝖠𝖡𝖫𝖱|𝗂𝗇𝗂𝗍(𝔇)𝗂𝗇𝗂𝗍(𝔇)|𝖢𝖣)𝖼𝖰𝖫𝖱𝖢𝖣)2\displaystyle\mathsf{TD}\left(\outerproduct*{\mathcal{A}^{W,\mathfrak{D}}_{t}}{\mathcal{A}^{W,\mathfrak{D}}_{t}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}},\mathsf{cQ}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}}\cdot\Big{(}\outerproduct*{\mathcal{A}_{t}^{V}}{\mathcal{A}_{t}^{V}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\otimes\outerproduct*{\mathsf{init}(\mathfrak{D})}{\mathsf{init}(\mathfrak{D})}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}}\Big{)}\cdot\mathsf{cQ}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}}^{\dagger}\right)^{2} (9.53)
|𝒜W,𝔇t𝖠𝖡𝖫𝖱𝖼𝖰𝖫𝖱𝖢𝖣(|𝒜tV𝖠𝖡𝖫𝖱|𝗂𝗇𝗂𝗍(𝔇)𝖢𝖣)22\displaystyle\leq\norm{\ket*{\mathcal{A}^{W,\mathfrak{D}}_{t}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}-\mathsf{cQ}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}}\cdot\Big{(}\ket*{\mathcal{A}_{t}^{V}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\otimes\ket*{\mathsf{init}(\mathfrak{D})}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}}\Big{)}}_{2}^{2} (9.54)
=𝒜W,𝔇t|𝒜W,𝔇t+𝒜Vt|𝒜Vt2Re[𝒜W,𝔇t|𝖠𝖡𝖫𝖱𝖢𝖣𝖼𝖰𝖫𝖱𝖢𝖣(|𝒜tV𝖠𝖡𝖫𝖱|𝗂𝗇𝗂𝗍(𝔇)𝖢𝖣)]\displaystyle=\innerproduct*{\mathcal{A}^{W,\mathfrak{D}}_{t}}{\mathcal{A}^{W,\mathfrak{D}}_{t}}+\innerproduct*{\mathcal{A}^{V}_{t}}{\mathcal{A}^{V}_{t}}-2\real\left[\bra*{\mathcal{A}^{W,\mathfrak{D}}_{t}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}}\cdot\mathsf{cQ}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}}\cdot\Big{(}\ket*{\mathcal{A}_{t}^{V}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\otimes\ket*{\mathsf{init}(\mathfrak{D})}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}}\Big{)}\right] (9.55)
22(135t2N1/4)=70t2N1/4.\displaystyle\leq 2-2\cdot(1-\frac{35t^{2}}{N^{1/4}})=\frac{70t^{2}}{N^{1/4}}. (Using Claim 18)

Therefore, using the fact that 𝖼𝖰𝖫𝖱𝖢𝖣\mathsf{cQ}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}} acts only on 𝖫,𝖱,𝖢,𝖣\mathsf{L},\mathsf{R},\mathsf{C},\mathsf{D} and 𝖼𝖰𝖫𝖱𝖢𝖣\mathsf{cQ}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}} is a unitary, we obtain

𝖳𝖣(Tr𝖠𝖡|𝒜W,𝔇t𝒜W,𝔇t|𝖠𝖡𝖫𝖱𝖢𝖣,Tr𝖠𝖡|𝒜Vt𝒜Vt|𝖠𝖡𝖫𝖱)\displaystyle\mathsf{TD}(\Tr_{-\mathsf{A}\mathsf{B}}\outerproduct*{\mathcal{A}^{W,\mathfrak{D}}_{t}}{\mathcal{A}^{W,\mathfrak{D}}_{t}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}},\Tr_{-\mathsf{A}\mathsf{B}}\outerproduct*{\mathcal{A}^{V}_{t}}{\mathcal{A}^{V}_{t}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}) (9.56)
=𝖳𝖣(Tr𝖠𝖡|𝒜W,𝔇t𝒜W,𝔇t|𝖠𝖡𝖫𝖱𝖢𝖣,\displaystyle=\mathsf{TD}\Big{(}\Tr_{-\mathsf{A}\mathsf{B}}\outerproduct*{\mathcal{A}^{W,\mathfrak{D}}_{t}}{\mathcal{A}^{W,\mathfrak{D}}_{t}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}},
Tr𝖠𝖡[𝖼𝖰𝖫𝖱𝖢𝖣(|𝒜tV𝒜tV|𝖠𝖡𝖫𝖱|𝗂𝗇𝗂𝗍(𝔇)𝗂𝗇𝗂𝗍(𝔇)|𝖢𝖣)𝖼𝖰𝖫𝖱𝖢𝖣])\displaystyle\quad\quad\quad\quad\quad\Tr_{-\mathsf{A}\mathsf{B}}\left[\mathsf{cQ}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}}\cdot\Big{(}\outerproduct*{\mathcal{A}_{t}^{V}}{\mathcal{A}_{t}^{V}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\otimes\outerproduct*{\mathsf{init}(\mathfrak{D})}{\mathsf{init}(\mathfrak{D})}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}}\Big{)}\cdot\mathsf{cQ}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}}^{\dagger}\right]\Big{)} (9.57)
𝖳𝖣(|𝒜W,𝔇t𝒜W,𝔇t|𝖠𝖡𝖫𝖱𝖢𝖣,𝖼𝖰𝖫𝖱𝖢𝖣(|𝒜tV𝒜tV|𝖠𝖡𝖫𝖱|𝗂𝗇𝗂𝗍(𝔇)𝗂𝗇𝗂𝗍(𝔇)|𝖢𝖣)𝖼𝖰𝖫𝖱𝖢𝖣)\displaystyle\leq\mathsf{TD}\left(\outerproduct*{\mathcal{A}^{W,\mathfrak{D}}_{t}}{\mathcal{A}^{W,\mathfrak{D}}_{t}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}},\mathsf{cQ}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}}\cdot\Big{(}\outerproduct*{\mathcal{A}_{t}^{V}}{\mathcal{A}_{t}^{V}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\otimes\outerproduct*{\mathsf{init}(\mathfrak{D})}{\mathsf{init}(\mathfrak{D})}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}}\Big{)}\cdot\mathsf{cQ}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}}^{\dagger}\right) (9.58)
70t2N1/49tN1/8.\displaystyle\leq\sqrt{\frac{70t^{2}}{N^{1/4}}}\leq\frac{9t}{N^{1/8}}. (9.59)

This completes the proof. ∎

9.3 Twirled WW and twirled 𝗉𝖿𝖮\mathsf{pfO} are indistinguishable

Let |+N!𝖯\ket*{+_{N!}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}} and |+3N𝖥\ket*{+_{3^{N}}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}} denote the uniform superposition over all permutations and functions, respectively. We define the follow state obtained by querying twirled 𝗉𝖿𝖮\mathsf{pfO}.

Definition 34 (Twirled 𝗉𝖿𝖮\mathsf{pfO} purification).

Let

|𝒜0𝗉𝖿𝖮,𝔇𝖠𝖡𝖯𝖥𝖢𝖣|0n𝖠|0m𝖡|+N!𝖯|+3N𝖥|𝗂𝗇𝗂𝗍(𝔇)𝖢𝖣,\displaystyle\ket*{\mathcal{A}_{0}^{\mathsf{pfO},\mathfrak{D}}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}}\coloneqq\ket*{0^{n}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\ket*{0^{m}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}}\ket*{+_{N!}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}}\ket*{+_{3^{N}}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}}\ket*{\mathsf{init}(\mathfrak{D})}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}}, (9.60)

For 1it1\leq i\leq t, define

|𝒜i𝗉𝖿𝖮,𝔇((1bi)(𝖼𝖣𝗉𝖿𝖮𝖼𝖢)+bi(𝖼𝖣𝗉𝖿𝖮𝖼𝖢))Ai|𝒜𝗉𝖿𝖮,𝔇i1.\displaystyle\ket*{\mathcal{A}_{i}^{\mathsf{pfO},\mathfrak{D}}}\coloneqq\Big{(}(1-b_{i})\cdot(\mathsf{cD}\cdot\mathsf{pfO}\cdot\mathsf{cC})+b_{i}\cdot(\mathsf{cD}\cdot\mathsf{pfO}\cdot\mathsf{cC})^{\dagger}\Big{)}\cdot A_{i}\cdot\ket*{\mathcal{A}^{\mathsf{pfO},\mathfrak{D}}_{i-1}}. (9.61)

To connect twirled WW and twirled 𝗉𝖿𝖮\mathsf{pfO}, we need to define the following projections.

Definition 35.

Define the projectors

Π~𝒟(W)\displaystyle\widetilde{\Pi}^{\mathcal{D}(W)} 𝖢𝗈𝗆𝗉Π𝒟(W)𝖢𝗈𝗆𝗉,\displaystyle\coloneqq\mathsf{Comp}^{\dagger}\cdot\Pi^{\mathcal{D}(W)}\cdot\mathsf{Comp}, (9.62)
Π~(W)\displaystyle\widetilde{\Pi}^{\mathcal{I}(W)} 𝖢𝗈𝗆𝗉Π(W)𝖢𝗈𝗆𝗉.\displaystyle\coloneqq\mathsf{Comp}^{\dagger}\cdot\Pi^{\mathcal{I}(W)}\cdot\mathsf{Comp}. (9.63)

We define the following state obtained by querying twirled 𝗉𝖿𝖮\mathsf{pfO}, but depending on whether forward or inverse query (determined by bib_{i}) is made, we will add a projector.

Definition 36 (Twirled projected 𝗉𝖿𝖮\mathsf{pfO} purification).

Let |𝒜0𝗉𝖿𝖮~,𝔇|𝒜0𝗉𝖿𝖮,𝔇\ket*{\mathcal{A}_{0}^{\widetilde{\mathsf{pfO}},\mathfrak{D}}}\coloneqq\ket*{\mathcal{A}_{0}^{\mathsf{pfO},\mathfrak{D}}}. For 1it1\leq i\leq t, define

|𝒜i𝗉𝖿𝖮~,𝔇((1bi)(𝖼𝖣𝗉𝖿𝖮Π~𝒟(W)𝖼𝖢)+bi(𝖼𝖢𝗉𝖿𝖮Π~(W)𝖼𝖣))Ai|𝒜𝗉𝖿𝖮~,𝔇i1.\displaystyle\ket*{\mathcal{A}_{i}^{\widetilde{\mathsf{pfO}},\mathfrak{D}}}\coloneqq\Big{(}(1-b_{i})\cdot(\mathsf{cD}\cdot\mathsf{pfO}\cdot\widetilde{\Pi}^{\mathcal{D}(W)}\cdot\mathsf{cC})+b_{i}\cdot(\mathsf{cC}^{\dagger}\cdot\mathsf{pfO}^{\dagger}\cdot\widetilde{\Pi}^{\mathcal{I}(W)}\cdot\mathsf{cD}^{\dagger})\Big{)}\cdot A_{i}\cdot\ket*{\mathcal{A}^{\widetilde{\mathsf{pfO}},\mathfrak{D}}_{i-1}}. (9.64)
Claim 19.

For all integers 0tN0\leq t\leq N,

|𝒜tW,𝔇𝖠𝖡𝖫𝖱𝖢𝖣=𝖢𝗈𝗆𝗉|𝒜t𝗉𝖿𝖮~,𝔇𝖠𝖡𝖯𝖥𝖢𝖣.\displaystyle\ket*{\mathcal{A}_{t}^{W,\mathfrak{D}}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}}=\mathsf{Comp}\cdot\ket*{\mathcal{A}_{t}^{\widetilde{\mathsf{pfO}},\mathfrak{D}}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}}. (9.65)
Proof.

We prove this using induction. The base case t=0t=0 follows from the fact that

𝖢𝗈𝗆𝗉|+N!𝖯|+3N𝖥=|𝖫|𝖱.\mathsf{Comp}\cdot\ket*{+_{N!}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}}\ket*{+_{3^{N}}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}}=\ket*{\varnothing}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}}\ket*{\varnothing}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}. (9.66)

If |𝒜tW,𝔇𝖠𝖡𝖫𝖱𝖢𝖣=𝖢𝗈𝗆𝗉|𝒜t𝗉𝖿𝖮~,𝔇𝖠𝖡𝖯𝖥𝖢𝖣\ket*{\mathcal{A}_{t}^{W,\mathfrak{D}}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}}=\mathsf{Comp}\cdot\ket*{\mathcal{A}_{t}^{\widetilde{\mathsf{pfO}},\mathfrak{D}}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}} for t>0t>0, then we have

|𝒜t+1W,𝔇𝖠𝖡𝖫𝖱𝖢𝖣\displaystyle\ket*{\mathcal{A}_{t+1}^{W,\mathfrak{D}}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}} (9.67)
=((1bi)(𝖼𝖣W𝖼𝖢)+bi(𝖼𝖣W𝖼𝖢))Ai|𝒜W,𝔇t𝖠𝖡𝖫𝖱𝖢𝖣\displaystyle=\Big{(}(1-b_{i})\cdot(\mathsf{cD}\cdot W\cdot\mathsf{cC})+b_{i}\cdot(\mathsf{cD}\cdot W\cdot\mathsf{cC})^{\dagger}\Big{)}\cdot A_{i}\cdot\ket*{\mathcal{A}^{W,\mathfrak{D}}_{t}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}} (9.68)
=((1bi)(𝖼𝖣𝖢𝗈𝗆𝗉𝗉𝖿𝖮𝖢𝗈𝗆𝗉Π𝒟(W)𝖼𝖢)\displaystyle=\Big{(}(1-b_{i})\cdot(\mathsf{cD}\cdot\mathsf{Comp}\cdot\mathsf{pfO}\cdot\mathsf{Comp}^{\dagger}\cdot\Pi^{\mathcal{D}(W)}\cdot\mathsf{cC})
+bi(𝖼𝖢𝖢𝗈𝗆𝗉𝗉𝖿𝖮𝖢𝗈𝗆𝗉Π(W)𝖼𝖣))Ai|𝒜W,𝔇t𝖠𝖡𝖫𝖱𝖢𝖣\displaystyle\,\,\,+b_{i}\cdot(\mathsf{cC}^{\dagger}\cdot\mathsf{Comp}\cdot\mathsf{pfO}^{\dagger}\cdot\mathsf{Comp}^{\dagger}\cdot\Pi^{\mathcal{I}(W)}\cdot\mathsf{cD}^{\dagger})\Big{)}\cdot A_{i}\cdot\ket*{\mathcal{A}^{W,\mathfrak{D}}_{t}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}} (Using Claim 13)
=𝖢𝗈𝗆𝗉((1bi)(𝖼𝖣𝗉𝖿𝖮Π~𝒟(W)𝖼𝖢)\displaystyle=\mathsf{Comp}\cdot\Big{(}(1-b_{i})\cdot(\mathsf{cD}\cdot\mathsf{pfO}\cdot\widetilde{\Pi}^{\mathcal{D}(W)}\cdot\mathsf{cC})
+bi𝖼𝖢𝗉𝖿𝖮Π~(W)𝖼𝖣)Ai𝖢𝗈𝗆𝗉|𝒜W,𝔇t𝖠𝖡𝖫𝖱𝖢𝖣\displaystyle\quad\,\,\,+b_{i}\cdot\mathsf{cC}^{\dagger}\cdot\mathsf{pfO}^{\dagger}\cdot\widetilde{\Pi}^{\mathcal{I}(W)}\cdot\mathsf{cD}^{\dagger}\Big{)}\cdot A_{i}\cdot\mathsf{Comp}^{\dagger}\cdot\ket*{\mathcal{A}^{W,\mathfrak{D}}_{t}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}} (9.69)
=𝖢𝗈𝗆𝗉((1bi)(𝖼𝖣𝗉𝖿𝖮Π~𝒟(W)𝖼𝖢)\displaystyle=\mathsf{Comp}\cdot\Big{(}(1-b_{i})\cdot(\mathsf{cD}\cdot\mathsf{pfO}\cdot\widetilde{\Pi}^{\mathcal{D}(W)}\cdot\mathsf{cC})
+bi𝖼𝖢𝗉𝖿𝖮Π~(W)𝖼𝖣)Ai|𝒜𝗉𝖿𝖮~,𝔇t𝖠𝖡𝖯𝖥𝖢𝖣\displaystyle\quad\,\,\,+b_{i}\cdot\mathsf{cC}^{\dagger}\cdot\mathsf{pfO}^{\dagger}\cdot\widetilde{\Pi}^{\mathcal{I}(W)}\cdot\mathsf{cD}^{\dagger}\Big{)}\cdot A_{i}\cdot\ket*{\mathcal{A}^{\widetilde{\mathsf{pfO}},\mathfrak{D}}_{t}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}} (inductive hypothesis)
=𝖢𝗈𝗆𝗉|𝒜𝗉𝖿𝖮~,𝔇t+1𝖠𝖡𝖯𝖥𝖢𝖣.\displaystyle=\mathsf{Comp}\cdot\ket*{\mathcal{A}^{\widetilde{\mathsf{pfO}},\mathfrak{D}}_{t+1}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}}. (9.70)

This concludes the proof. ∎

Lemma 9.4 (Norm bound).

For any 0t<N0\leq t<N and any unitary 22-design 𝔇\mathfrak{D}, we have

1𝒜W,𝔇t|𝒜W,𝔇t𝖠𝖡𝖫𝖱𝖢𝖣170t2N1/4.\displaystyle 1\geq\innerproduct*{\mathcal{A}^{W,\mathfrak{D}}_{t}}{\mathcal{A}^{W,\mathfrak{D}}_{t}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}}\geq 1-\frac{70t^{2}}{N^{1/4}}. (9.71)
Proof.

We can utilize the following bounds,

𝒜W,𝔇t|𝒜W,𝔇t𝖠𝖡𝖫𝖱𝖢𝖣\displaystyle\innerproduct*{\mathcal{A}^{W,\mathfrak{D}}_{t}}{\mathcal{A}^{W,\mathfrak{D}}_{t}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}} (9.72)
𝒜W,𝔇t|𝒜W,𝔇t𝖠𝖡𝖫𝖱𝖢𝖣𝒜tV|𝒜tV𝖠𝖡𝖫𝖱\displaystyle\geq\innerproduct*{\mathcal{A}^{W,\mathfrak{D}}_{t}}{\mathcal{A}^{W,\mathfrak{D}}_{t}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}}\cdot\innerproduct*{\mathcal{A}_{t}^{V}}{\mathcal{A}_{t}^{V}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}} (𝒜tV|𝒜tV𝖠𝖡𝖫𝖱1\innerproduct*{\mathcal{A}_{t}^{V}}{\mathcal{A}_{t}^{V}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\leq 1 from 10)
=𝒜W,𝔇t|𝒜W,𝔇t𝖠𝖡𝖫𝖱𝖢𝖣(𝒜tV|𝖠𝖡𝖫𝖱𝗂𝗇𝗂𝗍(𝔇)|𝖢𝖣)𝖼𝖰𝖼𝖰𝖫𝖱𝖢𝖣(|𝒜tV𝖠𝖡𝖫𝖱|𝗂𝗇𝗂𝗍(𝔇)𝖢𝖣)\displaystyle=\innerproduct*{\mathcal{A}^{W,\mathfrak{D}}_{t}}{\mathcal{A}^{W,\mathfrak{D}}_{t}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}}\cdot\Big{(}\bra*{\mathcal{A}_{t}^{V}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\bra*{\mathsf{init}(\mathfrak{D})}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}}\Big{)}\cdot\mathsf{cQ}^{\dagger}\cdot\mathsf{cQ}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}}\cdot\Big{(}\ket*{\mathcal{A}_{t}^{V}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\ket*{\mathsf{init}(\mathfrak{D})}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}}\Big{)} (9.73)
|𝒜W,𝔇t|𝖠𝖡𝖫𝖱𝖢𝖣𝖼𝖰𝖫𝖱𝖢𝖣(|𝒜tV𝖠𝖡𝖫𝖱|𝗂𝗇𝗂𝗍(𝔇)𝖢𝖣)|2\displaystyle\geq\left|\bra*{\mathcal{A}^{W,\mathfrak{D}}_{t}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}}\cdot\mathsf{cQ}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}}\cdot\Big{(}\ket*{\mathcal{A}_{t}^{V}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\ket*{\mathsf{init}(\mathfrak{D})}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}}\Big{)}\right|^{2} (Cauchy-Schwarz inequality)
Re[𝒜W,𝔇t|𝖠𝖡𝖫𝖱𝖢𝖣𝖼𝖰𝖫𝖱𝖢𝖣(|𝒜tV𝖠𝖡𝖫𝖱|𝗂𝗇𝗂𝗍(𝔇)𝖢𝖣)]2\displaystyle\geq\real\left[\bra*{\mathcal{A}^{W,\mathfrak{D}}_{t}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}}\cdot\mathsf{cQ}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}}\cdot\Big{(}\ket*{\mathcal{A}_{t}^{V}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\ket*{\mathsf{init}(\mathfrak{D})}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}}\Big{)}\right]^{2} (9.74)
(135t2N1/4)2170t2N1/4,\displaystyle\geq(1-\frac{35t^{2}}{N^{1/4}})^{2}\geq 1-\frac{70t^{2}}{N^{1/4}}, (Using Claim 18)

which completes the proof. ∎

Lemma 9.5.

For all integers 0tN0\leq t\leq N,

𝖳𝖣(Tr𝖠𝖡|𝒜t𝗉𝖿𝖮,𝔇𝒜t𝗉𝖿𝖮,𝔇|𝖠𝖡𝖯𝖥𝖢𝖣,Tr𝖠𝖡|𝒜tW,𝔇𝒜tW,𝔇|𝖠𝖡𝖫𝖱𝖢𝖣)9t2N1/8.\mathsf{TD}\left(\Tr_{-\mathsf{A}\mathsf{B}}\outerproduct*{\mathcal{A}_{t}^{\mathsf{pfO},\mathfrak{D}}}{\mathcal{A}_{t}^{\mathsf{pfO},\mathfrak{D}}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}},\Tr_{-\mathsf{A}\mathsf{B}}\outerproduct*{\mathcal{A}_{t}^{W,\mathfrak{D}}}{\mathcal{A}_{t}^{W,\mathfrak{D}}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}}\right)\leq\frac{9t^{2}}{N^{1/8}}. (9.75)
Proof.

Because 𝖢𝗈𝗆𝗉\mathsf{Comp} acts on registers 𝖯,𝖥\mathsf{P},\mathsf{F} and maps to 𝖫,𝖱\mathsf{L},\mathsf{R}, we have

Tr𝖠𝖡|𝒜tW,𝔇𝒜tW,𝔇|𝖠𝖡𝖫𝖱𝖢𝖣=Tr𝖠𝖡|𝒜t𝗉𝖿𝖮~,𝔇𝒜t𝗉𝖿𝖮~,𝔇|𝖠𝖡𝖯𝖥𝖢𝖣.\Tr_{-\mathsf{A}\mathsf{B}}\outerproduct*{\mathcal{A}_{t}^{W,\mathfrak{D}}}{\mathcal{A}_{t}^{W,\mathfrak{D}}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}}=\Tr_{-\mathsf{A}\mathsf{B}}\outerproduct*{\mathcal{A}_{t}^{\widetilde{\mathsf{pfO}},\mathfrak{D}}}{\mathcal{A}_{t}^{\widetilde{\mathsf{pfO}},\mathfrak{D}}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}}. (9.76)

Because 𝗉𝖿𝖮\mathsf{pfO} is an isometry, |𝒜t𝗉𝖿𝖮,𝔇𝖠𝖡𝖯𝖥𝖢𝖣\ket*{\mathcal{A}_{t}^{\mathsf{pfO},\mathfrak{D}}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}} has norm 11. Furthermore, from Claim 19, because 𝖢𝗈𝗆𝗉\mathsf{Comp} is an isometry, we have

𝒜t𝗉𝖿𝖮~,𝔇|𝒜t𝗉𝖿𝖮~,𝔇𝖠𝖡𝖯𝖥𝖢𝖣=𝒜W,𝔇t|𝒜W,𝔇t𝖠𝖡𝖫𝖱𝖢𝖣1.\innerproduct*{\mathcal{A}_{t}^{\widetilde{\mathsf{pfO}},\mathfrak{D}}}{\mathcal{A}_{t}^{\widetilde{\mathsf{pfO}},\mathfrak{D}}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}}=\innerproduct{\mathcal{A}^{W,\mathfrak{D}}_{t}}{\mathcal{A}^{W,\mathfrak{D}}_{t}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}}\leq 1. (9.77)

Together, we can obtain the following,

𝖳𝖣(Tr𝖠𝖡|𝒜t𝗉𝖿𝖮,𝔇𝒜t𝗉𝖿𝖮,𝔇|𝖠𝖡𝖯𝖥𝖢𝖣,Tr𝖠𝖡|𝒜tW,𝔇𝒜tW,𝔇|𝖠𝖡𝖫𝖱𝖢𝖣)\displaystyle\mathsf{TD}\left(\Tr_{-\mathsf{A}\mathsf{B}}\outerproduct*{\mathcal{A}_{t}^{\mathsf{pfO},\mathfrak{D}}}{\mathcal{A}_{t}^{\mathsf{pfO},\mathfrak{D}}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}},\Tr_{-\mathsf{A}\mathsf{B}}\outerproduct*{\mathcal{A}_{t}^{W,\mathfrak{D}}}{\mathcal{A}_{t}^{W,\mathfrak{D}}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}}\right) (9.78)
=𝖳𝖣(Tr𝖠𝖡|𝒜t𝗉𝖿𝖮,𝔇𝒜t𝗉𝖿𝖮,𝔇|𝖠𝖡𝖯𝖥𝖢𝖣,Tr𝖠𝖡|𝒜t𝗉𝖿𝖮~,𝔇𝒜t𝗉𝖿𝖮~,𝔇|𝖠𝖡𝖯𝖥𝖢𝖣)\displaystyle=\mathsf{TD}\left(\Tr_{-\mathsf{A}\mathsf{B}}\outerproduct*{\mathcal{A}_{t}^{\mathsf{pfO},\mathfrak{D}}}{\mathcal{A}_{t}^{\mathsf{pfO},\mathfrak{D}}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}},\Tr_{-\mathsf{A}\mathsf{B}}\outerproduct*{\mathcal{A}_{t}^{\widetilde{\mathsf{pfO}},\mathfrak{D}}}{\mathcal{A}_{t}^{\widetilde{\mathsf{pfO}},\mathfrak{D}}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}}\right) (9.79)
𝖳𝖣(|𝒜t𝗉𝖿𝖮,𝔇𝒜t𝗉𝖿𝖮,𝔇|𝖠𝖡𝖯𝖥𝖢𝖣,|𝒜t𝗉𝖿𝖮~,𝔇𝒜t𝗉𝖿𝖮~,𝔇|𝖠𝖡𝖯𝖥𝖢𝖣)\displaystyle\leq\mathsf{TD}\left(\outerproduct*{\mathcal{A}_{t}^{\mathsf{pfO},\mathfrak{D}}}{\mathcal{A}_{t}^{\mathsf{pfO},\mathfrak{D}}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}},\outerproduct*{\mathcal{A}_{t}^{\widetilde{\mathsf{pfO}},\mathfrak{D}}}{\mathcal{A}_{t}^{\widetilde{\mathsf{pfO}},\mathfrak{D}}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}}\right) (9.80)
|𝒜t𝗉𝖿𝖮,𝔇𝖠𝖡𝖯𝖥𝖢𝖣|𝒜t𝗉𝖿𝖮~,𝔇𝖠𝖡𝖯𝖥𝖢𝖣2\displaystyle\leq\norm{\ket*{\mathcal{A}_{t}^{\mathsf{pfO},\mathfrak{D}}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}}-\ket*{\mathcal{A}_{t}^{\widetilde{\mathsf{pfO}},\mathfrak{D}}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}}}_{2} (12uuvvtruv2\frac{1}{2}\norm{uu^{\dagger}-vv^{\dagger}}_{\mathrm{tr}}\leq\norm{u-v}_{2} if u2,v21\norm{u}_{2},\norm{v}_{2}\leq 1)
t1𝒜t𝗉𝖿𝖮~,𝔇|𝒜t𝗉𝖿𝖮~,𝔇𝖠𝖡𝖯𝖥𝖢𝖣\displaystyle\leq t\cdot\sqrt{1-\innerproduct{\mathcal{A}_{t}^{\widetilde{\mathsf{pfO}},\mathfrak{D}}}{\mathcal{A}_{t}^{\widetilde{\mathsf{pfO}},\mathfrak{D}}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}}} (Lemma 2.3 on sequential gentle measurement)
=t1𝒜tW,𝔇|𝒜tW,𝔇𝖠𝖡𝖫𝖱𝖢𝖣\displaystyle=t\cdot\sqrt{1-\innerproduct{\mathcal{A}_{t}^{W,\mathfrak{D}}}{\mathcal{A}_{t}^{W,\mathfrak{D}}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}}} (Claim 19)
t70t2N1/49t2N1/8.\displaystyle\leq t\cdot\sqrt{\frac{70t^{2}}{N^{1/4}}}\leq\frac{9t^{2}}{N^{1/8}}. (Lemma 9.4)

This concludes the proof. ∎

9.4 Proof of Lemma 9.1

From Claim 6, we have

Tr𝖯𝖥𝖢𝖣|𝒜t𝗉𝖿𝖮,𝔇𝒜t𝗉𝖿𝖮,𝔇|𝖠𝖡𝖯𝖥𝖢𝖣=𝔼𝒪𝗌𝖯𝖱𝖴(𝔇)|𝒜t𝒪𝒜t𝒪|𝖠𝖡.\Tr_{\mathsf{P}\mathsf{F}\mathsf{C}\mathsf{D}}\outerproduct*{\mathcal{A}_{t}^{\mathsf{pfO},\mathfrak{D}}}{\mathcal{A}_{t}^{\mathsf{pfO},\mathfrak{D}}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}}=\operatorname*{{\mathbb{E}}}_{\mathcal{O}\leftarrow\mathsf{sPRU}(\mathfrak{D})}\outerproduct*{\mathcal{A}_{t}^{\mathcal{O}}}{\mathcal{A}_{t}^{\mathcal{O}}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}}. (9.81)

From Lemma 9.3, we have

𝖳𝖣(Tr𝖫𝖱𝖢𝖣|𝒜W,𝔇t𝒜W,𝔇t|𝖠𝖡𝖫𝖱𝖢𝖣,Tr𝖫𝖱|𝒜Vt𝒜Vt|𝖠𝖡𝖫𝖱)9tN1/8.\displaystyle\mathsf{TD}\left(\Tr_{\mathsf{L}\mathsf{R}\mathsf{C}\mathsf{D}}\outerproduct*{\mathcal{A}^{W,\mathfrak{D}}_{t}}{\mathcal{A}^{W,\mathfrak{D}}_{t}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}},\Tr_{\mathsf{L}\mathsf{R}}\outerproduct*{\mathcal{A}^{V}_{t}}{\mathcal{A}^{V}_{t}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\right)\leq\frac{9t}{N^{1/8}}. (9.82)

From Lemma 9.5, we have

𝖳𝖣(Tr𝖯𝖥𝖢𝖣|𝒜t𝗉𝖿𝖮,𝔇𝒜t𝗉𝖿𝖮,𝔇|𝖠𝖡𝖯𝖥𝖢𝖣,Tr𝖫𝖱𝖢𝖣|𝒜tW,𝔇𝒜tW,𝔇|𝖠𝖡𝖫𝖱𝖢𝖣)9t2N1/8.\mathsf{TD}\left(\Tr_{\mathsf{P}\mathsf{F}\mathsf{C}\mathsf{D}}\outerproduct*{\mathcal{A}_{t}^{\mathsf{pfO},\mathfrak{D}}}{\mathcal{A}_{t}^{\mathsf{pfO},\mathfrak{D}}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}},\Tr_{\mathsf{L}\mathsf{R}\mathsf{C}\mathsf{D}}\outerproduct*{\mathcal{A}_{t}^{W,\mathfrak{D}}}{\mathcal{A}_{t}^{W,\mathfrak{D}}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}}\right)\leq\frac{9t^{2}}{N^{1/8}}. (9.83)

By triangle inequality, we have

𝖳𝖣(𝔼𝒪𝗌𝖯𝖱𝖴(𝔇)|𝒜t𝒪𝒜t𝒪|𝖠𝖡,Tr𝖫𝖱|𝒜tV𝒜tV|𝖠𝖡𝖫𝖱)\displaystyle\mathsf{TD}\left(\operatorname*{{\mathbb{E}}}_{\mathcal{O}\leftarrow\mathsf{sPRU}(\mathfrak{D})}\outerproduct*{\mathcal{A}_{t}^{\mathcal{O}}}{\mathcal{A}_{t}^{\mathcal{O}}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}},\Tr_{\mathsf{L}\mathsf{R}}\outerproduct*{\mathcal{A}_{t}^{V}}{\mathcal{A}_{t}^{V}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\right) (9.84)
=𝖳𝖣(Tr𝖯𝖥𝖢𝖣|𝒜t𝗉𝖿𝖮,𝔇𝒜t𝗉𝖿𝖮,𝔇|𝖠𝖡𝖯𝖥𝖢𝖣,Tr𝖫𝖱|𝒜tV𝒜tV|𝖠𝖡𝖫𝖱)\displaystyle=\mathsf{TD}\left(\Tr_{\mathsf{P}\mathsf{F}\mathsf{C}\mathsf{D}}\outerproduct*{\mathcal{A}_{t}^{\mathsf{pfO},\mathfrak{D}}}{\mathcal{A}_{t}^{\mathsf{pfO},\mathfrak{D}}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}},\Tr_{\mathsf{L}\mathsf{R}}\outerproduct*{\mathcal{A}_{t}^{V}}{\mathcal{A}_{t}^{V}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\right) (9.85)
𝖳𝖣(Tr𝖯𝖥𝖢𝖣|𝒜t𝗉𝖿𝖮,𝔇𝒜t𝗉𝖿𝖮,𝔇|𝖠𝖡𝖯𝖥𝖢𝖣,Tr𝖫𝖱𝖢𝖣|𝒜tW,𝔇𝒜tW,𝔇|𝖠𝖡𝖫𝖱𝖢𝖣)\displaystyle\leq\mathsf{TD}\left(\Tr_{\mathsf{P}\mathsf{F}\mathsf{C}\mathsf{D}}\outerproduct*{\mathcal{A}_{t}^{\mathsf{pfO},\mathfrak{D}}}{\mathcal{A}_{t}^{\mathsf{pfO},\mathfrak{D}}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{P}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{F}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}},\Tr_{\mathsf{L}\mathsf{R}\mathsf{C}\mathsf{D}}\outerproduct*{\mathcal{A}_{t}^{W,\mathfrak{D}}}{\mathcal{A}_{t}^{W,\mathfrak{D}}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}}\right)
+𝖳𝖣(Tr𝖫𝖱𝖢𝖣|𝒜W,𝔇t𝒜W,𝔇t|𝖠𝖡𝖫𝖱𝖢𝖣,Tr𝖫𝖱|𝒜Vt𝒜Vt|𝖠𝖡𝖫𝖱)\displaystyle+\mathsf{TD}\left(\Tr_{\mathsf{L}\mathsf{R}\mathsf{C}\mathsf{D}}\outerproduct*{\mathcal{A}^{W,\mathfrak{D}}_{t}}{\mathcal{A}^{W,\mathfrak{D}}_{t}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{C}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{D}}}},\Tr_{\mathsf{L}\mathsf{R}}\outerproduct*{\mathcal{A}^{V}_{t}}{\mathcal{A}^{V}_{t}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{B}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\right) (9.86)
9t(t+1)N1/8.\displaystyle\leq\frac{9t(t+1)}{N^{1/8}}. (9.87)

This completes the proof of Lemma 9.1.

10 Proof of Claim 16

In this section, we prove Claim 16, which states that the symmetric path recording oracle VV is approximately unitary invariant. For convenience, we restate the lemma below:

Lemma 10.1 (Claim 16, restated).

For any 0t<N0\leq t<N, and any pair of nn-qubit unitaries C,DC,D, we have

D𝖠VtC𝖠Q[C,D]𝖫𝖱Q[C,D]𝖫𝖱Vtop\displaystyle\norm{D_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\cdot V_{\leq t}\cdot C_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\otimes Q[C,D]_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}-Q[C,D]_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\cdot V_{\leq t}}_{\mathrm{op}} 162t(t+1)N,\displaystyle\leq 16\sqrt{\frac{2t(t+1)}{N}}, (10.1)
C𝖠(V)tD𝖠Q[C,D]𝖫𝖱Q[C,D]𝖫𝖱(V)top\displaystyle\norm{C_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}^{\dagger}\cdot(V^{\dagger})_{\leq t}\cdot D_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}^{\dagger}\otimes Q[C,D]_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}-Q[C,D]_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\cdot(V^{\dagger})_{\leq t}}_{\mathrm{op}} 162t(t+1)N,\displaystyle\leq 16\sqrt{\frac{2t(t+1)}{N}}, (10.2)

To prove this lemma, we will define a pair of operators ELE^{L} and ERE^{R} that satisfy exact unitary invariance. We will then prove that ELE^{L} is close in operator norm to VLV^{L}, and that ERE^{R} is close in operator norm to ERE^{R}. By combining these guarantees, we will show that VLV^{L} and VRV^{R} satisfy approximate unitary invariance, which we will use to prove that VV satisfies approximate unitary invariance.

10.1 Defining ELE^{L} and ERE^{R}

Definition 37.

Define the operator ELE^{L} and ERE^{R} that act on registers 𝖠,𝖫,𝖱\mathsf{A},\mathsf{L},\mathsf{R} as follows:

EL1Nx,y[N]|yx|𝖠L𝗇𝗎𝗆(L,(x,y))+1|L{(x,y)}L|𝖫R|RR|𝖱.\displaystyle E^{L}\coloneqq\frac{1}{\sqrt{N}}\sum_{x,y\in[N]}\outerproduct*{y}{x}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\otimes\sum_{L\in\mathcal{R}}\sqrt{\mathsf{num}(L,(x,y))+1}\cdot\outerproduct*{L\cup\{(x,y)\}}{L}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}}\otimes\sum_{R\in\mathcal{R}}\outerproduct*{R}{R}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}. (10.3)
ER1Nx,y[N]|xy|𝖠L|LL|𝖫R𝗇𝗎𝗆(R,(x,y))+1|R{(x,y)}R|𝖱.\displaystyle E^{R}\coloneqq\frac{1}{\sqrt{N}}\sum_{x,y\in[N]}\outerproduct*{x}{y}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\otimes\sum_{L\in\mathcal{R}}\outerproduct*{L}{L}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}}\otimes\sum_{R\in\mathcal{R}}\sqrt{\mathsf{num}(R,(x,y))+1}\cdot\outerproduct*{R\cup\{(x,y)\}}{R}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}. (10.4)

We will show that ELE^{L} and ERE^{R} satisfies the following unitary invariance property. To state the property, recall that we define the operator Q[C,D]Q[C,D] as follows:

Definition 38 (Definition 27, restated).

For any pair of nn-qubit unitaries C,DC,D, define

Q[C,D]\displaystyle Q[C,D] (CDT)𝖫(C¯D)𝖱.\displaystyle\coloneqq(C\otimes D^{T})^{\otimes*}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}}\otimes(\overline{C}\otimes D^{\dagger})^{\otimes*}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}. (10.5)
Claim 20 (Exact unitary invariance of ELE^{L} and ERE^{R}).

For any pair of nn qubit unitaries C,DC,D, we have

D𝖠EL𝖠𝖫𝖱C𝖠\displaystyle D_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\cdot E^{L}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\cdot C_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}} =Q[C,D]𝖫𝖱EL𝖠𝖫𝖱Q[C,D]𝖫𝖱,\displaystyle=Q[C,D]_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\cdot E^{L}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\cdot Q[C,D]_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}^{\dagger}, (10.6)
C𝖠ER𝖠𝖫𝖱D𝖠\displaystyle C^{\dagger}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\cdot E^{R}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\cdot D^{\dagger}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}} =Q[C,D]𝖫𝖱ER𝖠𝖫𝖱Q[C,D]𝖫𝖱,\displaystyle=Q[C,D]_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\cdot E^{R}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\cdot Q[C,D]_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}^{\dagger}, (10.7)

To prove Claim 20, it will be useful to have the following alternative expressions for ELE^{L} and ERE^{R}.

Claim 21 (Alternative form of ELE^{L} and ERE^{R}).

The ELE^{L} operator can also be written as

EL\displaystyle E^{L} =1Nx,y[N]|yx|𝖠0Π+1,𝖫(+1|x,yΠ)𝖫Π𝖱.\displaystyle=\frac{1}{\sqrt{N}}\sum_{x,y\in[N]}\outerproduct*{y}{x}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\otimes\sum_{\ell\geq 0}\Pi^{\mathcal{R}}_{\ell+1,{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}}\cdot\Big{(}\sqrt{\ell+1}\cdot\ket*{x,y}\otimes\Pi_{\ell}\Big{)}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}}\otimes\Pi^{\mathcal{R}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}. (10.8)
ER\displaystyle E^{R} =1Nx,y[N]|xy|𝖠Π𝖫r0Πr+1,𝖱(r+1|x,yΠr)𝖱.\displaystyle=\frac{1}{\sqrt{N}}\sum_{x,y\in[N]}\outerproduct*{x}{y}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\otimes\Pi^{\mathcal{R}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}}\otimes\sum_{r\geq 0}\Pi^{\mathcal{R}}_{r+1,{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\cdot\Big{(}\sqrt{r+1}\cdot\ket*{x,y}\otimes\Pi_{r}\Big{)}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}. (10.9)

Here Π\Pi_{\ell} denotes the projector onto the span of length-\ell states |x1,y1,,x,y\ket*{x_{1},y_{1},\dots,x_{\ell},y_{\ell}}, and (|x,yΠ)𝖫(\ket*{x,y}\otimes\Pi_{\ell})_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}} is the linear operator that maps

(|x,yΠ)𝖫|x1,y1,,x,y=|x,y,x1,y1,,x,y.\displaystyle(\ket*{x,y}\otimes\Pi_{\ell})_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}}\cdot\ket*{x_{1},y_{1},\dots,x_{\ell},y_{\ell}}=\ket*{x,y,x_{1},y_{1},\dots,x_{\ell},y_{\ell}}. (10.10)
Proof.

We will prove the statement for ELE^{L}, and the proof for ERE^{R} will be symmetric. To establish (10.3)=(10.8)(\ref{def:EL-operator-num-form})=(\ref{def:EL-operator-sym-form}), we need to prove that for all (x,y)[N]2(x,y)\in[N]^{2} and 0\ell\geq 0,

L𝗇𝗎𝗆(L,(x,y))+1|L{(x,y)}L|𝖫=Π+1,𝖫(+1|x,yΠ)𝖫.\displaystyle\sum_{L\in\mathcal{R}_{\ell}}\sqrt{\mathsf{num}(L,(x,y))+1}\cdot\outerproduct*{L\cup\{(x,y)\}}{L}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}}=\Pi^{\mathcal{R}}_{\ell+1,{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}}\cdot\Big{(}\sqrt{\ell+1}\cdot\ket*{x,y}\otimes\Pi_{\ell}\Big{)}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}}. (10.11)

Since Π+1=R+1|RR|\Pi^{\mathcal{R}}_{\ell+1}=\sum_{R\in\mathcal{R}_{\ell+1}}\outerproduct*{R}{R} (5), we can write the right-hand side of Eq. 10.11 as

L+1|LL|(+1|x,yΠ)𝖱\displaystyle\sum_{L\in\mathcal{R}_{\ell+1}}\outerproduct*{L}{L}\cdot\Big{(}\sqrt{\ell+1}\cdot\ket*{x,y}\otimes\Pi_{\ell}\Big{)}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}} (10.12)
=L|L{(x,y)}L{(x,y)}|(+1|x,yΠ)𝖱.\displaystyle=\sum_{L\in\mathcal{R}_{\ell}}\outerproduct*{L\cup\{(x,y)\}}{L\cup\{(x,y)\}}\cdot\Big{(}\sqrt{\ell+1}\cdot\ket*{x,y}\otimes\Pi_{\ell}\Big{)}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}. (10.13)

Therefore, we need to prove that for all 0\ell\geq 0 and LL\in\mathcal{R}_{\ell} that

L{(x,y)}|(+1|x,yΠ)=𝗇𝗎𝗆(L,(x,y))L|.\displaystyle\bra*{L\cup\{(x,y)\}}\cdot\Big{(}\sqrt{\ell+1}\cdot\ket*{x,y}\otimes\Pi_{\ell}\Big{)}=\sqrt{\mathsf{num}(L,(x,y))}\cdot\bra*{L}. (10.14)

To see this, note that L{(x,y)}|\bra*{L\cup\{(x,y)\}} is a superposition over all permutations of the elements of L{(x,y)}L\cup\{(x,y)\}, and thus when we right multiply by (+1|x,yΠ)\Big{(}\sqrt{\ell+1}\cdot\ket*{x,y}\otimes\Pi_{\ell}\Big{)}, the resulting state is proportional to L|\bra*{L}. To compute the proportionality constant, note that a

(1𝗇𝗎𝗆(L,(x,y))1)(𝗇𝗎𝗆(L,(x,y)))=𝗇𝗎𝗆(L,(x,y))\displaystyle\frac{\binom{\ell-1}{\mathsf{num}(L,(x,y))-1}}{\binom{\ell}{\mathsf{num}(L,(x,y))}}=\frac{\mathsf{num}(L,(x,y))}{\ell} (10.15)

fraction of the permutations of the elements of L{(x,y)}L\cup\{(x,y)\} will have (x,y)(x,y) in the left-most slot. Thus,

L{(x,y)}|(|x,yΠ)=𝗇𝗎𝗆(L,(x,y))+1L|,\displaystyle\bra*{L\cup\{(x,y)\}}\cdot\Big{(}\ket*{x,y}\otimes\Pi_{\ell}\Big{)}=\frac{\sqrt{\mathsf{num}(L,(x,y))}}{\sqrt{\ell+1}}\cdot\bra*{L}, (10.16)

which gives Eq. 10.14 when we multiply by +1\sqrt{\ell+1}. ∎

We can use Claim 21 to prove exact unitary invariance of ELE^{L} and ERE^{R} (Claim 20).

Proof of Claim 20.

To prove Eq. 10.6, it suffices to prove that

D𝖠EL𝖠𝖫𝖱C𝖠Q[C,D]𝖫𝖱=Q[C,D]𝖫𝖱EL𝖠𝖫𝖱.\displaystyle D_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\cdot E^{L}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\cdot C_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\otimes Q[C,D]_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}=Q[C,D]_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\cdot E^{L}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}. (10.17)

Recall that

Q[C,D]𝖫𝖱=(CDT)𝖫(C¯D)𝖱.\displaystyle Q[C,D]_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}=(C\otimes D^{T})^{\otimes*}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}}\otimes(\overline{C}\otimes D^{\dagger})^{\otimes*}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}. (10.18)

Expanding the left-hand-side using the definition of Q[C,D]Q[C,D] and the expression for EE given by Claim 21, we have

D𝖠EL𝖠𝖫𝖱C𝖠Q[C,D]𝖫𝖱\displaystyle D_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\cdot E^{L}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\cdot C_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\otimes Q[C,D]_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}} (10.19)
=1Nx,y[N]D𝖠|yx|𝖠C𝖠0Π+1,𝖫(+1|x,yΠ,𝖫)(CDT)𝖫\displaystyle=\frac{1}{\sqrt{N}}\sum_{x,y\in[N]}D_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\cdot\outerproduct*{y}{x}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\cdot C_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\otimes\sum_{\ell\geq 0}\Pi^{\mathcal{R}}_{\ell+1,{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}}\cdot(\sqrt{\ell+1}\cdot\ket*{x,y}\otimes\Pi^{\mathcal{R}}_{\ell,{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}})\cdot(C\otimes D^{T})^{\otimes\ell}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}} (10.20)
Π𝖱(C¯D)𝖱\displaystyle\quad\otimes\Pi^{\mathcal{R}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\cdot(\overline{C}\otimes D^{\dagger})^{\otimes*}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}} (10.21)
=1Nx,y[N]|yx|𝖠0Π+1,𝖫(CDT)+1𝖫(+1|x,yΠ,𝖫)\displaystyle=\frac{1}{\sqrt{N}}\sum_{x,y\in[N]}\outerproduct*{y}{x}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\otimes\sum_{\ell\geq 0}\Pi^{\mathcal{R}}_{\ell+1,{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}}\cdot(C\otimes D^{T})^{\otimes\ell+1}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}}\cdot(\sqrt{\ell+1}\cdot\ket*{x,y}\otimes\Pi^{\mathcal{R}}_{\ell,{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}}) (10.22)
(C¯D)𝖱Π𝖱\displaystyle\quad\otimes(\overline{C}\otimes D^{\dagger})^{\otimes*}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\cdot\Pi^{\mathcal{R}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}} (10.23)
=Q[C,D]𝖫𝖱EL𝖠𝖫𝖱\displaystyle=Q[C,D]_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\cdot E^{L}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}} (10.24)

A similar argument works for ER𝖠𝖫𝖱E^{R}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}} to establish Eq. 10.7. ∎

10.2 Approximate unitary invariance of VLV^{L} and VRV^{R}

We now prove approximate unitary invariance of the operators VLV^{L} and VRV^{R}. The key step is the following lemma, which relates these operators to ELE^{L} and ERE^{R}.

Recall that for an operator MM acting on registers 𝖫,𝖱\mathsf{L},\mathsf{R}, the notation Mt=MΠt,𝖫𝖱M_{\leq t}=M\cdot\Pi_{\leq t,{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}} refers to the restriction of the operator MM to states where the combined length of the 𝖫\mathsf{L} and 𝖱\mathsf{R} components is at most tt.

Claim 22.

For any positive integer tt,

VLtELtop2t(t+1)NandVRtERtop2t(t+1)N.\displaystyle\norm{V^{L}_{\leq t}-E^{L}_{\leq t}}_{\mathrm{op}}\leq\sqrt{\frac{2t(t+1)}{N}}\quad\text{and}\quad\norm{V^{R}_{\leq t}-E^{R}_{\leq t}}_{\mathrm{op}}\leq\sqrt{\frac{2t(t+1)}{N}}. (10.25)
Proof.

We will only prove this for VLtV^{L}_{\leq t}, as the proof for VRtV^{R}_{\leq t} is analogous. Let |ψ𝖠𝖫𝖱\ket*{\psi}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}} be an arbitrary unit-norm state in the image of 𝖨𝖽𝖠Πt,𝖫𝖱\mathsf{Id}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\otimes\Pi_{\leq t,{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}. In particular,

|ψ𝖠𝖫𝖱=x[N],(L,R)2αx,L,R|x𝖠|L𝖫|R𝖱.\displaystyle\ket*{\psi}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}=\sum_{\begin{subarray}{c}x\in[N],\\ (L,R)\in\mathcal{R}^{2}\end{subarray}}\alpha_{x,L,R}\ket*{x}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\ket*{L}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}}\ket*{R}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}. (10.26)

where αx,L,R\alpha_{x,L,R} is zero whenever |LR|>t\absolutevalue{L\cup R}>t. It suffices to show that for any such |ψ\ket*{\psi},

VL|ψEL𝖠𝖫𝖱|ψop2t(t+1)N.\displaystyle\norm{V^{L}\ket*{\psi}-E^{L}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\ket*{\psi}}_{\mathrm{op}}\leq\sqrt{\frac{2t(t+1)}{N}}. (10.27)

Expanding out VL|ψV^{L}\ket*{\psi}, we get

VL|ψ\displaystyle V^{L}\ket*{\psi} =x[N],(L,R)2αx,L,RN|Im(LR)|y[N]:yIm(LR)|y|L{(x,y)}|R.\displaystyle=\sum_{\begin{subarray}{c}x\in[N],\\ (L,R)\in\mathcal{R}^{2}\end{subarray}}\frac{\alpha_{x,L,R}}{\sqrt{N-\absolutevalue{\imaginary(L\cup R)}}}\sum_{\begin{subarray}{c}y\in[N]:\\ y\not\in\imaginary(L\cup R)\end{subarray}}\ket*{y}\ket*{L\cup\{(x,y)\}}\ket*{R}. (10.28)

Expanding out EL𝖠𝖫𝖱|ψ𝖠𝖫𝖱E^{L}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\ket*{\psi}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}, we get

EL𝖠𝖫𝖱|ψ\displaystyle E^{L}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\ket*{\psi} =x[N],(L,R)2αx,L,RNy[N]|y𝗇𝗎𝗆(L,(x,y))+1|L{(x,y)}|R\displaystyle=\sum_{\begin{subarray}{c}x\in[N],\\ (L,R)\in\mathcal{R}^{2}\end{subarray}}\frac{\alpha_{x,L,R}}{\sqrt{N}}\sum_{y\in[N]}\ket*{y}\sqrt{\mathsf{num}(L,(x,y))+1}\cdot\ket*{L\cup\{(x,y)\}}\ket*{R} (10.29)

Then we have

VL𝖠𝖫𝖱|ψEL𝖠𝖫𝖱|ψ\displaystyle V^{L}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\ket*{\psi}-E^{L}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\ket*{\psi} (10.30)
=x[N],(L,R)2αx,L,Ry[N]|y|L{(x,y)}|R(δyIm(LR)N|LR|𝗇𝗎𝗆(L,(x,y))+1N)\displaystyle=\sum_{\begin{subarray}{c}x\in[N],\\ (L,R)\in\mathcal{R}^{2}\end{subarray}}\alpha_{x,L,R}\sum_{y\in[N]}\ket*{y}\ket*{L\cup\{(x,y)\}}\ket*{R}\Bigg{(}\frac{\delta_{y\not\in\imaginary(L\cup R)}}{\sqrt{N-\absolutevalue{L\cup R}}}-\frac{\sqrt{\mathsf{num}(L,(x,y))+1}}{\sqrt{N}}\Bigg{)} (10.31)
=x[N],(L,R)2αx,L,Ry[N]:yIm(LR)|y|L{(x,y)}|R(1N|Im(LR)|1N)|v\displaystyle=\underbrace{\sum_{\begin{subarray}{c}x\in[N],\\ (L,R)\in\mathcal{R}^{2}\end{subarray}}\alpha_{x,L,R}\sum_{\begin{subarray}{c}y\in[N]:\\ y\not\in\imaginary(L\cup R)\end{subarray}}\ket*{y}\ket*{L\cup\{(x,y)\}}\ket*{R}\Bigg{(}\frac{1}{\sqrt{N-\absolutevalue{\imaginary(L\cup R)}}}-\frac{1}{\sqrt{N}}\Bigg{)}}_{\coloneqq\ket*{v}}
+x[N],(L,R)2αx,L,RyIm(LR)|y|L{(x,y)}|R(𝗇𝗎𝗆(L,(x,y))+1N)|w.\displaystyle\quad+\underbrace{\sum_{\begin{subarray}{c}x\in[N],\\ (L,R)\in\mathcal{R}^{2}\end{subarray}}\alpha_{x,L,R}\sum_{y\in\imaginary(L\cup R)}\ket*{y}\ket*{L\cup\{(x,y)\}}\ket*{R}\Bigg{(}-\frac{\sqrt{\mathsf{num}(L,(x,y))+1}}{\sqrt{N}}\Bigg{)}}_{\coloneqq\ket*{w}}. (10.32)

Note that |v\ket*{v} and |w\ket*{w} are orthogonal, since |v\ket*{v} is a superposition of states |y|L|R\ket*{y}\ket*{L^{\prime}}\ket*{R} where yy is in Im(LR)\imaginary(L^{\prime}\cup R) exactly once, while |w\ket*{w} is a superposition of states |y|L|R\ket*{y}\ket*{L^{\prime}}\ket*{R} where yy is in Im(LR)\imaginary(L^{\prime}\cup R) at least twice. Thus,

VL𝖠𝖫𝖱|ψEL𝖠𝖫𝖱|ψ2\displaystyle\norm{V^{L}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\ket*{\psi}-E^{L}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\ket*{\psi}}^{2} =v|v+w|w\displaystyle=\innerproduct{v}{v}+\innerproduct{w}{w} (10.33)
Bounding v|v\innerproduct{v}{v}.

By changing the order of summation, we can rewrite |v\ket*{v} as

|v=y[N],(L,R)2|y|L|R((x,L):L=L{(x,y)},yIm(LR)αx,L,R(1N|Im(LR)|1N)),\displaystyle\ket*{v}=\sum_{\begin{subarray}{c}y\in[N],\\ (L^{\prime},R)\in\mathcal{R}^{2}\end{subarray}}\ket*{y}\ket*{L^{\prime}}\ket*{R}\Bigg{(}\sum_{\begin{subarray}{c}(x,L):\\ L^{\prime}=L\cup\{(x,y)\},\\ y\not\in\imaginary(L\cup R)\end{subarray}}\alpha_{x,L,R}\Big{(}\frac{1}{\sqrt{N-\absolutevalue{\imaginary(L\cup R)}}}-\frac{1}{\sqrt{N}}\Big{)}\Bigg{)}, (10.34)

and thus

v|v\displaystyle\innerproduct{v}{v} =y[N],(L,R)2((x,L):L=L{(x,y)},yIm(LR)αx,L,R(1N|Im(LR)|1N))2\displaystyle=\sum_{\begin{subarray}{c}y\in[N],\\ (L^{\prime},R)\in\mathcal{R}^{2}\end{subarray}}\Bigg{(}\sum_{\begin{subarray}{c}(x,L):\\ L^{\prime}=L\cup\{(x,y)\},\\ y\not\in\imaginary(L\cup R)\end{subarray}}\alpha_{x,L,R}\Big{(}\frac{1}{\sqrt{N-\absolutevalue{\imaginary(L\cup R)}}}-\frac{1}{\sqrt{N}}\Big{)}\Bigg{)}^{2} (10.35)
y[N],(L,R)2((x,L):L=L{(x,y)},yIm(LR)|αx,L,R|2)((x,L):L=L{(x,y)},yIm(LR)(1N|Im(LR)|1N)2),\displaystyle\leq\sum_{\begin{subarray}{c}y\in[N],\\ (L^{\prime},R)\in\mathcal{R}^{2}\end{subarray}}\Bigg{(}\sum_{\begin{subarray}{c}(x,L):\\ L^{\prime}=L\cup\{(x,y)\},\\ y\not\in\imaginary(L\cup R)\end{subarray}}\absolutevalue{\alpha_{x,L,R}}^{2}\Bigg{)}\cdot\Bigg{(}\sum_{\begin{subarray}{c}(x,L):\\ L^{\prime}=L\cup\{(x,y)\},\\ y\not\in\imaginary(L\cup R)\end{subarray}}\Big{(}\frac{1}{\sqrt{N-\absolutevalue{\imaginary(L\cup R)}}}-\frac{1}{\sqrt{N}}\Big{)}^{2}\Bigg{)}, (10.36)

where the last inequality is by Cauchy-Schwarz. We can bound the summand by writing

(x,L):L=L{(x,y)},yIm(LR)(1N|Im(LR)|1N)2\displaystyle\sum_{\begin{subarray}{c}(x,L):\\ L^{\prime}=L\cup\{(x,y)\},\\ y\not\in\imaginary(L\cup R)\end{subarray}}\Big{(}\frac{1}{\sqrt{N-\absolutevalue{\imaginary(L\cup R)}}}-\frac{1}{\sqrt{N}}\Big{)}^{2} =(x,L):L=L{(x,y)},yIm(LR)(NN|Im(LR)|N(N|Im(LR)|))2\displaystyle=\sum_{\begin{subarray}{c}(x,L):\\ L^{\prime}=L\cup\{(x,y)\},\\ y\not\in\imaginary(L\cup R)\end{subarray}}\Big{(}\frac{\sqrt{N}-\sqrt{N-\absolutevalue{\imaginary(L\cup R)}}}{\sqrt{N(N-\absolutevalue{\imaginary(L\cup R)})}}\Big{)}^{2} (10.37)
(x,L):L=L{(x,y)},yIm(LR)(|Im(LR)|N(N|Im(LR)|))2\displaystyle\leq\sum_{\begin{subarray}{c}(x,L):\\ L^{\prime}=L\cup\{(x,y)\},\\ y\not\in\imaginary(L\cup R)\end{subarray}}\Big{(}\frac{\sqrt{\absolutevalue{\imaginary(L\cup R)}}}{\sqrt{N(N-\absolutevalue{\imaginary(L\cup R)})}}\Big{)}^{2} (since abab\sqrt{a}-\sqrt{b}\leq\sqrt{a-b} when ab0a\geq b\geq 0)
=(x,L):L=L{(x,y)},yIm(LR)|Im(LR)|N(N|Im(LR)|)\displaystyle=\sum_{\begin{subarray}{c}(x,L):\\ L^{\prime}=L\cup\{(x,y)\},\\ y\not\in\imaginary(L\cup R)\end{subarray}}\frac{\absolutevalue{\imaginary(L\cup R)}}{N(N-\absolutevalue{\imaginary(L\cup R)})} (10.38)
(|L|+1)|Im(LR)|N(N|Im(LR)|)\displaystyle\leq\frac{(\absolutevalue{L}+1)\cdot\absolutevalue{\imaginary(L\cup R)}}{N(N-\absolutevalue{\imaginary(L\cup R)})} (10.39)

where the last inequality uses the fact that for any fixed LL^{\prime}, there are at most |L|+1\absolutevalue{L}+1 choices of (x,L)(x,L) that can satisfy L=L{(x,y)}L^{\prime}=L\cup\{(x,y)\}. Thus,

v|v\displaystyle\innerproduct{v}{v} (|L|+1)|Im(LR)|N(N|Im(LR)|)y[N],(L,R)2((x,L):L=L{(x,y)},yIm(LR)|αx,L,R|2)\displaystyle\leq\frac{(\absolutevalue{L}+1)\cdot\absolutevalue{\imaginary(L\cup R)}}{N(N-\absolutevalue{\imaginary(L\cup R)})}\cdot\sum_{\begin{subarray}{c}y\in[N],\\ (L^{\prime},R)\in\mathcal{R}^{2}\end{subarray}}\Bigg{(}\sum_{\begin{subarray}{c}(x,L):\\ L^{\prime}=L\cup\{(x,y)\},\\ y\not\in\imaginary(L\cup R)\end{subarray}}\absolutevalue{\alpha_{x,L,R}}^{2}\Bigg{)} (10.40)
=(|L|+1)|Im(LR)|N(N|Im(LR)|)x[N],(L,R)2|αx,L,R|2(y[N]δyIm(LR))\displaystyle=\frac{(\absolutevalue{L}+1)\cdot\absolutevalue{\imaginary(L\cup R)}}{N(N-\absolutevalue{\imaginary(L\cup R)})}\cdot\sum_{\begin{subarray}{c}x\in[N],\\ (L,R)\in\mathcal{R}^{2}\end{subarray}}\absolutevalue{\alpha_{x,L,R}}^{2}\cdot\Big{(}\sum_{y\in[N]}\delta_{y\not\in\imaginary(L\cup R)}\Big{)} (10.41)
(|L|+1)|Im(LR)|Nx[N],(L,R)2|αx,L,R|2=(|L|+1)|Im(LR)|N.\displaystyle\leq\frac{(\absolutevalue{L}+1)\cdot\absolutevalue{\imaginary(L\cup R)}}{N}\cdot\sum_{\begin{subarray}{c}x\in[N],\\ (L,R)\in\mathcal{R}^{2}\end{subarray}}\absolutevalue{\alpha_{x,L,R}}^{2}=\frac{(\absolutevalue{L}+1)\cdot\absolutevalue{\imaginary(L\cup R)}}{N}. (10.42)
Bounding w|w\innerproduct{w}{w}.

By changing the order of summation, we can rewrite |w\ket*{w} as

|w=y[N],(L,R)2|y|L|R((x,L):L=L{(x,y)},yIm(LR)αx,L,R(𝗇𝗎𝗆(L,(x,y))+1N)).\displaystyle\ket*{w}=\sum_{\begin{subarray}{c}y\in[N],\\ (L^{\prime},R)\in\mathcal{R}^{2}\end{subarray}}\ket*{y}\ket*{L^{\prime}}\ket*{R}\Bigg{(}\sum_{\begin{subarray}{c}(x,L):\\ L^{\prime}=L\cup\{(x,y)\},\\ y\in\imaginary(L\cup R)\end{subarray}}\alpha_{x,L,R}\Big{(}-\frac{\sqrt{\mathsf{num}(L,(x,y))+1}}{\sqrt{N}}\Big{)}\Bigg{)}. (10.43)

Thus,

w|w\displaystyle\innerproduct{w}{w} =y[N],(L,R)2|(x,L):L=L{(x,y)},yIm(LR)αx,L,R(𝗇𝗎𝗆(L,(x,y))+1N)|2\displaystyle=\sum_{\begin{subarray}{c}y\in[N],\\ (L^{\prime},R)\in\mathcal{R}^{2}\end{subarray}}\Bigg{\lvert}\sum_{\begin{subarray}{c}(x,L):\\ L^{\prime}=L\cup\{(x,y)\},\\ y\in\imaginary(L\cup R)\end{subarray}}\alpha_{x,L,R}\Big{(}-\frac{\sqrt{\mathsf{num}(L,(x,y))+1}}{\sqrt{N}}\Big{)}\Bigg{\rvert}^{2} (10.44)
y[N],(L,R)2((x,L):L=L{(x,y)},yIm(LR)|αx,L,R|2)((x,L):L=L{(x,y)},yIm(LR)𝗇𝗎𝗆(L,(x,y))+1N)\displaystyle\leq\sum_{\begin{subarray}{c}y\in[N],\\ (L^{\prime},R)\in\mathcal{R}^{2}\end{subarray}}\Bigg{(}\sum_{\begin{subarray}{c}(x,L):\\ L^{\prime}=L\cup\{(x,y)\},\\ y\in\imaginary(L\cup R)\end{subarray}}\absolutevalue{\alpha_{x,L,R}}^{2}\Bigg{)}\cdot\Bigg{(}\sum_{\begin{subarray}{c}(x,L):\\ L^{\prime}=L\cup\{(x,y)\},\\ y\in\imaginary(L\cup R)\end{subarray}}\frac{\mathsf{num}(L,(x,y))+1}{N}\Bigg{)} (by Cauchy-Schwarz)
y[N],(L,R)2((x,L):L=L{(x,y)},yIm(LR)|αx,L,R|2)(|L|+1)N,\displaystyle\leq\sum_{\begin{subarray}{c}y\in[N],\\ (L^{\prime},R)\in\mathcal{R}^{2}\end{subarray}}\Bigg{(}\sum_{\begin{subarray}{c}(x,L):\\ L^{\prime}=L\cup\{(x,y)\},\\ y\in\imaginary(L\cup R)\end{subarray}}\absolutevalue{\alpha_{x,L,R}}^{2}\Bigg{)}\cdot\frac{(\absolutevalue{L}+1)}{N}, (10.45)

where we have used the fact that for any y,Ly,L^{\prime}, we have the upper bound

(x,L):L=L{(x,y)},yIm(LR)𝗇𝗎𝗆(L,(x,y))+1|L|+1,\displaystyle\sum_{\begin{subarray}{c}(x,L):\\ L^{\prime}=L\cup\{(x,y)\},\\ y\in\imaginary(L\cup R)\end{subarray}}\mathsf{num}(L,(x,y))+1\leq\absolutevalue{L}+1, (10.46)

since each tuple in LL^{\prime} increases the value of 𝗇𝗎𝗆(L,(x,y))\mathsf{num}(L,(x,y)) by 11 for at most one xx. Thus,

w|w\displaystyle\innerproduct{w}{w} =|L|+1Nx[N],(L,R)2|αx,L,R|2(y[N]δyIm(LR))\displaystyle=\frac{\absolutevalue{L}+1}{N}\cdot\sum_{\begin{subarray}{c}x\in[N],\\ (L,R)\in\mathcal{R}^{2}\end{subarray}}\absolutevalue{\alpha_{x,L,R}}^{2}\cdot\Big{(}\sum_{y\in[N]}\delta_{y\in\imaginary(L\cup R)}\Big{)} (10.47)
(|L|+1)|Im(LR)|Nx[N],(L,R)2|αx,L,R|2=(|L|+1)|Im(LR)|N.\displaystyle\leq\frac{(\absolutevalue{L}+1)\cdot|\imaginary(L\cup R)|}{N}\cdot\sum_{\begin{subarray}{c}x\in[N],\\ (L,R)\in\mathcal{R}^{2}\end{subarray}}\absolutevalue{\alpha_{x,L,R}}^{2}=\frac{(\absolutevalue{L}+1)\cdot|\imaginary(L\cup R)|}{N}. (10.48)

Putting everything together, we have that for all |ψ𝖠𝖫𝖱\ket*{\psi}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}} in the image of 𝖨𝖽𝖠Πt,𝖫𝖱\mathsf{Id}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\Pi_{\leq t,{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}},

VL𝖠𝖫𝖱|ψEL𝖠𝖫𝖱|ψ\displaystyle\norm{V^{L}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\ket*{\psi}-E^{L}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\ket*{\psi}} 2(|L|+1)|Im(LR)|N2t(t+1)N,\displaystyle\leq\sqrt{\frac{2(\absolutevalue{L}+1)\cdot\absolutevalue{\imaginary(L\cup R)}}{N}}\leq\sqrt{\frac{2t(t+1)}{N}}, (10.49)

since |Im(LR)|t\absolutevalue{\imaginary(L\cup R)}\leq t and |L|+1t+1\absolutevalue{L}+1\leq t+1. This completes the claim. ∎

Claim 23.

For any positive integer tt, and any pair of nn-qubit unitaries C,DC,D, we have

D𝖠VLtC𝖠Q[C,D]𝖫𝖱VLtQ[C,D]𝖫𝖱op\displaystyle\norm{D_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\cdot V^{L}_{\leq t}\cdot C_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}-Q[C,D]_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\cdot V^{L}_{\leq t}\cdot Q[C,D]_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}^{\dagger}}_{\mathrm{op}} 22t(t+1)N\displaystyle\leq 2\cdot\sqrt{\frac{2t(t+1)}{N}} (10.50)
D𝖠VR,tC𝖠Q[C,D]𝖫𝖱VR,tQ[C,D]𝖫𝖱op\displaystyle\norm{D_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\cdot V^{R,\dagger}_{\leq t}\cdot C_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}-Q[C,D]_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\cdot V^{R,\dagger}_{\leq t}\cdot Q[C,D]_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}^{\dagger}}_{\mathrm{op}} 22t(t+1)N.\displaystyle\leq 2\cdot\sqrt{\frac{2t(t+1)}{N}}. (10.51)
Proof.

We first prove Eq. 10.50. Using Claim 20 together and the triangle inequality, we have

D𝖠VLtC𝖠Q[C,D]𝖫𝖱VLtQ[C,D]𝖫𝖱op\displaystyle\norm{D_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\cdot V^{L}_{\leq t}\cdot C_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}-Q[C,D]_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\cdot V^{L}_{\leq t}\cdot Q[C,D]_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}^{\dagger}}_{\mathrm{op}} (10.52)
D𝖠VLtC𝖠D𝖠ELtC𝖠op\displaystyle\leq\norm{D_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\cdot V^{L}_{\leq t}\cdot C_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}-D_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\cdot E^{L}_{\leq t}\cdot C_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}}_{\mathrm{op}}
+Q[C,D]𝖫𝖱ELtQ[C,D]𝖫𝖱Q[C,D]𝖫𝖱VLtQ[C,D]𝖫𝖱op\displaystyle\quad+\norm{Q[C,D]_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\cdot E^{L}_{\leq t}\cdot Q[C,D]_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}^{\dagger}-Q[C,D]_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\cdot V^{L}_{\leq t}\cdot Q[C,D]_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}^{\dagger}}_{\mathrm{op}} (10.53)
2VLtELtop\displaystyle\leq 2\cdot\norm{V^{L}_{\leq t}-E^{L}_{\leq t}}_{\mathrm{op}} (by unitary invariance of op\norm{\cdot}_{\mathrm{op}})
22t(t+1)N.\displaystyle\leq 2\cdot\sqrt{\frac{2t(t+1)}{N}}. (by Claim 22)

Eq. 10.51 follows from a symmetric argument. ∎

Note that with our convention that Mt=MΠtM_{\leq t}=M\cdot\Pi_{\leq t}, the operator Mt=(MΠt)=ΠtMM_{\leq t}^{\dagger}=(M\cdot\Pi_{\leq t})^{\dagger}=\Pi_{\leq t}\cdot M^{\dagger} is not the same as (M)t=MΠt(M^{\dagger})_{\leq t}=M^{\dagger}\cdot\Pi_{\leq t}. However, since our VLV^{L} and VRV^{R} operators map Πt\Pi_{\leq t} to Πt+1\Pi_{\leq t+1}, we have the following identities,

(VL,)t\displaystyle(V^{L,\dagger})_{\leq t} =VL,Πt=Πt1VL,=VL,t1\displaystyle=V^{L,\dagger}\cdot\Pi_{\leq t}=\Pi_{\leq t-1}\cdot V^{L,\dagger}=V^{L,\dagger}_{\leq t-1} (10.54)
(VR,)t\displaystyle(V^{R,\dagger})_{\leq t} =VR,Πt=Πt1VR,=VR,t1.\displaystyle=V^{R,\dagger}\cdot\Pi_{\leq t}=\Pi_{\leq t-1}\cdot V^{R,\dagger}=V^{R,\dagger}_{\leq t-1}. (10.55)

As a consequence, Eq. 10.51 also holds for the “mis-parenthesized” version. In particular, for any positive integer tt and any C,DC,D, we have

D𝖠(VR,)tC𝖠Q[C,D]𝖫𝖱(VR,)tQ[C,D]𝖫𝖱op22t(t+1)N.\displaystyle\norm{D_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\cdot(V^{R,\dagger})_{\leq t}\cdot C_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}-Q[C,D]_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\cdot(V^{R,\dagger})_{\leq t}\cdot Q[C,D]_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}^{\dagger}}_{\mathrm{op}}\leq 2\cdot\sqrt{\frac{2t(t+1)}{N}}. (10.56)

To prove the approximate unitary invariance of VV, we need to utilize the following basic lemma.

Lemma 10.2.

Given any operators A,B,A,BA,B,A^{\prime},B^{\prime} with operator norm bounded above by one, we have

ABABopAAop+BBop.\displaystyle\norm{A\cdot B-A^{\prime}\cdot B^{\prime}}_{\mathrm{op}}\leq\norm{A-A^{\prime}}_{\mathrm{op}}+\norm{B-B^{\prime}}_{\mathrm{op}}. (10.57)
Proof.

We can prove this lemma via triangle inequality,

ABABop\displaystyle\norm{A\cdot B-A^{\prime}\cdot B^{\prime}}_{\mathrm{op}} ABABop+ABABop\displaystyle\leq\norm{A\cdot B-A^{\prime}\cdot B}_{\mathrm{op}}+\norm{A^{\prime}\cdot B-A^{\prime}\cdot B^{\prime}}_{\mathrm{op}} (10.58)
AAopBop+AopBBop\displaystyle\leq\norm{A-A^{\prime}}_{\mathrm{op}}\cdot\norm{B}_{\mathrm{op}}+\norm{A^{\prime}}_{\mathrm{op}}\cdot\norm{B-B^{\prime}}_{\mathrm{op}} (10.59)
AAop+BBop.\displaystyle\leq\norm{A-A^{\prime}}_{\mathrm{op}}+\norm{B-B^{\prime}}_{\mathrm{op}}. (10.60)

This completes the proof. ∎

We start by proving the approximate unitary invariance for the projectors VLVL,V^{L}\cdot V^{L,\dagger} and VRVR,V^{R}\cdot V^{R,\dagger}.

Claim 24.

For any positive integer tt, and any pair of nn-qubit unitaries C,DC,D, we have

D𝖠(VLVL,)tD𝖠Q[C,D]𝖫𝖱(VLVL,)tQ[C,D]𝖫𝖱op\displaystyle\norm{D_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\cdot\Big{(}V^{L}\cdot V^{L,\dagger}\Big{)}_{\leq t}\cdot D_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}^{\dagger}-Q[C,D]_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\cdot\Big{(}V^{L}\cdot V^{L,\dagger}\Big{)}_{\leq t}\cdot Q[C,D]_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}^{\dagger}}_{\mathrm{op}} 42t(t+1)N\displaystyle\leq 4\cdot\sqrt{\frac{2t(t+1)}{N}} (10.61)
C𝖠(VRVR,)tC𝖠Q[C,D]𝖫𝖱(VRVR,)tQ[C,D]𝖫𝖱op\displaystyle\norm{C_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}^{\dagger}\cdot\Big{(}V^{R}\cdot V^{R,\dagger}\Big{)}_{\leq t}\cdot C_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}-Q[C,D]_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\cdot\Big{(}V^{R}\cdot V^{R,\dagger}\Big{)}_{\leq t}\cdot Q[C,D]_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}^{\dagger}}_{\mathrm{op}} 42t(t+1)N.\displaystyle\leq 4\cdot\sqrt{\frac{2t(t+1)}{N}}. (10.62)
Proof.

By the definition of VLV^{L}, we have (VLVL,)t=VLt1VL,t1(V^{L}\cdot V^{L,\dagger})_{\leq t}=V^{L}_{\leq t-1}\cdot V^{L,\dagger}_{\leq t-1}. We have

D𝖠VLt1VL,t1D𝖠Q[C,D]𝖫𝖱VLt1VL,t1Q[C,D]𝖫𝖱op\displaystyle\norm{D_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\cdot V^{L}_{\leq t-1}\cdot V^{L,\dagger}_{\leq t-1}\cdot D_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}^{\dagger}-Q[C,D]_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\cdot V^{L}_{\leq t-1}\cdot V^{L,\dagger}_{\leq t-1}\cdot Q[C,D]_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}^{\dagger}}_{\mathrm{op}} (10.63)
=(D𝖠VLt1C𝖠)(C𝖠VL,t1D𝖠)\displaystyle=\Bigg{\lVert}\Big{(}D_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\cdot V^{L}_{\leq t-1}\cdot C_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\Big{)}\cdot\Big{(}C_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}^{\dagger}\cdot V^{L,\dagger}_{\leq t-1}\cdot D_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}^{\dagger}\Big{)}
(Q[C,D]𝖫𝖱VLt1Q[C,D]𝖫𝖱)(Q[C,D]𝖫𝖱VL,t1Q[C,D]𝖫𝖱)op\displaystyle\quad-\Big{(}Q[C,D]_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\cdot V^{L}_{\leq t-1}\cdot Q[C,D]^{\dagger}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\Big{)}\cdot\Big{(}Q[C,D]_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\cdot V^{L,\dagger}_{\leq t-1}\cdot Q[C,D]_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}^{\dagger}\Big{)}\Bigg{\rVert}_{\mathrm{op}} (10.64)
(D𝖠VLt1C𝖠)(Q[C,D]𝖫𝖱VLt1Q[C,D]𝖫𝖱)op\displaystyle\leq\Bigg{\lVert}\Big{(}D_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\cdot V^{L}_{\leq t-1}\cdot C_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\Big{)}-\Big{(}Q[C,D]_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\cdot V^{L}_{\leq t-1}\cdot Q[C,D]^{\dagger}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\Big{)}\Bigg{\rVert}_{\mathrm{op}}
+(C𝖠VL,t1D𝖠)(Q[C,D]𝖫𝖱VL,t1Q[C,D]𝖫𝖱)op\displaystyle\quad+\Bigg{\lVert}\Big{(}C_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}^{\dagger}\cdot V^{L,\dagger}_{\leq t-1}\cdot D_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}^{\dagger}\Big{)}-\Big{(}Q[C,D]_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\cdot V^{L,\dagger}_{\leq t-1}\cdot Q[C,D]_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}^{\dagger}\Big{)}\Bigg{\rVert}_{\mathrm{op}} (by Lemma 10.2)
42t(t+1)N\displaystyle\leq 4\cdot\sqrt{\frac{2t(t+1)}{N}} (by Claim 23)

The statement for VRV^{R} can be proven similarly. This concludes the proof of this claim. ∎

We can now prove approximate invariance of VV (Claim 16). By unitary invariance of op\norm{\cdot}_{\mathrm{op}} we can restate lemma Claim 16 as follows.

Lemma 10.3 (Claim 16, restated).

For any positive integer tt, and any pair of nn-qubit unitaries C,DC,D, we have

D𝖠VtC𝖠Q[C,D]𝖫𝖱VtQ[C,D]𝖫𝖱op\displaystyle\norm{D_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\cdot V_{\leq t}\cdot C_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}-Q[C,D]_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\cdot V_{\leq t}\cdot Q[C,D]_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}^{\dagger}}_{\mathrm{op}} 162t(t+1)N,\displaystyle\leq 16\sqrt{\frac{2t(t+1)}{N}}, (10.65)
C𝖠(V)tD𝖠Q[C,D]𝖫𝖱(V)tQ[C,D]𝖫𝖱op\displaystyle\norm{C_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}^{\dagger}\cdot(V^{\dagger})_{\leq t}\cdot D_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}^{\dagger}-Q[C,D]_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\cdot(V^{\dagger})_{\leq t}\cdot Q[C,D]_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}^{\dagger}}_{\mathrm{op}} 162t(t+1)N,\displaystyle\leq 16\sqrt{\frac{2t(t+1)}{N}}, (10.66)
Proof.

We will prove the first inequality, as the second follows from a symmetric argument. From the definition of VV, we have

V=VL(𝖨𝖽VRVR,)+(𝖨𝖽VLVL,)VR,.\displaystyle V=V^{L}\cdot(\mathsf{Id}-V^{R}\cdot V^{R,\dagger})+(\mathsf{Id}-V^{L}\cdot V^{L,\dagger})\cdot V^{R,\dagger}. (10.67)

From the definitions of Πt\Pi_{\leq t}, VLV^{L}, and VRV^{R}, we note that

(VLVRVR,)t\displaystyle(V^{L}\cdot V^{R}\cdot V^{R,\dagger})_{\leq t} =VLt(VRVR,)t,\displaystyle=V^{L}_{\leq t}\cdot(V^{R}\cdot V^{R,\dagger})_{\leq t}, (10.68)
(VLVL,VR,)t\displaystyle(V^{L}\cdot V^{L,\dagger}\cdot V^{R,\dagger})_{\leq t} =(VLVL,)t(VR,)t.\displaystyle=(V^{L}\cdot V^{L,\dagger})_{\leq t}\cdot(V^{R,\dagger})_{\leq t}. (10.69)

Using this fact and the definition of VV, we can apply the triangle inequality to obtain,

D𝖠VtC𝖠Q[C,D]𝖫𝖱VtQ[C,D]𝖫𝖱op\displaystyle\norm{D_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\cdot V_{\leq t}\cdot C_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}-Q[C,D]_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\cdot V_{\leq t}\cdot Q[C,D]_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}^{\dagger}}_{\mathrm{op}} (10.70)
D𝖠VLtC𝖠Q[C,D]𝖫𝖱VLtQ[C,D]𝖫𝖱op\displaystyle\leq\Bigg{\lVert}D_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\cdot V^{L}_{\leq t}\cdot C_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}-Q[C,D]_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\cdot V^{L}_{\leq t}\cdot Q[C,D]_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}^{\dagger}\Bigg{\rVert}_{\mathrm{op}} (10.71)
+D𝖠VLt(VRVR,)tC𝖠Q[C,D]𝖫𝖱VLt(VRVR,)tQ[C,D]𝖫𝖱op\displaystyle+\Bigg{\lVert}D_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\cdot V^{L}_{\leq t}\cdot(V^{R}\cdot V^{R,\dagger})_{\leq t}\cdot C_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}-Q[C,D]_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\cdot V^{L}_{\leq t}\cdot(V^{R}\cdot V^{R,\dagger})_{\leq t}\cdot Q[C,D]_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}^{\dagger}\Bigg{\rVert}_{\mathrm{op}} (10.72)
+D𝖠(VR,)tC𝖠Q[C,D]𝖫𝖱(VR,)tQ[C,D]𝖫𝖱op\displaystyle+\Bigg{\lVert}D_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\cdot(V^{R,\dagger})_{\leq t}\cdot C_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}-Q[C,D]_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\cdot(V^{R,\dagger})_{\leq t}\cdot Q[C,D]_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}^{\dagger}\Bigg{\rVert}_{\mathrm{op}} (10.73)
+D𝖠(VLVL,)t(VR,)tC𝖠Q[C,D]𝖫𝖱(VLVL,)t(VR,)tQ[C,D]𝖫𝖱op.\displaystyle+\Bigg{\lVert}D_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\cdot(V^{L}\cdot V^{L,\dagger})_{\leq t}\cdot(V^{R,\dagger})_{\leq t}\cdot C_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}-Q[C,D]_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\cdot(V^{L}\cdot V^{L,\dagger})_{\leq t}\cdot(V^{R,\dagger})_{\leq t}\cdot Q[C,D]_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}^{\dagger}\Bigg{\rVert}_{\mathrm{op}}. (10.74)

We now bound each of the four terms. The first term Eq. 10.71 is bounded above by 22t(t+1)N2\cdot\sqrt{\frac{2t(t+1)}{N}} from Eq. 10.50. The third term Eq. 10.73 is also bounded above by 22t(t+1)N2\cdot\sqrt{\frac{2t(t+1)}{N}} from Eq. 10.56. The second and fourth terms Eq. 10.72, Eq. 10.74 require the use of Lemma 10.2. Hence, we can bound the second term Eq. 10.72 as follows,

D𝖠VLt(VRVR,)tC𝖠Q[C,D]𝖫𝖱VLt(VRVR,)tQ[C,D]𝖫𝖱op\displaystyle\Bigg{\lVert}D_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\cdot V^{L}_{\leq t}\cdot(V^{R}\cdot V^{R,\dagger})_{\leq t}\cdot C_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}-Q[C,D]_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\cdot V^{L}_{\leq t}\cdot(V^{R}\cdot V^{R,\dagger})_{\leq t}\cdot Q[C,D]_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}^{\dagger}\Bigg{\rVert}_{\mathrm{op}} (10.75)
=D𝖠VLtC𝖠C𝖠(VRVR,)tC𝖠\displaystyle=\Bigg{\lVert}D_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\cdot V^{L}_{\leq t}\cdot C_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\cdot C_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}^{\dagger}\cdot(V^{R}\cdot V^{R,\dagger})_{\leq t}\cdot C_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}
Q[C,D]𝖫𝖱VLtQ[C,D]𝖫𝖱Q[C,D]𝖫𝖱(VRVR,)tQ[C,D]𝖫𝖱op\displaystyle\quad\quad\quad\quad-Q[C,D]_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\cdot V^{L}_{\leq t}\cdot Q[C,D]_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}^{\dagger}\cdot Q[C,D]_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\cdot(V^{R}\cdot V^{R,\dagger})_{\leq t}\cdot Q[C,D]_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}^{\dagger}\Bigg{\rVert}_{\mathrm{op}} (10.76)
D𝖠VLtC𝖠Q[C,D]𝖫𝖱VLtQ[C,D]𝖫𝖱op\displaystyle\leq\Bigg{\lVert}D_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\cdot V^{L}_{\leq t}\cdot C_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}-Q[C,D]_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\cdot V^{L}_{\leq t}\cdot Q[C,D]_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}^{\dagger}\Bigg{\rVert}_{\mathrm{op}} (10.77)
+C𝖠(VRVR,)tC𝖠Q[C,D]𝖫𝖱(VRVR,)tQ[C,D]𝖫𝖱op,\displaystyle+\Bigg{\lVert}C_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}^{\dagger}\cdot(V^{R}\cdot V^{R,\dagger})_{\leq t}\cdot C_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}-Q[C,D]_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\cdot(V^{R}\cdot V^{R,\dagger})_{\leq t}\cdot Q[C,D]_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}^{\dagger}\Bigg{\rVert}_{\mathrm{op}}, (10.78)
62t(t+1)N.\displaystyle\leq 6\cdot\sqrt{\frac{2t(t+1)}{N}}. (10.79)

where we used the fact that Eq. 10.77 is bounded above by 22t(t+1)N2\cdot\sqrt{\frac{2t(t+1)}{N}} from Eq. 10.50 and Eq. 10.78 is bounded above by 42t(t+1)N4\cdot\sqrt{\frac{2t(t+1)}{N}} from Eq. 10.62. Similarly, we can bound the fourth term given Eq. 10.74 using the same argument to obtain

D𝖠VLt(VRVR,)tC𝖠Q[C,D]𝖫𝖱VLt(VRVR,)tQ[C,D]𝖫𝖱op62t(t+1)N.\Bigg{\lVert}D_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\cdot V^{L}_{\leq t}\cdot(V^{R}\cdot V^{R,\dagger})_{\leq t}\cdot C_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}-Q[C,D]_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\cdot V^{L}_{\leq t}\cdot(V^{R}\cdot V^{R,\dagger})_{\leq t}\cdot Q[C,D]_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}^{\dagger}\Bigg{\rVert}_{\mathrm{op}}\leq 6\cdot\sqrt{\frac{2t(t+1)}{N}}. (10.80)

Combining the bounds on the four terms, we obtain

D𝖠VtC𝖠Q[C,D]𝖫𝖱VtQ[C,D]𝖫𝖱op162t(t+1)N.\norm{D_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\cdot V_{\leq t}\cdot C_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}-Q[C,D]_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\cdot V_{\leq t}\cdot Q[C,D]_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}^{\dagger}}_{\mathrm{op}}\leq 16\cdot\sqrt{\frac{2t(t+1)}{N}}. (10.81)

This completes the proof of the approximate unitary invariance of VV. ∎

11 Proof of Lemma 9.2

In this section, we prove Lemma 9.2. For convenience, we restate the lemma below.

Lemma 11.1 (Lemma 9.2, restated).

For any unitary 22-design 𝔇\mathfrak{D} and integer 0tN10\leq t\leq N-1, we have

𝔼C,D𝔇(C𝖠Q[C,D]𝖫𝖱)(Π𝖻𝗂𝗃t,𝖫𝖱Π𝒟(W)t,𝖠𝖫𝖱)(C𝖠Q[C,D]𝖫𝖱)op\displaystyle\norm{\operatorname*{{\mathbb{E}}}_{C,D\leftarrow\mathfrak{D}}(C_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\otimes Q[C,D]_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}})^{\dagger}\cdot\Big{(}\Pi^{\mathsf{bij}}_{\leq t,{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}-\Pi^{\mathcal{D}(W)}_{\leq t,{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\Big{)}\cdot(C_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\otimes Q[C,D]_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}})}_{\mathrm{op}} 6ttN,\displaystyle\leq 6t\sqrt{\frac{t}{N}}, (11.1)
𝔼C,D𝔇(D𝖠Q[C,D]𝖫𝖱)(Π𝖻𝗂𝗃t,𝖫𝖱Π(W)t,𝖠𝖫𝖱)(D𝖠Q[C,D]𝖫𝖱)op\displaystyle\norm{\operatorname*{{\mathbb{E}}}_{C,D\leftarrow\mathfrak{D}}(D^{\dagger}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\otimes Q[C,D]_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}})^{\dagger}\cdot\Big{(}\Pi^{\mathsf{bij}}_{\leq t,{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}-\Pi^{\mathcal{I}(W)}_{\leq t,{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\Big{)}\cdot(D^{\dagger}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\otimes Q[C,D]_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}})}_{\mathrm{op}} 6ttN,\displaystyle\leq 6t\sqrt{\frac{t}{N}}, (11.2)

In the above expressions, Π𝖻𝗂𝗃t,𝖫𝖱\Pi^{\mathsf{bij}}_{\leq t,{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}} is shorthand for 𝖨𝖽𝖠Π𝖻𝗂𝗃t,𝖫𝖱\mathsf{Id}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\otimes\Pi^{\mathsf{bij}}_{\leq t,{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}, and thus the operators inside the op\norm{\cdot}_{\mathrm{op}} act on 𝖠,𝖫,𝖱\mathsf{A},\mathsf{L},\mathsf{R}.

11.1 The domain and image of WW

In order to prove Lemma 11.1, we will first need to give an explicit characterization of the projectors Π𝒟(W)\Pi^{\mathcal{D}(W)} and Π(W)\Pi^{\mathcal{I}(W)}.

Definition 39.

Let

ΠDom\displaystyle\Pi^{\not\in\operatorname{Dom}} (L,R)2,xDom(LR)|xx|𝖠|LL|𝖫|RR|𝖱\displaystyle\coloneqq\sum_{\begin{subarray}{c}(L,R)\in\mathcal{R}^{2},\\ x\not\in\operatorname{Dom}(L\cup R)\end{subarray}}\outerproduct*{x}{x}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\otimes\outerproduct*{L}{L}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}}\otimes\outerproduct*{R}{R}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}} (11.3)
ΠIm\displaystyle\Pi^{\not\in\imaginary} (L,R)2,yIm(LR)|yy|𝖠|LL|𝖫|RR|𝖱.\displaystyle\coloneqq\sum_{\begin{subarray}{c}(L,R)\in\mathcal{R}^{2},\\ y\not\in\imaginary(L\cup R)\end{subarray}}\outerproduct*{y}{y}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\otimes\outerproduct*{L}{L}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}}\otimes\outerproduct*{R}{R}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}. (11.4)
Definition 40.

Let

Π𝖤𝖯𝖱|𝖤𝖯𝖱N𝖤𝖯𝖱N|=(1Nx[N]|x|x)(1Ny[N]y|y|).\displaystyle\Pi^{\mathsf{EPR}}\coloneqq\outerproduct*{\mathsf{EPR}_{N}}{\mathsf{EPR}_{N}}=\Big{(}\frac{1}{\sqrt{N}}\sum_{x\in[N]}\ket*{x}\ket*{x}\Big{)}\cdot\Big{(}\frac{1}{\sqrt{N}}\sum_{y\in[N]}\bra*{y}\bra*{y}\Big{)}. (11.5)
Notation 13.

We use the notation Π𝖤𝖯𝖱𝖠,𝖱(r)𝖷,i\Pi^{\mathsf{EPR}}_{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A},\mathsf{R}^{(r)}_{\mathsf{X},i}}} for the projector on registers 𝖠,𝖱(r)\mathsf{A},\mathsf{R}^{(r)} that applies Π𝖤𝖯𝖱\Pi^{\mathsf{EPR}} to the registers 𝖠\mathsf{A}, 𝖱(r)𝖷,i\mathsf{R}^{(r)}_{\mathsf{X},i} (where i[r]i\in[r]), and acts as identity on the rest of 𝖱(r)\mathsf{R}^{(r)}. The same notation applies for Π𝖤𝖯𝖱𝖠,𝖫()𝖸,i\Pi^{\mathsf{EPR}}_{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A},\mathsf{L}^{(\ell)}_{\mathsf{Y},i}}}.

Fact 12.

The projectors Π2𝖫𝖱\Pi^{\mathcal{R}^{2}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}} and ΠdistX,Y𝖫𝖱\Pi^{\mathrm{dist}_{X,Y}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}} commute, and moreover

Π𝖻𝗂𝗃𝖫𝖱=Π2𝖫𝖱ΠdistX,Y𝖫𝖱\displaystyle\Pi^{\mathsf{bij}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}=\Pi^{\mathcal{R}^{2}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\cdot\Pi^{\mathrm{dist}_{X,Y}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}} (11.6)
Claim 25.
Π𝒟(W)\displaystyle\Pi^{\mathcal{D}(W)} =Π𝖻𝗂𝗃𝖫𝖱(ΠDom𝖠𝖫𝖱+,r0:+r<NNNrΠ,𝖫i[r+1]Π𝖤𝖯𝖱𝖠,𝖱(r+1)𝖷,i)Π𝖻𝗂𝗃𝖫𝖱\displaystyle=\Pi^{\mathsf{bij}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\cdot\Bigg{(}\Pi^{\not\in\operatorname{Dom}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}+\sum_{\begin{subarray}{c}\ell,r\geq 0:\\ \ell+r<N\end{subarray}}\frac{N}{N-\ell-r}\Pi_{\ell,{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}}\otimes\sum_{i\in[r+1]}\Pi^{\mathsf{EPR}}_{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A},\mathsf{R}^{(r+1)}_{\mathsf{X},i}}}\Bigg{)}\cdot\Pi^{\mathsf{bij}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}} (11.7)
Π(W)\displaystyle\Pi^{\mathcal{I}(W)} =Π𝖻𝗂𝗃𝖫𝖱(ΠIm𝖠𝖫𝖱+,r0:+r<NNNrΠr,𝖱i[+1]Π𝖤𝖯𝖱𝖠,𝖫(+1)𝖸,i)Π𝖻𝗂𝗃𝖫𝖱\displaystyle=\Pi^{\mathsf{bij}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\cdot\Bigg{(}\Pi^{\not\in\imaginary}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}+\sum_{\begin{subarray}{c}\ell,r\geq 0:\\ \ell+r<N\end{subarray}}\frac{N}{N-\ell-r}\Pi_{r,{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\otimes\sum_{i\in[\ell+1]}\Pi^{\mathsf{EPR}}_{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A},\mathsf{L}^{(\ell+1)}_{\mathsf{Y},i}}}\Bigg{)}\cdot\Pi^{\mathsf{bij}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}} (11.8)
Proof.

By 8,

Π𝒟(W)\displaystyle\Pi^{\mathcal{D}(W)} =Π𝒟(WL)+Π(WR).\displaystyle=\Pi^{\mathcal{D}(W^{L})}+\Pi^{\mathcal{I}(W^{R})}. (11.9)

To prove Eq. 11.7, it suffices to prove

Π𝒟(WL)\displaystyle\Pi^{\mathcal{D}(W^{L})} =Π𝖻𝗂𝗃𝖫𝖱ΠDom𝖠𝖫𝖱Π𝖻𝗂𝗃𝖫𝖱\displaystyle=\Pi^{\mathsf{bij}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\cdot\Pi^{\not\in\operatorname{Dom}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\cdot\Pi^{\mathsf{bij}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}} (11.10)
Π(WR)\displaystyle\Pi^{\mathcal{I}(W^{R})} =Π𝖻𝗂𝗃𝖫𝖱(,r0:+r<NNNrΠ,𝖫i[r+1]Π𝖤𝖯𝖱𝖠,𝖱(r+1)𝖷,i)Π𝖻𝗂𝗃𝖫𝖱\displaystyle=\Pi^{\mathsf{bij}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\cdot\Bigg{(}\sum_{\begin{subarray}{c}\ell,r\geq 0:\\ \ell+r<N\end{subarray}}\frac{N}{N-\ell-r}\Pi_{\ell,{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}}\otimes\sum_{i\in[r+1]}\Pi^{\mathsf{EPR}}_{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A},\mathsf{R}^{(r+1)}_{\mathsf{X},i}}}\Bigg{)}\cdot\Pi^{\mathsf{bij}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}} (11.11)
Proof of Eq. 11.10.

From the definition of WLW^{L}, its domain is the image of the projector

Π𝒟(WL)\displaystyle\Pi^{\mathcal{D}(W^{L})} =(L,R)2,dist,xDom(L,R)|xx|𝖠|LL|𝖫|RR|𝖱\displaystyle=\sum_{\begin{subarray}{c}(L,R)\in\mathcal{R}^{2,\operatorname{{dist}}},\\ x\not\in\operatorname{Dom}(L,R)\end{subarray}}\outerproduct*{x}{x}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\otimes\outerproduct*{L}{L}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}}\otimes\outerproduct*{R}{R}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}} (11.12)
=((L,R)2,dist|LL|𝖫|RR|𝖱)((L,R)2,xDom(LR)|xx|𝖠|LL|𝖫|RR|𝖱)\displaystyle=\Bigg{(}\sum_{(L,R)\in\mathcal{R}^{2,\operatorname{{dist}}}}\outerproduct*{L}{L}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}}\otimes\outerproduct*{R}{R}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\Bigg{)}\cdot\Bigg{(}\sum_{\begin{subarray}{c}(L,R)\in\mathcal{R}^{2},\\ x\not\in\operatorname{Dom}(L\cup R)\end{subarray}}\outerproduct*{x}{x}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}}\otimes\outerproduct*{L}{L}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}}\otimes\outerproduct*{R}{R}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\Bigg{)}
((L,R)2,dist|LL|𝖫|RR|𝖱)\displaystyle\quad\cdot\Bigg{(}\sum_{(L,R)\in\mathcal{R}^{2,\operatorname{{dist}}}}\outerproduct*{L}{L}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}}\otimes\outerproduct*{R}{R}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\Bigg{)} (11.13)
=Π𝖻𝗂𝗃𝖫𝖱ΠDom𝖠𝖫𝖱Π𝖻𝗂𝗃𝖫𝖱.\displaystyle=\Pi^{\mathsf{bij}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\cdot\Pi^{\not\in\operatorname{Dom}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\cdot\Pi^{\mathsf{bij}}_{{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}. (11.14)
Proof of Eq. 11.11.

We can expand out

Π(WR)=WRWR,\displaystyle\Pi^{\mathcal{I}(W^{R})}=W^{R}\cdot W^{R,\dagger} =WR,r0,+r<NΠ,r,𝖫𝖱WR,\displaystyle=W^{R}\cdot\sum_{\begin{subarray}{c}\ell,r\geq 0,\\ \ell+r<N\end{subarray}}\Pi_{\ell,r,{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\cdot W^{R,\dagger} (11.15)
=,r0,+r<NW,rRWR,,r\displaystyle=\sum_{\begin{subarray}{c}\ell,r\geq 0,\\ \ell+r<N\end{subarray}}W_{\ell,r}^{R}\cdot W^{R,\dagger}_{\ell,r} (11.16)

where the second equality uses the fact that the domain of WRW^{R} is contained in the image of the projector ,r0,+r<NΠ,r,𝖫𝖱\sum_{\ell,r\geq 0,\ell+r<N}\Pi_{\ell,r,{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}, i.e., WRW^{R} is only defined on states where the 𝖫\mathsf{L} and 𝖱\mathsf{R} registers have sizes ,r0\ell,r\geq 0 where +r<N\ell+r<N. Thus, it suffices to prove that for all ,r0\ell,r\geq 0 such that +r<N\ell+r<N that

W,rRW,rR,=NNrΠ𝖻𝗂𝗃,r+1,𝖫𝖱(Π,𝖫i[r+1]Π𝖤𝖯𝖱𝖠,𝖱(r+1)𝖷,i)Π𝖻𝗂𝗃,r+1,𝖫𝖱,\displaystyle W_{\ell,r}^{R}\cdot W_{\ell,r}^{R,\dagger}=\frac{N}{N-\ell-r}\Pi^{\mathsf{bij}}_{\ell,r+1,{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}\cdot\Bigg{(}\Pi_{\ell,{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}}\otimes\sum_{i\in[r+1]}\Pi^{\mathsf{EPR}}_{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{A},\mathsf{R}^{(r+1)}_{\mathsf{X},i}}}\Bigg{)}\cdot\Pi^{\mathsf{bij}}_{\ell,r+1,{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}}, (11.17)

where we use our notational convention that for an operator BB acting on a variable-length registers 𝖫,𝖱\mathsf{L},\mathsf{R}, the operator B,r=BΠ,r,𝖫𝖱B_{\ell,r}=B\cdot\Pi_{\ell,r,{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{L}}}{{\color[rgb]{.25,.25,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.25,.25,.25}\pgfsys@color@gray@stroke{.25}\pgfsys@color@gray@fill{.25}\mathsf{R}}}} is the restriction of BB to states where the 𝖫\mathsf{L} register is length \ell and