This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Hybrid optical fiber for light-induced superconductivity

Evgeny Sedov evgeny_sedov@mail.ru Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China Department of Physics and Applied Mathematics, Vladimir State University named after A. G. and N. G. Stoletovs, Gorky str. 87, 600000, Vladimir, Russia    Irina Sedova Department of Physics and Applied Mathematics, Vladimir State University named after A. G. and N. G. Stoletovs, Gorky str. 87, 600000, Vladimir, Russia    Sergey Arakelian Department of Physics and Applied Mathematics, Vladimir State University named after A. G. and N. G. Stoletovs, Gorky str. 87, 600000, Vladimir, Russia    Giuseppe Eramo Mediterranean Institute of Fundamental Physics, 31, Appia Nuova, Frattocchi, Rome, 00031, Italy    Alexey Kavokin Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China Spin Optics Laboratory, St. Petersburg State University, Ul’anovskaya 1, Peterhof, St. Petersburg 198504, Russia
Abstract

We exploit the recent proposals for the light-induced superconductivity mediated by a Bose-Einstein condensate of exciton-polaritons to design a superconducting fiber that would enable long-distance transport of a supercurrent at elevated temperatures. The proposed fiber consists of a conventional core made of a silica glass with the first cladding layer formed by a material sustaining dipole-polarised excitons with a binding energy exceeding 25 meV. To be specific, we consider a perovskite cladding layer of 20 nm width. The second cladding layer is made of a conventional superconductor such as aluminium. The fiber is covered by a conventional coating buffer and by a plastic outer jacket. We argue that the critical temperature for a superconducting phase transition in the second cladding layer may be strongly enhanced due to the coupling of the superconductor to a bosonic condensate of exciton-polaritons optically induced by the evanescent part of the guiding mode confined in the core. The guided light mode would penetrate to the first cladding layer and provide the strong exciton-photon coupling regime. We run simulations that confirm the validity of the proposed concept. The fabrication of superconducting fibers where a high-temperature superconductivity could be controlled by light would enable passing superconducting currents over extremely long distances.

The theoretical concept of conventional superconductivity introduced by Bardeen, Cooper and Schrieffer (BCS) Bardeen, Cooper, and Schrieffer (1957) relies on the pairing of electrons in a Fermi sea due to the exchange by quanta of crystal lattice vibration: acoustic phonons. Since 1970s, multiple attempts were made to replace phonons by a more efficient binding agent that would strengthen electron-electron attraction and enable superconductivity at higher temperatures. Excitons have been put forward by Allender, Bray and Bardeen Allender, Bray, and Bardeen (1973) and Ginzburg Ginzburg as promising candidates for playing the role of such a binding agent in hybrid metal-semiconductor structures. However, despite of significant efforts to fabricate structures where the exciton-mediated superconductivity would be observable, no experimental evidence for this mechanism was reported till now, to the best of our knowledge. The interest to exciton-mediated superconductivity was renewed after the discovery of the Bose-Einstein condensation of light-matter bosonic quasiparticles, exciton-polaritons, in semiconductor microcavities, initially at the liquid Helium temperature Kasprzak et al. (2006) and then at the room temperature Christopoulos et al. (2007). Exciton-polaritons formed by strongly coupled elementary crystal excitations (excitons) and cavity photons Kavokin et al. (2017) accumulate by tens thousands in a single quantum state thus giving rise to the polariton-lasing Christopoulos et al. (2007). In a series of theoretical works, Laussy, Kavokin, and Shelykh (2010); Laussy et al. (2012); Cherotchenko et al. (2016); Cotleţ et al. (2016) it was shown that the condensates of exciton polaritons may interact with free electrons much stronger than individual virtual excitons considered in the early works Allender, Bray, and Bardeen (1973); Ginzburg . This paves the way to the realisation of exciton-mediated superconductivity in hybrid multilayer structures where a free electron gas would be placed in the vicinity of a bosonic condensate of exciton-polaritons. The observation of Bose-Einstein condensation of exciton-polaritons at the room temperature Christopoulos et al. (2007); Kavokin et al. (2017) encouraged efforts for the observation of superconductivity mediated by exciton-polaritons at elevated temperatures. It has been argued Laussy et al. (2012) that a stationary dipole polarisation of excitons in the condensates might help maximising the strength of exciton-electron coupling, which is why strongly coupled structures containing spatially indirect excitons might be suitable for the realisation of exciton-mediated superconductivity. A variety of materials potentially promising from this point of view has been considered, including the two-dimensional monolayers of transition metal dichalcogenides Cotleţ et al. (2016); Kavokin and Lagoudakis (2016) and perovskite nanoplatlets Su et al. (2017). In Ref. Skopelitis et al., 2018 it has been argued that the interplay between conventional BCS superconductivity and the exciton-mediated superconductivity may result in the resonant enhancement of the critical temperature for the superconducting phase transition TcT_{\text{c}}, thus, potentially, paving the way to room temperature superconductivity that would be fully controlled by light that is used to pump exciton-polariton condensates. The recent experimental studies Fausti et al. (2011); Mitrano et al. (2016) revealed features of the light-induced superconductivity. It was argued that the phase transition has been triggered by an optically pumped vibron mode that represents a similar mechanism to the exciton-induced superconductivity. Still, no stationary increase of TcT_{\text{c}} mediated by laser illumination has been reported so far, to our knowledge.

In this Letter, we propose a design of the structure that would enable light-mediated superconductivity triggered by a bosonic condensate of exciton-polaritons in a conventional optical fiber Tong et al. (2012) containing two cladding layers: one made of a material sustaining dipole-polarised excitons that are able to strongly couple to the guided optical mode, and the second one made of a conventional superconductor (see the schematic in Fig. 1). To be specific, we consider a first cladding layer made of a perovskite material where polariton lasing was recently demonstrated in micro- and nanowires Zhang et al. (2018); Zhu et al. (2015), and a conventional superconductor aluminium. Khukhareva We note that the exciton binding energy in the considered perovskite material exceeds 25 meV which makes it suitable for the room temperature operation. The critical temperature for the superconducting phase transition in aluminium is about 2 K in the dark, but it may be strongly enhanced by the coupling to the polariton condensate. From the theoretical point of view, the novelty of the considered design is in the replacement of a stationary polariton condensate considered in the previous studies Laussy, Kavokin, and Shelykh (2010); Laussy et al. (2012); Cherotchenko et al. (2016); Cotleţ et al. (2016) with a moving condensate that may be treated as a coherent quantum liquid Carusotto and Ciuti (2013). From the practical point of view, the realisation of optical fibers with superconducting cladding layers would pave the way to the long-range transport of supercurrents. The coupling of a superconductor with a condensate of exciton-polaritons that is pumped by a laser light passing through the core would constitute a tool for the enhancement of TcT_{\text{c}} as well as the switching mechanism that enables the optical control of superconductivity. It is important to note that while the absorption of light in a superconducting cladder is inevitable, in principle, it can be minimized by proper designing the fiber and compensated due to the pumping of polaritons through one of the higher frequency guided light modes of the fiber. Below we present estimations of the characteristics of the superconducting hybrid fiber and provide specific recommendations for its design.

Refer to caption
Figure 1: The schematic of a proposed design. The bosonic condensate of dipole polarised exciton-polaritons is formed by the optical pumping through the guided optical modes of the fiber. The strong exciton-photon coupling regime is achieved due to the overlap of the photon mode localised in the core with the exciton state located in the first cladding layer (perovskite). The proximity of the perovskite layer to the second cladding layer (superconductor) ensures the efficient coupling of the dipole-polarised condensate of polaritons with the electron Fermi sea in the superconductor. This coupling leads to a significant increase of the critical temperature of the superconducting phase transition. The core and cladding layers are protected by plastic buffer and jacket. The red arrows indicate the decomposition of a guided mode wave vector on the transversal component 𝐤ρ\mathbf{k}_{\rho} and the propagation constant β\beta along the main axis of the fiber.

The proposed hybrid optical fiber is schematically shown in Fig. 1. The cylindrical core is assumed being made of a conventional silica glass. For further estimations, we take the refractive index of the core as nC=1.45n_{\text{C}}=1.45. The first cladding layer intended to be a holder of excitons is a perovskite layer. Among a variety of perovskites, we give a preference to methylammonium lead tribromide MAPbBr3 (MA = CH3NH3). The strong coupling of excitons with light in the waveguide geometry has been recently reported for the structures where MAPbBr3 was used as a core nanowire Zhang et al. (2018); Zhu et al. (2015). The peculiar optical and dielectric properties of MAPbBr3 in the spectral range from visible to near-ultraviolet have been extensively studied both experimentally and theoretically for last several yearsLeguy et al. (2016); Zhu et al. (2015); Zhang et al. (2017) in the context of developing solar cell circuits and photonic devices. In the photon energy range following immediately above the band gap starting around 2.24 eV and extending to about 4.5 eV, the MAPbBr3 film is characterized by three absorption peaks at energies of about 2.3, 3.5 and 4.5 eV. Leguy et al. (2016); Kato et al. (2017) Authors of Ref. Leguy et al., 2016 show that this peculiarity of the observed spectrum can be described by a dielectric function characterized by four resonances within the indicated energy region. The lowest energy resonance situated near the band gap (at about 2.32.3 eV) is split from the next one (situated at about 3.5 eV) by more than 1 eV, which significantly exceeds the characteristic interaction energies in our system. This allows one to use the coupled oscillator model of the perovskite dielectric function in the simulations: Zhang et al. (2018)

εP(ω)=εb(1+ωl2ωt2ωt2ω2iωΓ),\varepsilon_{\text{P}}(\omega)=\varepsilon_{\text{b}}\left(1+\frac{\omega_{\text{l}}^{2}-\omega_{\text{t}}^{2}}{\omega_{\text{t}}^{2}-\omega^{2}-\text{i}\omega\Gamma}\right), (1)

where εb\varepsilon_{\text{b}} is the background dielectric constant, ωl,t\omega_{\text{l},\text{t}} are the longitudinal and transverse exciton frequencies, Γ\Gamma is the non-radiative exciton damping. Values of the parameters for the best fit of εP(ω)\varepsilon_{\text{P}}(\omega) are following: Zhang et al. (2018) εb=4.7\varepsilon_{\text{b}}=4.7, ωl=2.328\hbar\omega_{\text{l}}=2.328 eV, ωt=2.303\hbar\omega_{\text{t}}=2.303 eV and Γ=59\hbar\Gamma=59 meV. We take the thickness of the MAPbBr3 cladding layer as 20 nm.

When choosing the second (superconducting) cladding layer, we follow the original paper on the polariton-mediated superconductivity Skopelitis et al. (2018) and consider for this role a thin film of aluminium. Khukhareva Aluminium possesses an advantage of high reflectivity properties, which contributes to reducing losses of the optical modes and strong coupling of the latter to excitons in the perovskite cladding layer. In the simulations, we consider an aluminium film of thickness of 30 nm with the spectral dependences of the refractive index and the extinction coefficient taken from Ref. McPeak et al., 2015 The cladding layers can be separated from one another by a spacer of widths of the order of 1 nm with a refractive index matching that of the core.

To reach the effective coupling of the perovskite exciton with a light mode in the waveguide, we should bring one of the optical guided modes into the resonance with the exciton energy. This imposes restrictions on the wave number β\beta characterizing the propagation of the guided mode along the main axis of the waveguide, see Fig. 1. For the bare waveguide representing a glass core in air, the condition for β\beta in general form is given by k0<β<nCk0k_{0}<\beta<n_{\text{C}}k_{0} with k0=ω0/ck_{0}=\omega_{0}/c and ω0\omega_{0} being the wave number and the frequency of light in air. A guided mode characterized by a frequency of ω=ωl\omega=\omega_{\text{l}} should possess the wave number β\beta belonging to the range of (11.7μm1,16.9μm1)(11.7\,\mu\text{m}^{-1},16.9\,\mu\text{m}^{-1}). Our simulations show that additional cladding layers extend this range by at least 3.3μm13.3\,\mu\text{m}^{-1}.

For our hybrid optical fiber, we propose to take a glass core of a reasonably small diameter being of the order of the guided mode wavelength, dCλd_{\text{C}}\gtrsim\lambda. In such a waveguide, the higher energy guided modes are split from the ground mode by hundreds of millielectron volts. It allows one to neglect the effect of the higher modes on the coupling of the fundamental mode to the perovskite excitons. We note that higher energy guided modes are crucial for the long distance transmission of polariton superfluids and light-induced superconducting currents. They serve to feed the polariton condensate and compensate for inevitable losses. The amplification of the polariton mode may be done using the schemes used in optical fiber amplifiers based e.g. on the electronic transitions in Er atoms. Laming et al. (1990); Zervas et al. (1992); Laming, Zervas, and Payne (1992)

Refer to caption
Figure 2: The variation of the energy of exciton-polariton modes in the hybrid optical fiber with the increase of the propagation constant β\beta. The pale color shadows framing the curves indicate the decay rates of the modes. The inclined dashed line shows the energy of the guided mode without the exciton resonance. The horizontal dashed line indicates the perovskite exciton energy. The core diameter is taken as dC=0.8μmd_{\text{C}}=0.8\,\mu\text{m}.

To examine modes of the hybrid optical fiber, we use the well-known transfer matrix method Chew (1995); Kavokin et al. (2017); Sedov et al. (2016), which is based on matching the components of the electromagnetic field at the interfaces of the homogeneous layers using the Maxwell boundary conditions. For the details of the method adapted for a cylindrical geometry, we refer to Refs. Kaliteevskii, Nikolaev, and Abram, ; Little et al., 2012; Kaliteevski et al., 2000.

Refer to caption
Figure 3: The dependence of the energy of exciton-polariton modes in the hybrid optical fiber on its core diameter dCd_{\text{C}}. The pale color shadows framing the curves indicate the decay rates of the modes. The dashed curve shows the energy of the guided mode in the absence of the exciton resonance. The horizontal dashed line indicates the perovskite exciton energy. The propagation constant is taken as β=18.4μm1\beta=18.4\,\mu\text{m}^{-1}.

The dependence of the energy of the fundamental mode on the propagation constant β\beta in the hybrid optical fiber with the core diameter of 0.8μm0.8\,\mu\text{m} is shown in Fig. 2. In the vicinity of the exciton resonance at ωωt\omega\approx\omega_{\text{t}} and β18.4μm1\beta\approx 18.4\,\mu\text{m}^{-1} a clear Rabi splitting by 2ΩR2\hbar\Omega_{\text{R}}\approx 165 meV of the dispersion curve ω(β)\omega(\beta) into two branches is apparent, which results from the anti-crossing of the exciton and the guided optical mode dispersions. The dispersions of the latter being linear in β\beta are shown in Fig. 2 by the dashed lines. The anti-crossing of the dispersions is the manifestation of the appearance of the coupled exciton-photon states, exciton polaritons, which we consider for the role of mediators of the superconductivity. An indispensable condition for the appearance of polaritons is the strong coupling condition, which implies that the characteristic losses in the system should not exceed the splitting 2ΩR2\hbar\Omega_{\text{R}}. The color shadows framing the dispersion curves in Fig. 2 show the broadening of the polariton modes. One can see that the Rabi spitting 2ΩR2\hbar\Omega_{\text{R}} exceeds the losses with a large margin.

Figure 3 shows the dependence of the exciton-polariton energy on the diameter of the core dCd_{\text{C}} for the polariton modes characterized by the wave number β=18.4μm1\beta=18.4\,\mu\text{m}^{-1}. The energy of polaritons of both branches increases with the decreasing diameter dCd_{\text{C}}. The predominance of the Rabi splitting 2ΩR2\hbar\Omega_{\text{R}} over the characteristic losses on the entire considered range of dCd_{\text{C}} keeps the strong coupling condition fulfilled. By choosing the diameter of the glass core, one can tune characteristics of the guided polariton mode in the ωβ\omega\,-\,\beta plane.

In summary, we have proposed the structure of a hybrid optical fiber intended to provide an effective interaction of a superconductor with exciton polaritons, guided modes modified by coupling with excitons in a perovskite cladding layer. We have demonstrated that the strong-coupling regime for exciton polariton formation is realizable in this geometry. Exciton polaritons will fulfil the role of mediators of coupling of electrons in a superconductor which is expected to facilitate elevating the critical temperature of superconductivity.

Acknowledgements

This work is from the Innovative Team of International Center for Polaritonics and is supported by Westlake University (Project No. 041020100118). E.S. and I.S. acknowledge partial support from the Grant of the President of the Russian Federation for state support of young Russian scientists No. MK-2839.2019.2. A.K. acknowledges the Saint-Petersburg State University for the research grant ID 40847559.

References

  • Bardeen, Cooper, and Schrieffer (1957) J. Bardeen, L. N. Cooper, and J. R. Schrieffer, “Microscopic theory of superconductivity,” Phys. Rev. 106, 162–164 (1957).
  • Allender, Bray, and Bardeen (1973) D. Allender, J. Bray, and J. Bardeen, “Model for an exciton mechanism of superconductivity,” Phys. Rev. B 7, 1020–1029 (1973).
  • (3) V. L. Ginzburg, “High-temperature superconductivity – dream or reality?” Usp. Fiz. Nauk. 118, 315 (1976) [Sov. Phys. Usp. 19, 174 (1976)].
  • Kasprzak et al. (2006) J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, “Bose–einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
  • Christopoulos et al. (2007) S. Christopoulos, G. B. H. von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98, 126405 (2007).
  • Kavokin et al. (2017) A. V. Kavokin, J. J. Baumberg, G. Malpuech, and F. P. Laussy, eds., Microcavities, 2nd ed. (Oxford University Press, Oxford, 2017).
  • Laussy, Kavokin, and Shelykh (2010) F. P. Laussy, A. V. Kavokin, and I. A. Shelykh, “Exciton-polariton mediated superconductivity,” Phys. Rev. Lett. 104, 106402 (2010).
  • Laussy et al. (2012) F. P. Laussy, T. Taylor, I. A. Shelykh, and A. V. Kavokin, “Superconductivity with excitons and polaritons: review and extension,” Journal of Nanophotonics 6, 1 – 22 (2012).
  • Cherotchenko et al. (2016) E. Cherotchenko, T. Espinosa-Ortega, A. Nalitov, I. Shelykh, and A. Kavokin, “Superconductivity in semiconductor structures: The excitonic mechanism,” Superlattices and Microstructures 90, 170 – 175 (2016).
  • Cotleţ et al. (2016) O. Cotleţ, S. Zeytinoǧlu, M. Sigrist, E. Demler, and A. m. c. Imamoǧlu, “Superconductivity and other collective phenomena in a hybrid bose-fermi mixture formed by a polariton condensate and an electron system in two dimensions,” Phys. Rev. B 93, 054510 (2016).
  • Kavokin and Lagoudakis (2016) A. Kavokin and P. Lagoudakis, “Exciton-mediated superconductivity,” Nature Materials 15, 599–600 (2016).
  • Su et al. (2017) R. Su, C. Diederichs, J. Wang, T. C. H. Liew, J. Zhao, S. Liu, W. Xu, Z. Chen, and Q. Xiong, “Room-temperature polariton lasing in all-inorganic perovskite nanoplatelets,” Nano LettersNano Letters 17, 3982–3988 (2017).
  • Skopelitis et al. (2018) P. Skopelitis, E. D. Cherotchenko, A. V. Kavokin, and A. Posazhennikova, “Interplay of phonon and exciton-mediated superconductivity in hybrid semiconductor-superconductor structures,” Phys. Rev. Lett. 120, 107001 (2018).
  • Fausti et al. (2011) D. Fausti, R. I. Tobey, N. Dean, S. Kaiser, A. Dienst, M. C. Hoffmann, S. Pyon, T. Takayama, H. Takagi, and A. Cavalleri, “Light-induced superconductivity in a stripe-ordered cuprate,” Science 331, 189–191 (2011)https://science.sciencemag.org/content/331/6014/189.full.pdf .
  • Mitrano et al. (2016) M. Mitrano, A. Cantaluppi, D. Nicoletti, S. Kaiser, A. Perucchi, S. Lupi, P. Di Pietro, D. Pontiroli, M. Riccò, S. R. Clark, D. Jaksch, and A. Cavalleri, “Possible light-induced superconductivity in k3c60 at high temperature,” Nature 530, 461–464 (2016).
  • Tong et al. (2012) L. Tong, F. Zi, X. Guo, and J. Lou, “Optical microfibers and nanofibers: A tutorial,” Optics Communications 285, 4641 – 4647 (2012), special Issue: Optical micro/nanofibers: Challenges and Opportunities.
  • Zhang et al. (2018) S. Zhang, Q. Shang, W. Du, J. Shi, Z. Wu, Y. Mi, J. Chen, F. Liu, Y. Li, M. Liu, Q. Zhang, and X. Liu, “Strong exciton–photon coupling in hybrid inorganic–organic perovskite micro/nanowires,” Advanced Optical Materials 6, 1701032 (2018)https://onlinelibrary.wiley.com/doi/pdf/10.1002/adom.201701032 .
  • Zhu et al. (2015) H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and X.-Y. Zhu, “Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors,” Nature Materials 14, 636–642 (2015).
  • (19) I. S. Khukhareva, “The superconducting properties of thin aluminium films,” J. Exptl. Theoret. Phys. 43, 1173–1178 (1962) [Sov. Phys. JETP 16, 828–832 (1963)].
  • Carusotto and Ciuti (2013) I. Carusotto and C. Ciuti, “Quantum fluids of light,” Rev. Mod. Phys. 85, 299–366 (2013).
  • Leguy et al. (2016) A. M. A. Leguy, P. Azarhoosh, M. I. Alonso, M. Campoy-Quiles, O. J. Weber, J. Yao, D. Bryant, M. T. Weller, J. Nelson, A. Walsh, M. van Schilfgaarde, and P. R. F. Barnes, “Experimental and theoretical optical properties of methylammonium lead halide perovskites,” Nanoscale 8, 6317–6327 (2016).
  • Zhang et al. (2017) Q. Zhang, R. Su, W. Du, X. Liu, L. Zhao, S. T. Ha, and Q. Xiong, “Advances in small perovskite-based lasers,” Small Methods 1, 1700163 (2017).
  • Kato et al. (2017) M. Kato, T. Fujiseki, T. Miyadera, T. Sugita, S. Fujimoto, M. Tamakoshi, M. Chikamatsu, and H. Fujiwara, “Universal rules for visible-light absorption in hybrid perovskite materials,” Journal of Applied Physics 121, 115501 (2017)https://doi.org/10.1063/1.4978071 .
  • McPeak et al. (2015) K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: Rules and recipes,” ACS PhotonicsACS Photonics 2, 326–333 (2015).
  • Laming et al. (1990) R. I. Laming, W. L. Barnes, L. Reekie, P. R. Morkel, D. N. Payne, and R. S. Vodhanel, “Erbium Doped Fibre Lasers And Amplifiers,” in Fiber Laser Sources and Amplifiers, Vol. 1171, edited by M. J. F. Digonnet, International Society for Optics and Photonics (SPIE, 1990) pp. 82 – 92.
  • Zervas et al. (1992) M. N. Zervas, R. I. Laming, J. E. Townsend, and D. N. Payne, “Design and fabrication of high gain-efficiency erbium-doped fiber amplifiers,” IEEE Photonics Technology Letters 4, 1342–1344 (1992).
  • Laming, Zervas, and Payne (1992) R. I. Laming, M. N. Zervas, and D. N. Payne, “Erbium-doped fiber amplifier with 54 db gain and 3.1 db noise figures,” IEEE Photonics Technology Letters 4, 1345–1347 (1992).
  • Chew (1995) W. C. Chew, ed., Waves and Fields in Inhomogeneous Media (Wiley-IEEE Press, New York, 1995).
  • Sedov et al. (2016) E. S. Sedov, E. D. Cherotchenko, S. M. Arakelian, and A. V. Kavokin, “Light propagation in tunable exciton-polariton one-dimensional photonic crystals,” Phys. Rev. B 94, 125309 (2016).
  • (30) M. A. Kaliteevskii, V. V. Nikolaev, and R. A. Abram, “Calculation of the mode structure of multilayer optical fibers based on transfer matrices for cylindrical waves,” Optika i Spektroskopiya 88, 871 (2000) [Optics and Spectroscopy 88, 792 (2000)].
  • Little et al. (2012) C. E. Little, R. Anufriev, I. Iorsh, M. A. Kaliteevski, R. A. Abram, and S. Brand, “Tamm plasmon polaritons in multilayered cylindrical structures,” Phys. Rev. B 86, 235425 (2012).
  • Kaliteevski et al. (2000) M. A. Kaliteevski, S. Brand, R. A. Abram, V. V. Nikolaev, M. V. Maximov, N. N. Ledentsov, C. M. Sotomayor Torres, and A. V. Kavokin, “Exciton polaritons in a cylindrical microcavity with an embedded quantum wire,” Phys. Rev. B 61, 13791–13797 (2000).