This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Hyperbolic Summation for Fractional Sums

Meselem KARRAS, Ling LI, and Joshua STUCKY Meselem Karras, Department of Mathematics, University of Djilali Bounaama, FIMA Laboratory, Khemis Miliana, Algeria. Li Ling, School of Mathematics and Statistics, Qingdao University, 308 Ningxia Road, Shinan District, Qingdao, Shandong, China. Joshua STUCKY, University of Georgia, UGA, Department of Mathematics, United States
Abstract.

Let f(n)f(n) be an arithmetic function with f(n)nαf(n)\ll n^{\alpha} for some α[0,1)\alpha\in[0,1) and let .\lfloor.\rfloor denote the integer part function. In this paper, we evaluate asymptotically the sums

n1n2xf(xn1n2),\sum_{n_{1}n_{2}\leq x}f\left(\left\lfloor\frac{x}{n_{1}n_{2}}\right\rfloor\right),

we use the estimation of three-dimensional exponential sums due to Robert and Sargos.

Key words and phrases:
integer part, exponent pairs, three-dimensional exponential sums
2020 Mathematics Subject Classification:
11A25, 11L07, 11N37

1. Introduction

For an integer n1n\geq 1, let τ(n)\tau(n) be the number of positive divisors of nn. A classical result of Dirichlet states that

(1.1) nxτ(n)=x(logx+2γ1)+Δ(x)\displaystyle\sum_{n\leq x}\tau(n)=x(\log{x}+2\gamma-1)+\Delta(x)

where is γ\gamma is the Euler’s constant and Δ(x)\Delta(x) is an error term. Dirichlet proved that Δ(x)x1/2\Delta(x)\ll x^{1/2}. Improved estimated for Δ(x)\Delta(x) have been given by numerous authors ([16, 14, 15, 7, 6]), with the current record being Huxley’s [5] estimate: for any ε>0\varepsilon>0,

(1.2) Δ(x)x131416+ε.\Delta(x)\ll x^{\frac{131}{416}+\varepsilon}.

By the definition of τ(n)\tau(n), we note that

nxτ(n)=klx1=kxlxk1=nxxn.\sum_{n\leq x}\tau(n)=\sum\limits_{kl\leq x}1=\sum_{k\leq x}\sum_{l\leq\frac{x}{k}}1=\sum_{n\leq x}\left\lfloor\frac{x}{n}\right\rfloor.

Thus, we can consider (1.1) as an asymptotic formula for the fractional sum nxx/n\sum_{n\leq x}\left\lfloor x/n\right\rfloor, where t\lfloor t\rfloor is the largest integer not exceeding tt. With this viewpoint, Bordellès, Dai, Heyman, Pan and Shparlinski [2] investigated the more general sums

Sf(x):=nxf(xn)S_{f}(x):=\sum_{n\leq x}f\left(\left\lfloor\frac{x}{n}\right\rfloor\right)

for arithmetic functions ff satisfying various growth conditions. Later, Wu [17] and Zhai [18] independently showed that if

f(n)nα(logn)θf(n)\ll n^{\alpha}\left(\log{n}\right)^{\theta}

for some α[0,1)\alpha\in[0,1) and θ0\theta\geq 0, then

(1.3) Sf(x)=xn=1f(n)n(n+1)+O(x(1+α)/2(logx)θ).\displaystyle S_{f}(x)=x\sum_{n=1}^{\infty}\frac{f(n)}{n(n+1)}+O\left(x^{(1+\alpha)/2}\left(\log{x}\right)^{\theta}\right).

It is possible to improve (1.3) for functions ff satisfying certain decomposition identities. For example, if f=Λf=\Lambda, the von Mangoldt function, Ma and Wu [11] proved that

nxΛ(xn)=xn=1Λ(n)n(n+1)+O(x3571+ε)\displaystyle\sum_{n\leq x}\Lambda\left(\left\lfloor\frac{x}{n}\right\rfloor\right)=x\sum_{n=1}^{\infty}\frac{\Lambda(n)}{n(n+1)}+O\left(x^{\frac{35}{71}+\varepsilon}\right)

for any ε>0\varepsilon>0. Here the “decomposition identity” needed is Vaughan’s identity. The exponent 35/7135/71 was then improved to 9/199/19 by Liu, Wu and Yang [8]. If f=τf=\tau, Ma and Sun [10] showed that

Sτ(x)=nxτ(xn)=xn=1τ(n)n(n+1)+O(x1123+ε).S_{\tau}(x)=\sum_{n\leq x}\tau\left(\left\lfloor\frac{x}{n}\right\rfloor\right)=x\sum_{n=1}^{\infty}\frac{\tau(n)}{n(n+1)}+O\left(x^{\frac{11}{23}+\varepsilon}\right).

The exponent 11/2311/23 was then improved to 19/4019/40 and 9/199/19, respectively, by Bordellès [1] and Liu, Wu and Yang [9], and finally to 5/115/11 by the third author [13].

Motivated by recent results, it is important to study sums of the form

Tf,r(x)=n1n2nrxf(xn1n2nr)=nxf(xn)τr(n),T_{f,r}(x)=\sum_{n_{1}n_{2}\cdots n_{r}\leq x}f\left(\left\lfloor\frac{x}{n_{1}n_{2}\cdots n_{r}}\right\rfloor\right)=\sum_{n\leq x}f\left(\left\lfloor\frac{x}{n}\right\rfloor\right)\tau_{r}(n),

where rr is a fixed positive integer and τr\tau_{r} is the number of ways of writing nn as a product of rr positive integers. In this paper, we consider the case r=2r=2 and put

Tf(x)=Tf,2(x)=nxf(xn)τ(n)T_{f}(x)=T_{f,2}(x)=\sum_{n\leq x}f\left(\left\lfloor\frac{x}{n}\right\rfloor\right)\tau(n)

Supposing that Δ(x)xθ+ε\Delta(x)\ll x^{\theta+\varepsilon} and that f(n)nαf(n)\ll n^{\alpha} for some α[0,1)\alpha\in[0,1), it is not hard to show (see Section 3) that

(1.4) Tf(x)=C1(f)xlogx+C2(f)x+O(xα(1θ)+12θ+ε),T_{f}(x)=C_{1}(f)x\log{x}+C_{2}(f)x+O\left(x^{\frac{\alpha(1-\theta)+1}{2-\theta}+\varepsilon}\right),

where

C1(f)=d1f(d)d(d+1),C2(f)=C1(2γ1)C3(f),C_{1}(f)=\sum_{d\geq 1}\frac{f(d)}{d(d+1)},\qquad C_{2}(f)=C_{1}(2\gamma-1)-C_{3}(f),

and

C3(f)=d1f(d)(logddlog(d+1)d+1).C_{3}(f)=\sum_{d\geq 1}f(d)\left(\frac{\log{d}}{d}-\frac{\log(d+1)}{d+1}\right).

Note that both sums converge since α<1\alpha<1. Huxley’s bound (1.2) then gives

Tf(x)=C1(f)xlogx+C2(f)x+O(x416+285α701+ε).T_{f}(x)=C_{1}(f)x\log{x}+C_{2}(f)x+O\left(x^{\frac{416+285\alpha}{701}+\varepsilon}\right).

It is known that Δ(x)x1/4\Delta(x)\gg x^{1/4} for infinitely many values of xx, and it is conjectured that Δ(x)x1/4+ε\Delta(x)\ll x^{1/4+\varepsilon} for all xx. Taking θ=14\theta=\frac{1}{4} in (1.4), one conjectures that

Tf(x)=C1(f)xlogx+C2(f)x+O(x4+3α7+ε).T_{f}(x)=C_{1}(f)x\log{x}+C_{2}(f)x+O\left(x^{\frac{4+3\alpha}{7}+\varepsilon}\right).

Using an estimate for three-dimensional exponential sums due to Robert and Sargos [12], we are able to prove this result unconditionally.

Theorem 1.1.

Let f(n)f(n) be an arithmetic function with f(n)nαf(n)\ll n^{\alpha} for some α[0,1)\alpha\in[0,1), and let C1(f),C2(f)C_{1}(f),C_{2}(f) be as above. For any x2x\geq 2 and ε>0\varepsilon>0, we have

(1.5) Tf(x)=C1(f)xlogx+C2(f)x+O(x4+3α7+ε).T_{f}(x)=C_{1}(f)x\log{x}+C_{2}(f)x+O\left(x^{\frac{4+3\alpha}{7}+\varepsilon}\right).

Notation: The Landau-Vinogradov symbols ,,O\ll,\gg,O have their usual meanings. We write x\lfloor x\rfloor to denote largest integer not exceeding xx, e(x)e(x) to denote e2πixe^{2\pi ix}, ψ(t)=tt12\psi(t)=t-\left\lfloor t\right\rfloor-{\textstyle\frac{1}{2}}. As well, we write dDd\sim D to denote D<d2DD<d\leq 2D. The sum dDx\operatornamewithlimits{\sum\nolimits^{\textit{d}}}_{D\leq x} means a sum over D=2kD=2^{k} with 2kx2^{k}\leq x.

2. Preliminaries

In this section, we state some lemmas that will be needed in the proof of Theorem 1.1. For the error term Δ(x)\Delta(x) in (1.1), we have the following expression.

Lemma 2.1.

[4, Theorem 4.5] For any xx\in\mathbb{R}, we have

Δ(x)=2nxψ(xn)+O(1).\Delta(x)=-2\sum_{n\leq\sqrt{x}}\psi\left(\frac{x}{n}\right)+O(1).

The function ψ(x)\psi(x) is periodic with period 11 and so can be expanded into a Fourier series. We need the following truncated version due to Vaaler.

Lemma 2.2.

[2, Lemma 4.1] For xx be real and H1H\geq 1, we have

ψ(x)=1|h|HΦ(hH+1)e(hx)2πih+RH(x),\psi(x)=-\sum_{1\leq|h|\leq H}\Phi\left(\frac{h}{H+1}\right)\frac{e(hx)}{2\pi ih}+R_{H}(x),

where Φ(t):=πt(1|t|)cos(πt)+|t|\Phi(t):=\pi t(1-|t|)\cos(\pi t)+|t|, and the error term RH(x)R_{H}(x) satisfies

|RH(x)|12H+2|h|H(1|h|H+1)e(hx).\left|R_{H}(x)\right|\leq\frac{1}{2H+2}\sum_{|h|\leq H}\left(1-\frac{|h|}{H+1}\right)e(hx).

Lastly, we need the following lemma on certain three-dimensional exponential sums.

Lemma 2.3.

[12, Therom 3] Let

S=h=H+12Hn=N+12N|M<m2Me(XmαhβnγMαHβNγ)|S=\sum_{h=H+1}^{2H}\sum_{n=N+1}^{2N}\left|\sum_{M<m\leq 2M}e\left(X\frac{m^{\alpha}h^{\beta}n^{\gamma}}{M^{\alpha}H^{\beta}N^{\gamma}}\right)\right|^{*}

where HH, NN and MM are positive integers, X1X\geq 1 is a real number, α\alpha, β\beta and γ\gamma are fixed real number such that α(α1)βγ0\alpha(\alpha-1)\beta\gamma\neq 0, and

|1nNzn|=max1N1N2N|n=N1N2zn|.\left|\sum_{1\leq n\leq N}z_{n}\right|^{*}=\max_{1\leq N_{1}\leq N_{2}\leq N}\left|\sum_{n=N_{1}}^{N_{2}}z_{n}\right|.

Then we have

S(HNM)1+ε{(XHNM2)1/4+1M1/2+1X}.S\ll\left(HNM\right)^{1+\varepsilon}\left\{\left(\frac{X}{HNM^{2}}\right)^{1/4}+\frac{1}{M^{1/2}}+\frac{1}{X}\right\}.

As a consequence of the above three lemmas, we deduce the following estimate for the average of Δ\Delta over a sequence of monomials.

Proposition 2.4.

For X,D1X,D\geq 1 and α0\alpha\neq 0, we have

dD|Δ(XdαDα)|(X3/8D3/4+X1/4D)(XD)ε,\sum_{d\sim D}\left|\Delta\left(X\frac{d^{\alpha}}{D^{\alpha}}\right)\right|\ll\left(X^{3/8}D^{3/4}+X^{1/4}D\right)(XD)^{\varepsilon},

where the implied constant depends only on α\alpha and ε\varepsilon.

We note that this agrees with the estimate one obtains from the conjectured bound Δ(x)x1/4+ε\Delta(x)\ll x^{1/4+\varepsilon} so long as DXD\geq\sqrt{X}.

Proof.

Let H=2kH=2^{k} be such that 2kX<2k+12^{k}\leq\sqrt{X}<2^{k+1}. By Lemmas 2.1 and 2.2, we have that for certain coefficients chc_{h} with |ch|1h\left|c_{h}\right|\ll\frac{1}{h},

|Δ(XdαDα)|\displaystyle\left|\Delta\left(X\frac{d^{\alpha}}{D^{\alpha}}\right)\right| 1+|lXdαDα(1H+hHche(XhdαlDα))|\displaystyle\ll 1+\bigg{|}\sum_{l\leq\sqrt{X\frac{d^{\alpha}}{D^{\alpha}}}}\bigg{(}\frac{1}{H}+\sum_{h\leq H}c_{h}e\left(X\frac{hd^{\alpha}}{lD^{\alpha}}\right)\bigg{)}\bigg{|}
1+hH1h|lXdαDαe(XhdαlDα)|.\displaystyle\ll 1+\sum_{h\leq H}\frac{1}{h}\bigg{|}\sum_{l\leq\sqrt{X\frac{d^{\alpha}}{D^{\alpha}}}}e\left(X\frac{hd^{\alpha}}{lD^{\alpha}}\right)\bigg{|}.

We divide the sums over ll and hh into dyadic sums with lLl\sim L and hHh\sim H^{\prime}, where LL and HH^{\prime} are powers of 2. Then the sum on the last line is

dHH1HdL2αXhH|lLlXdαDαe(XhdαlDα)|\displaystyle\ll\operatornamewithlimits{\sum\nolimits^{\textit{d}}}_{H^{\prime}\leq H}\frac{1}{H^{\prime}}\operatornamewithlimits{\sum\nolimits^{\textit{d}}}_{L\leq\sqrt{2^{\alpha}X}}\sum_{h\sim H^{\prime}}\bigg{|}\sum_{\begin{subarray}{c}l\sim L\\ l\leq\sqrt{X\frac{d^{\alpha}}{D^{\alpha}}}\end{subarray}}e\left(X\frac{hd^{\alpha}}{lD^{\alpha}}\right)\bigg{|}
dHH1HdL2αXhH|łLe(XhdαlDα)|\displaystyle\ll\operatornamewithlimits{\sum\nolimits^{\textit{d}}}_{H^{\prime}\leq H}\frac{1}{H^{\prime}}\operatornamewithlimits{\sum\nolimits^{\textit{d}}}_{L\leq\sqrt{2^{\alpha}X}}\sum_{h\sim H^{\prime}}\bigg{|}\sum_{\l\sim L}e\left(X\frac{hd^{\alpha}}{lD^{\alpha}}\right)\bigg{|}^{*}

by the definition of ||\left|\cdot\right|^{*}. Thus

(2.6) dD|Δ(XdαDα)|D+dHHdL2αX(1HhHdD|łLe(XhdαlDα)|)\sum_{d\sim D}\left|\Delta\left(X\frac{d^{\alpha}}{D^{\alpha}}\right)\right|\ll D+\operatornamewithlimits{\sum\nolimits^{\textit{d}}}_{H^{\prime}\leq H}\operatornamewithlimits{\sum\nolimits^{\textit{d}}}_{L\leq\sqrt{2^{\alpha}X}}\bigg{(}\frac{1}{H^{\prime}}\sum_{h\sim H^{\prime}}\sum_{d\sim D}\bigg{|}\sum_{\l\sim L}e\left(X\frac{hd^{\alpha}}{lD^{\alpha}}\right)\bigg{|}^{*}\bigg{)}

By Lemma 2.3, we have

1HhHdD|łLe(XhdαlDα)|\displaystyle\frac{1}{H^{\prime}}\sum_{h\sim H^{\prime}}\sum_{d\sim D}\bigg{|}\sum_{\l\sim L}e\left(X\frac{hd^{\alpha}}{lD^{\alpha}}\right)\bigg{|}^{*} DL((XDL3)1/4+1L1/2+LXH)(XD)ε\displaystyle\ll DL\left(\left(\frac{X}{DL^{3}}\right)^{1/4}+\frac{1}{L^{1/2}}+\frac{L}{XH^{\prime}}\right)(XD)^{\varepsilon}
(X1/4D3/4L1/4+DL1/2+L2DX)(XD)ε.\displaystyle\ll\left(X^{1/4}D^{3/4}L^{1/4}+DL^{1/2}+\frac{L^{2}D}{X}\right)(XD)^{\varepsilon}.

Combining this with (2.6), we find that

dD|Δ(XdαDα)|\displaystyle\sum_{d\sim D}\left|\Delta\left(X\frac{d^{\alpha}}{D^{\alpha}}\right)\right| D+dHHdL2αX(X1/4D3/4L1/4+DL1/2+L2DX)(XD)ε\displaystyle\ll D+\operatornamewithlimits{\sum\nolimits^{\textit{d}}}_{H^{\prime}\leq H}\operatornamewithlimits{\sum\nolimits^{\textit{d}}}_{L\leq\sqrt{2^{\alpha}X}}\left(X^{1/4}D^{3/4}L^{1/4}+DL^{1/2}+\frac{L^{2}D}{X}\right)(XD)^{\varepsilon}
(X3/8D3/4+X1/4D)(XD)ε.\displaystyle\ll\left(X^{3/8}D^{3/4}+X^{1/4}D\right)(XD)^{\varepsilon}.

From this, we deduce the following special case needed for the proof of Theorem 1.1.

Proposition 2.5.

For x1x\geq 1, DxD\leq x, and δ{0,1}\delta\in\left\{0,1\right\}, we have

dD|Δ(xd+δ)|(x3/8D3/8+x1/4D3/4)xε,\sum_{d\sim D}\left|\Delta\left(\frac{x}{d+\delta}\right)\right|\ll\left(x^{3/8}D^{3/8}+x^{1/4}D^{3/4}\right)x^{\varepsilon},

where the implied constant depends only on ε\varepsilon and δ\delta.

Proof.

If δ=0\delta=0, we apply Proposition 2.4 with α=1\alpha=-1 and X=xDX=\frac{x}{D}. If δ=1\delta=1, then by positivity, we have

dD|Δ(xd+δ)|=D1<d2D1|Δ(xd)|(D/2<dD+D<d2D)|Δ(xd)|,\sum_{d\sim D}\left|\Delta\left(\frac{x}{d+\delta}\right)\right|=\sum_{D-1<d\leq 2D-1}\left|\Delta\left(\frac{x}{d}\right)\right|\leq\bigg{(}\sum_{D/2<d\leq D}+\sum_{D<d\leq 2D}\bigg{)}\left|\Delta\left(\frac{x}{d}\right)\right|,

and the required bound follows by applying Proposition 2.4 to each of the two sums over dd with X=xDX=\frac{x}{D} and X=2xDX=\frac{2x}{D}.

3. Proof of Theorem 1.1

Let N[1,x)N\in[1,x) be a parameter that will be chosen later. We split Tf(x)T_{f}(x) into two parts:

(3.7) Tf(x)=T1(x)+T2(x),T_{f}(x)=T_{1}(x)+T_{2}(x),

where

T1(x):=nNf(xn)τ(n),T2(x):=N<nxf(xn)τ(n).T_{1}(x):=\sum_{n\leq N}f\left(\left\lfloor\frac{x}{n}\right\rfloor\right)\tau(n),\qquad T_{2}(x):=\sum_{N<n\leq x}f\left(\left\lfloor\frac{x}{n}\right\rfloor\right)\tau(n).

Since τ(n)nε\tau(n)\ll n^{\varepsilon} for any ε>0\varepsilon>0, we have

(3.8) T1(x)nNxα+εnαxα+εN1α.T_{1}(x)\ll\sum_{n\leq N}\frac{x^{\alpha+\varepsilon}}{n^{\alpha}}\ll x^{\alpha+\varepsilon}N^{1-\alpha}.

If d=x/nd=\lfloor x/n\rfloor, then x/n1<dx/nx/n-1<d\leq x/n and x/(d+1)<nx/dx/(d+1)<n\leq x/d, so

T2(x)=N<nxxn=df(d)τ(n)=dxNf(d)xd+1<nxdτ(n).T_{2}(x)=\sum_{N<n\leq x}\sum_{\left\lfloor\frac{x}{n}\right\rfloor=d}f(d)\tau(n)=\sum_{d\leq\frac{x}{N}}f(d)\sum_{\frac{x}{d+1}<n\leq\frac{x}{d}}\tau(n).

By (1.1), we obtain

(3.9) T2(x)=dxNf(d)(nxdτ(n)nxd+1τ(n))=T21(x)T22(x)+TΔ(x),T_{2}(x)=\sum_{d\leq\frac{x}{N}}f(d)\left(\sum_{n\leq\frac{x}{d}}\tau(n)-\sum_{n\leq\frac{x}{d+1}}\tau(n)\right)=T_{21}(x)-T_{22}(x)+T_{\Delta}(x),

where

T21(x)\displaystyle T_{21}(x) :=x(logx+2γ1)dxNf(d)d(d+1),\displaystyle:=x(\log{x}+2\gamma-1)\sum_{d\leq\frac{x}{N}}\frac{f(d)}{d(d+1)},
T22(x)\displaystyle T_{22}(x) :=xdxNf(d)(logddlog(d+1)d+1),\displaystyle:=x\sum_{d\leq\frac{x}{N}}f(d)\left(\frac{\log{d}}{d}-\frac{\log{(d+1)}}{d+1}\right),
TΔ(x)\displaystyle T_{\Delta}(x) :=dxNf(d)(Δ(xd)Δ(xd+1)).\displaystyle:=\sum_{d\leq\frac{x}{N}}f(d)\left(\Delta\left(\frac{x}{d}\right)-\Delta\left(\frac{x}{d+1}\right)\right).

Since f(d)dαf(d)\ll d^{\alpha} with α<1\alpha<1, we have

d>xNf(d)d(d+1)d>xNdα2(xN)α1,\sum_{d>\frac{x}{N}}\frac{f(d)}{d(d+1)}\ll\sum_{d>\frac{x}{N}}d^{\alpha-2}\ll\left(\frac{x}{N}\right)^{\alpha-1},

and similarly

d>xNf(d)(logddlog(d+1)d+1)(xN)α1logx.\sum_{d>\frac{x}{N}}f(d)\left(\frac{\log{d}}{d}-\frac{\log{(d+1)}}{d+1}\right)\ll\left(\frac{x}{N}\right)^{\alpha-1}\log x.

Therefore

T21(x)T22(x)=C1(f)xlogx+C2(f)x+O(xα+εN1α),T_{21}(x)-T_{22}(x)=C_{1}(f)x\log x+C_{2}(f)x+O\left(x^{\alpha+\varepsilon}N^{1-\alpha}\right),

and so

(3.10) Tf(x)=C1(f)xlogx+C2(f)x+O(xα+εN1α)+TΔ(x).T_{f}(x)=C_{1}(f)x\log x+C_{2}(f)x+O\left(x^{\alpha+\varepsilon}N^{1-\alpha}\right)+T_{\Delta}(x).

To prove (1.4), we note that the estimate Δ(x)xθ+ε\Delta(x)\ll x^{\theta+\varepsilon} immediately gives

TΔ(x)dxNdα(xd)θ+εx1+α+εNθ1α,T_{\Delta}(x)\ll\sum_{d\leq\frac{x}{N}}d^{\alpha}\left(\frac{x}{d}\right)^{\theta+\varepsilon}\ll x^{1+\alpha+\varepsilon}N^{\theta-1-\alpha},

and (1.4) follows by choosing N=x12θN=x^{\frac{1}{2-\theta}}.

Finally, to prove Theorem 1.1, we note that

|TΔ(x)|dDxNDαdD(|Δ(xd)|+|Δ(xd+1)|),\left|T_{\Delta}(x)\right|\ll\operatornamewithlimits{\sum\nolimits^{\textit{d}}}_{D\leq\frac{x}{N}}D^{\alpha}\sum_{d\sim D}\bigg{(}\left|\Delta\left(\frac{x}{d}\right)\right|+\left|\Delta\left(\frac{x}{d+1}\right)\right|\bigg{)},

so that Proposition 2.5 gives

|TΔ(x)|\displaystyle\left|T_{\Delta}(x)\right| dDxNDα(x3/8D3/8+x1/4D3/4)xε\displaystyle\ll\operatornamewithlimits{\sum\nolimits^{\textit{d}}}_{D\leq\frac{x}{N}}D^{\alpha}\left(x^{3/8}D^{3/8}+x^{1/4}D^{3/4}\right)x^{\varepsilon}
x3/4+α+εN3/8α+x1+α+εN3/4α.\displaystyle\ll x^{3/4+\alpha+\varepsilon}N^{-3/8-\alpha}+x^{1+\alpha+\varepsilon}N^{-3/4-\alpha}.

The second term dominates so long as Nx2/3N\leq x^{2/3}. In this case, combining the above estimate with (3.10), we have

Tf(x)=C1(f)xlogx+C2(f)x+O(xα+εN1α+x1+α+εN3/4α).T_{f}(x)=C_{1}(f)x\log x+C_{2}(f)x+O\left(x^{\alpha+\varepsilon}N^{1-\alpha}+x^{1+\alpha+\varepsilon}N^{-3/4-\alpha}\right).

Choosing N=x4/7N=x^{4/7}, we complete the proof of Theorem 1.1.

4. Acknowledgements

The authors would like to thank Professor Kui Liu for his suggestions to improve this paper.

References

  • [1] O. Bordellès, On certain sums of number theory, arXiv:2009.05751v2 [math. NT] 25 Nov 2020.
  • [2] O. Bordellès, L. Dai, R. Heyman, H. Pan, I.E. Shparlinski, On a sum of involving the Euler funtion, J. Number Theory 202(2019), 278-297.
  • [3] J.Bourgain and N. Watt, Mean square of zeta function, circle problem and divisor problem revisited, arXiv:1709.04340v1 [math. AP] 13 Sep 2017.
  • [4] S.W. Graham and G. Kolesnik, Van Der Corput’s Method of Exponential Sums, Cambridge University Press, Cambridge, 1991.
  • [5] M. N. Huxley, Exponential sums and lattice points III, Proc. London Math Soc.(3). 87(2003), 519-609.
  • [6] H. Iwaniec and C. J. Mozzochi, On the divisor and circle problems, J. Number Theory 29(1988), 60-93.
  • [7] G. Kolesnik, On the method of exponent pairs, Acta Arith. XLV.2(1985), 115-143.
  • [8] K. Liu, J. Wu, and Z.S. Yang, A variant of the prime number theorem, Indag. Math. (N.S.) 33(2022), 388-396.
  • [9] K. Liu, J. Wu, and Z.S. Yang, On some sums involving the integral part function, arXiv:2109.01382v1 [math. NT] 3 Sep 2021.
  • [10] J. Ma and H.Y. Sun, On a sum of involving the divisor funtion, Periodica Mathematica Hungarica. 83(2021), 185-191.
  • [11] J. Ma and J. Wu, On a sum involving the von Mangoldt function, Periodica Mathematica Hungarica. 83(2021), 39-48.
  • [12] O. Robert and P. Sargos, Three-dimensional exponential sums with monomials, J. Reine Angew. Math. 591(2006), 1-20.
  • [13] J. Stucky, The fractional sum of small arithmetic functions, J. Number Theory. 238(2022), 731-739.
  • [14] J. G. Var der Corput, Versharfung der Abscha: tzungen beim Teilerproblem, Math. Ann. 87(1922), 39-65.
  • [15] J. G. Var der Corput, zum Teilerproblem, Math. Ann. 98(1928), 697-716.
  • [16] G. Voronoi, Surune function transcendante et ses applications a la sommation de quelques séries, Annales scientifiques de I’École Normale Supérieure. 21(1904), 207-267.
  • [17] J. Wu, Note on a paper by Bordellès, Dai, Heyman, Pan, Shparlinski, Periodica Mathematica Hungarica. 80(2020), 95-102.
  • [18] W.G. Zhai, On a sum of involving the Euler funtion, J. Number Theory. 211(2020), 199-219.