This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Ihara’s Lemma for GLd\operatorname{GL}_{d}: the limit case

Pascal Boyer boyer@math.univ-paris13.fr Université Paris 13, Sorbonne Paris Nord
LAGA, CNRS, UMR 7539
F-93430, Villetaneuse (France)
Coloss: ANR-19-PRC
Abstract.

Clozel, Harris and Taylor proposed in [CHT08] conjectural generalizations of the classical Ihara’s lemma for GL2\operatorname{GL}_{2}, to higher dimensional similitude groups. We prove these conjectures in the so called limit case, which after base change is the essential one, under any hypothesis allowing level raising as for example theorem 5.1.5 in [Gee11].

Key words and phrases:
Ihara’s lemma, Shimura varieties, torsion in the cohomology, galois representations
1991 Mathematics Subject Classification:
11F70, 11F80, 11F85, 11G18, 20C08

1. Introduction

1.1. Ihara’s lemma: origin and proofs

In the Taylor-Wiles method Ihara’s lemma is the key ingredient to extend a R=TR=T property from the minimal case to a non minimal one. It is usually formulated by the injectivity of some map as follows.

Let Γ=Γ0(N)\Gamma=\Gamma_{0}(N) be the usual congruence subgroup of SL2()SL_{2}({\mathbb{Z}}) for some N>1N>1, and for a prime pp not dividing NN let Γ:=ΓΓ0(p)\Gamma^{\prime}:=\Gamma\cap\Gamma_{0}(p). We then have two degeneracy maps

π1,π2:XΓXΓ\pi_{1},\pi_{2}:X_{\Gamma^{\prime}}\longrightarrow X_{\Gamma}

between the compactified modular curves of levels Γ\Gamma^{\prime} and Γ\Gamma respectively, induced by the inclusion

ΓΓ and (p001)Γ(p001)1Γ.\Gamma^{\prime}\hookrightarrow\Gamma\hbox{ and }\left(\begin{array}[]{cc}p&0\\ 0&1\end{array}\right)\Gamma^{\prime}\left(\begin{array}[]{cc}p&0\\ 0&1\end{array}\right)^{-1}\hookrightarrow\Gamma.

For lpl\neq p, we then have a map

π:=π1+π2:H1(XΓ,𝔽l)2H1(XΓ,𝔽l).\pi^{*}:=\pi_{1}^{*}+\pi_{2}^{*}:H^{1}(X_{\Gamma},{\mathbb{F}}_{l})^{2}\longrightarrow H^{1}(X_{\Gamma^{\prime}},{\mathbb{F}}_{l}).
Theorem 1.1.1.

Let 𝔪\mathfrak{m} be a maximal ideal of the Hecke algebra acting on these cohomology groups which is non Eisenstein, i.e. that corresponds to an irreducible Galois representation. Then after localizing at 𝔪\mathfrak{m}, the map π\pi^{*} is injective.

Diamond and Taylor in [DT94] proved an analogue of Ihara’s lemma for Shimura curves over {\mathbb{Q}}. For a general totally real number field FF with ring of integers 𝒪F\mathcal{O}_{F}, Manning and Shotton in [MS21] succeeded to prove it under some large image hypothesis. Their strategy is entirely different from those of [DT94]but consists roughly

  • to carry Ihara’s lemma for a compact Shimura curve YK¯Y_{\bar{K}} associated to a definite quaternion algebra D¯\overline{D} ramified at some auxiliary place vv of FF, in level K¯=K¯vK¯v\bar{K}=\bar{K}^{v}\bar{K}_{v} an open compact subgroup of D𝔸F,fD\otimes{\mathbb{A}}_{F,f} unramified at vv,

  • to the indefinite situation XKX_{K} relatively to a quaternion division algebra DD ramified at all but one infinite place of FF, and isomorphic to D¯\bar{D} at all finite places of FF different to vv, and with level KK agreing with K¯v\bar{K}^{v} away from vv.

Indeed in the definite case Ihara’s statement is formulated by the injectivity of

π=π1+π2:H0(YK¯,𝔽l)𝔪H0(YK¯,𝔽l)𝔪H0(YK¯0(v),𝔽l)𝔪\pi^{*}=\pi_{1}^{*}+\pi_{2}^{*}:H^{0}(Y_{\bar{K}},{\mathbb{F}}_{l})_{\mathfrak{m}}\oplus H^{0}(Y_{\bar{K}},{\mathbb{F}}_{l})_{\mathfrak{m}}\longrightarrow H^{0}(Y_{\bar{K}_{0}(v)},{\mathbb{F}}_{l})_{\mathfrak{m}}

where both D¯\overline{D} and K¯\bar{K} are unramified at the place vv and K¯0(v)v\bar{K}_{0}(v)_{v} is the subgroup of GL2(Fv)\operatorname{GL}_{2}(F_{v}) of elements which are upper triangular modulo pp.

The proof goes like this, cf. [MS21] theorem 6.8. Suppose (f,g)kerπ(f,g)\in\ker\pi^{*}. Regarding ff and gg as KvK^{v}-invariant function on G¯(F)\G¯(𝔸F,f)\overline{G}(F)\backslash\overline{G}({\mathbb{A}}_{F,f}), then f(x)=g(xω)f(x)=-g(x\omega) where ω=(ϖv001)\omega=\left(\begin{array}[]{cc}\varpi_{v}&0\\ 0&1\end{array}\right), ϖv\varpi_{v} being an uniformizer for FwF_{w} and G¯\overline{G} being the algebraic group over 𝒪F\mathcal{O}_{F} associated to 𝒪D¯×\mathcal{O}_{\overline{D}}^{\times} the inversible group of the maximal order 𝒪D¯\mathcal{O}_{\overline{D}} of D¯\overline{D}: note that G¯(Fv)GL2(Fv)\overline{G}(F_{v})\cong\operatorname{GL}_{2}(F_{v}). Then ff is invariant under KvK^{v} and ω1Kvω\omega^{-1}K^{v}\omega so that, using the strong approximation theorem for the subgroup of G¯\overline{G} of elements of reduced norm 11, then ff factors through the reduced norm map, and so is supported on Eisenstein maximal ideals.

The link between XKX_{K} and YKvY_{K^{v}} is given by the geometry of the integral model of the Shimura curve XK0(v)X_{K_{0}(v)} with Γ0(v)\Gamma_{0}(v)-level structure. The main new ingredient of [MS21] to carry this geometric link to Ihara’s lemma goes through the patching technology which allows to obtain maximal Cohen-Macaulay modules over deformation rings. Using a flatness property and Nakayama’s lemma, there are then able to extend a surjective property, dual to the injectivity in the Ihara’s lemma, from the maximal unipotent locus on the deformation space to the whole space, and recover the Ihara’s statement reducing by the maximal ideal of the deformation ring.

Recently Caraiani and Tamiozzo following closely [MS21] also obtained Ihara’s lemma for Hilbert varieties essentially because Galois deformations rings are the same and so regular which is not the case beyond GL2\operatorname{GL}_{2}.

1.2. Generalisations of Ihara’s Lemma

To generalize the classical Ihara’s lemma for GLd\operatorname{GL}_{d}, there are essentially two approaches.

The first natural one developed by Clozel, Harris and Taylor in their first proof of Sato-Tate theorem [CHT08], focuses on the H0H^{0} with coefficients in 𝔽l{\mathbb{F}}_{l} of a zero dimensional Shimura variety associated to higher dimensional definite division algebras. More precisely consider a totally real field F+F^{+} and a imaginary quadratic extension E/E/{\mathbb{Q}} and define F=F+EF=F^{+}E. We then consider G¯/\overline{G}/{\mathbb{Q}} an unitary group with G¯()\overline{G}({\mathbb{Q}}) compact so that G¯\overline{G} becomes an inner form of GLd\operatorname{GL}_{d} over FF. This means, cf. §2.3, we have fixed a division algebra B¯\overline{B} with center FF, of dimension d2d^{2}, provided with an involution of the second kind such that its restriction to FF is the complex conjugation. We moreover suppose that at every place ww of FF, either B¯w\overline{B}_{w} is split or a local division algebra.

Let vv be a place of FF above a prime number pp split in EE and such that B¯v×GLd(Fv)\overline{B}_{v}^{\times}\cong\operatorname{GL}_{d}(F_{v}) where FvF_{v} is the associated local field with ring of integers 𝒪v\mathcal{O}_{v} and residue field κ(v)\kappa(v).

Notation 1.2.1.

Let qvq_{v} be the order of the residue field κ(v)\kappa(v).

Consider then an open compact subgroup K¯v\overline{K}^{v} infinite at vv in the following sense: G¯(p)p××vi+B¯vi+op,×\overline{G}({\mathbb{Q}}_{p})\cong{\mathbb{Q}}_{p}^{\times}\times\prod_{v_{i}^{+}}\overline{B}_{v_{i}^{+}}^{op,\times} where p=ivi+p=\prod_{i}v_{i}^{+} in F+F^{+} and we identify places of F+F^{+} over p=uucEp=uu^{c}\in E with places of FF over uu. We then ask K¯pv=p××w|uK¯w\overline{K}^{v}_{p}={\mathbb{Z}}_{p}^{\times}\times\prod_{w|u}\overline{K}_{w} to be such that K¯v\overline{K}_{v} is restricted to the identity element.

The associated Shimura variety with level K¯=K¯vK¯v\overline{K}=\overline{K}^{v}\overline{K}_{v} for some finite level K¯v\overline{K}_{v} at vv, denoted by Sh¯K¯\overline{\mathrm{Sh}}_{\overline{K}}, is then such that its {\mathbb{C}}-points are G¯()\G¯(𝔸)/K¯\overline{G}({\mathbb{Q}})\backslash\overline{G}({\mathbb{A}}_{{\mathbb{Q}}}^{\infty})/\overline{K} and for ll a prime not divisible by vv, its H0H^{0} with coefficients in 𝔽¯l\overline{\mathbb{F}}_{l} is then identified with the space

SG¯(K¯,𝔽¯l)={f:G¯()\G¯(𝔸)/K¯𝔽¯l locally constant}.S_{\overline{G}}(\overline{K},\overline{\mathbb{F}}_{l})=\{f:\overline{G}({\mathbb{Q}})\backslash\overline{G}({\mathbb{A}}_{{\mathbb{Q}}}^{\infty})/\overline{K}\longrightarrow\overline{\mathbb{F}}_{l}\hbox{ locally constant}\}.

Replacing K¯\overline{K} by K¯v\overline{K}^{v}, we then obtain an admissible smooth representation of GLd(Fv)\operatorname{GL}_{d}(F_{v}) equipped with an action of the Hecke algebra 𝕋(K¯v){\mathbb{T}}(\overline{K}^{v}) defined as the image of the abstract unramified Hecke algebra, cf. definition 3.2.1, inside End(SG¯(K¯v,𝔽¯l))\operatorname{End}(S_{\overline{G}}(\overline{K}^{v},\overline{\mathbb{F}}_{l})\Bigr{)}.

To a maximal ideal 𝔪\mathfrak{m} of 𝕋(K¯v){\mathbb{T}}(\overline{K}^{v}) is associated a Galois 𝔽¯l\overline{\mathbb{F}}_{l}-representation ρ¯𝔪\overline{\rho}_{\mathfrak{m}}, cf. §4.2. We consider the case where this representation is irreducible. Note in particular that such an 𝔪\mathfrak{m} is then not pseudo-Eisenstein in the usual terminology.

Conjecture 1.2.2.

(cf. conjecture B in [CHT08])
Any irreducible GLd(Fv)\operatorname{GL}_{d}(F_{v})-submodule of SG¯(K¯v,𝔽¯l)𝔪S_{\overline{G}}(\overline{K}^{v},\overline{\mathbb{F}}_{l})_{\mathfrak{m}} is generic.

For rank 22 unitary groups, we recover the previous statement as the characters are exactly those representations which do not have a Whittaker model, i.e. are the non generic ones. For d2d\geq 2, over ¯l\overline{\mathbb{Q}}_{l}, the generic representations of GLd(Fv)\operatorname{GL}_{d}(F_{v}) are the irreducible parabolically induced representations stt1(πv,1)××sttr(πv,r)\mathrm{st}_{t_{1}}(\pi_{v,1})\times\cdots\times\mathrm{st}_{t_{r}}(\pi_{v,r}) where for i=1,,ri=1,\cdots,r,

  • πv,i\pi_{v,i} is an irreducible cuspidal representation of GLgi(Fv)\operatorname{GL}_{g_{i}}(F_{v}),

  • stti(πv,i)\mathrm{st}_{t_{i}}(\pi_{v,i}) is a Steinberg representations, cf. definition 2.1.2,

  • i=1rtigi=d\sum_{i=1}^{r}t_{i}g_{i}=d where the Zelevinsky segments [πv,i{1ti2},πv,i{ti12}][\pi_{v,i}\{\frac{1-t_{i}}{2}\},\pi_{v,i}\{\frac{t_{i}-1}{2}\}]are not linked in the sense of [Zel80].

Over 𝔽¯l\overline{\mathbb{F}}_{l} every irreducible generic representation is obtained as the unique generic subquotient of the modulo ll reduction of a generic representation. It can also be characterized intrinsically using representation of the mirabolic subgroup, cf. §2.1.

Definition 1.2.3.

(cf. definition of [CHT08] 5.1.9)
An admissible smooth 𝔽¯l[GLd(Fv)]\overline{\mathbb{F}}_{l}[\operatorname{GL}_{d}(F_{v})]-module MM is said to have the weak Ihara property if for every mMGLd(𝒪v)m\in M^{\operatorname{GL}_{d}(\mathcal{O}_{v})} which is an eigenvector of 𝔽¯l[GLd(𝒪v)\GLd(Fv)/GLd(𝒪v)]\overline{\mathbb{F}}_{l}[\operatorname{GL}_{d}(\mathcal{O}_{v})\backslash\operatorname{GL}_{d}(F_{v})/\operatorname{GL}_{d}(\mathcal{O}_{v})], every irreducible submodule of the 𝔽¯l[GLd(Fv)]\overline{\mathbb{F}}_{l}[\operatorname{GL}_{d}(F_{v})]-module generated by mm, is generic.

Remark. if we ask SG¯(K¯v,𝔽¯l)𝔪S_{\overline{G}}(\overline{K}^{v},\overline{\mathbb{F}}_{l})_{\mathfrak{m}} to verify the weak Ihara property, then it should have non trivial unramified vectors so that the supercuspidal support of the restriction ρ¯𝔪,v\overline{\rho}_{\mathfrak{m},v} of ρ¯𝔪\overline{\rho}_{\mathfrak{m}} to the decomposition subgroup at vv, is made of unramified characters.

The second approach asks to find a map playing the same role as π=π1+π2\pi^{*}=\pi_{1}^{*}+\pi_{2}^{*}. It is explained in section 5.1 of [CHT08] with the help of the element

θvl[K1(vn)\GLd(Fv)/GLd(𝒪Fv)]\theta_{v}\in{\mathbb{Z}}_{l}[K_{1}(v^{n})\backslash\operatorname{GL}_{d}(F_{v})/\operatorname{GL}_{d}(\mathcal{O}_{F_{v}})]

constructed by Russ Mann, cf. proposition 5.1.7 of [CHT08], where FvF_{v} is here a finite extension of p{\mathbb{Q}}_{p} with ring of integers 𝒪v\mathcal{O}_{v}.

Definition 1.2.4.

An admissible smooth 𝔽¯l[GLd(Fv)]\overline{\mathbb{F}}_{l}[\operatorname{GL}_{d}(F_{v})]-module MM is said to have the almost Ihara property if θv:MGLd(𝒪v)M\theta_{v}:M^{\operatorname{GL}_{d}(\mathcal{O}_{v})}\longrightarrow M is injective.

Recall that ll is called quasi-banal for GLd(Fv)\operatorname{GL}_{d}(F_{v}) if either lGLd(κv)l\nmid\sharp\operatorname{GL}_{d}(\kappa_{v}) (the banal case) or l>dl>d and qv1modlq_{v}\equiv 1\mod l (the limit case).

Proposition 1.2.5.

(cf. [CHT08] lemma 5.1.10)
Suppose that ll is quasi-banal and MM is a 𝔽¯l[GLd(Fv)]\overline{\mathbb{F}}_{l}[\operatorname{GL}_{d}(F_{v})]-module verifying the Ihara property. If ker(θv:MGLd(𝒪v)M)\ker(\theta_{v}:M^{\operatorname{GL}_{d}(\mathcal{O}_{v})}\longrightarrow M) is a 𝔽l[GLd(𝒪Fv)\GLd(Fv)/GLd(𝒪Fv)]{\mathbb{F}}_{l}[\operatorname{GL}_{d}(\mathcal{O}_{F_{v}})\backslash\operatorname{GL}_{d}(F_{v})/\operatorname{GL}_{d}(\mathcal{O}_{F_{v}})]-module, then MM has the almost Ihara property.

Applications: the generalizations of the classical Ihara’s lemma were introduced in [CHT08] to prove a non minimal R=𝕋R=\mathbb{T} theorem. The weaker statement Rred=𝕋R^{red}=\mathbb{T} where RredR^{red} is the reduced quotient of RR, was later obtained unconditionally using Taylor’s Ihara avoidance method, cf. [Tay08] which was enough to prove the Sato-Tate conjecture. However, the full R=𝕋R=\mathbb{T} theorem would have applications to special values of the adjoint LL-function and would imply that RR is a complete intersection. It should also be useful for generalizing the local-global compatibility results of [Eme].

In [Mos21], the author also proved that Ihara’s property in the quasi-banal case is equivalent to the following result.

Proposition 1.2.6.

(cf. [Mos21] corollary 9.5)
Let 𝔪\mathfrak{m} be a non-Eisenstein maximal ideal of 𝕋S{\mathbb{T}}^{S} and fSG¯(K¯vGLd(𝒪v),𝔽¯l)f\in S_{\overline{G}}(\overline{K}^{v}\operatorname{GL}_{d}({\mathcal{O}}_{v}),\overline{\mathbb{F}}_{l}). Let Kv\operatorname{K}_{v} be the Iwahori subgroup of GLd(𝒪v)\operatorname{GL}_{d}({\mathcal{O}}_{v}), then the 𝔽¯l[Kv\GLd(Fv)/GLd(𝒪v)]\overline{\mathbb{F}}_{l}[\operatorname{K}_{v}\backslash\operatorname{GL}_{d}(F_{v})/\operatorname{GL}_{d}({\mathcal{O}}_{v})]-submodule of SG¯(K¯vKv,𝔽¯l)S_{\overline{G}}(\overline{K}^{v}\operatorname{K}_{v},\overline{\mathbb{F}}_{l}) generated by ff is of dimension d!d!.

1.3. Main result

With the previous notations, let qvq_{v} be the order of the residue field of FvF_{v}. We fix some prime number ll unramified in F+F^{+} and split in EE and we place ourself in the limit case where qv1modlq_{v}\equiv 1\mod l with l>dl>d, which is, after by base change, the crucial case to consider.

Definition 1.3.1.

As in definition 2.5.1 of [CHT08], we say that a subgroup HGLd(𝔽¯l)H\subseteq\operatorname{GL}_{d}(\overline{\mathbb{F}}_{l}) is big if :

  • HH has no ll-power order quotients;

  • Hi(H,𝔤d0(𝔽¯l))=(0)H^{i}(H,\mathfrak{g}^{0}_{d}(\overline{\mathbb{F}}_{l}))=(0) for i=0,1i=0,1 and where 𝔤d:=LieGLd\mathfrak{g}_{d}:=\operatorname{Lie}\operatorname{GL}_{d} and 𝔤d0\mathfrak{g}_{d}^{0} is the trace zero subspace of 𝔤d\mathfrak{g}_{d};

  • for all irreducible 𝔽¯l[H]\overline{\mathbb{F}}_{l}[H]-submodules WW of 𝔤d(𝔽¯l)\mathfrak{g}_{d}(\overline{\mathbb{F}}_{l}), we can find hHh\in H and α𝔽¯l\alpha\in\overline{\mathbb{F}}_{l} satisfying the following properties.

    • The α\alpha-generalized eigenspace V(h,α)V(h,\alpha) of hh on 𝔽¯ld\overline{\mathbb{F}}_{l}^{d} is one dimensional.

    • Let πh,α:𝔽¯ldV(h,α)\pi_{h,\alpha}:\overline{\mathbb{F}}_{l}^{d}\twoheadrightarrow V(h,\alpha) be the hh-equivariant projection of 𝔽¯ld\overline{\mathbb{F}}_{l}^{d} to V(h,α)V(h,\alpha) and let ih,α:V(h,α)𝔽¯ldi_{h,\alpha}:V(h,\alpha)\hookrightarrow\overline{\mathbb{F}}_{l}^{d} be the hh-equivariant injection of V(h,α)V(h,\alpha) into 𝔽¯ld\overline{\mathbb{F}}_{l}^{d}. Then πh,αWih,α(0)\pi_{h,\alpha}\circ W\circ i_{h,\alpha}\neq(0).

Theorem 1.3.2.

In the limit case, suppose that there exists a prime p0=u0u¯0p_{0}=u_{0}\bar{u}_{0} split in EE with a place v0|u0v_{0}|u_{0} of FF such that B¯v0\overline{B}_{v_{0}} is a division algebra. Consider 𝔪\mathfrak{m} such that

ρ¯𝔪:GFGLd(𝔽¯l)\overline{\rho}_{\mathfrak{m}}:G_{F}\longrightarrow\operatorname{GL}_{d}(\overline{\mathbb{F}}_{l})

is an irreducible representation which is unramified at all places of FF lying above primes which do not split in EE and which satisfies the following hypothesis:

  • F¯keradρ¯\overline{F}^{\ker\operatorname{ad}\overline{\rho}} does not contain F(ζl)F(\zeta_{l}) where ζl\zeta_{l} is any primitive ll-root of 11;

  • ρ¯(GF+(ζl))\overline{\rho}(G_{F^{+}(\zeta_{l})}) is big.

Then Ihara’s lemma of the conjecture 1.2.2 is true, i.e. every irreducible GLd(Fv)\operatorname{GL}_{d}(F_{v})-submodule of SG¯(K¯v,𝔽¯l)𝔪S_{\overline{G}}(\overline{K}^{v},\overline{\mathbb{F}}_{l})_{\mathfrak{m}} is generic.

  • The last two hypothesis come from theorem 5.1.5 of [Gee11] which is some level raising and lowering statement, cf. theorem 4.2.2. Any other similar statement, for example theorem 4.4.1 of [BLGGT14], with different hypothesis can then be used to modify the hypothesis of the theorem above.

  • Our techniques work also in the banal case as soon as you avoid cuspidal 𝔽¯l\overline{\mathbb{F}}_{l}-representations which are not supercuspidal which is for example the case if you suppose that, after semi-simplification, ρ¯𝔪,v\overline{\rho}_{\mathfrak{m},v} is a direct sum of characters. In particular the resulting statement is more general than those of [Boy22].

The basic idea111this explains the hypothesis on the existence of p0p_{0} in the statement, cf. §4.1, as in [Boy22], is to introduce geometry and move from the Shimura variety associated to G¯\overline{G} which is of dimension zero, to another Shimura variety ShK\operatorname{Sh}_{K} associated to some reductive group GG and level KK, of strictly positive dimension, so that SG¯(K¯,𝔽¯l)S_{\overline{G}}(\overline{K},\overline{\mathbb{F}}_{l}) appears in a certain cohomology group of some sheaf over ShK\operatorname{Sh}_{K}. The strategy is then to construct a filtration, coming from geometry, of this cohomology group so that the graded parts, which are expected to be more easy to handle with, also verify the genericity property of there irreducible sub-spaces.

More explicitly we study the middle degree cohomology group of the KHT Shimura variety ShKv()\operatorname{Sh}_{K^{v}(\infty)} associated to some similitude group G/G/{\mathbb{Q}} such that G(𝔸,p)G¯(𝔸,p)G({\mathbb{A}}_{\mathbb{Q}}^{\infty,p})\cong\overline{G}({\mathbb{A}}_{\mathbb{Q}}^{\infty,p}), cf. §2.3 for more details, and with level Kv():=K¯vK^{v}(\infty):=\overline{K}^{v} meaning finite level outside vv and infinite level at vv. The localization at 𝔪\mathfrak{m} of the cohomology groups of ShKv()\operatorname{Sh}_{K^{v}(\infty)} can be computed as the cohomology of the geometric special fiber ShKv(),s¯v\operatorname{Sh}_{K^{v}(\infty),\bar{s}_{v}} of ShKv()\operatorname{Sh}_{K^{v}(\infty)}, with coefficient in the complex of nearby cycles ΨKv(),v\Psi_{K^{v}(\infty),v}.

The Newton stratification of ShKv(),s¯v\operatorname{Sh}_{K^{v}(\infty),\bar{s}_{v}} gives us a filtration of ΨKv(),v\Psi_{K^{v}(\infty),v}, cf. [Boy20], and so a filtration Fil(Kv())\operatorname{Fil}^{\bullet}(K^{v}(\infty)) of Hd1(ShKv(),η¯v,¯l)𝔪H^{d-1}(\operatorname{Sh}_{K^{v}(\infty),\bar{\eta}_{v}},\overline{\mathbb{Z}}_{l})_{\mathfrak{m}} and the main point of [Boy22] is to prove that the modulo ll reduction of each graded part of this filtration verifies the Ihara property, i.e. each of their irreducible sub-space are generic. To realize this strategy we need first the cohomology groups of ShKv()\operatorname{Sh}_{K^{v}(\infty)} to be torsion free: this point is now essentially settled by the main result of [Boy23a]. More crucially the previous filtration Fil(Kv())\operatorname{Fil}^{\bullet}(K^{v}(\infty)) should be strict, i.e. its graded parts have to be torsion free, cf. theorem 3.2.3.

It appears that the graded parts of Fil(Kv())\operatorname{Fil}^{\bullet}(K^{v}(\infty)) are parabolically induced and in the limit case when the order qvq_{v} of the residue field is such that qv1modlq_{v}\equiv 1\mod l, the socle of the modulo ll reduction of these parabolic induced representations are no more irreducible and do not fulfill the Ihara property, i.e. some of their subspaces are not generic. It then appears that we have at least

  • to verify that the modulo ll reduction of the first non trivial graded part of Fil(Kv())\operatorname{Fil}^{\bullet}(K^{v}(\infty)) verifies the genericity property of its irreducible submodule. For this we need a level raising statement as theorem 5.1.5 in [Gee11], cf. theorem 4.2.2, or theorem 4.4.1 of [BLGGT14].

  • Then we have to understand that the extensions between the graded parts of Fil(Kv())¯l𝔽¯l\operatorname{Fil}^{\bullet}(K^{v}(\infty))\otimes_{\overline{\mathbb{Z}}_{l}}\overline{\mathbb{F}}_{l} are non split.

One problem about this last point is that the ¯l\overline{\mathbb{Q}}_{l}-cohomology is split. For any irreducible automorphic representation Π\Pi of G(𝔸)G({\mathbb{A}}) cohomological for, say, the trivial coefficients, the ¯l\overline{\mathbb{Z}}_{l}-cohomology defines a lattice Γ(Π)\Gamma(\Pi) of (Π)Kv()σ(Π)v(\Pi^{\infty})^{K^{v}(\infty)}\otimes\sigma(\Pi)_{v} whose modulo ll reduction gives a subspace of the 𝔽¯l\overline{\mathbb{F}}_{l}-cohomology: Ihara’s lemma predicts that the socle of this subspace is still generic, i.e. it gives informations about the lattice Γ(Π)\Gamma(\Pi). We then see that non splitness of Fil(Kv())¯l𝔽¯l\operatorname{Fil}^{\bullet}(K^{v}(\infty))\otimes_{\overline{\mathbb{Z}}_{l}}\overline{\mathbb{F}}_{l} should be understood in a very flexible point of view.

One possible strategy is, using the fact that the ¯l\overline{\mathbb{Q}}_{l}-cohomology is split, to start from the filtration Fil(Kv())\operatorname{Fil}^{\bullet}(K^{v}(\infty)) and modify it in order to arrive to another one where all the modulo ll reduction of the graded parts fulfill the Ihara property i.e. their irreducible subspaces are generic. The main ingredient to construct modifications of filtrations is to consider following situations:

  • a filtration Fil\operatorname{Fil}^{\bullet} of Hd1(ShKv(),η¯v,¯l)𝔪H^{d-1}(\operatorname{Sh}_{K^{v}(\infty),\bar{\eta}_{v}},\overline{\mathbb{Z}}_{l})_{\mathfrak{m}} whose graded parts gr\operatorname{gr}^{\bullet} are torsion free;

  • let kk and X:=Filk/Filk2X:=\operatorname{Fil}^{k}/\operatorname{Fil}^{k-2} such that X¯l¯l(grk1¯l¯l)(grk¯l¯l)X\otimes_{\overline{\mathbb{Z}}_{l}}\overline{\mathbb{Q}}_{l}\cong(gr^{k-1}\otimes_{\overline{\mathbb{Z}}_{l}}\overline{\mathbb{Q}}_{l})\oplus(\operatorname{gr}^{k}\otimes_{\overline{\mathbb{Z}}_{l}}\overline{\mathbb{Q}}_{l}).

  • We can then define grk1~\widetilde{\operatorname{gr}^{k-1}} and grk~\widetilde{\operatorname{gr}^{k}} with

    grk~\displaystyle{\widetilde{\operatorname{gr}^{k}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}grk1\displaystyle{\operatorname{gr}^{k-1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}X\displaystyle{X\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}grk\displaystyle{\operatorname{gr}^{k}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}grk1~\displaystyle{\widetilde{\operatorname{gr}^{k-1}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}T\displaystyle{T}T\displaystyle{T\ignorespaces\ignorespaces\ignorespaces\ignorespaces}

    obtained by taking grk~:=X(grk¯l¯l)\widetilde{\operatorname{gr}^{k}}:=X\cap(\operatorname{gr}^{k}\otimes_{\overline{\mathbb{Z}}_{l}}\overline{\mathbb{Q}}_{l}), and where TT is torsion. Passing modulo ll, we then obtained a priori two distinct filtrations.

Let us first explain why something interesting should happen during this process.

  • We can define a 𝔽¯l\overline{\mathbb{F}}_{l}-monodromy operator for the Galois action at the place vv.222Note that over 𝔽¯l\overline{\mathbb{F}}_{l} the usual arithmetic approach for defining the nilpotent monodromy operator, is hopeless because, up to consider a finite extension of FvF_{v}, such a 𝔽¯l\overline{\mathbb{F}}_{l}-representation has a trivial action of the inertia group. We are looking for a geometric monodromy operator NvgeoN^{geo}_{v} which then exists whatever are the coefficients, ¯l\overline{\mathbb{Q}}_{l}, ¯l\overline{\mathbb{Z}}_{l} and 𝔽¯l\overline{\mathbb{F}}_{l}, compatible with tensor products. One classical construction is known in the semi-stable reduction case, cf. [Ill94] §3, which corresponds to the case where the level at vv of our Shimura variety is of Iwahori type.333This corresponds to automorphic representations Π\Pi such that the cuspidal support of Πv\Pi_{v} is made of unramified characters, and so with the weak form of Ihara’s lemma of definition 1.2.3. Using our knowledge of the ¯l\overline{\mathbb{Z}}_{l}-nearby cycles described completely in [Boy23b], we can construct such a geometric nilpotent monodromy operator which generalizes the semi-stable case, cf. §3.3.

  • Taking this geometric monodromy operator, we then obtain a cohomological monodromy operator Nv,𝔪cohoN_{v,\mathfrak{m}}^{coho} acting on H0(ShK,s¯v,ΨKv(),v)𝔪H^{0}(\operatorname{Sh}_{K,\bar{s}_{v}},\Psi_{K^{v}(\infty),v})_{\mathfrak{m}} One of the main point, cf theorem 3.2.3, is that the graded parts of the filtration of H0(ShK,s¯v,ΨKv(),v)𝔪H^{0}(\operatorname{Sh}_{K,\bar{s}_{v}},\Psi_{K^{v}(\infty),v})_{\mathfrak{m}} induced by the Newton filtration on the nearby cycles spectral sequence, are all torsion free, so that in particular we are in position to understand quite enough the action of N¯v,𝔪coho:=Nv,𝔪coho¯l𝔽¯l\overline{N}^{coho}_{v,\mathfrak{m}}:=N^{coho}_{v,\mathfrak{m}}\otimes_{\overline{\mathbb{Z}}_{l}}\overline{\mathbb{F}}_{l} on H0(ShK,s¯v,ΨKv(),v)𝔪¯l𝔽¯lH^{0}(\operatorname{Sh}_{K,\bar{s}_{v}},\Psi_{K^{v}(\infty),v})_{\mathfrak{m}}\otimes_{\overline{\mathbb{Z}}_{l}}\overline{\mathbb{F}}_{l}, and prove that its nilpotency order is as large as possible.

  • Note that as ρ¯𝔪\overline{\rho}_{\mathfrak{m}} is supposed to be irreducible, then the modulo ll reduction of the monodromy operator acting on ρ𝔪~\rho_{\widetilde{\mathfrak{m}}} does not depend on the choice of the prime ideal 𝔪~𝔪\widetilde{\mathfrak{m}}\subseteq\mathfrak{m} so that it is usually trivial.

Finally, as Nvcoho¯l𝔽¯lN_{v}^{coho}\otimes_{\overline{\mathbb{Z}}_{l}}\overline{\mathbb{F}}_{l} is far from being trivial, there should be non split extensions between the graded parts of Fil(Kv())\operatorname{Fil}^{\bullet}(K^{v}(\infty)).

However this strategy seems difficult to implement directly because of counting problems: to deal with finite number of representations you need to work with a finite level at the place vv and then pass to the limit. It seems first difficult to count liftings of a fixed representation and secondly when increasing the level, it should be not easy to glue back things together. Our approach in some sense consists to consider all the liftings together using typicness of the cohomology, cf. §4.3. The proof finally goes into three main steps:

  • we first prove, cf. theorem 3.2.3, that the filtration of the middle cohomology group constructed from the filtration of stratification of the nearby cycles perverse sheaf, has torsion free graded parts, otherwise the all cohomology would have non trivial torsion classes which is not the case by [Boy23a];

  • secondly, §3.3, using results from [Boy23b] about various filtrations of stratification of the nearby cycle perverse sheaf over ¯l\overline{\mathbb{Z}}_{l}, we define an integral monodromy operator on the nearby cycles perverse sheaf whose order of nilpotency modulo ll coincides with those over ¯l\overline{\mathbb{Q}}_{l};

  • this integral geometric monodromy operator gives us a monodromy operator on ρ𝔪¯l𝔽¯l\rho_{\mathfrak{m}}\otimes_{\overline{\mathbb{Z}}_{l}}\overline{\mathbb{F}}_{l}, a representation with coefficients in an artinian local ring defined as the modulo ll reduction of the image of some Hecke algebra acting on the middle cohomology group with finite level. Working at various finite level and using Matlis duality for artinian ring, we prove, §4.3, the genericity of the socle of the middle cohomology group at infinite level at vv, for the action of GLd(Fv)\operatorname{GL}_{d}(F_{v}).

To conclude this long introduction, note that Ihara’s lemma in Clozel-Harris-Taylor formulation, was stated in order to be able to do level raising. In our proof we use level raising statements, proved thanks to Taylor’s Ihara avoidance in [Tay08], in order to prove Ihara’s lemma. Then we can see our arguments as the proof that level raising implies Ihara’s lemma in the limit case.

2. Preliminaries

2.1. Representations of GLd(L)\operatorname{GL}_{d}(L)

Consider a finite extension L/pL/{\mathbb{Q}}_{p} with residue field 𝔽q{\mathbb{F}}_{q}. We denote by |||-| its absolute value. For a representation π\pi of GLd(L)\operatorname{GL}_{d}(L) and n12n\in\frac{1}{2}{\mathbb{Z}}, set

π{n}:=πqnvaldet.\pi\{n\}:=\pi\otimes q^{-n\mathrm{val}\circ\det}.
Notation 2.1.1.

For π1\pi_{1} and π2\pi_{2} representations of respectively GLn1(L)\operatorname{GL}_{n_{1}}(L) and GLn2(L)\operatorname{GL}_{n_{2}}(L), we will denote by

π1×π2:=indPn1,n1+n2(L)GLn1+n2(L)π1{n22}π2{n12},\pi_{1}\times\pi_{2}:=\operatorname{ind}_{P_{n_{1},n_{1}+n_{2}}(L)}^{\operatorname{GL}_{n_{1}+n_{2}}(L)}\pi_{1}\{\frac{n_{2}}{2}\}\otimes\pi_{2}\{-\frac{n_{1}}{2}\},

the normalized parabolic induced representation where for any sequence r¯=(0<r1<r2<<rk=d)\underline{r}=(0<r_{1}<r_{2}<\cdots<r_{k}=d), we write Pr¯P_{\underline{r}} for the standard parabolic subgroup of GLd\operatorname{GL}_{d} with Levi

GLr1×GLr2r1××GLrkrk1.\operatorname{GL}_{r_{1}}\times\operatorname{GL}_{r_{2}-r_{1}}\times\cdots\times\operatorname{GL}_{r_{k}-r_{k-1}}.

Recall that a representation ϱ\varrho of GLd(L)\operatorname{GL}_{d}(L) is called cuspidal (resp. supercuspidal) if it is not a subspace (resp. subquotient) of a proper parabolic induced representation. When the field of coefficients is of characteristic zero, these two notions coincides, but this is no more true over 𝔽¯l\overline{\mathbb{F}}_{l}.

Definition 2.1.2.

(see [Zel80] §9 and [Boy10] §1.4) Let gg be a divisor of d=sgd=sg and π\pi an irreducible cuspidal ¯l\overline{\mathbb{Q}}_{l}-representation of GLg(L)\operatorname{GL}_{g}(L). The induced representation

π{1s2}×π{3s2}××π{s12}\pi\{\frac{1-s}{2}\}\times\pi\{\frac{3-s}{2}\}\times\cdots\times\pi\{\frac{s-1}{2}\} (1)

holds an unique irreducible quotient (resp. subspace) denoted sts(π)\mathrm{st}_{s}(\pi) (resp. Spehs(π)\operatorname{Speh}_{s}(\pi)); it is a generalized Steinberg (resp. Speh) representation. Their cuspidal support is the Zelevinsky segment

[π{1s2},π{s12}]:={π{1s2},π{3s2},,π{s12}}.[\pi\{\frac{1-s}{2}\},\pi\{\frac{s-1}{2}\}]:=\Bigl{\{}\pi\{\frac{1-s}{2}\},\pi\{\frac{3-s}{2}\},\cdots,\pi\{\frac{s-1}{2}\}\Bigr{\}}.

More generally the set of sub-quotients of the induced representation (1) is in bijection with the following set.

Dec(s)={(t1,,tr), such that ti1 and i=1rti=s}.\operatorname{Dec}(s)=\{(t_{1},\cdots,t_{r}),\hbox{ such that }t_{i}\geq 1\hbox{ and }\sum_{i=1}^{r}t_{i}=s\}.

For any s¯Dec(s)\underline{s}\in\operatorname{Dec}(s), we the denote by sts¯(π)\mathrm{st}_{\underline{s}}(\pi) the associated irreducible sub-quotient of (1). Following Zelevinsky, we fix this bijection such that Spehs(π)\operatorname{Speh}_{s}(\pi) corresponds to (s)(s) and sts(π)\mathrm{st}_{s}(\pi) to (1,,1)(1,\cdots,1). The Lubin-Tate representation LTh,s(π)LT_{h,s}(\pi) will also appear in the following, it corresponds with (1,,1h,sh)(\overbrace{1,\cdots,1}^{h},s-h).

Proposition 2.1.3.

(cf. [Vig96] III.5.10) Let π\pi be an irreducible cuspidal representation of GLg(K)\operatorname{GL}_{g}(K) with a stable ¯\overline{\mathbb{Z}}-lattice444We say that π\pi is integral., then its modulo ll reduction is irreducible and cuspidal (but not necessary supercuspidal).

We now suppose as explained in the introduction that

q1modl and l>dq\equiv 1\mod l\quad\hbox{ and }\quad l>d

so the following facts are verified (cf. [Vig96] §III):

  • the modulo ll reduction of every irreducible cuspidal representation of GLg(L)\operatorname{GL}_{g}(L) for gdg\leq d, is supercuspidal555In the banal case this is not always the case but it is when the cuspidal support contains only characters.: with the notation of [Boy11] proposition 1.3.5, m(ϱ)=l>dm(\varrho)=l>d for any irreducible 𝔽¯l\overline{\mathbb{F}}_{l}-supercuspidal representation ϱ\varrho.

  • For a 𝔽¯l\overline{\mathbb{F}}_{l}-irreducible supercuspidal representation ϱ\varrho of GLg(L)\operatorname{GL}_{g}(L), the parabolic induced representation ϱ××ϱ\varrho\times\cdots\times\varrho, with ss copies of ϱ\varrho, is semi-simple with irreducible constituants the modulo ll reduction of the set of elements of {sts¯(π) such that s¯Dec(s)}\{\mathrm{st}_{\underline{s}}(\pi)\hbox{ such that }\underline{s}\in\operatorname{Dec}(s)\}, where π\pi is any cuspidal representation whose modulo ll reduction is isomorphic to ϱ\varrho.

Concerning the notion of genericity, consider the mirabolic subgroup Md(L)M_{d}(L) of GLd(L)\operatorname{GL}_{d}(L) as the set of matrices with last row (0,,0,1)(0,\cdots,0,1): we denote by

Vd(L)={(mi,j)Md(L):mi,j=δi,j for j<d}.V_{d}(L)=\{(m_{i,j})\in M_{d}(L):~{}m_{i,j}=\delta_{i,j}\hbox{ for }j<d\}.

its unipotent radical. We fix a non trivial character ψ\psi of LL and let θ\theta be the character of Vd(L)V_{d}(L) defined by θ((mi,j))=ψ(md1,d)\theta((m_{i,j}))=\psi(m_{d-1,d}). For G=GLr(L)G=\operatorname{GL}_{r}(L) or Mr(L)M_{r}(L), we denote by alg(G)\operatorname{alg}(G) the abelian category of smooth representations of GG and, following [BZ77], we introduce

Ψ:alg(Md(L))alg(GLd1(L)),\Psi^{-}:\operatorname{alg}(M_{d}(L))\longrightarrow\operatorname{alg}(\operatorname{GL}_{d-1}(L)),

and

Φ:alg(Md(L))alg(Md1(L)),\Phi^{-}:\operatorname{alg}(M_{d}(L))\longrightarrow\operatorname{alg}(M_{d-1}(L)),

defined by Ψ=rVd,1\Psi^{-}=r_{V_{d},1} (resp. Φ=rVd,θ\Phi^{-}=r_{V_{d},\theta}) the functor of VdV_{d} coinvariants (resp. (Vd,θ)(V_{d},\theta)-coinvariants), cf. [BZ77] 1.8. For τalg(Md(L))\tau\in\operatorname{alg}(M_{d}(L)), the representation

τ(k):=Ψ(Φ)k1(τ)\tau^{(k)}:=\Psi^{-}\circ(\Phi^{-})^{k-1}(\tau)

is called the kk-th derivative of τ\tau. If τ(k)0\tau^{(k)}\neq 0 and τ(m)=0\tau^{(m)}=0 for all m>km>k, then τ(k)\tau^{(k)} is called the highest derivative of τ\tau. In the particular case where k=dk=d, there is an unique irreducible representation τnd\tau_{nd} of Md(L)M_{d}(L) with derivative of order dd.

Definition 2.1.4.

An irreducible representation π\pi of GLd(L)\operatorname{GL}_{d}(L) is said generic, if its restriction to the mirabolic subgroup admits τnd\tau_{nd} as a subquotient.

Let π\pi be an irreducible generic ¯l\overline{\mathbb{Q}}_{l}-representation of GLd(L)\operatorname{GL}_{d}(L) and consider any stable lattice which gives us by modulo ll reduction a 𝔽¯l\overline{\mathbb{F}}_{l}- representation uniquely determined up to semi-simplification. Then this modulo ll reduction admits an unique generic irreducible constituant.

2.2. Weil–Deligne inertial types

Recall that a Weil-Deligne representation of WLW_{L} is a pair (r,N)(r,N) where

  • r:WLGL(V)r:W_{L}\longrightarrow\operatorname{GL}(V) is a smooth666i.e. continuous for the discrete topology on VV representation on a finite dimensional vector space VV; and

  • NEnd(V)N\in\operatorname{End}(V) is nilpotent such that

    r(g)Nr(g)1=gN,r(g)Nr(g)^{-1}=||g||N,

    where ||||:WLWL/ILq||\bullet||:W_{L}\longrightarrow W_{L}/I_{L}\twoheadrightarrow q^{\mathbb{Z}} takes an arithmetic Frobenius element to qq.

Remark. To a continuous777relatively to the ll-adic topology on VV representation on a finite dimensional l{\mathbb{Q}}_{l}-vector space VV, ρ:WLGL(V)\rho:W_{L}\longrightarrow\operatorname{GL}(V) is attached a Weil-Deligne representation denoted by WD(ρ)\operatorname{WD}(\rho). A Weil representation of WLW_{L} is also said of Galois type if it comes from a representation of GLG_{L}.

Main example: let ρ:WLGL(V)\rho:W_{L}\longrightarrow\operatorname{GL}(V) be a smooth irreducible representation on a finite dimensional vector space VV. For k1k\geq 1 an integer, we then define a Weil-Deligne representation

Sp(ρ,k):=(VV(1)V(k1),N),\operatorname{Sp}(\rho,k):=\bigl{(}V\oplus V(1)\oplus\cdots\oplus V(k-1),N\bigr{)},

where for 0ik20\leq i\leq k-2, the isomorphism N:V(i)V(i+1)N:V(i)\cong V(i+1) is induced by some choice of a basis of L¯(1)\overline{L}(1) and N|V(k1)N_{|V(k-1)} is zero. Then every Frobenius semi-simple Weil-Deligne representation of WLW_{L} is isomorphic to some i=1rSp(ρi,ki)\bigoplus_{i=1}^{r}\operatorname{Sp}(\rho_{i},k_{i}), for smooth irreducible representations ρi:WLGL(Vi)\rho_{i}:W_{L}\longrightarrow\operatorname{GL}(V_{i}) and integers ki1k_{i}\geq 1. Up to obvious reorderings, such a writing is unique.

Let now ρ\rho be a continuous representation of WLW_{L}, or its Weil-Deligne representation WD(ρ)\operatorname{WD}(\rho), and consider its restriction to ILI_{L}, τ:=ρ|IL\tau:=\rho_{|I_{L}}. Such an isomophism class of a finite dimensional continuous representation of ILI_{L} is then called an inertial type.

Notation 2.2.1.

Let 0\mathcal{I}_{0} the set of inertial types that extend to a continuous irreducible representation of GLG_{L}.

Remark. τ0\tau\in\mathcal{I}_{0} might not be irreducible.

Let Part\operatorname{Part} be the set of decreasing sequences of positive integers d¯=(d¯(1)d¯(2))\underline{d}=(\underline{d}(1)\geq\underline{d}(2)\geq\cdots) viewed as a partition of d¯:=id¯(i)\sum\underline{d}:=\sum_{i}\underline{d}(i).

Notation 2.2.2.

Let f:0Partf:\mathcal{I}_{0}\longrightarrow\operatorname{Part} with finite support. We then denote by τf\tau_{f} the restriction to ILI_{L} of

τ00iSp(ρτ0,f(τ0)(i)),\bigoplus_{\tau_{0}\in\mathcal{I}_{0}}\bigoplus_{i}\operatorname{Sp}(\rho_{\tau_{0}},f(\tau_{0})(i)),

where ρτ0\rho_{\tau_{0}} is a fixed extension of τ0\tau_{0} to WLW_{L}.

Remark. By lemma 3.3 of [MS21] the isomorphism class of τf\tau_{f} is independent of the choices of the ρτ0\rho_{\tau_{0}}.

The map from {f:0Part}\{f:\mathcal{I}_{0}\longrightarrow\operatorname{Part}\} to the set of inertial types given by fτff\mapsto\tau_{f}, is a bijection. The dominance order \preceq on Part\operatorname{Part} induces a partial order on the set of inertial types.

We let recL\mathrm{rec}_{L} denote the local reciprocity map of [HT01, Theorem A]. Fix an isomorphism ı¯\imath\overline{{\mathbb{Q}}}_{\ell}\buildrel\sim\over{\rightarrow}{\mathbb{C}}. We normalize the local reciprocity map rec\mathrm{rec} of [HT01, Theorem A], defined on isomorphism classes of irreducible smooth representations of GLn(L)\operatorname{GL}_{n}(L) over {\mathbb{C}} as follows: if π\pi is the isomorphism class of an irreducible smooth representation of GLn(L)\operatorname{GL}_{n}(L) over ¯\overline{{\mathbb{Q}}}_{\ell}, then

ρ(π)=defı1recLı(π¯|det|(1n)/2).\rho_{\ell}(\pi)\stackrel{{\scriptstyle\textrm{\tiny{{def}}}}}{{=}}\imath^{-1}\circ\mathrm{rec}_{L}\circ\imath(\pi\otimes_{\overline{{\mathbb{Q}}}_{\ell}}|\det|^{(1-n)/2}).

Then ρ(π)\rho_{\ell}(\pi) is the isomorphism class of an nn-dimensional, Frobenius semisimple Weil–Deligne representation of WLW_{L} over ¯\overline{{\mathbb{Q}}}_{\ell}, independent of the choice of ı\imath. Moreover, if ρ\rho is an isomorphism class of an nn-dimensional, Frobenius semisimple Weil–Deligne representation of WLW_{L} over MM, then ρ1(ρ)\rho_{\ell}^{-1}(\rho) is defined over MM (cf. [CEG+16, §1.8]).

Recall the following compatibility of the Langlands correspondence.

Lemma 2.2.3.

If π\pi and π\pi^{\prime} are irreducible generic representations of GLd(L)\operatorname{GL}_{d}(L) such that ρ(π)|ILρ(π)|IL\rho_{\ell}(\pi)|I_{L}\cong\rho_{\ell}(\pi^{\prime})|I_{L} then π|GLd(𝒪L)π|GLd(𝒪L).\pi_{|\operatorname{GL}_{d}(\mathcal{O}_{L})}\cong\pi^{\prime}_{|\operatorname{GL}_{d}(\mathcal{O}_{L})}.

2.3. Kottwiz–Harris–Taylor Shimura varieties

Let F=F+EF=F^{+}E be a CM field where E/E/{\mathbb{Q}} is a quadratic imaginary extension and F+/F^{+}/{\mathbb{Q}} is totally real. We fix a real embedding τ:F+\tau:F^{+}\hookrightarrow{\mathbb{R}}. For a place vv of FF, we will denote by FvF_{v} the completion of FF at vv, 𝒪v\mathcal{O}_{v} its ring of integers with uniformizer ϖv\varpi_{v} and residue field κ(v)=𝒪v/(ϖv)\kappa(v)=\mathcal{O}_{v}/(\varpi_{v}) of cardinal qvq_{v}.

Let BB be a division algebra with center FF, of dimension d2d^{2} such that at every place vv of FF, either BvB_{v} is split or a local division algebra and suppose BB provided with an involution of second kind * such that |F*_{|F} is the complex conjugation. For any βB=1\beta\in B^{*=-1}, denote by β\sharp_{\beta} the involution vvβ=βvβ1v\mapsto v^{\sharp_{\beta}}=\beta v^{*}\beta^{-1} and let G/G/{\mathbb{Q}} be the group of similitudes, denoted by GτG_{\tau} in [HT01], defined for every {\mathbb{Q}}-algebra RR by

G(R){(λ,g)R××(BopR)× such that ggβ=λ}G(R)\cong\{(\lambda,g)\in R^{\times}\times(B^{op}\otimes_{\mathbb{Q}}R)^{\times}\hbox{ such that }gg^{\sharp_{\beta}}=\lambda\}

with Bop=BF,cFB^{op}=B\otimes_{F,c}F. If xx is a place of {\mathbb{Q}} split x=yycx=yy^{c} in EE then

G(x)(Byop)××x×x××vi+(Bvi+op)×,G({\mathbb{Q}}_{x})\cong(B_{y}^{op})^{\times}\times{\mathbb{Q}}_{x}^{\times}\cong{\mathbb{Q}}_{x}^{\times}\times\prod_{v^{+}_{i}}(B_{v^{+}_{i}}^{op})^{\times}, (2)

where x=ivi+x=\prod_{i}v^{+}_{i} in F+F^{+} and we identify places of F+F^{+} over xx with places of FF over yy.

Convention 2.3.1.

For x=yycx=yy^{c} a place of {\mathbb{Q}} split in MM and vv a place of FF over yy, we shall make throughout the text the following abuse of notation: we denote G(Fv)G(F_{v}) the factor (Bv|F+op)×(B_{v|_{F^{+}}}^{op})^{\times} in the formula (2) so that

G(𝔸,v):=G(𝔸,p)×(p××vi+v|F+(Bvi+op)×).G({\mathbb{A}}_{\mathbb{Q}}^{\infty,v}):=G({\mathbb{A}}_{\mathbb{Q}}^{\infty,p})\times\Bigl{(}{\mathbb{Q}}_{p}^{\times}\times\prod_{v_{i}^{+}\neq v|F^{+}}(B_{v_{i}^{+}}^{op})^{\times}\Bigr{)}.

In [HT01], the authors justify the existence of some GG like before such that

  • if xx is a place of {\mathbb{Q}} non split in MM then G(x)G({\mathbb{Q}}_{x}) is quasi split;

  • the invariants of G()G({\mathbb{R}}) are (1,d1)(1,d-1) for the embedding τ\tau and (0,d)(0,d) for the others.

As in [HT01, page 90], a compact open subgroup KK of G(𝔸)G({\mathbb{A}}^{\infty}_{{\mathbb{Q}}}) is said to be sufficiently small if there exists a place xx of {\mathbb{Q}} such that the projection from KxK^{x} to G(x)G({\mathbb{Q}}_{x}) does not contain any element of finite order except identity.

Notation 2.3.2.

Denote by 𝒦\mathcal{K} the set of sufficiently small compact open subgroups of G(𝔸)G({\mathbb{A}}^{\infty}). For K𝒦K\in\mathcal{K}, write ShK,ηSpecF\mathrm{Sh}_{K,\eta}\longrightarrow\operatorname{Spec}F for the associated Shimura variety of Kottwitz-Harris-Taylor type.

Definition 2.3.3.

Denote by Spl\operatorname{Spl} the set of places ww of FF such that pw:=w|lp_{w}:=w_{|{\mathbb{Q}}}\neq l is split in EE and Bw×GLd(Fw)B_{w}^{\times}\cong\operatorname{GL}_{d}(F_{w}). For each K𝒦K\in\mathcal{K}, we write Spl(K)\operatorname{Spl}(K) for the subset of Spl\operatorname{Spl} of places such that KvK_{v} is the standard maximal compact of GLd(Fv)\operatorname{GL}_{d}(F_{v}).

In the sequel, we fix a place vv of FF in Spl\operatorname{Spl}. The scheme ShK,η\mathrm{Sh}_{K,\eta} has a projective model ShK,v\mathrm{Sh}_{K,v} over Spec𝒪v\operatorname{Spec}\mathcal{O}_{v} with special geometric fiber ShK,s¯v\mathrm{Sh}_{K,\bar{s}_{v}}. We have a projective system (ShK,s¯v)K𝒦(\mathrm{Sh}_{K,\bar{s}_{v}})_{K\in\mathcal{K}} which is naturally equipped with an action of G(𝔸)×G({\mathbb{A}}^{\infty}_{{\mathbb{Q}}})\times{\mathbb{Z}} such that any wvWFvw_{v}\in W_{F_{v}} acts by deg(wv)-\deg(w_{v})\in{\mathbb{Z}}, where deg=valArtFv1\deg=\mathrm{val}\circ\operatorname{Art}_{F_{v}}^{-1} and ArtFv:Fv×WFvab\operatorname{Art}_{F_{v}}:F_{v}^{\times}\stackrel{{\scriptstyle\sim}}{{\rightarrow}}W_{F_{v}}^{ab}.

Notation 2.3.4.

For K𝒦K\in\mathcal{K}, the Newton stratification of the geometric special fiber ShK,s¯v\mathrm{Sh}_{K,\bar{s}_{v}} is denoted by

ShK,s¯v=:ShK,s¯v1ShK,s¯v2ShK,s¯vd\mathrm{Sh}_{K,\bar{s}_{v}}=:\mathrm{Sh}^{\geq 1}_{K,\bar{s}_{v}}\supset\mathrm{Sh}^{\geq 2}_{K,\bar{s}_{v}}\supset\cdots\supset\mathrm{Sh}^{\geq d}_{K,\bar{s}_{v}}

where ShK,s¯v=h:=ShK,s¯vhShK,s¯vh+1\mathrm{Sh}^{=h}_{K,\bar{s}_{v}}:=\mathrm{Sh}^{\geq h}_{K,\bar{s}_{v}}-\mathrm{Sh}^{\geq h+1}_{K,\bar{s}_{v}} is an affine scheme, which is smooth and pure of dimension dhd-h. It is built up by the geometric points such that the connected part of the associated Barsotti–Tate group has rank hh For each 1h<d1\leq h<d, write

ih:ShK,s¯vhShK,s¯v1,jh:ShK,s¯v=hShK,s¯vh,i_{h}:\mathrm{Sh}^{\geq h}_{K,\bar{s}_{v}}\hookrightarrow\mathrm{Sh}^{\geq 1}_{K,\bar{s}_{v}},\quad j^{\geq h}:\mathrm{Sh}^{=h}_{K,\bar{s}_{v}}\hookrightarrow\mathrm{Sh}^{\geq h}_{K,\bar{s}_{v}},

and j=h=ihjhj^{=h}=i_{h}\circ j^{\geq h}.

For n1n\geq 1, with our previous abuse of notation, consider Kv(n):=KvKv(n)K^{v}(n):=K^{v}K_{v}(n) where

Kv(n):=ker(GLd(𝒪v)GLd(𝒪v/vn)).K_{v}(n):=\ker(\operatorname{GL}_{d}({\mathcal{O}}_{v})\twoheadrightarrow\operatorname{GL}_{d}({\mathcal{O}}_{v}/\mathcal{M}_{v}^{n})).

Recall that ShIv(n),s¯v=h\mathrm{Sh}_{I^{v}(n),\bar{s}_{v}}^{=h} is geometrically induced under the action of the parabolic subgroup Ph,d(𝒪v/vn)P_{h,d}({\mathcal{O}}_{v}/\mathcal{M}_{v}^{n}), defined as the stabilizer of the first hh vectors of the canonical basis of FvdF_{v}^{d}. Concretely this means there exists a closed subscheme ShKv(n),s¯v,1=h\mathrm{Sh}_{K^{v}(n),\bar{s}_{v},1}^{=h} stabilized by the Hecke action of Ph,d(Fv)P_{h,d}(F_{v}) and such that

ShKv(n),s¯v=h=ShKv(n),s¯v,1=h×Ph,d(𝒪v/vn)GLd(𝒪v/vn),\mathrm{Sh}_{K^{v}(n),\bar{s}_{v}}^{=h}=\mathrm{Sh}_{K^{v}(n),\bar{s}_{v},1}^{=h}\times_{P_{h,d}({\mathcal{O}}_{v}/\mathcal{M}_{v}^{n})}\operatorname{GL}_{d}({\mathcal{O}}_{v}/\mathcal{M}_{v}^{n}), (3)

meaning that ShKv(n),s¯v=h\mathrm{Sh}_{K^{v}(n),\bar{s}_{v}}^{=h} is the disjoint union of copies of ShKv(n),s¯v,1=h\mathrm{Sh}_{K^{v}(n),\bar{s}_{v},1}^{=h} indexed by GLd(𝒪v/vn)/Ph,d(𝒪v/vn)\operatorname{GL}_{d}({\mathcal{O}}_{v}/\mathcal{M}_{v}^{n})/P_{h,d}({\mathcal{O}}_{v}/\mathcal{M}_{v}^{n}) and exchanged by the action of GLd(𝒪v/vn)\operatorname{GL}_{d}({\mathcal{O}}_{v}/\mathcal{M}_{v}^{n}). We will denote by ShKv(n),s¯v,1h\mathrm{Sh}^{\geq h}_{K^{v}(n),\bar{s}_{v},1} the closure of ShKv(n),s¯v,1=h\mathrm{Sh}^{=h}_{K^{v}(n),\bar{s}_{v},1} inside ShKv(n),s¯v\mathrm{Sh}_{K^{v}(n),\bar{s}_{v}}.

Notation 2.3.5.

Let 1gd1\leq g\leq d and πv\pi_{v} be an irreducible cuspidal representation of GLg(Fv)\operatorname{GL}_{g}(F_{v}). For 1ts:=d/g1\leq t\leq s:=\lfloor d/g\rfloor, let Πt\Pi_{t} any representation of GLtg(Fv)\operatorname{GL}_{tg}(F_{v}). We denote by

HT~1(πv,Πt):=(πv,t)1ΠtKv(n)Ξts2\widetilde{HT}_{1}(\pi_{v},\Pi_{t}):=\mathcal{L}(\pi_{v},t)_{1}\otimes\Pi_{t}^{K_{v}(n)}\otimes\Xi^{\frac{t-s}{2}}

the Harris-Taylor local system on the Newton stratum ShKv(n),s¯v,1=tg\mathrm{Sh}^{=tg}_{K^{v}(n),\bar{s}_{v},1} where

  • (πv,t)1\mathcal{L}(\pi_{v},t)_{1} is the ¯l\overline{\mathbb{Z}}_{l}-local system given by Igusa varieties of [HT01] and associated to the representation πv[t]D\pi_{v}[t]_{D} of the division algebra Dv,tg/FvD_{v,tg}/F_{v} with invariant 1/tg1/tg, corresponding through Jacquet-Langlands correspondance to stt(πv)\mathrm{st}_{t}(\pi_{v}^{\vee}): cf. [Boy09] §1.4 for more details;

  • Ξ:12¯l×\Xi:\frac{1}{2}{\mathbb{Z}}\longrightarrow\overline{\mathbb{Z}}_{l}^{\times} is defined by Ξ(12)=q1/2\Xi(\frac{1}{2})=q^{1/2}.

We also introduce the induced version

HT~(πv,Πt):=((πv,t)1ΠtKv(n)Ξts2)×Ptg,d(𝒪v/vn)GLd(𝒪v/vn),\widetilde{HT}(\pi_{v},\Pi_{t}):=\Bigl{(}\mathcal{L}(\pi_{v},t)_{1}\otimes\Pi_{t}^{K_{v}(n)}\otimes\Xi^{\frac{t-s}{2}}\Bigr{)}\times_{P_{tg,d}({\mathcal{O}}_{v}/\mathcal{M}_{v}^{n})}\operatorname{GL}_{d}({\mathcal{O}}_{v}/\mathcal{M}_{v}^{n}),

where the unipotent radical of Ptg,d(𝒪v/vn)P_{tg,d}({\mathcal{O}}_{v}/\mathcal{M}_{v}^{n}) acts trivially and the action of

(g,v,(gvc0gvet),σv)G(𝔸,v)×Ptg,d(𝒪v/vn)×Wv(g^{\infty,v},\left(\begin{array}[]{cc}g_{v}^{c}&*\\ 0&g_{v}^{et}\end{array}\right),\sigma_{v})\in G({\mathbb{A}}^{\infty,v})\times P_{tg,d}({\mathcal{O}}_{v}/\mathcal{M}_{v}^{n})\times W_{v}

is given

  • by the action of gvcg_{v}^{c} on ΠtKv(n)\Pi_{t}^{K_{v}(n)} and deg(σv)\deg(\sigma_{v})\in{\mathbb{Z}} on Ξts2\Xi^{\frac{t-s}{2}}, and

  • the action of (g,v,gvet,val(detgvc)degσv)G(𝔸,v)×GLdtg(𝒪v/vn)×(g^{\infty,v},g_{v}^{et},\mathrm{val}(\det g_{v}^{c})-\deg\sigma_{v})\in G({\mathbb{A}}^{\infty,v})\times\operatorname{GL}_{d-tg}({\mathcal{O}}_{v}/\mathcal{M}_{v}^{n})\times{\mathbb{Z}} on ¯l(πv)1Ξts2\mathcal{L}_{\overline{\mathbb{Q}}_{l}}(\pi_{v})_{1}\otimes\Xi^{\frac{t-s}{2}}.

We also introduce

HT(πv,Πt)1:=HT~(πv,Πt)1[dtg],HT(\pi_{v},\Pi_{t})_{1}:=\widetilde{HT}(\pi_{v},\Pi_{t})_{1}[d-tg],

and the perverse sheaf

P(t,πv)1:=pj1,!=tgHT(πv,Stt(πv))1Lg(πv),P(t,\pi_{v})_{1}:=\kern 0.5pt\vphantom{j}^{p}\kern-0.5ptj^{=tg}_{1,!*}HT(\pi_{v},\operatorname{St}_{t}(\pi_{v}))_{1}\otimes L_{g}(\pi_{v})^{\vee},

and their induced version, HT(πv,Πt)HT(\pi_{v},\Pi_{t}) and P(t,πv)P(t,\pi_{v}), where Lg(πv)L_{g}(\pi_{v})^{\vee} is the contragredient of the representation of dimension gg of Gal(F¯v/Fv)\operatorname{Gal}(\overline{F}_{v}/F_{v}) associated to πv\pi_{v} by the Langlands correspondence LgL_{g}.

Important property: over ¯l\overline{\mathbb{Z}}_{l}, there are at least two notions of intermediate extension associated to the two classical tt-structures pp and p+p+. By proposition 2.4.1 of [Boy23b], in the limit case where all 𝔽¯l\overline{\mathbb{F}}_{l}-cuspidal representations are supercuspidal, as recalled after proposition 2.1.3, all the pp and p+p+ intermediate extensions of Harris-Taylor local systems coincide.

Let now denote by

ΨK,v:=RΨηv(¯l[d1])(d12)\Psi_{K,v}:=R\Psi_{\eta_{v}}(\overline{\mathbb{Z}}_{l}[d-1])(\frac{d-1}{2})

the nearby cycles autodual free perverse sheaf on ShK,s¯v\mathrm{Sh}_{K,\bar{s}_{v}}. Recall, cf. [Boy23b] proposition 3.1.3, that

ΨK,v1gdϱScusp(g)ΨK,ϱ,\Psi_{K,v}\cong\bigoplus_{1\leq g\leq d}\bigoplus_{\varrho\in\operatorname{Scusp}(g)}\Psi_{K,\varrho}, (4)

where

  • Scusp(g)\operatorname{Scusp}(g) is the set of equivalence classes of irreducible supercuspidal 𝔽¯l\overline{\mathbb{F}}_{l}-representations of GLg(Fv)\operatorname{GL}_{g}(F_{v}).

  • The irreducible sub-quotients of ΨK,ϱ¯l¯l\Psi_{K,\varrho}\otimes_{\overline{\mathbb{Z}}_{l}}\overline{\mathbb{Q}}_{l} are the Harris-Taylor perverse sheaves of ΨK,¯l\Psi_{K,\overline{\mathbb{Q}}_{l}} associated to irreducible cuspidal representations πv\pi_{v} with modulo ll reduction having supercuspidal support a Zelevinsky segment associated to ϱ\varrho.

In the limit case when qv1modlq_{v}\equiv 1\mod l and l>dl>d, recall that we do not have to bother about cuspidal 𝔽¯l\overline{\mathbb{F}}_{l}-representation which are not supercuspidal. In particular in the previous formula we can

  • replace Scusp(g)\operatorname{Scusp}(g) by the set Cusp(g)\operatorname{Cusp}(g) of equivalence classes of cuspidal representations,

  • and the Harris-Taylor perverse sheaves of ΨK,ϱ¯l¯l\Psi_{K,\varrho}\otimes_{\overline{\mathbb{Z}}_{l}}\overline{\mathbb{Q}}_{l} are those associated to πv\pi_{v} such that its modulo ll reduction is isomorphic to ϱ\varrho.

3. Nearby cycles and filtrations

3.1. Filtrations of stratification of Ψϱ\Psi_{\varrho}

We now fix an irreducible 𝔽¯l\overline{\mathbb{F}}_{l}-cuspidal representation ϱ\varrho of GLg(Fv)\operatorname{GL}_{g}(F_{v}) for some 1gd1\leq g\leq d. We also introduce s=d/gs=\lfloor d/g\rfloor.

Using the Newton stratification and following the constructions of [Boy14], we can define a ¯l\overline{\mathbb{Z}}_{l}-filtration

Fil!0(ΨK,ϱ)Fil!s(ΨK,ϱ)=ΨK,ϱ\operatorname{Fil}_{!}^{0}(\Psi_{K,\varrho})\hookrightarrow\cdots\hookrightarrow\operatorname{Fil}_{!}^{s}(\Psi_{K,\varrho})=\Psi_{K,\varrho}

where Fil!t(ΨK,ϱ)\operatorname{Fil}^{t}_{!}(\Psi_{K,\varrho}) is the saturated image of j!=tgj=tg,ΨK,ϱΨK,ϱj^{=tg}_{!}j^{=tg,*}\Psi_{K,\varrho}\longrightarrow\Psi_{K,\varrho}. We also denote by coFil!t(Ψϱ):=Ψϱ/Fil!t(Ψϱ)\operatorname{coFil}_{!}^{t}(\Psi_{\varrho}):=\Psi_{\varrho}/\operatorname{Fil}^{t}_{!}(\Psi_{\varrho}). Dually we can define a cofiltration

ΨK,ϱ=coFils(ΨK,ϱ)coFil1(ΨK,ϱ)\Psi_{K,\varrho}=\operatorname{coFil}_{*}^{s}(\Psi_{K,\varrho})\twoheadrightarrow\cdots\twoheadrightarrow\operatorname{coFil}_{*}^{1}(\Psi_{K,\varrho})

where coFilt(ΨK,ϱ)\operatorname{coFil}_{*}^{t}(\Psi_{K,\varrho}) is the saturated image of ΨK,ϱj=tgj=tg,ΨK,ϱ\Psi_{K,\varrho}\longrightarrow j^{=tg}_{*}j^{=tg,*}\Psi_{K,\varrho}: cf. figure 1 for an illustration. We denote by Filt(Ψϱ):=ker(ΨϱcoFilt(Ψϱ))\operatorname{Fil}^{t}_{*}(\Psi_{\varrho}):=\ker(\Psi_{\varrho}\twoheadrightarrow\operatorname{coFil}^{t}_{*}(\Psi_{\varrho})).

j!=gj=g,j^{=g}_{!}j^{=g,*}\twoheadrightarrowgr!1\operatorname{gr}^{1}_{!}gr!2\operatorname{gr}^{2}_{!}gr!3\operatorname{gr}^{3}_{!}Fil1(gr!1)\leadsto\operatorname{Fil}^{1}_{*}(\operatorname{gr}^{1}_{!})Fil2(gr12)\leadsto\operatorname{Fil}^{2}_{*}(\operatorname{gr}^{2}_{1})j=gj=g,j^{=g}_{*}j^{=g,*}\hookleftarrowcogr1\operatorname{cogr}^{1}_{*}cogr2\operatorname{cogr}^{2}_{*}cogr3\operatorname{cogr}^{3}_{*}coFil!1(cogr1)\leadsto\operatorname{coFil}^{1}_{!}(\operatorname{cogr}^{1}_{*})coFil!2(cogr2)\leadsto\operatorname{coFil}^{2}_{!}(\operatorname{cogr}^{2}_{*})
Figure 1. Filtrations of stratification of ΨK,ϱ\Psi_{K,\varrho}

Over ¯l\overline{\mathbb{Q}}_{l}, the filtration Fil!(ΨK,ϱ)\operatorname{Fil}^{\bullet}_{!}(\Psi_{K,\varrho}) coincides with the iterated kernel of NvN_{v}, i.e. Fil!t(Ψϱ)¯l𝔽¯lker(Nvt¯l𝔽¯l)\operatorname{Fil}^{t}_{!}(\Psi_{\varrho})\otimes_{\overline{\mathbb{Z}}_{l}}\overline{\mathbb{F}}_{l}\cong\ker(N_{v}^{t}\otimes_{\overline{\mathbb{Z}}_{l}}\overline{\mathbb{F}}_{l}). Dually the cofiltration coFil!(ΨK,ϱ)\operatorname{coFil}^{\bullet}_{!}(\Psi_{K,\varrho}) coincides with the iterated image of NvN_{v}, i.e. the kernel of ΨK,ϱcoFilt(ΨK,ϱ)\Psi_{K,\varrho}\twoheadrightarrow\operatorname{coFil}_{*}^{t}(\Psi_{K,\varrho}) is the image of NvtN_{v}^{t}. Note that by Grothendieck-Verdier duality, we have D(Fil!t(ΨK,ϱ))coFilt(ΨK,ϱ)D(\operatorname{Fil}^{t}_{!}(\Psi_{K,\varrho}))\cong\operatorname{coFil}^{t}_{*}(\Psi_{K,\varrho}).

The graded parts gr!t(ΨK,ϱ)\operatorname{gr}^{t}_{!}(\Psi_{K,\varrho}) are, by construction, free and admit a strict888meaning the graded parts are free filtration, cf. [Boy14] corollary 3.4.5

Fils1(gr!k(ΨK,ϱ))Filk1(gr!k(ΨK,ϱ))=gr!k(ΨK,ϱ)\operatorname{Fil}^{s-1}_{*}(\operatorname{gr}^{k}_{!}(\Psi_{K,\varrho}))\hookrightarrow\cdots\hookrightarrow\operatorname{Fil}^{k-1}_{*}(\operatorname{gr}^{k}_{!}(\Psi_{K,\varrho}))=\operatorname{gr}^{k}_{!}(\Psi_{K,\varrho})

with

gri1(gr!k(ΨK,ϱ))¯l¯lπvCusp(ϱ)P(i,πv)(i+12k2),\operatorname{gr}^{i-1}_{*}(\operatorname{gr}^{k}_{!}(\Psi_{K,\varrho}))\otimes_{\overline{\mathbb{Z}}_{l}}\overline{\mathbb{Q}}_{l}\cong\bigoplus_{\pi_{v}\in\operatorname{Cusp}(\varrho)}P(i,\pi_{v})(\frac{i+1-2k}{2}),

where Cusp(ϱ)\operatorname{Cusp}(\varrho) is the set of equivalence classes of irreducible cuspidal representations with modulo ll reduction isomorphic to ϱ\varrho.

Dually, cogrk(ΨK,ϱ)\operatorname{cogr}^{k}_{*}(\Psi_{K,\varrho}) has a cofiltration

cogrk(ΨK,ϱ)=coFil!k1(cogrk(ΨK,ϱ))coFil!s1(cogrk(ΨK,ϱ)),\operatorname{cogr}^{k}_{*}(\Psi_{K,\varrho})=\operatorname{coFil}^{k-1}_{!}(\operatorname{cogr}^{k}_{*}(\Psi_{K,\varrho}))\twoheadrightarrow\cdots\twoheadrightarrow\operatorname{coFil}^{s-1}_{!}(\operatorname{cogr}^{k}_{*}(\Psi_{K,\varrho})),

with

cogr!i1(cogrk(ΨK,ϱ))¯l¯lπvCusp(ϱ)P(i,πv)(2ki12).\operatorname{cogr}^{i-1}_{!}(\operatorname{cogr}^{k}_{*}(\Psi_{K,\varrho}))\otimes_{\overline{\mathbb{Z}}_{l}}\overline{\mathbb{Q}}_{l}\cong\bigoplus_{\pi_{v}\in\operatorname{Cusp}(\varrho)}P(i,\pi_{v})(\frac{2k-i-1}{2}).

Concerning the ¯l\overline{\mathbb{Z}}_{l}-structures, cf. the third global result of the introduction of [Boy23b] , for every 1kis1\leq k\leq i\leq s, we have strict epimorphisms999strict means that the cokernel is torsion free

j!=igj=ig,Fili1(gr!k(ΨK,ϱ))Fili1(gr!k(ΨK,ϱ))j^{=ig}_{!}j^{=ig,*}\operatorname{Fil}^{i-1}_{*}(\operatorname{gr}^{k}_{!}(\Psi_{K,\varrho}))\twoheadrightarrow\operatorname{Fil}^{i-1}_{*}(\operatorname{gr}^{k}_{!}(\Psi_{K,\varrho}))

as well as strict monomorphisms

coFil!i1(cogrk(ΨK,ϱ))j=igj=ig,coFili1(cogrk(ΨK,ϱ)).\operatorname{coFil}^{i-1}_{!}(\operatorname{cogr}^{k}_{*}(\Psi_{K,\varrho}))\hookrightarrow j^{=ig}_{*}j^{=ig,*}\operatorname{coFil}^{i-1}(\operatorname{cogr}^{k}_{*}(\Psi_{K,\varrho})).

Exchange basic step: to go from one filtration to another, one can repeat the following process to exchange the order of appearance of two consecutive subquotient:

P1\displaystyle{P_{1}^{\prime}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}P2\displaystyle{P_{2}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}X\displaystyle{X\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}P1\displaystyle{P_{1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}P2\displaystyle{P_{2}^{\prime}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}T\displaystyle{T}T,\displaystyle{T,\ignorespaces\ignorespaces\ignorespaces\ignorespaces}

where

  • P1P_{1} and P2P_{2} are two consecutive subquotient in a given filtration and XX is the subquotient gathering them as a subquotient of this filtration.

  • Over ¯l\overline{\mathbb{Q}}_{l}, the extension X¯l¯lX\otimes_{\overline{\mathbb{Z}}_{l}}\overline{\mathbb{Q}}_{l} is split, so that on can write XX as an extension of P2P^{\prime}_{2} by P1P^{\prime}_{1} with P1P1P^{\prime}_{1}\hookrightarrow P_{1} and P2P2P_{2}\hookrightarrow P^{\prime}_{2} have the same cokernel TT, a perverse sheaf of torsion.

Remark. In the particular case when P1P_{1} and P2P_{2} are intermediate extensions of local systems living on respective strata of index h1h_{1} and h2h_{2} with h1h2h_{1}\neq h_{2}, such that the two associated intermediate extensions for the pp and p+p+ tt-structure are isomorphic, then TT is necessary zero and XX is then split over ¯l\overline{\mathbb{Z}}_{l}. Indeed if TT was not zero, then seen as a quotient of P1P_{1} (resp. P2P^{\prime}_{2}) it has to be supported on the ShK,s¯vh1\operatorname{Sh}^{\geq h_{1}}_{K,\bar{s}_{v}} (resp. ShK,s¯vh1\operatorname{Sh}^{\geq h_{1}}_{K,\bar{s}_{v}}) with j=h1,T0j^{=h_{1},*}T\neq 0 (resp. j=h2,T0j^{=h_{2},*}T\neq 0): the two conditions are then incompatible.

3.2. The canonical filtration of H0(ShK,s¯v,ΨK,¯l)𝔪H^{0}(\operatorname{Sh}_{K,\bar{s}_{v}},\Psi_{K,\overline{\mathbb{Z}}_{l}})_{\mathfrak{m}} is strict

We have spectral sequences

E1p,q=Hp+q(ShK,s¯v,grp(gr!k(ΨK,ϱ)))Hp+q(ShK,s¯vgr!k(ΨK,ϱ)),E_{1}^{p,q}=H^{p+q}(\mathrm{Sh}_{K,\bar{s}_{v}},\operatorname{gr}^{-p}_{*}(\operatorname{gr}^{k}_{!}(\Psi_{K,\varrho})))\Rightarrow H^{p+q}(\mathrm{Sh}_{K,\bar{s}_{v}}\operatorname{gr}^{k}_{!}(\Psi_{K,\varrho})), (5)

and

E1p,q=Hp+q(ShK,s¯v,gr!p(ΨK,ϱ))Hp+q(ShK,s¯v,ΨK,ϱ).E_{1}^{p,q}=H^{p+q}(\mathrm{Sh}_{K,\bar{s}_{v}},\operatorname{gr}^{-p}_{!}(\Psi_{K,\varrho}))\Rightarrow H^{p+q}(\mathrm{Sh}_{K,\bar{s}_{v}},\Psi_{K,\varrho}). (6)
Definition 3.2.1.

For a finite set SS of places of {\mathbb{Q}} containing the places where GG is ramified, denote by 𝕋absS:=xS𝕋x,abs{\mathbb{T}}^{S}_{abs}:=\prod^{\prime}_{x\not\in S}{\mathbb{T}}_{x,abs} the abstract unramified Hecke algebra where 𝕋x,abs¯l[Xun(Tx)]Wx{\mathbb{T}}_{x,abs}\cong\overline{\mathbb{Z}}_{l}[X^{un}(T_{x})]^{W_{x}} for TxT_{x} a split torus, WxW_{x} the spherical Weyl group and Xun(Tx)X^{un}(T_{x}) the set of ¯l\overline{\mathbb{Z}}_{l}-unramified characters of TxT_{x}.

Example. For wSplw\in\operatorname{Spl}, we have

𝕋w|,abs=¯l[Tw,i:i=1,,d,w|(w|)]{\mathbb{T}}_{w|_{{\mathbb{Q}}},abs}=\overline{\mathbb{Z}}_{l}\bigl{[}T_{w^{\prime},i}:~{}i=1,\cdots,d,~{}w^{\prime}|(w|_{{\mathbb{Q}}})\bigr{]}

where Tw,iT_{w^{\prime},i} is the characteristic function of

GLd(𝒪w)diag(ϖw,,ϖwi,1,,1di)GLd(𝒪w)GLd(Fw).\operatorname{GL}_{d}({\mathcal{O}}_{w^{\prime}})\operatorname{diag}(\overbrace{\varpi_{w^{\prime}},\cdots,\varpi_{w^{\prime}}}^{i},\overbrace{1,\cdots,1}^{d-i})\operatorname{GL}_{d}({\mathcal{O}}_{w^{\prime}})\subseteq\operatorname{GL}_{d}(F_{w^{\prime}}).

Recall that 𝕋absS{\mathbb{T}}^{S}_{abs} acts through correspondances on each of the Hi(ShK,η¯,¯l)H^{i}(\mathrm{Sh}_{K,\bar{\eta}},\overline{\mathbb{Z}}_{l}) where K𝒦K\in\mathcal{K} is maximal at each places outside SS.

Notation 3.2.2.

For KK unramified outside SS, we denote by 𝕋(K){\mathbb{T}}(K) the image of 𝕋absS{\mathbb{T}}^{S}_{abs} inside End¯l(Hd1(ShK,η¯,¯l))\operatorname{End}_{\overline{\mathbb{Z}}_{l}}(H^{d-1}(\mathrm{Sh}_{K,\bar{\eta}},\overline{\mathbb{Z}}_{l})).

We also denote by

Hd1(ShKv(),η¯,¯l):=limKvHd1(ShKvKv,η¯,¯l),H^{d-1}(\operatorname{Sh}_{K^{v}(\infty),\bar{\eta}},\overline{\mathbb{Z}}_{l}):=\lim_{\genfrac{}{}{0.0pt}{}{\longrightarrow}{K_{v}}}H^{d-1}(\operatorname{Sh}_{K^{v}K_{v},\bar{\eta}},\overline{\mathbb{Z}}_{l}),

where KvK_{v} describe the set of open compact subgroup of GLd(𝒪v)\operatorname{GL}_{d}({\mathcal{O}}_{v}). We also use similar notation for others cohomology groups.

Theorem 3.2.3.

Let 𝔪\mathfrak{m} be a maximal ideal of 𝕋(Kv()){\mathbb{T}}(K^{v}(\infty)) such that ρ¯𝔪\overline{\rho}_{\mathfrak{m}} is irreducible, cf. §4.2.101010Recall also that we suppose qv1modlq_{v}\equiv 1\mod l and l>dl>d. Then

  • (i)

    Hi(ShKv(),η¯,¯l)𝔪H^{i}(\mathrm{Sh}_{K^{v}(\infty),\bar{\eta}},\overline{\mathbb{Z}}_{l})_{\mathfrak{m}} is zero if id1i\neq d-1 and otherwise torsion free.

  • (ii)

    Moreover the spectral sequences (5) and (6), localized at 𝔪\mathfrak{m}, degenerate at E1E_{1} and the E1,𝔪p,qE_{1,\mathfrak{m}}^{p,q} are zero for p+q0p+q\neq 0 and otherwise torsion free.

Proof.

(i) It is the main theorem of [Boy23a].

(ii) We follow closely the arguments of [Boy23a] dealing with all irreducible cuspidal representations instead of only characters in loc. cit. using crucially that in the limit case, the pp and p+p+ intermediate extensions coincide exactly as it was the case for characters in loc. cit.

From (4) we are led to study the initial terms of the spectral sequence given by the filtration of ΨKv(),ϱ\Psi_{K^{v}(\infty),\varrho} for ϱ\varrho a irreducible 𝔽¯l\overline{\mathbb{F}}_{l}-supercuspidal representation associated through local Langlands correspondance to an irreducible constituant of ρ¯𝔪,v\overline{\rho}_{\mathfrak{m},v}. Recall also, as we are in the limit case, that

  • as there do not exist irreducible ¯l\overline{\mathbb{Q}}_{l}-cuspidal representation of GLg(Fv)\operatorname{GL}_{g}(F_{v}) for gdg\leq d with modulo ll reduction being not supercuspidal, the irreducible constituants of ΨK,ϱ¯l¯l\Psi_{K,\varrho}\otimes_{\overline{\mathbb{Z}}_{l}}\overline{\mathbb{Q}}_{l} are the Harris-Taylor perverse sheaves P(t,πv)(t12k2)P(t,\pi_{v})(\frac{t-1-2k}{2}) where the modulo ll reduction of πv\pi_{v} is isomorphic to ϱ\varrho and 0k<t0\leq k<t.

  • Over ¯l\overline{\mathbb{Z}}_{l}, we do not have to worry about the difference between pp and p+p+ intermediate extensions.

From [Boy23b] §2.3, consider the following equivariant resolution

0j!=sgHT(πv,Πt{ts2}×Spehst(πv{t/2}))Ξst2j!=(t+1)gHT(πv,Πt{1/2}×πv{t/2})Ξ12j!=tgHT(πv,Πt)pj!=tgHT(πv,Πt)0,0\rightarrow j_{!}^{=sg}HT(\pi_{v},\Pi_{t}\{\frac{t-s}{2}\}\times\operatorname{Speh}_{s-t}(\pi_{v}\{t/2\}))\otimes\Xi^{\frac{s-t}{2}}\longrightarrow\cdots\\ \longrightarrow j_{!}^{=(t+1)g}HT(\pi_{v},\Pi_{t}\{-1/2\}\times\pi_{v}\{t/2\})\otimes\Xi^{\frac{1}{2}}\longrightarrow\\ j_{!}^{=tg}HT(\pi_{v},\Pi_{t})\longrightarrow\kern 0.5pt\vphantom{j}^{p}\kern-0.5ptj_{!*}^{=tg}HT(\pi_{v},\Pi_{t})\rightarrow 0, (7)

where Πt\Pi_{t} is any representation of GLtg(Fv)\operatorname{GL}_{tg}(F_{v}), also called the infinitesimal part of the perverse sheaf pj!=tgHT(πv,Πh)\kern 0.5pt\vphantom{j}^{p}\kern-0.5ptj_{!*}^{=tg}HT(\pi_{v},\Pi_{h}).111111In P(t,πv)P(t,\pi_{v}) the infinitesimal part Πt\Pi_{t} is stt(πv)\mathrm{st}_{t}(\pi_{v}).

By adjunction property, for 1δst1\leq\delta\leq s-t, the map

j!=(t+δ)gHT(πv,Πt{δ2}×Spehδ(πv{t/2}))Ξδ/2j!=(t+δ1)gHT(πv,Πt{1δ2}×Spehδ1(πv{h/2}))Ξδ12j_{!}^{=(t+\delta)g}HT(\pi_{v},\Pi_{t}\{\frac{-\delta}{2}\}\times\operatorname{Speh}_{\delta}(\pi_{v}\{t/2\}))\otimes\Xi^{\delta/2}\\ \longrightarrow j_{!}^{=(t+\delta-1)g}HT(\pi_{v},\Pi_{t}\{\frac{1-\delta}{2}\}\times\operatorname{Speh}_{\delta-1}(\pi_{v}\{h/2\}))\otimes\Xi^{\frac{\delta-1}{2}} (8)

is given by

HT(πv,Πt{δ2}×Spehδ(πv{t/2}))Ξδ/2j=(t+δ)g,(pi(t+δ)g,!(j!=(t+δ1)gHT(πv,Πt{1δ2}×Spehδ1(πv{t/2}))Ξδ12))HT(\pi_{v},\Pi_{t}\{\frac{-\delta}{2}\}\times\operatorname{Speh}_{\delta}(\pi_{v}\{t/2\}))\otimes\Xi^{\delta/2}\longrightarrow\\ j^{=(t+\delta)g,*}(\kern 0.5pt\vphantom{i}^{p}\kern-0.5pti^{(t+\delta)g,!}(j_{!}^{=(t+\delta-1)g}HT(\pi_{v},\Pi_{t}\{\frac{1-\delta}{2}\}\times\operatorname{Speh}_{\delta-1}(\pi_{v}\{t/2\}))\otimes\Xi^{\frac{\delta-1}{2}})) (9)

To compute this last term we use the resolution (7) for t+δ1t+\delta-1. Precisely denote by :=HT(πv,stt(πv{1δ2})×Spehδ1(πv{t/2}))Ξδ12{\mathcal{H}}:=HT(\pi_{v},\mathrm{st}_{t}(\pi_{v}\{\frac{1-\delta}{2}\})\times\operatorname{Speh}_{\delta-1}(\pi_{v}\{t/2\}))\otimes\Xi^{\frac{\delta-1}{2}}, and write the previous resolution for t+δ1t+\delta-1 as follows

0Kj!=(t+δ)gQ0,0\rightarrow K\longrightarrow j_{!}^{=(t+\delta)g}{\mathcal{H}}^{\prime}\longrightarrow Q\rightarrow 0,
0Qj!=(t+δ1)gpj!=(t+δ1)g0,0\rightarrow Q\longrightarrow j_{!}^{=(t+\delta-1)g}{\mathcal{H}}\longrightarrow\kern 0.5pt\vphantom{j}^{p}\kern-0.5ptj_{!*}^{=(t+\delta-1)g}{\mathcal{H}}\rightarrow 0,

with

:=HT(πv,Πt{1δ2}×(Spehδ1(πv{1/2})×πv{δ12}){t/2})Ξδ/2.{\mathcal{H}}^{\prime}:=HT\Bigl{(}\pi_{v},\Pi_{t}\{\frac{1-\delta}{2}\}\times\bigl{(}\operatorname{Speh}_{\delta-1}(\pi_{v}\{-1/2\})\times\pi_{v}\{\frac{\delta-1}{2}\}\bigr{)}\{t/2\}\Bigr{)}\otimes\Xi^{\delta/2}.

As the support of KK is contained in ShI,s¯v(t+δ+1)g\operatorname{Sh}^{\geq(t+\delta+1)g}_{I,\bar{s}_{v}} then pi(t+δ)g,!K=K\kern 0.5pt\vphantom{i}^{p}\kern-0.5pti^{(t+\delta)g,!}K=K and j=(t+δ)g,(pi(t+δ)g,!K)j^{=(t+\delta)g,*}(\kern 0.5pt\vphantom{i}^{p}\kern-0.5pti^{(t+\delta)g,!}K) is zero. Moreover pi(t+δ)g,!(pj!=(t+δ1)g)\kern 0.5pt\vphantom{i}^{p}\kern-0.5pti^{(t+\delta)g,!}(\kern 0.5pt\vphantom{j}^{p}\kern-0.5ptj_{!*}^{=(t+\delta-1)g}{\mathcal{H}}) is zero by construction of the intermediate extension. We then deduce that

j=(t+δ)g,(pi(t+δ)g,!(j!=(t+δ1)gHT(πv,Πt{1δ2}×Spehδ1(πv{t/2}))Ξδ12))HT(πv,Πt{1δ2}×(Spehδ1(πv{1/2})×πv{δ12}){t/2})Ξδ/2j^{=(t+\delta)g,*}(\kern 0.5pt\vphantom{i}^{p}\kern-0.5pti^{(t+\delta)g,!}(j_{!}^{=(t+\delta-1)g}HT(\pi_{v},\Pi_{t}\{\frac{1-\delta}{2}\}\times\operatorname{Speh}_{\delta-1}(\pi_{v}\{t/2\}))\otimes\Xi^{\frac{\delta-1}{2}}))\\ \cong HT\Bigl{(}\pi_{v},\Pi_{t}\{\frac{1-\delta}{2}\}\\ \times\bigl{(}\operatorname{Speh}_{\delta-1}(\pi_{v}\{-1/2\})\times\pi_{v}\{\frac{\delta-1}{2}\}\bigr{)}\{t/2\}\Bigr{)}\otimes\Xi^{\delta/2} (10)

In particular, up to homothety, the map (9), and so (8), is unique. Finally as the maps of (7) are strict, the given maps (8) are uniquely determined, that is, if we forget the infinitesimal parts, these maps are independent of the chosen tt in (7), i.e. only depends on t+δt+\delta.

For every 1ts1\leq t\leq s, let denote by i(t)i(t) the smallest index ii such that Hi(ShKv(),s¯v,pj!=tgHT(πv,Πt))𝔪H^{i}(\operatorname{Sh}_{K^{v}(\infty),\bar{s}_{v}},\kern 0.5pt\vphantom{j}^{p}\kern-0.5ptj^{=tg}_{!*}HT(\pi_{v},\Pi_{t}))_{\mathfrak{m}} has non trivial torsion: if it does not exist then we set i(t)=+i(t)=+\infty and note that it does not depend on the choice of the infinitesimal part Πt\Pi_{t}. By duality, as pj!=p+j!\kern 0.5pt\vphantom{j}^{p}\kern-0.5ptj_{!*}=\kern 0.5pt\vphantom{j}^{p+}\kern-0.5ptj_{!*} for ours Harris-Taylor local systems, note that when i(t)i(t) is finite then i(t)0i(t)\leq 0. Suppose by absurdity there exists tt with i(t)i(t) finite and denote t0t_{0} the biggest such tt.

Lemma 3.2.4.

For 1tt01\leq t\leq t_{0} then i(t)=tt0i(t)=t-t_{0}.

Proof.

a) We first prove that for every t0<tst_{0}<t\leq s, the cohomology groups of j!=tgHT(πv,Πt)j^{=tg}_{!}HT(\pi_{v},\Pi_{t}) are torsion free. Consider the following strict filtration in the category of free perverse sheaves

(0)=Fil1s(πv,h)⸦-∣→Fils(πv,h)⸦-∣→⸦-∣→Filt(πv,t)=j!=tgHT(πv,Πt)(0)=\operatorname{Fil}^{-1-s}(\pi_{v},h)\lhook\joinrel\relbar\joinrel\mid\joinrel\rightarrow\operatorname{Fil}^{-s}(\pi_{v},h)\lhook\joinrel\relbar\joinrel\mid\joinrel\rightarrow\cdots\\ \lhook\joinrel\relbar\joinrel\mid\joinrel\rightarrow\operatorname{Fil}^{-t}(\pi_{v},t)=j^{=tg}_{!}HT(\pi_{v},\Pi_{t}) (11)

where the symbol ⸦-∣→\lhook\joinrel\relbar\joinrel\mid\joinrel\rightarrow means a strict121212i.e. the cokernel is free monomorphism, with graded parts

grk(πv,t)pj!=kgHT(πv,Πt{tk2}stkt(πv{t/2}))(tk2).\operatorname{gr}^{-k}(\pi_{v},t)\cong\kern 0.5pt\vphantom{j}^{p}\kern-0.5ptj^{=kg}_{!*}HT(\pi_{v},\Pi_{t}\{\frac{t-k}{2}\}\otimes\mathrm{st}_{k-t}(\pi_{v}\{t/2\}))(\frac{t-k}{2}).

Over ¯l\overline{\mathbb{Q}}_{l}, the result is proved in [Boy09] §4.3. Over ¯l\overline{\mathbb{Z}}_{l}, the result follows from the general constructions of [Boy14] and the fact that the pp and p+p+ intermediate extensions are isomorphic for Harris-Taylor perverse sheaves associated to characters. The associated spectral sequence localized at 𝔪\mathfrak{m}, is then concentrated in middle degree and torsion free which gives the claim.

b) Before watching the cases tt0t\leq t_{0}, note that the spectral sequence associated to (7) for t=t0+1t=t_{0}+1, has all its E1E_{1} terms torsion free and degenerates at its E2E_{2} terms. As by hypothesis the aims of this spectral sequence is free and equals to only one E2E_{2} terms, we deduce that all the maps

H0(ShKv(),s¯v,j!=(t+δ)gHTξ(πv,stt(πv{δ2})×Spehδ(πv{t/2}))Ξδ/2)𝔪H0(ShKv(),s¯v,j!=(t+δ1)gHTξ(πv,stt(χv{1δ2})×Spehδ1(χv{t/2}))Ξδ12)𝔪H^{0}\bigl{(}\operatorname{Sh}_{K^{v}(\infty),\bar{s}_{v}},j_{!}^{=(t+\delta)g}HT_{\xi}(\pi_{v},\mathrm{st}_{t}(\pi_{v}\{\frac{-\delta}{2}\})\times\operatorname{Speh}_{\delta}(\pi_{v}\{t/2\}))\otimes\Xi^{\delta/2}\bigr{)}_{\mathfrak{m}}\\ \longrightarrow\\ H^{0}\bigl{(}\operatorname{Sh}_{K^{v}(\infty),\bar{s}_{v}},j_{!}^{=(t+\delta-1)g}HT_{\xi}(\pi_{v},\mathrm{st}_{t}(\chi_{v}\{\frac{1-\delta}{2}\})\\ \times\operatorname{Speh}_{\delta-1}(\chi_{v}\{t/2\}))\otimes\Xi^{\frac{\delta-1}{2}}\bigr{)}_{\mathfrak{m}} (12)

are saturated, i.e. their cokernel are free ¯l\overline{\mathbb{Z}}_{l}-modules. Then from the previous fact stressed after (10), this property remains true when we consider the associated spectral sequence for 1tt01\leq t^{\prime}\leq t_{0}.

c) Consider now t=t0t=t_{0} and the spectral sequence associated to (7) where

E2p,q=Hp+2q(ShKv(),s¯v,j!=(t+q)gHTξ(πv,stt(πv(q/2))×Spehq(πv{t/2}))Ξq2)𝔪E_{2}^{p,q}=H^{p+2q}(\operatorname{Sh}_{K^{v}(\infty),\bar{s}_{v}},j_{!}^{=(t+q)g}\\ HT_{\xi}(\pi_{v},\mathrm{st}_{t}(\pi_{v}(-q/2))\times\operatorname{Speh}_{q}(\pi_{v}\{t/2\}))\otimes\Xi^{\frac{q}{2}})_{\mathfrak{m}} (13)

By definition of t0t_{0}, we know that some of the Ep,pE_{\infty}^{p,-p} should have a non trivial torsion subspace. We saw that

  • the contributions from the deeper strata are torsion free and

  • Hi(ShKv(),s¯v,j!=t0gHTξ(πv,Πt0))𝔪H^{i}(\operatorname{Sh}_{K^{v}(\infty),\bar{s}_{v}},j^{=t_{0}g}_{!}HT_{\xi}(\pi_{v},\Pi_{t_{0}}))_{\mathfrak{m}} are zero for i<0i<0 and is torsion free for i=0i=0, whatever is Πt0\Pi_{t_{0}}.

  • Then there should exist a non strict map d1p,qd_{1}^{p,q}. But, we have just seen that it can not be maps between deeper strata.

  • Finally, using the previous points, the only possibility is that the cokernel of

    H0(ShKv(),s¯v,j!=(t0+1)gHTξ(πv,stt0(πv{12})×πv{t0/2}))Ξ1/2)𝔪H0(ShKv(),s¯v,j!=t0gHTξ(πv,stt0(πv)))𝔪H^{0}\bigl{(}\operatorname{Sh}_{K^{v}(\infty),\bar{s}_{v}},j_{!}^{=(t_{0}+1)g}HT_{\xi}(\pi_{v},\mathrm{st}_{t_{0}}(\pi_{v}\{\frac{-1}{2}\})\times\pi_{v}\{t_{0}/2\}))\otimes\Xi^{1/2}\bigr{)}_{\mathfrak{m}}\\ \longrightarrow\\ H^{0}\bigl{(}\operatorname{Sh}_{K^{v}(\infty),\bar{s}_{v}},j_{!}^{=t_{0}g}HT_{\xi}(\pi_{v},\mathrm{st}_{t_{0}}(\pi_{v}))\bigr{)}_{\mathfrak{m}} (14)

    has a non trivial torsion subspace.

In particular we have i(t0)=0i(t_{0})=0.

d) Finally using the fact 2.18 and the previous points, for any 1tt01\leq t\leq t_{0}, in the spectral sequence (13)

  • by point a), E2p,qE_{2}^{p,q} is torsion free for qt0t+1q\geq t_{0}-t+1 and so it is zero if p+2q0p+2q\neq 0;

  • by affiness of the open strata, cf. [Boy19] theorem 1.8, E2p,qE_{2}^{p,q} is zero for p+2q<0p+2q<0 and torsion free for p+2q=0p+2q=0;

  • by point b), the maps d2p,qd_{2}^{p,q} are saturated for qt0t+2q\geq t_{0}-t+2;

  • by point c), d22(t0t+1),t0t+1d_{2}^{-2(t_{0}-t+1),t_{0}-t+1} has a cokernel with a non trivial torsion subspace.

  • Moreover, over ¯l\overline{\mathbb{Q}}_{l}, the spectral sequence degenerates at E3E_{3} and E3p,q=0E_{3}^{p,q}=0 if (p,q)(0,0)(p,q)\neq(0,0).

We then deduce that Hi(ShKv(),s¯v,pj!=tgHTξ(πv,Πt))𝔪H^{i}(\operatorname{Sh}_{K^{v}(\infty),\bar{s}_{v}},\kern 0.5pt\vphantom{j}^{p}\kern-0.5ptj^{=tg}_{!*}HT_{\xi}(\pi_{v},\Pi_{t}))_{\mathfrak{m}} is zero for i<tt0i<t-t_{0} and for i=tt0i=t-t_{0} it has a non trivial torsion subspace. ∎

Consider now the filtration of stratification of Ψϱ:=ΨKv(),ϱ\Psi_{\varrho}:=\Psi_{K^{v}(\infty),\varrho}131313i.e. with infinite level at vv constructed using the adjunction morphisms j!=hj=h,j^{=h}_{!}j^{=h,*} as in [Boy14]

Fil!1(Ψϱ)⸦-∣→Fil!2(Ψϱ)⸦-∣→⸦-∣→Fil!s(Ψϱ)\operatorname{Fil}^{1}_{!}(\Psi_{\varrho})\lhook\joinrel\relbar\joinrel\mid\joinrel\rightarrow\operatorname{Fil}^{2}_{!}(\Psi_{\varrho})\lhook\joinrel\relbar\joinrel\mid\joinrel\rightarrow\cdots\lhook\joinrel\relbar\joinrel\mid\joinrel\rightarrow\operatorname{Fil}^{s}_{!}(\Psi_{\varrho}) (15)

where Fil!t(Ψϱ)\operatorname{Fil}^{t}_{!}(\Psi_{\varrho}) is the saturated image of j!=tgj=tg,ΨϱΨϱj^{=tg}_{!}j^{=tg,*}\Psi_{\varrho}\longrightarrow\Psi_{\varrho}. For a fixed πv\pi_{v}, let denote by Fil!,πv1(Ψ)⸦-∣→Fil!1(Ψϱ)\operatorname{Fil}^{1}_{!,\pi_{v}}(\Psi)\lhook\joinrel\relbar\joinrel\mid\joinrel\rightarrow\operatorname{Fil}^{1}_{!}(\Psi_{\varrho}) such that Fil!,πv1(Ψ)¯l¯lFil!1(Ψπv)\operatorname{Fil}^{1}_{!,\pi_{v}}(\Psi)\otimes_{\overline{\mathbb{Z}}_{l}}\overline{\mathbb{Q}}_{l}\cong\operatorname{Fil}^{1}_{!}(\Psi_{\pi_{v}}) where Ψπv\Psi_{\pi_{v}} is the direct factor of Ψϱ¯l¯l\Psi_{\varrho}\otimes_{\overline{\mathbb{Z}}_{l}}\overline{\mathbb{Q}}_{l} associated to πv\pi_{v}, cf. [Boy14]. From [Boy23b] 3.3.5, we have the following resolution of gr!,πvt(Ψϱ)\operatorname{gr}^{t}_{!,\pi_{v}}(\Psi_{\varrho})

0j!=sgHT(χv,LTt,s(πv))πv(st2)j!=(s1)gHT(πv,LTt,s1(πv))πv(st12)j!=tgHT(πv,stt(πv))πvgr!,πvt(Ψϱ)0,0\rightarrow j^{=sg}_{!}HT(\chi_{v},LT_{t,s}(\pi_{v}))\otimes\pi^{\vee}_{v}(\frac{s-t}{2})\longrightarrow\\ j^{=(s-1)g}_{!}HT(\pi_{v},LT_{t,s-1}(\pi_{v}))\otimes\pi^{\vee}_{v}(\frac{s-t-1}{2})\longrightarrow\\ \cdots\longrightarrow j^{=tg}_{!}HT(\pi_{v},\mathrm{st}_{t}(\pi_{v}))\otimes\pi^{\vee}_{v}\longrightarrow\operatorname{gr}^{t}_{!,\pi_{v}}(\Psi_{\varrho})\rightarrow 0, (16)

where LTt,t+δ(πv)stt(πv{δ/2})×Spehδ(πv{t/2}),LT_{t,t+\delta}(\pi_{v})\hookrightarrow\mathrm{st}_{t}(\pi_{v}\{-\delta/2\})\times\operatorname{Speh}_{\delta}(\pi_{v}\{t/2\}), is the only irreducible sub-space of this induced representation,

We can then apply the previous arguments a)-d) above: for tt0t\leq t_{0} (resp. t>t0t>t_{0}) the torsion of Hi(ShKv(),s¯v,gr!,πvt(Ψv,ξ))𝔪H^{i}(\operatorname{Sh}_{K^{v}(\infty),\bar{s}_{v}},\operatorname{gr}^{t}_{!,\pi_{v}}(\Psi_{v,\xi}))_{\mathfrak{m}} is trivial for any itt0i\leq t-t_{0} (resp. for all ii) and the free parts are concentrated for i=0i=0. Using the spectral sequence associated to the previous filtration, we can then conclude that H1t0(ShKv(),s¯v,Ψv,ξ)𝔪H^{1-t_{0}}(\operatorname{Sh}_{K^{v}(\infty),\bar{s}_{v}},\Psi_{v,\xi})_{\mathfrak{m}} would have non trivial torsion which is false as 𝔪\mathfrak{m} is supposed to be KHT-free. ∎

In particular the previous spectral sequence gives us a filtration of Hd1(ShKv(),η¯v,𝔽¯l)𝔪H^{d-1}(\operatorname{Sh}_{K^{v}(\infty),\bar{\eta}_{v}},\overline{\mathbb{F}}_{l})_{\mathfrak{m}} whose graded parts are

H0(ShKv(),s¯v,grp(gr!k(ΨK,ϱ)))𝔪¯l𝔽¯l,H^{0}(\mathrm{Sh}_{K^{v}(\infty),\bar{s}_{v}},\operatorname{gr}^{-p}(\operatorname{gr}^{k}_{!}(\Psi_{K,\varrho})))_{\mathfrak{m}}\otimes_{\overline{\mathbb{Z}}_{l}}\overline{\mathbb{F}}_{l},

for ϱ\varrho describing the equivalence classes of irreducible 𝔽¯l\overline{\mathbb{F}}_{l}-supercuspidal representation of GLg(Fv)\operatorname{GL}_{g}(F_{v}) with 1gd1\leq g\leq d, and then 1kpdg1\leq k\leq p\leq\lfloor\frac{d}{g}\rfloor.

3.3. Local and global monodromy

Consider a fixed 𝔽¯l\overline{\mathbb{F}}_{l}-character ϱ\varrho and denote by Ψϱ\Psi_{\varrho} the direct factor of ΨKv(),v\Psi_{K^{v}(\infty),v} associated to ϱ\varrho.

Over ¯l\overline{\mathbb{Q}}_{l}, the monodromy operator define a nilpotent morphism Nϱ,¯l:Ψϱ¯l¯lΨϱ(1)¯l¯lN_{\varrho,\overline{\mathbb{Q}}_{l}}:\Psi_{\varrho}\otimes_{\overline{\mathbb{Z}}_{l}}\overline{\mathbb{Q}}_{l}\longrightarrow\Psi_{\varrho}(1)\otimes_{\overline{\mathbb{Z}}_{l}}\overline{\mathbb{Q}}_{l} compatible with the filtration Fil!(Ψϱ)\operatorname{Fil}^{\bullet}_{!}(\Psi_{\varrho}) in the sense that Fil!t(Ψϱ)¯l¯l\operatorname{Fil}^{t}_{!}(\Psi_{\varrho})\otimes_{\overline{\mathbb{Z}}_{l}}\overline{\mathbb{Q}}_{l} coincides with the kernel of Nϱ,¯ltN_{\varrho,\overline{\mathbb{Q}}_{l}}^{t}. The aim of this section is to construct a ¯l\overline{\mathbb{Z}}_{l}-version NϱN_{\varrho} of Nϱ,¯lN_{\varrho,\overline{\mathbb{Q}}_{l}} such that Fil!t(Ψϱ)¯l𝔽¯l\operatorname{Fil}^{t}_{!}(\Psi_{\varrho})\otimes_{\overline{\mathbb{Z}}_{l}}\overline{\mathbb{F}}_{l} coincides with the kernel of Nϱt¯l𝔽¯lN_{\varrho}^{t}\otimes_{\overline{\mathbb{Z}}_{l}}\overline{\mathbb{F}}_{l}.


First step: consider

0Fil!1(Ψϱ)ΨϱcoFil!1(Ψϱ)0,0\rightarrow\operatorname{Fil}^{1}_{!}(\Psi_{\varrho})\longrightarrow\Psi_{\varrho}\longrightarrow\operatorname{coFil}^{1}_{!}(\Psi_{\varrho})\rightarrow 0,

and the following long exact sequence

0hom(coFil!1(Ψϱ),Ψϱ(1))hom(Ψϱ,Ψϱ(1))hom(Fil!1(Ψϱ),Ψϱ(1))0\rightarrow\hom(\operatorname{coFil}^{1}_{!}(\Psi_{\varrho}),\Psi_{\varrho}(1))\longrightarrow\hom(\Psi_{\varrho},\Psi_{\varrho}(1))\\ \longrightarrow\hom(\operatorname{Fil}^{1}_{!}(\Psi_{\varrho}),\Psi_{\varrho}(1))\longrightarrow\cdots

where hom\hom is taken in the category of equivariant Hecke perverse sheaves with an action of Gal(F¯v/Fv)\operatorname{Gal}(\overline{F}_{v}/F_{v}). As Fil!1(Ψϱ)¯l¯l\operatorname{Fil}^{1}_{!}(\Psi_{\varrho})\otimes_{\overline{\mathbb{Z}}_{l}}\overline{\mathbb{Q}}_{l} coincides with the kernel of Nϱ,¯lN_{\varrho,\overline{\mathbb{Q}}_{l}}, then Nϱ,¯lhom(Ψϱ,Ψϱ)¯l¯lN_{\varrho,\overline{\mathbb{Q}}_{l}}\in\hom(\Psi_{\varrho},\Psi_{\varrho})\otimes_{\overline{\mathbb{Z}}_{l}}\overline{\mathbb{Q}}_{l} comes from hom(coFil!1(Ψϱ),Ψϱ(1))¯l¯l\hom(\operatorname{coFil}^{1}_{!}(\Psi_{\varrho}),\Psi_{\varrho}(1))\otimes_{\overline{\mathbb{Z}}_{l}}\overline{\mathbb{Q}}_{l}, so that we focus on hom(coFil!1(Ψϱ),Ψϱ(1))\hom(\operatorname{coFil}^{1}_{!}(\Psi_{\varrho}),\Psi_{\varrho}(1)). From

0gr!2(Ψϱ)coFil!1(Ψϱ)coFil!2(Ψϱ)0,0\rightarrow\operatorname{gr}^{2}_{!}(\Psi_{\varrho})\longrightarrow\operatorname{coFil}^{1}_{!}(\Psi_{\varrho})\longrightarrow\operatorname{coFil}^{2}_{!}(\Psi_{\varrho})\rightarrow 0,

we obtain

0hom(coFil!2(Ψϱ),Ψϱ(1))hom(coFil!1(Ψϱ),Ψϱ(1))hom(gr!2(Ψϱ),Ψϱ(1))Ext1(coFil!2(Ψϱ),Ψϱ(1)))0\rightarrow\hom(\operatorname{coFil}_{!}^{2}(\Psi_{\varrho}),\Psi_{\varrho}(1))\longrightarrow\hom(\operatorname{coFil}_{!}^{1}(\Psi_{\varrho}),\Psi_{\varrho}(1))\longrightarrow\\ \hom(\operatorname{gr}_{!}^{2}(\Psi_{\varrho}),\Psi_{\varrho}(1))\longrightarrow\operatorname{Ext}^{1}(\operatorname{coFil}_{!}^{2}(\Psi_{\varrho}),\Psi_{\varrho}(1)))\longrightarrow\cdots

The socle of Ψϱ¯l¯l\Psi_{\varrho}\otimes_{\overline{\mathbb{Z}}_{l}}\overline{\mathbb{Q}}_{l} being contained in Fil!1(Ψϱ)¯l¯l\operatorname{Fil}^{1}_{!}(\Psi_{\varrho})\otimes_{\overline{\mathbb{Z}}_{l}}\overline{\mathbb{Q}}_{l}, any map coFil!2(Ψϱ)Ψϱ(1))\operatorname{coFil}_{!}^{2}(\Psi_{\varrho})\longrightarrow\Psi_{\varrho}(1)) can not be equivariant for the Galois action, so that we are led to look at

hom(gr!2(Ψϱ),Ψϱ(1))hom(gr!2(Ψϱ),Fil1(gr!1(Ψϱ(1))))\hom(\operatorname{gr}_{!}^{2}(\Psi_{\varrho}),\Psi_{\varrho}(1))\cong\hom(\operatorname{gr}_{!}^{2}(\Psi_{\varrho}),\operatorname{Fil}_{*}^{1}(\operatorname{gr}_{!}^{1}(\Psi_{\varrho}(1))))

where

0Fil1(gr!1(Ψϱ))Fil!1(Ψϱ)coFil1(Fil!1(Ψϱ)0.0\rightarrow\operatorname{Fil}_{*}^{1}(\operatorname{gr}_{!}^{1}(\Psi_{\varrho}))\longrightarrow\operatorname{Fil}_{!}^{1}(\Psi_{\varrho})\longrightarrow\operatorname{coFil}_{*}^{1}(\operatorname{Fil}_{!}^{1}(\Psi_{\varrho})\rightarrow 0.

Note that gr!2(Ψϱ)¯l¯lFil1(gr11(Ψϱ(1)))¯l¯l\operatorname{gr}_{!}^{2}(\Psi_{\varrho})\otimes_{\overline{\mathbb{Z}}_{l}}\overline{\mathbb{Q}}_{l}\cong\operatorname{Fil}_{*}^{1}(\operatorname{gr}_{1}^{1}(\Psi_{\varrho}(1)))\otimes_{\overline{\mathbb{Z}}_{l}}\overline{\mathbb{Q}}_{l} and their ¯l\overline{\mathbb{Z}}_{l}-structure is obtained, cf. the introduction of [Boy23b] or equation (7), through the strict ¯l\overline{\mathbb{Z}}_{l}-epimorphisms

j!=2gj=2g,gr!2(Ψϱ)gr!2(Ψϱ),andj!=2gj=2g,Fil1(gr!1(Ψϱ))Fil1(gr!1(Ψϱ)),j^{=2g}_{!}j^{=2g,*}\operatorname{gr}_{!}^{2}(\Psi_{\varrho})\twoheadrightarrow\operatorname{gr}_{!}^{2}(\Psi_{\varrho}),\quad\hbox{and}\quad j^{=2g}_{!}j^{=2g,*}\operatorname{Fil}_{*}^{1}(\operatorname{gr}_{!}^{1}(\Psi_{\varrho}))\twoheadrightarrow\operatorname{Fil}_{*}^{1}(\operatorname{gr}_{!}^{1}(\Psi_{\varrho})),

cf. figure 1 and the notations of the beginning of §3.1.

In particular to prove that gr!2(Ψϱ)\operatorname{gr}_{!}^{2}(\Psi_{\varrho}) is isomorphic to Fil1(gr11(Ψϱ(1)))\operatorname{Fil}_{*}^{1}(\operatorname{gr}_{1}^{1}(\Psi_{\varrho}(1))), it suffices to prove that the two local systems j=2g,gr!2(Ψϱ)j^{=2g,*}\operatorname{gr}_{!}^{2}(\Psi_{\varrho}) and j=2g,Fil1(gr11(Ψϱ(1)))j^{=2g,*}\operatorname{Fil}_{*}^{1}(\operatorname{gr}_{1}^{1}(\Psi_{\varrho}(1))) are isomorphic. In this case we can take141414As it is not clear that Ext1(coFil!2(Ψϱ),Ψϱ(1)))\operatorname{Ext}^{1}(\operatorname{coFil}_{!}^{2}(\Psi_{\varrho}),\Psi_{\varrho}(1))) is torsion free, we can not claim at this stage that Nvhom(Ψϱ,Ψϱ(1))N_{v}\in\hom(\Psi_{\varrho},\Psi_{\varrho}(1)). Nvhom(Ψϱ,Ψϱ(1))¯l¯lN_{v}\in\hom(\Psi_{\varrho},\Psi_{\varrho}(1))\otimes_{\overline{\mathbb{Z}}_{l}}\overline{\mathbb{Q}}_{l} so that, over ¯l\overline{\mathbb{Z}}_{l} we have Fil1(gr!1(Ψϱ(1)))=Nv(Fil!2(Ψϱ))\operatorname{Fil}^{1}_{*}(\operatorname{gr}^{1}_{!}(\Psi_{\varrho}(1)))=N_{v}(\operatorname{Fil}^{2}_{!}(\Psi_{\varrho})).

More generally to prove that the two perverse sheaves gr!h+1(Ψϱ)\operatorname{gr}_{!}^{h+1}(\Psi_{\varrho}) and Fil1(gr!h(Ψϱ(1)))\operatorname{Fil}_{*}^{1}(\operatorname{gr}_{!}^{h}(\Psi_{\varrho}(1))) are isomorphic, it suffices to prove that the two local systems j=(h+1)g,gr!h+1(Ψϱ)j^{=(h+1)g,*}\operatorname{gr}_{!}^{h+1}(\Psi_{\varrho}) and j=(h+1)g,Fil1(gr!h(Ψϱ(1)))j^{=(h+1)g,*}\operatorname{Fil}_{*}^{1}(\operatorname{gr}_{!}^{h}(\Psi_{\varrho}(1))) are isomorphic.


Second step: we want to prove that the local systems j=2g,gr!2(Ψϱ)j^{=2g,*}\operatorname{gr}_{!}^{2}(\Psi_{\varrho}) and j=2g,Fil1(gr!1(Ψϱ))j^{=2g,*}\operatorname{Fil}_{*}^{1}(\operatorname{gr}_{!}^{1}(\Psi_{\varrho})) are isomorphic. Consider first the following situation: let k{\mathcal{L}}_{k} and k+1{\mathcal{L}}_{k+1} be ¯l\overline{\mathbb{Z}}_{l}-local systems on a scheme XX such that:

  • kk+1{\mathcal{L}}_{k}\hookrightarrow{\mathcal{L}}_{k+1} where the cokernel grk+1\operatorname{gr}_{k+1} is torsion free;

  • k+1¯l¯l(k¯l¯l)(grk+1¯l¯l){\mathcal{L}}_{k+1}\otimes_{\overline{\mathbb{Z}}_{l}}\overline{\mathbb{Q}}_{l}\cong({\mathcal{L}}_{k}\otimes_{\overline{\mathbb{Z}}_{l}}\overline{\mathbb{Q}}_{l})\oplus(\operatorname{gr}_{k+1}\otimes_{\overline{\mathbb{Z}}_{l}}\overline{\mathbb{Q}}_{l}) where grk+1¯l¯l\operatorname{gr}_{k+1}\otimes_{\overline{\mathbb{Z}}_{l}}\overline{\mathbb{Q}}_{l} is supposed to be irreducible;

  • we introduce

    grk+1\displaystyle{\operatorname{gr}^{\prime}_{k+1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}grk+1,¯l\displaystyle{\operatorname{gr}_{k+1,\overline{\mathbb{Q}}_{l}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}k+1\displaystyle{{\mathcal{L}}_{k+1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}k+1¯l¯l.\displaystyle{{\mathcal{L}}_{k+1}\otimes_{\overline{\mathbb{Z}}_{l}}\overline{\mathbb{Q}}_{l}.}

    We moreover suppose that grk+1¯l𝔽¯l\operatorname{gr}_{k+1}\otimes_{\overline{\mathbb{Z}}_{l}}\overline{\mathbb{F}}_{l} is also irreducible so the various stable ¯l\overline{\mathbb{Z}}_{l}-lattices of grk+1\operatorname{gr}_{k+1} are homothetic.

We then have

0kgrk+1k+1T0,0\rightarrow{\mathcal{L}}_{k}\oplus\operatorname{gr}^{\prime}_{k+1}\longrightarrow{\mathcal{L}}_{k+1}\longrightarrow T\rightarrow 0,

where TT is torsion and can be viewed as a quotient

kkT,grk+1grk+1T,{\mathcal{L}}_{k}\hookrightarrow{\mathcal{L}}^{\prime}_{k}\twoheadrightarrow T,\quad\operatorname{gr}^{\prime}_{k+1}\hookrightarrow\operatorname{gr}_{k+1}\twoheadrightarrow T,

with

kk+1grk+1,grk+1k+1k.{\mathcal{L}}_{k}\hookrightarrow{\mathcal{L}}_{k+1}\twoheadrightarrow\operatorname{gr}_{k+1},\qquad\operatorname{gr}^{\prime}_{k+1}\hookrightarrow{\mathcal{L}}_{k+1}\twoheadrightarrow{\mathcal{L}}^{\prime}_{k}.

As grk+1¯l¯l\operatorname{gr}_{k+1}\otimes_{\overline{\mathbb{Z}}_{l}}\overline{\mathbb{Q}}_{l} is irreducible, then grk+1grk+1\operatorname{gr}^{\prime}_{k+1}\hookrightarrow\operatorname{gr}_{k+1} is given by multiplication by lδkl^{\delta_{k}} and, as the stable lattices of grk¯l¯l\operatorname{gr}_{k}\otimes_{\overline{\mathbb{Z}}_{l}}\overline{\mathbb{Q}}_{l} are all isomorphic, the extension is characterized by this δk\delta_{k}.

Consider then the ¯l\overline{\mathbb{Z}}_{l}-local system :=j=g,Ψϱ{\mathcal{L}}:=j^{=g,*}\Psi_{\varrho} and recall that

¯l¯li=1rHT¯l(πv,i,πv,i),{\mathcal{L}}\otimes_{\overline{\mathbb{Z}}_{l}}\overline{\mathbb{Q}}_{l}\cong\bigoplus_{i=1}^{r}HT_{\overline{\mathbb{Q}}_{l}}(\pi_{v,i},\pi_{v,i}),

where we fix any numbering of Cusp(ϱ)={πv,1,,πv,r}\operatorname{Cusp}(\varrho)=\{\pi_{v,1},\cdots,\pi_{v,r}\}. For k=1,,rk=1,\cdots,r, we introduce

k\displaystyle{{\mathcal{L}}_{k}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}i=1kHT(πv,i,πv,i)\displaystyle{\bigoplus_{i=1}^{k}HT(\pi_{v,i},\pi_{v,i})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\displaystyle{{\mathcal{L}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}¯l¯l.\displaystyle{{\mathcal{L}}\otimes_{\overline{\mathbb{Z}}_{l}}\overline{\mathbb{Q}}_{l}.}

Let denote by Tk+1T_{k+1} the torsion local system such that

0kgrk+1k+1Tk+10,0\rightarrow{\mathcal{L}}_{k}\oplus\operatorname{gr}_{k+1}\longrightarrow{\mathcal{L}}_{k+1}\longrightarrow T_{k+1}\rightarrow 0,

where grk+1:=k+1/k\operatorname{gr}_{k+1}:={\mathcal{L}}_{k+1}/{\mathcal{L}}_{k}, as above. We can apply the previous remark and denote by δk\delta_{k} the power of ll which define the homothety grk+1grk+1Tk+1\operatorname{gr}^{\prime}_{k+1}\hookrightarrow\operatorname{gr}_{k+1}\twoheadrightarrow T_{k+1}. The set {δk:k=1,,r}\{\delta_{k}:k=1,\cdots,r\} is then a numerical data to characterize {\mathcal{L}} inside j=1,Ψϱ¯l¯lj^{=1,*}\Psi_{\varrho}\otimes_{\overline{\mathbb{Z}}_{l}}\overline{\mathbb{Q}}_{l}.

(i) To control j=2g,Fil1(gr!1(Ψϱ))j^{=2g,*}\operatorname{Fil}_{*}^{1}(\operatorname{gr}^{1}_{!}(\Psi_{\varrho})), we use the general description above with

  • local systems k+{\mathcal{L}}^{+}_{k} for k=1,,rk=1,\cdots,r so that k+¯l¯li=1kHT¯l(πv,i,st2(πv,i)(1/2){\mathcal{L}}^{+}_{k}\otimes_{\overline{\mathbb{Z}}_{l}}\overline{\mathbb{Q}}_{l}\cong\bigoplus_{i=1}^{k}HT_{\overline{\mathbb{Q}}_{l}}(\pi_{v,i},\mathrm{st}_{2}(\pi_{v,i})(-1/2);

  • with grk+1+,\operatorname{gr}^{+,^{\prime}}_{k+1} defined, as before, with

    0k+grk+1+,k+1+Tk+10,0\rightarrow{\mathcal{L}}^{+}_{k}\oplus\operatorname{gr}^{+,^{\prime}}_{k+1}\longrightarrow{\mathcal{L}}^{+}_{k+1}\longrightarrow T_{k+1}\rightarrow 0,

    where Tk+1T_{k+1} is killed by lδk+1+l^{\delta^{+}_{k+1}}.

We want to prove that δk+=δk\delta^{+}_{k}=\delta_{k} for every k=1,,rk=1,\cdots,r where {δk:k=1,,r}\{\delta_{k}:k=1,\cdots,r\} is the numerical data associated to j=1,Ψϱj^{=1,*}\Psi_{\varrho}.

Let denote by

j1=1:ShK,s¯vShK,s¯v,11ShK,s¯v,i11:ShK,s¯v,11ShK,s¯v1=ShK,s¯v.j^{=1}_{\neq 1}:\operatorname{Sh}_{K,\bar{s}_{v}}\setminus\operatorname{Sh}_{K,\bar{s}_{v},1}^{\geq 1}\hookrightarrow\operatorname{Sh}_{K,\bar{s}_{v}},\qquad i_{1}^{1}:\operatorname{Sh}_{K,\bar{s}_{v},1}^{\geq 1}\hookrightarrow\operatorname{Sh}_{K,\bar{s}_{v}}^{\geq 1}=\operatorname{Sh}_{K,\bar{s}_{v}}.

From [Boy23b] lemma B.3.2, j=2g,Fil1(gr!1(Ψϱ))j^{=2g,*}\operatorname{Fil}_{*}^{1}(\operatorname{gr}^{1}_{!}(\Psi_{\varrho})) is obtained as follows. Let

P:=ph1i11,j1,=1j1=1,ΨϱP:=\kern 0.5pt\vphantom{h}^{p}\kern-0.5pth^{-1}i_{1}^{1,*}j^{=1}_{\neq 1,*}j^{=1,*}_{\neq 1}\Psi_{\varrho}

so that

0Pj1,!=1j1=1,Ψϱpj1,!=1j1=1,Ψϱ0.0\rightarrow P\longrightarrow j^{=1}_{\neq 1,!}j^{=1,*}_{\neq 1}\Psi_{\varrho}\longrightarrow\kern 0.5pt\vphantom{j}^{p}\kern-0.5ptj^{=1}_{\neq 1,!*}j^{=1,*}_{\neq 1}\Psi_{\varrho}\rightarrow 0.

Then PP is the cosocle of i11,Fil1(gr!1(Ψϱ))i_{1}^{1,*}\operatorname{Fil}_{*}^{1}(\operatorname{gr}^{1}_{!}(\Psi_{\varrho})) so that

j=2g,Fil1(gr!1(Ψϱ))j=2g,P×P1,d(Fv)GLd(Fv),j^{=2g,*}\operatorname{Fil}_{*}^{1}(\operatorname{gr}^{1}_{!}(\Psi_{\varrho}))\cong j^{=2g,*}P\times_{P_{1,d}(F_{v})}\operatorname{GL}_{d}(F_{v}),

where induction has the same meaning as in (3).

Note then that the numerical data associated to j=2g,Pj^{=2g,*}P are also given by {δk+:k=1,,r}\{\delta_{k}^{+}:k=1,\cdots,r\}. With the previous notations, consider the data associated to :=j=g,Ψϱ{\mathcal{L}}:=j^{=g,*}\Psi_{\varrho}, i.e. a filtration

12r={\mathcal{L}}_{1}\subseteq{\mathcal{L}}_{2}\subseteq\cdots\subseteq{\mathcal{L}}_{r}={\mathcal{L}}

with graded parts grk\operatorname{gr}^{k} and grkgrk\operatorname{gr}^{\prime}_{k}\hookrightarrow\operatorname{gr}_{k} is given by multiplication by lδkl^{\delta_{k}}. We then have a strict filtration

ph1i11,j1,=11ph1i11,j1,=1r=P,\kern 0.5pt\vphantom{h}^{p}\kern-0.5pth^{-1}i_{1}^{1,*}j^{=1}_{\neq 1,*}{\mathcal{L}}_{1}\subseteq\cdots\subseteq\kern 0.5pt\vphantom{h}^{p}\kern-0.5pth^{-1}i_{1}^{1,*}j^{=1}_{\neq 1,*}{\mathcal{L}}_{r}=P,

with graded parts ph1i11,j1,=1grk\kern 0.5pt\vphantom{h}^{p}\kern-0.5pth^{-1}i_{1}^{1,*}j^{=1}_{\neq 1,*}\operatorname{gr}_{k}. Indeed we have

ph2i11,j1,=1grk+1=0ph1i11,j1,=1kph1i11,j1,=1kph1i11,j1,=1grk+1ph0i11,j1,=1k\kern 0.5pt\vphantom{h}^{p}\kern-0.5pth^{-2}i_{1}^{1,*}j^{=1}_{\neq 1,*}\operatorname{gr}_{k+1}=0\longrightarrow\kern 0.5pt\vphantom{h}^{p}\kern-0.5pth^{-1}i_{1}^{1,*}j^{=1}_{\neq 1,*}{\mathcal{L}}_{k}\longrightarrow\\ \kern 0.5pt\vphantom{h}^{p}\kern-0.5pth^{-1}i_{1}^{1,*}j^{=1}_{\neq 1,*}{\mathcal{L}}_{k}\longrightarrow\kern 0.5pt\vphantom{h}^{p}\kern-0.5pth^{-1}i_{1}^{1,*}j^{=1}_{\neq 1,*}\operatorname{gr}_{k+1}\longrightarrow\kern 0.5pt\vphantom{h}^{p}\kern-0.5pth^{0}i_{1}^{1,*}j^{=1}_{\neq 1,*}{\mathcal{L}}_{k}

where the free quotient of ph0i11,j1,=1k\kern 0.5pt\vphantom{h}^{p}\kern-0.5pth^{0}i_{1}^{1,*}j^{=1}_{\neq 1,*}{\mathcal{L}}_{k} is zero. Moreover it is torsion free because its torsion corresponds to the difference between pp and p+p+ intermediate extensions which are equal here from the main result of [Boy23b]. We then apply the exact functor j=2g,j^{=2g,*} and we induce from P1,d(Fv)P_{1,d}(F_{v}) to GLd(Fv)\operatorname{GL}_{d}(F_{v}) to obtain the filtration +{\mathcal{L}}_{\bullet}^{+} of j=2g,Fil1(gr!1(Ψϱ))j^{=2g,*}\operatorname{Fil}^{1}_{*}(\operatorname{gr}^{1}_{!}(\Psi_{\varrho})) where grk+,grk+\operatorname{gr}_{k}^{+,^{\prime}}\hookrightarrow\operatorname{gr}_{k}^{+} is given by multiplication by lδkl^{\delta_{k}}.

(ii) Dually the same arguments applied to

0pj1,!=1j1=1,Ψϱpj1,=1j1=1,ΨϱQ0,0\rightarrow\kern 0.5pt\vphantom{j}^{p}\kern-0.5ptj^{=1}_{\neq 1,!*}j^{=1,*}_{\neq 1}\Psi_{\varrho}\longrightarrow\kern 0.5pt\vphantom{j}^{p}\kern-0.5ptj^{=1}_{\neq 1,*}j^{=1,*}_{\neq 1}\Psi_{\varrho}\longrightarrow Q\rightarrow 0,

give us that j=2g,Qj^{=2g,*}Q is characterized by the data {δk:k=1,,r}\{\delta_{k}:k=1,\cdots,r\}. After inducing from P1,d(Fv)P_{1,d}(F_{v}) to GLd(Fv)\operatorname{GL}_{d}(F_{v}), we obtain the description of the local system 𝒜:=j=2g,A{\mathcal{A}}:=j^{=2g,*}A where AA is defined as follows:

0pj!=gj=g,coFil1(Ψϱ)coFil1(Ψϱ)A0.0\rightarrow\kern 0.5pt\vphantom{j}^{p}\kern-0.5ptj^{=g}_{!*}j^{=g,*}\operatorname{coFil}^{1}_{*}(\Psi_{\varrho})\longrightarrow\operatorname{coFil}^{1}_{*}(\Psi_{\varrho})\longrightarrow A\rightarrow 0.

Concretely this means that pj!=2g𝒜\kern 0.5pt\vphantom{j}^{p}\kern-0.5ptj^{=2g}_{!*}{\mathcal{A}} is the socle A1A_{1} of AA, which corresponds to the square dot in the right side of the figure 1.

We are interested by the local system associated to j=2g,j^{=2g,*} of the cosocle of Fil!2(Ψϱ)\operatorname{Fil}^{2}_{!}(\Psi_{\varrho}), which corresponds to the square dot in the left side of the figure 1. As explained in §3.1, we have to use basic exchange steps as many times as needed to move A1A_{1} until it appears as the cosocle of Fil!2(Ψϱ)Ψϱ\operatorname{Fil}^{2}_{!}(\Psi_{\varrho})\hookrightarrow\Psi_{\varrho}.

Note then that all the perverse sheaves which are exchanged with A1A_{1} during this process, are lattice of j!=tgHT¯l(πv,stt(πv))(1t+δ2)j^{=tg}_{!*}HT_{\overline{\mathbb{Q}}_{l}}(\pi_{v},\mathrm{st}_{t}(\pi_{v}))(\frac{1-t+\delta}{2}) with t3t\geq 3, cf. figure 1. As explained in the remark after the definition of the exchange basic step, as pj!=2gHT(πv,st2(πv))p+j!=2gHT(πv,st2(πv))\kern 0.5pt\vphantom{j}^{p}\kern-0.5ptj^{=2g}_{!*}HT(\pi_{v},\mathrm{st}_{2}(\pi_{v}))\cong\kern 0.5pt\vphantom{j}^{p+}\kern-0.5ptj^{=2g}_{!*}HT(\pi_{v},\mathrm{st}_{2}(\pi_{v})), for all these exchange, we have T=0T=0 and A1A_{1} remains unchanged during all the basic exchange steps.

Third step: at this stage we constructed a ¯l\overline{\mathbb{Q}}_{l}-monodromy operator NvN_{v} such Fil1(gr!1(Ψϱ(1)))=Nv(Fil!2(Ψϱ))\operatorname{Fil}^{1}_{*}(\operatorname{gr}^{1}_{!}(\Psi_{\varrho}(1)))=N_{v}(\operatorname{Fil}^{2}_{!}(\Psi_{\varrho})). Recall that this monodromy operator induces

α:coFil!t(cogrt(Ψϱ))cogrt+1(Ψϱ(1))\alpha:\operatorname{coFil}^{t}_{!}(\operatorname{cogr}^{t}_{*}(\Psi_{\varrho}))\longrightarrow\operatorname{cogr}^{t+1}_{*}(\Psi_{\varrho}(1))

such that j=(t+1)g,αj^{=(t+1)g,*}\circ\alpha is then an isomorphism over ¯l\overline{\mathbb{Z}}_{l}. We say that α\alpha is an isomorphism. Indeed consider

0pj!=tgj=tg,cogrt(Ψϱ)cogrt(Ψϱ)coFil!t(cogrt(Ψϱ))0,0\rightarrow\kern 0.5pt\vphantom{j}^{p}\kern-0.5ptj^{=tg}_{!*}j^{=tg,*}\operatorname{cogr}^{t}_{*}(\Psi_{\varrho})\longrightarrow\operatorname{cogr}^{t}_{*}(\Psi_{\varrho})\longrightarrow\operatorname{coFil}^{t}_{!}(\operatorname{cogr}^{t}_{*}(\Psi_{\varrho}))\rightarrow 0,

with the following two strict monomorphisms

α1:cogrt+1(Ψϱ)j=(t+1)gj=(t+1)g,cogrt+1(Ψϱ)\alpha_{1}:\operatorname{cogr}^{t+1}_{*}(\Psi_{\varrho})\hookrightarrow j^{=(t+1)g}_{*}j^{=(t+1)g,*}\operatorname{cogr}^{t+1}_{*}(\Psi_{\varrho}) (17)

and

α2:coFil!t(cogrt(Ψϱ(1)))j=(t+1)gj=(t+1)g,coFil!t(cogrt(Ψϱ(1))).\alpha_{2}:\operatorname{coFil}^{t}_{!}(\operatorname{cogr}^{t}_{*}(\Psi_{\varrho}(1)))\hookrightarrow j^{=(t+1)g}_{*}j^{=(t+1)g,*}\operatorname{coFil}^{t}_{!}(\operatorname{cogr}^{t}_{*}(\Psi_{\varrho}(1))). (18)

By composing α\alpha with α2\alpha_{2} in (18), we obtain

α1,α2αhom(cogrt+1(Ψϱ),j=(t+1)gj=(t+1)g,cogrt+1(Ψϱ))hom(j=(t+1)g,cogrt+1(Ψϱ),j=(t+1)g,cogrt+1(Ψϱ)),\alpha_{1},\alpha_{2}\circ\alpha\in\hom\Bigl{(}\operatorname{cogr}^{t+1}_{*}(\Psi_{\varrho}),j^{=(t+1)g}_{*}j^{=(t+1)g,*}\operatorname{cogr}^{t+1}_{*}(\Psi_{\varrho})\Bigr{)}\\ \cong\hom\Bigl{(}j^{=(t+1)g,*}\operatorname{cogr}^{t+1}_{*}(\Psi_{\varrho}),j^{=(t+1)g,*}\operatorname{cogr}^{t+1}_{*}(\Psi_{\varrho})\Bigr{)}, (19)

by adjunction. By hypothesis α1\alpha_{1} and α2α\alpha_{2}\circ\alpha coincides in this last space, so they are equal and α\alpha is then an isomorphism.

Notation 3.3.1.

Under the hypothesis of theorem 3.2.3 on 𝔪\mathfrak{m}, the action of NϱN_{\varrho} on Ψϱ\Psi_{\varrho} defined above for every 𝔽¯l\overline{\mathbb{F}}_{l}-character ϱ\varrho, induces a nilpotent monodromy operator N𝔪,vcohoN^{coho}_{\mathfrak{m},v} on H0(ShI,s¯v,Ψv,ξ)𝔪H^{0}(\operatorname{Sh}_{I,\bar{s}_{v}},\Psi_{v,\xi})_{\mathfrak{m}}. We also denote by N¯𝔪,vcoho:=N𝔪,vcoho¯l𝔽¯l\overline{N}^{coho}_{\mathfrak{m},v}:=N^{coho}_{\mathfrak{m},v}\otimes_{\overline{\mathbb{Z}}_{l}}\overline{\mathbb{F}}_{l} acting on H0(ShI,s¯v,Ψv,ξ)𝔪¯l𝔽¯lH^{0}(\operatorname{Sh}_{I,\bar{s}_{v}},\Psi_{v,\xi})_{\mathfrak{m}}\otimes_{\overline{\mathbb{Z}}_{l}}\overline{\mathbb{F}}_{l}

4. Proof of the Ihara’s lemma

4.1. Supersingular locus as a zero dimensional Shimura variety

As explained in the introduction, we follow the strategy of [Boy22] which consists to transfer the genericity property of Ihara’s lemma concerning G¯\overline{G} to the genericity of the cohomology of KHT-Shimura varieties.

Let G¯\overline{G} be a similitude group as in the introduction such that moreover there exists a prime number p0p_{0} split in EE and v0+v_{0}^{+} a place of F+F^{+} above p0p_{0}, identified as before to a place v0v_{0} of FF, such that B¯v0\overline{B}_{v_{0}} is a division algebra: in particular v0vv_{0}\neq v. Consider then, with the usual abuse of notation, G/G/{\mathbb{Q}} such that G(𝔸,v0)G¯(𝔸,v0)G({\mathbb{A}}_{\mathbb{Q}}^{\infty,v_{0}})\cong\overline{G}({\mathbb{A}}_{\mathbb{Q}}^{\infty,v_{0}}) with G(Fv0)GLd(Fv0)G(F_{v_{0}})\cong\operatorname{GL}_{d}(F_{v_{0}}) and G()G({\mathbb{R}}) of signatures (1,n1),(0,n)r(1,n-1),(0,n)^{r}. The KHT Shimura variety ShK,v0spec𝒪v0\operatorname{Sh}_{K,v_{0}}\rightarrow\operatorname{spec}{\mathcal{O}}_{v_{0}} associated to GG with level KK, has a Newton stratification of its special fiber with supersingular locus

ShK,s¯v0=d=iker1(,G)ShK,s¯v0,i=d.\operatorname{Sh}_{K,\bar{s}_{v_{0}}}^{=d}=\coprod_{i\in\ker^{1}({\mathbb{Q}},G)}\operatorname{Sh}_{K,\bar{s}_{v_{0}},i}^{=d}.

For a equivariant sheaf K,i{\mathcal{F}}_{K,i} on ShKv(),s¯v0,i=d\operatorname{Sh}_{K^{v}(\infty),\bar{s}_{v_{0}},i}^{=d} seen as acompatible system over ShKvKv,s¯v0,i=d\operatorname{Sh}_{K^{v}K_{v},\bar{s}_{v_{0}},i}^{=d} for KvK_{v} describing the set of open compact subgroups of GLd(𝒪v)\operatorname{GL}_{d}({\mathcal{O}}_{v}), its fiber at a compatible system zKv(),iz_{K^{v}(\infty),i} of supersingular point zKvKv,iz_{K^{v}K_{v},i}, has an action of G¯(𝔸)×GLd(Fv)0\overline{G}({\mathbb{A}}_{\mathbb{Q}}^{\infty})\times\operatorname{GL}_{d}(F_{v})^{0} where GLd(Fv)0\operatorname{GL}_{d}(F_{v})^{0} is the kernel of the valuation of the determinant so that, cf. [Boy09] proposition 5.1.1, as a GLd(Fv)\operatorname{GL}_{d}(F_{v})-module, we have

H0(ShKv(),s¯v0,i=d,Kv(),i)(indG¯()G¯(𝔸,v)×zKv0(),iKv0(),i)Kv,H^{0}(\operatorname{Sh}_{K^{v}(\infty),\bar{s}_{v_{0}},i}^{=d},{\mathcal{F}}_{K^{v}(\infty),i})\cong\Bigl{(}\operatorname{ind}_{\overline{G}({\mathbb{Q}})}^{\overline{G}({\mathbb{A}}^{\infty,v})\times{\mathbb{Z}}}z_{K^{v_{0}}(\infty),i}^{*}{\mathcal{F}}_{K^{v_{0}}(\infty),i}\Bigr{)}^{K^{v}},

with δG¯()(δ,v0,valrn(δv0))G¯(𝔸,v0,v)×\delta\in\overline{G}({\mathbb{Q}})\mapsto(\delta^{\infty,v_{0}},\mathrm{val}\circ\operatorname{rn}(\delta_{v_{0}}))\in\overline{G}({\mathbb{A}}^{\infty,v_{0},v})\times{\mathbb{Z}} and where the action of gv0GLd(Fv0)g_{v_{0}}\in\operatorname{GL}_{d}(F_{v_{0}}) is given by those of (g0valdetgv0gv0,valdetgv0)GLd(Fv0)0×(g_{0}^{-\mathrm{val}\det g_{v_{0}}}g_{v_{0}},\mathrm{val}\det g_{v_{0}})\in\operatorname{GL}_{d}(F_{v_{0}})^{0}\times{\mathbb{Z}} where g0GLd(Fv0)g_{0}\in\operatorname{GL}_{d}(F_{v_{0}}) is any fixed element with valdetg0=1\mathrm{val}\det g_{0}=1. Moreover, cf. [Boy09] corollaire 5.1.2, if zKv0(),iKv0(),iz_{K^{v_{0}}(\infty),i}^{*}{\mathcal{F}}_{K^{v_{0}}(\infty),i} is provided with an action of the kernel (Dv0,d×)0(D_{v_{0},d}^{\times})^{0} of the valuation of the reduced norm, action compatible with those of G¯()Dv0,d×\overline{G}({\mathbb{Q}})\hookrightarrow D_{v_{0},d}^{\times}, then as a G(𝔸)G({\mathbb{A}}^{\infty})-module, we have

H0(ShKv(),s¯v0,i=d,Kv(),i)(𝒞(G¯()\G¯(𝔸),Λ)Dv0,d×ind(Dv0,d×)0Dv0,d×zi,i)KvH^{0}(\operatorname{Sh}_{K^{v}(\infty),\bar{s}_{v_{0}},i}^{=d},{\mathcal{F}}_{K^{v}(\infty),i})\cong\Bigl{(}{\mathcal{C}}^{\infty}(\overline{G}({\mathbb{Q}})\backslash\overline{G}({\mathbb{A}}^{\infty}),\Lambda)\otimes_{D_{v_{0},d}^{\times}}\operatorname{ind}_{(D_{v_{0},d}^{\times})^{0}}^{D_{v_{0},d}^{\times}}z_{i}^{*}{\mathcal{F}}_{{\mathcal{I}},i}\Bigr{)}^{K^{v}} (20)

In particular, cf. lemma 2.3.1 of [Boy22], let π¯\overline{\pi} be an irreducible sub-𝔽¯l\overline{\mathbb{F}}_{l}-representation of 𝒞(G¯()\G¯(𝔸)/Kv,𝔽¯l)𝔪\mathcal{C}^{\infty}(\overline{G}({\mathbb{Q}})\backslash\overline{G}({\mathbb{A}})/K^{v},\overline{\mathbb{F}}_{l})_{\mathfrak{m}} for 𝔪\mathfrak{m} such that ρ¯𝔪\overline{\rho}_{\mathfrak{m}} is irreducible. Write its local component π¯v0πv0[s]D\bar{\pi}_{v_{0}}\cong\pi_{v_{0}}[s]_{D} with πv0\pi_{v_{0}} an irreducible cuspidal representation of GLg(Fv0)\operatorname{GL}_{g}(F_{v_{0}}) with d=sgd=sg. Then (π¯v0)Kv(\overline{\pi}^{v_{0}})^{K^{v}} is a sub-representation of H0(ShKv(),s¯v0=d,HT(πv0,s))𝔪¯l𝔽¯lH^{0}(\operatorname{Sh}^{=d}_{K^{v}(\infty),\bar{s}_{v_{0}}},HT(\pi_{v_{0}}^{\vee},s))_{\mathfrak{m}}\otimes_{\overline{\mathbb{Z}}_{l}}\overline{\mathbb{F}}_{l} and, cf. proposition 2.3.2 of [Boy22], a sub-𝔽¯l\overline{\mathbb{F}}_{l}-representation of Hd1(ShKv(),η¯v0,𝔽¯l)𝔪H^{d-1}(\operatorname{Sh}_{K^{v}(\infty),\bar{\eta}_{v_{0}}},\overline{\mathbb{F}}_{l})_{\mathfrak{m}}. Indeed, cf. theorem 3.2.3,

  • by the main result of [Boy23a], as l>d2l>d\geq 2 and ρ¯𝔪\overline{\rho}_{\mathfrak{m}} is irreducible, then 𝔪\mathfrak{m} is KHT free so that hypothesis (H1) of [Boy22] is fulfilled.

  • Theorem 3.2.3 gives us that the filtration of Hd1(ShKv(),η¯v0,¯l)𝔪H^{d-1}(\operatorname{Sh}_{K^{v}(\infty),\bar{\eta}_{v_{0}}},\overline{\mathbb{Z}}_{l})_{\mathfrak{m}} induced by the filtration of the nearby cycles at v0v_{0}, is strict.151515In [Boy22] hypothesis (H3) was introduced for this property to be true.

Finally if the analog of Ihara’s lemma for Hd1(ShKv(),η¯,𝔽¯l)𝔪H^{d-1}(\operatorname{Sh}_{K^{v}(\infty),\bar{\eta}},\overline{\mathbb{F}}_{l})_{\mathfrak{m}} is true for the action of GLd(Fv)\operatorname{GL}_{d}(F_{v}), then this is also the case for G¯\overline{G}. We now focus on the genericity of irreducible sub-GLd(Fv)\operatorname{GL}_{d}(F_{v})-modules of H0(ShKv(),η¯,𝔽¯l)𝔪H^{0}(\operatorname{Sh}_{K^{v}(\infty),\bar{\eta}},\overline{\mathbb{F}}_{l})_{\mathfrak{m}} using the nearby cycles at the place vv.

4.2. Level raising

To a cohomological minimal prime ideal 𝔪~\widetilde{\mathfrak{m}} of 𝕋(K){\mathbb{T}}(K), which corresponds to a maximal ideal of 𝕋(K)[1l]{\mathbb{T}}(K)[\frac{1}{l}], is associated both a near equivalence class of ¯l\overline{\mathbb{Q}}_{l}-automorphic representation Π𝔪~\Pi_{\widetilde{\mathfrak{m}}} and a Galois representation

ρ𝔪~:GF:=Gal(F¯/F)GLd(¯l)\rho_{\widetilde{\mathfrak{m}}}:G_{F}:=\operatorname{Gal}(\bar{F}/F)\longrightarrow\operatorname{GL}_{d}(\overline{\mathbb{Q}}_{l})

such that the eigenvalues of the Frobenius morphism at an unramified place ww are given by the Satake parameters of the local component Π𝔪~,w\Pi_{\widetilde{\mathfrak{m}},w} of Π𝔪~\Pi_{\widetilde{\mathfrak{m}}}. The semi-simple class ρ¯𝔪\overline{\rho}_{\mathfrak{m}} of the reduction modulo ll of ρ𝔪~\rho_{\widetilde{\mathfrak{m}}} depends only of the maximal ideal 𝔪\mathfrak{m} of 𝕋KS{\mathbb{T}}^{S}_{K} containing 𝔪~\widetilde{\mathfrak{m}}.

We now allow infinite level at vv and we denote by 𝕋(Kv()){\mathbb{T}}(K^{v}(\infty)) the associated Hecke algebra. We fix a maximal ideal 𝔪\mathfrak{m} in 𝕋(Kv()){\mathbb{T}}(K^{v}(\infty)) such that the associated Galois representation ρ¯𝔪:GFGLd(𝔽)\overline{\rho}_{\mathfrak{m}}:G_{F}\rightarrow\operatorname{GL}_{d}({\mathbb{F}}) is irreducible.

Remark. For every minimal prime 𝔪~𝔪\widetilde{\mathfrak{m}}\subseteq\mathfrak{m}, note that Π𝔪~,v\Pi_{\widetilde{\mathfrak{m}},v} looks like sts1(πv,1)××stsr(πv,r)\mathrm{st}_{s_{1}}(\pi_{v,1})\times\cdots\times\mathrm{st}_{s_{r}}(\pi_{v,r}) where πv,i\pi_{v,i} is an irreducible cuspidal representation of GLgi(Fv)\operatorname{GL}_{g_{i}}(F_{v}) and s1g1++srgr=ds_{1}g_{1}+\cdots+s_{r}g_{r}=d.

Let 𝒮v(𝔪){\mathcal{S}}_{v}(\mathfrak{m}) be the supercuspidal support of the modulo ll reduction of any Πm~,v\Pi_{\widetilde{m},v} in the near equivalence class associated to a minimal prime ideal 𝔪~𝔪\widetilde{\mathfrak{m}}\subseteq\mathfrak{m}. Recall that 𝒮v(𝔪){\mathcal{S}}_{v}(\mathfrak{m}) is a multi-set, i.e. a set with multiplicities which only depends on 𝔪\mathfrak{m}. We decompose it according to the set of Zelevinsky lines: as we supposed qv1modlq_{v}\equiv 1\mod l then every Zelevinsky line is reduced to a single equivalence class of an irreducible (super)cuspidal 𝔽¯l\overline{\mathbb{F}}_{l}-representations ϱ\varrho of some GLg(ϱ)(Fv)\operatorname{GL}_{g(\varrho)}(F_{v}) with 1g(ϱ)d1\leq g(\varrho)\leq d.

𝒮v(𝔪)=1gdϱCusp𝔽¯l(g,v)𝒮ϱ(𝔪),{\mathcal{S}}_{v}(\mathfrak{m})=\coprod_{1\leq g\leq d}\coprod_{\varrho\in\operatorname{Cusp}_{\overline{\mathbb{F}}_{l}}(g,v)}{\mathcal{S}}_{\varrho}(\mathfrak{m}),

where Cusp𝔽¯l(g,v)\operatorname{Cusp}_{\overline{\mathbb{F}}_{l}}(g,v) is the set of irreducible cuspidal 𝔽¯l\overline{\mathbb{F}}_{l}-representations of GLg(Fv)\operatorname{GL}_{g}(F_{v}).

Notation 4.2.1.

We denote by lϱ(𝔪)l_{\varrho}(\mathfrak{m}) the multiplicity of 𝒮ϱ(𝔪){\mathcal{S}}_{\varrho}(\mathfrak{m}).

For 𝔪~𝔪\widetilde{\mathfrak{m}}\subseteq\mathfrak{m}, the local component Π𝔪~,v\Pi_{\widetilde{\mathfrak{m}},v} of Π𝔪~\Pi_{\widetilde{\mathfrak{m}}} can then be written as a full induced representation ×1gd×ϱCusp𝔽¯l(g,v)Π𝔪~,ϱ{\displaystyle\bigtimes_{1\leq g\leq d}\bigtimes_{\varrho\in\operatorname{Cusp}_{\overline{\mathbb{F}}_{l}}(g,v)}}\Pi_{\widetilde{\mathfrak{m}},\varrho} where each Π𝔪~,ϱ\Pi_{\widetilde{\mathfrak{m}},\varrho} is also a full induced representation

Π𝔪~,ϱ×i=1rϱ(𝔪~)Stlϱ,i(𝔪~)(πv,i)\Pi_{\widetilde{\mathfrak{m}},\varrho}\cong\bigtimes_{i=1}^{r_{\varrho}(\widetilde{\mathfrak{m}})}\operatorname{St}_{l_{\varrho,i}(\widetilde{\mathfrak{m}})}(\pi_{v,i})

where rl(πv,i)ϱr_{l}(\pi_{v,i})\cong\varrho, lϱ,1(𝔪~)lϱ,rϱ(𝔪~)(𝔪~)l_{\varrho,1}(\widetilde{\mathfrak{m}})\geq\cdots\geq l_{\varrho,r_{\varrho}(\widetilde{\mathfrak{m}})}(\widetilde{\mathfrak{m}}) and i=1rlϱ,i(𝔪~)=lϱ(𝔪)\sum_{i=1}^{r}l_{\varrho,i}(\widetilde{\mathfrak{m}})=l_{\varrho}(\mathfrak{m}).

Suppose now that there exists 1gd1\leq g\leq d and ϱCusp𝔽¯l(g,v)\varrho\in\operatorname{Cusp}_{\overline{\mathbb{F}}_{l}}(g,v) such that min𝔪~𝔪{rϱ(𝔪~)}2\min_{\widetilde{\mathfrak{m}}\subseteq\mathfrak{m}}\{r_{\varrho}(\widetilde{\mathfrak{m}})\}\geq 2 and let lϱ,1:=max𝔪~𝔪{lϱ,1(𝔪~)}l_{\varrho,1}:=\max_{\widetilde{\mathfrak{m}}\subseteq\mathfrak{m}}\{l_{\varrho,1}(\widetilde{\mathfrak{m}})\} which is then strictly less than lϱ(𝔪)l_{\varrho}(\mathfrak{m}).

Fact from [Boy10] §3: for an irreducible cuspidal representation πv\pi_{v} such that its modulo ll reduction is isomorphic to ϱ\varrho, H0(ShKv(),s¯v,P(t,πv))𝔪¯l¯lH^{0}(\operatorname{Sh}_{K^{v}(\infty),\bar{s}_{v}},P(t,\pi_{v}))_{\mathfrak{m}}\otimes_{\overline{\mathbb{Z}}_{l}}\overline{\mathbb{Q}}_{l} is the sum of the contributions of Π𝔪~\Pi_{\widetilde{\mathfrak{m}}} with 𝔪~𝔪\widetilde{\mathfrak{m}}\subseteq\mathfrak{m} such that Π𝔪~\Pi_{\widetilde{\mathfrak{m}}} is of the following shape: stt(πv)×?\mathrm{st}_{t}(\pi^{\prime}_{v})\times? where πv\pi^{\prime}_{v} is an unramified twist of πv\pi_{v} and ?? is any representation of GLdtg(Fv)\operatorname{GL}_{d-tg}(F_{v}) whose cuspidal support is not linked to those of stt(πv)\mathrm{st}_{t}(\pi^{\prime}_{v}).

In particular for every t>lϱ,1t>l_{\varrho,1}, H0(ShKv(),s¯v,P(t,πv))𝔪¯l¯lH^{0}(\operatorname{Sh}_{K^{v}(\infty),\bar{s}_{v}},P(t,\pi_{v}))_{\mathfrak{m}}\otimes_{\overline{\mathbb{Z}}_{l}}\overline{\mathbb{Q}}_{l} is zero, so that, as everything is torsion free,

H0(ShKv(),s¯v,grlϱ,1(ϱ)1(gr!1(Ψϱ)))𝔪¯l𝔽¯lH0(ShKv(),s¯v,ΨKv(),v))𝔪¯l𝔽¯l.H^{0}(\operatorname{Sh}_{K^{v}(\infty),\bar{s}_{v}},\operatorname{gr}^{l_{\varrho,1}(\varrho)-1}_{*}(\operatorname{gr}^{1}_{!}(\Psi_{\varrho})))_{\mathfrak{m}}\otimes_{\overline{\mathbb{Z}}_{l}}\overline{\mathbb{F}}_{l}\hookrightarrow H^{0}(\operatorname{Sh}_{K^{v}(\infty),\bar{s}_{v}},\Psi_{K^{v}(\infty),v}))_{\mathfrak{m}}\otimes_{\overline{\mathbb{Z}}_{l}}\overline{\mathbb{F}}_{l}.

Moreover this subspace, as a 𝔽¯l\overline{\mathbb{F}}_{l}-representation of GLd(Fv)\operatorname{GL}_{d}(F_{v}), has a subspace of the following shape stl1(ϱ)(ϱ)×τ\mathrm{st}_{l_{1}(\varrho)}(\varrho)\times\tau where the supercuspidal support of τ\tau contains ϱ\varrho. In particular as qv1modlq_{v}\equiv 1\mod l and l>dl>d, this induced representation has both a generic and a non generic subspace.

We can then conclude that for the genericity property to be true for KHT Shimura varieties, one needs a level raising property as in proposition 3.3.1 of [Boy22]. Hopefully such statements exist under some rather mild hypothesis as for example the following result of T. Gee.

Theorem 4.2.2.

([Gee11] theorem 5.1.5) Let F=F+EF=F^{+}E be a CM field where F+F^{+} is totally real and EE is imaginary quadratic. Let d>1d>1 and l>dl>d be a prime which is unramified in F+F^{+} and split in EE. Suppose that

ρ¯:GFGLn(𝔽¯l)\overline{\rho}:G_{F}\longrightarrow\operatorname{GL}_{n}(\overline{\mathbb{F}}_{l})

is an irreducible representation which is unramified at all places of FF lying above primes which do not split in EE and which satisfies the following properties.

  • ρ¯\overline{\rho} is automorphic of weight a¯\underline{a}, where we assume that for all τ(d)hom(F,)\tau\in({\mathbb{Z}}^{d})^{\hom(F,{\mathbb{C}})} we have either161616Note that these conditions imply ρ¯cρ¯ϵ1d\overline{\rho}^{c}\cong\overline{\rho}^{\vee}\epsilon^{1-d}.

    l1daτ,1aτ,d0 or l1dacτ,1acτ,d0.l-1-d\geq a_{\tau,1}\geq\cdots\geq a_{\tau,d}\geq 0\hbox{ or }l-1-d\geq a_{c\tau,1}\geq\cdots\geq a_{c\tau,d}\geq 0.
  • F¯keradρ¯\overline{F}^{\ker\operatorname{ad}\overline{\rho}} does not contain F(ζl)F(\zeta_{l}).

  • ρ¯(GF+(ζl))\overline{\rho}(G_{F^{+}(\zeta_{l})}) is big.

Let uu be a finite place of F+F^{+} which split in FF and not dividing ll. Choose an inertial type τv\tau_{v} and a place vv of FF above uu. Assume that ρ¯|GFv\overline{\rho}_{|G_{F_{v}}} has a lift to characteristic zero of type τv\tau_{v}.

Then there is an automorphic representation π\pi of GLn(𝔸F)\operatorname{GL}_{n}({\mathbb{A}}_{F}) of weight a¯\underline{a} and level prime to ll such that

  • r¯l,ι(π)ρ¯\overline{r}_{l,\iota}(\pi)\cong\overline{\rho}.

  • rl,ι(π)|GFvr_{l,\iota}(\pi)_{|G_{F_{v}}} has type τv\tau_{v}.

  • π\pi is unramified at all places wvw\neq v of FF at which ρ¯\overline{\rho} is unramified.

Remark. In this text we focus only on the trivial coefficients ¯l\overline{\mathbb{Z}}_{l}, i.e. to the case aτ,1==aτ,d=acτ,1==acτ,d=0a_{\tau,1}=\cdots=a_{\tau,d}=a_{c\tau,1}=\cdots=a_{c\tau,d}=0, but we could also deals with others weights as in the previous theorem.

4.3. Genericity for KHT-Shimura varieties

As explained in [HT01], the ¯l\overline{\mathbb{Q}}_{l}-cohomology of ShK,η¯\operatorname{Sh}_{K,\bar{\eta}} can be written as

Hd1(ShK,η¯,¯l)𝔪π𝒜ξ,K(𝔪)(π)KV(π),H^{d-1}(\operatorname{Sh}_{K,\bar{\eta}},\overline{\mathbb{Q}}_{l})_{\mathfrak{m}}\cong\bigoplus_{\pi\in{\mathcal{A}}_{\xi,K}(\mathfrak{m})}(\pi^{\infty})^{K}\otimes V(\pi^{\infty}),

where

  • 𝒜K(𝔪){\mathcal{A}}_{K}(\mathfrak{m}) is the set of equivalence classes of automorphic representations of G(𝔸)G({\mathbb{A}}) with non trivial KK-invariants and such that its modulo ll Satake’s parameters outside SS are prescribed by 𝔪\mathfrak{m},

  • and V(π)V(\pi^{\infty}) is a representation of GalF,S\operatorname{Gal}_{F,S}.

As ρ¯𝔪\overline{\rho}_{\mathfrak{m}} is supposed to be absolutely irreducible, then as explained in chapter VI of [HT01], if V(π)V(\pi^{\infty}) is non zero, then π\pi is a weak transfer of a cohomological automorphic representation (Π,ψ)(\Pi,\psi) of GLd(𝔸F)×𝔸F×\operatorname{GL}_{d}({\mathbb{A}}_{F})\times{\mathbb{A}}_{F}^{\times} with ΠΠc\Pi^{\vee}\cong\Pi^{c} where cc is the complex conjugation. Attached to such a Π\Pi is a global Galois representation ρΠ,l:GalF,SGLd(¯l)\rho_{\Pi,l}:\operatorname{Gal}_{F,S}\longrightarrow\operatorname{GL}_{d}(\overline{\mathbb{Q}}_{l}) which is irreducible.

Theorem 4.3.1.

(cf. [NF19] theorem 2.20)
If ρΠ,l\rho_{\Pi,l} is strongly irreducible, meaning it remains irreducible when it is restricted to any finite index subgroup, then V(π)V(\pi^{\infty}) is a semi-simple representation of GalF,S\operatorname{Gal}_{F,S}.

Remark. The Tate conjecture predicts that V(π)V(\pi^{\infty}) is always semi-simple.

Definition 4.3.2.

(cf. [Sch18] §5) We say that 𝔪\mathfrak{m} is KHT-typic for KK if, as a 𝕋(K)𝔪[GalF,S]{\mathbb{T}}(K)_{\mathfrak{m}}[\operatorname{Gal}_{F,S}]-module,

Hd1(ShK,η¯,¯l)𝔪σ𝔪,K𝕋(K)𝔪ρ𝔪,K,H^{d-1}(\operatorname{Sh}_{K,\bar{\eta}},\overline{\mathbb{Z}}_{l})_{\mathfrak{m}}\cong\sigma_{\mathfrak{m},K}\otimes_{{\mathbb{T}}(K)_{\mathfrak{m}}}\rho_{\mathfrak{m},K},

for some 𝕋(K)𝔪{\mathbb{T}}(K)_{\mathfrak{m}}-module σ𝔪,K\sigma_{\mathfrak{m},K} on which GalF,S\operatorname{Gal}_{F,S} acts trivially and

ρ𝔪,K:GalF,SGLd(𝕋(K)𝔪)\rho_{\mathfrak{m},K}:\operatorname{Gal}_{F,S}\longrightarrow\operatorname{GL}_{d}({\mathbb{T}}(K)_{\mathfrak{m}})

is the stable lattice of 𝔪~𝔪ρ𝔪~\bigoplus_{\widetilde{\mathfrak{m}}\subseteq\mathfrak{m}}\rho_{\widetilde{\mathfrak{m}}} introduced in the introduction.

Proposition 4.3.3.

We suppose that for all π𝒜K(𝔪)\pi\in{\mathcal{A}}_{K}(\mathfrak{m}), the Galois representation V(π)V(\pi^{\infty}) is semi-simple. Then 𝔪\mathfrak{m} is KHT-typic for KK.

Proof.

By proposition 5.4 of [Sch18] it suffices to deal with ¯l\overline{\mathbb{Q}}_{l}-coefficients. From [HT01] proposition VII.1.8 and the semi-simplicity hypothesis, then V(π)R~(π)n(π)V(\pi^{\infty})\cong\widetilde{R}(\pi)^{\bigoplus n(\pi)} where R~(π)\widetilde{R}(\pi) is of dimension dd. We then write

(π)K¯lR(π)(π)K𝕋(K)𝔪,¯l(𝕋(K)𝔪,¯l)d,(\pi^{\infty})^{K}\otimes_{\overline{\mathbb{Q}}_{l}}R(\pi)\cong(\pi^{\infty})^{K}\otimes_{{\mathbb{T}}(K)_{\mathfrak{m},\overline{\mathbb{Q}}_{l}}}({\mathbb{T}}(K)_{\mathfrak{m},\overline{\mathbb{Q}}_{l}})^{d},

and (π)K¯lV(π)((π)K)n(π)𝕋(K)𝔪,¯l(𝕋(K)𝔪,¯l)d(\pi^{\infty})^{K}\otimes_{\overline{\mathbb{Q}}_{l}}V(\pi^{\infty})\cong((\pi^{\infty})^{K})^{\bigoplus n(\pi)}\otimes_{{\mathbb{T}}(K)_{\mathfrak{m},\overline{\mathbb{Q}}_{l}}}({\mathbb{T}}(K)_{\mathfrak{m},\overline{\mathbb{Q}}_{l}})^{d} and finally

Hd1(ShK,η¯,¯l)𝔪σ𝔪,K,¯l𝕋(K)𝔪,¯l(𝕋(K)𝔪,¯l)d,H^{d-1}(\operatorname{Sh}_{K,\bar{\eta}},\overline{\mathbb{Q}}_{l})_{\mathfrak{m}}\cong\sigma_{\mathfrak{m},K,\overline{\mathbb{Q}}_{l}}\otimes_{{\mathbb{T}}(K)_{\mathfrak{m},\overline{\mathbb{Q}}_{l}}}({\mathbb{T}}(K)_{\mathfrak{m},\overline{\mathbb{Q}}_{l}})^{d},

with σ𝔪,K,¯lπ𝒜K(𝔪)((π)I)n(π)\sigma_{\mathfrak{m},K,\overline{\mathbb{Q}}_{l}}\cong\bigoplus_{\pi\in{\mathcal{A}}_{K}(\mathfrak{m})}((\pi^{\infty})^{I})^{\bigoplus n(\pi)}. The result then follows from [HT01] theorem VII.1.9 which insures that R(π)ρ𝔪~R(\pi)\cong\rho_{\widetilde{\mathfrak{m}}}, if 𝔪~\widetilde{\mathfrak{m}} is the prime ideal associated to π\pi, ∎

Let ϱ\varrho be an irreducible supercuspidal 𝔽¯l\overline{\mathbb{F}}_{l}-representation of GLg(Fv)\operatorname{GL}_{g}(F_{v}) for 1gd1\leq g\leq d with lϱ(𝔪)>0l_{\varrho}(\mathfrak{m})>0. Then H0(ShK,η¯v,ΨK,ϱ)𝔪H^{0}(\operatorname{Sh}_{K,\bar{\eta}_{v}},\Psi_{K,\varrho})_{\mathfrak{m}} as a direct factor of Hd1(ShK,η¯,¯l)𝔪H^{d-1}(\operatorname{Sh}_{K,\bar{\eta}},\overline{\mathbb{Q}}_{l})_{\mathfrak{m}}, is also typic, i.e.

H0(ShK,η¯v,ΨK,ϱ)𝔪σ𝔪,K,ϱ𝕋(K)𝔪ρ𝔪,K,ϱ.H^{0}(\operatorname{Sh}_{K,\bar{\eta}_{v}},\Psi_{K,\varrho})_{\mathfrak{m}}\cong\sigma_{\mathfrak{m},K,\varrho}\otimes_{{\mathbb{T}}(K)_{\mathfrak{m}}}\rho_{\mathfrak{m},K,\varrho}.

The monodromy operator N𝔪,ϱcohoN^{coho}_{\mathfrak{m},\varrho} acting on H0(ShK,η¯v,ΨK,ϱ)𝔪H^{0}(\operatorname{Sh}_{K,\bar{\eta}_{v}},\Psi_{K,\varrho})_{\mathfrak{m}} is such that

N𝔪,ϱcoho¯l¯lIdN𝔪,ϱ,¯l,N^{coho}_{\mathfrak{m},\varrho}\otimes_{\overline{\mathbb{Z}}_{l}}\overline{\mathbb{Q}}_{l}\cong\operatorname{Id}\otimes N_{\mathfrak{m},\varrho,\overline{\mathbb{Q}}_{l}},

i.e. it acts trivially on the first factor σ𝔪,K,ϱ\sigma_{\mathfrak{m},K,\varrho}. We then deduce that N𝔪,ϱcohoN^{coho}_{\mathfrak{m},\varrho} induces a nilpotent operator N𝔪,ϱN_{\mathfrak{m},\varrho} (resp. N¯𝔪,ϱ\overline{N}_{\mathfrak{m},\varrho}) on ρ𝔪,K,ϱ\rho_{\mathfrak{m},K,\varrho} (resp. ρ¯𝔪,K,ϱ:=ρ𝔪,K,ϱ¯l𝔽¯l\overline{\rho}_{\mathfrak{m},K,\varrho}:=\rho_{\mathfrak{m},K,\varrho}\otimes_{\overline{\mathbb{Z}}_{l}}\overline{\mathbb{F}}_{l}).

In the following, we will work with the following levels at vv.

Notation 4.3.4.

For α{0}\alpha\in{\mathbb{N}}\setminus\{0\}, we will denote by

Kv(α):=ker(GLd(𝒪v)GLd(𝒪v/ϖvα)),\operatorname{K}_{v}(\alpha):=\ker\Bigl{(}\operatorname{GL}_{d}({\mathcal{O}}_{v})\longrightarrow\operatorname{GL}_{d}({\mathcal{O}}_{v}/\varpi_{v}^{\alpha})\Bigr{)},

the open compact subgroup of GLd(𝒪v)\operatorname{GL}_{d}({\mathcal{O}}_{v}). For a fixed level KvK^{v} outside vv, we denote by RK,ϱ(α)R_{K,\varrho}(\alpha) the image of 𝕋(Kv)𝔪{\mathbb{T}}(K^{v})_{\mathfrak{m}} acting on the direct factor H0(ShKvKv(α),s¯v,Ψϱ)𝔪H^{0}(\operatorname{Sh}_{K^{v}\operatorname{K}_{v}(\alpha),\bar{s}_{v}},\Psi_{\varrho})_{\mathfrak{m}} of H0(ShKvKv(α),s¯v,Ψv)𝔪H^{0}(\operatorname{Sh}_{K^{v}\operatorname{K}_{v}(\alpha),\bar{s}_{v}},\Psi_{v})_{\mathfrak{m}}.

We now focus on the modulo ll reduction of the previous objects

H0(ShKvKv(α),η¯v,Ψϱ)𝔪¯l𝔽¯lσ¯K,ϱ(α)R¯K,ϱ(α)ρ¯K,ϱ(α),H^{0}(\operatorname{Sh}_{K^{v}\operatorname{K}_{v}(\alpha),\bar{\eta}_{v}},\Psi_{\varrho})_{\mathfrak{m}}\otimes_{\overline{\mathbb{Z}}_{l}}\overline{\mathbb{F}}_{l}\cong\overline{\sigma}_{K,\varrho}(\alpha)\otimes_{\overline{R}_{K,\varrho}(\alpha)}\overline{\rho}_{K,\varrho}(\alpha),

where σ¯K,ϱ(α):=σ𝔪,KvKv(α),ϱ¯l𝔽¯l\overline{\sigma}_{K,\varrho}(\alpha):=\sigma_{\mathfrak{m},K^{v}\operatorname{K}_{v}(\alpha),\varrho}\otimes_{\overline{\mathbb{Z}}_{l}}\overline{\mathbb{F}}_{l}, similarly ρ¯K,ϱ(α):=ρ𝔪,KvKv(α),ϱ¯l𝔽¯l\overline{\rho}_{K,\varrho}(\alpha):=\rho_{\mathfrak{m},K^{v}\operatorname{K}_{v}(\alpha),\varrho}\otimes_{\overline{\mathbb{Z}}_{l}}\overline{\mathbb{F}}_{l} and R¯K,ϱ(α):=RK,ϱ(α)¯l𝔽¯l\overline{R}_{K,\varrho}(\alpha):=R_{K,\varrho}(\alpha)\otimes_{\overline{\mathbb{Z}}_{l}}\overline{\mathbb{F}}_{l}.

Note that R¯K,ϱ(α)\overline{R}_{K,\varrho}(\alpha) is an artinian local commutative ring with maximal ideal 𝔪¯K,ϱ(α)\overline{\mathfrak{m}}_{K,\varrho}(\alpha) and with finite length rK,ϱ(α)r_{K,\varrho}(\alpha).

As ρ¯K,ϱ(α)\overline{\rho}_{K,\varrho}(\alpha) is R¯K,ϱ(α)d\overline{R}_{K,\varrho}(\alpha)^{d} provided with a Galois action, it is flat as a R¯K,ϱ(α)\overline{R}_{K,\varrho}(\alpha)-module, we then have

𝔪¯K,ϱ(α)(σ¯K,ϱ(α)R¯K,ϱ(α)ρ¯K,ϱ(α))\displaystyle{\overline{\mathfrak{m}}_{K,\varrho}(\alpha)\bigl{(}\overline{\sigma}_{K,\varrho}(\alpha)\otimes_{\overline{R}_{K,\varrho}(\alpha)}\overline{\rho}_{K,\varrho}(\alpha)\bigr{)}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}σ¯K,ϱ(α)R¯K,ϱ(α)ρ¯K,ϱ(α)\displaystyle{\overline{\sigma}_{K,\varrho}(\alpha)\otimes_{\overline{R}_{K,\varrho}(\alpha)}\overline{\rho}_{K,\varrho}(\alpha)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}(σ¯K,ϱ(α)R¯K,ϱ(α)ρ¯K,ϱ(α))/𝔪¯K,ϱ(α)\displaystyle{\bigl{(}\overline{\sigma}_{K,\varrho}(\alpha)\otimes_{\overline{R}_{K,\varrho}(\alpha)}\overline{\rho}_{K,\varrho}(\alpha)\bigr{)}/\overline{\mathfrak{m}}_{K,\varrho}(\alpha)}σ¯K,ϱ(α)R¯K,ϱ(α)𝔪¯K,ϱ(α)ρ¯K,ϱ(α)\displaystyle{\overline{\sigma}_{K,\varrho}(\alpha)\otimes_{\overline{R}_{K,\varrho}(\alpha)}\overline{\mathfrak{m}}_{K,\varrho}(\alpha)\overline{\rho}_{K,\varrho}(\alpha)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}(σ¯K,ϱ(α)R¯K,ϱ(α)ρ¯K,ϱ(α))R¯K,ϱ(α)RK,ϱ(α)/𝔪¯K,ϱ(α)\displaystyle{\bigl{(}\overline{\sigma}_{K,\varrho}(\alpha)\otimes_{\overline{R}_{K,\varrho}(\alpha)}\overline{\rho}_{K,\varrho}(\alpha)\bigr{)}\otimes_{\overline{R}_{K,\varrho}(\alpha)}R_{K,\varrho}(\alpha)/\overline{\mathfrak{m}}_{K,\varrho}(\alpha)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}σ¯K,ϱ(α)R¯K,ϱ(α)(𝔪¯K,ϱ(α)R¯K,ϱ(α)ρ¯K,ϱ(α))\displaystyle{\overline{\sigma}_{K,\varrho}(\alpha)\otimes_{\overline{R}_{K,\varrho}(\alpha)}\bigl{(}\overline{\mathfrak{m}}_{K,\varrho}(\alpha)\otimes_{\overline{R}_{K,\varrho}(\alpha)}\overline{\rho}_{K,\varrho}(\alpha)\bigr{)}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}σ¯K,ϱ(α)/𝔪¯K,ϱ(α)R¯K,ϱ(α)/𝔪¯K,ϱ(α)ρ¯K,ϱ(α))/𝔪¯K,ϱ(α)\displaystyle{\overline{\sigma}_{K,\varrho}(\alpha)/\overline{\mathfrak{m}}_{K,\varrho}(\alpha)\otimes_{\overline{R}_{K,\varrho}(\alpha)/\overline{\mathfrak{m}}_{K,\varrho}(\alpha)}\overline{\rho}_{K,\varrho}(\alpha)\bigr{)}/\overline{\mathfrak{m}}_{K,\varrho}(\alpha)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}
Notation 4.3.5.

Let EK,ϱ(α)E_{K,\varrho}(\alpha) be the injective hull of RK,ϱ(α)/𝔪K,ϱ(α)R_{K,\varrho}(\alpha)/\mathfrak{m}_{K,\varrho}(\alpha) and

D:MD(M)=homR¯K,ϱ(α)(M,EK,ϱ(α))D:M\longrightarrow D(M)=\hom_{\overline{R}_{K,\varrho}(\alpha)}(M,E_{K,\varrho}(\alpha))

be the Maltis duality functor for the local artinian ring R¯K,ϱ(α)\overline{R}_{K,\varrho}(\alpha) where MM is any finitely generated R¯K,ϱ(α)\overline{R}_{K,\varrho}(\alpha)-module. We have the following properties:

  • (a)

    DD is exact and DD(M)D\circ D(M) is canonically isomorphic to MM;

  • (b)

    lengthR¯K,ϱ(α)D(M)=lengthR¯K,ϱ(α)M\operatorname{length}_{\overline{R}_{K,\varrho}(\alpha)}D(M)=\operatorname{length}_{\overline{R}_{K,\varrho}(\alpha)}M;

  • (c)

    for every ideal II of R¯K,ϱ(α)\overline{R}_{K,\varrho}(\alpha), we have D(M[I])D(M)/ID(M)D(M[I])\cong D(M)/ID(M) and D(M/IM)D(M)[I]D(M/IM)\cong D(M)[I];

  • (d)

    D(R¯K,ϱ(α))=EK,ϱ(α)D(\overline{R}_{K,\varrho}(\alpha))=E_{K,\varrho}(\alpha) and D(R¯K,ϱ(α)/𝔪¯K,ϱ(α))R¯K,ϱ(α)/𝔪¯K,ϱ(α)D(\overline{R}_{K,\varrho}(\alpha)/\overline{\mathfrak{m}}_{K,\varrho}(\alpha))\cong\overline{R}_{K,\varrho}(\alpha)/\overline{\mathfrak{m}}_{K,\varrho}(\alpha);

  • (e)

    MR¯K,ϱ(α)D(N)D(homR¯K,ϱ(α)(M,N))M\otimes_{\overline{R}_{K,\varrho}(\alpha)}D(N)\cong D\bigl{(}\hom_{\overline{R}_{K,\varrho}(\alpha)}(M,N)\bigr{)}.

Lemma 4.3.6.

With the previous notations, we have

(σ¯K,ϱ(α)R¯K,ϱ(α)ρ¯K,ϱ(α))[𝔪¯K,ϱ(α)]σ¯K,ϱ(α)/𝔪¯K,ϱ(α)𝔽¯lρ¯K,ϱ(α)[𝔪¯K,ϱ(α)]σ¯K,ϱ(α)[𝔪¯K,ϱ(α)]𝔽¯lρ¯K,ϱ(α)/𝔪¯K,ϱ(α).\begin{array}[]{ll}\Bigl{(}\overline{\sigma}_{K,\varrho}(\alpha)\otimes_{\overline{R}_{K,\varrho}(\alpha)}\overline{\rho}_{K,\varrho}(\alpha)\Bigr{)}[\overline{\mathfrak{m}}_{K,\varrho}(\alpha)]&\cong\overline{\sigma}_{K,\varrho}(\alpha)/\overline{\mathfrak{m}}_{K,\varrho}(\alpha)\otimes_{\overline{\mathbb{F}}_{l}}\overline{\rho}_{K,\varrho}(\alpha)[\overline{\mathfrak{m}}_{K,\varrho}(\alpha)]\\ &\cong\overline{\sigma}_{K,\varrho}(\alpha)[\overline{\mathfrak{m}}_{K,\varrho}(\alpha)]\otimes_{\overline{\mathbb{F}}_{l}}\overline{\rho}_{K,\varrho}(\alpha)/\overline{\mathfrak{m}}_{K,\varrho}(\alpha).\end{array}
Proof.

From the previous properties (σ¯K,ϱ(α)R¯K,ϱ(α)ρ¯K,ϱ(α))[𝔪¯K,ϱ(α)]\Bigl{(}\overline{\sigma}_{K,\varrho}(\alpha)\otimes_{\overline{R}_{K,\varrho}(\alpha)}\overline{\rho}_{K,\varrho}(\alpha)\Bigr{)}[\overline{\mathfrak{m}}_{K,\varrho}(\alpha)] is isomorphic to

(D2(σ¯K,ϱ(α))R¯K,ϱ(α)ρ¯K,ϱ(α))[𝔪¯K,ϱ(α)]D(homR¯K,ϱ(α)(ρ¯K,ϱ(α),D(σ¯K,ϱ(α))))[𝔪¯K,ϱ(α)]D(homR¯K,ϱ(α)(ρ¯K,ϱ(α),D(σ¯K,ϱ(α)))R¯K,ϱ(α)R¯K,ϱ(α)/𝔪¯K,ϱ(α))D(homR¯K,ϱ(α)(ρ¯K,ϱ(α),D(σ¯K,ϱ(α))/𝔪¯K,ϱ(α)))D(homR¯K,ϱ(α)((ρ¯K,ϱ(α)),D(σ¯K,ϱ(α)[𝔪¯K,ϱ(α)]))ρ¯K,ϱ(α)R¯K,ϱ(α)D2(σ¯K,ϱ(α)[𝔪¯K,ϱ(α)])ρ¯K,ϱ(α)R¯K,ϱ(α)σ¯K,ϱ(α)[𝔪¯K,ϱ(α)]ρ¯K,ϱ(α)/𝔪¯K,ϱ(α)R¯K,ϱ(α)/𝔪¯K,ϱσ¯K,ϱ(α)[𝔪¯K,ϱ(α)]\begin{array}[]{l}\cong\Bigl{(}D^{2}\bigl{(}\overline{\sigma}_{K,\varrho}(\alpha)\bigr{)}\otimes_{\overline{R}_{K,\varrho}(\alpha)}\overline{\rho}_{K,\varrho}(\alpha)\Bigr{)}[\overline{\mathfrak{m}}_{K,\varrho}(\alpha)]\cong D\Bigl{(}\hom_{\overline{R}_{K,\varrho}(\alpha)}(\overline{\rho}_{K,\varrho}(\alpha),D(\overline{\sigma}_{K,\varrho}(\alpha)))\Bigr{)}[\overline{\mathfrak{m}}_{K,\varrho}(\alpha)]\\ \cong D\Bigl{(}\hom_{\overline{R}_{K,\varrho}(\alpha)}(\overline{\rho}_{K,\varrho}(\alpha),D(\overline{\sigma}_{K,\varrho}(\alpha)))\otimes_{\overline{R}_{K,\varrho}(\alpha)}\overline{R}_{K,\varrho}(\alpha)/\overline{\mathfrak{m}}_{K,\varrho}(\alpha)\Bigr{)}\\ \cong D\Bigl{(}\hom_{\overline{R}_{K,\varrho}(\alpha)}\bigl{(}\overline{\rho}_{K,\varrho}(\alpha),D(\overline{\sigma}_{K,\varrho}(\alpha))/\overline{\mathfrak{m}}_{K,\varrho}(\alpha))\Bigr{)}\\ \cong D\Bigl{(}\hom_{\overline{R}_{K,\varrho}(\alpha)}(\bigl{(}\overline{\rho}_{K,\varrho}(\alpha)),D(\overline{\sigma}_{K,\varrho}(\alpha)[\overline{\mathfrak{m}}_{K,\varrho}(\alpha)])\Bigr{)}\\ \cong\overline{\rho}_{K,\varrho}(\alpha)\otimes_{\overline{R}_{K,\varrho}(\alpha)}D^{2}(\overline{\sigma}_{K,\varrho}(\alpha)[\overline{\mathfrak{m}}_{K,\varrho}(\alpha)])\\ \cong\overline{\rho}_{K,\varrho}(\alpha)\otimes_{\overline{R}_{K,\varrho}(\alpha)}\overline{\sigma}_{K,\varrho}(\alpha)[\overline{\mathfrak{m}}_{K,\varrho}(\alpha)]\cong\overline{\rho}_{K,\varrho}(\alpha)/\overline{\mathfrak{m}}_{K,\varrho}(\alpha)\otimes_{\overline{R}_{K,\varrho}(\alpha)/\overline{\mathfrak{m}}_{K,\varrho}}\overline{\sigma}_{K,\varrho}(\alpha)[\overline{\mathfrak{m}}_{K,\varrho}(\alpha)]\end{array}

The second isomorphism is obtained by the symmetry of the tensor product in the proof. ∎

With the notations of §4.2, for a fixed ϱ\varrho, theorem 4.2.2 gives us the existence of 𝔪~𝔪\widetilde{\mathfrak{m}}\subseteq\mathfrak{m} such that Π𝔪~,vstlϱ(𝔪)(πv)×?\Pi_{\widetilde{\mathfrak{m}},v}\cong\mathrm{st}_{l_{\varrho}(\mathfrak{m})}(\pi_{v})\times? where πv\pi_{v} is a lift of ϱ\varrho and ?? is a representation of GLdlϱ(𝔪)g(Fv)\operatorname{GL}_{d-l_{\varrho}(\mathfrak{m})g}(F_{v}) such that the supercuspidal support of its modulo ll reduction does not contain ϱ\varrho. We consider any α0\alpha_{0} big enough such that Π𝔪~,v\Pi_{\widetilde{\mathfrak{m}},v} has non trivial vectors invariant under Kv(α0)\operatorname{K}_{v}(\alpha_{0}).

For αα0\alpha\geq\alpha_{0}, let kk be maximal such that 𝔪¯K,ϱ(α)kN¯𝔪,ϱlϱ(𝔪)1\overline{\mathfrak{m}}_{K,\varrho}(\alpha)^{k}\overline{N}_{\mathfrak{m},\varrho}^{l_{\varrho}(\mathfrak{m})-1} is non zero and so has its image contained in ρ¯K,ϱ(α)[𝔪¯K,ϱ(α)]\overline{\rho}_{K,\varrho}(\alpha)[\overline{\mathfrak{m}}_{K,\varrho}(\alpha)]. Consider any a𝔪¯K,ϱ(α)ka\in\overline{\mathfrak{m}}_{K,\varrho}(\alpha)^{k} such that aN¯𝔪,ϱlϱ(𝔪)10a\overline{N}_{\mathfrak{m},\varrho}^{l_{\varrho}(\mathfrak{m})-1}\neq 0.171717think that N¯𝔪,ϱlϱ(𝔪)1\overline{N}_{\mathfrak{m},\varrho}^{l_{\varrho}(\mathfrak{m})-1} is given by a matrix in GLd(R¯K,ϱ(α))\operatorname{GL}_{d}(\overline{R}_{K,\varrho}(\alpha)) It then induces a map gg

σ¯K,ϱ(α)R¯K,ϱ(α)ρ¯K,ϱ(α)\displaystyle{\overline{\sigma}_{K,\varrho}(\alpha)\otimes_{\overline{R}_{K,\varrho}(\alpha)}\overline{\rho}_{K,\varrho}(\alpha)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}aN¯𝔪,ϱlϱ(𝔪)1\scriptstyle{a\overline{N}_{\mathfrak{m},\varrho}^{l_{\varrho}(\mathfrak{m})-1}}σ¯K,ϱ(α)R¯K,ϱ(α)ρ¯K,ϱ(α)[𝔪¯K,ϱ(α)]\displaystyle{\overline{\sigma}_{K,\varrho}(\alpha)\otimes_{\overline{R}_{K,\varrho}(\alpha)}\overline{\rho}_{K,\varrho}(\alpha)[\overline{\mathfrak{m}}_{K,\varrho}(\alpha)]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}(σ¯K,ϱ(α)R¯K,ϱ(α)ρ¯K,ϱ(α))/𝔪¯K,ϱ(α)\displaystyle{\bigl{(}\overline{\sigma}_{K,\varrho}(\alpha)\otimes_{\overline{R}_{K,\varrho}(\alpha)}\overline{\rho}_{K,\varrho}(\alpha)\bigr{)}/\overline{\mathfrak{m}}_{K,\varrho}(\alpha)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}g\scriptstyle{g}σ¯K,ϱ(α)/𝔪¯K,ϱ(α)𝔽¯lρ¯K,ϱ(α)[𝔪¯K,ϱ(α)]\displaystyle{\overline{\sigma}_{K,\varrho}(\alpha)/\overline{\mathfrak{m}}_{K,\varrho}(\alpha)\otimes_{\overline{\mathbb{F}}_{l}}\overline{\rho}_{K,\varrho}(\alpha)[\overline{\mathfrak{m}}_{K,\varrho}(\alpha)]}σ¯K,ϱ(α)/𝔪¯K,ϱ(α)𝔽¯lρ¯K,ϱ(α))/𝔪¯K,ϱ(α)\displaystyle{\overline{\sigma}_{K,\varrho}(\alpha)/\overline{\mathfrak{m}}_{K,\varrho}(\alpha)\otimes_{\overline{\mathbb{F}}_{l}}\overline{\rho}_{K,\varrho}(\alpha)\bigr{)}/\overline{\mathfrak{m}}_{K,\varrho}(\alpha)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}(σ¯K,ϱ(α)R¯K,ϱ(α)ρ¯K,ϱ(α))[𝔪¯K,ϱ(α)]\displaystyle{\Bigl{(}\overline{\sigma}_{K,\varrho}(\alpha)\otimes_{\overline{R}_{K,\varrho}(\alpha)}\overline{\rho}_{K,\varrho}(\alpha)\Bigr{)}[\overline{\mathfrak{m}}_{K,\varrho}(\alpha)]\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}σ¯K,ϱ(α)R¯K,ϱ(α)ρ¯K,ϱ(α)\displaystyle{\overline{\sigma}_{K,\varrho}(\alpha)\otimes_{\overline{R}_{K,\varrho}(\alpha)}\overline{\rho}_{K,\varrho}(\alpha)}

We now want to understand σ¯K,ϱ(α)/𝔪¯K,ϱ(α)𝔽¯lρ¯K,ϱ(α))/𝔪¯K,ϱ(α)\overline{\sigma}_{K,\varrho}(\alpha)/\overline{\mathfrak{m}}_{K,\varrho}(\alpha)\otimes_{\overline{\mathbb{F}}_{l}}\overline{\rho}_{K,\varrho}(\alpha)\bigr{)}/\overline{\mathfrak{m}}_{K,\varrho}(\alpha) as a 𝔽¯l[𝕋v(Kv(α))]\overline{\mathbb{F}}_{l}[{\mathbb{T}}_{v}(\operatorname{K}_{v}(\alpha))]-module. Recall that the action of 𝕋v(Kv(α)]{\mathbb{T}}_{v}(\operatorname{K}_{v}(\alpha)] commutes with those of R¯K,ϱ(α)\overline{R}_{K,\varrho}(\alpha) and Gal(F¯/F)\operatorname{Gal}(\overline{F}/F). Consider

xρ¯K,ϱ(α)/𝔪¯K,ϱ(α) with 0z:=aN¯𝔪,ϱlϱ(𝔪)1(x)ρ¯K,ϱ(α)[𝔪¯K,ϱ(α)].x\in\overline{\rho}_{K,\varrho}(\alpha)/\overline{\mathfrak{m}}_{K,\varrho}(\alpha)\hbox{ with }0\neq z:=a\overline{N}_{\mathfrak{m},\varrho}^{l_{\varrho}(\mathfrak{m})-1}(x)\in\overline{\rho}_{K,\varrho}(\alpha)[\overline{\mathfrak{m}}_{K,\varrho}(\alpha)].

The image of

g:σ¯K,ϱ(α)/𝔪¯K,ϱ(α)𝔽¯lρ¯K,ϱ(α)/𝔪¯K,ϱ(α)σ¯K,ϱ(α)𝔽¯lρ¯K,ϱ(α)[𝔪¯K,ϱ(α)](σ¯K,ϱ(α)R¯K,ϱ(α)ρ¯K,ϱ(α))[𝔪¯K,ϱ(α)]g:\overline{\sigma}_{K,\varrho}(\alpha)/\overline{\mathfrak{m}}_{K,\varrho}(\alpha)\otimes_{\overline{\mathbb{F}}_{l}}\overline{\rho}_{K,\varrho}(\alpha)/\overline{\mathfrak{m}}_{K,\varrho}(\alpha)\longrightarrow\\ \overline{\sigma}_{K,\varrho}(\alpha)\otimes_{\overline{\mathbb{F}}_{l}}\overline{\rho}_{K,\varrho}(\alpha)[\overline{\mathfrak{m}}_{K,\varrho}(\alpha)]\cong(\overline{\sigma}_{K,\varrho}(\alpha)\otimes_{\overline{R}_{K,\varrho}(\alpha)}\overline{\rho}_{K,\varrho}(\alpha))[\overline{\mathfrak{m}}_{K,\varrho}(\alpha)]

contains σ¯K,ϱ(α)/𝔪¯K,ϱ(α)𝔽¯l𝔽¯lz\overline{\sigma}_{K,\varrho}(\alpha)/\overline{\mathfrak{m}}_{K,\varrho}(\alpha)\otimes_{\overline{\mathbb{F}}_{l}}\overline{\mathbb{F}}_{l}z which is then also contained in the image of (N¯𝔪,ϱcoho)lϱ(𝔪)1(\overline{N}_{\mathfrak{m},\varrho}^{coho})^{l_{\varrho}(\mathfrak{m})-1} i.e., up to multiplicities,

H0(ShKvKv(α),s¯v,pj!=lϱ(𝔪)gHT𝔽¯l(ϱ,stlϱ(𝔪)(ϱ)))𝔪.H^{0}(\operatorname{Sh}_{K^{v}\operatorname{K}_{v}(\alpha),\bar{s}_{v}},\kern 0.5pt\vphantom{j}^{p}\kern-0.5ptj^{=l_{\varrho}(\mathfrak{m})g}_{!*}HT_{\overline{\mathbb{F}}_{l}}(\varrho,\mathrm{st}_{l_{\varrho}(\mathfrak{m})}(\varrho)))_{\mathfrak{m}}. (21)

Indeed, recall that, cf. the fact after 4.2.1,

H0(ShKvKv(α),s¯v,pj!=tgHT¯l(πv,Πt))𝔪=(0),H^{0}(\operatorname{Sh}_{K^{v}\operatorname{K}_{v}(\alpha),\bar{s}_{v}},\kern 0.5pt\vphantom{j}^{p}\kern-0.5ptj^{=tg}_{!*}HT_{\overline{\mathbb{Q}}_{l}}(\pi_{v},\Pi_{t}))_{\mathfrak{m}}=(0),

for every t>lϱ(𝔪)t>l_{\varrho}(\mathfrak{m}) so that, as these cohomology groups are torsion free,

H0(ShKvKv(α),s¯v,Ψϱ,𝔽¯l)𝔪H0(ShKvKv(α),s¯v,Fil!lϱ(𝔪)(Ψϱ))𝔪¯l𝔽¯lH^{0}(\operatorname{Sh}_{K^{v}\operatorname{K}_{v}(\alpha),\bar{s}_{v}},\Psi_{\varrho,\overline{\mathbb{F}}_{l}})_{\mathfrak{m}}\cong H^{0}(\operatorname{Sh}_{K^{v}\operatorname{K}_{v}(\alpha),\bar{s}_{v}},\operatorname{Fil}^{l_{\varrho}(\mathfrak{m})}_{!}(\Psi_{\varrho}))_{\mathfrak{m}}\otimes_{\overline{\mathbb{Z}}_{l}}\overline{\mathbb{F}}_{l}

and

H0(ShKvKv(α),s¯v,gr!lϱ(𝔪)(Ψϱ,𝔽¯l))𝔪πvCusp(ϱ)H0(ShKvKv(α),s¯v,pj!=lϱ(𝔪)gHT(πv,stlϱ(𝔪)(πv))(1lϱ(𝔪)2)))𝔪¯l𝔽¯l.H^{0}(\operatorname{Sh}_{K^{v}\operatorname{K}_{v}(\alpha),\bar{s}_{v}},\operatorname{gr}^{l_{\varrho}(\mathfrak{m})}_{!}(\Psi_{\varrho,\overline{\mathbb{F}}_{l}}))_{\mathfrak{m}}\cong\\ \bigoplus_{\pi_{v}\in\operatorname{Cusp}(\varrho)}H^{0}(\operatorname{Sh}_{K^{v}\operatorname{K}_{v}(\alpha),\bar{s}_{v}},\kern 0.5pt\vphantom{j}^{p}\kern-0.5ptj^{=l_{\varrho}(\mathfrak{m})g}_{!*}HT(\pi_{v},\mathrm{st}_{l_{\varrho}(\mathfrak{m})}(\pi_{v}))(\frac{1-l_{\varrho}(\mathfrak{m})}{2})))_{\mathfrak{m}}\otimes_{\overline{\mathbb{Z}}_{l}}\overline{\mathbb{F}}_{l}.

Moreover (N¯𝔪,ϱcoho)lϱ(𝔪)1(\overline{N}_{\mathfrak{m},\varrho}^{coho})^{l_{\varrho}(\mathfrak{m})-1} is zero on H0(ShKvKv(α),s¯v,Fil!lϱ(𝔪)1(Ψϱ))𝔪¯l𝔽¯lH^{0}(\operatorname{Sh}_{K^{v}\operatorname{K}_{v}(\alpha),\bar{s}_{v}},\operatorname{Fil}^{l_{\varrho}(\mathfrak{m})-1}_{!}(\Psi_{\varrho}))_{\mathfrak{m}}\otimes_{\overline{\mathbb{Z}}_{l}}\overline{\mathbb{F}}_{l}.

Concerning the action of 𝔽¯l[𝕋v(Kv(α))]\overline{\mathbb{F}}_{l}[{\mathbb{T}}_{v}(\operatorname{K}_{v}(\alpha))], recall that the image of (21), in the Grothendieck group of 𝔽¯l[𝕋v(Kv(α))]\overline{\mathbb{F}}_{l}[{\mathbb{T}}_{v}(\operatorname{K}_{v}(\alpha))]-modules, is equal to

𝔪~𝔪n𝔪~rl(Π𝔪~)KvKv(α),\sum_{\widetilde{\mathfrak{m}}\subseteq\mathfrak{m}}n_{\widetilde{\mathfrak{m}}}r_{l}\Bigl{(}\Pi_{\widetilde{\mathfrak{m}}^{\infty}}\Bigr{)}^{K^{v}\operatorname{K}_{v}(\alpha)}, (22)

where

  • n𝔪~n_{\widetilde{\mathfrak{m}}} is a positive integer we do not need to precise,

  • and the sum goes on the set of 𝔪~𝔪\widetilde{\mathfrak{m}}\subseteq\mathfrak{m} such that Π𝔪~,v\Pi_{\widetilde{\mathfrak{m}},v} is of the form stlϱ(𝔪)(πv)×?\mathrm{st}_{l_{\varrho}(\mathfrak{m})}(\pi_{v})\times? where πv\pi_{v} is a lift of ϱ\varrho and ?? is a representation of GLdlϱ(𝔪)g(Fv)\operatorname{GL}_{d-l_{\varrho}(\mathfrak{m})g}(F_{v}) whose modulo ll reduction does not contain ϱ\varrho in its supercuspidal support.

We then also deduce that

σ¯K,ϱ(α)/𝔪¯K,ϱ(α)𝔽¯l𝔽¯lxσ¯K,ϱ(α)/𝔪¯K,ϱ(α)𝔽¯lρ¯K,ϱ(α))/𝔪¯K,ϱ(α)\overline{\sigma}_{K,\varrho}(\alpha)/\overline{\mathfrak{m}}_{K,\varrho}(\alpha)\otimes_{\overline{\mathbb{F}}_{l}}\overline{\mathbb{F}}_{l}x\subseteq\overline{\sigma}_{K,\varrho}(\alpha)/\overline{\mathfrak{m}}_{K,\varrho}(\alpha)\otimes_{\overline{\mathbb{F}}_{l}}\overline{\rho}_{K,\varrho}(\alpha)\bigr{)}/\overline{\mathfrak{m}}_{K,\varrho}(\alpha)

as a 𝔽¯l[𝕋v(Kv(α))]\overline{\mathbb{F}}_{l}[{\mathbb{T}}_{v}(\operatorname{K}_{v}(\alpha))]-module, is, up to multiplicities, equal to (22). As the action of 𝕋v(Kv(α)){\mathbb{T}}_{v}(\operatorname{K}_{v}(\alpha)) commutes with those of Gal(F¯/F)\operatorname{Gal}(\overline{F}/F), the same is true for the 𝔽¯l[Gal(F¯/F)]\overline{\mathbb{F}}_{l}[\operatorname{Gal}(\overline{F}/F)]-module generated by σ¯K,ϱ(α)/𝔪¯K,ϱ(α)𝔽¯l𝔽¯lx\overline{\sigma}_{K,\varrho}(\alpha)/\overline{\mathfrak{m}}_{K,\varrho}(\alpha)\otimes_{\overline{\mathbb{F}}_{l}}\overline{\mathbb{F}}_{l}x. Recall that by hypothesis, ρ¯K,ϱ(α)/𝔪¯K,ϱ(α)\overline{\rho}_{K,\varrho}(\alpha)/\overline{\mathfrak{m}}_{K,\varrho}(\alpha) is irreducible, so that the 𝔽¯l[Gal(F¯/F)]\overline{\mathbb{F}}_{l}[\operatorname{Gal}(\overline{F}/F)]-module generated by xx is the all of ρ¯K,ϱ(α)/𝔪¯K,ϱ(α)\overline{\rho}_{K,\varrho}(\alpha)/\overline{\mathfrak{m}}_{K,\varrho}(\alpha) and

(σ¯K,ϱ(α)R¯K,ϱ(α)ρ¯K,ϱ(α))/𝔪¯K,ϱ(α)σ¯K,ϱ(α)/𝔪¯K,ϱ(α)𝔽¯lρ¯K,ϱ(α))/𝔪¯K,ϱ(α)\bigl{(}\overline{\sigma}_{K,\varrho}(\alpha)\otimes_{\overline{R}_{K,\varrho}(\alpha)}\overline{\rho}_{K,\varrho}(\alpha)\bigr{)}/\overline{\mathfrak{m}}_{K,\varrho}(\alpha)\cong\overline{\sigma}_{K,\varrho}(\alpha)/\overline{\mathfrak{m}}_{K,\varrho}(\alpha)\otimes_{\overline{\mathbb{F}}_{l}}\overline{\rho}_{K,\varrho}(\alpha)\bigr{)}/\overline{\mathfrak{m}}_{K,\varrho}(\alpha)

as a 𝔽¯l[𝕋v(Kv(α))]\overline{\mathbb{F}}_{l}[{\mathbb{T}}_{v}(\operatorname{K}_{v}(\alpha))]-module, is, up to multiplicities, equal to (22). We then conclude that as a 𝔽¯l\overline{\mathbb{F}}_{l}-representation of GLd(Fv)\operatorname{GL}_{d}(F_{v}), every irreducible constituant of

H0(ShKv(),η¯v,𝔽¯l)𝔪/𝔪=limα(σ¯K,ϱ(α)R¯K,ϱ(α)ρ¯K,ϱ(α))/𝔪¯K,ϱ(α)H^{0}(\operatorname{Sh}_{K^{v}(\infty),\bar{\eta}_{v}},\overline{\mathbb{F}}_{l})_{\mathfrak{m}}/\mathfrak{m}=\lim_{\rightarrow\alpha}\bigl{(}\overline{\sigma}_{K,\varrho}(\alpha)\otimes_{\overline{R}_{K,\varrho}(\alpha)}\overline{\rho}_{K,\varrho}(\alpha)\bigr{)}/\overline{\mathfrak{m}}_{K,\varrho}(\alpha)

is of the form stlϱ(𝔪)(ϱ)×?\mathrm{st}_{l_{\varrho}(\mathfrak{m})}(\varrho)\times? where ϱ\varrho does not belong to the supercuspidal support of ??. Varying ϱ\varrho we conclude that every irreducible 𝔽¯l[GLd(Fv)]\overline{\mathbb{F}}_{l}[\operatorname{GL}_{d}(F_{v})]-constituant of H0(ShKv(),η¯v,𝔽¯l)𝔪/𝔪¯K,ϱH^{0}(\operatorname{Sh}_{K^{v}(\infty),\bar{\eta}_{v}},\overline{\mathbb{F}}_{l})_{\mathfrak{m}}/\overline{\mathfrak{m}}_{K,\varrho} is isomorphic to ×ϱstlϱ(𝔪)(ϱ)\bigtimes_{\varrho}\mathrm{st}_{l_{\varrho}(\mathfrak{m})}(\varrho), i.e. is generic.

Consider finally an irreducible 𝔽¯l[GLd(Fv)]\overline{\mathbb{F}}_{l}[GL_{d}(F_{v})]-quotient VV of H0(ShKv(),η¯v,𝔽¯l)𝔪H^{0}(\operatorname{Sh}_{K^{v}(\infty),\bar{\eta}_{v}},\overline{\mathbb{F}}_{l})_{\mathfrak{m}}: then VV/𝔪VV\cong V/\mathfrak{m}V is a quotient of H0(ShKv(),η¯v,𝔽¯l)𝔪/𝔪H^{0}(\operatorname{Sh}_{K^{v}(\infty),\bar{\eta}_{v}},\overline{\mathbb{F}}_{l})_{\mathfrak{m}}/\mathfrak{m} and so is necessary generic as a 𝔽¯l\overline{\mathbb{F}}_{l}-representation of GLd(Fv)\operatorname{GL}_{d}(F_{v}).

Using proposition 3.7 (3) of [NT16], through Verdier duality, we obtain the genericity of any irreducible 𝔽¯l[GLd(Fv)]\overline{\mathbb{F}}_{l}[\operatorname{GL}_{d}(F_{v})]-submodules of H0(ShKv(),η¯v,𝔽¯l)𝔪H^{0}(\operatorname{Sh}_{K^{v}(\infty),\bar{\eta}_{v}},\overline{\mathbb{F}}_{l})_{\mathfrak{m}}, which finishes the proof.

References

  • [BLGGT14] Thomas Barnet-Lamb, Toby Gee, David Geraghty, and Richard Taylor, Potential automorphy and change of weight, Ann. of Math. (2) 179 (2014), no. 2, 501–609. MR 3152941
  • [Boy09] P. Boyer, Monodromie du faisceau pervers des cycles évanescents de quelques variétés de Shimura simples, Invent. Math. 177 (2009), no. 2, 239–280. MR MR2511742
  • [Boy10] by same author, Cohomologie des systèmes locaux de Harris-Taylor et applications, Compositio 146 (2010), no. 2, 367–403.
  • [Boy11] by same author, Réseaux d’induction des représentations elliptiques de Lubin-Tate, Journal of Algebra 336, issue 1 (2011), 28–52.
  • [Boy14] by same author, Filtrations de stratification de quelques variétés de Shimura simples, Bulletin de la SMF 142, fascicule 4 (2014), 777–814.
  • [Boy19] by same author, Sur la torsion dans la cohomologie des variétés de Shimura de Kottwitz-Harris-Taylor, Journal of the Inst. Math. of Jussieu 18, issue 3 (may 2019), 499 – 517.
  • [Boy20] by same author, Groupe mirabolique, stratification de Newton raffinée et cohomologie des espaces de Lubin-Tate, Bull. SMF 148 Fascicule 1 (2020), 1–23.
  • [Boy22] by same author, Ihara’s lemma and level rising in higher dimension, Journal of the Inst. Math. of Jussieu 21 (2022), 1701–1726.
  • [Boy23a] by same author, Galois irreducibility implies cohomology freeness for KHT shimura varieties, Journal de l’Ecole Polytechnique 10 (2023), 199–232.
  • [Boy23b] by same author, La cohomologie des espaces de Lubin-Tate est libre, Duke Math. Journal (june 2023), 1531–1622.
  • [BZ77] I.N. Bernstein and A.V. Zelevinsky, Induced representations of reductive p-adic groups. I., Ann. Scient. de l’ENS 4e série, tome 10 n4 (1977), 441–472 (English).
  • [CEG+16] A. Caraiani, M. Emerton, T. Gee, D. Geraghty, V. Paškūnas, and S. W. Shin, Patching and the pp-adic local Langlands correspondence, Camb. J. Math. 4 (2016), no. 2, 197–287. MR 3529394
  • [CHT08] L. Clozel, M. Harris, and R. Taylor, Automorphy for some ll-adic lifts of automorphic mod ll Galois representations, Publ. Math. Inst. Hautes Études Sci. (2008), no. 108, 1–181, With Appendix A, summarizing unpublished work of Russ Mann, and Appendix B by Marie-France Vignéras. MR 2470687
  • [DT94] F. Diamond and R. Taylor, Non-optimal levels of mod l modular representations, Invent. Math. 115, no. 3 (1994), 435?462.
  • [Eme] M. Emerton, Local-global compatibility in the pp-adic Langlands program for GL2/\mathrm{GL}_{2/{\mathbb{Q}}}, http://www.math.uchicago.edu/~emerton/pdffiles/lg.pdf, preprint (2011).
  • [Gee11] T. Gee, Automorphic lifts of prescribed types, Math. Ann. 350 (2011), no. 1, 107–144. MR 2785764 (2012c:11118)
  • [HT01] M. Harris and R. Taylor, The geometry and cohomology of some simple Shimura varieties, Annals of Mathematics Studies, vol. 151, Princeton University Press, Princeton, NJ, 2001, With an appendix by Vladimir G. Berkovich. MR 1876802 (2002m:11050)
  • [Ill94] L. Illusie, Autour du théorème de monodromie locale, Périodes pp-adiques, Astérisque, no. 223, 1994.
  • [Mos21] G. Moss, The universal unramified module for GL(n)\mathrm{GL}(n) and the Ihara conjecture, Algebra and number theory 15 (2021), 1181–1212.
  • [MS21] J. Manning and J. Shotton, Ihara’s lemma for Shimura curves over totally real fields via patching, Math. Ann. 379 (2021), 187–234.
  • [NF19] J. Nekovar and K. Fayad, Semisimplicity of certain Galois representations occurring in étale cohomology of unitary Shimura varieties, Amer. J. of Math. 141 (2019), 503–530.
  • [NT16] J. Newton and J. A. Thorne, Torsion galois representations over CM fields and hecke algebras in the derived category, Forum of Mathematics, Sigma 4 (2016), e21.
  • [Sch18] P. Scholze, On the p-adic cohomology of the Lubin-Tate tower, Ann. Sci. Ec. Norm. Supér. (4) 51 (2018), no. 4, 811–863.
  • [Tay08] R. Taylor, Automorphy for some ll-adic lifts of automorphic mod ll representations. ii, Pub. Math. IHES 108 (2008), 183–239.
  • [Vig96] M.-F. Vignéras, Représentations ll-modulaires d’un groupe réductif pp-adique avec lpl\neq p, Progress in Mathematics, vol. 137, Birkhäuser Boston Inc., Boston, MA, 1996. MR MR1395151 (97g:22007)
  • [Zel80] A. V. Zelevinsky, Induced representations of reductive p{p}-adic groups. II. On irreducible representations of GL(n){\rm GL}(n), Ann. Sci. École Norm. Sup. (4) 13 (1980), no. 2, 165–210. MR MR584084 (83g:22012)