This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Improved estimates for the argument and zero-counting of Riemann zeta-function
(With an appendix by Andrew Fiori)

Chiara Bellotti School of Science
The University of New South Wales, Canberra, Australia
c.bellotti@unsw.edu.au
 and  Peng-Jie Wong National Sun Yat-Sen University
Department of Applied Mathematics
Kaohsiung City, Taiwan
pjwong@math.nsysu.edu.tw
Abstract.

In this article, we improve the recent work of Hasanalizade, Shen, and Wong by establishing

|N(T)T2πlog(T2πe)|0.10076logT+0.24460loglogT+8.08292,\left|N(T)-\frac{T}{2\pi}\log\left(\frac{T}{2\pi e}\right)\right|\leq 0.10076\log T+0.24460\log\log T+8.08292,

for every TeT\geq e, where N(T)N(T) is the number of non-trivial zeros ρ=β+iγ\rho=\beta+i\gamma, with 0<γT0<\gamma\leq T, of the Riemann zeta-function ζ(s)\zeta(s). The main source of improvement comes from implementing new subconvexity bounds for ζ(σ+it)\zeta(\sigma+it) on some σk\sigma_{k}-lines inside the critical strip.

Key words and phrases:
Riemann zeta-function, zero-density estimates, explicit estimates
2020 Mathematics Subject Classification:
Primary 11M06, 11M26. Secondary 11Y35
P.J.W. is currently supported by the NSTC grant 111-2115-M-110-005-MY3. C.B. is partially supported by the AustMS WIMSIG Cheryl E. Praeger Travel Award. All the computation has been made using the Python program available on GitHub at [Bel].

1. Introduction

The main objective of this article is to improve the known estimates for the number of non-trivial zeros ρ=β+iγ\rho=\beta+i\gamma, with 0<γT0<\gamma\leq T, of the Riemann zeta-function ζ(s)\zeta(s). More precisely, we shall study

N(T)=#{ρζ(ρ)=0, 0<β<1, 0<γT}N(T)=\#\{\rho\in\mathbb{C}\mid\zeta(\rho)=0,\ 0<\beta<1,\ 0<\gamma\leq T\}

for T>0T>0. The first explicit bound for N(T)N(T) was obtained by von Mangoldt [VM05], and it has been studied and improved since then. It shall be worthwhile mentioning that the importance of improving explicit bounds for N(T)N(T) allows one to estimate sums over zeros of ζ(s)\zeta(s), it leads to the explicit bounds for the prime-counting functions π(x)\pi(x) and ψ(x)\psi(x) (see, e.g., [FK15]).

Our main theorem is the following estimate that improves the recent work of Hasanalizade, Shen, and Wong [HSW22]:

Theorem 1.1.

For every TeT\geq e, we have

|N(T)T2πlog(T2πe)|0.10076logT+0.24460loglogT+8.08292\left|N(T)-\frac{T}{2\pi}\log\left(\frac{T}{2\pi e}\right)\right|\leq 0.10076\log T+0.24460\log\log T+8.08292

and

|N(T)T2πlog(T2πe)|0.11200logT+0.12567loglogT+3.77389.\left|N(T)-\frac{T}{2\pi}\log\left(\frac{T}{2\pi e}\right)\right|\leq 0.11200\log T+0.12567\log\log T+3.77389.

For the convenience of the reader, writing

(1.1) |N(T)T2πlog(T2πe)|C1logT+C2loglogT+C3,\left|N(T)-\frac{T}{2\pi}\log\left(\frac{T}{2\pi e}\right)\right|\leq C_{1}\log T+C_{2}\log\log T+C_{3},

we summarise the advances that have been made in Table 1 below.111Regrettably, as pointed out in [HSW22], there is an error in [Tru14]. Also, there is a typo in [HSW22] regarding the constant C3C_{3}. The value 9.36759.3675 is now substituted with 9.49259.4925.

C1C_{1} C2C_{2} C3C_{3} T0T_{0}
von Mangoldt [VM05] (1905) 0.4320 1.9167 13.0788 28.5580
Grossmann [Gro13] (1913) 0.2907 1.7862 7.0120 50
Backlund [Bac16] (1918) 0.1370 0.4430 5.2250 200
Rosser [Ros41] (1941) 0.1370 0.4430 2.4630 2
Trudgian [Tru12] (2012) 0.1700 0 2.8730 ee
Trudgian [Tru14] (2014) 0.1120 0.2780 3.3850 ee
Platt–Trudgian [PT15] (2015) 0.1100 0.2900 3.165 ee
Hasanalizade, Shen, and Wong [HSW22] (2022) 0.1038 0.2573 9.4925 ee
Table 1. Previous explicit bounds for N(T)N(T) in (1.1)

Note that the second estimate in Theorem 1.1 is sharper than Trudgian’s bound [Tru14] for T>378852T>378852.222This, together with Platt’s computation of S(T)S(T) as stated in (1.2), assures that Trudgian’s bound [Tru14] and all the explicit results relying on it remain valid.

Similar to [HSW22], we derive Theorem 1.1 from the following general result.

Theorem 1.2.

Let c,r,ηc,r,\eta be positive real numbers satisfying

12<cr<1c<η<14δ:=2cσ112<12<1+η<σ1:=c+(c1/2)2r<c+r-\frac{1}{2}<c-r<1-c<-\eta<\frac{1}{4}\leq\delta:=2c-\sigma_{1}-\frac{1}{2}<\frac{1}{2}<1+\eta<\sigma_{1}:=c+\frac{(c-1/2)^{2}}{r}<c+r

and θ1+η2.1\theta_{1+\eta}\leq 2.1, where θy\theta_{y} is defined in (3.32). Let c1,c2,t0c_{1},c_{2},t_{0} defined in (2.2), k1,k2,k3,t1k_{1},k_{2},k_{3},t_{1} defined in (2.3), and denote with nn the largest kk that we consider when using (2.4).
Let T0eT_{0}\geq e be fixed. Then for any TT0T\geq T_{0}, we have

|N(T)T2πlog(T2πe)|C1logT+min{C2loglogT+C3,C2loglogT+C3}\left|N(T)-\frac{T}{2\pi}\log\left(\frac{T}{2\pi e}\right)\right|\leq C_{1}\log T+\min\{C_{2}\log\log T+C_{3},C^{\prime}_{2}\log\log T+C^{\prime}_{3}\}

where the constants C1=C1(c,r,η,k2,n)C_{1}=C_{1}\left(c,r,\eta,k_{2},n\right), C2=C2(c,r,η,c2,k3,n)C_{2}=C_{2}\left(c,r,\eta,c_{2},k_{3},n\right), C2=C2(c,r,η,c2,k3,n)C^{\prime}_{2}=C^{\prime}_{2}\left(c,r,\eta,c_{2},k_{3},n\right), C3=C3(c,r,η,c1,c2,t0,k1,k2,k3,t1,n,T0)C_{3}=C_{3}(c,r,\eta,c_{1},c_{2},t_{0},k_{1},k_{2},k_{3},t_{1},n,T_{0}), C3=C3(c,r,η,c1,c2,t0,k1,k2,k3,t1,n,T0)C^{\prime}_{3}=C^{\prime}_{3}(c,r,\eta,c_{1},c_{2},t_{0},k_{1},k_{2},k_{3},t_{1},n,T_{0}) are defined in (3.44), (3.45), (3.46), (3.47), (3.48) respectively and some admissible values can be found in Table 2.

Remark.

The proof of Theorem 1.2 has its roots in the works of [Ben+21, Tru14, HSW22] and flourished by the following new inputs.
(i) We used various improved bounds for ζ(s)\zeta(s), including the estimates of Yang [Yan24] inside the critical strip. To implement these bounds, we further considered “nn-splitting” of [12,1][\frac{1}{2},1] in Section 3.1 (n=5n=5 gives nearly-optimal result for C1C_{1}). This is one of our key observations and leads us to refined estimates for fNf_{N} and Fc,rF_{c,r}.

(ii) Instead of just using the trivial bound |ζ(σ+iT)|ζ(2σ)ζ(σ)|\zeta(\sigma+iT)|\geq\frac{\zeta(2\sigma)}{\zeta(\sigma)} for σ>1\sigma>1, we provided an alternative method by applying a non-trivial estimate obtained by Leong recently (as stated in Lemma 2.2). In fact, the constants C2C_{2} and C3C_{3} in Theorem 1.2 are calculated via the trivial bound, while C2C_{2}^{\prime} and C3C_{3}^{\prime} are obtained by Leong’s bound. As may be noticed, Leong’s bound allows one to get a relatively small C3C_{3}^{\prime} at the expense of a larger C2C_{2}, which might be useful for certain applications.

(iii) We directly estimated |N(T)T2πlog(T2πe)|\left|N(T)-\frac{T}{2\pi}\log\left(\frac{T}{2\pi e}\right)\right| (which is useful for most applications). This particularly reduces C3C_{3} in the previous estimate of Hasanalizade, Shen, and Wong [HSW22] by roughly 18\frac{1}{8}.

We shall remark that the constant C1=0.10076C_{1}=0.10076 in Theorem 1.1 is the nearly-optimal value that one can obtain from Theorem 1.2 with the current knowledge on explicit estimates for ζ(s)\zeta(s). Also, it is possible to have smaller values of C2,C2C_{2},C^{\prime}_{2} or of C3,C3C_{3},C^{\prime}_{3}, at the expense of larger values for the other constants. Here, we provide two bounds with the smallest admissible C2,C2C_{2},C^{\prime}_{2} and C3,C3C_{3},C^{\prime}_{3}, respectively. (Particularly, the first estimate below is always sharper than Rosser’s bound [Ros41] for TeT\geq e.)

Corollary 1.3.

The following estimates hold for TeT\geq e:

|N(T)T2πlog(T2πe)|0.12355logT+min{0.06782loglogT+6.25781,0.62883loglogT+2.05840}\left|N(T)-\frac{T}{2\pi}\log\left(\frac{T}{2\pi e}\right)\right|\leq 0.12355\log T+\min\{0.06782\log\log T+6.25781,0.62883\log\log T+2.05840\}

and

|N(T)T2πlog(T2πe)|0.16732logT+min{0.17266loglogT+1.96275,1.06148loglogT+1.40212}.\left|N(T)-\frac{T}{2\pi}\log\left(\frac{T}{2\pi e}\right)\right|\leq 0.16732\log T+\min\{0.17266\log\log T+1.96275,1.06148\log\log T+1.40212\}.

Another important consequence of Theorem 1.2 is the following general bound for the argument πS(T)\pi S(T) of the Riemann zeta-function along the 12\frac{1}{2}-line. (Recall that S(T)=1πΔLargζ(s)S(T)=\frac{1}{\pi}\Delta_{L}\arg\zeta(s), where LL is the path formed by the straight line from 22 to 2+iT2+iT and then to 12+iT\frac{1}{2}+iT).

Theorem 1.4.

Under the same assumptions and notation of Theorem 1.2, the following estimate holds for every TT0T\geq T_{0}, with T0eT_{0}\geq e fixed:

|S(T)|C1logT+min{C2loglogT+C3~,C2loglogT+C3~}|S(T)|\leq C_{1}\log T+\min\{C_{2}\log\log T+\tilde{C_{3}},C^{\prime}_{2}\log\log T+\tilde{C^{\prime}_{3}}\}

where the constants C1=C1(c,r,η,k2,n)C_{1}=C_{1}\left(c,r,\eta,k_{2},n\right), C2=C2(c,r,η,c2,k3,n)C_{2}=C_{2}\left(c,r,\eta,c_{2},k_{3},n\right), C2=C2(c,r,η,c2,k3,n)C^{\prime}_{2}=C^{\prime}_{2}\left(c,r,\eta,c_{2},k_{3},n\right), C3~=C3~(c,r,η,c1,c2,t0,k1,k2,k3,t1,n,T0)\tilde{C_{3}}=\tilde{C_{3}}(c,r,\eta,c_{1},c_{2},t_{0},k_{1},k_{2},k_{3},t_{1},n,T_{0}), C3~=C3~(c,r,η,c1,c2,t0,k1,k2,k3,t1,n,T0)\tilde{C^{\prime}_{3}}=\tilde{C^{\prime}_{3}}(c,r,\eta,c_{1},c_{2},t_{0},k_{1},k_{2},k_{3},t_{1},n,T_{0}) are defined in (3.44), (3.45), (3.46), (4.6), (4.7) respectively and some admissible values can be found in Table 2.

A sharper bound for S(T)S(T), up to certain given height, can be obtained using the database of non-trivial zeros of ζ(s)\zeta(s) computed by Platt and made available at [Lmf]. More precisely, one has

(1.2) |S(T)|2.5167|S(T)|\leq 2.5167

for 0T30610046000.0\leq T\leq 30610046000. Hence, by Theorem 1.4 (with T0=30610046000T_{0}=30610046000 and Table 2) and (1.2), we can get the following explicit estimate for S(T)S(T).

Corollary 1.5.

The following estimate holds for TeT\geq e:

|S(T)|0.10076logT+min{0.24460loglogT+7.20792,1.13325loglogT+1.50904}.\left|S(T)\right|\leq 0.10076\log T+\min\{0.24460\log\log T+7.20792,1.13325\log\log T+1.50904\}.

Two final consequences of Theorems 1.2 and 1.4 are bounds for the number of zeros in a unit interval and a short interval. These types of estimates have several applications in number theory, such as providing an effective disproof of the Mertens conjecture [Pin87, RK23], improving the error term in the explicit version of the Riemann–von Mangoldt formula [Dud16], and consequently obtaining improvements related to primes between consecutive cubes and consecutive powers [JCH24]. More generally, these two types of estimates are useful for any problems that require an estimate for the sum over the zeros of ζ(s)\zeta(s) restricted to a certain range.

Corollary 1.6.

Let C1,C2,C2,C~3,C~3C_{1},C_{2},C^{\prime}_{2},\tilde{C}_{3},\tilde{C^{\prime}}_{3} be the constants defined in Theorem 1.2 and 1.4.
If T+1>30610046000T+1>30610046000, then we have

N(T+1)N(T)\displaystyle N(T+1)-N(T)
(12π+2C1)logT+min{2C2loglogT+𝒞3,2C2loglogT+𝒞3}+125T,\displaystyle\leq\left(\frac{1}{2\pi}+2C_{1}\right)\log T+\min\{2C_{2}\log\log T+\mathscr{C}_{3},2C^{\prime}_{2}\log\log T+\mathscr{C^{\prime}}_{3}\}+\frac{1}{25T},

where

𝒞3\displaystyle\mathscr{C}_{3} =2C3~+34π12πlog(2πe),\displaystyle=2\tilde{C_{3}}+\frac{3}{4\pi}-\frac{1}{2\pi}\log(2\pi e),
𝒞3\displaystyle\mathscr{C^{\prime}}_{3} =2C3~+34π12πlog(2πe),\displaystyle=2\tilde{C^{\prime}_{3}}+\frac{3}{4\pi}-\frac{1}{2\pi}\log(2\pi e),

and

(1π2.000001C1)logTmin{2C2loglogT+,2C2loglogT+}125(T1)\displaystyle\left(\frac{1}{\pi}-2.000001C_{1}\right)\log T-\min\{2C_{2}\log\log T+\mathscr{E},2C^{\prime}_{2}\log\log T+\mathscr{E^{\prime}}\}-\frac{1}{25(T-1)}
N(T+1)N(T1)\displaystyle\leq N(T+1)-N(T-1)
(1π+2C1)logT+min{2C2loglogT+𝒟3,2C2loglogT+𝒟3}+125(T1),\displaystyle\leq\left(\frac{1}{\pi}+2C_{1}\right)\log T+\min\{2C_{2}\log\log T+\mathscr{D}_{3},2C^{\prime}_{2}\log\log T+\mathscr{D^{\prime}}_{3}\}+\frac{1}{25(T-1)},

where

𝒟3\displaystyle\mathscr{D}_{3} =2C3~+log3log(2πe)π,\displaystyle=2\tilde{C_{3}}+\frac{\log 3-\log(2\pi e)}{\pi},
𝒟3\displaystyle\mathscr{D^{\prime}}_{3} =2C3~+log3log(2πe)π,\displaystyle=2\tilde{C^{\prime}_{3}}+\frac{\log 3-\log(2\pi e)}{\pi},
\displaystyle\mathscr{E} =2C3~+1π+log(3/4)2π1πlog(2πe),\displaystyle=2\tilde{C_{3}}+\frac{1}{\pi}+\frac{\log(3/4)}{2\pi}-\frac{1}{\pi}\log(2\pi e),
\displaystyle\mathscr{E^{\prime}} =2C3~+1π+log(3/4)2π1πlog(2πe).\displaystyle=2\tilde{C^{\prime}_{3}}+\frac{1}{\pi}+\frac{\log(3/4)}{2\pi}-\frac{1}{\pi}\log(2\pi e).

Consequently, for T+1>30610046000T+1>30610046000,

N(T+1)N(T)\displaystyle N(T+1)-N(T)
(12π+0.20152)logT+min{0.4892loglogT+14.2030,2.2665loglogT+2.8052}+125T\displaystyle\leq\left(\frac{1}{2\pi}+0.20152\right)\log T+\min\{0.4892\log\log T+14.2030,2.2665\log\log T+2.8052\}+\frac{1}{25T}

and

(1π0.201521)logTmin{0.4892loglogT+13.7851,2.2665loglogT+2.3873}125(T1)\displaystyle\left(\frac{1}{\pi}-0.201521\right)\log T-\min\{0.4892\log\log T+13.7851,2.2665\log\log T+2.3873\}-\frac{1}{25(T-1)}
N(T+1)N(T1)\displaystyle N(T+1)-N(T-1)
(1π+0.20152)logT+min{0.4892loglogT+13.8623,2.2665loglogT+2.4646}+125(T1).\displaystyle\leq\left(\frac{1}{\pi}+0.20152\right)\log T+\min\{0.4892\log\log T+13.8623,2.2665\log\log T+2.4646\}+\frac{1}{25(T-1)}.

In addition, for 3T+1306100460003\leq T+1\leq 30610046000, we have

(1.3) 12πlogT5.32592125TN(T+1)N(T)12πlogT+4.8405,\frac{1}{2\pi}\log T-5.32592-\frac{1}{25T}\leq N(T+1)-N(T)\leq\frac{1}{2\pi}\log T+4.8405,

and

1πlogT5.66421125(T1)N(T+1)N(T1)1πlogT+4.4798\frac{1}{\pi}\log T-5.66421-\frac{1}{25(T-1)}\leq N(T+1)-N(T-1)\leq\frac{1}{\pi}\log T+4.4798
Remark.

Note that the optimal constants that one could hope to get in front of the main terms in the upper bounds of |N(T+1)N(T)||N(T+1)-N(T)| and |N(T+1)N(T1)||N(T+1)-N(T-1)| in Corollary 1.6 are 12π\frac{1}{2\pi} and 1π\frac{1}{\pi} respectively and it will be shown in Section 6. Furthermore, we omit the lower bound for N(T+1)N(T)N(T+1)-N(T) when T+130610046000T+1\geq 30610046000. Indeed, following the method used in Section 6 for N(T+1)N(T1)N(T+1)-N(T-1) results in a negative lower bound for N(T+1)N(T)N(T+1)-N(T), which is worse than the trivial non-negativity of N(T+1)N(T)N(T+1)-N(T).

2. Preliminaries

In this section, we recall some known results involving the Riemann zeta-function, which will be used throughout the proof of our theorems.
As already explained in [Tru14, HSW22], bounds of ζ(σ+it)\zeta(\sigma+it) when σ=12\sigma=\frac{1}{2} and σ=1\sigma=1 play a crucial role. The sharpest known estimates for σ=1\sigma=1 and t3t\geq 3 are the following333Recently E. H. Qingyi and L.-P. Teo [QT24] found a new explicit bound for |ζ(1+it)||\zeta(1+it)|, which might lead to some small improvements.:

(2.1) |ζ(1+it)|{min{logt,12logt+1.93,15logt+44.02}if 3te30701.731logtloglogtif e3070<te3.6910858.096log2/3tif t>e3.69108.|\zeta(1+it)|\leq\left\{\begin{array}[]{lll}\min\{\log t,\frac{1}{2}\log t+1.93,\frac{1}{5}\log t+44.02\}&\text{if }3\leq t\leq e^{3070}\\ &\\ 1.731\frac{\log t}{\log\log t}&\text{if }e^{3070}<t\leq e^{3.69\cdot 10^{8}}\\ &\\ 58.096\log^{2/3}t&\text{if }t>e^{3.69\cdot 10^{8}}.\end{array}\right.

In order of appearance, the estimates are due to Patel [Pat22], Hiary–Leong–Yang [HLY24] and the last one is a direct consequence of Theorem 1 in [Bel24].
In order to apply Lemma 2.6, we actually need an estimate of the form

(2.2) |ζ(1+it)|c1(logt)c2|\zeta(1+it)|\leq c_{1}(\log t)^{c_{2}}

for tt0et\geq t_{0}\geq e, where c1,c2c_{1},c_{2} are constants which depend on tt. Hence, for the middle range exp(3070)<texp(3.69108)\exp(3070)<t\leq\exp\left(3.69\cdot 10^{8}\right) we will use the slightly worse upper bound |ζ(1+it)|0.25logt|\zeta(1+it)|\leq 0.25\log t.
The sharpest known estimates for |ζ(12+it)||\zeta(\frac{1}{2}+it)| up to date are instead:

|ζ(12+it)|{1.461 if 0|t|30.618|t|1/6log|t| if 3<|t|exp(105)66.7t27/164 if |t|>exp(105).\left|\zeta\left(\frac{1}{2}+it\right)\right|\leq\left\{\begin{array}[]{ll}1.461&\text{ if }0\leq|t|\leq 3\\ \\ 0.618|t|^{1/6}\log|t|&\text{ if }3<|t|\leq\exp(105)\\ \\ 66.7t^{27/164}&\text{ if }|t|>\exp(105).\end{array}\right.

In order of appearance, these estimates are due to Hiary [Hia16], Hiary–Patel–Yang [HPY24], Patel–Yang [PY24]. We will denote

(2.3) |ζ(12+it)|k1tk2(logt)k3\left|\zeta\left(\frac{1}{2}+it\right)\right|\leq k_{1}t^{k_{2}}(\log t)^{k_{3}}

for tt1et\geq t_{1}\geq e, where k1,k2,k3k_{1},k_{2},k_{3} are constants which depend on tt. Meanwhile, there exists another set of vertical lines inside the critical strip on which explicit bounds for ζ(s)\zeta(s) are known. More precisely, Yang [Yan24] provided the following explicit estimate for |ζ(σk+it)|\left|\zeta\left(\sigma_{k}+it\right)\right|, with σk:=1k/(2k2)\sigma_{k}:=1-k/\left(2^{k}-2\right), for every k4k\geq 4:

(2.4) |ζ(σk+it)|1.546t1/(2k2)logt,t3.\left|\zeta\left(\sigma_{k}+it\right)\right|\leq 1.546t^{1/\left(2^{k}-2\right)}\log t,\quad t\geq 3.

For instance, substituting k=4k=4 gives

|ζ(5/7+it)|1.546t1/14logt.|\zeta(5/7+it)|\leq 1.546t^{1/14}\log t.

The bound (2.4) will be the main innovative tool which will lead to improved values of both C1C_{1} and C2C_{2} in Theorem 1.1.

2.1. Other useful results

We recall other useful results which will be used to prove Theorem 1.1 and Theorem 1.2.
First of all, for NN\in\mathbb{N}, we consider the following function that will be fundamental in our argument:

fN(s)=12(((s+iT1)ζ(s+iT))N+((siT1)ζ(siT))N).f_{N}(s)=\frac{1}{2}\left(((s+iT-1)\zeta(s+iT))^{N}+((s-iT-1)\zeta(s-iT))^{N}\right).

Then, denoting with D(c,r)D(c,r) the open disk centred at cc with radius rr, for any NN\in\mathbb{N}, we define

SN(c,r)=1Nz𝒮N(D(c,r))logr|zc|,S_{N}(c,r)=\frac{1}{N}\sum_{z\in\mathscr{S}_{N}(D(c,r))}\log\frac{r}{|z-c|},

where 𝒮N(D(c,r))\mathscr{S}_{N}(D(c,r)) is the set of zeros of fN(s)f_{N}(s) in D(c,r)D(c,r).

Lemma 2.1 ([HSW21] Prop. 3.5).

Let c,rc,r, and σ1\sigma_{1} be real numbers such that

cr<12<1<c<σ1<c+r.c-r<\frac{1}{2}<1<c<\sigma_{1}<c+r.

Let Fc,r:[π,π]F_{c,r}:[-\pi,\pi]\rightarrow\mathbb{R} be an even function such that Fc,r(θ)1Nmlog|fNm(c+reiθ)|F_{c,r}(\theta)\geq\frac{1}{N_{m}}\log\left|f_{N_{m}}\left(c+re^{i\theta}\right)\right|. Then there is an infinite sequence of natural numbers (Nm)m=1\left(N_{m}\right)_{m=1}^{\infty} such that

lim supmSNm(c,r)log(1(c1)2+T2ζ(c)ζ(2c))+1π0πFc,r(θ)𝑑θ.\limsup_{m\rightarrow\infty}S_{N_{m}}(c,r)\leq\log\left(\frac{1}{\sqrt{(c-1)^{2}+T^{2}}}\frac{\zeta(c)}{\zeta(2c)}\right)+\frac{1}{\pi}\int_{0}^{\pi}F_{c,r}(\theta)d\theta.

Lemma 2.1 uses the following trivial lower bound for zeta when σ>1\sigma>1:

(2.5) |ζ(σ+iT)|ζ(2σ)ζ(σ).|\zeta(\sigma+iT)|\geq\frac{\zeta(2\sigma)}{\zeta(\sigma)}.

However, recently Leong [Leo24] proved a non-trivial lower bound for ζ\zeta when σ>1\sigma>1 which does not depend on the real part σ\sigma but only on the imaginary part TT.

Lemma 2.2 ([Leo24]).

The following estimate holds for σ>1\sigma>1 and T>30610046000T>30610046000:

|ζ(σ+iT)|>12.0945logT.|\zeta(\sigma+iT)|>\frac{1}{2.0945\log T}.

If instead of the trivial bound (2.5) we use Lemma 2.2 inside the proof of Lemma 2.1, we get the following result.

Lemma 2.3.

Under the same assumption as in Lemma 2.1, if T>30610046000T>30610046000 there is an infinite sequence of natural numbers (Nm)m=1\left(N_{m}\right)_{m=1}^{\infty} such that

lim supmSNm(c,r)log(2.0945logT(c1)2+T2)+1π0πFc,r(θ)𝑑θ.\limsup_{m\rightarrow\infty}S_{N_{m}}(c,r)\leq\log\left(\frac{2.0945\log T}{\sqrt{(c-1)^{2}+T^{2}}}\right)+\frac{1}{\pi}\int_{0}^{\pi}F_{c,r}(\theta)d\theta.

Backlund’s trick is another important tool we will use for the proof of Theorem 1.1. To end this section, we recall the following version of Backlund’s trick (see [HSW21, Prop. 3.7]), a tool according to which if fN(σ)f_{N}(\sigma) has zeros in [12,σ1]\left[\frac{1}{2},\sigma_{1}\right], then there are zeros in [1σ1,12]\left[1-\sigma_{1},\frac{1}{2}\right].

Lemma 2.4 (Backlund’s trick).

Let cc and rr be real numbers. Set

σ1=c+(c1/2)2r and δ=2cσ112.\sigma_{1}=c+\frac{(c-1/2)^{2}}{r}\quad\text{ and }\quad\delta=2c-\sigma_{1}-\frac{1}{2}.

If 1<c<r1<c<r and 0<δ<120<\delta<\frac{1}{2}, then

|arg((σ+iT1)ζ(σ+iT))|σ=σ11/2|πSN(c,r)2log(r/(c1/2))+E(T,δ)2+πN+π2N+π4,\left|\arg((\sigma+iT-1)\zeta(\sigma+iT))|_{\sigma=\sigma_{1}}^{1/2}\right|\leq\frac{\pi S_{N}(c,r)}{2\log(r/(c-1/2))}+\frac{E(T,\delta)}{2}+\frac{\pi}{N}+\frac{\pi}{2N}+\frac{\pi}{4},

where E(T,δ)E(T,\delta) is defined in [Ben+21, p. 1463].

We also recall the estimate for E(T,δ)/πE(T,\delta)/\pi due to [Ben+21, Lemma 3.4].

Lemma 2.5 ([Ben+21]).

For 0δ1d<9/20\leq\delta_{1}\leq d<9/2 and T5/7T\geq 5/7, one has

0<E(T,δ1)E(T,d)0<E\left(T,\delta_{1}\right)\leq E(T,d)

Also, for d[14,58]d\in\left[\frac{1}{4},\frac{5}{8}\right] and T5/7T\geq 5/7, one has

E(T,d)π640d1121536(3T1)+1210.\frac{E(T,d)}{\pi}\leq\frac{640d-112}{1536(3T-1)}+\frac{1}{2^{10}}.

To conclude the section, we mention the Phragmén–Lindelöf principle, as stated in [Tru14, Lemma 3], which will be used to construct a suitable function Fc,r(θ)F_{c,r}(\theta), given Lemmata 2.1, 2.3, and 2.4.

Lemma 2.6 (Phragmén-Lindelöf principle).

Let a,b,Qa,b,Q be real numbers such that b>b> aa and Q+a>1Q+a>1. Let f(s)f(s) be a holomorphic function on the strip a𝔢(s)ba\leq\mathfrak{Re}(s)\leq b such that

|f(s)|<Cexp(ek|t|)|f(s)|<C\exp\left(e^{k|t|}\right)

for some C>0C>0 and 0<k<πba0<k<\frac{\pi}{b-a}. Suppose, further, that there are A,B,α1,α2,β1,β20A,B,\alpha_{1},\alpha_{2},\beta_{1},\beta_{2}\geq 0 such that α1β1\alpha_{1}\geq\beta_{1} and

|f(s)|{A|Q+s|α1(log|Q+s|)α2 for 𝔢(s)=a;B|Q+s|β1(log|Q+s|)β2 for 𝔢(s)=b.|f(s)|\leq\left\{\begin{array}[]{ll}A|Q+s|^{\alpha_{1}}(\log|Q+s|)^{\alpha_{2}}&\text{ for }\mathfrak{Re}(s)=a;\\ B|Q+s|^{\beta_{1}}(\log|Q+s|)^{\beta_{2}}&\text{ for }\mathfrak{Re}(s)=b.\end{array}\right.

Then for a𝔢(s)ba\leq\mathfrak{Re}(s)\leq b, one has

|f(s)|{A|Q+s|α1(log|Q+s|)α2}b𝔢(s)ba{B|Q+s|β1(log|Q+s|)β2}𝔢(s)aba.|f(s)|\leq\left\{A|Q+s|^{\alpha_{1}}(\log|Q+s|)^{\alpha_{2}}\right\}^{\frac{b-\mathfrak{Re}(s)}{b-a}}\left\{B|Q+s|^{\beta_{1}}(\log|Q+s|)^{\beta_{2}}\right\}^{\frac{\mathfrak{Re}(s)-a}{b-a}}.

3. Proof of Theorem 1.2

As in [Tru14, HSW22], we will work with the completed Riemann zeta-function ξ(s)\xi(s), which is defined by

ξ(s)=s(s1)γ(s)ζ(s)withγ(s)=πs2Γ(s2).\xi(s)=s(s-1)\gamma(s)\zeta(s)\quad\text{with}\quad\gamma(s)=\pi^{-\frac{s}{2}}\Gamma\left(\frac{s}{2}\right).

It is widely known that the function ξ(s)\xi(s) is an entire function of order 1 , which satisfies the functional equation

ξ(s)=ξ(1s).\xi(s)=\xi(1-s).

Furthermore, as in [HSW22], instead of working directly with the quantity N(T)N(T), we will work with the quantity N(T)N_{\mathbb{Q}}(T) which is defined as

N(T)=#{ρ|ζ(ρ)=0,0<β<1,|γT}N_{\mathbb{Q}}(T)=\#\{\rho\in\mathbb{C}|\zeta(\rho)=0,0<\beta<1,|\gamma\mid\leq T\}

for T0T\geq 0 and it is related to the quantity N(T)N(T) by the equality N(T)=2N(T)N_{\mathbb{Q}}(T)=2N(T).
Following [HSW22], given a parameter σ1>1\sigma_{1}>1 we will choose later, we consider the rectangle \mathscr{R} with vertices σ1iT\sigma_{1}-iT, σ1+iT\sigma_{1}+iT, 1σ1+iT1-\sigma_{1}+iT, and 1σ1iT1-\sigma_{1}-iT, and, since ξ(s)\xi(s) is entire, we apply the argument principle, getting

N(T)=12πΔargξ(s).N_{\mathbb{Q}}(T)=\frac{1}{2\pi}\Delta_{\mathscr{R}}\arg\xi(s).

As per [HSW22, eq. (2.8)], the previous expression for N(T)N_{\mathbb{Q}}(T) is equivalent to

(3.1) N(T)=2πarctan(2T)+g(T)+Tπlog(T2πe)14+2πΔ𝒞0arg((s1)ζ(s)),N_{\mathbb{Q}}(T)=\frac{2}{\pi}\arctan(2T)+g(T)+\frac{T}{\pi}\log\left(\frac{T}{2\pi e}\right)-\frac{1}{4}+\frac{2}{\pi}\Delta_{\mathscr{C}_{0}}\arg((s-1)\zeta(s)),

where

g(T)=2π𝔪logΓ(14+iT2)Tπlog(T2e)+14,g(T)=\frac{2}{\pi}\mathfrak{Im}\log\Gamma\left(\frac{1}{4}+i\frac{T}{2}\right)-\frac{T}{\pi}\log\left(\frac{T}{2e}\right)+\frac{1}{4},

and 𝒞0\mathscr{C}_{0} is the part of the contour of \mathscr{R} in the region 𝔪(s)0\mathfrak{Im}(s)\geq 0 and 𝔢(s)12\mathfrak{Re}(s)\geq\frac{1}{2}. The estimate |g(T)|1/(25T)|g(T)|\leq 1/(25T) is given by [Ben+21, Prop. 3.2] and holds for every T5/7T\geq 5/7. Then, denoting with 𝒞1\mathscr{C}_{1} the vertical line from σ1\sigma_{1} to σ1+iT\sigma_{1}+iT and with 𝒞2\mathscr{C}_{2} the horizontal line from σ1+iT\sigma_{1}+iT to 12+iT\frac{1}{2}+iT, one has

Δ𝒞0arg((s1)ζ(s))\displaystyle\Delta_{\mathscr{C}_{0}}\arg((s-1)\zeta(s)) =Δ𝒞1arg((s1)ζ(s))+Δ𝒞2arg((s1)ζ(s))\displaystyle=\Delta_{\mathscr{C}_{1}}\arg((s-1)\zeta(s))+\Delta_{\mathscr{C}_{2}}\arg((s-1)\zeta(s))
=arctan(Tσ11)+Δ𝒞1argζ(s)+Δ𝒞2arg((s1)ζ(s))\displaystyle=\arctan\left(\frac{T}{\sigma_{1}-1}\right)+\Delta_{\mathscr{C}_{1}}\arg\zeta(s)+\Delta_{\mathscr{C}_{2}}\arg((s-1)\zeta(s))

and for σ1>1\sigma_{1}>1,

|Δ𝒞1argζ(s)|=|argζ(σ1+iT)||logζ(σ1+iT)|logζ(σ1).\left|\Delta_{\mathscr{C}_{1}}\arg\zeta(s)\right|=\left|\arg\zeta\left(\sigma_{1}+iT\right)\right|\leq\left|\log\zeta\left(\sigma_{1}+iT\right)\right|\leq\log\zeta\left(\sigma_{1}\right).

Furthermore, we know that [HSW22, eq. (5.5)]

(3.2) S(T)=1πΔ𝒞0argζ(s)=12(N(T)Tπlog(T2πe)+14g(T)2)S(T)=\frac{1}{\pi}\Delta_{\mathscr{C}_{0}}\arg\zeta(s)=\frac{1}{2}\left(N_{\mathbb{Q}}(T)-\frac{T}{\pi}\log\left(\frac{T}{2\pi e}\right)+\frac{1}{4}-g(T)-2\right)

and

(3.3) S(T)=1πΔ𝒞0argζ(s)=1πΔ𝒞1argζ(s)+1πΔ𝒞2arg(s1)ζ(s)1πΔ𝒞2arg(s1).S(T)=\frac{1}{\pi}\Delta_{\mathscr{C}_{0}}\arg\zeta(s)=\frac{1}{\pi}\Delta_{\mathscr{C}_{1}}\arg\zeta(s)+\frac{1}{\pi}\Delta_{\mathscr{C}_{2}}\arg(s-1)\zeta(s)-\frac{1}{\pi}\Delta_{\mathscr{C}_{2}}\arg(s-1).

Let TT0T\geq T_{0} fixed. Instead of estimating the usual quantity

|N(T)Tπlog(T2πe)+14|\left|N_{\mathbb{Q}}(T)-\frac{T}{\pi}\log\left(\frac{T}{2\pi e}\right)+\frac{1}{4}\right|

as in [HSW22] (or 18\frac{1}{8} instead of 14\frac{1}{4} if we work with N(T)N(T) instead of N(T)N_{\mathbb{Q}}(T) as in [Tru14]), we aim to estimate

|N(T)Tπlog(T2πe)|,\left|N_{\mathbb{Q}}(T)-\frac{T}{\pi}\log\left(\frac{T}{2\pi e}\right)\right|,

which is the quantity that is usually required in the majority of applications.

Remark.

This choice will allow us to save an extra 0.250.25 in the final constant C3C_{3} in Theorem 1.1.

One has

(3.4) |N(T)Tπlog(T2πe)|\displaystyle\left|N_{\mathbb{Q}}(T)-\frac{T}{\pi}\log\left(\frac{T}{2\pi e}\right)\right|
|142πarctan(Tσ11)2πarctan(2T)|+|g(T)|+2πlogζ(σ1)+2π|Δ𝒞2arg((s1)ζ(s))|\displaystyle\leq\left|\frac{1}{4}-\frac{2}{\pi}\arctan\left(\frac{T}{\sigma_{1}-1}\right)-\frac{2}{\pi}\arctan(2T)\right|+|g(T)|+\frac{2}{\pi}\log\zeta\left(\sigma_{1}\right)+\frac{2}{\pi}\left|\Delta_{\mathscr{C}_{2}}\arg((s-1)\zeta(s))\right|
|142πarctan(Tσ11)2πarctan(2T)|+125T+2πlogζ(σ1)+2π|Δ𝒞2arg((s1)ζ(s))|\displaystyle\leq\left|\frac{1}{4}-\frac{2}{\pi}\arctan\left(\frac{T}{\sigma_{1}-1}\right)-\frac{2}{\pi}\arctan(2T)\right|+\frac{1}{25T}+\frac{2}{\pi}\log\zeta\left(\sigma_{1}\right)+\frac{2}{\pi}\left|\Delta_{\mathscr{C}_{2}}\arg((s-1)\zeta(s))\right|
=|h(c,r,T)|+125T+2πlogζ(σ1)+2π|Δ𝒞2arg((s1)ζ(s))|,\displaystyle=|h(c,r,T)|+\frac{1}{25T}+\frac{2}{\pi}\log\zeta\left(\sigma_{1}\right)+\frac{2}{\pi}\left|\Delta_{\mathscr{C}_{2}}\arg((s-1)\zeta(s))\right|,

where

h(c,r,T)=142πarctan(Tσ11)2πarctan(2T).h(c,r,T)=\frac{1}{4}-\frac{2}{\pi}\arctan\left(\frac{T}{\sigma_{1}-1}\right)-\frac{2}{\pi}\arctan(2T).

Since σ1>1\sigma_{1}>1 (it will be approximately σ11.25\sigma_{1}\sim 1.25), TT quite large (T>30610046000T>30610046000), and being the function arctan\arctan increasing for T>0T>0, we can estimate |h(c,r,T)||h(c,r,T)| as

(3.5) |h(c,r,T)||2πarctan(4T)+2πarctan(2T)14|214=74.|h(c,r,T)|\leq\left|\frac{2}{\pi}\arctan(4T)+\frac{2}{\pi}\arctan(2T)-\frac{1}{4}\right|\leq 2-\frac{1}{4}=\frac{7}{4}.

Now, we will focus on improving the bound for

|Δ𝒞2arg((s1)ζ(s))|,\left|\Delta_{\mathscr{C}_{2}}\arg((s-1)\zeta(s))\right|,

for which the main new ideas which lead to improvements are used.

3.1. Convexity/subconvexity bounds and generalisation to nn-splitting of [12,1][\frac{1}{2},1]

While outside the range [12,1][\frac{1}{2},1] we consider the same cases as in [HSW22], we will split the interval [12,1][\frac{1}{2},1] in nn sub-intervals using the lines corresponding to (2.4). As already mentioned, this splitting will be the main tool which allows us to get an improved value of C1C_{1}.
More precisely, the first sub-interval is of the form [12,σ4][\frac{1}{2},\sigma_{4}], the last interval will be of the form [σn+4,1][\sigma_{n+4},1] and the intervals in the middle will be of the form [σ4+h,σ4+h+1][\sigma_{4+h},\sigma_{4+h+1}], where 0hn10\leq h\leq n-1 and, for every kk, σk\sigma_{k} is defined as

σk:=1k/(2k2).\sigma_{k}:=1-k/(2^{k}-2).

A careful analysis shows that the nearly-optimal value for nn is 55. Indeed, a higher number of subintervals of the form [σ4+h,σ4+h+1][\sigma_{4+h},\sigma_{4+h+1}] would lead to an improvement on C1C_{1} only at the seventh decimal place, while it would cause a worse constant C3C_{3}, in which a factor of containing log(1.546)\log(1.546) (multiplied by other quantities) appears in C3C_{3} for each interval [σ4+h,σ4+h+1][\sigma_{4+h},\sigma_{4+h+1}] we are considering.
Following [HSW22], we start estimating |ζ(σ+it)||\zeta(\sigma+it)| in each of the intervals for σ\sigma we are considering.

  • Case σ1+η\sigma\geq 1+\eta. The trivial bound for the zeta-function immediately implies |ζ(s)|ζ(σ).|\zeta(s)|\leq\zeta(\sigma).

  • Case 1σ1+η1\leq\sigma\leq 1+\eta. From (2.1) and (2.2) it follows that there is Q0>0Q_{0}>0 depending on c1,c2,t0c_{1},c_{2},t_{0} such that

    (3.6) |(1+it1)ζ(1+it)|c1|Q0+(1+it)|(log|Q0+(1+it)|)c2|(1+it-1)\zeta(1+it)|\leq c_{1}\left|Q_{0}+(1+it)\right|\left(\log\left|Q_{0}+(1+it)\right|\right)^{c_{2}}

    for all tt. Thus, Lemma 2.6 implies that for 1σ1+η1\leq\sigma\leq 1+\eta,

    |(s1)ζ(s)|(c1|Q0+s|(log|Q0+s|)c2)1+ηση(ζ(1+η)|Q0+s|)σ1η,|(s-1)\zeta(s)|\leq\left(c_{1}\left|Q_{0}+s\right|\left(\log\left|Q_{0}+s\right|\right)^{c_{2}}\right)^{\frac{1+\eta-\sigma}{\eta}}\left(\zeta(1+\eta)\left|Q_{0}+s\right|\right)^{\frac{\sigma-1}{\eta}},

    and hence

    |ζ(s)|1|s1|(c1|Q0+s|(log|Q0+s|)c2)1+ηση(ζ(1+η)|Q0+s|)σ1η.|\zeta(s)|\leq\frac{1}{|s-1|}\left(c_{1}\left|Q_{0}+s\right|\left(\log\left|Q_{0}+s\right|\right)^{c_{2}}\right)^{\frac{1+\eta-\sigma}{\eta}}\left(\zeta(1+\eta)\left|Q_{0}+s\right|\right)^{\frac{\sigma-1}{\eta}}.
  • Case σn+4σ1\sigma_{n+4}\leq\sigma\leq 1. By (2.4), there exists Qn+4>0Q_{n+4}>0 depending on nn such that

    (3.7) |(σn+4+it1)ζ(σn+4+it)|\displaystyle|(\sigma_{n+4}+it-1)\zeta(\sigma_{n+4}+it)|
    1.546|Qn+4+(σn+4+it)|12n+42+1(log|Qn+4+(σn+4+it)|)\displaystyle\leq 1.546|Q_{n+4}+(\sigma_{n+4}+it)|^{\frac{1}{2^{n+4}-2}+1}(\log|Q_{n+4}+(\sigma_{n+4}+it)|)

    Lemma 2.6 and (3.6) imply that for σn+4σ1\sigma_{n+4}\leq\sigma\leq 1,

    |ζ(s)|\displaystyle|\zeta(s)| 1|s1|(1.546|Q0,n+4+s|12n+42+1(log|Q0,n+4+s|))1σ1σn+4\displaystyle\leq\frac{1}{|s-1|}\left(1.546|Q_{0,n+4}+s|^{\frac{1}{2^{n+4}-2}+1}(\log|Q_{0,n+4}+s|)\right)^{\frac{1-\sigma}{1-\sigma_{n+4}}}
    ×(c1|Q0,n+4+s|(log|Q0,n+4+s|)c2)σσn+41σn+4,\displaystyle\times\left(c_{1}\left|Q_{0,n+4}+s\right|\left(\log\left|Q_{0,n+4}+s\right|\right)^{c_{2}}\right)^{\frac{\sigma-\sigma_{n+4}}{1-\sigma_{n+4}}},

    where Q0,n+4=max{Q0,Qn+4}Q_{0,n+4}=\max\{Q_{0},Q_{n+4}\}.

  • Case σ4+hσσ4+h+1\sigma_{4+h}\leq\sigma\leq\sigma_{4+h+1} with 0hn10\leq h\leq n-1. By (2.4), for every fixed hh, there exist Q4+h,Q5+h>0Q_{4+h},Q_{5+h}>0 depending on hh so that

    (3.8) |(σh+4+it1)ζ(σh+4+it)|\displaystyle|(\sigma_{h+4}+it-1)\zeta(\sigma_{h+4}+it)|
    1.546|Qh+4+(σh+4+it)|12h+42+1(log|Qh+4+(σh+4+it)|)\displaystyle\leq 1.546|Q_{h+4}+(\sigma_{h+4}+it)|^{\frac{1}{2^{h+4}-2}+1}(\log|Q_{h+4}+(\sigma_{h+4}+it)|)

    and

    (3.9) |(σh+5+it1)ζ(σh+5+it)|\displaystyle|(\sigma_{h+5}+it-1)\zeta(\sigma_{h+5}+it)|
    1.546|Qh+5+(σh+5+it)|12h+52+1(log|Qh+5+(σh+5+it)|).\displaystyle\leq 1.546|Q_{h+5}+(\sigma_{h+5}+it)|^{\frac{1}{2^{h+5}-2}+1}(\log|Q_{h+5}+(\sigma_{h+5}+it)|).

    Hence, by Lemma 2.6, we have

    |ζ(s)|1|s1|(1.546|Q4+h,5+h+s|12h+42+1(log|Q4+h,5+h+s|))σ5+hσσ5+hσh+4\displaystyle|\zeta(s)|\leq\frac{1}{|s-1|}\left(1.546|Q_{4+h,5+h}+s|^{\frac{1}{2^{h+4}-2}+1}(\log|Q_{4+h,5+h}+s|)\right)^{\frac{\sigma_{5+h}-\sigma}{\sigma_{5+h}-\sigma_{h+4}}}
    ×(1.546|Q4+h,5+h+s|12h+52+1(log|Q4+h,5+h+s|))σσh+4σh+5σh+4,\displaystyle\qquad\times\left(1.546|Q_{4+h,5+h}+s|^{\frac{1}{2^{h+5}-2}+1}(\log|Q_{4+h,5+h}+s|)\right)^{\frac{\sigma-\sigma_{h+4}}{\sigma_{h+5}-\sigma_{h+4}}},

    where Q4+h,5+h=max{Q4+h,Q5+h}Q_{4+h,5+h}=\max\{Q_{4+h},Q_{5+h}\}.

    Remark.

    When h=n1h=n-1, Qh+5=Qn+4Q_{h+5}=Q_{n+4}, with Qn+4Q_{n+4} given in (3.7).

  • Case 1/2σσ41/2\leq\sigma\leq\sigma_{4}. By (2.3), there is a Q1>0Q_{1}>0 depending on k1,k2,k3,t1k_{1},k_{2},k_{3},t_{1} such that

    (3.10) |(12+it1)ζ(12+it)|k1|Q1+(12+it)|k2+1(log|Q1+(12+it)|)k3.\displaystyle\left|\left(\frac{1}{2}+it-1\right)\zeta\left(\frac{1}{2}+it\right)\right|\leq k_{1}\left|Q_{1}+\left(\frac{1}{2}+it\right)\right|^{k_{2}+1}\left(\log\left|Q_{1}+\left(\frac{1}{2}+it\right)\right|\right)^{k_{3}}.

    Hence, Lemma 2.6 and (3.8) with h=0h=0 imply that

    |ζ(s)|\displaystyle|\zeta(s)|
    1|s1|(k1|Q2+s|k2+1(log|Q2+s|)k3)σ4σσ412(1.546|Q2+s|1242+1(log|Q2+s|))σ12σ412,\displaystyle\leq\frac{1}{|s-1|}\left(k_{1}\left|Q_{2}+s\right|^{k_{2}+1}\left(\log\left|Q_{2}+s\right|\right)^{k_{3}}\right)^{\frac{\sigma_{4}-\sigma}{\sigma_{4}-\frac{1}{2}}}\left(1.546|Q_{2}+s|^{\frac{1}{2^{4}-2}+1}(\log|Q_{2}+s|)\right)^{\frac{\sigma-\frac{1}{2}}{\sigma_{4}-\frac{1}{2}}},

    where Q2=max{Q1,Q4+0}Q_{2}=\max\{Q_{1},Q_{4+0}\}.

  • Case 0σ120\leq\sigma\leq\frac{1}{2}. Following [HSW22], there exists Q3>0Q_{3}>0 such that

    (3.11) |ζ(12+it)|k1|Q3+(12+it)|k2(log|Q3+(12+it)|)k3\left|\zeta\left(\frac{1}{2}+it\right)\right|\leq k_{1}\left|Q_{3}+\left(\frac{1}{2}+it\right)\right|^{k_{2}}\left(\log\left|Q_{3}+\left(\frac{1}{2}+it\right)\right|\right)^{k_{3}}

    for all tt and Q101Q_{10}\geq 1 such that

    (3.12) |ζ(0+it)|c12π|Q10+it|12(log|Q10+it|)c2.|\zeta(0+it)|\leq\frac{c_{1}}{\sqrt{2\pi}}\left|Q_{10}+it\right|^{\frac{1}{2}}\left(\log\left|Q_{10}+it\right|\right)^{c_{2}}.

    Hence, by Lemma 2.6 one has

    (3.13) |ζ(s)|(c12π|Q11+s|12(log|Q11+s|)c2)12σ(k1|Q11+s|k2(log|Q11+s|)k3)2σ|\zeta(s)|\leq\left(\frac{c_{1}}{\sqrt{2\pi}}\left|Q_{11}+s\right|^{\frac{1}{2}}\left(\log\left|Q_{11}+s\right|\right)^{c_{2}}\right)^{1-2\sigma}\left(k_{1}\left|Q_{11}+s\right|^{k_{2}}\left(\log\left|Q_{11}+s\right|\right)^{k_{3}}\right)^{2\sigma}

    where Q11=max{Q3,Q10}Q_{11}=\max\{Q_{3},Q_{10}\}.

  • Case ησ0-\eta\leq\sigma\leq 0. As in [HSW22], we have

    (3.14) |ζ(s)|(1(2π)12+ηζ(1+η)|Q10+s|12+η)ση(c12π|Q10+s|12(log|Q10+s|)c2)σ+ηη.|\zeta(s)|\leq\left(\frac{1}{(2\pi)^{\frac{1}{2}+\eta}}\zeta(1+\eta)\left|Q_{10}+s\right|^{\frac{1}{2}+\eta}\right)^{\frac{-\sigma}{\eta}}\left(\frac{c_{1}}{\sqrt{2\pi}}\left|Q_{10}+s\right|^{\frac{1}{2}}\left(\log\left|Q_{10}+s\right|\right)^{c_{2}}\right)^{\frac{\sigma+\eta}{\eta}}.
  • Case ση\sigma\leq-\eta. We shall use the same estimate as in [HSW22]:

    (3.15) |ζ(s)|ζ(1σ)(12π)12σ(|1+s[σ]|)12+[σ]σ(j=1[σ]|s+j1|).|\zeta(s)|\leq\zeta(1-\sigma)\left(\frac{1}{2\pi}\right)^{\frac{1}{2}-\sigma}(|1+s-[\sigma]|)^{\frac{1}{2}+[\sigma]-\sigma}\left(\prod_{j=1}^{-[\sigma]}|s+j-1|\right).

3.2. Estimating 1Nlog|fN(s)|\frac{1}{N}\log|f_{N}(s)|

Given the function

(3.16) fN(s)=12(((s+iT1)ζ(s+iT))N+((siT1)ζ(siT))N),f_{N}(s)=\frac{1}{2}\left(((s+iT-1)\zeta(s+iT))^{N}+((s-iT-1)\zeta(s-iT))^{N}\right),

we want to bound

(3.17) 1Nlog|fN(s)|\frac{1}{N}\log\left|f_{N}(s)\right|

inside the different ranges we considered in the previous subsection.

  • Case σ1+η\sigma\geq 1+\eta. As per [HSW22], we have the bound

    (3.18) 1Nlog|fN(s)|12log((σ1)2+(|t|+T)2)+logζ(σ).\frac{1}{N}\log\left|f_{N}(s)\right|\leq\frac{1}{2}\log\left((\sigma-1)^{2}+(|t|+T)^{2}\right)+\log\zeta(\sigma).
  • Case 1σ1+η1\leq\sigma\leq 1+\eta. Following [HSW22], we use

    (3.19) 1Nlog|fN(s)|\displaystyle\frac{1}{N}\log\left|f_{N}(s)\right| 1+ησηlogc12c2+σ1ηlogζ(1+η)+12log((Q0+σ)2+(|t|+T)2)\displaystyle\leq\frac{1+\eta-\sigma}{\eta}\log\frac{c_{1}}{2^{c_{2}}}+\frac{\sigma-1}{\eta}\log\zeta(1+\eta)+\frac{1}{2}\log\left(\left(Q_{0}+\sigma\right)^{2}+(|t|+T)^{2}\right)
    +c2(1+ησ)ηloglog((Q0+σ)2+(|t|+T)2).\displaystyle+\frac{c_{2}(1+\eta-\sigma)}{\eta}\log\log\left(\left(Q_{0}+\sigma\right)^{2}+(|t|+T)^{2}\right).
  • Case σn+4σ1\sigma_{n+4}\leq\sigma\leq 1. Observe that

    |fN(s)|\displaystyle|f_{N}(s)| (1.546((Q0,n+4+σ)2+(|t|+T)2)2n+412(2n+42)log((Q0,n+4+σ)2+(|t|+T)2))N(1σ)1σn+4\displaystyle\leq\left(1.546((Q_{0,n+4}+\sigma)^{2}+(|t|+T)^{2})^{\frac{2^{n+4}-1}{2(2^{n+4}-2)}}\log(\sqrt{(Q_{0,n+4}+\sigma)^{2}+(|t|+T)^{2}})\right)^{\frac{N(1-\sigma)}{1-\sigma_{n+4}}}
    ×(c1((Q0,n+4+σ)2+(|t|+T)2)12(log((Q0,n+4+σ)2+(|t|+T)2))c2)N(σσn+4)1σn+4.\displaystyle\times\left(c_{1}((Q_{0,n+4}+\sigma)^{2}+(|t|+T)^{2})^{\frac{1}{2}}\left(\log(\sqrt{(Q_{0,n+4}+\sigma)^{2}+(|t|+T)^{2}})\right)^{c_{2}}\right)^{\frac{N(\sigma-\sigma_{n+4})}{1-\sigma_{n+4}}}.

    Hence, taking the logarithms of both sides and dividing by NN, we obtain

    1Nlog|fN(s)|(1σ)1σn+4(log1.546)+(σσn+4)1σn+4logc1((1σ)(1σn+4)+c2(σσn+4)(1σn+4))log2\displaystyle\frac{1}{N}\log\left|f_{N}(s)\right|\leq\frac{(1-\sigma)}{1-\sigma_{n+4}}(\log 1.546)+\frac{(\sigma-\sigma_{n+4})}{1-\sigma_{n+4}}\log c_{1}-\left(\frac{(1-\sigma)}{(1-\sigma_{n+4})}+\frac{c_{2}(\sigma-\sigma_{n+4})}{(1-\sigma_{n+4})}\right)\log 2
    +((2n+41)(1σ)2(2n+42)(1σn+4)+(σσn+4)2(1σn+4))log((Q0,n+4+σ)2+(|t|+T)2)\displaystyle+\left(\frac{(2^{n+4}-1)(1-\sigma)}{2(2^{n+4}-2)(1-\sigma_{n+4})}+\frac{(\sigma-\sigma_{n+4})}{2(1-\sigma_{n+4})}\right)\log\left(\left(Q_{0,n+4}+\sigma\right)^{2}+(|t|+T)^{2}\right)
    +((1σ)(1σn+4)+c2(σσn+4)(1σn+4))loglog((Q0,n+4+σ)2+(|t|+T)2).\displaystyle+\left(\frac{(1-\sigma)}{(1-\sigma_{n+4})}+\frac{c_{2}(\sigma-\sigma_{n+4})}{(1-\sigma_{n+4})}\right)\log\log\left(\left(Q_{0,n+4}+\sigma\right)^{2}+(|t|+T)^{2}\right).
  • Case σ4+hσσ4+h+1\sigma_{4+h}\leq\sigma\leq\sigma_{4+h+1}, where 0hn10\leq h\leq n-1. It follows from

    |fN(s)|\displaystyle|f_{N}(s)|
    (1.546((Q4+h,5+h+σ)2+(|t|+T)2)2h+412(2h+42)log((Q4+h,5+h+σ)2+(|t|+T)2))N(σ5+hσ)σ5+hσh+4\displaystyle\leq\left(1.546((Q_{4+h,5+h}+\sigma)^{2}+(|t|+T)^{2})^{\frac{2^{h+4}-1}{2(2^{h+4}-2)}}\log(\sqrt{(Q_{4+h,5+h}+\sigma)^{2}+(|t|+T)^{2}})\right)^{\frac{N(\sigma_{5+h}-\sigma)}{\sigma_{5+h}-\sigma_{h+4}}}
    ×(1.546((Q4+h,5+h+σ)2+(|t|+T)2)2h+512(2h+52)(log((Q4+h,5+h+σ)2+(|t|+T)2)))N(σσh+4)σ5+hσh+4\displaystyle\times(1.546((Q_{4+h,5+h}+\sigma)^{2}+(|t|+T)^{2})^{\frac{2^{h+5}-1}{2(2^{h+5}-2)}}(\log(\sqrt{(Q_{4+h,5+h}+\sigma)^{2}+(|t|+T)^{2}})))^{\frac{N(\sigma-\sigma_{h+4})}{\sigma_{5+h}-\sigma_{h+4}}}

    that

    1Nlog|fN(s)|\displaystyle\frac{1}{N}\log\left|f_{N}(s)\right|
    ((σ5+hσ)σ5+hσh+4+(σσh+4)σ5+hσh+4)(log1.546)((σ5+hσ)σ5+hσh+4+(σσh+4)σ5+hσh+4)log2\displaystyle\leq\left(\frac{(\sigma_{5+h}-\sigma)}{\sigma_{5+h}-\sigma_{h+4}}+\frac{(\sigma-\sigma_{h+4})}{\sigma_{5+h}-\sigma_{h+4}}\right)(\log 1.546)-\left(\frac{(\sigma_{5+h}-\sigma)}{\sigma_{5+h}-\sigma_{h+4}}+\frac{(\sigma-\sigma_{h+4})}{\sigma_{5+h}-\sigma_{h+4}}\right)\log 2
    +((2h+41)(σ5+hσ)2(2h+42)(σ5+hσh+4)+(2h+51)(σσh+4)2(2h+52)(σ5+hσh+4))log((Q4+h,5+h+σ)2+(|t|+T)2)\displaystyle+\left(\frac{(2^{h+4}-1)(\sigma_{5+h}-\sigma)}{2(2^{h+4}-2)(\sigma_{5+h}-\sigma_{h+4})}+\frac{(2^{h+5}-1)(\sigma-\sigma_{h+4})}{2(2^{h+5}-2)(\sigma_{5+h}-\sigma_{h+4})}\right)\log\left(\left(Q_{4+h,5+h}+\sigma\right)^{2}+(|t|+T)^{2}\right)
    +((σ5+hσ)σ5+hσh+4+(σσh+4)σ5+hσh+4)loglog((Q4+h,5+h+σ)2+(|t|+T)2)\displaystyle+\left(\frac{(\sigma_{5+h}-\sigma)}{\sigma_{5+h}-\sigma_{h+4}}+\frac{(\sigma-\sigma_{h+4})}{\sigma_{5+h}-\sigma_{h+4}}\right)\log\log\left(\left(Q_{4+h,5+h}+\sigma\right)^{2}+(|t|+T)^{2}\right)
    =log1.546log2+loglog((Q4+h,5+h+σ)2+(|t|+T)2)\displaystyle=\log 1.546-\log 2+\log\log\left(\left(Q_{4+h,5+h}+\sigma\right)^{2}+(|t|+T)^{2}\right)
    +((2h+41)(σ5+hσ)2(2h+42)(σ5+hσh+4)+(2h+51)(σσh+4)2(2h+52)(σ5+hσh+4))log((Q4+h,5+h+σ)2+(|t|+T)2).\displaystyle+\left(\frac{(2^{h+4}-1)(\sigma_{5+h}-\sigma)}{2(2^{h+4}-2)(\sigma_{5+h}-\sigma_{h+4})}+\frac{(2^{h+5}-1)(\sigma-\sigma_{h+4})}{2(2^{h+5}-2)(\sigma_{5+h}-\sigma_{h+4})}\right)\log\left(\left(Q_{4+h,5+h}+\sigma\right)^{2}+(|t|+T)^{2}\right).
  • Case 1/2σσ41/2\leq\sigma\leq\sigma_{4}. One has

    |fN(s)|\displaystyle|f_{N}(s)| (k1((Q2+σ)2+(|t|+T)2)k2+12log((Q2+σ)2+(|t|+T)2)k3)N(σ4σ)σ412\displaystyle\leq\left(k_{1}((Q_{2}+\sigma)^{2}+(|t|+T)^{2})^{\frac{k_{2}+1}{2}}\log(\sqrt{(Q_{2}+\sigma)^{2}+(|t|+T)^{2}})^{k_{3}}\right)^{\frac{N(\sigma_{4}-\sigma)}{\sigma_{4}-\frac{1}{2}}}
    ×(1.546((Q2+σ)2+(|t|+T)2)1528(log((Q2+σ)2+(|t|+T)2)))N(σ12)σ412\displaystyle\times(1.546((Q_{2}+\sigma)^{2}+(|t|+T)^{2})^{\frac{15}{28}}(\log(\sqrt{(Q_{2}+\sigma)^{2}+(|t|+T)^{2}})))^{\frac{N(\sigma-\frac{1}{2})}{\sigma_{4}-\frac{1}{2}}}

    and thus

    1Nlog|fN(s)|\displaystyle\frac{1}{N}\log\left|f_{N}(s)\right| (σ4σ)σ412(logk1)+(σ12)σ412(log1.546)(k3(σ4σ)σ412+(σ12)(σ412))log2\displaystyle\leq\frac{(\sigma_{4}-\sigma)}{\sigma_{4}-\frac{1}{2}}(\log k_{1})+\frac{(\sigma-\frac{1}{2})}{\sigma_{4}-\frac{1}{2}}(\log 1.546)-\left(\frac{k_{3}(\sigma_{4}-\sigma)}{\sigma_{4}-\frac{1}{2}}+\frac{(\sigma-\frac{1}{2})}{(\sigma_{4}-\frac{1}{2})}\right)\log 2
    +((k2+1)(σ4σ)2(σ412)+15(σ12)28(σ412))log((Q2+σ)2+(|t|+T)2)\displaystyle+\left(\frac{(k_{2}+1)(\sigma_{4}-\sigma)}{2(\sigma_{4}-\frac{1}{2})}+\frac{15(\sigma-\frac{1}{2})}{28(\sigma_{4}-\frac{1}{2})}\right)\log\left(\left(Q_{2}+\sigma\right)^{2}+(|t|+T)^{2}\right)
    +(k3(σ4σ)σ412+(σ12)(σ412))loglog((Q2+σ)2+(|t|+T)2).\displaystyle+\left(\frac{k_{3}(\sigma_{4}-\sigma)}{\sigma_{4}-\frac{1}{2}}+\frac{(\sigma-\frac{1}{2})}{(\sigma_{4}-\frac{1}{2})}\right)\log\log\left(\left(Q_{2}+\sigma\right)^{2}+(|t|+T)^{2}\right).
  • Case 0σ1/20\leq\sigma\leq 1/2. As in [HSW22], we have

    (3.20) 1Nlog|fN(s)|\displaystyle\frac{1}{N}\log\left|f_{N}(s)\right| (12σ)log(c12c2+12π)+2σlogk12k3+12log((σ1)2+(|t|+T)2)\displaystyle\leq(1-2\sigma)\log\left(\frac{c_{1}}{2^{c_{2}+\frac{1}{2}}\sqrt{\pi}}\right)+2\sigma\log\frac{k_{1}}{2^{k_{3}}}+\frac{1}{2}\log\left((\sigma-1)^{2}+(|t|+T)^{2}\right)
    +12σ+4k2σ4log((Q11+σ)2+(|t|+T)2)\displaystyle+\frac{1-2\sigma+4k_{2}\sigma}{4}\log\left(\left(Q_{11}+\sigma\right)^{2}+(|t|+T)^{2}\right)
    +(c2(12σ)+2k3σ)loglog((Q11+σ)2+(|t|+T)2)\displaystyle+\left(c_{2}(1-2\sigma)+2k_{3}\sigma\right)\log\log\left(\left(Q_{11}+\sigma\right)^{2}+(|t|+T)^{2}\right)
  • Case ησ0-\eta\leq\sigma\leq 0. By [HSW22], we know

    (3.21) 1Nlog|fN(s)|\displaystyle\frac{1}{N}\log\left|f_{N}(s)\right| σηlog1(2π)12+ησηlog(1+η)+σ+ηηlogc12πσ+ηηc2log2\displaystyle\leq-\frac{\sigma}{\eta}\log\frac{1}{(2\pi)^{\frac{1}{2}+\eta}}-\frac{\sigma}{\eta}\log(1+\eta)+\frac{\sigma+\eta}{\eta}\log\frac{c_{1}}{\sqrt{2\pi}}-\frac{\sigma+\eta}{\eta}c_{2}\log 2
    +12log((σ1)2+(|t|+T)2)\displaystyle+\frac{1}{2}\log\left((\sigma-1)^{2}+(|t|+T)^{2}\right)
    +(σ(1+2η)4η+σ+η4η)log((Q10+σ)2+(|t|+T)2)\displaystyle+\left(-\frac{\sigma(1+2\eta)}{4\eta}+\frac{\sigma+\eta}{4\eta}\right)\log\left(\left(Q_{10}+\sigma\right)^{2}+(|t|+T)^{2}\right)
    +σ+ηηc2loglog((Q10+σ)2+(|t|+T)2).\displaystyle+\frac{\sigma+\eta}{\eta}c_{2}\log\log\left(\left(Q_{10}+\sigma\right)^{2}+(|t|+T)^{2}\right).
  • Case ση\sigma\leq-\eta. Finally, as per [HSW22], we use the bound

    (3.22) 1Nlog|fN(s)|\displaystyle\frac{1}{N}\log\left|f_{N}(s)\right| logζ(1σ)+12log((σ1)2+(|t|+T)2)\displaystyle\leq\log\zeta(1-\sigma)+\frac{1}{2}\log\left((\sigma-1)^{2}+(|t|+T)^{2}\right)
    +2σ12log2π+(12σ+2[σ])4log((1+σ[σ])2+(|t|+T)2)\displaystyle+\frac{2\sigma-1}{2}\log 2\pi+\frac{(1-2\sigma+2[\sigma])}{4}\log\left((1+\sigma-[\sigma])^{2}+(|t|+T)^{2}\right)
    +12j=1[σ]log((σ+j1)2+(|t|+T)2).\displaystyle+\frac{1}{2}\sum_{j=1}^{-[\sigma]}\log\left((\sigma+j-1)^{2}+(|t|+T)^{2}\right).

3.3. Defining Fc,r(θ)F_{c,r}(\theta)

We start recalling some auxiliary functions already defined in [HSW22] which will appear in the definition of Fc,r(θ)F_{c,r}(\theta). For θ\theta\in [π,π][-\pi,\pi], we let σ=c+rcosθ\sigma=c+r\cos\theta, with cr>12c-r>-\frac{1}{2}, and t=rsinθt=r\sin\theta. We define

(3.23) Lj(θ)=log(j+c+rcosθ)2+(|rsinθ|+T)2T2L_{j}(\theta)=\log\frac{(j+c+r\cos\theta)^{2}+(|r\sin\theta|+T)^{2}}{T^{2}}

and

(3.24) Mj(θ)=loglog((j+c+rcosθ)2+(|rsinθ|+T)2)loglog(T2).M_{j}(\theta)=\log\log\left((j+c+r\cos\theta)^{2}+(|r\sin\theta|+T)^{2}\right)-\log\log\left(T^{2}\right).
  • If σ1+η\sigma\geq 1+\eta, as per [HSW22] we define

    Fc,r(θ)=12L1(θ)+logT+logζ(σ).F_{c,r}(\theta)=\frac{1}{2}L_{-1}(\theta)+\log T+\log\zeta(\sigma).
  • For 1σ1+η1\leq\sigma\leq 1+\eta, as per [HSW22]

    (3.25) Fc,r(θ)\displaystyle F_{c,r}(\theta) =1+ησηlogc1+σ1ηlogζ(1+η)+12LQ0(θ)+logT\displaystyle=\frac{1+\eta-\sigma}{\eta}\log c_{1}+\frac{\sigma-1}{\eta}\log\zeta(1+\eta)+\frac{1}{2}L_{Q_{0}}(\theta)+\log T
    +c2(1+ησ)ηMQ0(θ)+c2(1+ησ)ηloglogT.\displaystyle+\frac{c_{2}(1+\eta-\sigma)}{\eta}M_{Q_{0}}(\theta)+\frac{c_{2}(1+\eta-\sigma)}{\eta}\log\log T.
  • If σn+4σ1\sigma_{n+4}\leq\sigma\leq 1, then we define

    Fc,r(θ)\displaystyle F_{c,r}(\theta) =(1σ)1σn+4(log1.546)+(σσn+4)1σn+4logc1\displaystyle=\frac{(1-\sigma)}{1-\sigma_{n+4}}(\log 1.546)+\frac{(\sigma-\sigma_{n+4})}{1-\sigma_{n+4}}\log c_{1}
    +((2n+41)(1σ)(2n+42)(1σn+4)+(σσn+4)(1σn+4))(LQ0,n+4(θ)2+logT)\displaystyle+\left(\frac{(2^{n+4}-1)(1-\sigma)}{(2^{n+4}-2)(1-\sigma_{n+4})}+\frac{(\sigma-\sigma_{n+4})}{(1-\sigma_{n+4})}\right)\left(\frac{L_{Q_{0,n+4}}(\theta)}{2}+\log T\right)
    +((1σ)(1σn+4)+c2(σσn+4)(1σn+4))(MQ0,n+4(θ)+loglogT).\displaystyle+\left(\frac{(1-\sigma)}{(1-\sigma_{n+4})}+\frac{c_{2}(\sigma-\sigma_{n+4})}{(1-\sigma_{n+4})}\right)(M_{Q_{0,n+4}}(\theta)+\log\log T).
  • When σ4+hσσ4+h+1\sigma_{4+h}\leq\sigma\leq\sigma_{4+h+1}, where 0hn10\leq h\leq n-1, then

    Fc,r(θ)\displaystyle F_{c,r}(\theta) =log1.546+(MQ4+h,5+h(θ)+loglogT)\displaystyle=\log 1.546+(M_{Q_{4+h,5+h}}(\theta)+\log\log T)
    +((2h+41)(σ5+hσ)(2h+42)(σ5+hσh+4)+(2h+51)(σσh+4)(2h+52)(σ5+hσh+4))(LQ4+h,5+h(θ)2+logT).\displaystyle+\left(\frac{(2^{h+4}-1)(\sigma_{5+h}-\sigma)}{(2^{h+4}-2)(\sigma_{5+h}-\sigma_{h+4})}+\frac{(2^{h+5}-1)(\sigma-\sigma_{h+4})}{(2^{h+5}-2)(\sigma_{5+h}-\sigma_{h+4})}\right)\left(\frac{L_{Q_{4+h,5+h}}(\theta)}{2}+\log T\right).
  • If 1/2σσ41/2\leq\sigma\leq\sigma_{4}, we define

    Fc,r(θ)\displaystyle F_{c,r}(\theta) =(σ4σ)σ412(logk1)+(σ12)σ412(log1.546)\displaystyle=\frac{(\sigma_{4}-\sigma)}{\sigma_{4}-\frac{1}{2}}(\log k_{1})+\frac{(\sigma-\frac{1}{2})}{\sigma_{4}-\frac{1}{2}}(\log 1.546)
    +((k2+1)(σ4σ)(σ412)+15(σ12)14(σ412))(LQ2(θ)2+logT)\displaystyle+\left(\frac{(k_{2}+1)(\sigma_{4}-\sigma)}{(\sigma_{4}-\frac{1}{2})}+\frac{15(\sigma-\frac{1}{2})}{14(\sigma_{4}-\frac{1}{2})}\right)\left(\frac{L_{Q_{2}}(\theta)}{2}+\log T\right)
    +(k3(σ4σ)σ412+(σ12)(σ412))(MQ2(θ)+loglogT).\displaystyle+\left(\frac{k_{3}(\sigma_{4}-\sigma)}{\sigma_{4}-\frac{1}{2}}+\frac{(\sigma-\frac{1}{2})}{(\sigma_{4}-\frac{1}{2})}\right)(M_{Q_{2}}(\theta)+\log\log T).
  • For 0σ1/20\leq\sigma\leq 1/2, as in [HSW22],

    (3.26) Fc,r(θ)\displaystyle F_{c,r}(\theta) =(12σ)logc12π+2σlogk1+12L1(θ)+logT\displaystyle=(1-2\sigma)\log\frac{c_{1}}{\sqrt{2\pi}}+2\sigma\log k_{1}+\frac{1}{2}L_{-1}(\theta)+\log T
    +12σ+4k2σ2(LQ11(θ)2+logT)+(c2(12σ)+2k3σ)(MQ11(θ)+loglogT).\displaystyle+\frac{1-2\sigma+4k_{2}\sigma}{2}\left(\frac{L_{Q_{11}}(\theta)}{2}+\log T\right)+\left(c_{2}(1-2\sigma)+2k_{3}\sigma\right)\left(M_{Q_{11}}(\theta)+\log\log T\right).
  • If ησ0-\eta\leq\sigma\leq 0 then as in [HSW22]

    (3.27) Fc,r(θ)\displaystyle F_{c,r}(\theta) =σηlog1+ηc1(2π)η+logc12π+12L1(θ)+logT\displaystyle=-\frac{\sigma}{\eta}\log\frac{1+\eta}{c_{1}(2\pi)^{\eta}}+\log\frac{c_{1}}{\sqrt{2\pi}}+\frac{1}{2}L_{-1}(\theta)+\log T
    +(σ(1+2η)2η+σ+η2η)(LQ10(θ)2+logT)+σ+ηηc2(MQ10(θ)+loglogT).\displaystyle+\left(-\frac{\sigma(1+2\eta)}{2\eta}+\frac{\sigma+\eta}{2\eta}\right)\left(\frac{L_{Q_{10}}(\theta)}{2}+\log T\right)+\frac{\sigma+\eta}{\eta}c_{2}\left(M_{Q_{10}}(\theta)+\log\log T\right).
  • If ση\sigma\leq-\eta then as in [HSW22]

    (3.28) Fc,r(θ)\displaystyle F_{c,r}(\theta) =logζ(1σ)+12L1(θ)+(1+12σ2)logT12σ2log2π\displaystyle=\log\zeta(1-\sigma)+\frac{1}{2}L_{-1}(\theta)+\left(1+\frac{1-2\sigma}{2}\right)\log T-\frac{1-2\sigma}{2}\log 2\pi
    +(12σ+2[σ])4L1[σ](θ)+12j=1[σ]Lj1(θ).\displaystyle+\frac{(1-2\sigma+2[\sigma])}{4}L_{1-[\sigma]}(\theta)+\frac{1}{2}\sum_{j=1}^{-[\sigma]}L_{j-1}(\theta).

3.4. Conclusion

From (3.4) and (3.5), following [HSW22], if we use Lemma 2.1 we obtain

(3.29) |N(T)Tπlog(T2πe)|\displaystyle\left|N_{\mathbb{Q}}(T)-\frac{T}{\pi}\log\left(\frac{T}{2\pi e}\right)\right| 74+12+125T+2πlogζ(σ1)+1log(r/(c1/2))logζ(c)ζ(2c)\displaystyle\leq\frac{7}{4}+\frac{1}{2}+\frac{1}{25T}+\frac{2}{\pi}\log\zeta\left(\sigma_{1}\right)+\frac{1}{\log(r/(c-1/2))}\log\frac{\zeta(c)}{\zeta(2c)}
1log(r/(c1/2))logT+1πlog(r/(c1/2))0πFc,r(θ)𝑑θ\displaystyle-\frac{1}{\log(r/(c-1/2))}\log T+\frac{1}{\pi\log(r/(c-1/2))}\int_{0}^{\pi}F_{c,r}(\theta)d\theta
+E(T,δ)π.\displaystyle+\frac{E(T,\delta)}{\pi}.

and hence, being N(T)=2N(T)N_{\mathbb{Q}}(T)=2N(T), we have

(3.30) |N(T)T2πlog(T2πe)|\displaystyle\left|N(T)-\frac{T}{2\pi}\log\left(\frac{T}{2\pi e}\right)\right| 78+14+150T+1πlogζ(σ1)+12log(r/(c1/2))logζ(c)ζ(2c)\displaystyle\leq\frac{7}{8}+\frac{1}{4}+\frac{1}{50T}+\frac{1}{\pi}\log\zeta\left(\sigma_{1}\right)+\frac{1}{2\log(r/(c-1/2))}\log\frac{\zeta(c)}{\zeta(2c)}
12log(r/(c1/2))logT+12πlog(r/(c1/2))0πFc,r(θ)𝑑θ\displaystyle-\frac{1}{2\log(r/(c-1/2))}\log T+\frac{1}{2\pi\log(r/(c-1/2))}\int_{0}^{\pi}F_{c,r}(\theta)d\theta
+E(T,δ)2π.\displaystyle+\frac{E(T,\delta)}{2\pi}.

If instead we use Lemma 2.3, we have

(3.31) |N(T)T2πlog(T2πe)|\displaystyle\left|N(T)-\frac{T}{2\pi}\log\left(\frac{T}{2\pi e}\right)\right| 78+14+150T+1πlogζ(σ1)+log(2.0945logT)2log(r/(c1/2))\displaystyle\leq\frac{7}{8}+\frac{1}{4}+\frac{1}{50T}+\frac{1}{\pi}\log\zeta\left(\sigma_{1}\right)+\frac{\log(2.0945\log T)}{2\log(r/(c-1/2))}
12log(r/(c1/2))logT+12πlog(r/(c1/2))0πFc,r(θ)𝑑θ\displaystyle-\frac{1}{2\log(r/(c-1/2))}\log T+\frac{1}{2\pi\log(r/(c-1/2))}\int_{0}^{\pi}F_{c,r}(\theta)d\theta
+E(T,δ)2π.\displaystyle+\frac{E(T,\delta)}{2\pi}.

As in [Tru14, HSW22], we define

(3.32) θy={0 if c+ryarccosycr if cryc+r;π if ycr.\theta_{y}=\left\{\begin{array}[]{ll}0&\text{ if }c+r\leq y\\ \arccos\frac{y-c}{r}&\text{ if }c-r\leq y\leq c+r;\\ \pi&\text{ if }y\leq c-r.\end{array}\right.

Now, we let c,rc,r, and η\eta be positive real numbers satisfying444Note that θ1/2=π\theta_{-1/2}=\pi. Indeed, by the definition of θy\theta_{y}, if we take y=1/2y=-1/2, then ycry\leq c-r by the assumption (3.33).

(3.33) 12<cr<1c<η<1+η<c-\frac{1}{2}<c-r<1-c<-\eta<1+\eta<c

and 0<η120<\eta\leq\frac{1}{2}. To bound 0πFc,r(θ)𝑑θ\int_{0}^{\pi}F_{c,r}(\theta)d\theta, we consider the splitting

0π=0θ1+η+θ1+ηθ1+θ1θσn+4+h=0n1σ5+hσ4+h+σ4θ12+θ12θ0+θ0θη+θηπ.\int_{0}^{\pi}=\int_{0}^{\theta_{1+\eta}}+\int_{\theta_{1+\eta}}^{\theta_{1}}+\int_{\theta_{1}}^{\theta_{\sigma_{n+4}}}+\sum_{h=0}^{n-1}\int_{\sigma_{5+h}}^{\sigma_{4+h}}+\int_{\sigma_{4}}^{\theta_{\frac{1}{2}}}+\int_{\theta_{\frac{1}{2}}}^{\theta_{0}}+\int_{\theta_{0}}^{\theta_{-\eta}}+\int_{\theta_{-\eta}}^{\pi}.

First, we recall two estimates [HSW22] for Lj(θ)L_{j}(\theta) defined in (3.23) and Mj(θ)M_{j}(\theta) defined in (3.24) which hold for TT0T\geq T_{0} and θ[0,π]\theta\in[0,\pi]. Defining, for θ[0,π]\theta\in[0,\pi],

Lj(θ)=1T0(j+c+rcosθ)2+1T0(rsinθ)2+2rsinθ,L_{j}^{\star}(\theta)=\frac{1}{T_{0}}(j+c+r\cos\theta)^{2}+\frac{1}{T_{0}}(r\sin\theta)^{2}+2r\sin\theta,

we have

(3.34) Lj(θ)Lj(θ)TL_{j}(\theta)\leq\frac{L_{j}^{\star}(\theta)}{T}

and

(3.35) Mj(θ)Lj(θ)2TlogT.M_{j}(\theta)\leq\frac{L_{j}^{\star}(\theta)}{2T\log T}.

Now, we proceed with the estimate of each integral as in [HSW22] to derive

(3.36) 0θ1+ηFc,r(θ)𝑑θlogT0θ1+η1𝑑θ+0θ1+ηlogζ(σ)𝑑θ+12T0θ1+ηL1(θ)𝑑θ,\int_{0}^{\theta_{1+\eta}}F_{c,r}(\theta)d\theta\leq\log T\int_{0}^{\theta_{1+\eta}}1d\theta+\int_{0}^{\theta_{1+\eta}}\log\zeta(\sigma)d\theta+\frac{1}{2T}\int_{0}^{\theta_{1+\eta}}L_{-1}^{\star}(\theta)d\theta,
(3.37) θ1+ηθ1Fc,r(θ)𝑑θ\displaystyle\int_{\theta_{1+\eta}}^{\theta_{1}}F_{c,r}(\theta)d\theta
logTθ1+ηθ11𝑑θ+c2ηloglogTθ1+ηθ1(1+ησ)𝑑θ+logc1ηθ1+ηθ1(1+ησ)𝑑θ\displaystyle\leq\log T\int_{\theta_{1+\eta}}^{\theta_{1}}1d\theta+\frac{c_{2}}{\eta}\log\log T\int_{\theta_{1+\eta}}^{\theta_{1}}(1+\eta-\sigma)d\theta+\frac{\log c_{1}}{\eta}\int_{\theta_{1+\eta}}^{\theta_{1}}(1+\eta-\sigma)d\theta
+logζ(1+η)ηθ1+ηθ1(σ1)𝑑θ+12Tθ1+ηθ1LQ0(θ)𝑑θ+c22ηTlogTθ1+ηθ1(1+ησ)LQ0(θ)𝑑θ,\displaystyle+\frac{\log\zeta(1+\eta)}{\eta}\int_{\theta_{1+\eta}}^{\theta_{1}}(\sigma-1)d\theta+\frac{1}{2T}\int_{\theta_{1+\eta}}^{\theta_{1}}L_{Q_{0}}^{\star}(\theta)d\theta+\frac{c_{2}}{2\eta T\log T}\int_{\theta_{1+\eta}}^{\theta_{1}}(1+\eta-\sigma)L_{Q_{0}}^{\star}(\theta)d\theta,
(3.38) θ12θ0Fc,r(θ)𝑑θ\displaystyle\int_{\theta_{\frac{1}{2}}}^{\theta_{0}}F_{c,r}(\theta)d\theta
logTθ12θ01𝑑θ+logT2θ12θ0(12σ+4k2σ)𝑑θ+loglogTθ12θ0(c2(12σ)+2k3σ)𝑑θ\displaystyle\leq\log T\int_{\theta_{\frac{1}{2}}}^{\theta_{0}}1d\theta+\frac{\log T}{2}\int_{\theta_{\frac{1}{2}}}^{\theta_{0}}(1-2\sigma+4k_{2}\sigma)d\theta+\log\log T\int_{\theta_{\frac{1}{2}}}^{\theta_{0}}(c_{2}(1-2\sigma)+2k_{3}\sigma)d\theta
+(logc12π)θ12θ0(12σ)𝑑θ+2logk1θ12θ0σ𝑑θ+12Tθ12θ0L1(θ)𝑑θ\displaystyle+\left(\log\frac{c_{1}}{\sqrt{2\pi}}\right)\int_{\theta_{\frac{1}{2}}}^{\theta_{0}}(1-2\sigma)d\theta+2\log k_{1}\int_{\theta_{\frac{1}{2}}}^{\theta_{0}}\sigma d\theta+\frac{1}{2T}\int_{\theta_{\frac{1}{2}}}^{\theta_{0}}L_{-1}^{\star}(\theta)d\theta
+14Tθ12θ0(12σ+4k2σ)LQ11(θ)𝑑θ+12TlogTθ12θ0(c2(12σ)+2k3σ)LQ11(θ)𝑑θ,\displaystyle+\frac{1}{4T}\int_{\theta_{\frac{1}{2}}}^{\theta_{0}}\left(1-2\sigma+4k_{2}\sigma\right)L_{Q_{11}}^{\star}(\theta)d\theta+\frac{1}{2T\log T}\int_{\theta_{\frac{1}{2}}}^{\theta_{0}}\left(c_{2}(1-2\sigma)+2k_{3}\sigma\right)L_{Q_{11}}^{\star}(\theta)d\theta,
(3.39) θ0θηFc,r(θ)𝑑θ\displaystyle\int_{\theta_{0}}^{\theta_{-\eta}}F_{c,r}(\theta)d\theta logTθ0θη(1σ(1+2η)2η+σ+η2η)𝑑θ+loglogTθ0θησ+ηηc2𝑑θ\displaystyle\leq\log T\int_{\theta_{0}}^{\theta_{-\eta}}\left(1-\frac{\sigma(1+2\eta)}{2\eta}+\frac{\sigma+\eta}{2\eta}\right)d\theta+\log\log T\int_{\theta_{0}}^{\theta_{-\eta}}\frac{\sigma+\eta}{\eta}c_{2}d\theta
+θ0θη(σηlog1+ηc1(2π)η+logc12π)𝑑θ+12Tθ0θηL1(θ)𝑑θ\displaystyle+\int_{\theta_{0}}^{\theta_{-\eta}}\left(-\frac{\sigma}{\eta}\log\frac{1+\eta}{c_{1}(2\pi)^{\eta}}+\log\frac{c_{1}}{\sqrt{2\pi}}\right)d\theta+\frac{1}{2T}\int_{\theta_{0}}^{\theta_{-\eta}}L_{-1}^{\star}(\theta)d\theta
+1Tθ0θη(σ(1+2η)4η+σ+η4η)LQ10(θ)𝑑θ+12TlogTθ0θησ+ηηc2LQ10(θ)𝑑θ\displaystyle+\frac{1}{T}\int_{\theta_{0}}^{\theta_{-\eta}}\left(-\frac{\sigma(1+2\eta)}{4\eta}+\frac{\sigma+\eta}{4\eta}\right)L_{Q_{10}}^{\star}(\theta)d\theta+\frac{1}{2T\log T}\int_{\theta_{0}}^{\theta_{-\eta}}\frac{\sigma+\eta}{\eta}c_{2}L_{Q_{10}}^{\star}(\theta)d\theta

and

(3.40) θηπFc,r(θ)𝑑θ\displaystyle\int_{\theta_{-\eta}}^{\pi}F_{c,r}(\theta)d\theta logTθηπ1+12σ2dθ+θηπlogζ(1σ)𝑑θlog2πθηπ12σ2𝑑θ\displaystyle\leq\log T\int_{\theta_{-\eta}}^{\pi}1+\frac{1-2\sigma}{2}d\theta+\int_{\theta_{-\eta}}^{\pi}\log\zeta(1-\sigma)d\theta-\log 2\pi\int_{\theta_{-\eta}}^{\pi}\frac{1-2\sigma}{2}d\theta
+12TθηπL1(θ)𝑑θ+1Tθηθ1212σ4L1(θ)𝑑θ\displaystyle+\frac{1}{2T}\int_{\theta_{-\eta}}^{\pi}L_{-1}^{\star}(\theta)d\theta+\frac{1}{T}\int_{\theta_{-\eta}}^{\theta_{-\frac{1}{2}}}\frac{1-2\sigma}{4}L_{1}^{\star}(\theta)d\theta
+j=1θj+12θj12(12σ2j4Lj+1(θ)+12k=1jLk1(θ))𝑑θ.\displaystyle+\sum_{j=1}^{\infty}\int_{\theta_{-j+\frac{1}{2}}}^{\theta_{-j-\frac{1}{2}}}\left(\frac{1-2\sigma-2j}{4}L_{j+1}(\theta)+\frac{1}{2}\sum_{k=1}^{j}L_{k-1}(\theta)\right)d\theta.

Observe that

(3.41) θ1θσn+4Fc,r(θ)𝑑θ\displaystyle\int_{\theta_{1}}^{\theta_{\sigma_{n+4}}}F_{c,r}(\theta)d\theta
logT(2n+42)(1σn+4)θ1θσn+4((2n+41)(1σ)+(2n+42)(σσn+4))𝑑θ\displaystyle\leq\frac{\log T}{(2^{n+4}-2)(1-\sigma_{n+4})}\int_{\theta_{1}}^{\theta_{\sigma_{n+4}}}\left((2^{n+4}-1)(1-\sigma)+(2^{n+4}-2)(\sigma-\sigma_{n+4})\right)d\theta
+loglogT1σn+4θ1θσn+4((1σ)+c2(σσn+4))𝑑θ\displaystyle+\frac{\log\log T}{1-\sigma_{n+4}}\int_{\theta_{1}}^{\theta_{\sigma_{n+4}}}\left((1-\sigma)+c_{2}(\sigma-\sigma_{n+4})\right)d\theta
+log1.546(1σn+4)θ1θσn+4(1σ)𝑑θ+logc1(1σn+4)θ1θσn+4(σσn+4)𝑑θ\displaystyle+\frac{\log 1.546}{(1-\sigma_{n+4})}\int_{\theta_{1}}^{\theta_{\sigma_{n+4}}}(1-\sigma)d\theta+\frac{\log c_{1}}{(1-\sigma_{n+4})}\int_{\theta_{1}}^{\theta_{\sigma_{n+4}}}(\sigma-\sigma_{n+4})d\theta
+12T(2n+42)(1σn+4)θ1θσn+4((2n+41)(1σ)+(2n+42)(σσn+4))LQ0,n+4(θ)𝑑θ\displaystyle+\frac{1}{2T(2^{n+4}-2)(1-\sigma_{n+4})}\int_{\theta_{1}}^{\theta_{\sigma_{n+4}}}\left((2^{n+4}-1)(1-\sigma)+(2^{n+4}-2)(\sigma-\sigma_{n+4})\right)L_{Q_{0,n+4}}^{\star}(\theta)d\theta
+12TlogT(1σn+4)θ1θσn+4((1σ)+c2(σσn+4))LQ0,n+4(θ)𝑑θ.\displaystyle+\frac{1}{2T\log T(1-\sigma_{n+4})}\int_{\theta_{1}}^{\theta_{\sigma_{n+4}}}\left((1-\sigma)+c_{2}(\sigma-\sigma_{n+4})\right)L_{Q_{0,n+4}}^{\star}(\theta)d\theta.

Hence, for every 0hn10\leq h\leq n-1, we have

(3.42) θσ5+hθσ4+hFc,r(θ)𝑑θ\displaystyle\int_{\theta_{\sigma_{5+h}}}^{\theta_{\sigma_{4+h}}}F_{c,r}(\theta)d\theta
loglogTθσ5+hθσ4+h1𝑑θ+logT(2h+42)(2h+52)(σ5+hσh+4)\displaystyle\leq\log\log T\int_{\theta_{\sigma_{5+h}}}^{\theta_{\sigma_{4+h}}}1d\theta+\frac{\log T}{(2^{h+4}-2)(2^{h+5}-2)(\sigma_{5+h}-\sigma_{h+4})}
×θσ5+hθσ4+h((2h+52)(2h+41)(σ5+hσ)+(2h+42)(2h+51)(σσh+4))dθ\displaystyle\times\int_{\theta_{\sigma_{5+h}}}^{\theta_{\sigma_{4+h}}}\left((2^{h+5}-2)(2^{h+4}-1)(\sigma_{5+h}-\sigma)+(2^{h+4}-2)(2^{h+5}-1)(\sigma-\sigma_{h+4})\right)d\theta
+log(1.546)θσ5+hθσ4+h1𝑑θ+12TlogTθσ5+hθσ4+hLQ4+h,5+h(θ)𝑑θ\displaystyle+\log(1.546)\int_{\theta_{\sigma_{5+h}}}^{\theta_{\sigma_{4+h}}}1d\theta+\frac{1}{2T\log T}\int_{\theta_{\sigma_{5+h}}}^{\theta_{\sigma_{4+h}}}L_{Q_{4+h,5+h}}^{\star}(\theta)d\theta
+12T(2h+42)(2h+52)(σ5+hσh+4)\displaystyle+\frac{1}{2T(2^{h+4}-2)(2^{h+5}-2)(\sigma_{5+h}-\sigma_{h+4})}
×θσ5+hθσ4+h((2h+52)(2h+41)(σ5+hσ)+(2h+42)(2h+51)(σσh+4))LQ4+h,5+h(θ)dθ.\displaystyle\times\int_{\theta_{\sigma_{5+h}}}^{\theta_{\sigma_{4+h}}}\left((2^{h+5}-2)(2^{h+4}-1)(\sigma_{5+h}-\sigma)+(2^{h+4}-2)(2^{h+5}-1)(\sigma-\sigma_{h+4})\right)L_{Q_{4+h,5+h}}^{\star}(\theta)d\theta.

Finally, we have

(3.43) θσ4θ1/2Fc,r(θ)𝑑θ\displaystyle\int_{\theta_{\sigma_{4}}}^{\theta_{1/2}}F_{c,r}(\theta)d\theta logT14(σ412)θσ4θ1/2(14(k2+1)(σ4σ)+15(σ12))𝑑θ\displaystyle\leq\frac{\log T}{14(\sigma_{4}-\frac{1}{2})}\int_{\theta_{\sigma_{4}}}^{\theta_{{1/2}}}\left(14(k_{2}+1)(\sigma_{4}-\sigma)+15\left(\sigma-\frac{1}{2}\right)\right)d\theta
+loglogT(σ412)θσ4θ1/2(k3(σ4σ)+(σ12))𝑑θ\displaystyle+\frac{\log\log T}{(\sigma_{4}-\frac{1}{2})}\int_{\theta_{\sigma_{4}}}^{\theta_{{1/2}}}\left(k_{3}(\sigma_{4}-\sigma)+\left(\sigma-\frac{1}{2}\right)\right)d\theta
+logk1σ412θσ4θ1/2(σ4σ)𝑑θ+log1.546σ412θσ4θ1/2(σ12)𝑑θ\displaystyle+\frac{\log k_{1}}{\sigma_{4}-\frac{1}{2}}\int_{\theta_{\sigma_{4}}}^{\theta_{1/2}}(\sigma_{4}-\sigma)d\theta+\frac{\log 1.546}{\sigma_{4}-\frac{1}{2}}\int_{\theta_{\sigma_{4}}}^{\theta_{1/2}}\left(\sigma-\frac{1}{2}\right)d\theta
+12T14(σ412)θσ4θ1/2(14(k2+1)(σ4σ)+15(σ12))LQ2(θ)𝑑θ\displaystyle+\frac{1}{2T14(\sigma_{4}-\frac{1}{2})}\int_{\theta_{\sigma_{4}}}^{\theta_{{1/2}}}\left(14(k_{2}+1)(\sigma_{4}-\sigma)+15\left(\sigma-\frac{1}{2}\right)\right)L_{Q_{2}}^{\star}(\theta)d\theta
+12TlogT(σ412)θσ4θ1/2(k3(σ4σ)+(σ12))LQ2(θ)𝑑θ\displaystyle+\frac{1}{2T\log T(\sigma_{4}-\frac{1}{2})}\int_{\theta_{\sigma_{4}}}^{\theta_{{1/2}}}\left(k_{3}(\sigma_{4}-\sigma)+\left(\sigma-\frac{1}{2}\right)\right)L_{Q_{2}}^{\star}(\theta)d\theta

With the above estimates in hand, we are ready to estimate the constants.

3.4.1. Constant C1C_{1}

Setting

C¯1\displaystyle\overline{C}_{1} =1(2n+42)(1σn+4)θ1θσn+4((2n+41)(1σ)+(2n+42)(σσn+4))𝑑θ\displaystyle=\frac{1}{(2^{n+4}-2)(1-\sigma_{n+4})}\int_{\theta_{1}}^{\theta_{\sigma_{n+4}}}\left((2^{n+4}-1)(1-\sigma)+(2^{n+4}-2)(\sigma-\sigma_{n+4})\right)d\theta
+h=0n11(2h+42)(2h+52)(σ5+hσh+4)\displaystyle+\sum_{h=0}^{n-1}\frac{1}{(2^{h+4}-2)(2^{h+5}-2)(\sigma_{5+h}-\sigma_{h+4})}
×θσ5+hθσ4+h((2h+52)(2h+41)(σ5+hσ)+(2h+42)(2h+51)(σσh+4))dθ\displaystyle\times\int_{\theta_{\sigma_{5+h}}}^{\theta_{\sigma_{4+h}}}\left((2^{h+5}-2)(2^{h+4}-1)(\sigma_{5+h}-\sigma)+(2^{h+4}-2)(2^{h+5}-1)(\sigma-\sigma_{h+4})\right)d\theta
+114(σ412)θσ4θ1/2(14(k2+1)(σ4σ)+15(σ12))𝑑θ\displaystyle+\frac{1}{14(\sigma_{4}-\frac{1}{2})}\int_{\theta_{\sigma_{4}}}^{\theta_{{1/2}}}\left(14(k_{2}+1)(\sigma_{4}-\sigma)+15\left(\sigma-\frac{1}{2}\right)\right)d\theta
+12θ12θ0(12σ+4k2σ)𝑑θ+θηπ12σ2𝑑θ+(θ1θ1/2)+θ0θη(σ(1+2η)2η+σ+η2η)𝑑θ,\displaystyle+\frac{1}{2}\int_{\theta_{\frac{1}{2}}}^{\theta_{0}}(1-2\sigma+4k_{2}\sigma)d\theta+\int_{\theta-\eta}^{\pi}\frac{1-2\sigma}{2}d\theta+(\theta_{1}-\theta_{1/2})+\int_{\theta_{0}}^{\theta_{-\eta}}\left(-\frac{\sigma(1+2\eta)}{2\eta}+\frac{\sigma+\eta}{2\eta}\right)d\theta,

we can express C1C_{1} as

(3.44) C1=C¯12πlog(r/(c1/2)).C_{1}=\frac{\overline{C}_{1}}{2\pi\log(r/(c-1/2))}.

3.4.2. Constants C2C_{2} and C2C^{\prime}_{2}

Given

C¯2\displaystyle\overline{C}_{2} =11σn+4θ1θσn+4((1σ)+c2(σσn+4))𝑑θ\displaystyle=\frac{1}{1-\sigma_{n+4}}\int_{\theta_{1}}^{\theta_{\sigma_{n+4}}}\left((1-\sigma)+c_{2}(\sigma-\sigma_{n+4})\right)d\theta
+h=0n1θσ5+hθσ4+h1𝑑θ+1(σ412)θσ4θ1/2(k3(σ4σ)+(σ12))𝑑θ\displaystyle+\sum_{h=0}^{n-1}\int_{\theta_{\sigma_{5+h}}}^{\theta_{\sigma_{4+h}}}1d\theta+\frac{1}{(\sigma_{4}-\frac{1}{2})}\int_{\theta_{\sigma_{4}}}^{\theta_{{1/2}}}\left(k_{3}(\sigma_{4}-\sigma)+\left(\sigma-\frac{1}{2}\right)\right)d\theta
+c2ηθ1+ηθ1(1+ησ)dθ++θ12θ0(c2(12σ)+2k3σ)dθ+θ0θησ+ηηc2dθ\displaystyle+\frac{c_{2}}{\eta}\int_{\theta_{1+\eta}}^{\theta_{1}}(1+\eta-\sigma)d\theta++\int_{\theta_{\frac{1}{2}}}^{\theta_{0}}(c_{2}(1-2\sigma)+2k_{3}\sigma)d\theta+\int_{\theta_{0}}^{\theta_{-\eta}}\frac{\sigma+\eta}{\eta}c_{2}d\theta
=11σn+4θ1θσn+4((1σ)+c2(σσn+4))𝑑θ+θσ4\displaystyle=\frac{1}{1-\sigma_{n+4}}\int_{\theta_{1}}^{\theta_{\sigma_{n+4}}}\left((1-\sigma)+c_{2}(\sigma-\sigma_{n+4})\right)d\theta+\theta_{\sigma_{4}}
θσn+4+1(σ412)θσ4θ1/2(k3(σ4σ)+(σ12))𝑑θ\displaystyle-\theta_{\sigma_{n+4}}+\frac{1}{(\sigma_{4}-\frac{1}{2})}\int_{\theta_{\sigma_{4}}}^{\theta_{{1/2}}}\left(k_{3}(\sigma_{4}-\sigma)+\left(\sigma-\frac{1}{2}\right)\right)d\theta
+c2ηθ1+ηθ1(1+ησ)dθ++θ12θ0(c2(12σ)+2k3σ)dθ+θ0θησ+ηηc2dθ,\displaystyle+\frac{c_{2}}{\eta}\int_{\theta_{1+\eta}}^{\theta_{1}}(1+\eta-\sigma)d\theta++\int_{\theta_{\frac{1}{2}}}^{\theta_{0}}(c_{2}(1-2\sigma)+2k_{3}\sigma)d\theta+\int_{\theta_{0}}^{\theta_{-\eta}}\frac{\sigma+\eta}{\eta}c_{2}d\theta,

by Lemma 2.1, our C2C_{2} can be written as

(3.45) C2=C¯22πlog(r/(c1/2));C_{2}=\frac{\overline{C}_{2}}{2\pi\log(r/(c-1/2))};

while Lemma 2.3 implies that

(3.46) C2=C¯22πlog(r/(c1/2))+1.23222log(r/(c1/2)).C^{\prime}_{2}=\frac{\overline{C}_{2}}{2\pi\log(r/(c-1/2))}+\frac{1.2322}{2\log(r/(c-1/2))}.

3.4.3. Constants C3C_{3} and C3C^{\prime}_{3}

Using Lemma 2.1, C3C_{3} can be expressed by

(3.47) C3\displaystyle C_{3} =78+14+150T+1πlogζ(σ1)+12log(r/(c1/2))logζ(c)ζ(2c)+12(640δ1121536(3T01)+1210)\displaystyle=\frac{7}{8}+\frac{1}{4}+\frac{1}{50T}+\frac{1}{\pi}\log\zeta(\sigma_{1})+\frac{1}{2\log(r/(c-1/2))}\log\frac{\zeta(c)}{\zeta(2c)}+\frac{1}{2}\left(\frac{640\delta-112}{1536\left(3T_{0}-1\right)}+\frac{1}{2^{10}}\right)
+12πlog(r/(c1/2))(D3+κ1(J1)+κ2(J2)+κ3(T0)),\displaystyle+\frac{1}{2\pi\log(r/(c-1/2))}\left(D_{3}+\kappa_{1}\left(J_{1}\right)+\kappa_{2}\left(J_{2}\right)+\kappa_{3}\left(T_{0}\right)\right),

while Lemma 2.3 implies that the constant C3C^{\prime}_{3} will be

(3.48) C3\displaystyle C^{\prime}_{3} =78+14+150T+1πlogζ(σ1)+12(640δ1121536(3T01)+1210)\displaystyle=\frac{7}{8}+\frac{1}{4}+\frac{1}{50T}+\frac{1}{\pi}\log\zeta(\sigma_{1})+\frac{1}{2}\left(\frac{640\delta-112}{1536\left(3T_{0}-1\right)}+\frac{1}{2^{10}}\right)
+12πlog(r/(c1/2))(D3+κ1(J1)+κ2(J2)+κ3(T0)),\displaystyle+\frac{1}{2\pi\log(r/(c-1/2))}\left(D_{3}+\kappa_{1}\left(J_{1}\right)+\kappa_{2}\left(J_{2}\right)+\kappa_{3}\left(T_{0}\right)\right),

where

D3\displaystyle D_{3} =logc1ηθ1+ηθ1(1+ησ)𝑑θ+logζ(1+η)ηθ1+ηθ1(σ1)𝑑θ\displaystyle=\frac{\log c_{1}}{\eta}\int_{\theta_{1+\eta}}^{\theta_{1}}(1+\eta-\sigma)d\theta+\frac{\log\zeta(1+\eta)}{\eta}\int_{\theta_{1+\eta}}^{\theta_{1}}(\sigma-1)d\theta
+log1.546(1σn+4)θ1θσn+4(1σ)𝑑θ+logc1(1σn+4)θ1θσn+4(σσn+4)𝑑θ\displaystyle+\frac{\log 1.546}{(1-\sigma_{n+4})}\int_{\theta_{1}}^{\theta_{\sigma_{n+4}}}(1-\sigma)d\theta+\frac{\log c_{1}}{(1-\sigma_{n+4})}\int_{\theta_{1}}^{\theta_{\sigma_{n+4}}}(\sigma-\sigma_{n+4})d\theta
+h=0n1log(1.546)θσ5+hθσ4+h𝑑θ+logk1σ412θσ4θ1/2(σ4σ)𝑑θ+log1.546σ412θσ4θ1/2(σ12)𝑑θ\displaystyle+\sum_{h=0}^{n-1}\log(1.546)\int_{\theta_{\sigma_{5+h}}}^{\theta_{\sigma_{4+h}}}d\theta+\frac{\log k_{1}}{\sigma_{4}-\frac{1}{2}}\int_{\theta_{\sigma_{4}}}^{\theta_{1/2}}(\sigma_{4}-\sigma)d\theta+\frac{\log 1.546}{\sigma_{4}-\frac{1}{2}}\int_{\theta_{\sigma_{4}}}^{\theta_{1/2}}\left(\sigma-\frac{1}{2}\right)d\theta
+(logc12π)θ12θ0(12σ)𝑑θ+2logk1θ12θ0σ𝑑θ\displaystyle+\left(\log\frac{c_{1}}{\sqrt{2\pi}}\right)\int_{\theta_{\frac{1}{2}}}^{\theta_{0}}(1-2\sigma)d\theta+2\log k_{1}\int_{\theta_{\frac{1}{2}}}^{\theta_{0}}\sigma d\theta
+θ0θη(σηlog1+ηc1(2π)η+logc12π)𝑑θ(log2π)θηπ12σ2𝑑θ\displaystyle+\int_{\theta_{0}}^{\theta_{-\eta}}\left(-\frac{\sigma}{\eta}\log\frac{1+\eta}{c_{1}(2\pi)^{\eta}}+\log\frac{c_{1}}{\sqrt{2\pi}}\right)d\theta-(\log 2\pi)\int_{\theta_{-\eta}}^{\pi}\frac{1-2\sigma}{2}d\theta
+logζ(1+η)+logζ(c)2(θ1+ηπ2)+π4J1logζ(c)\displaystyle+\frac{\log\zeta(1+\eta)+\log\zeta(c)}{2}\left(\theta_{1+\eta}-\frac{\pi}{2}\right)+\frac{\pi}{4J_{1}}\log\zeta(c)
+logζ(1+η)+logζ(c)2(θ1cθη)+πθ1c2J2logζ(c),\displaystyle+\frac{\log\zeta(1+\eta)+\log\zeta(c)}{2}\left(\theta_{1-c}-\theta_{-\eta}\right)+\frac{\pi-\theta_{1-c}}{2J_{2}}\log\zeta(c),
κ1(J1)=π4J1(logζ(c+r)+2j=1J11logζ(c+rcosπj2J1)),\kappa_{1}\left(J_{1}\right)=\frac{\pi}{4J_{1}}\left(\log\zeta(c+r)+2\sum_{j=1}^{J_{1}-1}\log\zeta\left(c+r\cos\frac{\pi j}{2J_{1}}\right)\right),
(3.49) κ2(J2)=\displaystyle\kappa_{2}\left(J_{2}\right)= πθ1c2J2(logζ(1c+r)+2j=1J21logζ(1crcos(πjJ2+(1jJ2)θ1c)),\displaystyle\frac{\pi-\theta_{1-c}}{2J_{2}}(\log\zeta(1-c+r)+2\sum_{j=1}^{J_{2}-1}\log\zeta\left(1-c-r\cos\left(\frac{\pi j}{J_{2}}+\left(1-\frac{j}{J_{2}}\right)\theta_{1-c}\right)\right),

and

κ3(T0)=12T0max{0,1}+12T0loglogT0max{0,2},\displaystyle\kappa_{3}(T_{0})=\frac{1}{2T_{0}}\max\left\{0,\mathscr{M}_{1}\right\}+\frac{1}{2T_{0}\log\log T_{0}}\max\left\{0,\mathscr{M}_{2}\right\},

with

1=0θ1+ηL1(θ)+θ1+ηθ1LQ0(θ)𝑑θ+θ12θ0(L1(θ)+12(12σ+4k2σ)LQ11(θ))𝑑θ\displaystyle\mathscr{M}_{1}=\int_{0}^{\theta_{1+\eta}}L_{-1}^{\star}(\theta)+\int_{\theta_{1+\eta}}^{\theta_{1}}L_{Q_{0}}^{\star}(\theta)d\theta+\int_{\theta_{\frac{1}{2}}}^{\theta_{0}}\left(L_{-1}^{\star}(\theta)+\frac{1}{2}\left(1-2\sigma+4k_{2}\sigma\right)L_{Q_{11}}^{\star}(\theta)\right)d\theta
+1(2n+42)(1σn+4)θ1θσn+4((2n+41)(1σ)+(2n+42)(σσn+4))LQ0,n+4(θ)𝑑θ\displaystyle+\frac{1}{(2^{n+4}-2)(1-\sigma_{n+4})}\int_{\theta_{1}}^{\theta_{\sigma_{n+4}}}\left((2^{n+4}-1)(1-\sigma)+(2^{n+4}-2)(\sigma-\sigma_{n+4})\right)L_{Q_{0,n+4}}^{\star}(\theta)d\theta
+h=0n11(2h+42)(2h+52)(σ5+hσh+4)\displaystyle+\sum_{h=0}^{n-1}\frac{1}{(2^{h+4}-2)(2^{h+5}-2)(\sigma_{5+h}-\sigma_{h+4})}
×θσ5+hθσ4+h((2h+52)(2h+41)(σ5+hσ)+(2h+42)(2h+51)(σσh+4))LQ4+h,5+h(θ)dθ\displaystyle\times\int_{\theta_{\sigma_{5+h}}}^{\theta_{\sigma_{4+h}}}\left((2^{h+5}-2)(2^{h+4}-1)(\sigma_{5+h}-\sigma)+(2^{h+4}-2)(2^{h+5}-1)(\sigma-\sigma_{h+4})\right)L_{Q_{4+h,5+h}}^{\star}(\theta)d\theta
+114(σ412)θσ4θ1/2(14(k2+1)(σ4σ)+15(σ12))LQ2(θ)𝑑θ\displaystyle+\frac{1}{14(\sigma_{4}-\frac{1}{2})}\int_{\theta_{\sigma_{4}}}^{\theta_{{1/2}}}\left(14(k_{2}+1)(\sigma_{4}-\sigma)+15\left(\sigma-\frac{1}{2}\right)\right)L_{Q_{2}}^{\star}(\theta)d\theta
+θ0θη(L1(θ)+(σ+12)LQ10(θ))𝑑θ+θηπ(L1(θ)+12σ2L1(θ))𝑑θ\displaystyle+\int_{\theta_{0}}^{\theta_{-\eta}}\left(L_{-1}^{\star}(\theta)+\left(-\sigma+\frac{1}{2}\right)L_{Q_{10}}^{\star}(\theta)\right)d\theta+\int_{\theta_{-\eta}}^{\pi}\left(L_{-1}^{\star}(\theta)+\frac{1-2\sigma}{2}L_{1}^{\star}(\theta)\right)d\theta

and

2=θ1+ηθ1c2η(1+ησ)LQ0(θ)𝑑θ+11σn+4θ1θσn+4((1σ)+c2(σσn+4))LQ0,n+4(θ)𝑑θ\displaystyle\mathscr{M}_{2}=\int_{\theta_{1+\eta}}^{\theta_{1}}\frac{c_{2}}{\eta}(1+\eta-\sigma)L_{Q_{0}}^{\star}(\theta)d\theta+\frac{1}{1-\sigma_{n+4}}\int_{\theta_{1}}^{\theta_{\sigma_{n+4}}}\left((1-\sigma)+c_{2}(\sigma-\sigma_{n+4})\right)L_{Q_{0,n+4}}^{\star}(\theta)d\theta
+h=0n1θσ5+hθσ4+hLQ4+h,5+h(θ)𝑑θ+1(σ412)θσ4θ1/2(k3(σ4σ)+(σ12))LQ2(θ)𝑑θ\displaystyle+\sum_{h=0}^{n-1}\int_{\theta_{\sigma_{5+h}}}^{\theta_{\sigma_{4+h}}}L_{Q_{4+h,5+h}}^{\star}(\theta)d\theta+\frac{1}{(\sigma_{4}-\frac{1}{2})}\int_{\theta_{\sigma_{4}}}^{\theta_{{1/2}}}\left(k_{3}(\sigma_{4}-\sigma)+\left(\sigma-\frac{1}{2}\right)\right)L_{Q_{2}}^{\star}(\theta)d\theta
+θ12θ0(c2(12σ)+2k3σ)LQ11(θ)𝑑θ+θ0θησ+ηηc2LQ10(θ)𝑑θ.\displaystyle+\int_{\theta_{\frac{1}{2}}}^{\theta_{0}}\left(c_{2}(1-2\sigma)+2k_{3}\sigma\right)L_{Q_{11}}^{\star}(\theta)d\theta+\int_{\theta_{0}}^{\theta_{-\eta}}\frac{\sigma+\eta}{\eta}c_{2}L_{Q_{10}}^{\star}(\theta)d\theta.

The proof of Theorem 1.2 is complete.

4. Proof of Theorem 1.4

Let TT0T\geq T_{0} fixed. We recall that

(4.1) S(T)=1πΔ𝒞0argζ(s)=1πΔ𝒞1argζ(s)+1πΔ𝒞2arg(s1)ζ(s)1πΔ𝒞2arg(s1),S(T)=\frac{1}{\pi}\Delta_{\mathscr{C}_{0}}\arg\zeta(s)=\frac{1}{\pi}\Delta_{\mathscr{C}_{1}}\arg\zeta(s)+\frac{1}{\pi}\Delta_{\mathscr{C}_{2}}\arg(s-1)\zeta(s)-\frac{1}{\pi}\Delta_{\mathscr{C}_{2}}\arg(s-1),

where

(4.2) |Δ𝒞1argζ(s)|logζ(σ1)\left|\Delta_{\mathscr{C}_{1}}\arg\zeta(s)\right|\leq\log\zeta\left(\sigma_{1}\right)

and

(4.3) |Δ𝒞2arg(s1)|=arctan(σ11T)+arctan(12T)arctan(σ11T0)+arctan(12T0)\left|\Delta_{\mathscr{C}_{2}}\arg(s-1)\right|=\arctan\left(\frac{\sigma_{1}-1}{T}\right)+\arctan\left(\frac{1}{2T}\right)\leq\arctan\left(\frac{\sigma_{1}-1}{T_{0}}\right)+\arctan\left(\frac{1}{2T_{0}}\right)

for TT0T\geq T_{0}. By (3.4) and Theorem 1.2,

(4.4) |N(T)T2πlog(T2πe)|\displaystyle\left|N(T)-\frac{T}{2\pi}\log\left(\frac{T}{2\pi e}\right)\right| 78+150T+1πlogζ(σ1)+1π|Δ𝒞2arg((s1)ζ(s))|\displaystyle\leq\frac{7}{8}+\frac{1}{50T}+\frac{1}{\pi}\log\zeta\left(\sigma_{1}\right)+\frac{1}{\pi}\left|\Delta_{\mathscr{C}_{2}}\arg((s-1)\zeta(s))\right|
C1logT+min{C2loglogT+C3,C2loglogT+C3}\displaystyle\leq C_{1}\log T+\min\{C_{2}\log\log T+C_{3},C^{\prime}_{2}\log\log T+C^{\prime}_{3}\}

and hence

1π|Δ𝒞2arg((s1)ζ(s))|\displaystyle\frac{1}{\pi}\left|\Delta_{\mathscr{C}_{2}}\arg((s-1)\zeta(s))\right|
C1logT+min{C2loglogT+C3,C2loglogT+C3}78150T1πlogζ(σ1).\displaystyle\leq C_{1}\log T+\min\{C_{2}\log\log T+C_{3},C^{\prime}_{2}\log\log T+C^{\prime}_{3}\}-\frac{7}{8}-\frac{1}{50T}-\frac{1}{\pi}\log\zeta\left(\sigma_{1}\right).

It follows that, for TT0T\geq T_{0}, the following estimate holds:

(4.5) |S(T)|C1logT+min{C2loglogT+C3~,C2loglogT+C3~},|S(T)|\leq C_{1}\log T+\min\{C_{2}\log\log T+\tilde{C_{3}},C^{\prime}_{2}\log\log T+\tilde{C^{\prime}_{3}}\},

where

(4.6) C3~=C378150T+1π(arctan(σ11T0)+arctan(12T0))\tilde{C_{3}}=C_{3}-\frac{7}{8}-\frac{1}{50T}+\frac{1}{\pi}\left(\arctan\left(\frac{\sigma_{1}-1}{T_{0}}\right)+\arctan\left(\frac{1}{2T_{0}}\right)\right)

and

(4.7) C3~=C378150T+1π(arctan(σ11T0)+arctan(12T0)).\tilde{C^{\prime}_{3}}=C^{\prime}_{3}-\frac{7}{8}-\frac{1}{50T}+\frac{1}{\pi}\left(\arctan\left(\frac{\sigma_{1}-1}{T_{0}}\right)+\arctan\left(\frac{1}{2T_{0}}\right)\right).

This completes the proof of Theorem 1.4.

5. Proofs of Theorem 1.1 and Corollary 1.5

First, we apply Theorem 1.2 and Theorem 1.4 with T0=30610046000T_{0}=30610046000. Furthermore, we take J1=64J_{1}=64, J2=39J_{2}=39 and we choose the following parameters QiQ_{i}:

(Q0,Q1,Q2,Q3,Q4,Q5,Q6,Q7,Q8,Q9,Q10,Q11)=(1,1.18,1.18,3.9,1,1,1,1,1,1,2.3,3.9).(Q_{0},Q_{1},Q_{2},Q_{3},Q_{4},Q_{5},Q_{6},Q_{7},Q_{8},Q_{9},Q_{10},Q_{11})=(1,1.18,1.18,3.9,1,1,1,1,1,1,2.3,3.9).

The first row of Table 2 gives Theorem 1.1 and Corollary 1.5 for T30610046000T\geq 30610046000.

cc rr η\eta C1C_{1} C2C_{2} C2C_{2}^{\prime} C3C_{3} C3C_{3}^{\prime} C3~\tilde{C_{3}} C3~\tilde{C^{\prime}_{3}}
1.0002251.000225 1.0006051.000605 0.0001580.000158 0.100760.10076 0.244600.24460 1.133251.13325 8.082928.08292 2.384042.38404 7.207927.20792 1.509041.50904
1.0000601.000060 1.4995561.499556 1.5424401051.542440\cdot 10^{-5} 0.123550.12355 0.067820.06782 0.628830.62883 6.257816.25781 2.058402.05840 5.382815.38281 1.183401.18340
1.4991591.499159 1.9983571.998357 0.4990500.499050 0.167320.16732 0.172660.17266 1.061481.06148 1.962751.96275 1.402121.40212 1.087751.08775 0.527120.52712
1.0434001.043400 1.2504501.250450 0.0400000.040000 0.112000.11200 0.125670.12567 0.864920.86492 3.773893.77389 2.147562.14756 2.898892.89889 1.272561.27256
Table 2. Some admissible values for C1,C2,C2,C3,C3,C_{1},C_{2},C^{\prime}_{2},C_{3},C^{\prime}_{3}, C3~\tilde{C_{3}}, C3~\tilde{C^{\prime}_{3}}

For eT30610046000e\leq T\leq 30610046000, in order to estimate |S(T)||S(T)|, we use the known bound (1.2) computed by Platt, which is in particular sharper than

0.10076logT+min{0.24460loglogT+7.20792,1.13325loglogT+1.50904}0.10076\log T+\min\{0.24460\log\log T+7.20792,1.13325\log\log T+1.50904\}

for every eT30610046000e\leq T\leq 30610046000. Hence, Corollary 1.5 follows by combining the two cases.
Now, it remains to prove Theorem 1.1 when eT30610046000e\leq T\leq 30610046000. As per [HSW22], since

(5.1) N(T)=S(T)+T2πlog(T2πe)+78+g(T)2,N(T)=S(T)+\frac{T}{2\pi}\log\left(\frac{T}{2\pi e}\right)+\frac{7}{8}+\frac{g(T)}{2},

for eT30610046000e\leq T\leq 30610046000 we have

(5.2) |N(T)T2πlog(T2πe)||S(T)|+12|g(T)|+782.5167+150e+78,\left|N(T)-\frac{T}{2\pi}\log\left(\frac{T}{2\pi e}\right)\right|\leq|S(T)|+\frac{1}{2}|g(T)|+\frac{7}{8}\leq 2.5167+\frac{1}{50e}+\frac{7}{8},

which is always smaller than

0.10076logT+0.24460loglogT+8.082920.10076\log T+0.24460\log\log T+8.08292

for every eT30610046000e\leq T\leq 30610046000. Hence, combining the two cases, Theorem 1.1 follows.

6. Proof of Corollary 1.6

Since

(6.1) N(T)=S(T)+T2πlog(T2πe)+78+g(T)2,N(T)=S(T)+\frac{T}{2\pi}\log\left(\frac{T}{2\pi e}\right)+\frac{7}{8}+\frac{g(T)}{2},

one has

(6.2) N(T+1)N(T)=S(T+1)S(T)+T+12πlog(T+12πe)T2πlog(T2πe)+g(T+1)g(T)2\displaystyle N(T+1)-N(T)=S(T+1)-S(T)+\frac{T+1}{2\pi}\log\left(\frac{T+1}{2\pi e}\right)-\frac{T}{2\pi}\log\left(\frac{T}{2\pi e}\right)+\frac{g(T+1)-g(T)}{2}

and

(6.3) N(T+1)N(T1)\displaystyle N(T+1)-N(T-1)
=S(T+1)S(T1)+T+12πlog(T+12πe)T12πlog(T12πe)+g(T+1)g(T1)2.\displaystyle=S(T+1)-S(T-1)+\frac{T+1}{2\pi}\log\left(\frac{T+1}{2\pi e}\right)-\frac{T-1}{2\pi}\log\left(\frac{T-1}{2\pi e}\right)+\frac{g(T+1)-g(T-1)}{2}.

Writing

log(T+12πe)=log(T2πe)+log(1+1T)andlog(T12πe)=log(T2πe)+log(11T),\log\left(\frac{T+1}{2\pi e}\right)=\log\left(\frac{T}{2\pi e}\right)+\log\left(1+\frac{1}{T}\right)\quad\text{and}\quad\log\left(\frac{T-1}{2\pi e}\right)=\log\left(\frac{T}{2\pi e}\right)+\log\left(1-\frac{1}{T}\right),

and using the Taylor expansions at x=0x=0 and y=y=\infty

log(1+x)=xx22+x33x44+O(x5)andlog(1+y1+y)=2y+23y3+25y5+O(1y6)\displaystyle\log\left(1+x\right)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+O(x^{5})\quad\text{and}\quad\log\left(\frac{1+y}{-1+y}\right)=\frac{2}{y}+\frac{2}{3y^{3}}+\frac{2}{5y^{5}}+O\left(\frac{1}{y^{6}}\right)

with x=1/Tx=1/T, x=1/Tx=-1/T, y=Ty=T, we have, for T2T\geq 2,

(6.4) T+12πlog(T+12πe)T2πlog(T2πe)\displaystyle\frac{T+1}{2\pi}\log\left(\frac{T+1}{2\pi e}\right)-\frac{T}{2\pi}\log\left(\frac{T}{2\pi e}\right)
=T2πlog(1+1T)+12π(log(T2πe)+log(1+1T))\displaystyle=\frac{T}{2\pi}\log\left(1+\frac{1}{T}\right)+\frac{1}{2\pi}\left(\log\left(\frac{T}{2\pi e}\right)+\log\left(1+\frac{1}{T}\right)\right)
=12π(112T+13T2)+12π(1T12T2+13T3)+12πlogT12πlog(2πe)\displaystyle=\frac{1}{2\pi}\left(1-\frac{1}{2T}+\frac{1}{3T^{2}}-\cdots\right)+\frac{1}{2\pi}\left(\frac{1}{T}-\frac{1}{2T^{2}}+\frac{1}{3T^{3}}-\cdots\right)+\frac{1}{2\pi}\log T-\frac{1}{2\pi}\log(2\pi e)
<12πlogT+34π12πlog(2πe),\displaystyle<\frac{1}{2\pi}\log T+\frac{3}{4\pi}-\frac{1}{2\pi}\log(2\pi e),

and, similarly,

(6.5) T+12πlog(T+12πe)T12πlog(T12πe)\displaystyle\frac{T+1}{2\pi}\log\left(\frac{T+1}{2\pi e}\right)-\frac{T-1}{2\pi}\log\left(\frac{T-1}{2\pi e}\right)
=T2π(log(1+1T)log(11T))+12π(2log(T2πe)+log(1+1T)+log(11T))\displaystyle=\frac{T}{2\pi}\left(\log\left(1+\frac{1}{T}\right)-\log\left(1-\frac{1}{T}\right)\right)+\frac{1}{2\pi}\left(2\log\left(\frac{T}{2\pi e}\right)+\log\left(1+\frac{1}{T}\right)+\log\left(1-\frac{1}{T}\right)\right)
<1πlogT+log3π1πlog(2πe).\displaystyle<\frac{1}{\pi}\log T+\frac{\log 3}{\pi}-\frac{1}{\pi}\log(2\pi e).

Furthermore,

(6.6) |g(T+1)g(T)2|\displaystyle\left|\frac{g(T+1)-g(T)}{2}\right| max{|g(T+1)|,|g(T)|}125T,\displaystyle\leq\max\{|g(T+1)|,|g(T)|\}\leq\frac{1}{25T},
|g(T+1)g(T1)2|\displaystyle\left|\frac{g(T+1)-g(T-1)}{2}\right| max{|g(T+1)|,|g(T1)|}125(T1).\displaystyle\leq\max\{|g(T+1)|,|g(T-1)|\}\leq\frac{1}{25(T-1)}.

Finally, if T+1>30610046000T+1>30610046000, then Theorem 1.4 implies that

(6.7) |S(T+1)S(T)|2.00001C1logT+2.00001min{C2loglogT+C3~,C2loglogT+C3~}\displaystyle|S(T+1)-S(T)|\leq 2.00001C_{1}\log T+2.00001\min\{C_{2}\log\log T+\tilde{C_{3}},C^{\prime}_{2}\log\log T+\tilde{C^{\prime}_{3}}\}

and

(6.8) |S(T+1)S(T1)|2.00001C1logT+2.00001min{C2loglogT+C3~,C2loglogT+C3~},\displaystyle|S(T+1)-S(T-1)|\leq 2.00001C_{1}\log T+2.00001\min\{C_{2}\log\log T+\tilde{C_{3}},C^{\prime}_{2}\log\log T+\tilde{C^{\prime}_{3}}\},

while if 3T+1306100460003\leq T+1\leq 30610046000, by (1.2) we get

(6.9) |S(T+1)S(T)|22.51675.0334\displaystyle|S(T+1)-S(T)|\leq 2\cdot 2.5167\leq 5.0334

and

(6.10) |S(T+1)S(T1)|22.51675.0334.\displaystyle|S(T+1)-S(T-1)|\leq 2\cdot 2.5167\leq 5.0334.

Substituting the estimates we found above into (6.2) and (6.3), we can conclude that, for T+1>30610046000T+1>30610046000, one has

(6.11) N(T+1)N(T)\displaystyle N(T+1)-N(T)
(12π+2C1)logT+2min{C2loglogT+C3~,C2loglogT+C3~}+34π12πlog(2πe)+125T,\displaystyle\leq\left(\frac{1}{2\pi}+2C_{1}\right)\log T+2\min\{C_{2}\log\log T+\tilde{C_{3}},C^{\prime}_{2}\log\log T+\tilde{C^{\prime}_{3}}\}+\frac{3}{4\pi}-\frac{1}{2\pi}\log(2\pi e)+\frac{1}{25T},

and

N(T+1)N(T1)\displaystyle N(T+1)-N(T-1)
(1π+2C1)logT+min{2C2loglogT+𝒟3,2C2loglogT+𝒟3}+125(T1),\displaystyle\leq\left(\frac{1}{\pi}+2C_{1}\right)\log T+\min\{2C_{2}\log\log T+\mathscr{D}_{3},2C^{\prime}_{2}\log\log T+\mathscr{D^{\prime}}_{3}\}+\frac{1}{25(T-1)},

where

𝒟3=2C3~+log3log(2πe)πand𝒟3=2C3~+log3log(2πe)π.\mathscr{D}_{3}=2\tilde{C_{3}}+\frac{\log 3-\log(2\pi e)}{\pi}\quad\text{and}\quad\mathscr{D^{\prime}}_{3}=2\tilde{C^{\prime}_{3}}+\frac{\log 3-\log(2\pi e)}{\pi}.

On the other hand, if 3T+1306100460003\leq T+1\leq 30610046000 then

(6.12) N(T+1)N(T)12πlogT+5.0334+34π12πlog(2πe)+125T12πlogT+4.8405N(T+1)-N(T)\leq\frac{1}{2\pi}\log T+5.0334+\frac{3}{4\pi}-\frac{1}{2\pi}\log(2\pi e)+\frac{1}{25T}\leq\frac{1}{2\pi}\log T+4.8405

and

(6.13) N(T+1)N(T1)1πlogT+5.0334+log3π1πlog(2πe)1πlogT+4.4798.N(T+1)-N(T-1)\leq\frac{1}{\pi}\log T+5.0334+\frac{\log 3}{\pi}-\frac{1}{\pi}\log(2\pi e)\leq\frac{1}{\pi}\log T+4.4798.

Finally, it remains to find the lower bounds. Similarly to what we did in (6.4), (6.5),

(6.14) T+12πlog(T+12πe)T2πlog(T2πe)>12πlogT+12π12πlog(2πe),\displaystyle\frac{T+1}{2\pi}\log\left(\frac{T+1}{2\pi e}\right)-\frac{T}{2\pi}\log\left(\frac{T}{2\pi e}\right)>\frac{1}{2\pi}\log T+\frac{1}{2\pi}-\frac{1}{2\pi}\log(2\pi e),

and

(6.15) T+12πlog(T+12πe)T12πlog(T12πe)>1πlogT+1π+log(3/4)2π1πlog(2πe).\displaystyle\frac{T+1}{2\pi}\log\left(\frac{T+1}{2\pi e}\right)-\frac{T-1}{2\pi}\log\left(\frac{T-1}{2\pi e}\right)>\frac{1}{\pi}\log T+\frac{1}{\pi}+\frac{\log(3/4)}{2\pi}-\frac{1}{\pi}\log(2\pi e).

It follows that, for T+1>30610046000T+1>30610046000,

(6.16) N(T+1)N(T1)\displaystyle N(T+1)-N(T-1)
>1πlogT+1π+log(3/4)2π1πlog(2πe)|S(T+1)S(T1)|125(T1)\displaystyle>\frac{1}{\pi}\log T+\frac{1}{\pi}+\frac{\log(3/4)}{2\pi}-\frac{1}{\pi}\log(2\pi e)-|S(T+1)-S(T-1)|-\frac{1}{25(T-1)}
>(1π2.000001C1)logT2min{C2loglogT+,C2loglogT+}125(T1),\displaystyle>\left(\frac{1}{\pi}-2.000001C_{1}\right)\log T-2\min\{C_{2}\log\log T+\mathscr{E},C^{\prime}_{2}\log\log T+\mathscr{E^{\prime}}\}-\frac{1}{25(T-1)},

where

=2C3~+1π+log(3/4)2π1πlog(2πe)and=2C3~+1π+log(3/4)2π1πlog(2πe).\mathscr{E}=2\tilde{C_{3}}+\frac{1}{\pi}+\frac{\log(3/4)}{2\pi}-\frac{1}{\pi}\log(2\pi e)\quad\text{and}\quad\mathscr{E^{\prime}}=2\tilde{C^{\prime}_{3}}+\frac{1}{\pi}+\frac{\log(3/4)}{2\pi}-\frac{1}{\pi}\log(2\pi e).

On the other hand, if 3T+1306100460003\leq T+1\leq 30610046000, then

N(T+1)N(T)>12πlogT+12π12πlog(2πe)5.0334125TN(T+1)-N(T)>\frac{1}{2\pi}\log T+\frac{1}{2\pi}-\frac{1}{2\pi}\log(2\pi e)-5.0334-\frac{1}{25T}

and

N(T+1)N(T1)>1πlogT+1π+log(3/4)2π1πlog(2πe)5.0334125(T1).N(T+1)-N(T-1)>\frac{1}{\pi}\log T+\frac{1}{\pi}+\frac{\log(3/4)}{2\pi}-\frac{1}{\pi}\log(2\pi e)-5.0334-\frac{1}{25(T-1)}.
Remark.

The 0.0000010.000001 goes inside the approximation of the last decimal place in the various constants.

Acknowledgments

The authors thank Andrew Fiori, Nathan Ng, David Platt and Tim Trudgian for the helpful discussions and comments. The first author also thanks the organizers of the workshop “Analytic and Explicit results of zeros of LL-functions” (Bȩdlewo, September 23-27, 2024), where helpful discussions with David Platt took place.

References

  • [Lmf] The LMFDB Collaboration, The LL-functions and modular forms database URL: https://www.lmfdb.org/
  • [Bac16] R. J. Backlund “Über die Nullstellen der Riemannschen Zetafunktion” In Acta Math. 41.1, 1916, pp. 345–375 DOI: 10.1007/BF02422950
  • [Bel] Chiara Bellotti “Argument and zero counting function estimates for zeta” GitHub repository available at URL: https://github.com/ChiaraBellotti/Argument-and-counting-function-estimates-for-Riemann-zeta-function
  • [Bel24] Chiara Bellotti “Explicit bounds for the Riemann zeta function and a new zero-free region” In J. Math. Anal. Appl. 536.2, 2024, pp. 128249
  • [Ben+21] Michael A. Bennett, Greg Martin, Kevin O’Bryant and Andrew Rechnitzer “Counting zeros of Dirichlet LL-functions” In Math. Comp. 90.329, 2021, pp. 1455–1482
  • [Dud16] Adrian W. Dudek “An explicit result for primes between cubes” In Funct. Approx. Comment. Math. 55.2, 2016, pp. 177 –197
  • [FK15] L. Faber and H. Kadiri “New bounds for ψ(x)\psi(x) In Math. Comp. 84.293, 2015, pp. 1339–1357 DOI: 10.1090/S0025-5718-2014-02886-X
  • [FGH05] David Farmer, S. Gonek and Christopher Hughes “The maximum size of LL-functions” In Journal für die reine und angewandte Mathematik (Crelles Journal) 2007, 2005 DOI: 10.1515/CRELLE.2007.064
  • [Gro13] J. Grossmann “Über die Nullstellen der Riemannschen Zeta-Funktion und der Dirichletschen LL-Funktionen” PhD thesis, Georg-August-Universität Göttingen, 1913
  • [HSW21] Elchin Hasanalizade, Quanli Shen and PENG-JIE Wong “Counting zeros of Dedekind zeta functions” In Math. Comp. 91, 2021, pp. 277–293
  • [HSW22] Elchin Hasanalizade, Quanli Shen and Peng-Jie Wong “Counting zeros of the Riemann zeta function” In J. Number Theory 235, 2022, pp. 219–241
  • [Hia16] Ghaith A. Hiary “An explicit van der Corput estimate for ζ(1/2+it)\zeta(1/2+it) In Indag. Math. 27.2, 2016, pp. 524–533
  • [HLY24] Ghaith A. Hiary, Nicol Leong and Andrew Yang “Explicit bounds for the Riemann zeta-function on the 1-line” (to appear) In Funct. Approx. Comment. Math., 2024
  • [HPY24] Ghaith A. Hiary, Dhir Patel and Andrew Yang “An improved explicit estimate for ζ(1/2+it)\zeta(1/2+it) In J. Number Theory 256, 2024, pp. 195–217
  • [JCH24] Daniel R. Johnston and Michaela Cully-Hugill “On the error term in the explicit formula of Riemann-von Mangoldt II” ArXiv:2402.04272, 2024
  • [Leo24] Nicol Leong “Explicit estimates for the logarithmic derivative and the reciprocal of the Riemann zeta-function” ArXiv:2405.04869, 2024
  • [Pat22] Dhir Patel “An explicit upper bound for ζ(1+it)\zeta(1+it) In Indag. Math. 33.5, 2022, pp. 1012–1032
  • [PY24] Dhir Patel and Andrew Yang “An explicit sub-Weyl bound for ζ(1/2+it)\zeta(1/2+it)” To appear In J. Number Theory, 2024
  • [Pin87] J. Pintz “An effective disproof of the Mertens conjecture” In Journées arithmétiques de Besançon, Astérisque 147-148 Société mathématique de France, 1987, pp. 325–333
  • [PT21] Dave Platt and Tim Trudgian “The Riemann hypothesis is true up to 310123\cdot 10^{12} In Bull. Lond. Math. Soc. 53.3, 2021, pp. 792–797 DOI: https://doi.org/10.1112/blms.12460
  • [Pla16] David Platt “Isolating some non-trivial zeros of zeta” In Math. Comp. 86, 2016, pp. 1 DOI: 10.1090/mcom/3198
  • [PT15] D.J. Platt and T.S. Trudgian “An improved explicit bound on |ζ(1/2+it)||\zeta(1/2+it)| In J. Number Theory 147, 2015, pp. 842–851
  • [QT24] Eunice Hoo Qingyi and Lee-Peng Teo “Explicit Bound of |ζ(1+it)||\zeta\left(1+it\right)|” ArXiv:2412.00766, 2024
  • [Ros41] J. B. Rosser “Explicit bounds for some functions of prime numbers” In Amer. J. Math. 63, 1941, pp. 211–232 DOI: 10.2307/2371291
  • [RK23] John Rozmarynowycz and Seungki Kim “A new upper bound on the smallest counterexample to the Mertens conjecture” ArXiv:2305.00345, 2023
  • [Tru14] T. S. Trudgian “An improved upper bound for the argument of the Riemann zeta-function on the critical line II” In J. Number Theory 134, 2014, pp. 280–292 DOI: 10.1016/j.jnt.2013.07.017
  • [Tru12] Timothy Trudgian “An improved upper bound for the argument of the riemann zeta-function on the critical line” In Math. Comp. 81.278, 2012, pp. 1053 – 1061
  • [VM05] H. C. F. Von Mangoldt “Zur Verteilung der Nullstellen der Riemannschen Funktion ξ(t)\xi(t) In Math. Ann. 60.1, 1905, pp. 1–19 DOI: 10.1007/BF01447494
  • [Yan24] Andrew Yang “Explicit bounds on ζ(s)\zeta(s) in the critical strip and a zero-free region” In J. Math. Anal. Appl. 534.2, 2024, pp. 128124

Appendix A A Numerical Study

Andrew Fiori 555 Department of Mathematics and Statistics, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta, T1K 3M4, Canada
Andrew Fiori’s Research is supported by NSERC Discovery Grant RGPIN-2020-05316.

Under the Riemann Hypothesis one expects a bound of the form:

(A.1) |N(T)(T2πlogT2πe+7/8)|=Clog(T)loglog(T)+O(1).\left|N(T)-\Big{(}\frac{T}{2\pi}\log\frac{T}{2\pi e}+7/8\Big{)}\right|=C{\log(T)\log\log(T)}+O(1).

However, it is conjectured in [FGH05] that the actual size is:

(A.2) |N(T)(T2πlogT2πe+7/8)|<12πlog(T)loglog(T)+o(1).\left|N(T)-\Big{(}\frac{T}{2\pi}\log\frac{T}{2\pi e}+7/8\Big{)}\right|<\frac{1}{\sqrt{2}\pi}\sqrt{\log(T)\log\log(T)}+o(1).

One goal of this appendix is to provide numerical evidence for this stronger conjecture. A second goal is to provide useful input for future works to improve upon effective bounds on N(T)N(T) by summarizing what is known using the work of [Pla16]. We provide such a result in Theorem A.4.

Here we study T<30 610 046 000T<30\,610\,046\,000 by using the list of the zeros for the zeta function as computed by [Pla16] and made available at [Lmf]. This database of the first 103 800 788 359103\,800\,788\,359 many zeros is broken up into 14 580 intervals. For practical reasons we analyze the data using these intervals. We note that although [PT21] has verified RH to 310123\cdot 10^{12}, they have not produced a database of zeros.

We shall denote the imaginary part of the nnth zero, ordered by height tnt_{n}. Because all the zeros up to 30 610 046 00030\,610\,046\,000 are simple we know that in the interval under consideration N(tn)=nN(t_{n})=n.

A.1. Average Values

Observation A.1.

On each of the intervals of zeros produced by [Pla16], the average value of the function

N(tn)tn2πlogtn2πeN(t_{n})-\frac{t_{n}}{2\pi}\log\frac{t_{n}}{2\pi e}

evaluated at the zeros, tnt_{n}, of zeta in that interval is approximately 11/811/8.
Excluding the first two intervals, where the deviation from the average is respectively 5.076851005-5.07685\cdot 10^{-05} and 2.4822910052.48229\cdot 10^{-05}, on each of the intervals the deviation of these average values from 11/811/8 is bounded by 5.6678910075.6678910^{-07}.

A.2. Range of Values

Proposition A.2.

On any interval beginning and ending at zeros of ζ\zeta the maximum value of

ϵ+(T)=N(T)(T2πlogT2πe+11/8)12πlog(T)loglog(T)\epsilon^{+}(T)=N(T)-\Big{(}\frac{T}{2\pi}\log\frac{T}{2\pi e}+11/8\Big{)}-\frac{1}{\sqrt{2}\pi}\sqrt{\log(T)\log\log(T)}

will be taken at tnt_{n}, the exact ordinate of a zero of ζ\zeta. Moreover, if all zeros on the interval are simple, then the infimum of

ϵ(T)=N(T)(T2πlogT2πe+11/8)+12πlog(T)loglog(T)\epsilon^{-}(T)=N(T)-\Big{(}\frac{T}{2\pi}\log\frac{T}{2\pi e}+11/8\Big{)}+\frac{1}{\sqrt{2}\pi}\sqrt{\log(T)\log\log(T)}

will be exactly 11 less than the value ϵ(T)\epsilon^{-}(T) takes on at tnt_{n}, the exact ordinate of a zero of ζ\zeta.

Proof.

Notice that the respective functions ϵ±(T)\epsilon^{\pm}(T) are continuous and decreasing on any interval [tn,tn+1)[t_{n},t_{n+1}) between consecutive zeros and that

limttn+1ϵ(t)=ϵ(tn+1)1.\lim_{t\rightarrow t_{n+1}^{-}}\epsilon^{-}(t)=\epsilon^{-}(t_{n+1})-1.

The results follow immediately. ∎

As a result of the above, we focus our attention on the study of minimum values of ϵ(tn)\epsilon^{-}(t_{n}) and maximum values of ϵ+(tn)\epsilon^{+}(t_{n}) at zeta zeros.

Observation A.3.

The maximum value of ϵ+(tn)\epsilon^{+}(t_{n}) in the database of zeros produced by [Pla16] is approximately 0.09209370.0920937 and occurs at n=2953463649n=2953463649 with tnt_{n} approximately 1035537870.147913891035537870.14791389. The minimum value of ϵ(tn)\epsilon^{-}(t_{n}) in the database of zeros produced by [Pla16] is approximately 0.0827069-0.0827069 and occurs at n=48227304665n=48227304665 with tnt_{n} approximately 14727556977.2589934014727556977.25899340.

Theorem A.4.

For e<T<30 610 046 000e<T<30\,610\,046\,000 we have

log(T)loglog(T)2π10.082707<N(T)T2πlogT2πe118<log(T)loglog(T)2π+0.092094.-\frac{\sqrt{\log(T)\log\log(T)}}{\sqrt{2}\pi}-1-0.082707<N(T)-\frac{T}{2\pi}\log\frac{T}{2\pi e}-\frac{11}{8}<\frac{\sqrt{\log(T)\log\log(T)}}{\sqrt{2}\pi}+0.092094.
Proof.

This is an immediate consequence of the previous observation and proposition. ∎

A.3. Extreme Values are Rare

The following observation says that in some sense extreme values are rare.

Observation A.5.

The function ϵ+(tn)\epsilon^{+}(t_{n}) is almost always negative, indeed, it is negative at all zeros with 0<t<30,610,046,0000<t<30,610,046,000 except for those listed in Table 3. Similarly, the function ϵ(tn)\epsilon^{-}(t_{n}) is almost always positive, indeed, it is positive at all zeros with 0<t<30,610,046,0000<t<30,610,046,000 for those listed in Table 3. We notice that the frequency of the extreme values is decreasing as both nn and tnt_{n} increase. We also note that there are no examples of consecutive extreme values.

Table 3. List of all positive (respectively negative) values of ϵ+(tn)\epsilon^{+}(t_{n}) (respectively ϵ(tn)\epsilon^{-}(t_{n})) for 0<t<30,610,046,0000<t<30,610,046,000
nn tnt_{n}    ϵ+(tn)\epsilon^{+}(t_{n})
7330779 3745331.534911 0.0045727
10014001 4998855.443421 0.0228842
30930930 14253736.600191 0.0215612
106941331 45420475.080263 0.0548687
121934174 51361501.783167 0.0633788
342331986 135399343.427052 0.0852310
486250460 188404036.065583 0.0077204
1333195695 487931556.151002 0.0711065
1819794287 654800601.959837 0.0016382
2953463649 1035537870.147914 0.0920937
4711070126 1611978781.026883 0.0552043
6020412879 2034221491.431262 0.0040533
6276413932 2116223525.742432 0.0136917
6916958115 2320709265.610272 0.0183240
7895552868 2631384288.230762 0.0134043
18019870103 5765666759.059866 0.0101465
29425625937 9196418366.325099 0.0141895
31587712923 9839079152.616086 0.0169750
43668302178 13396993184.932842 0.0314554
44121363503 13529486654.222228 0.0049450
71876944166 21550885080.446041 0.0076388
100093914039 29565113205.570534 0.0184384
nn tnt_{n}    ϵ(tn)\epsilon^{-}(t_{n})
337917 223936.368134 -0.0206077
2009961 1137116.070608 -0.0268423
10869861 5393528.443012 -0.0021561
13999527 6820051.890986 -0.0219395
37592217 17095484.271828 -0.0359387
83088045 35862210.311523 -0.0463096
88600097 38084045.549954 -0.0491801
141617808 59096901.323297 -0.0082036
164689303 68084444.336913 -0.0322461
191297537 78359876.488247 -0.0148321
225291159 91369499.494965 -0.0092099
566415149 217536164.326180 -0.0121163
1081300142 400354486.072002 -0.0593335
1257893678 461849910.598599 -0.0262264
1372703319 501584522.950737 -0.0002137
1955876862 701027396.312615 -0.0096394
2305634166 819113670.556185 -0.0026561
5134032906 1748936581.577121 -0.0142280
5136505385 1749735519.272913 -0.0508501
8864769308 2937266043.546390 -0.0418297
9430966584 3115208316.829027 -0.0490178
9532704476 3147127461.727906 -0.0055879
18629248201 5951053644.636571 -0.0008106
19859326408 6324431638.934122 -0.0452773
21082098810 6694540279.310641 -0.0362361
22909699222 7245905144.854708 -0.0030872
48227304665 14727556977.258993 -0.0827069
77728515578 23222574401.823281 -0.0515078
86585440777 25742609309.393488 -0.0073926
87198634344 25916653877.755976 -0.0017881
97495263831 28831591819.434777 -0.0222335
103274388030 30461757456.864450 -0.0421276
Conjecture A.6.

One could make a variety of conjectures of different strengths based on Table 3.

  1. (1)

    The number of extreme values up to height TT is less than ClogTC\log T for some constant CC.

  2. (2)

    The set of nn for which these functions are respectively positive or negative has natural density zero.

A.4. Extreme Values are Common

The following observation says that in some sense extreme values are common.

Observation A.7.

If for each interval of zeros produced by [Pla16], we compute the maximum value of ϵ+(tn)\epsilon^{+}(t_{n}) on that interval, then the minimum of these values is 0.362463-0.362463. Similarly, if for each interval of zeros produced by [Pla16] we compute the minimum value of ϵ(tn)\epsilon^{-}(t_{n}) on that interval, then the maximum of these values is 0.3613830.361383.
For context note that 12πlog(31010)loglog(31010)\frac{1}{\sqrt{2}\pi}\sqrt{\log(3\cdot 10^{10})\log\log(3\cdot 10^{10})} is approximately 1.972411.97241 and 2π/log(31010/(2πe))2\pi/\log(3\cdot 10^{10}/(2\pi e)) is approximately 0.2951710.295171. In particular, for each interval the function

N(tn)tn2πlogtn2πe11/8N(t_{n})-\frac{t_{n}}{2\pi}\log\frac{t_{n}}{2\pi e}-11/8

takes on values relatively close to both the theoretical upper and lower extremes under consideration.

A.5. Clusters of Zeros

One common use of estimates on N(t)N(t) is to bound the number of zeros on an interval. The quality of the bounds one obtains using bounds on N(t)N(t) improves with tt. Consequently, it is useful to have explicit bounds on the number of zeros in intervals for small tt.

Observation A.8.

For e<t<30 610 045 999e<t<30\;610\;045\;999, the maximum value for N(t+1)N(t1)logt\frac{N(t+1)-N(t-1)}{\log t} happens around t=2261.88t=2261.88 where N(t+1)N(t1)=4N(t+1)-N(t-1)=4. Consequently, on this interval

N(t+1)N(t1)<0.517869686logt.N(t+1)-N(t-1)<0.517869686\log t.

Moreover, for each nn the smallest value of tt for which N(t+1)N(t1)=nN(t+1)-N(t-1)=n is given in Table 4, from which one may bound N(t+1)N(t1)N(t+1)-N(t-1) with a step function, or any other function which happens to exceed that step function.

Table 4. Minimum value of tt with N(t+1)N(t1)=nN(t+1)-N(t-1)=n
n t
1 13.1347251417346937904572
2 48.7738324776723021819167
3 356.952685101632273755128
4 2261.87830538116111223015
5 27134.3628475733906424560
6 221227.766664702101313669
7 2603074.61468824424587333
8 21297085.9439615105210553
9 254721517.418748602610351
10 2786055796.5252751861828
11 29731208527.9429140229012
12 larger than 30610045999