This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Improved measurements of 𝑫𝟎𝑲+𝝂D^{0}\to K^{-}\ell^{+}\nu_{\ell} and 𝑫+𝑲¯𝟎+𝝂D^{+}\to\bar{K}^{0}\ell^{+}\nu_{\ell}

M. Ablikim1, M. N. Achasov4,c, P. Adlarson76, O. Afedulidis3, X. C. Ai81, R. Aliberti35, A. Amoroso75A,75C, Q. An72,58,a, Y. Bai57, O. Bakina36, I. Balossino29A, Y. Ban46,h, H.-R. Bao64, V. Batozskaya1,44, K. Begzsuren32, N. Berger35, M. Berlowski44, M. Bertani28A, D. Bettoni29A, F. Bianchi75A,75C, E. Bianco75A,75C, A. Bortone75A,75C, I. Boyko36, R. A. Briere5, A. Brueggemann69, H. Cai77, X. Cai1,58, A. Calcaterra28A, G. F. Cao1,64, N. Cao1,64, S. A. Cetin62A, X. Y. Chai46,h, J. F. Chang1,58, G. R. Che43, Y. Z. Che1,58,64, G. Chelkov36,b, C. Chen43, C. H. Chen9, Chao Chen55, G. Chen1, H. S. Chen1,64, H. Y. Chen20, M. L. Chen1,58,64, S. J. Chen42, S. L. Chen45, S. M. Chen61, T. Chen1,64, X. R. Chen31,64, X. T. Chen1,64, Y. B. Chen1,58, Y. Q. Chen34, Z. J. Chen25,i, Z. Y. Chen1,64, S. K. Choi10, G. Cibinetto29A, F. Cossio75C, J. J. Cui50, H. L. Dai1,58, J. P. Dai79, A. Dbeyssi18, R.  E. de Boer3, D. Dedovich36, C. Q. Deng73, Z. Y. Deng1, A. Denig35, I. Denysenko36, M. Destefanis75A,75C, F. De Mori75A,75C, B. Ding67,1, X. X. Ding46,h, Y. Ding34, Y. Ding40, J. Dong1,58, L. Y. Dong1,64, M. Y. Dong1,58,64, X. Dong77, M. C. Du1, S. X. Du81, Y. Y. Duan55, Z. H. Duan42, P. Egorov36,b, Y. H. Fan45, J. Fang1,58, J. Fang59, S. S. Fang1,64, W. X. Fang1, Y. Fang1, Y. Q. Fang1,58, R. Farinelli29A, L. Fava75B,75C, F. Feldbauer3, G. Felici28A, C. Q. Feng72,58, J. H. Feng59, Y. T. Feng72,58, M. Fritsch3, C. D. Fu1, J. L. Fu64, Y. W. Fu1,64, H. Gao64, X. B. Gao41, Y. N. Gao46,h, Yang Gao72,58, S. Garbolino75C, I. Garzia29A,29B, L. Ge81, P. T. Ge19, Z. W. Ge42, C. Geng59, E. M. Gersabeck68, A. Gilman70, K. Goetzen13, L. Gong40, W. X. Gong1,58, W. Gradl35, S. Gramigna29A,29B, M. Greco75A,75C, M. H. Gu1,58, Y. T. Gu15, C. Y. Guan1,64, A. Q. Guo31,64, L. B. Guo41, M. J. Guo50, R. P. Guo49, Y. P. Guo12,g, A. Guskov36,b, J. Gutierrez27, K. L. Han64, T. T. Han1, F. Hanisch3, X. Q. Hao19, F. A. Harris66, K. K. He55,16, K. L. He1,64, F. H. Heinsius3, C. H. Heinz35, Y. K. Heng1,58,64, C. Herold60, T. Holtmann3, P. C. Hong34, G. Y. Hou1,64, X. T. Hou1,64, Y. R. Hou64, Z. L. Hou1, B. Y. Hu59, H. M. Hu1,64, J. F. Hu56,j, S. L. Hu12,g, T. Hu1,58,64, Y. Hu1, G. S. Huang72,58, K. X. Huang59, L. Q. Huang31,64, X. T. Huang50, Y. P. Huang1, Y. S. Huang59, T. Hussain74, F. Hölzken3, N. Hüsken35, N. in der Wiesche69, J. Jackson27, S. Janchiv32, J. H. Jeong10, Q. Ji1, Q. P. Ji19, W. Ji1,64, X. B. Ji1,64, X. L. Ji1,58, Y. Y. Ji50, X. Q. Jia50, Z. K. Jia72,58, D. Jiang1,64, H. B. Jiang77, P. C. Jiang46,h, S. S. Jiang39, T. J. Jiang16, X. S. Jiang1,58,64, Y. Jiang64, J. B. Jiao50, J. K. Jiao34, Z. Jiao23, S. Jin42, Y. Jin67, M. Q. Jing1,64, X. M. Jing64, T. Johansson76, S. Kabana33, N. Kalantar-Nayestanaki65, X. L. Kang9, X. S. Kang40, M. Kavatsyuk65, B. C. Ke81, V. Khachatryan27, A. Khoukaz69, R. Kiuchi1, O. B. Kolcu62A, B. Kopf3, M. Kuessner3, X. Kui1,64, N.  Kumar26, A. Kupsc44,76, W. Kühn37, J. J. Lane68, L. Lavezzi75A,75C, T. T. Lei72,58, Z. H. Lei72,58, M. Lellmann35, T. Lenz35, C. Li43, C. Li47, C. H. Li39, Cheng Li72,58, D. M. Li81, F. Li1,58, G. Li1, H. B. Li1,64, H. J. Li19, H. N. Li56,j, Hui Li43, J. R. Li61, J. S. Li59, K. Li1, K. L. Li19, L. J. Li1,64, L. K. Li1, Lei Li48, M. H. Li43, P. R. Li38,k,l, Q. M. Li1,64, Q. X. Li50, R. Li17,31, S. X. Li12, T.  Li50, W. D. Li1,64, W. G. Li1,a, X. Li1,64, X. H. Li72,58, X. L. Li50, X. Y. Li1,64, X. Z. Li59, Y. G. Li46,h, Z. J. Li59, Z. Y. Li79, C. Liang42, H. Liang72,58, H. Liang1,64, Y. F. Liang54, Y. T. Liang31,64, G. R. Liao14, Y. P. Liao1,64, J. Libby26, A.  Limphirat60, C. C. Lin55, D. X. Lin31,64, T. Lin1, B. J. Liu1, B. X. Liu77, C. Liu34, C. X. Liu1, F. Liu1, F. H. Liu53, Feng Liu6, G. M. Liu56,j, H. Liu38,k,l, H. B. Liu15, H. H. Liu1, H. M. Liu1,64, Huihui Liu21, J. B. Liu72,58, J. Y. Liu1,64, K. Liu38,k,l, K. Y. Liu40, Ke Liu22, L. Liu72,58, L. C. Liu43, Lu Liu43, M. H. Liu12,g, P. L. Liu1, Q. Liu64, S. B. Liu72,58, T. Liu12,g, W. K. Liu43, W. M. Liu72,58, X. Liu39, X. Liu38,k,l, Y. Liu81, Y. Liu38,k,l, Y. B. Liu43, Z. A. Liu1,58,64, Z. D. Liu9, Z. Q. Liu50, X. C. Lou1,58,64, F. X. Lu59, H. J. Lu23, J. G. Lu1,58, X. L. Lu1, Y. Lu7, Y. P. Lu1,58, Z. H. Lu1,64, C. L. Luo41, J. R. Luo59, M. X. Luo80, T. Luo12,g, X. L. Luo1,58, X. R. Lyu64, Y. F. Lyu43, F. C. Ma40, H. Ma79, H. L. Ma1, J. L. Ma1,64, L. L. Ma50, L. R. Ma67, M. M. Ma1,64, Q. M. Ma1, R. Q. Ma1,64, T. Ma72,58, X. T. Ma1,64, X. Y. Ma1,58, Y. M. Ma31, F. E. Maas18, I. MacKay70, M. Maggiora75A,75C, S. Malde70, Y. J. Mao46,h, Z. P. Mao1, S. Marcello75A,75C, Z. X. Meng67, J. G. Messchendorp13,65, G. Mezzadri29A, H. Miao1,64, T. J. Min42, R. E. Mitchell27, X. H. Mo1,58,64, B. Moses27, N. Yu. Muchnoi4,c, J. Muskalla35, Y. Nefedov36, F. Nerling18,e, L. S. Nie20, I. B. Nikolaev4,c, Z. Ning1,58, S. Nisar11,m, Q. L. Niu38,k,l, W. D. Niu55, Y. Niu 50, S. L. Olsen64, S. L. Olsen10,64, Q. Ouyang1,58,64, S. Pacetti28B,28C, X. Pan55, Y. Pan57, A.  Pathak34, Y. P. Pei72,58, M. Pelizaeus3, H. P. Peng72,58, Y. Y. Peng38,k,l, K. Peters13,e, J. L. Ping41, R. G. Ping1,64, S. Plura35, V. Prasad33, F. Z. Qi1, H. Qi72,58, H. R. Qi61, M. Qi42, T. Y. Qi12,g, S. Qian1,58, W. B. Qian64, C. F. Qiao64, X. K. Qiao81, J. J. Qin73, L. Q. Qin14, L. Y. Qin72,58, X. P. Qin12,g, X. S. Qin50, Z. H. Qin1,58, J. F. Qiu1, Z. H. Qu73, C. F. Redmer35, K. J. Ren39, A. Rivetti75C, M. Rolo75C, G. Rong1,64, Ch. Rosner18, M. Q. Ruan1,58, S. N. Ruan43, N. Salone44, A. Sarantsev36,d, Y. Schelhaas35, K. Schoenning76, M. Scodeggio29A, K. Y. Shan12,g, W. Shan24, X. Y. Shan72,58, Z. J. Shang38,k,l, J. F. Shangguan16, L. G. Shao1,64, M. Shao72,58, C. P. Shen12,g, H. F. Shen1,8, W. H. Shen64, X. Y. Shen1,64, B. A. Shi64, H. Shi72,58, H. C. Shi72,58, J. L. Shi12,g, J. Y. Shi1, Q. Q. Shi55, S. Y. Shi73, X. Shi1,58, J. J. Song19, T. Z. Song59, W. M. Song34,1, Y.  J. Song12,g, Y. X. Song46,h,n, S. Sosio75A,75C, S. Spataro75A,75C, F. Stieler35, S. S Su40, Y. J. Su64, G. B. Sun77, G. X. Sun1, H. Sun64, H. K. Sun1, J. F. Sun19, K. Sun61, L. Sun77, S. S. Sun1,64, T. Sun51,f, W. Y. Sun34, Y. Sun9, Y. J. Sun72,58, Y. Z. Sun1, Z. Q. Sun1,64, Z. T. Sun50, C. J. Tang54, G. Y. Tang1, J. Tang59, M. Tang72,58, Y. A. Tang77, L. Y. Tao73, Q. T. Tao25,i, M. Tat70, J. X. Teng72,58, V. Thoren76, W. H. Tian59, Y. Tian31,64, Z. F. Tian77, I. Uman62B, Y. Wan55, S. J. Wang 50, B. Wang1, B. L. Wang64, Bo Wang72,58, D. Y. Wang46,h, F. Wang73, H. J. Wang38,k,l, J. J. Wang77, J. P. Wang 50, K. Wang1,58, L. L. Wang1, M. Wang50, N. Y. Wang64, S. Wang38,k,l, S. Wang12,g, T.  Wang12,g, T. J. Wang43, W. Wang59, W.  Wang73, W. P. Wang35,58,72,o, X. Wang46,h, X. F. Wang38,k,l, X. J. Wang39, X. L. Wang12,g, X. N. Wang1, Y. Wang61, Y. D. Wang45, Y. F. Wang1,58,64, Y. L. Wang19, Y. N. Wang45, Y. Q. Wang1, Yaqian Wang17, Yi Wang61, Z. Wang1,58, Z. L.  Wang73, Z. Y. Wang1,64, Ziyi Wang64, D. H. Wei14, F. Weidner69, S. P. Wen1, Y. R. Wen39, U. Wiedner3, G. Wilkinson70, M. Wolke76, L. Wollenberg3, C. Wu39, J. F. Wu1,8, L. H. Wu1, L. J. Wu1,64, X. Wu12,g, X. H. Wu34, Y. Wu72,58, Y. H. Wu55, Y. J. Wu31, Z. Wu1,58, L. Xia72,58, X. M. Xian39, B. H. Xiang1,64, T. Xiang46,h, D. Xiao38,k,l, G. Y. Xiao42, S. Y. Xiao1, Y.  L. Xiao12,g, Z. J. Xiao41, C. Xie42, X. H. Xie46,h, Y. Xie50, Y. G. Xie1,58, Y. H. Xie6, Z. P. Xie72,58, T. Y. Xing1,64, C. F. Xu1,64, C. J. Xu59, G. F. Xu1, H. Y. Xu67,2,p, M. Xu72,58, Q. J. Xu16, Q. N. Xu30, W. Xu1, W. L. Xu67, X. P. Xu55, Y. Xu40, Y. C. Xu78, Z. S. Xu64, F. Yan12,g, L. Yan12,g, W. B. Yan72,58, W. C. Yan81, X. Q. Yan1,64, H. J. Yang51,f, H. L. Yang34, H. X. Yang1, J. H. Yang42, T. Yang1, Y. Yang12,g, Y. F. Yang43, Y. F. Yang1,64, Y. X. Yang1,64, Z. W. Yang38,k,l, Z. P. Yao50, M. Ye1,58, M. H. Ye8, J. H. Yin1, Junhao Yin43, Z. Y. You59, B. X. Yu1,58,64, C. X. Yu43, G. Yu1,64, J. S. Yu25,i, M. C. Yu40, T. Yu73, X. D. Yu46,h, Y. C. Yu81, C. Z. Yuan1,64, J. Yuan34, J. Yuan45, L. Yuan2, S. C. Yuan1,64, Y. Yuan1,64, Z. Y. Yuan59, C. X. Yue39, A. A. Zafar74, F. R. Zeng50, S. H. Zeng63A,63B,63C,63D, X. Zeng12,g, Y. Zeng25,i, Y. J. Zeng59, Y. J. Zeng1,64, X. Y. Zhai34, Y. C. Zhai50, Y. H. Zhan59, A. Q. Zhang1,64, B. L. Zhang1,64, B. X. Zhang1, D. H. Zhang43, G. Y. Zhang19, H. Zhang81, H. Zhang72,58, H. C. Zhang1,58,64, H. H. Zhang59, H. H. Zhang34, H. Q. Zhang1,58,64, H. R. Zhang72,58, H. Y. Zhang1,58, J. Zhang81, J. Zhang59, J. J. Zhang52, J. L. Zhang20, J. Q. Zhang41, J. S. Zhang12,g, J. W. Zhang1,58,64, J. X. Zhang38,k,l, J. Y. Zhang1, J. Z. Zhang1,64, Jianyu Zhang64, L. M. Zhang61, Lei Zhang42, P. Zhang1,64, Q. Y. Zhang34, R. Y. Zhang38,k,l, S. H. Zhang1,64, Shulei Zhang25,i, X. M. Zhang1, X. Y Zhang40, X. Y. Zhang50, Y. Zhang1, Y.  Zhang73, Y.  T. Zhang81, Y. H. Zhang1,58, Y. M. Zhang39, Yan Zhang72,58, Z. D. Zhang1, Z. H. Zhang1, Z. L. Zhang34, Z. Y. Zhang77, Z. Y. Zhang43, Z. Z.  Zhang45, G. Zhao1, J. Y. Zhao1,64, J. Z. Zhao1,58, L. Zhao1, Lei Zhao72,58, M. G. Zhao43, N. Zhao79, R. P. Zhao64, S. J. Zhao81, Y. B. Zhao1,58, Y. X. Zhao31,64, Z. G. Zhao72,58, A. Zhemchugov36,b, B. Zheng73, B. M. Zheng34, J. P. Zheng1,58, W. J. Zheng1,64, Y. H. Zheng64, B. Zhong41, X. Zhong59, H.  Zhou50, J. Y. Zhou34, L. P. Zhou1,64, S.  Zhou6, X. Zhou77, X. K. Zhou6, X. R. Zhou72,58, X. Y. Zhou39, Y. Z. Zhou12,g, Z. C. Zhou20, A. N. Zhu64, J. Zhu43, K. Zhu1, K. J. Zhu1,58,64, K. S. Zhu12,g, L. Zhu34, L. X. Zhu64, S. H. Zhu71, T. J. Zhu12,g, W. D. Zhu41, Y. C. Zhu72,58, Z. A. Zhu1,64, J. H. Zou1, J. Zu72,58
(BESIII Collaboration)
1 Institute of High Energy Physics, Beijing 100049, People’s Republic of China
2 Beihang University, Beijing 100191, People’s Republic of China
3 Bochum Ruhr-University, D-44780 Bochum, Germany
4 Budker Institute of Nuclear Physics SB RAS (BINP), Novosibirsk 630090, Russia
5 Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
6 Central China Normal University, Wuhan 430079, People’s Republic of China
7 Central South University, Changsha 410083, People’s Republic of China
8 China Center of Advanced Science and Technology, Beijing 100190, People’s Republic of China
9 China University of Geosciences, Wuhan 430074, People’s Republic of China
10 Chung-Ang University, Seoul, 06974, Republic of Korea
11 COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, 54000 Lahore, Pakistan
12 Fudan University, Shanghai 200433, People’s Republic of China
13 GSI Helmholtzcentre for Heavy Ion Research GmbH, D-64291 Darmstadt, Germany
14 Guangxi Normal University, Guilin 541004, People’s Republic of China
15 Guangxi University, Nanning 530004, People’s Republic of China
16 Hangzhou Normal University, Hangzhou 310036, People’s Republic of China
17 Hebei University, Baoding 071002, People’s Republic of China
18 Helmholtz Institute Mainz, Staudinger Weg 18, D-55099 Mainz, Germany
19 Henan Normal University, Xinxiang 453007, People’s Republic of China
20 Henan University, Kaifeng 475004, People’s Republic of China
21 Henan University of Science and Technology, Luoyang 471003, People’s Republic of China
22 Henan University of Technology, Zhengzhou 450001, People’s Republic of China
23 Huangshan College, Huangshan 245000, People’s Republic of China
24 Hunan Normal University, Changsha 410081, People’s Republic of China
25 Hunan University, Changsha 410082, People’s Republic of China
26 Indian Institute of Technology Madras, Chennai 600036, India
27 Indiana University, Bloomington, Indiana 47405, USA
28 INFN Laboratori Nazionali di Frascati , (A)INFN Laboratori Nazionali di Frascati, I-00044, Frascati, Italy; (B)INFN Sezione di Perugia, I-06100, Perugia, Italy; (C)University of Perugia, I-06100, Perugia, Italy
29 INFN Sezione di Ferrara, (A)INFN Sezione di Ferrara, I-44122, Ferrara, Italy; (B)University of Ferrara, I-44122, Ferrara, Italy
30 Inner Mongolia University, Hohhot 010021, People’s Republic of China
31 Institute of Modern Physics, Lanzhou 730000, People’s Republic of China
32 Institute of Physics and Technology, Peace Avenue 54B, Ulaanbaatar 13330, Mongolia
33 Instituto de Alta Investigación, Universidad de Tarapacá, Casilla 7D, Arica 1000000, Chile
34 Jilin University, Changchun 130012, People’s Republic of China
35 Johannes Gutenberg University of Mainz, Johann-Joachim-Becher-Weg 45, D-55099 Mainz, Germany
36 Joint Institute for Nuclear Research, 141980 Dubna, Moscow region, Russia
37 Justus-Liebig-Universitaet Giessen, II. Physikalisches Institut, Heinrich-Buff-Ring 16, D-35392 Giessen, Germany
38 Lanzhou University, Lanzhou 730000, People’s Republic of China
39 Liaoning Normal University, Dalian 116029, People’s Republic of China
40 Liaoning University, Shenyang 110036, People’s Republic of China
41 Nanjing Normal University, Nanjing 210023, People’s Republic of China
42 Nanjing University, Nanjing 210093, People’s Republic of China
43 Nankai University, Tianjin 300071, People’s Republic of China
44 National Centre for Nuclear Research, Warsaw 02-093, Poland
45 North China Electric Power University, Beijing 102206, People’s Republic of China
46 Peking University, Beijing 100871, People’s Republic of China
47 Qufu Normal University, Qufu 273165, People’s Republic of China
48 Renmin University of China, Beijing 100872, People’s Republic of China
49 Shandong Normal University, Jinan 250014, People’s Republic of China
50 Shandong University, Jinan 250100, People’s Republic of China
51 Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
52 Shanxi Normal University, Linfen 041004, People’s Republic of China
53 Shanxi University, Taiyuan 030006, People’s Republic of China
54 Sichuan University, Chengdu 610064, People’s Republic of China
55 Soochow University, Suzhou 215006, People’s Republic of China
56 South China Normal University, Guangzhou 510006, People’s Republic of China
57 Southeast University, Nanjing 211100, People’s Republic of China
58 State Key Laboratory of Particle Detection and Electronics, Beijing 100049, Hefei 230026, People’s Republic of China
59 Sun Yat-Sen University, Guangzhou 510275, People’s Republic of China
60 Suranaree University of Technology, University Avenue 111, Nakhon Ratchasima 30000, Thailand
61 Tsinghua University, Beijing 100084, People’s Republic of China
62 Turkish Accelerator Center Particle Factory Group, (A)Istinye University, 34010, Istanbul, Turkey; (B)Near East University, Nicosia, North Cyprus, 99138, Mersin 10, Turkey
63 University of Bristol, (A)H H Wills Physics Laboratory; (B)Tyndall Avenue; (C)Bristol; (D)BS8 1TL
64 University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
65 University of Groningen, NL-9747 AA Groningen, The Netherlands
66 University of Hawaii, Honolulu, Hawaii 96822, USA
67 University of Jinan, Jinan 250022, People’s Republic of China
68 University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
69 University of Muenster, Wilhelm-Klemm-Strasse 9, 48149 Muenster, Germany
70 University of Oxford, Keble Road, Oxford OX13RH, United Kingdom
71 University of Science and Technology Liaoning, Anshan 114051, People’s Republic of China
72 University of Science and Technology of China, Hefei 230026, People’s Republic of China
73 University of South China, Hengyang 421001, People’s Republic of China
74 University of the Punjab, Lahore-54590, Pakistan
75 University of Turin and INFN, (A)University of Turin, I-10125, Turin, Italy; (B)University of Eastern Piedmont, I-15121, Alessandria, Italy; (C)INFN, I-10125, Turin, Italy
76 Uppsala University, Box 516, SE-75120 Uppsala, Sweden
77 Wuhan University, Wuhan 430072, People’s Republic of China
78 Yantai University, Yantai 264005, People’s Republic of China
79 Yunnan University, Kunming 650500, People’s Republic of China
80 Zhejiang University, Hangzhou 310027, People’s Republic of China
81 Zhengzhou University, Zhengzhou 450001, People’s Republic of China
a Deceased
b Also at the Moscow Institute of Physics and Technology, Moscow 141700, Russia
c Also at the Novosibirsk State University, Novosibirsk, 630090, Russia
d Also at the NRC ”Kurchatov Institute”, PNPI, 188300, Gatchina, Russia
e Also at Goethe University Frankfurt, 60323 Frankfurt am Main, Germany
f Also at Key Laboratory for Particle Physics, Astrophysics and Cosmology, Ministry of Education; Shanghai Key Laboratory for Particle Physics and Cosmology; Institute of Nuclear and Particle Physics, Shanghai 200240, People’s Republic of China
g Also at Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) and Institute of Modern Physics, Fudan University, Shanghai 200443, People’s Republic of China
h Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, People’s Republic of China
i Also at School of Physics and Electronics, Hunan University, Changsha 410082, China
j Also at Guangdong Provincial Key Laboratory of Nuclear Science, Institute of Quantum Matter, South China Normal University, Guangzhou 510006, China
k Also at MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, People’s Republic of China
l Also at Lanzhou Center for Theoretical Physics, Lanzhou University, Lanzhou 730000, People’s Republic of China
m Also at the Department of Mathematical Sciences, IBA, Karachi 75270, Pakistan
n Also at Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
o Also at Helmholtz Institute Mainz, Staudinger Weg 18, D-55099 Mainz, Germany
p Also at School of Physics, Beihang University, Beijing 100191 , China
Abstract

Using 7.93 fb-1 of e+ee^{+}e^{-} collision data collected at the center-of-mass energy of 3.773 GeV with the BESIII detector, we measure the absolute branching fractions of D0Ke+νeD^{0}\to K^{-}e^{+}\nu_{e}, D0Kμ+νμD^{0}\to K^{-}\mu^{+}\nu_{\mu}, D+K¯0e+νeD^{+}\to\bar{K}^{0}e^{+}\nu_{e}, and D+K¯0μ+νμD^{+}\to\bar{K}^{0}\mu^{+}\nu_{\mu} to be (3.521±0.009stat.±0.016syst.)%(3.521\pm 0.009_{\rm stat.}\pm 0.016_{\rm syst.})\%, (3.419±0.011stat.±0.016syst.)%(3.419\pm 0.011_{\rm stat.}\pm 0.016_{\rm syst.})\%, (8.864±0.039stat.±0.082syst.)%(8.864\pm 0.039_{\rm stat.}\pm 0.082_{\rm syst.})\%, and (8.665±0.046stat.±0.084syst.)%(8.665\pm 0.046_{\rm stat.}\pm 0.084_{\rm syst.})\%, respectively. By performing a simultaneous fit to the partial decay rates of these four decays, the product of the hadronic form factor f+K(0)f^{K}_{+}(0) and the modulus of the csc\to s CKM matrix element |Vcs||V_{cs}| is determined to be f+K(0)|Vcs|=0.7171±0.0011stat.±0.0013syst.f^{K}_{+}(0)|V_{cs}|=0.7171\pm 0.0011_{\rm stat.}\pm 0.0013_{\rm syst.}. Taking the value of |Vcs|=0.97349±0.00016|V_{cs}|=0.97349\pm 0.00016 from the standard model global fit or that of f+K(0)=0.7452±0.0031f^{K}_{+}(0)=0.7452\pm 0.0031 from the LQCD calculation as input, we derive the results f+K(0)=0.7366±0.0011stat.±0.0013syst.f^{K}_{+}(0)=0.7366\pm 0.0011_{\rm stat.}\pm 0.0013_{\rm syst.} and |Vcs|=0.9623±0.0015stat.±0.0017syst.±0.0040LQCD|V_{cs}|=0.9623\pm 0.0015_{\rm stat.}\pm 0.0017_{\rm syst.}\pm 0.0040_{\rm LQCD}.

I Introduction

Improved measurements of semileptonic decays of charmed mesons provide important inputs to further the understanding of weak and strong interactions in the charm sector. By analyzing their decay dynamics, one can determine the product of the modulus of the Cabibbo-Kobayashi-Maskawa (CKM) matrix element |Vcs(d)||V_{cs(d)}| and the hadronic transition form factor. Taking DK¯e+νeD\to\bar{K}e^{+}\nu_{e} as an example, the hadronic transition form factors at zero-momentum transfer f+K(0)f^{K}_{+}(0)Lubicz:2017syv ; Chakraborty:2021qav ; Parrott:2022rgu ; FermilabLattice:2022gku ; Wu:2006rd ; Verma:2011yw ; Ivanov:2019nqd ; Faustov:2019mqr ; Ke:2023qzc can be calculated via several theoretical approaches, e.g., lattice quantum chromodynamics (LQCD) Lubicz:2017syv ; Chakraborty:2021qav ; Parrott:2022rgu ; FermilabLattice:2022gku , QCD light-cone sum rules (LCSR) Wu:2006rd , covariant light-front quark model (LFQM)Verma:2011yw , the covariant confined quark model (CCQM) Ivanov:2019nqd , and the relativistic quark model (RQM) Faustov:2019mqr . Using the value of |Vcs||V_{cs}| provided by the CKMFitter group pdg2022 , the hadronic transition form factor f+K(0)f_{+}^{K}(0) can be calculated, resulting in a stringent test of the theoretical predictions. Conversely, using the f+K(0)f_{+}^{K}(0) value predicted by theory allows the determination of |Vcs||V_{cs}|, which is important to test CKM matrix unitarity. Furthermore, measurements of the branching fractions of D0K+νD^{0}\to K^{-}\ell^{+}\nu_{\ell} and D+K¯0+νD^{+}\to\bar{K}^{0}\ell^{+}\nu_{\ell} (=e\ell=e or μ\mu) are important to test lepton flavor universality and isospin conservation in DK+νD\to K\ell^{+}\nu_{\ell}.

Previously, the branching fractions of D0K+νD^{0}\to K^{-}\ell^{+}\nu_{\ell} and D+K¯0+νD^{+}\to\bar{K}^{0}\ell^{+}\nu_{\ell} were measured by BESII BES:2004rav ; BES:2004obp ; BES:2006kzp , BaBar BaBar:2007zgf , Belle Belle:2006idb , CLEO-c CLEO:2005rxg ; CLEO:2005cuk ; CLEO:2007ntr ; CLEO:2009svp , and BESIII BESIII:2021mfl ; BESIII:2015tql ; BESIII:2018ccy ; BESIII:2017ylw ; BESIII:2016hko ; BESIII:2015jmz ; BESIII:2016gbw . Studies of the decay dynamics of DK¯+νD\to\bar{K}\ell^{+}\nu_{\ell} were reported by BaBar BaBar:2007zgf , CLEO-c CLEO:2009svp , and BESIII BESIII:2015tql ; BESIII:2018ccy ; BESIII:2017ylw ; BESIII:2015jmz . The previous BESIII analysis used 2.93 fb-1 of e+ee^{+}e^{-} collision data taken at the center-of-mass energy s=3.773\sqrt{s}=3.773 GeV. This paper reports improved measurements of the branching fractions and decay dynamics of D0K+νD^{0}\to K^{-}\ell^{+}\nu_{\ell} and D+K¯0+νD^{+}\to\bar{K}^{0}\ell^{+}\nu_{\ell} by using 7.93 fb-1 of e+ee^{+}e^{-} collision data collected by the BESIII detector at s=3.773\sqrt{s}=3.773 GeV Luminosity . Throughout this paper, charge conjugate modes are implied.

II BESIII detector and Monte Carlo simulations

The BESIII detector Ablikim:2009aa records symmetric e+ee^{+}e^{-} collisions provided by the BEPCII storage ring Yu:IPAC2016-TUYA01 in the center-of-mass energy range from 1.84 to 4.95 GeV, with a peak luminosity of 1.1×1033cm2s11.1\times 10^{33}\;\text{cm}^{-2}\text{s}^{-1} achieved at s=3.773GeV\sqrt{s}=3.773~{}\text{GeV}. BESIII has collected large data samples in this energy region Ablikim:2019hff ; Li:2021iwf . The cylindrical core of the BESIII detector covers 93% of the full solid angle and consists of a helium-based multilayer drift chamber (MDC), a time-of-flight system (TOF), and a CsI(Tl) electromagnetic calorimeter (EMC), which are all enclosed in a superconducting solenoidal magnet providing a 1.0 T magnetic field. The solenoid is supported by an octagonal flux-return yoke with resistive plate muon identification counters (MUC) interleaved with steel. The main function of the MUC is to separate muons from charged pions, other hadrons and backgrounds based on their hit patterns in the instrumented flux-return yoke. The charged-particle momentum resolution at 1GeV/c1~{}{\rm GeV}/c is 0.5%0.5\%, and the dE/dx{\rm d}E/{\rm d}x resolution is 6%6\% for electrons from Bhabha scattering. The EMC measures photon energies with a resolution of 2.5%2.5\% (5%5\%) at 11 GeV in the barrel (end-cap) region. The time resolution in the plastic scintillator TOF barrel region is 68 ps, while that in the end-cap region was 110 ps. The end-cap TOF system was upgraded in 2015 using multi-gap resistive plate chamber technology, providing a time resolution of 60 ps etof . Approximately 67% of the data used here was collected after this upgrade.

Simulated samples produced with geant4-based geant4 Monte Carlo (MC) software, which includes the geometric description Huang:2022wuo of the BESIII detector and the detector response, are used to determine detection efficiencies and to estimate backgrounds. The simulation models the beam energy spread and initial state radiation (ISR) in the e+ee^{+}e^{-} annihilations with the generator kkmc ref:kkmc . Signal MC samples of the decays DK¯+νD\to\bar{K}\ell^{+}\nu_{\ell} are simulated with a specific two-parameter series expansion model Becher:2005bg . The background is studied using an inclusive MC sample that consists of the production of DD¯D\bar{D} pairs from the ψ(3770)\psi(3770) (including quantum coherence for the neutral DD channels), the non-DD¯D\bar{D} decays of the ψ(3770)\psi(3770), the ISR production of the charmonium states, and the continuum processes. These processes are also generated with kkmc. The known decay modes are modeled by evtgen ref:evtgen with branching fractions taken from the Particle Data Group (PDG) pdg2022 , while the remaining unknown charmonium decays are modeled with lundcharm ref:lundcharm . Final state radiation from charged final-state particles is incorporated using photos photos .

III Measurement Method

At s=3.773\sqrt{s}=3.773 GeV, the DD and D¯\bar{D} mesons are produced in pairs from the e+eψ(3770)DD¯e^{+}e^{-}\to\psi(3770)\to D\bar{D} process, where DD stands for D0D^{0} or D+D^{+}. This property allows us to do absolute branching fraction measurement with the well established double-tag (DT) method DTmethod . In this method, the single-tag (ST) candidate events are selected by reconstructing a D¯0\bar{D}^{0} in the six hadronic final states D¯0K+π\bar{D}^{0}\to K^{+}\pi^{-}, K+ππ0K^{+}\pi^{-}\pi^{0}, K+πππ+K^{+}\pi^{-}\pi^{-}\pi^{+}, K+ππ0π0K^{+}\pi^{-}\pi^{0}\pi^{0}, K+πππ+π0K^{+}\pi^{-}\pi^{-}\pi^{+}\pi^{0}, and KS0π+πK^{0}_{S}\pi^{+}\pi^{-}, or a DD^{-} in the six hadronic final states DK+ππD^{-}\to K^{+}\pi^{-}\pi^{-}, KS0πK^{0}_{S}\pi^{-}, K+πππ0K^{+}\pi^{-}\pi^{-}\pi^{0}, KS0ππ0K^{0}_{S}\pi^{-}\pi^{0}, KS0π+ππK^{0}_{S}\pi^{+}\pi^{-}\pi^{-}, and K+KπK^{+}K^{-}\pi^{-}. These inclusively selected candidates are referred to as ST D¯\bar{D} mesons. In the presence of the ST D¯\bar{D} mesons, candidates for the signal decays are selected to form DT events. The branching fraction of the signal decay is determined by

sig=NDT/(NSTtotε¯sig),{\mathcal{B}}_{\rm sig}=N_{\mathrm{DT}}/(N_{\mathrm{ST}}^{\rm tot}\cdot\bar{\varepsilon}_{\rm sig}), (1)

where NDTN_{\rm DT} is the total DT yield in data, NSTtotN_{\mathrm{ST}}^{\rm tot} is the total ST yield

NSTtot=i=16NSTi,N_{\mathrm{ST}}^{\rm tot}=\sum_{i=1}^{6}N_{\mathrm{ST}}^{i}, (2)

where NSTiN_{\rm ST}^{i} is the ST yield of tag mode ii, and ε¯sig\bar{\varepsilon}_{\rm sig} is the weighted efficiency of detecting the semileptonic decay, calculated by

ε¯sig=i=16NSTiεsigiNSTtot.\bar{\varepsilon}_{\rm sig}=\sum_{i=1}^{6}\frac{N_{\mathrm{ST}}^{i}\varepsilon_{\rm sig}^{i}}{N_{\mathrm{ST}}^{\rm tot}}. (3)

Here, εsigi=εDTi/εSTi\varepsilon_{\rm sig}^{i}=\varepsilon_{\rm DT}^{i}/\varepsilon_{\rm ST}^{i}, is the efficiency of detecting the semileptonic decay in the presence of the ST D¯\bar{D} meson of tag mode ii, where εDTi\varepsilon_{\rm DT}^{i} and εSTi\varepsilon_{\rm ST}^{i} are the DT efficiency and ST efficiency, respectively.

IV Selection of single tag 𝑫¯\bar{D} mesons

For each charged track (except for those used for KS0K^{0}_{S} reconstruction), the polar angle (θ\theta) with respect to the MDC axis is required to satisfy |cosθ|<0.93|\cos\theta|<0.93, and the point of closest approach to the interaction point must be within 1 cm in the plane perpendicular to the MDC axis, |Vxy||V_{xy}|, and within 10 cm along the MDC axis, |Vz||V_{z}|. Charged tracks are identified by using the dE/dx\mathrm{d}E/\mathrm{d}x and TOF information, with which the combined confidence levels under the pion and kaon hypotheses are computed separately. Charged tracks are assigned to the particle type that has the higher probability.

Candidate KS0K_{S}^{0} mesons are reconstructed from pairs of oppositely charged tracks. For these two tracks, their polar angles are required to satisfy |cosθ|<0.93|\cos\theta|<0.93 and the distance of closest approach to the interaction point is required to be less than 20 cm along the MDC axis. There is no requirement on the distance of closest approach in the transverse plane, and no particle identification (PID) criteria are required. The two charged tracks are constrained to originate from the same vertex, which is required to be away from the interaction point by a flight distance of at least twice the vertex resolution. The quality of the vertex fit is ensured by the requirement of χ2<100\chi^{2}<100, and the invariant mass of the π+π\pi^{+}\pi^{-} pair is required to be within (0.487,0.511)(0.487,0.511) GeV/c2c^{2}.

Neutral pion candidates are reconstructed via the π0γγ\pi^{0}\to\gamma\gamma decay. Photon candidates are identified from EMC showers. The EMC time difference from the event start time is required to be within (0,700)(0,700) ns. The energy deposited in the EMC is required to be greater than 25 MeV in the barrel region (|cosθ|<0.80|\cos\theta|<0.80) and 50 MeV in the end-cap region (0.86<|cosθ|<0.920.86<|\cos\theta|<0.92). The opening angle between the photon candidate and the nearest charged track in the EMC is required to be greater than 1010^{\circ}. For any π0\pi^{0} candidate, the invariant mass of the photon pair is required to be within (0.115,0.150)(0.115,0.150) GeV/c2/c^{2}. To improve the momentum resolution, a mass-constrained (1C) fit to the known π0\pi^{0} mass pdg2022 is imposed on the photon pair, and the χ2\chi^{2} of the 1C kinematic fit is required to be less than 50. The four-momentum of the π0\pi^{0} candidate from this kinematic fit is used for further analysis.

For the two-body tag mode of D¯0K+π\bar{D}^{0}\to K^{+}\pi^{-}, the backgrounds originating from cosmic rays, Bhabha and dimuon events are vetoed with the following procedure defined in Ref. deltakpi . It is required that the TOF time difference between the two charged tracks is less than 5 ns, and at least one EMC shower with energy greater than 50 MeV or at least one additional charged track detected in the MDC survives in each event. Further, it is required that the two charged tracks are not consistent with being a muon pair or an electron-positron pair, identified using the TOF, dE/dx\mathrm{d}E/\mathrm{d}x, EMC, and MUC measurement information with the combined confidence levels e\mathcal{L}_{e}, μ\mathcal{L}_{\mu}, K\mathcal{L}_{K}, and π\mathcal{L}_{\pi} for electron, muon, kaon, and pion hypotheses, respectively. To be identified as an electron, e\mathcal{L}_{e} is required to be greater than 0 and larger than K\mathcal{L}_{K}, π\mathcal{L}_{\pi}, as well as 0.8(e+π+K)0.8\cdot(\mathcal{L}_{e}+\mathcal{L}_{\pi}+\mathcal{L}_{K}). To identify a track as a muon, μ\mathcal{L}_{\mu} is required to be greater than 0, the deposited energy in the EMC should fall within the range of 0.15 to 0.30 GeV, and the hit depth in the MUC needs to be either greater than (80×|ptrk|60)(80\times|p_{\rm trk}|-60) cm or greater than 40 cm, where ptrkp_{\rm trk} is the track momentum.

To identify the ST D¯\bar{D} mesons, we use two kinematic variables: the energy difference ΔEED¯Ebeam\Delta E\equiv E_{\bar{D}}-E_{\mathrm{beam}} and the beam-constrained mass MBCEbeam2/c4|pD¯|2/c2M_{\rm BC}\equiv\sqrt{E_{\mathrm{beam}}^{2}/c^{4}-|\vec{p}_{\bar{D}}|^{2}/c^{2}}, where EbeamE_{\mathrm{beam}} is the beam energy, and ED¯E_{\bar{D}} and pD¯\vec{p}_{\bar{D}} are the total energy and momentum of the ST D¯\bar{D} meson in the e+ee^{+}e^{-} center-of-mass frame, respectively. If there are multiple D¯\bar{D} candidates for a specific tag mode, the one giving the least |ΔE||\Delta E| is chosen for further analysis. To suppress combinatorial backgrounds in the MBCM_{\rm BC} distribution, tag dependent ΔE\Delta E requirements are imposed on the ST candidates. The detailed ΔE\Delta E requirements and the ST efficiencies estimated by analyzing the inclusive MC sample are summarized in Table 1.

For each tag mode, the yield of ST D¯\bar{D} mesons is obtained by the maximum likelihood fit to the corresponding MBCM_{\rm BC} distribution. In the fit, the D¯\bar{D} signal shape is described by the sum of an MC-simulated signal shape, made by RooHistPdf in Rootclass RootClass , convolved with a double-Gaussian resolution function plus a single-Gaussian function, to account for resolution difference between data and MC simulation and initial state radiation (ISR) effects. The parameters of those functions are free. The background shape is described by an ARGUS function argus with the endpoint fixed at the EbeamE_{\rm beam} value. Figure 1 shows the results of the fits to the MBCM_{\rm BC} distributions of the accepted ST candidates in data for different tag modes. The candidates with MBCM_{\rm BC} within (1.859,1.873)(1.859,1.873) GeV/c2c^{2} for D¯0\bar{D}^{0} tags and (1.863,1.877)(1.863,1.877) GeV/c2c^{2} for DD^{-} tags are kept for further analysis. Summing over the tag modes gives the total yields of ST D¯0\bar{D}^{0} and DD^{-} mesons (NSTtotN_{\rm ST}^{\rm tot}) to be (7922.7±3.4stat.)×103(7922.7\pm 3.4_{\rm stat.})\times 10^{3} and (4135.4±2.4stat.)×103(4135.4\pm 2.4_{\rm stat.})\times 10^{3}, respectively.

Table 1: The ΔE\Delta E requirements, the ST D¯\bar{D} yields in data of the tag mode ii (NSTiN_{\rm ST}^{i}), and the ST efficiencies of tag mode ii (εSTi\varepsilon_{\rm ST}^{i}). The uncertainties are statistical only.
DD Tag mode ΔE\Delta E (MeV) NSTi(×103)N_{\rm ST}^{i}~{}(\times 10^{3}) εSTi(%)\varepsilon_{\rm ST}^{i}~{}(\%)
D0D^{0} K+πK^{+}\pi^{-} (27,27)(-27,27) 1452.5±1.31452.5\pm 1.3 65.28±0.0165.28\pm 0.01
K+ππ0K^{+}\pi^{-}\pi^{0} (62,49)(-62,49) 2908.1±2.02908.1\pm 2.0 35.69±0.0135.69\pm 0.01
K+πππ+K^{+}\pi^{-}\pi^{-}\pi^{+} (26,24)(-26,24) 1957.5±1.61957.5\pm 1.6 41.17±0.0141.17\pm 0.01
K+ππ0π0K^{+}\pi^{-}\pi^{0}\pi^{0} (68,53)(-68,53) 698.8±1.3~{}698.8\pm 1.3 15.24±0.0115.24\pm 0.01
K+πππ+π0K^{+}\pi^{-}\pi^{-}\pi^{+}\pi^{0} (57,51)(-57,51) 457.1±1.1~{}457.1\pm 1.1 16.49±0.0116.49\pm 0.01
KS0π+πK^{0}_{S}\pi^{+}\pi^{-} (24,24)(-24,24) 448.7±0.7~{}448.7\pm 0.7 37.60±0.0137.60\pm 0.01
DD^{-} K+ππK^{+}\pi^{-}\pi^{-} (25,24)(-25,24) 2164.4±1.62164.4\pm 1.6 51.09±0.0151.09\pm 0.01
KS0πK^{0}_{S}\pi^{-} (25,26)(-25,26) 249.4±0.5~{}249.4\pm 0.5 50.72±0.0250.72\pm 0.02
K+πππ0K^{+}\pi^{-}\pi^{-}\pi^{0} (57,46)(-57,46) 676.0±1.1~{}676.0\pm 1.1 25.04±0.0125.04\pm 0.01
KS0ππ0K^{0}_{S}\pi^{-}\pi^{0} (62,49)(-62,49) 554.3±0.9~{}554.3\pm 0.9 26.23±0.0126.23\pm 0.01
KS0πππ+K^{0}_{S}\pi^{-}\pi^{-}\pi^{+} (28,27)(-28,27) 304.0±0.7~{}304.0\pm 0.7 29.53±0.0129.53\pm 0.01
K+KπK^{+}K^{-}\pi^{-} (24,23)(-24,23) 187.3±0.5~{}187.3\pm 0.5 41.12±0.0241.12\pm 0.02
Refer to caption
Fig. 1: Fits to the MBCM_{\rm BC} distributions of the ST D¯\bar{D} candidates. The points with error bars are data, the blue curves are the best fits, and the red dashed curves are the fitted combinatorial background shapes. The pairs of red arrows show the MBCM_{\rm BC} signal window.

V Selection of double tag events

The candidates for D0Ke+νeD^{0}\to K^{-}e^{+}\nu_{e}, D0Kμ+νμD^{0}\to K^{-}\mu^{+}\nu_{\mu}, D+K¯0e+νeD^{+}\to\bar{K}^{0}e^{+}\nu_{e}, and D+K¯0μ+νμD^{+}\to\bar{K}^{0}\mu^{+}\nu_{\mu} are selected from the remaining tracks in the presence of the ST D¯\bar{D} candidates. Candidates for KK^{-} and KS0K_{S}^{0} are selected with the same criteria as those used in the ST selection. The positron and muon are identified using the TOF, dE/dx\mathrm{d}E/\mathrm{d}x, and EMC measurements with the combined confidence levels e\mathcal{L}_{e}, μ\mathcal{L}_{\mu}, K\mathcal{L}_{K}, and π\mathcal{L}_{\pi}, which are calculated for electron, muon, kaon, and pion hypotheses, respectively. The positron candidate is required to satisfy e>0.8(e+π+K)\mathcal{L}_{e}>0.8\cdot(\mathcal{L}_{e}+\mathcal{L}_{\pi}+\mathcal{L}_{K}) and e>0.001\mathcal{L}_{e}>0.001. The muon candidate is required to satisfy μ>e\mathcal{L}_{\mu}>\mathcal{L}_{e} and μ>0.001\mathcal{L}_{\mu}>0.001, and the energy of the muon deposited in the EMC is required to be within (0.1,0.3)(0.1,0.3) GeV.

To suppress backgrounds associated with hadronic DD decays, it is required that there are no additional good charged tracks on the signal side (Nextratrk=0N_{\rm extra}^{\rm trk}=0). To reject the backgrounds from hadronic decays involving π0\pi^{0}, the maximum energy of extra photons (Eextra γmaxE_{\text{extra~{}}\gamma}^{\rm max}) not used in the event reconstruction is required to be less than 0.25 GeV. Requirements on the K¯\bar{K} and +\ell^{+} (MK¯M_{\bar{K}\ell}) invariant mass, which are MKe+<1.83M_{K^{-}e^{+}}<1.83 GeV/c2c^{2} for D0Ke+νeD^{0}\to K^{-}e^{+}\nu_{e}, MKμ+<1.50M_{K^{-}\mu^{+}}<1.50 GeV/c2c^{2} for D0Kμ+νμD^{0}\to K^{-}\mu^{+}\nu_{\mu}, MKS0e+<1.84M_{K_{S}^{0}e^{+}}<1.84 GeV/c2c^{2} for D+K¯0e+νeD^{+}\to\bar{K}^{0}e^{+}\nu_{e}, and MKS0μ+<1.56M_{K_{S}^{0}\mu^{+}}<1.56 GeV/c2c^{2} for D+K¯0μ+νμD^{+}\to\bar{K}^{0}\mu^{+}\nu_{\mu}, are used to suppress the backgrounds associated with the misidentification between π+\pi^{+} and +\ell^{+}.

The neutrino is not detectable by the BESIII detector. In order to determine the number of semileptonic DD candidates, we define UmissEmiss|pmiss|cU_{\mathrm{miss}}\equiv E_{\mathrm{miss}}-|\vec{p}_{\mathrm{miss}}|c, where EmissE_{\mathrm{miss}} and pmiss\vec{p}_{\mathrm{miss}} are the missing energy and momentum of a DT event in the e+ee^{+}e^{-} center-of-mass frame, respectively. They are calculated by EmissEbeamEK¯E+E_{\mathrm{miss}}\equiv E_{\mathrm{beam}}-E_{\bar{K}}-E_{\ell^{+}} and pmisspDpK¯p+\vec{p}_{\mathrm{miss}}\equiv\vec{p}_{D}-\vec{p}_{\bar{K}}-\vec{p}_{\ell^{+}}, where EK¯(+)E_{\bar{K}(\ell^{+})} and pK¯(+)\vec{p}_{\bar{K}(\ell^{+})} are the measured energy and momentum of the K¯(+)\bar{K}(\ell^{+}) candidate in an event. Here to improve the UmissU_{\mathrm{miss}} resolution, pD\vec{p}_{D} is evaluated as pD=p^D¯Ebeam2/c2mD¯2c2\vec{p}_{D}=-\hat{p}_{\bar{D}}\sqrt{E_{\mathrm{beam}}^{2}/c^{2}-m_{\bar{D}}^{2}c^{2}}, where p^D¯\hat{p}_{\bar{D}} is the unit vector in the momentum direction of the ST D¯\bar{D} meson and mD¯m_{\bar{D}} is the known D¯\bar{D} mass pdg2022 .

VI Branching fractions

VI.1 Results on branching fractions

After imposing all selection criteria, the UmissU_{\rm miss} distributions of the accepted candidates for DK¯+νD\to\bar{K}\ell^{+}\nu_{\ell} in data are shown in Fig. 2. Studies of the inclusive MC sample show that main backgrounds are caused mainly due to mis-identifying μ+\mu^{+} or π+\pi^{+} as e+e^{+} for ee channels; mis-identifying π+\pi^{+} as μ+\mu^{+} for μ\mu channels; or missing π0\pi^{0}(s) for all signal decays. The main sources of backgrounds, normalized yields and fractions, which are estimated from the inclusive MC sample, are listed in Table 2.

For each signal decay, the signal yields in data are obtained from the maximum likelihood fits to the corresponding UmissU_{\rm miss} distributions. In the fit, the signal shape is determined from the simulated shape convolved with a Gaussian function with free parameters, which accounts for different resolutions between data and MC simulation. For the DK¯μ+νμD\to\bar{K}\mu^{+}\nu_{\mu} decays, the main peaking backgrounds DK¯π+π0D\to\bar{K}\pi^{+}\pi^{0} are modeled by the simulated shapes convolved with the same Gaussian function as the corresponding signal, and their yields are free. In the UmissU_{\rm miss} distributions, there are also small peaking backgrounds from DK¯μ+νμD\to\bar{K}\mu^{+}\nu_{\mu} around 0.03 GeV for DK¯e+νeD\to\bar{K}e^{+}\nu_{e}, and small peaking background D0πe+νeD^{0}\to\pi^{-}e^{+}\nu_{e} around 0.13-0.13 GeV for D0Ke+νeD^{0}\to K^{-}e^{+}\nu_{e}. Their shapes and yields are fixed in the fits and merged into other backgrounds in the plots. The shapes of signal and all backgrounds are derived from signal and inclusive MC samples, respectively, and all of them are made by RooHistPdf in Rootclass RootClass . From these fits, we obtain the signal yields of each signal decay in data (NDTN_{\rm DT}).

The DT efficiencies are obtained by analyzing the corresponding signal MC samples. The obtained DT efficiencies and signal efficiencies for different signal decays in each tag mode as well as the weighted signal efficiencies (ε¯sig\bar{\varepsilon}_{\rm sig}) are listed in Table 3.

Table 2: Main sources of backgrounds, normalized yields (NbkgN_{\rm bkg}) and fractions in all backgrounds (fbkgf_{\rm bkg}) for each signal decay estimated from the inclusive MC sample.
Signal decay Background source NbkgN_{\rm bkg} fbkg(%)f_{\rm bkg}(\%)
D0Ke+νeD^{0}\to K^{-}e^{+}\nu_{e} D0Ke+νeD^{0}\to K^{*-}e^{+}\nu_{e} 9820 46.7
D0Kμ+νμD^{0}\to K^{-}\mu^{+}\nu_{\mu} 5421 25.8
D0Kπ+π0D^{0}\to K^{-}\pi^{+}\pi^{0} 2756 13.1
D0πe+νeD^{0}\to\pi^{-}e^{+}\nu_{e} 458 2.2
D0Kμ+νμD^{0}\to K^{-}\mu^{+}\nu_{\mu} D0Kπ+π0D^{0}\to K^{-}\pi^{+}\pi^{0} 44932 44.2
D0Kπ+π0π0D^{0}\to K^{-}\pi^{+}\pi^{0}\pi^{0} 28815 28.3
D0Kμ+νμD^{0}\to K^{*-}\mu^{+}\nu_{\mu} 8285 8.2
D+K¯0e+νeD^{+}\to\bar{K}^{0}e^{+}\nu_{e} D+K¯0e+νeD^{+}\to\bar{K}^{*0}e^{+}\nu_{e} 2821 51.6
D+K¯0μ+νμD^{+}\to\bar{K}^{0}\mu^{+}\nu_{\mu} 1558 28.5
D+KS0π+π0D^{+}\to K_{S}^{0}\pi^{+}\pi^{0} 261 4.8
D+K¯0μ+νμD^{+}\to\bar{K}^{0}\mu^{+}\nu_{\mu} D+KS0π+π0D^{+}\to K_{S}^{0}\pi^{+}\pi^{0} 8760 50.3
D+K¯0μ+νμD^{+}\to\bar{K}^{*0}\mu^{+}\nu_{\mu} 2546 14.6
D+KS0π+π0π0D^{+}\to K_{S}^{0}\pi^{+}\pi^{0}\pi^{0} 2072 11.9
Refer to caption
Fig. 2: Fits to the UmissU_{\rm miss} distributions of the accepted candidates for DK¯+νD\to\bar{K}\ell^{+}\nu_{\ell} in data. The points with error bars are data. The violet dotted lines are the fitted signals. The black dash-dotted lines are the fitted peaking backgrounds, and the red dashed lines are the fitted combinatorial background shapes.
Table 3: The DT efficiencies εDT\varepsilon_{\rm DT}, signal efficiencies ε\varepsilon for different signal decays in each tag mode, as well as the weighted signal efficiencies ε¯sig\bar{\varepsilon}_{{\rm sig}}. The listed efficiencies are all in unit of % and have taken into account corrections from data-MC differences originating from tracking and PID. For the D+D^{+} signal decays, the efficiencies also include the branching fraction of K¯0π+π\bar{K}^{0}\to\pi^{+}\pi^{-}. The uncertainties are statistical only.
D0D^{0} decay D+D^{+} decay
Tag mode εDT,Ke+νe\varepsilon_{{\rm DT},K^{-}e^{+}\nu_{e}} εKe+νe\varepsilon_{K^{-}e^{+}\nu_{e}} εDT,Kμ+νμ\varepsilon_{{\rm DT},K^{-}\mu^{+}\nu_{\mu}} εKμ+νμ\varepsilon_{K^{-}\mu^{+}\nu_{\mu}} Tag mode εDT,K¯0e+νe\varepsilon_{{\rm DT},\bar{K}^{0}e^{+}\nu_{e}} εK¯0e+νe\varepsilon_{\bar{K}^{0}e^{+}\nu_{e}} εDT,K¯0μ+νμ\varepsilon_{{\rm DT},\bar{K}^{0}\mu^{+}\nu_{\mu}} εK¯0μ+νμ\varepsilon_{\bar{K}^{0}\mu^{+}\nu_{\mu}}
K+πK^{+}\pi^{-} 43.45±0.0343.45\pm 0.03 66.57±0.0566.57\pm 0.05 34.76±0.0334.76\pm 0.03 53.26±0.0453.26\pm 0.04 K+ππK^{+}\pi^{-}\pi^{-} 8.14±0.018.14\pm 0.01 15.94±0.0215.94\pm 0.02 6.78±0.016.78\pm 0.01 13.26±0.0213.26\pm 0.02
K+ππ0K^{+}\pi^{-}\pi^{0} 24.69±0.0324.69\pm 0.03 69.17±0.0769.17\pm 0.07 19.81±0.0219.81\pm 0.02 55.51±0.0655.51\pm 0.06 KS0πK^{0}_{S}\pi^{-} 8.10±0.018.10\pm 0.01 15.98±0.0215.98\pm 0.02 6.75±0.016.75\pm 0.01 13.31±0.0213.31\pm 0.02
K+πππ+K^{+}\pi^{-}\pi^{-}\pi^{+} 27.28±0.0327.28\pm 0.03 66.26±0.0666.26\pm 0.06 21.41±0.0221.41\pm 0.02 51.99±0.0651.99\pm 0.06 K+πππ0K^{+}\pi^{-}\pi^{-}\pi^{0} 3.91±0.013.91\pm 0.01 15.60±0.0315.60\pm 0.03 3.27±0.013.27\pm 0.01 13.06±0.0213.06\pm 0.02
K+ππ0π0K^{+}\pi^{-}\pi^{0}\pi^{0} 11.20±0.0211.20\pm 0.02 73.50±0.1273.50\pm 0.12 9.08±0.029.08\pm 0.02 59.56±0.1159.56\pm 0.11 KS0ππ0K^{0}_{S}\pi^{-}\pi^{0} 4.11±0.014.11\pm 0.01 15.67±0.0215.67\pm 0.02 3.48±0.013.48\pm 0.01 13.28±0.0213.28\pm 0.02
K+πππ+π0K^{+}\pi^{-}\pi^{-}\pi^{+}\pi^{0} 11.81±0.0211.81\pm 0.02 71.59±0.1271.59\pm 0.12 9.40±0.029.40\pm 0.02 57.03±0.1157.03\pm 0.11 KS0πππ+K^{0}_{S}\pi^{-}\pi^{-}\pi^{+} 4.48±0.014.48\pm 0.01 15.18±0.0215.18\pm 0.02 3.71±0.013.71\pm 0.01 12.56±0.0212.56\pm 0.02
KS0π+πK^{0}_{S}\pi^{+}\pi^{-} 24.89±0.0324.89\pm 0.03 66.19±0.0766.19\pm 0.07 19.59±0.0219.59\pm 0.02 52.07±0.0652.07\pm 0.06 K+KπK^{+}K^{-}\pi^{-} 6.45±0.016.45\pm 0.01 15.67±0.0215.67\pm 0.02 5.38±0.015.38\pm 0.01 13.07±0.0213.07\pm 0.02
ε¯sig\bar{\varepsilon}_{{\rm sig}} 68.32±0.0368.32\pm 0.03 54.48±0.0354.48\pm 0.03 ε¯sig\bar{\varepsilon}_{{\rm sig}} 15.78±0.0115.78\pm 0.01 13.18±0.0113.18\pm 0.01

With the signal yields in data NDTN_{\rm DT}, the weighted signal efficiencies ε¯sig\bar{\varepsilon}_{\rm sig}, as well as the ST yield in data, the branching fractions of D0Ke+νeD^{0}\to K^{-}e^{+}\nu_{e}, D0Kμ+νμD^{0}\to K^{-}\mu^{+}\nu_{\mu}, D+K¯0e+νeD^{+}\to\bar{K}^{0}e^{+}\nu_{e}, and D+K¯0μ+νμD^{+}\to\bar{K}^{0}\mu^{+}\nu_{\mu} are determined with Eq. (1) and listed in Table 4.

Table 4: The signal yields in data NDTN_{\rm DT}, the weighted signal efficiency ε¯sig\bar{\varepsilon}_{\rm sig}, as well as the branching fractions of the four signal decays sig\mathcal{B}_{\rm sig}. For sig\mathcal{B}_{\rm sig}, the first uncertainties are statistical and the second are systematic. For other quantities, the uncertainties are statistical only.
Signal decay NDTN_{\rm DT} ε¯sig(%)\bar{\varepsilon}_{{\rm sig}}~{}(\%) sig(%)\mathcal{B}_{\rm sig}~{}(\%)
D0Ke+νeD^{0}\to K^{-}e^{+}\nu_{e} 190605±471190605\pm 471 68.32±0.0368.32\pm 0.03 3.521±0.009±0.0163.521\pm 0.009\pm 0.016
D0Kμ+νμD^{0}\to K^{-}\mu^{+}\nu_{\mu} 147596±488147596\pm 488 54.48±0.0354.48\pm 0.03 3.419±0.011±0.0163.419\pm 0.011\pm 0.016
D+K¯0e+νeD^{+}\to\bar{K}^{0}e^{+}\nu_{e} 57846±256~{}57846\pm 256 15.78±0.0115.78\pm 0.01 8.864±0.039±0.0828.864\pm 0.039\pm 0.082
D+K¯0μ+νμD^{+}\to\bar{K}^{0}\mu^{+}\nu_{\mu} 47229±248~{}47229\pm 248 13.18±0.0113.18\pm 0.01 8.665±0.046±0.0848.665\pm 0.046\pm 0.084

VI.2 Systematic uncertainties on branching fractions

Table 5 summarizes the sources of the systematic uncertainties in the branching fraction measurements. They are assigned relative to the measured branching fractions and are discussed below.

ST D¯\bar{D} yields

The systematic uncertainty of the fits to the MBCM_{\rm BC} spectra is estimated by varying the signal and background shapes and repeating the fits for both data and the inclusive MC sample. A variation of the signal shape is obtained by modifying the matching requirement between generated and reconstructed angles from 15 to 10 or 20. The uncertainty related to the background shape is obtained by varying the endpoint by ±0.2\pm 0.2 MeV. In addition, the effect of removing the MBCM_{\rm BC} requirements from the ST selection is evaluated, and the difference with the nominal measurement is taken as a systematic uncertainty accounting for possible mismodelling of the MBCM_{\rm BC} distribution in simulation. Adding these three effects quadratically leads to a 0.3% variation, which is taken as the systematic uncertainty on NSTN_{\rm ST}. The uncertainty in the ST D¯0\bar{D}^{0} yield is correlated for D0Ke+νeD^{0}\to K^{-}e^{+}\nu_{e} and D0Kμ+νμD^{0}\to K^{-}\mu^{+}\nu_{\mu}, while that for the ST DD^{-} yield is correlated for D+K¯0e+νeD^{+}\to\bar{K}^{0}e^{+}\nu_{e} and D+K¯0μ+νμD^{+}\to\bar{K}^{0}\mu^{+}\nu_{\mu}.

𝑲K^{-} tracking and PID

The KK^{-} tracking and PID efficiencies are studied by using a control sample of hadronic DD¯D\bar{D} events, with D0D^{0} decaying into Kπ+K^{-}\pi^{+}, Kπ+π+πK^{-}\pi^{+}\pi^{+}\pi^{-} and D¯0\bar{D}^{0} decaying into K+πK^{+}\pi^{-}, K+πππ+K^{+}\pi^{-}\pi^{-}\pi^{+}, as well as D+D^{+} decaying into Kπ+π+K^{-}\pi^{+}\pi^{+} and DD^{-} decaying into K+ππK^{+}\pi^{-}\pi^{-}. The ratios of the momentum weighted data and MC efficiencies are 0.999±0.0010.999\pm 0.001 and 1.000±0.0011.000\pm 0.001 for tracking and PID, respectively. The signal efficiencies are corrected by these ratios, and their uncertainties, which are correlated for D0Ke+νeD^{0}\to K^{-}e^{+}\nu_{e} and D0Kμ+νμD^{0}\to K^{-}\mu^{+}\nu_{\mu}, are assigned as systematic uncertainties.

𝑲𝑺𝟎K^{0}_{S} reconstruction

The KS0K^{0}_{S} reconstruction efficiencies are examined in two aspects. The π±\pi^{\pm} tracking efficiencies are determined by using the control samples used in the studies of KK^{-} tracking and PID, but with a missing π±\pi^{\pm}. The efficiencies associated with the KS0K^{0}_{S} mass window and KS0K^{0}_{S} decay vertex fit are examined using the hadronic DD¯D\bar{D} events, with D0D^{0} or D+D^{+} decaying into KS0π+πK^{0}_{S}\pi^{+}\pi^{-}, KS0π+ππ0K^{0}_{S}\pi^{+}\pi^{-}\pi^{0}, KS0π0K^{0}_{S}\pi^{0}, KS0π+K^{0}_{S}\pi^{+}, KS0π+π0K^{0}_{S}\pi^{+}\pi^{0}, and KS0π+π+πK^{0}_{S}\pi^{+}\pi^{+}\pi^{-}. The polar angle distribution of the control sample is consistent with that in the signal decays, therefore its effect on the KS0K^{0}_{S} reconstruction efficiency is negligible. The momentum weighted difference between the KS0K^{0}_{S} reconstruction efficiency of data and MC is 0.84% for D+K¯0e+νeD^{+}\to\bar{K}^{0}e^{+}\nu_{e} and 0.88% for D+K¯0μ+νμD^{+}\to\bar{K}^{0}\mu^{+}\nu_{\mu}, which are taken as the systematic uncertainties. These uncertainties are correlated for D+K¯0e+νeD^{+}\to\bar{K}^{0}e^{+}\nu_{e} and D+K¯0μ+νμD^{+}\to\bar{K}^{0}\mu^{+}\nu_{\mu}.

+\ell^{+} tracking and PID

The tracking and PID efficiencies of e+e^{+} and μ+\mu^{+} are studied by using the control samples of e+eγe+ee^{+}e^{-}\to\gamma e^{+}e^{-} and e+eγμ+μe^{+}e^{-}\to\gamma\mu^{+}\mu^{-}, respectively. The ratios of the data and MC efficiencies weighted by momentum and cosθ\theta are 0.999±0.0010.999\pm 0.001 for e+e^{+} tracking and 0.983±0.0010.983\pm 0.001 for e+e^{+} PID; while they are 1.001±0.0011.001\pm 0.001 for μ+\mu^{+} tracking and 0.985±0.0020.985\pm 0.002 for μ+\mu^{+} PID. The signal efficiencies are corrected by these factors. After correction, the uncertainties of ratios are assigned as the systematic uncertainties, and these uncertainties are correlated for the four signal decays.

MC model

The detection efficiencies are estimated by using signal MC events generated with the hadronic transition form factors measured in this work. The corresponding systematic uncertainties are estimated by varying the parameters by ±1σ\pm 1\sigma. These uncertainties are independent for each signal decay.

𝑴𝑲¯+M_{\bar{K}\ell^{+}} requirement

The uncertainty due to the MK¯+M_{\bar{K}\ell^{+}} upper bound in each signal decay is studied by scanning the requirement from 1.74-1.84 GeV/c2c^{2} for semielectronic decay and 1.46-1.56 GeV/c2c^{2} for semimuonic decay with a step of 0.01 GeV/c2/c^{2}. We find the changes of branching fractions |alternativenominal||\mathcal{B}_{\rm alternative}-\mathcal{B}_{\rm nominal}| are smaller than the statistical uncertainty difference |σalternative2σnominal2|\sqrt{|\sigma^{2}_{\rm alternative}-\sigma^{2}_{\rm nominal}|}. Therefore, we neglect this systematic uncertainty.

𝑬𝐞𝐱𝐭𝐫𝐚𝜸𝐦𝐚𝐱E_{\rm extra~{}\gamma}^{\rm max} and N𝐞𝐱𝐭𝐫𝐚𝐭𝐫𝐤N_{\rm extra}^{\rm trk} requirements

The systematic uncertainty of the EextraγmaxE_{\rm extra~{}\gamma}^{\rm max} and NextratrkN_{\rm extra}^{\rm trk} requirements is estimated by control samples of hadronic DD¯D\bar{D} events, with both DD and D¯\bar{D} decaying into one of the used ST hadronic final sates. The difference of the acceptance efficiencies between data and MC simulation is assigned as the systematic uncertainty. These uncertainties are correlated for D0Ke+νeD^{0}\to K^{-}e^{+}\nu_{e} and D0Kμ+νμD^{0}\to K^{-}\mu^{+}\nu_{\mu} or D+K¯0e+νeD^{+}\to\bar{K}^{0}e^{+}\nu_{e} and D+K¯0μ+νμD^{+}\to\bar{K}^{0}\mu^{+}\nu_{\mu}.

𝑼𝐦𝐢𝐬𝐬U_{\rm miss} fit

The systematic uncertainty due to the UmissU_{\rm miss} fit is considered in two parts. Since a Gaussian function is convolved with the simulated signal shapes to account for the resolution difference between data and MC simulation, the systematic uncertainty from the signal shape is ignored. The systematic uncertainty due to the background shape is assigned by varying the relative fractions of backgrounds from e+eqq¯e^{+}e^{-}\to q\bar{q} and the dominant background channels in the inclusive MC sample within the uncertainties of their input branching fractions. The changes in the branching fractions are taken as the corresponding systematic uncertainties. These uncertainties are independent for the four signal decays.

MC statistics

The relative uncertainties on the signal efficiencies are assigned as systematic uncertainties due to MC statistics. These uncertainties are independent for the four signal decays.

Quoted branching fractions

For the D+K¯0e+νeD^{+}\to\bar{K}^{0}e^{+}\nu_{e} and D+K¯0μ+νμD^{+}\to\bar{K}^{0}\mu^{+}\nu_{\mu} decays, the uncertainty of the quoted branching fraction of KS0π+πK_{S}^{0}\to\pi^{+}\pi^{-} is 0.07% pdg2022 . These uncertainties are correlated for D+K¯0e+νeD^{+}\to\bar{K}^{0}e^{+}\nu_{e} and D+K¯0μ+νμD^{+}\to\bar{K}^{0}\mu^{+}\nu_{\mu}.

Table 5: Relative systematic uncertainties (in %) in the measurements of the branching fractions.
Source D0Ke+νeD^{0}\to K^{-}e^{+}\nu_{e} D0Kμ+νμD^{0}\to K^{-}\mu^{+}\nu_{\mu} D+K¯0e+νeD^{+}\to\bar{K}^{0}e^{+}\nu_{e} D+K¯0μ+νμD^{+}\to\bar{K}^{0}\mu^{+}\nu_{\mu}
NSTN_{\rm ST} 0.30 0.30 0.30 0.30
KK^{-} tracking 0.10 0.10
KK^{-} PID 0.10 0.10
KS0K_{S}^{0} reconstruction 0.85 0.89
+\ell^{+} tracking 0.10 0.10 0.10 0.10
+\ell^{+} PID 0.10 0.16 0.10 0.15
MC model 0.20 0.19 0.10 0.05
MK¯M_{\bar{K}\ell} requirement
EextraγmaxE_{{\rm extra}~{}\gamma}^{\rm max} and NextratrkN_{\rm extra}^{\rm trk} requirement 0.10 0.10 0.10 0.10
UmissU_{\rm miss} fit 0.18 0.14 0.06 0.05
MC statistics 0.05 0.06 0.07 0.07
Quoted branching fractions 0.07 0.07
Total 0.46 0.46 0.93 0.97

VII Hadronic transition form factors

VII.1 Theoretical formula

The differential decay width of the semileptonic decay DK¯+νD\to\bar{K}\ell^{+}\nu_{\ell} can be expressed as Faustov:2019mqr

dΓidq2=GF2|Vcs|224π3(q2m2)2|pK|q4mD2[(1+m22q2)mD2|pK|2×|f+K(q2)|2+3m28q2(mD2mK2)2|f0K(q2)|2],\begin{array}[]{l}\displaystyle\frac{d\Gamma_{i}}{dq^{2}}=\frac{G_{F}^{2}|V_{cs}|^{2}}{24\pi^{3}}\frac{\left(q^{2}-m^{2}_{\ell}\right)^{2}|\vec{p}_{K}|}{q^{4}m^{2}_{D}}\displaystyle\left[\left(1+\frac{m^{2}_{\ell}}{2q^{2}}\right)m^{2}_{D}|\vec{p}_{K}|^{2}\right.\\ \times|f^{K}_{+}\left(q^{2}\right)|^{2}\displaystyle\left.+\frac{3m^{2}_{\ell}}{8q^{2}}\left(m^{2}_{D}-m^{2}_{K}\right)^{2}|f^{K}_{0}\left(q^{2}\right)|^{2}\right],\end{array} (4)

where qq is the four-momentum transfer to the +ν\ell^{+}\nu_{\ell} system, |pK||\vec{p}_{K}| is the modulus of the meson three-momentum in the DD rest frame, GFG_{F} is the Fermi constant, f+K(q2)f^{K}_{+}(q^{2}) is the vector form factor, and f0K(q2)f^{K}_{0}(q^{2}) is the scaler form factor. The series expansion Becher:2005bg is the most popular parameterization to describe the hadronic transition form factor, which has the form

f+K(q2)=1P(q2)Φ(q2)k=0ak(t0)[z(q2,t0)]k.\begin{array}[]{l}\displaystyle f^{K}_{+}\left(q^{2}\right)=\frac{1}{P\left(q^{2}\right)\Phi\left(q^{2}\right)}\sum_{k=0}^{\infty}a_{k}\left(t_{0}\right)\left[z\left(q^{2},t_{0}\right)\right]^{k}.\\ \end{array} (5)

Here, ak(t0)a_{k}(t_{0}) are the real coefficients, and P(q2)=z(q2,mDs+2)P(q^{2})=z(q^{2},m_{D^{*+}_{s}}^{2}), where z(q2,t0)=t+q2t+t0t+q2+t+t0z(q^{2},t_{0})=\frac{\sqrt{t_{+}-q^{2}}-\sqrt{t_{+}-t_{0}}}{\sqrt{t_{+}-q^{2}}+\sqrt{t_{+}-t_{0}}}. The function Φ\Phi is given by

Φ(q2)=124πχV(t+q2t+t0)1/4(t+q2+t+)5×(t+q2+t+t0)(t+q2+t+t)3/2×(t+q2)3/4,\begin{array}[]{l}\displaystyle\Phi(q^{2})=\sqrt{\frac{1}{24\pi\chi_{V}}}\left(\frac{t_{+}-q^{2}}{t_{+}-t_{0}}\right)^{1/4}\left(\sqrt{t_{+}-q^{2}}+\sqrt{t_{+}}\right)^{-5}\\ \displaystyle\times\left(\sqrt{t_{+}-q^{2}}+\sqrt{t_{+}-t_{0}}\right)\left(\sqrt{t_{+}-q^{2}}+\sqrt{t_{+}-t_{-}}\right)^{3/2}\\ \displaystyle\times\left(t_{+}-q^{2}\right)^{3/4},\end{array} (6)

where t±=(mD±mK)2t_{\pm}=(m_{D}\pm m_{K})^{2}, t0=t+(11t/t+)t_{0}=t_{+}(1-\sqrt{1-t_{-}/t_{+}}), mDm_{D} and mKm_{K} are the masses of DD and KK particles, mDs+m_{D_{s}^{*+}} is the pole mass of the vector form factor f+K(q2)f^{K}_{+}(q^{2}) accounting for the strong interaction between DD and KK mesons and usually taken as the mass of the lowest lying cs¯c\bar{s} vector meson Ds+D_{s}^{*+}, which is 2112.2 MeV pdg2022 . The χV\chi_{V} parameter is obtained from dispersion relations using perturbative QCD chiV ,

χV=332π2mc2,\begin{array}[]{c}\displaystyle\chi_{V}=\frac{3}{32\pi^{2}m_{c}^{2}},\end{array} (7)

where mc=1.27m_{c}=1.27 GeV is the cc-quark mass.

In this analyses, the two-parameter series expansion is enough to describe the data, i.e.

f+K(q2)=1P(q2)Φ(q2)[a0(t0)+a1(t0)z(q2,t0)].\begin{array}[]{l}\displaystyle f^{K}_{+}\left(q^{2}\right)=\frac{1}{P\left(q^{2}\right)\Phi\left(q^{2}\right)}\left[a_{0}\left(t_{0}\right)+a_{1}\left(t_{0}\right)z\left(q^{2},t_{0}\right)\right].\\ \end{array} (8)

By setting r1(t0)=a1(t0)/a0(t0)r_{1}(t_{0})=a_{1}(t_{0})/a_{0}(t_{0}), the vector form factor f+K(q2)f^{K}_{+}(q^{2}) can be written as

f+K(q2)=1P(q2)Φ(q2)f+K(0)P(0)Φ(0)1+r1(t0)z(0,t0)×(1+r1(t0)[z(q2,t0)]).\begin{array}[]{l}\displaystyle f^{K}_{+}\left(q^{2}\right)=\frac{1}{P\left(q^{2}\right)\Phi\left(q^{2}\right)}\frac{f^{K}_{+}\left(0\right)P\left(0\right)\Phi\left(0\right)}{1+r_{1}\left(t_{0}\right)z\left(0,t_{0}\right)}\\ \displaystyle\times\left(1+r_{1}\left(t_{0}\right)\left[z\left(q^{2},t_{0}\right)\right]\right).\end{array} (9)

The scalar form factor f0K(q2)f^{K}_{0}(q^{2}) is similar to f+K(q2)f^{K}_{+}(q^{2}) but with a one-parameter series expansion, which is given by Faustov:2019mqr

f0K(q2)=1P(q2)Φ(q2)f0K(0)P(0)Φ(0).f^{K}_{0}(q^{2})=\frac{1}{P(q^{2})\Phi(q^{2})}f^{K}_{0}(0)P(0)\Phi(0). (10)

Here, f0K(q2)f^{K}_{0}(q^{2}) has the same normalization at q2=0q^{2}=0 as f+K(q2)f^{K}_{+}(q^{2}), i.e.

f0K(0)=f+K(0),f^{K}_{0}(0)=f^{K}_{+}(0), (11)

but with a different pole mass mDs0(2317)+m_{D_{s0}^{*}(2317)^{+}} in P(q2)P(q^{2}), which is 2317.8 MeV pdg2022 .

VII.2 Partial decay rates in data

To obtain the hadronic transition form factors of the semileptonic decays, the whole q2q^{2} range is divided into 18 intervals for each signal decay. The differential decay rate in the ii-th q2q^{2} interval is determined as

dΓidqi2=ΔΓiΔqi2,\frac{\mathrm{d}\Gamma_{i}}{\mathrm{d}q_{i}^{2}}=\frac{\Delta\Gamma_{i}}{\Delta q^{2}_{i}}, (12)

where ΔΓi=Nprdi/(τDNSTtot)\Delta\Gamma_{i}=N_{\mathrm{prd}}^{i}/(\tau_{D}\cdot N_{\mathrm{ST}}^{\rm tot}) is the partial decay rate in the ii-th q2q^{2} interval, NprdiN_{\mathrm{prd}}^{i} is the number of events produced in the ii-th q2q^{2} interval, and τD\tau_{D} is the DD lifetime pdg2022 .

In the ii-th q2q^{2} interval, the number of events produced in data is calculated as

Nprdi=jNintervals(ε1)ijNDTj,N_{\mathrm{prd}}^{i}=\sum_{j}^{N_{\mathrm{intervals}}}\left(\varepsilon^{-1}\right)_{ij}N_{\mathrm{DT}}^{j}, (13)

where (ε1)ij(\varepsilon^{-1})_{ij} is the element of the inverse efficiency matrix, obtained by analyzing the signal MC events. The statistical uncertainty of NprdiN_{\mathrm{prd}}^{i} is given by

[σ(Nprdi)]2=jNintervals(ε1)ij2[σstat(NDTj)]2,\left[\sigma\left(N_{\mathrm{prd}}^{i}\right)\right]^{2}=\sum_{j}^{N_{\mathrm{intervals}}}\left(\varepsilon^{-1}\right)_{ij}^{2}\left[\sigma_{\rm stat}\left(N_{\mathrm{DT}}^{j}\right)\right]^{2}, (14)

where σstat(NDTj)\sigma_{\rm stat}(N_{\mathrm{DT}}^{j}) is the statistical uncertainty of NDTjN_{\mathrm{DT}}^{j}. The element εijα\varepsilon_{ij}^{\alpha} of the efficiency matrix with tag mode α\alpha is given by

εijα=NijrecNjgen1εSTα,\varepsilon_{ij}^{\alpha}=\frac{N_{ij}^{\mathrm{rec}}}{N_{j}^{\mathrm{gen}}}\cdot\frac{1}{\varepsilon_{\mathrm{ST}}^{\alpha}}, (15)

where NijrecN_{ij}^{\mathrm{rec}} is the number of events generated in the j-j\text{-}th q2q^{2} interval and reconstructed in the ii-th q2q^{2} interval, NjgenN_{j}^{\mathrm{gen}} is the number of events generated in the j-j\text{-}th q2q^{2} interval, and εSTα\varepsilon_{\mathrm{ST}}^{\alpha} is the ST efficiency with tag mode α\alpha. The efficiency matrix elements εij\varepsilon_{ij} weighted by the ST yields of data, which are presented in Tables 9-12 in Appendix, are given by

ε\ij=α=16NSTαεijαNSTtot.\varepsilon_{\ij}=\sum_{\alpha=1}^{6}\frac{N_{\rm{ST}}^{\alpha}\varepsilon_{ij}^{\alpha}}{N_{\rm{ST}}^{\rm tot}}. (16)

For each signal decay, the signal yield observed in each reconstructed q2q^{2} interval is obtained from a fit to the UmissU_{\rm miss} distribution. The fitting method is the same as mentioned in Section VI.1. Figure 3 shows the results of the fits to the UmissU_{\rm miss} distributions in reconstructed q2q^{2} intervals for D0Ke+νeD^{0}\to K^{-}e^{+}\nu_{e} semileptonic DD decays. Similar figures for D0Kμ+νμD^{0}\to K^{-}\mu^{+}\nu_{\mu}, D+K¯0e+νeD^{+}\to\bar{K}^{0}e^{+}\nu_{e}, and D+K¯0μ+νμD^{+}\to\bar{K}^{0}\mu^{+}\nu_{\mu} decays are available in Figs. 7-9 in Appendix.

Refer to caption
Fig. 3: Fits to the UmissU_{\rm miss} distributions of the accepted D0Ke+νeD^{0}\to K^{-}e^{+}\nu_{e} candidates in different q2q^{2} bins. The points with error bars are data. The blue solid curves are the fit results. The violet dotted curves are the signal shapes, and the red dashed curves are the fitted combinatorial background shapes.

Table 6 lists the q2q^{2} ranges, the fitted numbers of observed DT events (NDTN_{\rm DT}), the numbers of produced events (NprdN_{\rm prd}) calculated by the weighted efficiency matrix and the decay rates (ΔΓ\Delta\Gamma) of D0Ke+νeD^{0}\to K^{-}e^{+}\nu_{e} semileptonic DD decays in individual q2q^{2} intervals. Similar tables for D0Kμ+νμD^{0}\to K^{-}\mu^{+}\nu_{\mu}, D+K¯0e+νeD^{+}\to\bar{K}^{0}e^{+}\nu_{e}, and D+K¯0μ+νμD^{+}\to\bar{K}^{0}\mu^{+}\nu_{\mu} decays are available in Tables 13-15 in Appendix.

Table 6: The observed yields (NDTiN_{\rm DT}^{i}), the produced yields (NprdiN_{\rm prd}^{i}) and the partial decay rates (ΔΓ\Delta\Gamma) of D0Ke+νeD^{0}\to K^{-}e^{+}\nu_{e} in different q2q^{2} intervals of data, where the uncertainties are statistical only.
q2(GeV2/c4)q^{2}~{}({\rm GeV^{2}}/c^{4}) NDTiN_{\rm DT}^{i} NprdiN_{\rm prd}^{i} ΔΓ(ns1)\Delta\Gamma~{}({\rm ns^{-1}})
(0.00,0.10)(0.00,0.10) 21356±16021356\pm 160 29580±23629580\pm 236 9.100±0.0739.100\pm 0.073
(0.10,0.20)(0.10,0.20) 19982±15419982\pm 154 28248±24728248\pm 247 8.690±0.0768.690\pm 0.076
(0.20,0.30)(0.20,0.30) 18675±14918675\pm 149 26707±24926707\pm 249 8.216±0.0768.216\pm 0.076
(0.30,0.40)(0.30,0.40) 17406±14317406\pm 143 25180±24425180\pm 244 7.746±0.0757.746\pm 0.075
(0.40,0.50)(0.40,0.50) 16176±13716176\pm 137 23475±23823475\pm 238 7.221±0.0737.221\pm 0.073
(0.50,0.60)(0.50,0.60) 14896±13214896\pm 132 21685±23121685\pm 231 6.671±0.0716.671\pm 0.071
(0.60,0.70)(0.60,0.70) 13682±12613682\pm 126 20003±22220003\pm 222 6.153±0.0686.153\pm 0.068
(0.70,0.80)(0.70,0.80) 12372±11912372\pm 119 18119±21118119\pm 211 5.574±0.0655.574\pm 0.065
(0.80,0.90)(0.80,0.90) 11140±11211140\pm 112 16357±19816357\pm 198 5.032±0.0615.032\pm 0.061
(0.90,1.00)(0.90,1.00) 9997±1059997\pm 105 14719±18714719\pm 187 4.528±0.0574.528\pm 0.057
(1.00,1.10)(1.00,1.10) 8691±988691\pm 98 13040±17613040\pm 176 4.011±0.0544.011\pm 0.054
(1.10,1.20)(1.10,1.20) 7394±907394\pm 90 11091±16211091\pm 162 3.412±0.0503.412\pm 0.050
(1.20,1.30)(1.20,1.30) 6135±836135\pm 83 9459±1509459\pm 150 2.910±0.0462.910\pm 0.046
(1.30,1.40)(1.30,1.40) 4797±734797\pm 73 7644±1367644\pm 136 2.352±0.0422.352\pm 0.042
(1.40,1.50)(1.40,1.50) 3499±633499\pm 63 5627±1185627\pm 118 1.731±0.0361.731\pm 0.036
(1.50,1.60)(1.50,1.60) 2521±532521\pm 53 4356±1054356\pm 105 1.340±0.0321.340\pm 0.032
(1.60,1.70)(1.60,1.70) 1418±411418\pm 41 2621±862621\pm 86 0.806±0.0260.806\pm 0.026
(1.70,1.88)(1.70,1.88) 554±26554\pm 26 1378±721378\pm 72 0.424±0.0220.424\pm 0.022

VII.3 Construction of χ2\chi^{2} and statistical covariance matrices

To determine the hadronic transition form factor and |Vcs||V_{cs}|, a least χ2\chi^{2} method is used to fit the partial decay rates of the different signal decays. Considering the correlations of the measured partial decay rates (ΔΓimsr\Delta\Gamma_{i}^{\rm msr}) among different q2q^{2} intervals, the χ2\chi^{2} is given by

χ2=i,j=1Nintervals(ΔΓimsrΔΓith)(C1)ij(ΔΓjmsrΔΓjth),\chi^{2}=\sum_{i,j=1}^{N_{\mathrm{intervals}}}\left(\Delta\Gamma_{i}^{\mathrm{msr}}-\Delta\Gamma_{i}^{\mathrm{th}}\right)(C^{-1})_{ij}\left(\Delta\Gamma_{j}^{\mathrm{msr}}-\Delta\Gamma_{j}^{\mathrm{th}}\right), (17)

where ΔΓith\Delta\Gamma_{i}^{\rm th} is the theoretically expected decay rate in the ii-th interval, (C1)ij(C^{-1})_{ij} is the element of the inverse covariance matrix of the measured partial decay rates and is given by Cij=Cijstat+CijsystC_{ij}=C_{ij}^{\mathrm{stat}}+C_{ij}^{\mathrm{syst}}. Here, CijstatC_{ij}^{\mathrm{stat}} and CijsystC_{ij}^{\mathrm{syst}} are elements of the statistical and systematic covariance matrices, respectively. The elements of the statistical covariance matrix are defined as

Cijstat=(1τDNSTtot)2α(ε1)iα(ε1)jα(σ(NDTα))2,C_{ij}^{\rm stat}=\left(\frac{1}{\tau_{D}N_{\mathrm{ST}}^{\rm tot}}\right)^{2}\sum_{\alpha}(\varepsilon^{-1})_{i\alpha}(\varepsilon^{-1})_{j\alpha}\left(\sigma\left(N_{\mathrm{DT}}^{\alpha}\right)\right)^{2}, (18)

where σ(NDTα)\sigma(N_{\mathrm{DT}}^{\alpha}) is the statistical uncertainty of the signal yield observed in the α\alpha-th interval. The elements of the statistical covariance density matrices of D0Ke+νeD^{0}\to K^{-}e^{+}\nu_{e}, D0Kμ+νμD^{0}\to K^{-}\mu^{+}\nu_{\mu}, D+K¯0e+νeD^{+}\to\bar{K}^{0}e^{+}\nu_{e} and D+K¯0μ+νμD^{+}\to\bar{K}^{0}\mu^{+}\nu_{\mu} decays are presented in Tables 16-19 in Appendix.

VII.4 Systematic uncertainties on partial decay rates

The sources of systematic uncertainties are discussed below.

ST D¯\bar{D} yields

The systematic uncertainties associated with the number of D¯0(D)\bar{D}^{0}(D^{-}) tags are fully correlated across q2q^{2} intervals. The element of the related systematic covariance matrix is calculated by

Cijsyst(NST)=ΔΓiΔΓj(σ(NST)NST)2,C_{ij}^{\mathrm{syst}}\left(N_{\rm ST}\right)=\Delta\Gamma_{i}\Delta\Gamma_{j}\left(\frac{\sigma\left(N_{\rm ST}\right)}{N_{\rm ST}}\right)^{2}, (19)

where σ(NST)/NST\sigma(N_{\rm ST})/N_{\rm ST} is the relative uncertainty on the number of D¯0(D)\bar{D}^{0}(D^{-}) tags.

𝑫D lifetime

The systematic uncertainties associated with the DD lifetime are fully correlated across the q2q^{2} intervals. The element of the related systematic covariance matrix is calculated by

Cijsyst(τD)=σ(ΔΓi)σ(ΔΓj),C_{ij}^{\mathrm{syst}}\left(\tau_{D}\right)=\sigma\left(\Delta\Gamma_{i}\right)\sigma\left(\Delta\Gamma_{j}\right), (20)

where σ(ΔΓi)=στDΔΓi\sigma(\Delta\Gamma_{i})=\sigma\tau_{D}\cdot\Delta\Gamma_{i} and στD\sigma\tau_{D} is the uncertainty on the DD lifetime pdg2022 .

MC statistics

The elements of the covariance matrix which accounts for the systematic uncertainties and correlations between the q2q^{2} intervals are calculated by

Cijsyst(MCstat)=(1τDNST)2×αβNDTαNDTβCov((ε1)iα,(ε1)jβ),\begin{array}[]{l}\displaystyle C_{ij}^{\mathrm{syst}}\left(\rm MC^{stat}\right)=\left(\frac{1}{\tau_{D}N_{\mathrm{ST}}}\right)^{2}\\ \displaystyle\times\sum_{\alpha\beta}N_{\mathrm{DT}}^{\alpha}N_{\mathrm{DT}}^{\beta}\mathrm{Cov}\left(\left(\varepsilon^{-1}\right)_{i\alpha},\left(\varepsilon^{-1}\right)_{j\beta}\right),\end{array} (21)

where NDTα(β)N_{\mathrm{DT}}^{\alpha(\beta)} is the signal yield observed in the interval α(β)\alpha(\beta), and the covariances of the inverse efficiency matrix elements are given by

Cov((ε1)iα,(ε1)jβ)=mn((ε1)im(ε1)jm)[σ(εmn)]2((ε1)αn(ε1)βn).\begin{array}[]{l}\mathrm{Cov}\left(\left(\varepsilon^{-1}\right)_{i\alpha},\left(\varepsilon^{-1}\right)_{j\beta}\right)=\\ \sum\limits_{mn}\left(\left(\varepsilon^{-1}\right)_{im}\left(\varepsilon^{-1}\right)_{jm}\right)\left[\sigma\left(\varepsilon_{mn}\right)\right]^{2}\left(\left(\varepsilon^{-1}\right)_{\alpha n}\left(\varepsilon^{-1}\right)_{\beta n}\right).\end{array} (22)

MC model

To estimate the uncertainty from the MC model, we vary the parameters of the two-parameter series expansion model by ±1σ\pm 1\sigma. The difference between the alternative and nominal efficiencies is taken as the systematic uncertainty for each signal decay. The element of the covariance matrix is defined as

Cijsyst(MCmodel)=δ(ΔΓi)δ(ΔΓj),C_{ij}^{\mathrm{syst}}\left(\mathrm{MC~{}model}\right)=\delta\left(\Delta\Gamma_{i}\right)\delta\left(\Delta\Gamma_{j}\right), (23)

where δ(ΔΓi)\delta(\Delta\Gamma_{i}) denotes the change of the partial decay rate in the ii-th q2q^{2} interval.

Tracking, PID

The systematic uncertainties associated with the e+e^{+} or μ+\mu^{+} tracking and PID efficiencies, and KK^{-} tracking and PID efficiencies are estimated by varying the corresponding correction factors for efficiencies within ±1σ\pm 1\sigma. Using the new efficiency matrix, the element of the corresponding systematic covariance matrix is calculated by

Cijsyst(Tracking,PID)=δ(ΔΓi)δ(ΔΓj),C_{ij}^{\mathrm{syst}}\left(\mathrm{Tracking,~{}PID}\right)=\delta\left(\Delta\Gamma_{i}\right)\delta\left(\Delta\Gamma_{j}\right), (24)

where δ(ΔΓi)\delta(\Delta\Gamma_{i}) denotes the change of the partial decay rate in the ii-th q2q^{2} interval.

𝑼𝐦𝐢𝐬𝐬U_{\rm miss} fit

The systematic covariance matrix arising from the uncertainty in the UmissU_{\rm miss} fit has elements

Cijsyst(Umissfit)=(1τDNSTtot)2αεiα1εjα1(σαFit)2,C_{ij}^{\mathrm{syst}}\left(U_{\rm miss}~{}\mathrm{fit}\right)=\left(\frac{1}{\tau_{D}N_{\mathrm{ST}}^{\rm tot}}\right)^{2}\sum_{\alpha}\varepsilon_{i\alpha}^{-1}\varepsilon_{j\alpha}^{-1}\left(\sigma_{\alpha}^{\mathrm{Fit}}\right)^{2}, (25)

where σαFit\sigma_{\alpha}^{\mathrm{Fit}} is the systematic uncertainty of the signal yield observed in the interval α\alpha obtained by varying the background shape in the UmissU_{\rm miss} fit as described in Section VI.2.

Remaining uncertainties

The remaining systematic uncertainties, include the EextraγmaxE_{\rm extra~{}\gamma}^{\rm max} and NextratrkN_{\rm extra}^{\rm trk} requirements, KS0K^{0}_{S} reconstruction, and quoted branching fractions, are assumed to be fully correlated across q2q^{2} intervals, and the element of the corresponding systematic covariance matrix is calculated by

Cijsyst=σ(ΔΓi)σ(ΔΓj),C_{ij}^{\mathrm{syst}}=\sigma\left(\Delta\Gamma_{i}\right)\sigma\left(\Delta\Gamma_{j}\right), (26)

where σ(ΔΓi)=σsystΔΓi\sigma(\Delta\Gamma_{i})=\sigma_{\rm syst}\cdot\Delta\Gamma_{i}. The systematic uncertainties σsyst\sigma_{\rm syst} on D0Ke+νeD^{0}\to K^{-}e^{+}\nu_{e} semileptonic DD decays in different q2q^{2} intervals are shown in Table 7, and those of D0Kμ+νμD^{0}\to K^{-}\mu^{+}\nu_{\mu}, D+K¯0e+νeD^{+}\to\bar{K}^{0}e^{+}\nu_{e}, and D+K¯0μ+νμD^{+}\to\bar{K}^{0}\mu^{+}\nu_{\mu} decays are available in Tables 20-22 in Appendix, as well as the elements of the systematic covariance density matrices for all signal decays.

Table 7: The systematic uncertainties (in %) of the measured decay rates of D0Ke+νeD^{0}\to K^{-}e^{+}\nu_{e} in different q2q^{2} bins.
ii-th q2q^{2} bin 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
NSTN_{\rm ST} 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30
D0D^{0} lifetime 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24
MC statistics 0.14 0.15 0.15 0.16 0.17 0.17 0.18 0.19 0.20 0.21 0.23 0.25 0.28 0.31 0.36 0.45 0.60 0.99
MC model 0.21 0.19 0.56 0.28 0.06 0.46 1.50 0.25 1.58 0.31 0.44 0.04 0.57 1.33 0.31 0.29 3.63 1.04
KK^{-} tracking 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.11 0.11 0.13 0.13 0.18 0.23 0.43
KK^{-} PID 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.13
e+e^{+} tracking 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10
e+e^{+} PID 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10
UmissU_{\rm miss} fit 0.18 0.16 0.18 0.16 0.15 0.17 0.15 0.16 0.10 0.11 0.10 0.09 0.09 0.11 0.08 0.14 0.18 0.34
EextraγmaxE_{\rm extra~{}\gamma}^{\rm max} and NextratrkN_{\rm extra}^{\rm trk} cut 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10
Total 0.54 0.53 0.75 0.57 0.50 0.68 1.58 0.57 1.65 0.59 0.67 0.52 0.78 1.44 0.66 0.73 3.71 1.60

VII.5 Results based on individual fits

With the statistical and systematic covariance matrices described previously, we fit individually the partial decay rates of D0Ke+νeD^{0}\to K^{-}e^{+}\nu_{e}, D0Kμ+νμD^{0}\to K^{-}\mu^{+}\nu_{\mu}, D+K¯0e+νeD^{+}\to\bar{K}^{0}e^{+}\nu_{e}, and D+K¯0μ+νμD^{+}\to\bar{K}^{0}\mu^{+}\nu_{\mu} to obtain the fit parameters f+K(0)|Vcs|f_{+}^{K}(0)|V_{cs}| and r1(t0)r_{1}(t_{0}) from Eq. (9). The statistical uncertainties on the fit parameters are taken from the fit with the statistical covariance matrix, and the systematic uncertainties on the fit parameters are obtained by calculating the quadrature difference between the uncertainties of the fit parameters using the statistical covariance matrix and the uncertainties using the combined statistical and systematic covariance matrix.

The sub-figures on the left of Fig. 4 show the individual fit results of D0Ke+νeD^{0}\to K^{-}e^{+}\nu_{e}, D0Kμ+νμD^{0}\to K^{-}\mu^{+}\nu_{\mu}, D+K¯0e+νeD^{+}\to\bar{K}^{0}e^{+}\nu_{e}, and D+K¯0μ+νμD^{+}\to\bar{K}^{0}\mu^{+}\nu_{\mu}. The sub-figures on the right of Fig. 4 show the projections of the form factor fits as a function of q2q^{2}, where the points with error bars show the measured values of the form factor, which are obtained with

f+data(qi2)=(ΔΓimeasuredB)|f+(qi2)|2A,\begin{array}[]{l}\displaystyle f_{+}^{\mathrm{data}}(q_{i}^{2})=\displaystyle\sqrt{\frac{\left(\Delta\Gamma_{i}^{\mathrm{measured}}-B\right)\cdot|f_{+}\left(q_{i}^{2}\right)|^{2}}{A}},\\ \end{array} (27)

with

A=qmin(i)2qmax(i)2GF2|Vcs|224π3(q2m2)2|pK|q4mD2×(1+m22q2)mD2|pK|2|f+(q2)|2dq2,\begin{array}[]{l}\displaystyle A=\int_{q^{2}_{\mathrm{min}\left(i\right)}}^{q^{2}_{\mathrm{max}\left(i\right)}}\frac{G_{F}^{2}\left|V_{cs}\right|^{2}}{24\pi^{3}}\frac{\left(q^{2}-m^{2}_{\ell}\right)^{2}\left|\vec{p}_{K}\right|}{q^{4}m^{2}_{D}}\\ \times\left(1+\frac{m^{2}_{\ell}}{2q^{2}}\right)m^{2}_{D}\left|\vec{p}_{K}\right|^{2}\left|f_{+}(q^{2})\right|^{2}dq^{2},\end{array} (28)
B=qmin(i)2qmax(i)2GF2|Vcs|224π3(q2m2)2|pK|q4mD2×3m28q2(mD2mK2)2|f0(q2)|2dq2,\begin{array}[]{l}\displaystyle B=\int_{q^{2}_{\mathrm{min}\left(i\right)}}^{q^{2}_{\mathrm{max}\left(i\right)}}\frac{G_{F}^{2}\left|V_{cs}\right|^{2}}{24\pi^{3}}\frac{\left(q^{2}-m^{2}_{\ell}\right)^{2}\left|\vec{p}_{K}\right|}{q^{4}m^{2}_{D}}\\ \times\frac{3m^{2}_{\ell}}{8q^{2}}\left(m^{2}_{D}-m^{2}_{K}\right)^{2}\left|f_{0}\left(q^{2}\right)\right|^{2}dq^{2},\end{array} (29)

where qmin(i)2q^{2}_{\mathrm{min}(i)} and qmax(i)2q^{2}_{\mathrm{max}(i)} are the low and high boundaries of the ii-th q2q^{2} bin. Both functions f+(q2)f_{+}(q^{2}) and f+(qi2)f_{+}(q_{i}^{2}) are calculated using the two-parameter series expansion model.

The parameters obtained from the individual fits to the differential decay rates of D0Ke+νeD^{0}\to K^{-}e^{+}\nu_{e}, D0Kμ+νμD^{0}\to K^{-}\mu^{+}\nu_{\mu}, D+K¯0e+νeD^{+}\to\bar{K}^{0}e^{+}\nu_{e}, and D+K¯0μ+νμD^{+}\to\bar{K}^{0}\mu^{+}\nu_{\mu} are listed in Table 8.

Refer to caption
Fig. 4: (Left) Fits to the partial decay rates of DK¯+νD\to\bar{K}\ell^{+}\nu_{\ell} and (Right) projections of the form factor as functions of q2q^{2}, where the red points with error bars are the measured partial decay rates and the solid curves are the fits.
Table 8: The parameters (f+K(0)|Vcs|f^{K}_{+}(0)|V_{cs}|, r1(t0)r_{1}(t_{0})) of the hadronic form factors from the fits to the partial decay rates of the semileptonic decays, where the first and second uncertainties are statistical and systematic, respectively. The column labeled ρ2par\rho_{\rm 2par} gives the correlation coefficients of the two parameters, and ndf denotes the number of degrees of freedom.
Case Signal decay f+K(0)|Vcs|f^{K}_{+}(0)|V_{cs}| r1(t0)r_{1}(t_{0}) ρ2par\rho_{\rm 2par} χ2/ndf\chi^{2}/\rm ndf
Individual fit D0Ke+νeD^{0}\to K^{-}e^{+}\nu_{e} 0.7179±0.0016±0.00170.7179\pm 0.0016\pm 0.0017 2.30±0.05±0.03-2.30\pm 0.05\pm 0.03 0.48 16.3/16
D0Kμ+νμD^{0}\to K^{-}\mu^{+}\nu_{\mu} 0.7162±0.0022±0.00190.7162\pm 0.0022\pm 0.0019 2.28±0.08±0.02-2.28\pm 0.08\pm 0.02 0.62 17.1/16
D+K¯0e+νeD^{+}\to\bar{K}^{0}e^{+}\nu_{e} 0.7207±0.0027±0.00350.7207\pm 0.0027\pm 0.0035 2.13±0.10±0.07-2.13\pm 0.10\pm 0.07 0.29 13.0/16
D+K¯0μ+νμD^{+}\to\bar{K}^{0}\mu^{+}\nu_{\mu} 0.7124±0.0035±0.00320.7124\pm 0.0035\pm 0.0032 2.41±0.12±0.08-2.41\pm 0.12\pm 0.08 0.45 10.6/16
Simultaneous fit DK¯+νD\to\bar{K}\ell^{+}\nu_{\ell} 0.7171±0.0011±0.00130.7171\pm 0.0011\pm 0.0013 2.28±0.04±0.02-2.28\pm 0.04\pm 0.02 0.44 60.9/70

VII.6 Results based on a simultaneous fit

To consider the correlation effects in the measurements of the hadronic form factor among the four signal decays, we perform a simultaneous fit to the partial decay rates of D0Ke+νeD^{0}\to K^{-}e^{+}\nu_{e}, D0Kμ+νμD^{0}\to K^{-}\mu^{+}\nu_{\mu}, D+K¯0e+νeD^{+}\to\bar{K}^{0}e^{+}\nu_{e}, and D+K¯0μ+νμD^{+}\to\bar{K}^{0}\mu^{+}\nu_{\mu} to obtain the product f+K(0)|Vcs|f^{K}_{+}(0)|V_{cs}| and r1(t0)r_{1}(t_{0}).

In the simultaneous fit, the values of f+K(0)|Vcs|f_{+}^{K}(0)|V_{cs}| and r1(t0)r_{1}(t_{0}) are shared among the four signal decays. We still use the least χ2\chi^{2} method from Eq. (17) to obtain the fit parameters. The ΔΓi\Delta\Gamma_{i} for these four semileptonic decay modes are combined into one vector with 72 components and the elements of the covariance matrix for the combined ΔΓi\Delta\Gamma_{i} are redefined as Cij=Cijstat+Cijcsyst+CijusystC_{ij}=C^{\rm stat}_{ij}+C^{\rm csyst}_{ij}+C^{\rm usyst}_{ij}, (i,j=1,2,3,,71,72)(i,j=1,2,3,...,71,72), where CijstatC^{\rm stat}_{ij} is the element of statistical covariance matrix, which is diagonal in blocks, i.e.

Cstat=(A0000B0000C0000D).C^{\rm stat}=\begin{pmatrix}A&0&0&0\\ 0&B&0&0\\ 0&0&C&0\\ 0&0&0&D\end{pmatrix}.

Here AA, BB, CC, and DD are the statistical covariance matrices obtained from each signal channel. The element of the correlated systematic covariance matrix is

Cijcsyst=δ(ΔΓi)δ(ΔΓj).C^{\mathrm{csyst}}_{ij}=\delta(\Delta\Gamma_{i})\delta(\Delta\Gamma_{j}). (30)

The uncorrelated systematic covariance matrix is defined in blocks as

Cusyst=(a0000b0000c0000d),C^{\rm usyst}=\begin{pmatrix}a&0&0&0\\ 0&b&0&0\\ 0&0&c&0\\ 0&0&0&d\end{pmatrix},

where aa, bb, cc, and dd are the uncorrelated systematic covariance matrices obtained from each signal channel.

Then, the elements of covariance density matrix for the simultaneous fit are available in Tables 27-30 in Appendix.

With the modified ΔΓi\Delta\Gamma_{i} and CijC_{ij}, we do the simultaneous fit to the partial decay rates of DK¯+νD\to\bar{K}\ell^{+}\nu_{\ell}, which is shown in Fig. 5. The fitted parameters are f+K(0)|Vcs|=0.7171±0.0011±0.0013f^{K}_{+}(0)|V_{cs}|=0.7171\pm 0.0011\pm 0.0013 and r1(t0)=2.28±0.04±0.02r_{1}(t_{0})=-2.28\pm 0.04\pm 0.02, which are summarized in Table 8.

Refer to caption
Fig. 5: (a)(b) Simultaneous fit to partial decay rates of D0(D+)K¯+νD^{0}(D^{+})\to\bar{K}\ell^{+}\nu_{\ell}. (c)(d) Projections of f+K(q2)f^{K}_{+}(q^{2}) and f0K(q2)f^{K}_{0}(q^{2}) as functions of q2q^{2} of D0(D+)K¯+νD^{0}(D^{+})\to\bar{K}\ell^{+}\nu_{\ell}. (e)(f) The ratio of differential decay rates of D0Kμ+νμD^{0}\to K^{-}\mu^{+}\nu_{\mu} over D0Ke+νeD^{0}\to K^{-}e^{+}\nu_{e} and the ratio of differential decay rates of D+K¯0μ+νμD^{+}\to\bar{K}^{0}\mu^{+}\nu_{\mu} over D+K¯0e+νeD^{+}\to\bar{K}^{0}e^{+}\nu_{e} in each q2q^{2} bin. The dots with error bars are data, and the solid lines are the results with the parameters of the simultaneous fit.

VIII Summary

In summary, by analyzing 7.93 fb-1 of e+ee^{+}e^{-} collision data collected at s=3.773\sqrt{s}=3.773 GeV with the BESIII detector, improved measurements of the semileptonic decays DK¯+νD\to\bar{K}\ell^{+}\nu_{\ell} are performed. The absolute branching fractions of D0Ke+νeD^{0}\to K^{-}e^{+}\nu_{e}, D0Kμ+νμD^{0}\to K^{-}\mu^{+}\nu_{\mu}, D+K¯0e+νeD^{+}\to\bar{K}^{0}e^{+}\nu_{e}, and D+K¯0μ+νμD^{+}\to\bar{K}^{0}\mu^{+}\nu_{\mu} are determined to be (3.521±0.009stat.±0.016syst.)%(3.521\pm 0.009_{\rm stat.}\pm 0.016_{\rm syst.})\%, (3.419±0.011stat.±0.016syst.)%(3.419\pm 0.011_{\rm stat.}\pm 0.016_{\rm syst.})\%, (8.864±0.039stat.±0.082syst.)%(8.864\pm 0.039_{\rm stat.}\pm 0.082_{\rm syst.})\% and (8.665±0.046stat.±0.084syst.)%(8.665\pm 0.046_{\rm stat.}\pm 0.084_{\rm syst.})\%, respectively. Combining the branching fractions of semielectronic and semimuonic decays, we obtain the ratios of the two branching fractions D0Kμ+νμD0Ke+νe=0.971±0.004stat.±0.006syst.\frac{\mathcal{B}_{D^{0}\to K^{-}\mu^{+}\nu_{\mu}}}{\mathcal{B}_{D^{0}\to K^{-}e^{+}\nu_{e}}}=0.971\pm 0.004_{\rm stat.}\pm 0.006_{\rm syst.} and D+K¯0μ+νμD+K¯0e+νe=0.978±0.007stat.±0.013syst.\frac{\mathcal{B}_{D^{+}\to\bar{K}^{0}\mu^{+}\nu_{\mu}}}{\mathcal{B}_{D^{+}\to\bar{K}^{0}e^{+}\nu_{e}}}=0.978\pm 0.007_{\rm stat.}\pm 0.013_{\rm syst.}, which are consistent with the theoretical calculation 0.975±0.0010.975\pm 0.001 Riggio:2017zwh . Our measurements support lepton flavor universality.

From the simultaneous fit to the partial decay rates of D0Ke+νeD^{0}\to K^{-}e^{+}\nu_{e}, D0Kμ+νμD^{0}\to K^{-}\mu^{+}\nu_{\mu}, D+K¯0e+νeD^{+}\to\bar{K}^{0}e^{+}\nu_{e}, and D+K¯0μ+νμD^{+}\to\bar{K}^{0}\mu^{+}\nu_{\mu}, the product of the hadronic form factor f+K(0)f^{K}_{+}(0) and the modulus of the CKM matrix element |Vcs||V_{cs}| are determined to be f+K(0)|Vcs|=0.7171±0.0011stat.±0.0013syst.f^{K}_{+}(0)|V_{cs}|=0.7171\pm 0.0011_{\rm stat.}\pm 0.0013_{\rm syst.}. Taking the value of |Vcs|=0.97349±0.00016|V_{cs}|=0.97349\pm 0.00016 given by the PDG pdg2022 as input, we obtain the hadronic form factor f+K(0)=0.7366±0.0011stat.±0.0013syst.f^{K}_{+}(0)=0.7366\pm 0.0011_{\rm stat.}\pm 0.0013_{\rm syst.}. Conversely, using the f+K(0)f^{K}_{+}(0) calculated in LQCD FermilabLattice:2022gku , we obtain |Vcs|=0.9623±0.0015stat.±0.0017syst.±0.0040LQCD|V_{cs}|=0.9623\pm 0.0015_{\rm stat.}\pm 0.0017_{\rm syst.}\pm 0.0040_{\rm LQCD}. The comparison of the f+K(0)f^{K}_{+}(0) value obtained in this work with the theoretical and experimental calculations is shown in Fig. 6. For the experimental calculations, the values of f+K(0)f^{K}_{+}(0) are updated by using the latest value of |Vcs||V_{cs}| as mentioned before. The hadronic form factor f+K(0)f^{K}_{+}(0) measured in this work supersedes the previous BESIII results BESIII:2015tql ; BESIII:2018ccy ; BESIII:2017ylw ; BESIII:2015jmz , with the better precision. This is important to test different models and help to improve the precision of theoretical calculations.

Refer to caption
Fig. 6: Comparisons of the form factor f+K(0)f_{+}^{K}(0) measured in this work with the theoretical and experimental calculations. The first and second uncertainties are statistical and systematic, respectively. The green band corresponds to the ±1σ\pm 1\sigma limit of the form factor calculated in this work.
Acknowledgements.
The BESIII Collaboration thanks the staff of BEPCII and the IHEP computing center for their strong support. This work is supported in part by National Key R&D Program of China under Contracts Nos. 2020YFA0406000, 2023YFA1606400, 2020YFA0406300; National Natural Science Foundation of China (NSFC) under Contracts Nos. 11635010, 11735014, 11935015, 11935016, 11935018, 12025502, 12035009, 12035013, 12061131003, 12192260, 12192261, 12192262, 12192263, 12192264, 12192265, 12221005, 12225509, 12235017, 12361141819; the Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program; the CAS Center for Excellence in Particle Physics (CCEPP); Joint Large-Scale Scientific Facility Funds of the NSFC and CAS under Contract No. U1832207; 100 Talents Program of CAS; The Institute of Nuclear and Particle Physics (INPAC) and Shanghai Key Laboratory for Particle Physics and Cosmology; German Research Foundation DFG under Contracts Nos. 455635585, FOR5327, GRK 2149; Istituto Nazionale di Fisica Nucleare, Italy; Ministry of Development of Turkey under Contract No. DPT2006K-120470; National Research Foundation of Korea under Contract No. NRF-2022R1A2C1092335; National Science and Technology fund of Mongolia; National Science Research and Innovation Fund (NSRF) via the Program Management Unit for Human Resources & Institutional Development, Research and Innovation of Thailand under Contracts Nos. B16F640076, B50G670107; Polish National Science Centre under Contract No. 2019/35/O/ST2/02907; The Swedish Research Council; U. S. Department of Energy under Contract No. DE-FG02-05ER41374.

References

Appendix

Tables 9, 10, 11, and 12 report the elements of the weighted efficiency matrices for D0Ke+νeD^{0}\to K^{-}e^{+}\nu_{e}, D0Kμ+νμD^{0}\to K^{-}\mu^{+}\nu_{\mu}, D+K¯0e+νeD^{+}\to\bar{K}^{0}e^{+}\nu_{e}, and D+K¯0μ+νμD^{+}\to\bar{K}^{0}\mu^{+}\nu_{\mu}, respectively.

Figures 7, 8, and 9 show the results of the fits to the UmissU_{\rm miss} distributions in the reconstructed q2q^{2} intervals for D0Kμ+νμD^{0}\to K^{-}\mu^{+}\nu_{\mu}, D+K¯0e+νeD^{+}\to\bar{K}^{0}e^{+}\nu_{e}, and D+K¯0μ+νμD^{+}\to\bar{K}^{0}\mu^{+}\nu_{\mu}, respectively.

Table 13, 14, and 15 list the q2q^{2} ranges, the fitted numbers of observed DT events (NDTN_{\rm DT}), the numbers of produced events (NprdN_{\rm prd}) calculated by the weighted efficiency matrix and the decay rates (ΔΓ\Delta\Gamma) of D0Kμ+νμD^{0}\to K^{-}\mu^{+}\nu_{\mu}, D+K¯0e+νeD^{+}\to\bar{K}^{0}e^{+}\nu_{e}, and D+K¯0μ+νμD^{+}\to\bar{K}^{0}\mu^{+}\nu_{\mu} in individual q2q^{2} intervals.

Tables 16, 17, 18, and 19 report the elements of the statistical covariance density matrices for D0Ke+νeD^{0}\to K^{-}e^{+}\nu_{e}, D0Kμ+νμD^{0}\to K^{-}\mu^{+}\nu_{\mu}, D+K¯0e+νeD^{+}\to\bar{K}^{0}e^{+}\nu_{e}, and D+K¯0μ+νμD^{+}\to\bar{K}^{0}\mu^{+}\nu_{\mu}, respectively.

Table 20, 21, and 22 show the systematic uncertainties σsyst\sigma_{\rm syst} of D0Kμ+νμD^{0}\to K^{-}\mu^{+}\nu_{\mu}, D+K¯0e+νeD^{+}\to\bar{K}^{0}e^{+}\nu_{e}, and D+K¯0μ+νμD^{+}\to\bar{K}^{0}\mu^{+}\nu_{\mu} in different q2q^{2} intervals.

Tables 23, 24, 25 and 26 report the elements of the systematic covariance density matrices for D0Ke+νeD^{0}\to K^{-}e^{+}\nu_{e}, D0Kμ+νμD^{0}\to K^{-}\mu^{+}\nu_{\mu}, D+K¯0e+νeD^{+}\to\bar{K}^{0}e^{+}\nu_{e}, and D+K¯0μ+νμD^{+}\to\bar{K}^{0}\mu^{+}\nu_{\mu}, respectively.

Tables 272829, and 30 report the elements of the covariance density matrix ρij(i=0,1,2,,71,72;j=0,1,2,,71,72;)\rho_{ij}(i=0,1,2,...,71,72;j=0,1,2,...,71,72;) for the simultaneous fit.

Table 9: The weighted efficiency matrix (in %) for D0Ke+νeD^{0}\to K^{-}e^{+}\nu_{e}. The ii denote the reconstructed bin, and the jj represent the produced bin.
εij\varepsilon_{ij} 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 67.94 4.03 0.31 0.13 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 2.48 62.81 5.09 0.41 0.14 0.03 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 0.08 3.17 60.81 5.47 0.42 0.13 0.03 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 0.03 0.11 3.57 59.42 5.62 0.46 0.11 0.03 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 0.01 0.03 0.14 3.87 58.75 5.74 0.44 0.10 0.03 0.02 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00
6 0.01 0.02 0.05 0.16 3.97 58.38 5.69 0.42 0.11 0.04 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00
7 0.01 0.01 0.02 0.06 0.19 4.09 57.97 5.72 0.42 0.11 0.03 0.02 0.01 0.01 0.00 0.00 0.00 0.00
8 0.00 0.01 0.01 0.02 0.06 0.21 4.18 57.80 5.60 0.38 0.10 0.05 0.01 0.01 0.00 0.01 0.00 0.00
9 0.00 0.00 0.01 0.01 0.03 0.07 0.22 4.21 57.74 5.41 0.39 0.09 0.04 0.01 0.00 0.00 0.00 0.00
10 0.00 0.00 0.00 0.01 0.01 0.04 0.08 0.25 4.25 57.65 5.25 0.38 0.11 0.04 0.01 0.01 0.00 0.00
11 0.00 0.00 0.00 0.00 0.01 0.01 0.03 0.08 0.24 4.09 56.97 5.01 0.33 0.08 0.04 0.01 0.00 0.00
12 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.08 0.25 4.01 56.95 4.91 0.31 0.06 0.03 0.01 0.00
13 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.03 0.08 0.29 3.86 55.87 4.51 0.28 0.06 0.01 0.00
14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.08 0.27 3.65 54.36 4.23 0.24 0.03 0.00
15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.06 0.24 3.46 53.75 3.96 0.15 0.00
16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.06 0.19 3.06 51.27 3.50 0.10
17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.15 2.65 47.84 2.71
18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.08 1.77 36.54
Table 10: The weighted efficiency matrix (in %) for D0Kμ+νμD^{0}\to K^{-}\mu^{+}\nu_{\mu}. The ii denote the reconstructed bin, and the jj represent the produced bin.
εij\varepsilon_{ij} 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 38.04 1.14 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 1.52 38.87 1.79 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 0.04 1.71 40.76 2.28 0.05 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 0.01 0.05 2.17 43.37 2.71 0.08 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 0.01 0.02 0.08 2.61 46.18 3.14 0.13 0.03 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
6 0.01 0.01 0.03 0.10 2.99 49.00 3.46 0.15 0.05 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
7 0.00 0.01 0.02 0.03 0.14 3.33 51.75 3.70 0.18 0.06 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00
8 0.00 0.00 0.01 0.02 0.06 0.18 3.65 53.83 3.88 0.21 0.06 0.02 0.01 0.01 0.00 0.00 0.00 0.00
9 0.00 0.00 0.00 0.01 0.02 0.05 0.18 3.80 55.97 3.93 0.23 0.08 0.04 0.02 0.00 0.00 0.00 0.00
10 0.00 0.00 0.00 0.01 0.01 0.03 0.07 0.23 3.85 57.24 3.97 0.27 0.08 0.03 0.01 0.01 0.00 0.00
11 0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.07 0.24 3.97 58.22 3.82 0.23 0.07 0.03 0.01 0.00 0.00
12 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.03 0.07 0.25 3.90 58.46 3.73 0.23 0.08 0.02 0.00 0.00
13 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.03 0.08 0.28 3.76 57.18 3.58 0.20 0.05 0.01 0.00
14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.07 0.28 3.47 56.01 3.29 0.17 0.03 0.01
15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.06 0.25 3.26 54.77 3.09 0.12 0.02
16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.05 0.19 2.95 52.16 2.87 0.05
17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.14 2.42 48.84 2.01
18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.07 1.70 37.02
Table 11: The weighted efficiency matrix (in %) for D+K¯0e+νeD^{+}\to\bar{K}^{0}e^{+}\nu_{e}. The ii denote the reconstructed bin, and the jj represent the produced bin.
εij\varepsilon_{ij} 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 48.53 2.67 0.17 0.07 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 1.49 44.41 3.35 0.22 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 0.03 1.84 42.69 3.62 0.22 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.04 2.04 41.28 3.70 0.20 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 0.00 0.01 0.05 2.16 40.20 3.77 0.20 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
6 0.00 0.00 0.01 0.06 2.25 39.14 3.73 0.17 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
7 0.00 0.00 0.00 0.01 0.06 2.31 38.65 3.66 0.15 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
8 0.00 0.00 0.00 0.00 0.01 0.06 2.39 37.92 3.54 0.14 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
9 0.00 0.00 0.00 0.00 0.00 0.01 0.07 2.42 37.71 3.36 0.11 0.01 0.00 0.00 0.00 0.00 0.00 0.00
10 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.08 2.34 37.20 3.25 0.10 0.01 0.00 0.00 0.00 0.00 0.00
11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.07 2.32 36.59 3.07 0.08 0.00 0.00 0.00 0.00 0.00
12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.08 2.32 36.15 2.87 0.06 0.00 0.00 0.00 0.00
13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.08 2.21 35.89 2.71 0.04 0.00 0.00 0.00
14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.08 2.06 35.51 2.53 0.03 0.00 0.00
15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.09 2.00 35.05 2.25 0.02 0.00
16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.07 1.75 34.66 2.00 0.01
17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 1.54 34.31 1.77
18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.04 1.33 32.87
Table 12: The weighted efficiency matrix (in %) for D+K¯0μ+νμD^{+}\to\bar{K}^{0}\mu^{+}\nu_{\mu}. The ii denote the reconstructed bin, and the jj represent the produced bin.
εij\varepsilon_{ij} 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 31.24 0.90 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01
2 1.05 30.73 1.36 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.00
3 0.02 1.12 31.34 1.67 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01
4 0.00 0.02 1.42 32.64 2.01 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
5 0.00 0.00 0.02 1.62 33.99 2.16 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
6 0.00 0.00 0.00 0.03 1.86 35.12 2.31 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.01
7 0.00 0.00 0.00 0.00 0.04 2.01 36.06 2.44 0.04 0.00 0.00 0.01 0.00 0.00 0.01 0.01 0.03 0.02
8 0.00 0.00 0.00 0.00 0.01 0.04 2.19 36.89 2.50 0.03 0.01 0.00 0.00 0.01 0.01 0.01 0.01 0.01
9 0.00 0.00 0.00 0.00 0.01 0.01 0.05 2.28 37.36 2.52 0.04 0.01 0.00 0.00 0.00 0.01 0.01 0.00
10 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.07 2.24 37.14 2.44 0.02 0.01 0.01 0.01 0.01 0.00 0.00
11 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.06 2.26 37.01 2.34 0.03 0.01 0.00 0.01 0.01 0.00
12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.07 2.21 36.36 2.11 0.03 0.01 0.01 0.00 0.00
13 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.01 0.00 0.01 0.07 2.12 36.27 2.08 0.02 0.01 0.00 0.00
14 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.01 0.01 0.01 0.08 2.04 36.00 1.91 0.01 0.00 0.00
15 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.02 0.02 0.06 1.93 35.32 1.78 0.01 0.00
16 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.05 1.69 34.99 1.61 0.00
17 0.00 0.01 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.05 1.56 34.29 1.28
18 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 1.13 32.84
Refer to caption
Fig. 7: Fits to the UmissU_{\rm miss} distributions of the accepted D0Kμ+νμD^{0}\to K^{-}\mu^{+}\nu_{\mu} candidates in different q2q^{2} bins. The points with error bars are data. The blue solid curves are the fit results. The violet dotted curves are the signal shapes. The black dash-dotted curves are the peaking backgrounds. The red dashed curves are the fitted combinatorial background shapes.
Refer to caption
Fig. 8: Fits to the UmissU_{\rm miss} distributions of the accepted D+K¯0e+νeD^{+}\to\bar{K}^{0}e^{+}\nu_{e} candidates in different q2q^{2} bins. The points with error bars are data. The blue solid curves are the fit results. The violet dotted curves are the signal shapes. The red dashed curves are the fitted combinatorial background shapes.
Refer to caption
Fig. 9: Fits to the UmissU_{\rm miss} distributions of the accepted D+K¯0μ+νμD^{+}\to\bar{K}^{0}\mu^{+}\nu_{\mu} candidates in different q2q^{2} bins. The points with error bars are data. The blue solid curves are the fit results. The violet dotted curves are the signal shapes. The black dash-dotted curves are the peaking backgrounds. The red dashed curves are the fitted combinatorial background shapes. The bumps in the high q2q^{2} region are mainly from the contributions of D+KS0π+π0π0D^{+}\to K_{S}^{0}\pi^{+}\pi^{0}\pi^{0} and D+KL0KS0π+D^{+}\to K_{L}^{0}K_{S}^{0}\pi^{+}.
Table 13: The observed yields (NDTiN_{\rm DT}^{i}), the produced yields (NprdiN_{\rm prd}^{i}) and the determined partial decay rates (ΔΓ\Delta\Gamma) of D0Kμ+νμD^{0}\to K^{-}\mu^{+}\nu_{\mu} in different q2q^{2} intervals of data, where the uncertainties are statistical only.
q2(GeV2/c4)q^{2}~{}({\rm GeV^{2}}/c^{4}) NDTiN_{\rm DT}^{i} NprdiN_{\rm prd}^{i} ΔΓ(ns1)\Delta\Gamma~{}({\rm ns^{-1}})
(0.01,0.10)(0.01,0.10) 8165±1048165\pm 104 20612±27420612\pm 274 6.341±0.0846.341\pm 0.084
(0.10,0.20)(0.10,0.20) 11686±12411686\pm 124 28015±32128015\pm 321 8.618±0.0998.618\pm 0.099
(0.20,0.30)(0.20,0.30) 11845±12611845\pm 126 26431±31126431\pm 311 8.131±0.0968.131\pm 0.096
(0.30,0.40)(0.30,0.40) 12107±13012107\pm 130 25037±30425037\pm 304 7.702±0.0937.702\pm 0.093
(0.40,0.50)(0.40,0.50) 12238±13912238\pm 139 23450±30423450\pm 304 7.214±0.0947.214\pm 0.094
(0.50,0.60)(0.50,0.60) 12231±14212231\pm 142 21968±29421968\pm 294 6.758±0.0906.758\pm 0.090
(0.60,0.70)(0.60,0.70) 11779±13511779\pm 135 19861±26519861\pm 265 6.110±0.0816.110\pm 0.081
(0.70,0.80)(0.70,0.80) 11329±12711329\pm 127 18313±23918313\pm 239 5.633±0.0735.633\pm 0.073
(0.80,0.90)(0.80,0.90) 10646±12410646\pm 124 16544±22416544\pm 224 5.089±0.0695.089\pm 0.069
(0.90,1.00)(0.90,1.00) 9895±1229895\pm 122 15090±21615090\pm 216 4.642±0.0664.642\pm 0.066
(1.00,1.10)(1.00,1.10) 8619±1158619\pm 115 12877±20012877\pm 200 3.961±0.0613.961\pm 0.061
(1.10,1.20)(1.10,1.20) 7495±1107495\pm 110 11213±19111213\pm 191 3.449±0.0593.449\pm 0.059
(1.20,1.30)(1.20,1.30) 6177±1066177\pm 106 9438±1889438\pm 188 2.903±0.0582.903\pm 0.058
(1.30,1.40)(1.30,1.40) 5077±1035077\pm 103 8035±1858035\pm 185 2.472±0.0572.472\pm 0.057
(1.40,1.50)(1.40,1.50) 3692±1013692\pm 101 5962±1865962\pm 186 1.834±0.0571.834\pm 0.057
(1.50,1.60)(1.50,1.60) 2420±672420\pm 67 4107±1294107\pm 129 1.263±0.0401.263\pm 0.040
(1.60,1.70)(1.60,1.70) 1475±551475\pm 55 2719±1132719\pm 113 0.837±0.0350.837\pm 0.035
(1.70,1.88)(1.70,1.88) 706±46706\pm 46 1771±1241771\pm 124 0.545±0.0380.545\pm 0.038
Table 14: The observed yields (NDTiN_{\rm DT}^{i}), the produced yields (NprdiN_{\rm prd}^{i}) and the determined partial decay rates (ΔΓ\Delta\Gamma) of D+K¯0e+νeD^{+}\to\bar{K}^{0}e^{+}\nu_{e} in different q2q^{2} intervals of data, where the uncertainties are statistical only.
q2(GeV2/c4)q^{2}~{}({\rm GeV^{2}}/c^{4}) NDTiN_{\rm DT}^{i} NprdiN_{\rm prd}^{i} ΔΓ(ns1)\Delta\Gamma~{}({\rm ns^{-1}})
(0.00,0.10)(0.00,0.10) 7031±907031\pm 90 39669±53639669\pm 536 9.286±0.1269.286\pm 0.126
(0.10,0.20)(0.10,0.20) 6296±856296\pm 85 36805±55936805\pm 559 8.616±0.1318.616\pm 0.131
(0.20,0.30)(0.20,0.30) 5823±815823\pm 81 34781±55634781\pm 556 8.142±0.1308.142\pm 0.130
(0.30,0.40)(0.30,0.40) 5425±785425\pm 78 33376±55733376\pm 557 7.813±0.1307.813\pm 0.130
(0.40,0.50)(0.40,0.50) 4823±744823\pm 74 29974±53929974\pm 539 7.017±0.1267.017\pm 0.126
(0.50,0.60)(0.50,0.60) 4502±714502\pm 71 28876±53128876\pm 531 6.760±0.1246.760\pm 0.124
(0.60,0.70)(0.60,0.70) 4033±674033\pm 67 25941±51125941\pm 511 6.072±0.1206.072\pm 0.120
(0.70,0.80)(0.70,0.80) 3750±643750\pm 64 24813±50024813\pm 500 5.808±0.1175.808\pm 0.117
(0.80,0.90)(0.80,0.90) 3255±603255\pm 60 21458±46721458\pm 467 5.023±0.1095.023\pm 0.109
(0.90,1.00)(0.90,1.00) 2962±572962\pm 57 20048±45120048\pm 451 4.693±0.1054.693\pm 0.105
(1.00,1.10)(1.00,1.10) 2517±522517\pm 52 17291±42117291\pm 421 4.048±0.0984.048\pm 0.098
(1.10,1.20)(1.10,1.20) 2123±482123\pm 48 14805±39014805\pm 390 3.466±0.0913.466\pm 0.091
(1.20,1.30)(1.20,1.30) 1756±441756\pm 44 12433±36012433\pm 360 2.910±0.0842.910\pm 0.084
(1.30,1.40)(1.30,1.40) 1359±391359\pm 39 9787±3189787\pm 318 2.291±0.0742.291\pm 0.074
(1.40,1.50)(1.40,1.50) 986±33986\pm 33 7204±2767204\pm 276 1.686±0.0651.686\pm 0.065
(1.50,1.60)(1.50,1.60) 684±28684\pm 28 5118±2325118\pm 232 1.198±0.0541.198\pm 0.054
(1.60,1.70)(1.60,1.70) 437±22437\pm 22 3359±1873359\pm 187 0.786±0.0440.786\pm 0.044
(1.70,1.88)(1.70,1.88) 190±15190\pm 15 1523±1321523\pm 132 0.357±0.0310.357\pm 0.031
Table 15: The observed yields (NDTiN_{\rm DT}^{i}), the produced yields (NprdiN_{\rm prd}^{i}) and the determined partial decay rates (ΔΓ\Delta\Gamma) of D+K¯0μ+νμD^{+}\to\bar{K}^{0}\mu^{+}\nu_{\mu} in different q2q^{2} intervals of data, where the uncertainties are statistical only.
q2(GeV2/c4)q^{2}~{}({\rm GeV^{2}}/c^{4}) NDTiN_{\rm DT}^{i} NprdiN_{\rm prd}^{i} ΔΓ(ns1)\Delta\Gamma~{}({\rm ns^{-1}})
(0.01,0.10)(0.01,0.10) 3044±593044\pm 59 27122±54727122\pm 547 6.349±0.1286.349\pm 0.128
(0.10,0.20)(0.10,0.20) 4105±684105\pm 68 36110±64236110\pm 642 8.453±0.1508.453\pm 0.150
(0.20,0.30)(0.20,0.30) 4133±694133\pm 69 35061±64035061\pm 640 8.208±0.1508.208\pm 0.150
(0.30,0.40)(0.30,0.40) 4066±694066\pm 69 32504±61232504\pm 612 7.609±0.1437.609\pm 0.143
(0.40,0.50)(0.40,0.50) 4085±714085\pm 71 31264±60831264\pm 608 7.319±0.1427.319\pm 0.142
(0.50,0.60)(0.50,0.60) 4009±724009\pm 72 29618±60329618\pm 603 6.933±0.1416.933\pm 0.141
(0.60,0.70)(0.60,0.70) 3588±683588\pm 68 25397±55025397\pm 550 5.945±0.1295.945\pm 0.129
(0.70,0.80)(0.70,0.80) 3479±673479\pm 67 24177±53024177\pm 530 5.660±0.1245.660\pm 0.124
(0.80,0.90)(0.80,0.90) 3239±663239\pm 66 22154±52022154\pm 520 5.186±0.1225.186\pm 0.122
(0.90,1.00)(0.90,1.00) 2911±622911\pm 62 20078±48620078\pm 486 4.700±0.1144.700\pm 0.114
(1.00,1.10)(1.00,1.10) 2561±592561\pm 59 17775±46917775\pm 469 4.161±0.1104.161\pm 0.110
(1.10,1.20)(1.10,1.20) 2070±572070\pm 57 14579±46214579\pm 462 3.413±0.1083.413\pm 0.108
(1.20,1.30)(1.20,1.30) 1762±541762\pm 54 12513±43312513\pm 433 2.929±0.1012.929\pm 0.101
(1.30,1.40)(1.30,1.40) 1469±531469\pm 53 10586±42810586\pm 428 2.478±0.1002.478\pm 0.100
(1.40,1.50)(1.40,1.50) 1115±461115\pm 46 8172±3838172\pm 383 1.913±0.0901.913\pm 0.090
(1.50,1.60)(1.50,1.60) 786±38786\pm 38 5881±3185881\pm 318 1.377±0.0751.377\pm 0.075
(1.60,1.70)(1.60,1.70) 450±28450\pm 28 3380±2333380\pm 233 0.791±0.0550.791\pm 0.055
(1.70,1.88)(1.70,1.88) 263±21263\pm 21 2136±1892136\pm 189 0.500±0.0440.500\pm 0.044
Table 16: Statistical covariance density matrix for D0Ke+νeD^{0}\to K^{-}e^{+}\nu_{e}. The ii denote the reconstructed bin, and the jj represent the produced bin.
ρijstat\rho_{ij}^{\rm stat} 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 1.000 -0.099 0.004 -0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 -0.099 1.000 -0.132 0.007 -0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
3 0.004 -0.132 1.000 -0.148 0.009 -0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
4 -0.002 0.007 -0.148 1.000 -0.158 0.010 -0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
5 0.000 -0.002 0.009 -0.158 1.000 -0.162 0.011 -0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
6 0.000 0.000 -0.003 0.010 -0.162 1.000 -0.165 0.011 -0.003 -0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
7 0.000 0.000 0.000 -0.002 0.011 -0.165 1.000 -0.167 0.011 -0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
8 0.000 0.000 0.000 0.000 -0.002 0.011 -0.167 1.000 -0.166 0.011 -0.003 -0.001 0.000 0.000 0.000 0.000 0.000 0.000
9 0.000 0.000 0.000 0.000 0.000 -0.003 0.011 -0.166 1.000 -0.164 0.010 -0.002 -0.001 0.000 0.000 0.000 0.000 0.000
10 0.000 0.000 0.000 0.000 0.000 -0.001 -0.003 0.011 -0.164 1.000 -0.160 0.009 -0.002 0.000 0.000 0.000 0.000 0.000
11 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.003 0.010 -0.160 1.000 -0.155 0.008 -0.002 -0.001 0.000 0.000 0.000
12 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.001 -0.002 0.009 -0.155 1.000 -0.152 0.007 -0.002 -0.001 0.000 0.000
13 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.001 -0.002 0.008 -0.152 1.000 -0.145 0.007 -0.002 0.000 0.000
14 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.002 0.007 -0.145 1.000 -0.140 0.006 -0.001 0.000
15 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.001 -0.002 0.007 -0.140 1.000 -0.131 0.006 0.000
16 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.001 -0.002 0.006 -0.131 1.000 -0.123 0.005
17 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.001 0.006 -0.123 1.000 -0.105
18 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.005 -0.105 1.000
Table 17: Statistical covariance density matrix for D0Kμ+νμD^{0}\to K^{-}\mu^{+}\nu_{\mu}. The ii denote the reconstructed bin, and the jj represent the produced bin.
ρijstat\rho_{ij}^{\rm stat} 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 1.000 -0.068 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 -0.068 1.000 -0.088 0.005 -0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
3 0.003 -0.088 1.000 -0.105 0.007 -0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
4 0.000 0.005 -0.105 1.000 -0.118 0.008 -0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
5 0.000 -0.001 0.007 -0.118 1.000 -0.128 0.008 -0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
6 0.000 0.000 -0.001 0.008 -0.128 1.000 -0.134 0.008 -0.002 -0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
7 0.000 0.000 0.000 -0.001 0.008 -0.134 1.000 -0.138 0.008 -0.002 -0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000
8 0.000 0.000 0.000 0.000 -0.002 0.008 -0.138 1.000 -0.138 0.007 -0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000
9 0.000 0.000 0.000 0.000 0.000 -0.002 0.008 -0.138 1.000 -0.136 0.006 -0.002 -0.001 0.000 0.000 0.000 0.000 0.000
10 0.000 0.000 0.000 0.000 0.000 -0.001 -0.002 0.007 -0.136 1.000 -0.136 0.005 -0.002 0.000 0.000 0.000 0.000 0.000
11 0.000 0.000 0.000 0.000 0.000 0.000 -0.001 -0.002 0.006 -0.136 1.000 -0.131 0.004 -0.002 0.000 0.000 0.000 0.000
12 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.002 0.005 -0.131 1.000 -0.128 0.003 -0.002 0.000 0.000 0.000
13 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.001 -0.002 0.004 -0.128 1.000 -0.123 0.003 -0.001 0.000 0.000
14 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.002 0.003 -0.123 1.000 -0.117 0.005 -0.001 0.000
15 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.002 0.003 -0.117 1.000 -0.119 0.003 -0.001
16 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.001 0.005 -0.119 1.000 -0.104 0.004
17 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.001 0.003 -0.104 1.000 -0.087
18 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.001 0.004 -0.087 1.000
Table 18: Statistical covariance density matrix for D+K¯0e+νeD^{+}\to\bar{K}^{0}e^{+}\nu_{e}. The ii denote the reconstructed bin, and the jj represent the produced bin.
ρijstat\rho_{ij}^{\rm stat} 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 1.000 -0.089 0.004 -0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 -0.089 1.000 -0.117 0.006 -0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
3 0.004 -0.117 1.000 -0.133 0.009 -0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
4 -0.001 0.006 -0.133 1.000 -0.141 0.010 -0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
5 0.000 -0.002 0.009 -0.141 1.000 -0.149 0.012 -0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
6 0.000 0.000 -0.002 0.010 -0.149 1.000 -0.152 0.013 -0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
7 0.000 0.000 0.000 -0.001 0.012 -0.152 1.000 -0.156 0.013 -0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
8 0.000 0.000 0.000 0.000 -0.001 0.013 -0.156 1.000 -0.155 0.012 -0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000
9 0.000 0.000 0.000 0.000 0.000 -0.001 0.013 -0.155 1.000 -0.150 0.013 -0.001 0.000 0.000 0.000 0.000 0.000 0.000
10 0.000 0.000 0.000 0.000 0.000 0.000 -0.001 0.012 -0.150 1.000 -0.148 0.012 -0.001 0.000 0.000 0.000 0.000 0.000
11 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.001 0.013 -0.148 1.000 -0.146 0.011 -0.001 0.000 0.000 0.000 0.000
12 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.001 0.012 -0.146 1.000 -0.139 0.010 -0.001 0.000 0.000 0.000
13 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.001 0.011 -0.139 1.000 -0.132 0.009 -0.001 0.000 0.000
14 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.001 0.010 -0.132 1.000 -0.127 0.008 0.000 0.000
15 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.001 0.009 -0.127 1.000 -0.113 0.006 -0.001
16 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.001 0.008 -0.113 1.000 -0.102 0.005
17 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.006 -0.102 1.000 -0.093
18 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.001 0.005 -0.093 1.000
Table 19: Statistical covariance density matrix for D+K¯0μ+νμD^{+}\to\bar{K}^{0}\mu^{+}\nu_{\mu}. The ii denote the reconstructed bin, and the jj represent the produced bin.
ρijstat\rho_{ij}^{\rm stat} 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 1.000 -0.063 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.001
2 -0.063 1.000 -0.080 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.001 0.000 -0.001 -0.001
3 0.003 -0.080 1.000 -0.096 0.007 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.001
4 0.000 0.005 -0.096 1.000 -0.109 0.008 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.001
5 0.000 0.000 0.007 -0.109 1.000 -0.116 0.009 -0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.001 -0.001 -0.001
6 0.000 0.000 0.000 0.008 -0.116 1.000 -0.121 0.010 -0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.001 -0.001
7 0.000 0.000 0.000 0.000 0.009 -0.121 1.000 -0.126 0.010 -0.001 0.000 0.000 0.000 0.000 -0.001 0.000 -0.001 0.000
8 0.000 0.000 0.000 0.000 -0.001 0.010 -0.126 1.000 -0.128 0.010 -0.001 0.000 0.000 0.000 0.000 -0.001 -0.001 0.000
9 0.000 0.000 0.000 0.000 0.000 -0.001 0.010 -0.128 1.000 -0.127 0.009 -0.001 0.000 0.000 0.000 0.000 -0.001 0.000
10 0.000 0.000 0.000 0.000 0.000 0.000 -0.001 0.010 -0.127 1.000 -0.126 0.009 -0.001 0.000 0.000 -0.001 0.000 0.000
11 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.001 0.009 -0.126 1.000 -0.123 0.008 -0.001 0.000 0.000 0.000 0.000
12 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.001 0.009 -0.123 1.000 -0.116 0.007 -0.001 0.000 0.000 0.000
13 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.001 0.008 -0.116 1.000 -0.114 0.007 -0.001 0.000 0.000
14 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.001 0.007 -0.114 1.000 -0.108 0.006 -0.001 0.000
15 0.000 -0.001 0.000 0.000 0.000 0.000 -0.001 0.000 0.000 0.000 0.000 -0.001 0.007 -0.108 1.000 -0.100 0.005 -0.001
16 0.000 0.000 0.000 0.000 -0.001 0.000 0.000 -0.001 0.000 -0.001 0.000 0.000 -0.001 0.006 -0.100 1.000 -0.095 0.004
17 0.000 -0.001 0.000 0.000 -0.001 -0.001 -0.001 -0.001 -0.001 0.000 0.000 0.000 0.000 -0.001 0.005 -0.095 1.000 -0.073
18 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.001 0.004 -0.073 1.000
Table 20: The systematic uncertainties (in %) of the measured decay rates of D0Kμ+νμD^{0}\to K^{-}\mu^{+}\nu_{\mu} in different q2q^{2} bins.
ii-th q2q^{2} bin 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
NSTN_{\rm ST} 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30
D0D^{0} lifetime 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24
MC statistics 0.25 0.21 0.20 0.20 0.20 0.20 0.20 0.20 0.21 0.21 0.23 0.24 0.27 0.31 0.36 0.44 0.58 0.93
MC model 0.18 0.21 0.71 0.44 0.20 0.23 0.28 0.06 0.19 0.20 0.16 0.74 1.03 0.87 0.21 0.74 1.02 1.06
KK^{-} tracking 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.11 0.11 0.13 0.14 0.18 0.23 0.43
KK^{-} PID 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.18
μ+\mu^{+} tracking 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10
μ+\mu^{+} PID 0.20 0.20 0.19 0.18 0.18 0.17 0.17 0.17 0.16 0.17 0.17 0.18 0.18 0.19 0.19 0.20 0.22 0.23
UmissU_{\rm miss} fit 0.24 0.11 0.11 0.11 0.10 0.14 0.12 0.13 0.15 0.15 0.11 0.15 0.11 0.18 0.17 0.21 0.18 0.26
EextraγmaxE_{\rm extra~{}\gamma}^{\rm max} and NextratrkN_{\rm extra}^{\rm trk} cut 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10
Total 0.62 0.57 0.88 0.68 0.55 0.57 0.59 0.53 0.56 0.57 0.56 0.92 1.17 1.06 0.66 1.02 1.30 1.58
Table 21: The systematic uncertainties (in %) of the measured decay rates of D+K¯0e+νeD^{+}\to\bar{K}^{0}e^{+}\nu_{e} in different q2q^{2} bins.
ii-th q2q^{2} bin 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
NtagN_{\rm tag} 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30
D+D^{+} lifetime 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48
MC statistics 0.19 0.19 0.20 0.21 0.22 0.23 0.25 0.26 0.27 0.29 0.32 0.34 0.38 0.43 0.49 0.59 0.77 1.09
MC model 0.32 0.66 0.70 0.22 0.91 0.60 1.11 0.27 1.14 0.38 0.90 0.01 0.99 0.02 0.39 2.18 0.17 0.46
e+e^{+} tracking 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10
e+e^{+} PID 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10
UmissU_{\rm miss} fit 0.53 1.34 0.26 0.55 1.65 1.29 0.04 0.58 0.20 0.05 0.22 0.17 0.84 0.05 0.04 0.05 0.32 0.06
EextraγmaxE_{\rm extra~{}\gamma}^{\rm max} and NextratrkN_{\rm extra}^{\rm trk} cut 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10
KS0K_{S}^{0} reconstruction 0.75 0.72 0.68 0.65 0.60 0.60 0.70 0.82 0.95 1.11 1.31 1.44 1.48 1.55 1.62 1.72 1.75 1.93
Quoted branching fractions 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07
Total 1.16 1.77 1.19 1.08 2.08 1.67 1.46 1.23 1.64 1.35 1.74 1.60 2.09 1.71 1.84 2.90 2.03 2.34
Table 22: The systematic uncertainties (in %) of the measured decay rates of D+K¯0μ+νμD^{+}\to\bar{K}^{0}\mu^{+}\nu_{\mu} in different q2q^{2} bins.
ii-th q2q^{2} bin 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
NtagN_{\rm tag} 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30
D+D^{+} lifetime 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48
MC statistics 0.29 0.25 0.25 0.25 0.25 0.25 0.26 0.26 0.28 0.29 0.31 0.34 0.38 0.42 0.48 0.58 0.74 1.02
MC model 0.71 0.18 0.32 0.79 0.28 0.18 0.61 0.26 0.76 0.33 1.53 0.77 0.78 1.41 0.74 0.23 1.47 1.75
μ+\mu^{+} tracking 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10
μ+\mu^{+} PID 0.17 0.17 0.17 0.17 0.16 0.16 0.16 0.16 0.16 0.16 0.17 0.17 0.18 0.19 0.18 0.19 0.22 0.25
UmissU_{\rm miss} fit 0.03 0.10 0.03 0.23 0.25 0.05 0.19 0.17 0.07 0.07 0.06 0.06 0.07 0.05 0.06 0.13 0.10 0.18
EextraγmaxE_{\rm extra~{}\gamma}^{\rm max} and NextratrkN_{\rm extra}^{\rm trk} cut 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10
KS0K_{S}^{0} reconstruction 1.05 0.71 0.68 0.65 0.60 0.60 0.70 0.82 0.95 1.11 1.30 1.44 1.48 1.55 1.62 1.72 1.77 1.96
Quoted branching fractions 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07
Total 1.44 0.99 1.00 1.24 0.97 0.91 1.16 1.10 1.39 1.34 2.12 1.78 1.82 2.22 1.95 1.93 2.50 2.90
Table 23: Systematic covariance density matrix for D0Ke+νeD^{0}\to K^{-}e^{+}\nu_{e}, where ii denotes the reconstructed bin, and the jj represent the produced bin.
ρijsys\rho_{ij}^{\rm sys} 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 1.000 0.773 0.747 0.789 0.730 0.762 0.586 0.767 0.580 0.774 0.759 0.680 0.719 0.600 0.683 0.626 0.474 0.491
2 0.773 1.000 0.704 0.782 0.733 0.745 0.556 0.759 0.549 0.763 0.743 0.685 0.700 0.571 0.673 0.618 0.441 0.472
3 0.747 0.704 1.000 0.756 0.578 0.842 0.851 0.740 0.849 0.783 0.832 0.518 0.838 0.845 0.686 0.616 0.784 0.634
4 0.789 0.782 0.756 1.000 0.658 0.788 0.655 0.764 0.650 0.780 0.781 0.643 0.753 0.664 0.687 0.626 0.554 0.529
5 0.730 0.733 0.578 0.658 1.000 0.580 0.351 0.686 0.341 0.670 0.618 0.693 0.555 0.373 0.594 0.552 0.224 0.341
6 0.762 0.745 0.842 0.788 0.580 1.000 0.777 0.751 0.787 0.784 0.817 0.559 0.812 0.789 0.688 0.620 0.712 0.601
7 0.586 0.556 0.851 0.655 0.351 0.777 1.000 0.588 0.969 0.674 0.773 0.291 0.821 0.944 0.586 0.514 0.951 0.670
8 0.767 0.759 0.740 0.764 0.686 0.751 0.588 1.000 0.584 0.754 0.745 0.637 0.713 0.614 0.662 0.605 0.501 0.495
9 0.580 0.549 0.849 0.650 0.341 0.787 0.969 0.584 1.000 0.656 0.771 0.283 0.820 0.946 0.582 0.510 0.955 0.670
10 0.774 0.763 0.783 0.780 0.670 0.784 0.674 0.754 0.656 1.000 0.746 0.620 0.755 0.681 0.678 0.617 0.579 0.537
11 0.759 0.743 0.832 0.781 0.618 0.817 0.773 0.745 0.771 0.746 1.000 0.523 0.803 0.773 0.683 0.617 0.694 0.592
12 0.680 0.685 0.518 0.643 0.693 0.559 0.291 0.637 0.283 0.620 0.523 1.000 0.460 0.317 0.548 0.513 0.170 0.301
13 0.719 0.700 0.838 0.753 0.555 0.812 0.821 0.713 0.820 0.755 0.803 0.460 1.000 0.799 0.664 0.594 0.757 0.613
14 0.600 0.571 0.845 0.664 0.373 0.789 0.944 0.614 0.946 0.681 0.773 0.317 0.799 1.000 0.569 0.525 0.923 0.663
15 0.683 0.673 0.686 0.687 0.594 0.688 0.586 0.662 0.582 0.678 0.683 0.548 0.664 0.569 1.000 0.489 0.503 0.477
16 0.626 0.618 0.616 0.626 0.552 0.620 0.514 0.605 0.510 0.617 0.617 0.513 0.594 0.525 0.489 1.000 0.420 0.437
17 0.474 0.441 0.784 0.554 0.224 0.712 0.951 0.501 0.955 0.579 0.694 0.170 0.757 0.923 0.503 0.420 1.000 0.631
18 0.491 0.472 0.634 0.529 0.341 0.601 0.670 0.495 0.670 0.537 0.592 0.301 0.613 0.663 0.477 0.437 0.631 1.000
Table 24: Systematic covariance density matrix for D0Kμ+νμD^{0}\to K^{-}\mu^{+}\nu_{\mu}, where ii denotes the reconstructed bin, and the jj represent the produced bin.
ρijsys\rho_{ij}^{\rm sys} 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 1.000 0.717 0.637 0.702 0.731 0.716 0.717 0.679 0.697 0.695 0.697 0.611 0.555 0.573 0.614 0.561 0.512 0.456
2 0.717 1.000 0.718 0.790 0.804 0.790 0.796 0.735 0.766 0.765 0.763 0.701 0.646 0.662 0.676 0.643 0.593 0.527
3 0.637 0.718 1.000 0.853 0.714 0.729 0.770 0.536 0.673 0.685 0.652 0.894 0.904 0.881 0.606 0.807 0.809 0.703
4 0.702 0.790 0.853 1.000 0.759 0.783 0.808 0.644 0.739 0.745 0.725 0.838 0.820 0.813 0.658 0.761 0.740 0.648
5 0.731 0.804 0.714 0.759 1.000 0.759 0.792 0.737 0.764 0.762 0.762 0.686 0.629 0.646 0.673 0.629 0.578 0.514
6 0.716 0.790 0.729 0.783 0.759 1.000 0.754 0.714 0.749 0.749 0.745 0.702 0.652 0.665 0.661 0.643 0.597 0.530
7 0.717 0.796 0.770 0.808 0.792 0.754 1.000 0.668 0.754 0.753 0.746 0.743 0.701 0.709 0.665 0.678 0.638 0.565
8 0.679 0.735 0.536 0.644 0.737 0.714 0.668 1.000 0.670 0.701 0.713 0.511 0.432 0.464 0.617 0.474 0.406 0.369
9 0.697 0.766 0.673 0.739 0.764 0.749 0.754 0.670 1.000 0.690 0.730 0.647 0.591 0.609 0.642 0.594 0.544 0.486
10 0.695 0.765 0.685 0.745 0.762 0.749 0.753 0.701 0.690 1.000 0.687 0.660 0.605 0.621 0.640 0.604 0.556 0.494
11 0.697 0.763 0.652 0.725 0.762 0.745 0.746 0.713 0.730 0.687 1.000 0.602 0.567 0.586 0.639 0.576 0.522 0.467
12 0.611 0.701 0.894 0.838 0.686 0.702 0.743 0.511 0.647 0.660 0.602 1.000 0.869 0.860 0.583 0.786 0.790 0.687
13 0.555 0.646 0.904 0.820 0.629 0.652 0.701 0.432 0.591 0.605 0.567 0.869 1.000 0.865 0.537 0.794 0.812 0.702
14 0.573 0.662 0.881 0.813 0.646 0.665 0.709 0.464 0.609 0.621 0.586 0.860 0.865 1.000 0.521 0.777 0.786 0.684
15 0.614 0.676 0.606 0.658 0.673 0.661 0.665 0.617 0.642 0.640 0.639 0.583 0.537 0.521 1.000 0.498 0.498 0.447
16 0.561 0.643 0.807 0.761 0.629 0.643 0.678 0.474 0.594 0.604 0.576 0.786 0.794 0.777 0.498 1.000 0.688 0.632
17 0.512 0.593 0.809 0.740 0.578 0.597 0.638 0.406 0.544 0.556 0.522 0.790 0.812 0.786 0.498 0.688 1.000 0.614
18 0.456 0.527 0.703 0.648 0.514 0.530 0.565 0.369 0.486 0.494 0.467 0.687 0.702 0.684 0.447 0.632 0.614 1.000
Table 25: Systematic covariance density matrix for D+K¯0e+νeD^{+}\to\bar{K}^{0}e^{+}\nu_{e}, where ii denotes the reconstructed bin, and the jj represent the produced bin.
ρijsys\rho_{ij}^{\rm sys} 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 1.000 0.629 0.686 0.645 0.573 0.593 0.620 0.632 0.647 0.662 0.677 0.613 0.651 0.579 0.586 0.572 0.464 0.399
2 0.629 1.000 0.650 0.573 0.604 0.586 0.666 0.559 0.674 0.591 0.655 0.494 0.630 0.468 0.511 0.617 0.386 0.348
3 0.686 0.650 1.000 0.547 0.647 0.618 0.711 0.580 0.715 0.611 0.686 0.500 0.659 0.474 0.525 0.655 0.393 0.358
4 0.645 0.573 0.547 1.000 0.428 0.523 0.525 0.562 0.547 0.580 0.578 0.544 0.554 0.513 0.510 0.472 0.407 0.346
5 0.573 0.604 0.647 0.428 1.000 0.484 0.659 0.477 0.647 0.504 0.595 0.379 0.571 0.360 0.424 0.601 0.305 0.288
6 0.593 0.586 0.618 0.523 0.484 1.000 0.549 0.507 0.603 0.524 0.581 0.432 0.556 0.408 0.448 0.546 0.336 0.304
7 0.620 0.666 0.711 0.525 0.659 0.549 1.000 0.461 0.728 0.550 0.663 0.408 0.637 0.388 0.466 0.682 0.333 0.318
8 0.632 0.559 0.580 0.562 0.477 0.507 0.461 1.000 0.491 0.585 0.583 0.551 0.562 0.521 0.520 0.481 0.416 0.355
9 0.647 0.674 0.715 0.547 0.647 0.603 0.728 0.491 1.000 0.541 0.694 0.466 0.667 0.445 0.512 0.691 0.376 0.352
10 0.662 0.591 0.611 0.580 0.504 0.524 0.550 0.585 0.541 1.000 0.586 0.599 0.615 0.564 0.567 0.535 0.453 0.390
11 0.677 0.655 0.686 0.578 0.595 0.581 0.663 0.583 0.694 0.586 1.000 0.513 0.683 0.536 0.574 0.651 0.442 0.396
12 0.613 0.494 0.500 0.544 0.379 0.432 0.408 0.551 0.466 0.599 0.513 1.000 0.498 0.599 0.562 0.415 0.469 0.388
13 0.651 0.630 0.659 0.554 0.571 0.556 0.637 0.562 0.667 0.615 0.683 0.498 1.000 0.472 0.563 0.632 0.432 0.387
14 0.579 0.468 0.474 0.513 0.360 0.408 0.388 0.521 0.445 0.564 0.536 0.599 0.472 1.000 0.478 0.402 0.446 0.370
15 0.586 0.511 0.525 0.510 0.424 0.448 0.466 0.520 0.512 0.567 0.574 0.562 0.563 0.478 1.000 0.429 0.434 0.367
16 0.572 0.617 0.655 0.472 0.601 0.546 0.682 0.481 0.691 0.535 0.651 0.415 0.632 0.402 0.429 1.000 0.298 0.331
17 0.464 0.386 0.393 0.407 0.305 0.336 0.333 0.416 0.376 0.453 0.442 0.469 0.432 0.446 0.434 0.298 1.000 0.232
18 0.399 0.348 0.358 0.346 0.288 0.304 0.318 0.355 0.352 0.390 0.396 0.388 0.387 0.370 0.367 0.331 0.232 1.000
Table 26: Systematic covariance density matrix for D+K¯0μ+νμD^{+}\to\bar{K}^{0}\mu^{+}\nu_{\mu}, where ii denotes the reconstructed bin, and the jj represent the produced bin.
ρijsys\rho_{ij}^{\rm sys} 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 1.000 0.587 0.633 0.674 0.590 0.560 0.656 0.620 0.699 0.653 0.729 0.705 0.691 0.703 0.640 0.539 0.583 0.532
2 0.587 1.000 0.557 0.546 0.561 0.554 0.557 0.585 0.578 0.599 0.539 0.591 0.579 0.538 0.541 0.501 0.448 0.401
3 0.633 0.557 1.000 0.553 0.569 0.550 0.586 0.583 0.608 0.597 0.592 0.608 0.595 0.578 0.552 0.487 0.478 0.431
4 0.674 0.546 0.553 1.000 0.511 0.516 0.638 0.554 0.664 0.568 0.713 0.632 0.617 0.665 0.561 0.435 0.543 0.499
5 0.590 0.561 0.569 0.511 1.000 0.472 0.556 0.551 0.568 0.559 0.546 0.564 0.551 0.532 0.511 0.452 0.439 0.395
6 0.560 0.554 0.550 0.516 0.472 1.000 0.470 0.545 0.535 0.548 0.498 0.539 0.527 0.493 0.491 0.450 0.408 0.365
7 0.656 0.557 0.586 0.638 0.556 0.470 1.000 0.511 0.643 0.577 0.665 0.622 0.608 0.631 0.558 0.456 0.518 0.474
8 0.620 0.585 0.583 0.554 0.551 0.545 0.511 1.000 0.543 0.605 0.566 0.606 0.594 0.562 0.555 0.505 0.468 0.422
9 0.699 0.578 0.608 0.664 0.568 0.535 0.643 0.543 1.000 0.575 0.717 0.674 0.660 0.683 0.609 0.501 0.564 0.517
10 0.653 0.599 0.597 0.568 0.559 0.548 0.577 0.605 0.575 1.000 0.569 0.652 0.637 0.604 0.598 0.546 0.506 0.456
11 0.729 0.539 0.592 0.713 0.546 0.498 0.665 0.566 0.717 0.569 1.000 0.670 0.687 0.750 0.626 0.480 0.617 0.571
12 0.705 0.591 0.608 0.632 0.564 0.539 0.622 0.606 0.674 0.652 0.670 1.000 0.649 0.687 0.638 0.552 0.571 0.522
13 0.691 0.579 0.595 0.617 0.551 0.527 0.608 0.594 0.660 0.637 0.687 0.649 1.000 0.636 0.630 0.543 0.560 0.511
14 0.703 0.538 0.578 0.665 0.532 0.493 0.631 0.562 0.683 0.604 0.750 0.687 0.636 1.000 0.582 0.498 0.590 0.544
15 0.640 0.541 0.552 0.561 0.511 0.491 0.558 0.555 0.609 0.598 0.626 0.638 0.630 0.582 1.000 0.470 0.520 0.472
16 0.539 0.501 0.487 0.435 0.452 0.450 0.456 0.505 0.501 0.546 0.480 0.552 0.543 0.498 0.470 1.000 0.372 0.380
17 0.583 0.448 0.478 0.543 0.439 0.408 0.518 0.468 0.564 0.506 0.617 0.571 0.560 0.590 0.520 0.372 1.000 0.411
18 0.532 0.401 0.431 0.499 0.395 0.365 0.474 0.422 0.517 0.456 0.571 0.522 0.511 0.544 0.472 0.380 0.411 1.000
Table 27: The elements of the covariance density matrix ρij(i=0,1,2,35,36;j=0,1,2,35,36;)\rho_{ij}(i=0,1,2...,35,36;j=0,1,2...,35,36;) for the simultaneous fit.
ρij\rho_{ij} 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
1 1.000 0.085 0.217 0.166 0.122 0.181 0.241 0.138 0.236 0.138 0.147 0.084 0.142 0.184 0.087 0.076 0.192 0.070 0.018 0.016 0.016 0.016 0.014 0.014 0.013 0.013 0.011 0.012 0.010 0.010 0.009 0.008 0.007 0.006 0.005 0.003
2 0.085 1.000 0.087 0.157 0.110 0.161 0.208 0.124 0.203 0.124 0.131 0.078 0.125 0.159 0.078 0.068 0.164 0.062 0.017 0.015 0.015 0.015 0.013 0.013 0.012 0.012 0.011 0.011 0.010 0.009 0.008 0.008 0.007 0.005 0.005 0.003
3 0.217 0.087 1.000 0.095 0.120 0.250 0.424 0.166 0.417 0.175 0.203 0.073 0.208 0.317 0.110 0.093 0.369 0.111 0.014 0.012 0.012 0.013 0.011 0.011 0.010 0.011 0.009 0.009 0.008 0.008 0.007 0.007 0.006 0.005 0.004 0.003
4 0.166 0.157 0.095 1.000 -0.033 0.182 0.249 0.127 0.245 0.129 0.141 0.072 0.138 0.189 0.081 0.070 0.206 0.070 0.015 0.013 0.013 0.014 0.011 0.012 0.011 0.011 0.010 0.010 0.009 0.008 0.007 0.007 0.006 0.005 0.004 0.003
5 0.122 0.110 0.120 -0.033 1.000 -0.037 0.102 0.087 0.092 0.084 0.083 0.066 0.074 0.076 0.054 0.048 0.063 0.034 0.015 0.013 0.013 0.013 0.011 0.012 0.011 0.011 0.010 0.010 0.009 0.008 0.007 0.007 0.006 0.005 0.004 0.003
6 0.181 0.161 0.250 0.182 -0.037 1.000 0.244 0.150 0.325 0.145 0.166 0.067 0.168 0.249 0.092 0.078 0.285 0.088 0.014 0.012 0.012 0.012 0.010 0.011 0.009 0.010 0.009 0.009 0.008 0.007 0.007 0.006 0.005 0.004 0.004 0.003
7 0.241 0.208 0.424 0.249 0.102 0.244 1.000 0.100 0.634 0.214 0.266 0.056 0.283 0.472 0.134 0.110 0.577 0.157 0.009 0.008 0.008 0.008 0.007 0.007 0.006 0.006 0.006 0.006 0.005 0.005 0.004 0.004 0.004 0.003 0.002 0.002
8 0.138 0.124 0.166 0.127 0.087 0.150 0.100 1.000 0.095 0.115 0.112 0.060 0.111 0.148 0.066 0.057 0.159 0.056 0.013 0.011 0.011 0.012 0.010 0.010 0.009 0.010 0.008 0.009 0.008 0.007 0.006 0.006 0.005 0.004 0.004 0.002
9 0.236 0.203 0.417 0.245 0.092 0.325 0.634 0.095 1.000 0.116 0.267 0.053 0.278 0.465 0.131 0.108 0.570 0.155 0.008 0.007 0.007 0.007 0.006 0.006 0.006 0.006 0.005 0.005 0.005 0.005 0.004 0.004 0.003 0.003 0.002 0.002
10 0.138 0.124 0.175 0.129 0.084 0.145 0.214 0.115 0.116 1.000 -0.022 0.065 0.114 0.163 0.067 0.058 0.179 0.060 0.012 0.011 0.011 0.011 0.009 0.009 0.008 0.009 0.008 0.008 0.007 0.007 0.006 0.006 0.005 0.004 0.003 0.002
11 0.147 0.131 0.203 0.141 0.083 0.166 0.266 0.112 0.267 -0.022 1.000 -0.086 0.142 0.198 0.074 0.063 0.228 0.071 0.011 0.010 0.010 0.010 0.008 0.009 0.008 0.008 0.007 0.007 0.006 0.006 0.006 0.005 0.004 0.004 0.003 0.002
12 0.084 0.078 0.073 0.072 0.066 0.067 0.056 0.060 0.053 0.065 -0.086 1.000 -0.089 0.051 0.035 0.032 0.034 0.022 0.011 0.010 0.009 0.010 0.008 0.009 0.008 0.008 0.007 0.007 0.006 0.006 0.005 0.005 0.004 0.003 0.003 0.002
13 0.142 0.125 0.208 0.138 0.074 0.168 0.283 0.111 0.278 0.114 0.142 -0.089 1.000 0.102 0.079 0.060 0.246 0.074 0.010 0.008 0.008 0.008 0.007 0.007 0.007 0.007 0.006 0.006 0.005 0.005 0.005 0.004 0.004 0.003 0.003 0.002
14 0.184 0.159 0.317 0.189 0.076 0.249 0.472 0.148 0.465 0.163 0.198 0.051 0.102 1.000 -0.009 0.089 0.425 0.117 0.007 0.006 0.006 0.007 0.006 0.006 0.005 0.005 0.005 0.005 0.004 0.004 0.004 0.003 0.003 0.002 0.002 0.001
15 0.087 0.078 0.110 0.081 0.054 0.092 0.134 0.066 0.131 0.067 0.074 0.035 0.079 -0.009 1.000 -0.089 0.116 0.038 0.008 0.007 0.007 0.007 0.006 0.006 0.005 0.006 0.005 0.005 0.004 0.004 0.004 0.004 0.003 0.002 0.002 0.001
16 0.076 0.068 0.093 0.070 0.048 0.078 0.110 0.057 0.108 0.058 0.063 0.032 0.060 0.089 -0.089 1.000 0.008 0.038 0.007 0.006 0.006 0.006 0.005 0.005 0.005 0.005 0.004 0.004 0.004 0.004 0.003 0.003 0.003 0.002 0.002 0.001
17 0.192 0.164 0.369 0.206 0.063 0.285 0.577 0.159 0.570 0.179 0.228 0.034 0.246 0.425 0.116 0.008 1.000 0.070 0.003 0.003 0.003 0.003 0.003 0.003 0.002 0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.001 0.001 0.001 0.001
18 0.070 0.062 0.111 0.070 0.034 0.088 0.157 0.056 0.155 0.060 0.071 0.022 0.074 0.117 0.038 0.038 0.070 1.000 0.003 0.003 0.003 0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.001 0.001 0.001 0.001 0.001
19 0.018 0.017 0.014 0.015 0.015 0.014 0.009 0.013 0.008 0.012 0.011 0.011 0.010 0.007 0.008 0.007 0.003 0.003 1.000 0.216 0.277 0.227 0.237 0.221 0.251 0.222 0.264 0.245 0.272 0.228 0.256 0.202 0.197 0.219 0.140 0.106
20 0.016 0.015 0.012 0.013 0.013 0.012 0.008 0.011 0.007 0.011 0.010 0.010 0.008 0.006 0.007 0.006 0.003 0.003 0.216 1.000 0.203 0.214 0.261 0.229 0.282 0.203 0.288 0.226 0.274 0.189 0.257 0.168 0.177 0.246 0.120 0.095
21 0.016 0.015 0.012 0.013 0.013 0.012 0.008 0.011 0.007 0.011 0.010 0.009 0.008 0.006 0.007 0.006 0.003 0.003 0.277 0.203 1.000 0.102 0.269 0.227 0.284 0.198 0.287 0.220 0.270 0.180 0.253 0.160 0.171 0.246 0.115 0.092
22 0.016 0.015 0.013 0.014 0.013 0.012 0.008 0.012 0.007 0.011 0.010 0.010 0.008 0.007 0.007 0.006 0.003 0.003 0.227 0.214 0.102 1.000 0.062 0.175 0.182 0.170 0.193 0.185 0.201 0.175 0.188 0.155 0.148 0.156 0.106 0.079
23 0.014 0.013 0.011 0.011 0.011 0.010 0.007 0.010 0.006 0.009 0.008 0.008 0.007 0.006 0.006 0.005 0.003 0.002 0.237 0.261 0.269 0.062 1.000 0.093 0.280 0.167 0.270 0.188 0.242 0.140 0.227 0.125 0.142 0.234 0.092 0.077
24 0.014 0.013 0.011 0.012 0.012 0.011 0.007 0.010 0.006 0.009 0.009 0.009 0.007 0.006 0.006 0.005 0.003 0.002 0.221 0.229 0.227 0.175 0.093 1.000 0.110 0.171 0.227 0.177 0.214 0.145 0.201 0.129 0.137 0.193 0.092 0.073
25 0.013 0.012 0.010 0.011 0.011 0.009 0.006 0.009 0.006 0.008 0.008 0.008 0.007 0.005 0.005 0.005 0.002 0.002 0.251 0.282 0.284 0.182 0.280 0.110 1.000 0.059 0.305 0.200 0.264 0.147 0.247 0.132 0.153 0.259 0.098 0.082
26 0.013 0.012 0.011 0.011 0.011 0.010 0.006 0.010 0.006 0.009 0.008 0.008 0.007 0.005 0.006 0.005 0.003 0.002 0.222 0.203 0.198 0.170 0.167 0.171 0.059 1.000 0.072 0.194 0.200 0.176 0.189 0.156 0.150 0.158 0.108 0.081
27 0.011 0.011 0.009 0.010 0.010 0.009 0.006 0.008 0.005 0.008 0.007 0.007 0.006 0.005 0.005 0.004 0.002 0.002 0.264 0.288 0.287 0.193 0.270 0.227 0.305 0.072 1.000 0.105 0.285 0.170 0.260 0.153 0.170 0.263 0.112 0.092
28 0.012 0.011 0.009 0.010 0.010 0.009 0.006 0.009 0.005 0.008 0.007 0.007 0.006 0.005 0.005 0.004 0.002 0.002 0.245 0.226 0.220 0.185 0.188 0.177 0.200 0.194 0.105 1.000 0.117 0.209 0.217 0.178 0.171 0.184 0.123 0.093
29 0.010 0.010 0.008 0.009 0.009 0.008 0.005 0.008 0.005 0.007 0.006 0.006 0.005 0.004 0.004 0.004 0.002 0.002 0.272 0.274 0.270 0.201 0.242 0.214 0.264 0.200 0.285 0.117 1.000 0.093 0.268 0.182 0.187 0.242 0.130 0.102
30 0.010 0.009 0.008 0.008 0.008 0.007 0.005 0.007 0.005 0.007 0.006 0.006 0.005 0.004 0.004 0.004 0.002 0.002 0.228 0.189 0.180 0.175 0.140 0.145 0.147 0.176 0.170 0.209 0.093 1.000 0.086 0.197 0.170 0.142 0.128 0.093
31 0.009 0.008 0.007 0.007 0.007 0.007 0.004 0.006 0.004 0.006 0.006 0.005 0.005 0.004 0.004 0.003 0.002 0.002 0.256 0.257 0.253 0.188 0.227 0.201 0.247 0.189 0.260 0.217 0.268 0.086 1.000 0.069 0.185 0.229 0.124 0.097
32 0.008 0.008 0.007 0.007 0.007 0.006 0.004 0.006 0.004 0.006 0.005 0.005 0.004 0.003 0.004 0.003 0.002 0.001 0.202 0.168 0.160 0.155 0.125 0.129 0.132 0.156 0.153 0.178 0.182 0.197 0.069 1.000 0.045 0.134 0.114 0.083
33 0.007 0.007 0.006 0.006 0.006 0.005 0.004 0.005 0.003 0.005 0.004 0.004 0.004 0.003 0.003 0.003 0.001 0.001 0.197 0.177 0.171 0.148 0.142 0.137 0.153 0.150 0.170 0.171 0.187 0.170 0.185 0.045 1.000 0.054 0.111 0.078
34 0.006 0.005 0.005 0.005 0.005 0.004 0.003 0.004 0.003 0.004 0.004 0.003 0.003 0.002 0.002 0.002 0.001 0.001 0.219 0.246 0.246 0.156 0.234 0.193 0.259 0.158 0.263 0.184 0.242 0.142 0.229 0.134 0.054 1.000 0.010 0.084
35 0.005 0.005 0.004 0.004 0.004 0.004 0.002 0.004 0.002 0.003 0.003 0.003 0.003 0.002 0.002 0.002 0.001 0.001 0.140 0.120 0.115 0.106 0.092 0.092 0.098 0.108 0.112 0.123 0.130 0.128 0.124 0.114 0.111 0.010 1.000 -0.030
36 0.003 0.003 0.003 0.003 0.003 0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.106 0.095 0.092 0.079 0.077 0.073 0.082 0.081 0.092 0.093 0.102 0.093 0.097 0.083 0.078 0.084 -0.030 1.000
Table 28: The elements of the covariance density matrix ρij(i=0,1,2,35,36;j=37,38,39,71,72;)\rho_{ij}(i=0,1,2...,35,36;j=37,38,39...,71,72;) for the simultaneous fit.
ρij\rho_{ij} 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
1 0.069 0.064 0.054 0.058 0.057 0.051 0.033 0.050 0.031 0.046 0.043 0.042 0.037 0.029 0.030 0.027 0.015 0.016 0.004 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.002 0.003 0.002 0.002 0.002 0.002 0.002 0.001 0.001 0.001
2 0.079 0.074 0.062 0.067 0.066 0.059 0.038 0.057 0.036 0.053 0.049 0.048 0.042 0.033 0.034 0.032 0.017 0.019 0.005 0.004 0.004 0.004 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.002 0.002 0.002 0.002 0.001 0.001 0.001
3 0.068 0.064 0.054 0.058 0.057 0.051 0.033 0.050 0.031 0.046 0.043 0.042 0.037 0.029 0.030 0.027 0.015 0.016 0.004 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.002 0.003 0.002 0.002 0.002 0.002 0.002 0.001 0.001 0.001
4 0.072 0.068 0.057 0.061 0.061 0.054 0.035 0.053 0.033 0.049 0.045 0.044 0.039 0.031 0.032 0.029 0.016 0.017 0.004 0.004 0.004 0.004 0.003 0.003 0.003 0.003 0.003 0.003 0.002 0.002 0.002 0.002 0.002 0.001 0.001 0.001
5 0.071 0.067 0.056 0.060 0.060 0.053 0.035 0.052 0.033 0.048 0.044 0.044 0.038 0.030 0.031 0.029 0.015 0.017 0.004 0.004 0.003 0.004 0.003 0.003 0.003 0.003 0.003 0.003 0.002 0.002 0.002 0.002 0.002 0.001 0.001 0.001
6 0.069 0.065 0.054 0.058 0.058 0.052 0.033 0.050 0.032 0.046 0.043 0.042 0.037 0.029 0.030 0.028 0.015 0.016 0.004 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.002 0.003 0.002 0.002 0.002 0.002 0.002 0.001 0.001 0.001
7 0.069 0.064 0.054 0.058 0.058 0.051 0.033 0.050 0.032 0.046 0.043 0.042 0.037 0.029 0.030 0.028 0.015 0.016 0.004 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.002 0.003 0.002 0.002 0.002 0.002 0.002 0.001 0.001 0.001
8 0.071 0.067 0.056 0.060 0.060 0.053 0.035 0.052 0.033 0.048 0.044 0.044 0.038 0.030 0.031 0.029 0.015 0.017 0.004 0.004 0.003 0.004 0.003 0.003 0.003 0.003 0.003 0.003 0.002 0.002 0.002 0.002 0.002 0.001 0.001 0.001
9 0.068 0.064 0.054 0.058 0.057 0.051 0.033 0.050 0.031 0.046 0.043 0.042 0.036 0.029 0.030 0.027 0.015 0.016 0.004 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.002 0.003 0.002 0.002 0.002 0.002 0.002 0.001 0.001 0.001
10 0.065 0.061 0.051 0.055 0.054 0.049 0.032 0.047 0.030 0.044 0.041 0.040 0.035 0.027 0.028 0.026 0.014 0.015 0.004 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.001 0.001 0.001 0.001
11 0.061 0.057 0.048 0.051 0.051 0.045 0.029 0.044 0.028 0.041 0.038 0.037 0.032 0.026 0.026 0.024 0.013 0.014 0.003 0.003 0.003 0.003 0.003 0.003 0.002 0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.001 0.001 0.001 0.001
12 0.052 0.049 0.041 0.044 0.044 0.039 0.025 0.038 0.024 0.035 0.032 0.032 0.028 0.022 0.023 0.021 0.011 0.013 0.003 0.003 0.003 0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001
13 0.044 0.041 0.034 0.037 0.036 0.033 0.021 0.032 0.020 0.029 0.027 0.027 0.023 0.018 0.019 0.018 0.010 0.011 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000
14 0.040 0.038 0.032 0.034 0.034 0.030 0.020 0.029 0.019 0.027 0.025 0.025 0.022 0.017 0.018 0.017 0.009 0.010 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000
15 0.032 0.030 0.026 0.027 0.027 0.024 0.016 0.024 0.015 0.022 0.020 0.020 0.017 0.014 0.014 0.013 0.007 0.008 0.002 0.002 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.000
16 0.033 0.030 0.026 0.027 0.027 0.024 0.016 0.024 0.015 0.022 0.020 0.020 0.017 0.014 0.014 0.014 0.008 0.009 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.000
17 0.026 0.024 0.020 0.022 0.022 0.019 0.013 0.019 0.012 0.017 0.016 0.016 0.014 0.011 0.012 0.011 0.006 0.008 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.000 0.000
18 0.020 0.019 0.016 0.017 0.017 0.015 0.010 0.015 0.009 0.013 0.012 0.012 0.011 0.009 0.009 0.009 0.005 0.007 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
19 0.004 0.004 0.003 0.004 0.003 0.003 0.002 0.003 0.002 0.003 0.003 0.003 0.002 0.002 0.002 0.002 0.001 0.001 0.218 0.183 0.174 0.172 0.137 0.143 0.143 0.173 0.166 0.193 0.196 0.205 0.186 0.183 0.165 0.138 0.125 0.091
20 0.005 0.005 0.004 0.004 0.004 0.004 0.002 0.004 0.002 0.003 0.003 0.003 0.003 0.002 0.002 0.002 0.001 0.001 0.199 0.167 0.160 0.159 0.127 0.133 0.131 0.156 0.147 0.170 0.171 0.177 0.161 0.157 0.141 0.118 0.107 0.077
21 0.005 0.005 0.004 0.004 0.004 0.004 0.002 0.004 0.002 0.003 0.003 0.003 0.003 0.002 0.002 0.002 0.001 0.001 0.188 0.158 0.152 0.150 0.121 0.126 0.124 0.147 0.139 0.160 0.161 0.167 0.151 0.148 0.133 0.111 0.100 0.072
22 0.005 0.004 0.004 0.004 0.004 0.003 0.002 0.003 0.002 0.003 0.003 0.003 0.002 0.002 0.002 0.002 0.001 0.001 0.170 0.143 0.137 0.136 0.110 0.114 0.112 0.133 0.126 0.144 0.145 0.150 0.136 0.133 0.119 0.099 0.090 0.065
23 0.005 0.004 0.004 0.004 0.004 0.004 0.002 0.003 0.002 0.003 0.003 0.003 0.003 0.002 0.002 0.002 0.001 0.001 0.167 0.141 0.135 0.134 0.108 0.113 0.111 0.130 0.123 0.141 0.140 0.145 0.132 0.129 0.116 0.096 0.087 0.063
24 0.005 0.004 0.004 0.004 0.004 0.003 0.002 0.003 0.002 0.003 0.003 0.003 0.002 0.002 0.002 0.002 0.001 0.001 0.162 0.136 0.131 0.130 0.105 0.109 0.107 0.126 0.119 0.136 0.136 0.141 0.128 0.125 0.112 0.093 0.084 0.061
25 0.004 0.004 0.003 0.004 0.004 0.003 0.002 0.003 0.002 0.003 0.003 0.003 0.002 0.002 0.002 0.002 0.001 0.001 0.164 0.138 0.132 0.131 0.105 0.110 0.108 0.128 0.122 0.140 0.141 0.146 0.132 0.129 0.117 0.097 0.088 0.063
26 0.004 0.004 0.003 0.004 0.004 0.003 0.002 0.003 0.002 0.003 0.003 0.003 0.002 0.002 0.002 0.002 0.001 0.001 0.184 0.154 0.147 0.146 0.117 0.122 0.121 0.145 0.138 0.160 0.161 0.167 0.152 0.149 0.134 0.112 0.101 0.073
27 0.004 0.004 0.003 0.003 0.003 0.003 0.002 0.003 0.002 0.003 0.002 0.002 0.002 0.002 0.002 0.001 0.001 0.001 0.185 0.155 0.148 0.146 0.116 0.121 0.121 0.146 0.139 0.162 0.164 0.171 0.156 0.152 0.138 0.115 0.104 0.075
28 0.004 0.003 0.003 0.003 0.003 0.003 0.002 0.003 0.002 0.003 0.002 0.002 0.002 0.002 0.002 0.001 0.001 0.001 0.204 0.170 0.162 0.160 0.127 0.133 0.133 0.161 0.155 0.181 0.184 0.192 0.175 0.171 0.155 0.129 0.117 0.085
29 0.003 0.003 0.002 0.003 0.003 0.002 0.001 0.002 0.001 0.002 0.002 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.190 0.159 0.151 0.149 0.118 0.123 0.125 0.151 0.146 0.171 0.174 0.182 0.166 0.163 0.147 0.123 0.112 0.081
30 0.003 0.003 0.002 0.002 0.002 0.002 0.001 0.002 0.001 0.002 0.002 0.002 0.002 0.001 0.001 0.001 0.001 0.000 0.192 0.161 0.152 0.150 0.119 0.124 0.126 0.153 0.148 0.174 0.178 0.186 0.170 0.166 0.151 0.126 0.114 0.083
31 0.003 0.002 0.002 0.002 0.002 0.002 0.001 0.002 0.001 0.002 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.000 0.182 0.152 0.145 0.142 0.113 0.117 0.119 0.145 0.140 0.165 0.169 0.177 0.161 0.158 0.143 0.120 0.109 0.079
32 0.002 0.002 0.002 0.002 0.002 0.002 0.001 0.002 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.000 0.161 0.135 0.128 0.126 0.099 0.103 0.105 0.128 0.124 0.146 0.150 0.157 0.143 0.140 0.127 0.106 0.096 0.070
33 0.002 0.002 0.002 0.002 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.000 0.152 0.127 0.120 0.118 0.094 0.098 0.099 0.121 0.118 0.138 0.142 0.149 0.136 0.133 0.121 0.101 0.091 0.067
34 0.002 0.002 0.001 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.000 0.140 0.117 0.111 0.109 0.086 0.090 0.091 0.112 0.108 0.128 0.131 0.137 0.125 0.123 0.111 0.093 0.085 0.062
35 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.000 0.112 0.094 0.089 0.087 0.069 0.072 0.073 0.089 0.087 0.102 0.105 0.110 0.101 0.099 0.089 0.075 0.068 0.050
36 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.096 0.080 0.076 0.075 0.059 0.061 0.063 0.077 0.075 0.089 0.091 0.095 0.087 0.086 0.078 0.065 0.059 0.043
Table 29: The elements of the covariance density matrix ρij(i=37,38,39,71,72;j=0,1,2,35,36;)\rho_{ij}(i=37,38,39...,71,72;j=0,1,2...,35,36;) for the simultaneous fit.
ρij\rho_{ij} 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
37 0.069 0.079 0.068 0.072 0.071 0.069 0.069 0.071 0.068 0.065 0.061 0.052 0.044 0.040 0.032 0.033 0.026 0.020 0.004 0.005 0.005 0.005 0.005 0.005 0.004 0.004 0.004 0.004 0.003 0.003 0.003 0.002 0.002 0.002 0.001 0.001
38 0.064 0.074 0.064 0.068 0.067 0.065 0.064 0.067 0.064 0.061 0.057 0.049 0.041 0.038 0.030 0.030 0.024 0.019 0.004 0.005 0.005 0.004 0.004 0.004 0.004 0.004 0.004 0.003 0.003 0.003 0.002 0.002 0.002 0.002 0.001 0.001
39 0.054 0.062 0.054 0.057 0.056 0.054 0.054 0.056 0.054 0.051 0.048 0.041 0.034 0.032 0.026 0.026 0.020 0.016 0.003 0.004 0.004 0.004 0.004 0.004 0.003 0.003 0.003 0.003 0.002 0.002 0.002 0.002 0.002 0.001 0.001 0.001
40 0.058 0.067 0.058 0.061 0.060 0.058 0.058 0.060 0.058 0.055 0.051 0.044 0.037 0.034 0.027 0.027 0.022 0.017 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.003 0.003 0.003 0.002 0.002 0.002 0.002 0.002 0.001 0.001
41 0.057 0.066 0.057 0.061 0.060 0.058 0.058 0.060 0.057 0.054 0.051 0.044 0.036 0.034 0.027 0.027 0.022 0.017 0.003 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.003 0.003 0.003 0.002 0.002 0.002 0.002 0.002 0.001 0.001
42 0.051 0.059 0.051 0.054 0.053 0.052 0.051 0.053 0.051 0.049 0.045 0.039 0.033 0.030 0.024 0.024 0.019 0.015 0.003 0.004 0.004 0.003 0.004 0.003 0.003 0.003 0.003 0.003 0.002 0.002 0.002 0.002 0.002 0.001 0.001 0.001
43 0.033 0.038 0.033 0.035 0.035 0.033 0.033 0.035 0.033 0.032 0.029 0.025 0.021 0.020 0.016 0.016 0.013 0.010 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
44 0.050 0.057 0.050 0.053 0.052 0.050 0.050 0.052 0.050 0.047 0.044 0.038 0.032 0.029 0.024 0.024 0.019 0.015 0.003 0.004 0.004 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.002 0.002 0.002 0.002 0.001 0.001 0.001 0.001
45 0.031 0.036 0.031 0.033 0.033 0.032 0.032 0.033 0.031 0.030 0.028 0.024 0.020 0.019 0.015 0.015 0.012 0.009 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
46 0.046 0.053 0.046 0.049 0.048 0.046 0.046 0.048 0.046 0.044 0.041 0.035 0.029 0.027 0.022 0.022 0.017 0.013 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.002 0.002 0.002 0.002 0.001 0.001 0.001 0.001
47 0.043 0.049 0.043 0.045 0.044 0.043 0.043 0.044 0.043 0.041 0.038 0.032 0.027 0.025 0.020 0.020 0.016 0.012 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.002 0.002 0.002 0.002 0.002 0.001 0.001 0.001 0.001 0.001
48 0.042 0.048 0.042 0.044 0.044 0.042 0.042 0.044 0.042 0.040 0.037 0.032 0.027 0.025 0.020 0.020 0.016 0.012 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.002 0.002 0.002 0.002 0.002 0.001 0.001 0.001 0.001 0.001
49 0.037 0.042 0.037 0.039 0.038 0.037 0.037 0.038 0.036 0.035 0.032 0.028 0.023 0.022 0.017 0.017 0.014 0.011 0.002 0.003 0.003 0.002 0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001
50 0.029 0.033 0.029 0.031 0.030 0.029 0.029 0.030 0.029 0.027 0.026 0.022 0.018 0.017 0.014 0.014 0.011 0.009 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000
51 0.030 0.034 0.030 0.032 0.031 0.030 0.030 0.031 0.030 0.028 0.026 0.023 0.019 0.018 0.014 0.014 0.012 0.009 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000
52 0.027 0.032 0.027 0.029 0.029 0.028 0.028 0.029 0.027 0.026 0.024 0.021 0.018 0.017 0.013 0.014 0.011 0.009 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000
53 0.015 0.017 0.015 0.016 0.015 0.015 0.015 0.015 0.015 0.014 0.013 0.011 0.010 0.009 0.007 0.008 0.006 0.005 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000
54 0.016 0.019 0.016 0.017 0.017 0.016 0.016 0.017 0.016 0.015 0.014 0.013 0.011 0.010 0.008 0.009 0.008 0.007 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000
55 0.004 0.005 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.003 0.003 0.002 0.002 0.002 0.002 0.001 0.001 0.218 0.199 0.188 0.170 0.167 0.162 0.164 0.184 0.185 0.204 0.190 0.192 0.182 0.161 0.152 0.140 0.112 0.096
56 0.003 0.004 0.003 0.004 0.004 0.003 0.003 0.004 0.003 0.003 0.003 0.003 0.002 0.002 0.002 0.001 0.001 0.001 0.183 0.167 0.158 0.143 0.141 0.136 0.138 0.154 0.155 0.170 0.159 0.161 0.152 0.135 0.127 0.117 0.094 0.080
57 0.003 0.004 0.003 0.004 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.002 0.002 0.002 0.001 0.001 0.001 0.174 0.160 0.152 0.137 0.135 0.131 0.132 0.147 0.148 0.162 0.151 0.152 0.145 0.128 0.120 0.111 0.089 0.076
58 0.003 0.004 0.003 0.004 0.004 0.003 0.003 0.004 0.003 0.003 0.003 0.003 0.002 0.002 0.002 0.001 0.001 0.001 0.172 0.159 0.150 0.136 0.134 0.130 0.131 0.146 0.146 0.160 0.149 0.150 0.142 0.126 0.118 0.109 0.087 0.075
59 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.002 0.002 0.002 0.001 0.001 0.001 0.001 0.137 0.127 0.121 0.110 0.108 0.105 0.105 0.117 0.116 0.127 0.118 0.119 0.113 0.099 0.094 0.086 0.069 0.059
60 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.002 0.002 0.002 0.001 0.001 0.001 0.001 0.143 0.133 0.126 0.114 0.113 0.109 0.110 0.122 0.121 0.133 0.123 0.124 0.117 0.103 0.098 0.090 0.072 0.061
61 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.002 0.002 0.002 0.002 0.001 0.001 0.001 0.001 0.143 0.131 0.124 0.112 0.111 0.107 0.108 0.121 0.121 0.133 0.125 0.126 0.119 0.105 0.099 0.091 0.073 0.063
62 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.002 0.002 0.002 0.001 0.001 0.001 0.001 0.173 0.156 0.147 0.133 0.130 0.126 0.128 0.145 0.146 0.161 0.151 0.153 0.145 0.128 0.121 0.112 0.089 0.077
63 0.002 0.003 0.002 0.003 0.003 0.002 0.002 0.003 0.002 0.002 0.002 0.002 0.002 0.001 0.001 0.001 0.001 0.000 0.166 0.147 0.139 0.126 0.123 0.119 0.122 0.138 0.139 0.155 0.146 0.148 0.140 0.124 0.118 0.108 0.087 0.075
64 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.002 0.002 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.193 0.170 0.160 0.144 0.141 0.136 0.140 0.160 0.162 0.181 0.171 0.174 0.165 0.146 0.138 0.128 0.102 0.089
65 0.002 0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.000 0.196 0.171 0.161 0.145 0.140 0.136 0.141 0.161 0.164 0.184 0.174 0.178 0.169 0.150 0.142 0.131 0.105 0.091
66 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.000 0.205 0.177 0.167 0.150 0.145 0.141 0.146 0.167 0.171 0.192 0.182 0.186 0.177 0.157 0.149 0.137 0.110 0.095
67 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.186 0.161 0.151 0.136 0.132 0.128 0.132 0.152 0.156 0.175 0.166 0.170 0.161 0.143 0.136 0.125 0.101 0.087
68 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.183 0.157 0.148 0.133 0.129 0.125 0.129 0.149 0.152 0.171 0.163 0.166 0.158 0.140 0.133 0.123 0.099 0.086
69 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.165 0.141 0.133 0.119 0.116 0.112 0.117 0.134 0.138 0.155 0.147 0.151 0.143 0.127 0.121 0.111 0.089 0.078
70 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.000 0.138 0.118 0.111 0.099 0.096 0.093 0.097 0.112 0.115 0.129 0.123 0.126 0.120 0.106 0.101 0.093 0.075 0.065
71 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.125 0.107 0.100 0.090 0.087 0.084 0.088 0.101 0.104 0.117 0.112 0.114 0.109 0.096 0.091 0.085 0.068 0.059
72 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.091 0.077 0.072 0.065 0.063 0.061 0.063 0.073 0.075 0.085 0.081 0.083 0.079 0.070 0.067 0.062 0.050 0.043
Table 30: The elements of the covariance density matrix ρij(i=37,38,39,71,72;j=37,38,39,71,72;)\rho_{ij}(i=37,38,39...,71,72;j=37,38,39...,71,72;) for the simultaneous fit.
ρij\rho_{ij} 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
37 1.000 0.038 0.129 0.109 0.085 0.085 0.088 0.072 0.080 0.077 0.069 0.096 0.096 0.080 0.039 0.058 0.053 0.035 0.005 0.007 0.006 0.006 0.006 0.006 0.005 0.005 0.005 0.005 0.004 0.004 0.003 0.003 0.003 0.002 0.002 0.001
38 0.038 1.000 0.091 0.139 0.102 0.102 0.107 0.084 0.096 0.093 0.083 0.121 0.123 0.102 0.047 0.072 0.067 0.045 0.006 0.007 0.007 0.007 0.007 0.007 0.006 0.006 0.006 0.006 0.005 0.004 0.004 0.003 0.003 0.003 0.002 0.002
39 0.129 0.091 1.000 0.145 0.141 0.141 0.157 0.086 0.125 0.124 0.105 0.235 0.256 0.204 0.062 0.137 0.136 0.088 0.005 0.006 0.006 0.006 0.006 0.006 0.005 0.005 0.005 0.005 0.004 0.004 0.003 0.003 0.003 0.002 0.002 0.001
40 0.109 0.139 0.145 1.000 0.013 0.125 0.127 0.082 0.107 0.105 0.091 0.173 0.184 0.148 0.053 0.101 0.099 0.064 0.006 0.007 0.007 0.006 0.006 0.006 0.006 0.006 0.005 0.005 0.004 0.004 0.004 0.003 0.003 0.002 0.002 0.002
41 0.085 0.102 0.141 0.013 1.000 -0.028 0.100 0.072 0.082 0.080 0.072 0.103 0.104 0.086 0.040 0.061 0.057 0.038 0.006 0.007 0.007 0.006 0.006 0.006 0.006 0.006 0.005 0.005 0.004 0.004 0.004 0.003 0.003 0.002 0.002 0.001
42 0.085 0.102 0.141 0.125 -0.028 1.000 -0.028 0.079 0.081 0.079 0.071 0.108 0.110 0.091 0.040 0.064 0.060 0.040 0.005 0.007 0.006 0.006 0.006 0.006 0.005 0.005 0.005 0.005 0.004 0.004 0.003 0.003 0.003 0.002 0.002 0.001
43 0.088 0.107 0.157 0.127 0.100 -0.028 1.000 -0.054 0.093 0.082 0.074 0.120 0.124 0.102 0.042 0.071 0.067 0.044 0.005 0.007 0.006 0.006 0.006 0.006 0.005 0.005 0.005 0.005 0.004 0.004 0.003 0.003 0.003 0.002 0.002 0.001
44 0.072 0.084 0.086 0.082 0.072 0.079 -0.054 1.000 -0.059 0.072 0.059 0.064 0.059 0.052 0.033 0.039 0.034 0.024 0.006 0.007 0.007 0.006 0.006 0.006 0.006 0.006 0.005 0.005 0.004 0.004 0.004 0.003 0.003 0.002 0.002 0.001
45 0.080 0.096 0.125 0.107 0.082 0.081 0.093 -0.059 1.000 -0.051 0.073 0.094 0.095 0.079 0.038 0.057 0.053 0.035 0.005 0.006 0.006 0.006 0.006 0.006 0.005 0.005 0.005 0.005 0.004 0.004 0.003 0.003 0.003 0.002 0.002 0.001
46 0.077 0.093 0.124 0.105 0.080 0.079 0.082 0.072 -0.051 1.000 -0.063 0.099 0.093 0.079 0.036 0.056 0.052 0.035 0.005 0.006 0.006 0.006 0.006 0.006 0.005 0.005 0.005 0.005 0.004 0.003 0.003 0.003 0.002 0.002 0.002 0.001
47 0.069 0.083 0.105 0.091 0.072 0.071 0.074 0.059 0.073 -0.063 1.000 -0.035 0.082 0.065 0.032 0.047 0.044 0.029 0.005 0.006 0.006 0.005 0.005 0.005 0.005 0.005 0.004 0.004 0.004 0.003 0.003 0.003 0.002 0.002 0.002 0.001
48 0.096 0.121 0.235 0.173 0.103 0.108 0.120 0.064 0.094 0.099 -0.035 1.000 0.096 0.160 0.046 0.105 0.105 0.068 0.004 0.005 0.005 0.004 0.005 0.004 0.004 0.004 0.004 0.004 0.003 0.003 0.003 0.002 0.002 0.002 0.001 0.001
49 0.096 0.123 0.256 0.184 0.104 0.110 0.124 0.059 0.095 0.093 0.082 0.096 1.000 0.073 0.050 0.114 0.116 0.074 0.003 0.004 0.004 0.004 0.004 0.004 0.003 0.003 0.003 0.003 0.002 0.002 0.002 0.002 0.002 0.001 0.001 0.001
50 0.080 0.102 0.204 0.148 0.086 0.091 0.102 0.052 0.079 0.079 0.065 0.160 0.073 1.000 -0.068 0.096 0.091 0.059 0.003 0.004 0.004 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.002 0.002 0.002 0.002 0.002 0.001 0.001 0.001
51 0.039 0.047 0.062 0.053 0.040 0.040 0.042 0.033 0.038 0.036 0.032 0.046 0.050 -0.068 1.000 -0.086 0.029 0.017 0.002 0.003 0.003 0.003 0.003 0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.001 0.001 0.001 0.001 0.001
52 0.058 0.072 0.137 0.101 0.061 0.064 0.071 0.039 0.057 0.056 0.047 0.105 0.114 0.096 -0.086 1.000 -0.036 0.044 0.002 0.003 0.003 0.003 0.003 0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001
53 0.053 0.067 0.136 0.099 0.057 0.060 0.067 0.034 0.053 0.052 0.044 0.105 0.116 0.091 0.029 -0.036 1.000 -0.042 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000
54 0.035 0.045 0.088 0.064 0.038 0.040 0.044 0.024 0.035 0.035 0.029 0.068 0.074 0.059 0.017 0.044 -0.042 1.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.000 0.000
55 0.005 0.006 0.005 0.006 0.006 0.005 0.005 0.006 0.005 0.005 0.005 0.004 0.003 0.003 0.002 0.002 0.002 0.001 1.000 0.157 0.216 0.248 0.186 0.168 0.215 0.198 0.244 0.221 0.299 0.237 0.224 0.233 0.182 0.142 0.157 0.138
56 0.007 0.007 0.006 0.007 0.007 0.007 0.007 0.007 0.006 0.006 0.006 0.005 0.004 0.004 0.003 0.003 0.002 0.001 0.157 1.000 0.106 0.176 0.152 0.145 0.157 0.162 0.175 0.177 0.193 0.174 0.165 0.156 0.134 0.116 0.105 0.091
57 0.006 0.007 0.006 0.007 0.007 0.006 0.006 0.007 0.006 0.006 0.006 0.005 0.004 0.004 0.003 0.003 0.002 0.001 0.216 0.106 1.000 0.110 0.159 0.142 0.166 0.161 0.184 0.175 0.212 0.178 0.168 0.167 0.137 0.112 0.113 0.098
58 0.006 0.007 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.005 0.004 0.004 0.003 0.003 0.003 0.002 0.001 0.248 0.176 0.110 1.000 0.075 0.151 0.197 0.166 0.220 0.181 0.279 0.201 0.190 0.210 0.151 0.108 0.140 0.123
59 0.006 0.007 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.005 0.005 0.004 0.003 0.003 0.003 0.002 0.001 0.186 0.152 0.159 0.075 1.000 0.026 0.153 0.141 0.160 0.153 0.182 0.154 0.145 0.144 0.118 0.097 0.096 0.084
60 0.006 0.007 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.005 0.004 0.004 0.003 0.003 0.003 0.002 0.001 0.168 0.145 0.142 0.151 0.026 1.000 0.028 0.142 0.144 0.144 0.158 0.141 0.133 0.127 0.109 0.093 0.086 0.074
61 0.005 0.006 0.005 0.006 0.006 0.005 0.005 0.006 0.005 0.005 0.005 0.004 0.003 0.003 0.002 0.002 0.002 0.001 0.215 0.157 0.166 0.197 0.153 0.028 1.000 0.044 0.196 0.163 0.231 0.176 0.167 0.177 0.133 0.101 0.118 0.105
62 0.005 0.006 0.005 0.006 0.006 0.005 0.005 0.006 0.005 0.005 0.005 0.004 0.003 0.003 0.002 0.002 0.002 0.001 0.198 0.162 0.161 0.166 0.141 0.142 0.044 1.000 0.064 0.176 0.190 0.168 0.159 0.153 0.130 0.110 0.104 0.091
63 0.005 0.006 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.004 0.004 0.003 0.003 0.002 0.002 0.002 0.001 0.244 0.175 0.184 0.220 0.160 0.144 0.196 0.064 1.000 0.086 0.271 0.203 0.193 0.204 0.155 0.119 0.137 0.121
64 0.005 0.006 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.004 0.004 0.003 0.003 0.002 0.002 0.002 0.001 0.221 0.177 0.175 0.181 0.153 0.144 0.163 0.176 0.086 1.000 0.123 0.198 0.180 0.174 0.148 0.126 0.119 0.104
65 0.004 0.005 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.003 0.002 0.002 0.002 0.002 0.001 0.001 0.299 0.193 0.212 0.279 0.182 0.158 0.231 0.190 0.271 0.123 1.000 0.159 0.240 0.261 0.187 0.133 0.175 0.157
66 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.003 0.003 0.003 0.002 0.002 0.002 0.002 0.001 0.001 0.237 0.174 0.178 0.201 0.154 0.141 0.176 0.168 0.203 0.198 0.159 1.000 0.098 0.201 0.156 0.126 0.133 0.117
67 0.003 0.004 0.003 0.004 0.004 0.003 0.003 0.004 0.003 0.003 0.003 0.003 0.002 0.002 0.002 0.001 0.001 0.001 0.224 0.165 0.168 0.190 0.145 0.133 0.167 0.159 0.193 0.180 0.240 0.098 1.000 0.094 0.155 0.119 0.126 0.111
68 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.002 0.002 0.002 0.001 0.001 0.001 0.001 0.233 0.156 0.167 0.210 0.144 0.127 0.177 0.153 0.204 0.174 0.261 0.201 0.094 1.000 0.059 0.116 0.135 0.121
69 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.002 0.002 0.002 0.002 0.002 0.001 0.001 0.001 0.001 0.182 0.134 0.137 0.151 0.118 0.109 0.133 0.130 0.155 0.148 0.187 0.156 0.155 0.059 1.000 0.010 0.106 0.089
70 0.002 0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.000 0.142 0.116 0.112 0.108 0.097 0.093 0.101 0.110 0.119 0.126 0.133 0.126 0.119 0.116 0.010 1.000 -0.010 0.070
71 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.157 0.105 0.113 0.140 0.096 0.086 0.118 0.104 0.137 0.119 0.175 0.133 0.126 0.135 0.106 -0.010 1.000 0.015
72 0.001 0.002 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.000 0.138 0.091 0.098 0.123 0.084 0.074 0.105 0.091 0.121 0.104 0.157 0.117 0.111 0.121 0.089 0.070 0.015 1.000