This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

PHENIX Collaboration

Improving constraints on gluon spin-momentum correlations in transversely polarized protons via midrapidity open-heavy-flavor electrons in p+pp^{\uparrow}+p collisions at s=200\sqrt{s}=200 GeV

N.J. Abdulameer Debrecen University, H-4010 Debrecen, Egyetem tér 1, Hungary    U. Acharya Georgia State University, Atlanta, Georgia 30303, USA    C. Aidala Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040, USA    Y. Akiba akiba@rcf.rhic.bnl.gov RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198, Japan RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973-5000, USA    M. Alfred Department of Physics and Astronomy, Howard University, Washington, DC 20059, USA    V. Andrieux Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040, USA    N. Apadula Iowa State University, Ames, Iowa 50011, USA    H. Asano Kyoto University, Kyoto 606-8502, Japan RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198, Japan    B. Azmoun Physics Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA    V. Babintsev IHEP Protvino, State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, 142281, Russia    N.S. Bandara Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003-9337, USA    K.N. Barish University of California-Riverside, Riverside, California 92521, USA    S. Bathe Baruch College, City University of New York, New York, New York, 10010 USA RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973-5000, USA    A. Bazilevsky Physics Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA    M. Beaumier University of California-Riverside, Riverside, California 92521, USA    R. Belmont University of Colorado, Boulder, Colorado 80309, USA Physics and Astronomy Department, University of North Carolina at Greensboro, Greensboro, North Carolina 27412, USA    A. Berdnikov Saint Petersburg State Polytechnic University, St. Petersburg, 195251 Russia    Y. Berdnikov Saint Petersburg State Polytechnic University, St. Petersburg, 195251 Russia    L. Bichon Vanderbilt University, Nashville, Tennessee 37235, USA    B. Blankenship Vanderbilt University, Nashville, Tennessee 37235, USA    D.S. Blau National Research Center “Kurchatov Institute”, Moscow, 123098 Russia National Research Nuclear University, MEPhI, Moscow Engineering Physics Institute, Moscow, 115409, Russia    J.S. Bok New Mexico State University, Las Cruces, New Mexico 88003, USA    V. Borisov Saint Petersburg State Polytechnic University, St. Petersburg, 195251 Russia    M.L. Brooks Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA    J. Bryslawskyj Baruch College, City University of New York, New York, New York, 10010 USA University of California-Riverside, Riverside, California 92521, USA    V. Bumazhnov IHEP Protvino, State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, 142281, Russia    S. Campbell Columbia University, New York, New York 10027 and Nevis Laboratories, Irvington, New York 10533, USA    V. Canoa Roman Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA    R. Cervantes Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA    M. Chiu Physics Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA    C.Y. Chi Columbia University, New York, New York 10027 and Nevis Laboratories, Irvington, New York 10533, USA    I.J. Choi University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA    J.B. Choi Deceased Jeonbuk National University, Jeonju, 54896, Korea    Z. Citron Weizmann Institute, Rehovot 76100, Israel    M. Connors Georgia State University, Atlanta, Georgia 30303, USA RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973-5000, USA    R. Corliss Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA    Y. Corrales Morales Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA    N. Cronin Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA    M. Csanád ELTE, Eötvös Loránd University, H-1117 Budapest, Pázmány P. s. 1/A, Hungary    T. Csörgő MATE, Laboratory of Femtoscopy, Károly Róbert Campus, H-3200 Gyöngyös, Mátraiút 36, Hungary Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Hungarian Academy of Sciences (Wigner RCP, RMKI) H-1525 Budapest 114, POBox 49, Budapest, Hungary    T.W. Danley Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701, USA    M.S. Daugherity Abilene Christian University, Abilene, Texas 79699, USA    G. David Physics Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA    C.T. Dean Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA    K. DeBlasio University of New Mexico, Albuquerque, New Mexico 87131, USA    K. Dehmelt Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA    A. Denisov IHEP Protvino, State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, 142281, Russia    A. Deshpande RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973-5000, USA Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA    E.J. Desmond Physics Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA    A. Dion Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA    D. Dixit Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA    V. Doomra Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA    J.H. Do Yonsei University, IPAP, Seoul 120-749, Korea    A. Drees Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA    K.A. Drees Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA    J.M. Durham Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA    A. Durum IHEP Protvino, State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, 142281, Russia    H. En’yo RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198, Japan    A. Enokizono RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198, Japan Physics Department, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima, Tokyo 171-8501, Japan    R. Esha Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA    S. Esumi Tomonaga Center for the History of the Universe, University of Tsukuba, Tsukuba, Ibaraki 305, Japan    B. Fadem Muhlenberg College, Allentown, Pennsylvania 18104-5586, USA    W. Fan Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA    N. Feege Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA    D.E. Fields University of New Mexico, Albuquerque, New Mexico 87131, USA    M. Finger, Jr Charles University, Ovocný trh 5, Praha 1, 116 36, Prague, Czech Republic    M. Finger Charles University, Ovocný trh 5, Praha 1, 116 36, Prague, Czech Republic    D. Firak Debrecen University, H-4010 Debrecen, Egyetem tér 1, Hungary Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA    D. Fitzgerald Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040, USA    S.L. Fokin National Research Center “Kurchatov Institute”, Moscow, 123098 Russia    J.E. Frantz Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701, USA    A. Franz Physics Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA    A.D. Frawley Florida State University, Tallahassee, Florida 32306, USA    Y. Fukuda Tomonaga Center for the History of the Universe, University of Tsukuba, Tsukuba, Ibaraki 305, Japan    P. Gallus Czech Technical University, Zikova 4, 166 36 Prague 6, Czech Republic    C. Gal Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA    P. Garg Department of Physics, Banaras Hindu University, Varanasi 221005, India Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA    H. Ge Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA    M. Giles Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA    F. Giordano University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA    Y. Goto RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198, Japan RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973-5000, USA    N. Grau Department of Physics, Augustana University, Sioux Falls, South Dakota 57197, USA    S.V. Greene Vanderbilt University, Nashville, Tennessee 37235, USA    M. Grosse Perdekamp University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA    T. Gunji Center for Nuclear Study, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan    H. Guragain Georgia State University, Atlanta, Georgia 30303, USA    T. Hachiya Nara Women’s University, Kita-uoya Nishi-machi Nara 630-8506, Japan RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198, Japan RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973-5000, USA    J.S. Haggerty Physics Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA    K.I. Hahn Ewha Womans University, Seoul 120-750, Korea    H. Hamagaki Center for Nuclear Study, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan    H.F. Hamilton Abilene Christian University, Abilene, Texas 79699, USA    J. Hanks Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA    S.Y. Han Ewha Womans University, Seoul 120-750, Korea Korea University, Seoul 02841, Korea    M. Harvey Texas Southern University, Houston, TX 77004, USA    S. Hasegawa Advanced Science Research Center, Japan Atomic Energy Agency, 2-4 Shirakata Shirane, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195, Japan    T.O.S. Haseler Georgia State University, Atlanta, Georgia 30303, USA    T.K. Hemmick Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA    X. He Georgia State University, Atlanta, Georgia 30303, USA    J.C. Hill Iowa State University, Ames, Iowa 50011, USA    K. Hill University of Colorado, Boulder, Colorado 80309, USA    A. Hodges Georgia State University, Atlanta, Georgia 30303, USA University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA    R.S. Hollis University of California-Riverside, Riverside, California 92521, USA    K. Homma Physics Program and International Institute for Sustainability with Knotted Chiral Meta Matter (SKCM2), Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan    B. Hong Korea University, Seoul 02841, Korea    T. Hoshino Physics Program and International Institute for Sustainability with Knotted Chiral Meta Matter (SKCM2), Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan    N. Hotvedt Iowa State University, Ames, Iowa 50011, USA    J. Huang Physics Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA    K. Imai Advanced Science Research Center, Japan Atomic Energy Agency, 2-4 Shirakata Shirane, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195, Japan    M. Inaba Tomonaga Center for the History of the Universe, University of Tsukuba, Tsukuba, Ibaraki 305, Japan    A. Iordanova University of California-Riverside, Riverside, California 92521, USA    D. Isenhower Abilene Christian University, Abilene, Texas 79699, USA    D. Ivanishchev PNPI, Petersburg Nuclear Physics Institute, Gatchina, Leningrad region, 188300, Russia    B.V. Jacak Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA    M. Jezghani Georgia State University, Atlanta, Georgia 30303, USA    X. Jiang Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA    Z. Ji Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA    B.M. Johnson Physics Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA Georgia State University, Atlanta, Georgia 30303, USA    D. Jouan IPN-Orsay, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, BP1, F-91406, Orsay, France    D.S. Jumper University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA    J.H. Kang Yonsei University, IPAP, Seoul 120-749, Korea    D. Kapukchyan University of California-Riverside, Riverside, California 92521, USA    S. Karthas Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA    D. Kawall Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003-9337, USA    A.V. Kazantsev National Research Center “Kurchatov Institute”, Moscow, 123098 Russia    V. Khachatryan Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA    A. Khanzadeev PNPI, Petersburg Nuclear Physics Institute, Gatchina, Leningrad region, 188300, Russia    A. Khatiwada Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA    C. Kim University of California-Riverside, Riverside, California 92521, USA Korea University, Seoul 02841, Korea    E.-J. Kim Jeonbuk National University, Jeonju, 54896, Korea    M. Kim Department of Physics and Astronomy, Seoul National University, Seoul 151-742, Korea    T. Kim Ewha Womans University, Seoul 120-750, Korea    D. Kincses ELTE, Eötvös Loránd University, H-1117 Budapest, Pázmány P. s. 1/A, Hungary    A. Kingan Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA    E. Kistenev Physics Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA    J. Klatsky Florida State University, Tallahassee, Florida 32306, USA    P. Kline Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA    T. Koblesky University of Colorado, Boulder, Colorado 80309, USA    D. Kotov PNPI, Petersburg Nuclear Physics Institute, Gatchina, Leningrad region, 188300, Russia Saint Petersburg State Polytechnic University, St. Petersburg, 195251 Russia    L. Kovacs ELTE, Eötvös Loránd University, H-1117 Budapest, Pázmány P. s. 1/A, Hungary    S. Kudo Tomonaga Center for the History of the Universe, University of Tsukuba, Tsukuba, Ibaraki 305, Japan    B. Kurgyis ELTE, Eötvös Loránd University, H-1117 Budapest, Pázmány P. s. 1/A, Hungary Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA    K. Kurita Physics Department, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima, Tokyo 171-8501, Japan    Y. Kwon Yonsei University, IPAP, Seoul 120-749, Korea    J.G. Lajoie Iowa State University, Ames, Iowa 50011, USA    D. Larionova Saint Petersburg State Polytechnic University, St. Petersburg, 195251 Russia    A. Lebedev Iowa State University, Ames, Iowa 50011, USA    S. Lee Yonsei University, IPAP, Seoul 120-749, Korea    S.H. Lee Iowa State University, Ames, Iowa 50011, USA Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040, USA Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA    M.J. Leitch Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA    Y.H. Leung Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA    N.A. Lewis Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040, USA    S.H. Lim Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA Pusan National University, Pusan 46241, Korea Yonsei University, IPAP, Seoul 120-749, Korea    M.X. Liu Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA    X. Li Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA    V.-R. Loggins University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA    D.A. Loomis Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040, USA    K. Lovasz Debrecen University, H-4010 Debrecen, Egyetem tér 1, Hungary    D. Lynch Physics Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA    S. Lökös ELTE, Eötvös Loránd University, H-1117 Budapest, Pázmány P. s. 1/A, Hungary    T. Majoros Debrecen University, H-4010 Debrecen, Egyetem tér 1, Hungary    Y.I. Makdisi Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA    M. Makek Department of Physics, Faculty of Science, University of Zagreb, Bijenička c. 32 HR-10002 Zagreb, Croatia    V.I. Manko National Research Center “Kurchatov Institute”, Moscow, 123098 Russia    E. Mannel Physics Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA    M. McCumber Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA    P.L. McGaughey Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA    D. McGlinchey University of Colorado, Boulder, Colorado 80309, USA Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA    C. McKinney University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA    M. Mendoza University of California-Riverside, Riverside, California 92521, USA    A.C. Mignerey University of Maryland, College Park, Maryland 20742, USA    A. Milov Weizmann Institute, Rehovot 76100, Israel    D.K. Mishra Bhabha Atomic Research Centre, Bombay 400 085, India    J.T. Mitchell Physics Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA    M. Mitrankova Saint Petersburg State Polytechnic University, St. Petersburg, 195251 Russia    Iu. Mitrankov Saint Petersburg State Polytechnic University, St. Petersburg, 195251 Russia    G. Mitsuka KEK, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801, Japan RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973-5000, USA    S. Miyasaka RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198, Japan Department of Physics, Tokyo Institute of Technology, Oh-okayama, Meguro, Tokyo 152-8551, Japan    S. Mizuno RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198, Japan Tomonaga Center for the History of the Universe, University of Tsukuba, Tsukuba, Ibaraki 305, Japan    A.K. Mohanty Bhabha Atomic Research Centre, Bombay 400 085, India    M.M. Mondal Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA    P. Montuenga University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA    T. Moon Korea University, Seoul 02841, Korea Yonsei University, IPAP, Seoul 120-749, Korea    D.P. Morrison Physics Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA    A. Muhammad Mississippi State University, Mississippi State, Mississippi 39762, USA    B. Mulilo Korea University, Seoul 02841, Korea RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198, Japan Department of Physics, School of Natural Sciences, University of Zambia, Great East Road Campus, Box 32379, Lusaka, Zambia    T. Murakami Kyoto University, Kyoto 606-8502, Japan RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198, Japan    J. Murata RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198, Japan Physics Department, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima, Tokyo 171-8501, Japan    K. Nagai Department of Physics, Tokyo Institute of Technology, Oh-okayama, Meguro, Tokyo 152-8551, Japan    K. Nagashima Physics Program and International Institute for Sustainability with Knotted Chiral Meta Matter (SKCM2), Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan    T. Nagashima Physics Department, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima, Tokyo 171-8501, Japan    J.L. Nagle University of Colorado, Boulder, Colorado 80309, USA    M.I. Nagy ELTE, Eötvös Loránd University, H-1117 Budapest, Pázmány P. s. 1/A, Hungary    I. Nakagawa RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198, Japan RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973-5000, USA    K. Nakano RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198, Japan Department of Physics, Tokyo Institute of Technology, Oh-okayama, Meguro, Tokyo 152-8551, Japan    C. Nattrass University of Tennessee, Knoxville, Tennessee 37996, USA    S. Nelson Florida A&M University, Tallahassee, FL 32307, USA    T. Niida Tomonaga Center for the History of the Universe, University of Tsukuba, Tsukuba, Ibaraki 305, Japan    R. Nouicer Physics Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973-5000, USA    N. Novitzky Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA Tomonaga Center for the History of the Universe, University of Tsukuba, Tsukuba, Ibaraki 305, Japan    T. Novák MATE, Laboratory of Femtoscopy, Károly Róbert Campus, H-3200 Gyöngyös, Mátraiút 36, Hungary Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Hungarian Academy of Sciences (Wigner RCP, RMKI) H-1525 Budapest 114, POBox 49, Budapest, Hungary    G. Nukazuka RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198, Japan RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973-5000, USA    A.S. Nyanin National Research Center “Kurchatov Institute”, Moscow, 123098 Russia    E. O’Brien Physics Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA    C.A. Ogilvie Iowa State University, Ames, Iowa 50011, USA    J. Oh Pusan National University, Pusan 46241, Korea    J.D. Orjuela Koop University of Colorado, Boulder, Colorado 80309, USA    M. Orosz Debrecen University, H-4010 Debrecen, Egyetem tér 1, Hungary    J.D. Osborn Physics Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040, USA Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA    A. Oskarsson Department of Physics, Lund University, Box 118, SE-221 00 Lund, Sweden    G.J. Ottino University of New Mexico, Albuquerque, New Mexico 87131, USA    K. Ozawa KEK, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801, Japan Tomonaga Center for the History of the Universe, University of Tsukuba, Tsukuba, Ibaraki 305, Japan    V. Pantuev Institute for Nuclear Research of the Russian Academy of Sciences, prospekt 60-letiya Oktyabrya 7a, Moscow 117312, Russia    V. Papavassiliou New Mexico State University, Las Cruces, New Mexico 88003, USA    J.S. Park Department of Physics and Astronomy, Seoul National University, Seoul 151-742, Korea    S. Park Mississippi State University, Mississippi State, Mississippi 39762, USA Department of Physics and Astronomy, Seoul National University, Seoul 151-742, Korea Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA    M. Patel Iowa State University, Ames, Iowa 50011, USA    S.F. Pate New Mexico State University, Las Cruces, New Mexico 88003, USA    W. Peng Vanderbilt University, Nashville, Tennessee 37235, USA    D.V. Perepelitsa Physics Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA University of Colorado, Boulder, Colorado 80309, USA    G.D.N. Perera New Mexico State University, Las Cruces, New Mexico 88003, USA    D.Yu. Peressounko National Research Center “Kurchatov Institute”, Moscow, 123098 Russia    C.E. PerezLara Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA    J. Perry Iowa State University, Ames, Iowa 50011, USA    R. Petti Physics Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA    M. Phipps Physics Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA    C. Pinkenburg Physics Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA    R.P. Pisani Physics Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA    M. Potekhin Physics Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA    A. Pun Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701, USA    M.L. Purschke Physics Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA    P.V. Radzevich Saint Petersburg State Polytechnic University, St. Petersburg, 195251 Russia    N. Ramasubramanian Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA    K.F. Read Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA University of Tennessee, Knoxville, Tennessee 37996, USA    D. Reynolds Chemistry Department, Stony Brook University, SUNY, Stony Brook, New York 11794-3400, USA    V. Riabov National Research Nuclear University, MEPhI, Moscow Engineering Physics Institute, Moscow, 115409, Russia PNPI, Petersburg Nuclear Physics Institute, Gatchina, Leningrad region, 188300, Russia    Y. Riabov PNPI, Petersburg Nuclear Physics Institute, Gatchina, Leningrad region, 188300, Russia Saint Petersburg State Polytechnic University, St. Petersburg, 195251 Russia    D. Richford Baruch College, City University of New York, New York, New York, 10010 USA    T. Rinn University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA Iowa State University, Ames, Iowa 50011, USA    S.D. Rolnick University of California-Riverside, Riverside, California 92521, USA    M. Rosati Iowa State University, Ames, Iowa 50011, USA    Z. Rowan Baruch College, City University of New York, New York, New York, 10010 USA    J. Runchey Iowa State University, Ames, Iowa 50011, USA    A.S. Safonov Saint Petersburg State Polytechnic University, St. Petersburg, 195251 Russia    T. Sakaguchi Physics Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA    H. Sako Advanced Science Research Center, Japan Atomic Energy Agency, 2-4 Shirakata Shirane, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195, Japan    V. Samsonov National Research Nuclear University, MEPhI, Moscow Engineering Physics Institute, Moscow, 115409, Russia PNPI, Petersburg Nuclear Physics Institute, Gatchina, Leningrad region, 188300, Russia    M. Sarsour Georgia State University, Atlanta, Georgia 30303, USA    S. Sato Advanced Science Research Center, Japan Atomic Energy Agency, 2-4 Shirakata Shirane, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195, Japan    B. Schaefer Vanderbilt University, Nashville, Tennessee 37235, USA    B.K. Schmoll University of Tennessee, Knoxville, Tennessee 37996, USA    K. Sedgwick University of California-Riverside, Riverside, California 92521, USA    R. Seidl RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198, Japan RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973-5000, USA    A. Sen Iowa State University, Ames, Iowa 50011, USA University of Tennessee, Knoxville, Tennessee 37996, USA    R. Seto University of California-Riverside, Riverside, California 92521, USA    A. Sexton University of Maryland, College Park, Maryland 20742, USA    D. Sharma Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA    I. Shein IHEP Protvino, State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, 142281, Russia    M. Shibata Nara Women’s University, Kita-uoya Nishi-machi Nara 630-8506, Japan    T.-A. Shibata RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198, Japan Department of Physics, Tokyo Institute of Technology, Oh-okayama, Meguro, Tokyo 152-8551, Japan    K. Shigaki Physics Program and International Institute for Sustainability with Knotted Chiral Meta Matter (SKCM2), Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan    M. Shimomura Iowa State University, Ames, Iowa 50011, USA Nara Women’s University, Kita-uoya Nishi-machi Nara 630-8506, Japan    T. Shioya Tomonaga Center for the History of the Universe, University of Tsukuba, Tsukuba, Ibaraki 305, Japan    Z. Shi Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA    P. Shukla Bhabha Atomic Research Centre, Bombay 400 085, India    A. Sickles University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA    C.L. Silva Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA    D. Silvermyr Department of Physics, Lund University, Box 118, SE-221 00 Lund, Sweden    B.K. Singh Department of Physics, Banaras Hindu University, Varanasi 221005, India    C.P. Singh Department of Physics, Banaras Hindu University, Varanasi 221005, India    V. Singh Department of Physics, Banaras Hindu University, Varanasi 221005, India    M. Slunečka Charles University, Ovocný trh 5, Praha 1, 116 36, Prague, Czech Republic    K.L. Smith Florida State University, Tallahassee, Florida 32306, USA    M. Snowball Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA    R.A. Soltz Lawrence Livermore National Laboratory, Livermore, California 94550, USA    W.E. Sondheim Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA    S.P. Sorensen University of Tennessee, Knoxville, Tennessee 37996, USA    I.V. Sourikova Physics Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA    P.W. Stankus Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA    S.P. Stoll Physics Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA    T. Sugitate Physics Program and International Institute for Sustainability with Knotted Chiral Meta Matter (SKCM2), Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan    A. Sukhanov Physics Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA    T. Sumita RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198, Japan    J. Sun Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA    Z. Sun Debrecen University, H-4010 Debrecen, Egyetem tér 1, Hungary    J. Sziklai Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Hungarian Academy of Sciences (Wigner RCP, RMKI) H-1525 Budapest 114, POBox 49, Budapest, Hungary    R. Takahama Nara Women’s University, Kita-uoya Nishi-machi Nara 630-8506, Japan    K. Tanida Advanced Science Research Center, Japan Atomic Energy Agency, 2-4 Shirakata Shirane, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195, Japan RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973-5000, USA Department of Physics and Astronomy, Seoul National University, Seoul 151-742, Korea    M.J. Tannenbaum Physics Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA    S. Tarafdar Vanderbilt University, Nashville, Tennessee 37235, USA Weizmann Institute, Rehovot 76100, Israel    A. Taranenko National Research Nuclear University, MEPhI, Moscow Engineering Physics Institute, Moscow, 115409, Russia Chemistry Department, Stony Brook University, SUNY, Stony Brook, New York 11794-3400, USA    G. Tarnai Debrecen University, H-4010 Debrecen, Egyetem tér 1, Hungary    R. Tieulent Georgia State University, Atlanta, Georgia 30303, USA IPNL, CNRS/IN2P3, Univ Lyon, Université Lyon 1, F-69622, Villeurbanne, France    A. Timilsina Iowa State University, Ames, Iowa 50011, USA    T. Todoroki RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198, Japan RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973-5000, USA Tomonaga Center for the History of the Universe, University of Tsukuba, Tsukuba, Ibaraki 305, Japan    M. Tomášek Czech Technical University, Zikova 4, 166 36 Prague 6, Czech Republic    C.L. Towell Abilene Christian University, Abilene, Texas 79699, USA    R.S. Towell Abilene Christian University, Abilene, Texas 79699, USA    I. Tserruya Weizmann Institute, Rehovot 76100, Israel    Y. Ueda Physics Program and International Institute for Sustainability with Knotted Chiral Meta Matter (SKCM2), Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan    B. Ujvari Debrecen University, H-4010 Debrecen, Egyetem tér 1, Hungary    H.W. van Hecke Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA    J. Velkovska Vanderbilt University, Nashville, Tennessee 37235, USA    M. Virius Czech Technical University, Zikova 4, 166 36 Prague 6, Czech Republic    V. Vrba Czech Technical University, Zikova 4, 166 36 Prague 6, Czech Republic Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 182 21 Prague 8, Czech Republic    N. Vukman Department of Physics, Faculty of Science, University of Zagreb, Bijenička c. 32 HR-10002 Zagreb, Croatia    X.R. Wang New Mexico State University, Las Cruces, New Mexico 88003, USA RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973-5000, USA    Z. Wang Baruch College, City University of New York, New York, New York, 10010 USA    Y.S. Watanabe Center for Nuclear Study, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan    C.P. Wong Georgia State University, Atlanta, Georgia 30303, USA Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA    C.L. Woody Physics Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA    L. Xue Georgia State University, Atlanta, Georgia 30303, USA    C. Xu New Mexico State University, Las Cruces, New Mexico 88003, USA    Q. Xu Vanderbilt University, Nashville, Tennessee 37235, USA    S. Yalcin Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA    Y.L. Yamaguchi Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA    H. Yamamoto Tomonaga Center for the History of the Universe, University of Tsukuba, Tsukuba, Ibaraki 305, Japan    A. Yanovich IHEP Protvino, State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, 142281, Russia    I. Yoon Department of Physics and Astronomy, Seoul National University, Seoul 151-742, Korea    J.H. Yoo Korea University, Seoul 02841, Korea    I.E. Yushmanov National Research Center “Kurchatov Institute”, Moscow, 123098 Russia    H. Yu New Mexico State University, Las Cruces, New Mexico 88003, USA Peking University, Beijing 100871, People’s Republic of China    W.A. Zajc Columbia University, New York, New York 10027 and Nevis Laboratories, Irvington, New York 10533, USA    A. Zelenski Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA    L. Zou University of California-Riverside, Riverside, California 92521, USA
(August 17, 2025)
Abstract

Polarized proton-proton collisions provide leading-order access to gluons, presenting an opportunity to constrain gluon spin-momentum correlations within transversely polarized protons and enhance our understanding of the three-dimensional structure of the proton. Midrapidity open-heavy-flavor production at s=200\sqrt{s}=200 GeV is dominated by gluon-gluon fusion, providing heightened sensitivity to gluon dynamics relative to other production channels. Transverse single-spin asymmetries of positrons and electrons from heavy-flavor hadron decays are measured at midrapidity using the PHENIX detector at the Relativistic Heavy Ion Collider. These charge-separated measurements are sensitive to gluon correlators that can in principle be related to gluon orbital angular momentum via model calculations. Explicit constraints on gluon correlators are extracted for two separate models, one of which had not been constrained previously.

I Introduction

Polarized proton-proton collisions provide a unique opportunity to improve our understanding of gluon contributions to the spin structure of the proton, because they are accessible at leading order, which is not true for lepton-hadron scattering. The complex spin structure of the proton leads to emergent properties such as spin-momentum and spin-spin correlations analogous to the fine and hyperfine structure of atoms. These correlations in protons are experimentally accessible through observables known as transverse single-spin asymmetries (TSSAs). TSSAs quantify azimuthal modulations of particle production in collisions of transversely polarized nucleons with unpolarized particles, and have been measured to reach magnitudes up to 40% in hadron-hadron collisions [1, 2, 3, 4]. Perturbative quantum chromodynamics (pQCD) calculations had predicted TSSAs of <1<1% from purely perturbative contributions [5]; recent calculations suggest small additional perturbative contributions [6].

Two complementary theoretical frameworks exist for describing large TSSAs in which contributions arise from nonperturbative elements of the factorized cross section — transverse-momentum-dependent (TMD) factorization [7, 8, 9], and twist-3 factorization [10, 11] (see Ref. [12] for a recent review). The two frameworks are related, and phenomenological arguments indicate TSSAs in various reactions share a common origin in multiparton correlations [13]. The TMD framework has explicit dependence on transverse momentum kTk_{T} of partons within hadrons in addition to the longitudinal momentum fraction xx. In this approach, standard collinear parton distribution functions (PDFs) and fragmentation functions (FFs) are replaced with TMD functions. The twist-3 approach considers power-suppressed terms with respect to the hard-scattering energy scale QQ in the factorization expansion. Constraining TMD functions experimentally requires access to both a hard scale QQ and soft scale kTk_{T} sensitive to partonic transverse momentum in the proton or the process of hadronization, with QkTQ\gg k_{T}, while the higher-twist formalism only requires access to a hard scale that is represented by the transverse momentum of the produced particle (pTp_{T}). Twist-3 correlation functions can be written in terms of kTk_{T} moments of corresponding TMDs [14]. Both frameworks have demonstrated success in modeling TSSAs in complementary regions of pTp_{T} [14, 15, 16], and are relevant for constraining orbital angular momentum of quarks and gluons in protons [17, 18, 19]. At twist-3, quantum interference between standard 222\rightarrow 2 QCD processes and some processes involving an extra gluon must be considered, introducing additional terms to cross-section calculations depending on the number of colliding or produced hadrons. These terms encode quantum interference in twist-3 correlation functions convoluted with standard collinear PDFs and FFs. TSSAs are defined in Eq. (6), leading to the following proportionality at twist-3 [20, 21]:

ANa,b,cϕa/A(3)(x1,x2,s)ϕb/B(x)σ^DcC(z)+a,b,cδqa/A(x,s)ϕb/B(3)(x1,x2)σ^DcC(z)+a,b,cδqa/A(x,s)ϕb/B(x)σ^′′DcC(3)(z1,z2)\displaystyle\small\begin{aligned} A_{N}\propto\sum_{a,b,c}\phi^{(3)}_{a/A}(x_{1},x_{2},\vec{s}_{\perp})\otimes\phi_{b/B}(x^{\prime})\otimes\hat{\sigma}\otimes D_{c\rightarrow C}(z)\\ +\sum_{a,b,c}\delta q_{a/A}(x,\vec{s}_{\perp})\otimes\phi^{(3)}_{b/B}(x^{\prime}_{1},x^{\prime}_{2})\otimes\hat{\sigma}^{\prime}\otimes D_{c\rightarrow C}(z)\\ +\sum_{a,b,c}\delta q_{a/A}(x,\vec{s}_{\perp})\otimes\phi_{b/B}(x^{\prime})\otimes\hat{\sigma}^{\prime\prime}\otimes D^{(3)}_{c\rightarrow C}(z_{1},z_{2})\end{aligned} (1)

Each term with a superscript (3)(3) corresponds to a twist-3 correlation function; the rest are at leading twist (twist-2), where \otimes represents a convolution in longitudinal momentum fractions (xx) of partons in parent protons and collinear momentum fractions (zz) of produced hadrons with respect to their originating partons [21]. The primed variables originate from the unpolarized proton in the initial state, and the numbered variables appear in twist-3 correlators, where multiparton correlations must be considered. The ϕ\phi and DD denote PDFs and FFs respectively, where the lowercase subscripts represent the parton type, and the uppercase subscripts represent the parent hadron. The term δqx/X(x,s)\delta q_{x/X}(x,\vec{s}_{\perp}) is the transversity distribution, a spin-spin correlation of transversely polarized quarks in transversely polarized hadrons [22]. Twist-3 correlators have more intuitive physical meaning through their relation to corresponding TMDs [14, 7, 8, 9].

In pp++pp collisions at s=200\sqrt{s}=200 GeV, open-heavy-flavor (OHF) production at midrapidity is dominated by gluon-gluon fusion, receiving only a small contribution from quark-antiquark annihilation [23]. In gluon-gluon fusion events, only the first term in Eq. (1) is relevant (as the gluon does not have a transversity distribution in spin 1/21/2 nucleons), providing sensitivity to the trigluon correlation functions in polarized protons. The relevant twist-3 correlators for quark-antiquark annihilation and gluon-gluon fusion are the Efremov-Teryaev-Qiu-Sterman (qgqqgq) correlator [10, 24], and the trigluon (gggggg) correlators [25, 26, 27, 28, 29] respectively. Note that the trigluon correlators were introduced in Ref. [25], and were subsequently clarified to be two independent functions [26, 27, 28, 29]. The qgqqgq correlator has been experimentally constrained from global fits, discussed in Ref. [13], while the gggggg correlators have received less attention, with few measurements capable of providing indirect constraints [30, 31, 32, 33, 34, 35] or direct constraints [36, 37].

The TSSA for open-charm production in p+pp^{\uparrow}+p collisions at s=200\sqrt{s}=200 GeV was calculated in Refs. [38] and [39] within the twist-3 framework. The trigluon correlation functions are defined in Ref. [38] as TG(f)(x,x)T_{G}^{(f)}(x,x) (antisymmetric) and TG(d)(x,x)T_{G}^{(d)}(x,x) (symmetric), where the (f)(f) and (d)(d) superscripts represent three gluon-field color indices contracting with antisymmetric or symmetric structure tensors. Lack of direct information on the trigluon correlators has led to simple phenomenological models with normalization parameters to the unpolarized gluon PDF. In Ref. [38] (following from Ref. [20]) parameters λf\lambda_{f} and λd\lambda_{d} are introduced:

TG(f)(x,x)=λfG(x),TG(d)(x,x)=λdG(x).T_{G}^{(f)}(x,x)=\lambda_{f}G(x),\hskip 30.00005ptT_{G}^{(d)}(x,x)=\lambda_{d}G(x). (2)

The trigluon correlation functions in Ref. [39] are instead defined as N(x1,x2)N(x_{1},x_{2}) (antisymmetric), and O(x1,x2)O(x_{1},x_{2}) (symmetric), with four independent contributions to TSSAs, {N(x,x),N(x,0),O(x,x),O(x,0)}\{N(x,x),N(x,0),O(x,x),O(x,0)\}. As shown in Ref. [39], at s=200\sqrt{s}=200 GeV the asymmetries depend on effective trigluon correlators N(x,x)N(x,0)N(x,x)-N(x,0) and O(x,x)+O(x,0)O(x,x)+O(x,0), which are directly related to TG(f)T_{G}^{(f)} and TG(d)T_{G}^{(d)} in Ref. [28]. Reference [39] introduces parameters KGK_{G} and KGK_{G}^{\prime} with the assumptions:

O(x,x)\displaystyle O(x,x) =O(x,0)=N(x,x)=N(x,0)\displaystyle=O(x,0)=N(x,x)=-N(x,0) (3)
[Model1]O(x,x)\displaystyle[{\rm Model1}]\ \ O(x,x) =KGxG(x)\displaystyle=K_{G}xG(x) (4)
[Model2]O(x,x)\displaystyle[{\rm Model2}]\ \ O(x,x) =KGxG(x)\displaystyle=K_{G}^{\prime}\sqrt{x}G(x) (5)

Note that the assumptions on the trigluon correlators in Eqs. 24, and 5 (e.g., the functional dependence on xx and the proportionality to the unpolarized gluon PDF) are oversimplified. For this reason, it is advantageous to compare to different models with various xx dependencies. The results presented in this paper place direct constraints on λf,λd,KG\lambda_{f},\lambda_{d},K_{G} and KGK_{G}^{\prime}.

Open-charm production at the Relativistic Heavy Ion Collider (RHIC) has also been investigated with the TMD factorization approach as a means of constraining the gluon Sivers PDF (see Refs. [40, 41, 42]). The measurements presented here will be useful in providing constraints to the gluon Sivers TMD PDF through constraining the twist-3 trigluon correlators, which are related to kTk_{T} moments of the gluon Sivers PDF [14].

II Data Analysis

The asymmetry measurements presented here utilize data recorded in 2015 by the PHENIX experiment at RHIC with collisions of transversely polarized protons on transversely polarized protons at s=200\sqrt{s}=200 GeV, and approximately 23 pb-1 of integrated luminosity. The polarization of each beam at RHIC in 2015 is measured to be 0.58±0.020.58\pm 0.02 for the clockwise beam and 0.60±0.020.60\pm 0.02 for the counterclockwise beam, with transverse polarization direction aligned vertically to the accelerator plane [43]. The polarization direction is varied from bunch to bunch (a) to reduce systematics related to detector coverage and performance, and (b) to allow for the polarization of a single beam to be considered at a time by averaging over the polarization directions of the opposing beam. This yields two independent data sets from which the transverse single-spin asymmetries are extracted, validated for consistency, and averaged to obtain the final result.

The PHENIX detector is described in detail in Ref. [44]. Detector subsystems used for midrapidity charged-particle detection comprise two central-arm spectrometers oriented to the left and right of the beam axis, each with acceptance |η|<0.35|\eta|<0.35 and Δϕ=0.5π\Delta\phi=0.5\pi, and a silicon vertex detector (VTX) [45, 46] with acceptance of |η|<1|\eta|<1 and Δϕ0.8π\Delta\phi\approx 0.8\pi per arm. The central arms contain drift and pad chambers for tracking [47], electromagnetic calorimeters (EMCal) to measure energy deposition of charged particles and photons [48], and a ring-imaging Čerenkov (RICH) detector for particle identification with e/πe/\pi separation up to 55 GeV/cc [49].

Curating the electron candidate sample follows the same procedure as in Ref. [50]. The electron candidate sample is composed of tracks reconstructed from hits in the drift and pad chambers of the central arm spectrometers coincident with hits in the silicon vertex detector. Tracks within 1.0<pT1.0<p_{T} (GeV/c) <5.0<5.0 that fire at least one photomultiplier (PMT) tube in the RICH detector, and that have a maximum displacement of 5 cm between the track projection and center of the ring of Čerenkov light as measured by the PMTs in the RICH are considered. In order to increase the electron purity, track energy EE deposited in the EMCal and track momentum pp should have a ratio near unity, as electrons deposit most of their energy in the EMCal while charged hadrons do not. The E/pE/p distribution for electron candidates in Run-15 was fit with an exponential + Gaussian, where the mean μE/p\mu_{E/p} and width σE/p\sigma_{E/p} of the Gaussian portion were extracted and used to impose the following condition |(E/pμE/p)/σE/p|<2\left|(E/p-\mu_{E/p})/\sigma_{E/p}\right|<2. Spatial displacements Δz\Delta z and Δϕ\Delta\phi of track projections and corresponding electromagnetic showers in the EMCal are required to be separated by no more than 3 standard deviations of the corresponding Δz\Delta z and Δϕ\Delta\phi distributions, and the probability that an EMCal cluster originates from an electromagnetic shower (as calculated by the shower shape) is required to be above 0.01. Tracks reconstructed in the central arms are projected to the VTX detector and fit to coincidental VTX hits via the iterative algorithm described in Ref. [51] — the fit is required to satisfy χ2/ndf<3\chi^{2}/ndf<3. A hit is required in both of the inner two layers of the VTX to veto conversion electrons created by photons interacting with detector material, and an additional hit is required in either of the outer layers of the VTX. The narrow opening angle between e+ee^{+}e^{-} from photonic conversions is exploited to further reduce background from conversions in the beam pipe or inner two layers of the VTX; more details for this and the VTX detector can be found in Ref. [50]. An additional requirement was placed on the number of live trigger counts per bunch crossing because the asymmetry analysis is performed bunch-by-bunch.

TSSAs can be calculated as amplitudes of sinusoidal modulations of azimuthal particle production:

AN(ϕ)=σ(ϕ)σ(ϕ)σ(ϕ)+σ(ϕ)=ANcosϕ,A_{N}(\phi)=\frac{\sigma^{\uparrow}(\phi)-\sigma^{\downarrow}(\phi)}{\sigma^{\uparrow}(\phi)+\sigma^{\downarrow}(\phi)}=A_{N}\cos\phi, (6)

where σ,(ϕ)\sigma^{\uparrow,\downarrow}(\phi) correspond to transversely polarized cross sections for different spin orientations. Due to the nature of the azimuthal angular acceptance of the PHENIX spectrometer arms, the measurements of midrapidity TSSAs are integrated in ϕ\phi for one arm at a time. This necessitates division by an azimuthal correction factor cosϕ\langle\mid\cos\phi\mid\rangle. Equation (6) must also be corrected for the polarization PP. All of these corrections are applied as seen in the “relative luminosity formula”, a well-established PHENIX method used in Refs. [37, 34, 36, 52, 53] to extract TSSAs:

AN=1PcosϕNNN+N.A_{N}=\frac{1}{P\langle\mid\cos\phi\mid\rangle}\frac{N^{\uparrow}-\mathcal{R}N^{\downarrow}}{N^{\uparrow}+\mathcal{R}N^{\downarrow}}. (7)

In Eq. (7), N,N^{\uparrow,\downarrow} are the spin-dependent yields for collisions with ,\uparrow,\downarrow polarized bunch crossings respectively, and =/\mathcal{R}=\mathcal{L}^{\uparrow}/\mathcal{L}^{\downarrow} is the relative luminosity, defined as the ratio of luminosities for collisions with oppositely oriented bunch crossing polarization. The azimuthal correction factor cosϕ\langle\mid\cos\phi\mid\rangle is calculated in each transverse momentum (pTp_{T}) bin for the electron candidate sample to account for detector efficiency effects. To serve as a cross check to Eq. (7), the asymmetries are also calculated with the “square root formula,” as shown in Eq. (8). The difference in asymmetries calculated with the separate methods is taken as a systematic uncertainty σdiffsys\sigma^{\rm sys}_{\rm diff}.

AN=1PcosϕNLNRNLNRNLNR+NLNR.A_{N}=\frac{1}{P\langle\mid\cos\phi\mid\rangle}\frac{\sqrt{N^{\uparrow}_{L}N^{\downarrow}_{R}}-\sqrt{N^{\downarrow}_{L}N^{\uparrow}_{R}}}{\sqrt{N^{\uparrow}_{L}N^{\downarrow}_{R}}+\sqrt{N^{\downarrow}_{L}N^{\uparrow}_{R}}}. (8)

The L,RL,R subscripts represent the left and right spectrometer arm with respect to the polarized proton-going direction. The square root formula cannot be used independently on each spectrometer arm, leading to only two independent data sets for cross validation and averaging corresponding to the two beams, rather than four independent data sets as is the case for the relative luminosity formula, corresponding to the two beams and two spectrometer arms. As an additional cross check, ANA_{N} was calculated as shown in Eq. 6, via sinusoidal fits, with 3 ϕ\phi bins per spectrometer arm, yielding consistent results with that of Eqs. 7 and 8.

Once ANA_{N} is calculated for the electron candidate sample, background corrections allow for extraction of the asymmetry for OHF decay electrons. The relevant background sources are electrons from other parent particles (π0,η\pi^{0},\eta, direct photons γ,J/ψ,KS0,K±\gamma,J/\psi,K^{0}_{S},K^{\pm}) and charged hadrons misidentified as electrons (primarily π±\pi^{\pm}). To calculate the background-corrected asymmetry, the fraction of each background source present in the data sample needs to be calculated and the background asymmetries need to be measured. Equation (9) shows the formula for extracting the OHFe{\rm OHF}\rightarrow{e} asymmetry from the electron-candidate-sample asymmetry,

ANOHFe=ANfh±ANh±fJ/ψANJ/ψ1fh±fJ/ψfπ0fηfγ,A_{N}^{{\rm OHF}\rightarrow e}=\frac{A_{N}-f_{h^{\pm}}A_{N}^{h^{\pm}}-f_{J/\psi}A_{N}^{J/\psi}}{1-f_{h^{\pm}}-f_{J/\psi}-f_{\pi^{0}}-f_{\eta}-f_{\gamma}}, (9)

where fif_{i} represent the background fractions, ANA_{N} is the asymmetry calculated on the electron candidate sample, and ANiA_{N}^{i} are the background asymmetries. The procedure to calculate the background fractions and a more detailed description of background sources can be found in Ref. [50]. This procedure is repeated in this analysis with the relevant pTp_{T} bins, and uncertainties on calculated background fractions are propagated through Eq. (9) to obtain systematic uncertainties σf±sys\sigma^{\rm sys}_{f^{\pm}}. Figure 1 shows the resulting background fractions for electrons and positrons combined. The Ke3 background source, which consists of Dalitz decays of K±K^{\pm} and KS0K^{0}_{S}, is heavily suppressed over the measured pTp_{T} range. The transverse single-spin asymmetries for K±K^{\pm} or KS0K^{0}_{S} have not been measured in s=200\sqrt{s}=200 GeV p+pp^{\uparrow}+p collisions. However, given that the Ke3 background fraction is on the order of 10310^{-3}, and is the smallest contributor, it is safely neglected in the background correction procedure. The relevant background fractions are calculated separately for positrons and electrons as shown in Table 1, with resulting background fractions shown in Figures 5 and 5.

Refer to caption
Figure 1: Fraction of measured electron candidates attributed to each background source (fif_{i}) – charge combined (+/-)
Table 1: Fractions of background fif_{i} present in each pTp_{T} bin for the open-heavy-flavor positrons and electrons, used as inputs to the background correction procedure, and shown in Figs. 5 and 5 respectively.
e±e^{\pm} pTp_{T} range (GeV/c) pT\left<p_{T}\right> (GeV/c) fπ0e±f_{\pi^{0}\rightarrow e^{\pm}} fηe±f_{\eta\rightarrow e^{\pm}} fγe±f_{\gamma\rightarrow e^{\pm}} fJ/ψe±f_{J/\psi\rightarrow e^{\pm}} fh±f_{h^{\pm}}
e+e^{+} 1.0 – 1.3 1.161 0.458 0.0738 0.00274 0.00916 0.0140
1.3 – 1.5 1.398 0.318 0.0592 0.00336 0.0195 0.00924
1.5 – 1.8 1.639 0.264 0.0582 0.00339 0.0344 0.0120
1.8 – 2.1 1.936 0.215 0.0458 0.00399 0.0520 0.0134
2.1 – 2.7 2.349 0.173 0.0394 0.00481 0.0823 0.0179
2.7 – 5.0 3.290 0.111 0.0297 0.00480 0.122 0.0300
ee^{-} 1.0 – 1.3 1.161 0.439 0.0704 0.00335 0.00900 0.0261
1.3 – 1.5 1.398 0.347 0.0692 0.00364 0.0206 0.0198
1.5 – 1.8 1.639 0.299 0.0665 0.00394 0.0375 0.0230
1.8 – 2.1 1.936 0.252 0.0478 0.00535 0.0577 0.0205
2.1 – 2.7 2.349 0.208 0.0429 0.00490 0.0872 0.0245
2.7 – 5.0 3.290 0.143 0.0296 0.00572 0.127 0.0279
Refer to caption
Figure 2: Fractions of measured positron candidates attributed to each background source (fif_{i}); results are shown in Table 1 and used as inputs to the background correction procedure – charge (+)
Refer to caption
Figure 3: Fractions of measured electron candidates attributed to each background source (fi)f_{i}); results are shown in Table 1 and used as inputs to the background correction procedure – charge (-)
Refer to caption
Figure 4: AN(OHFe±)A_{N}(OHF\rightarrow{e^{\pm}}) (red) circles and (blue) squares for positrons and electrons, respectively. Also plotted are predictions of AN(D0/D0¯e±)A_{N}(D^{0}/\bar{D^{0}}\rightarrow{e^{\pm}}) from Ref. [38], and AN((D0/D0¯+D+/)e±)A_{N}((D^{0}/\bar{D^{0}}+D^{+/-})\rightarrow e^{\pm}) from Ref. [39] for best-fit trigluon-correlator-normalization parameters, with the red/blue solid, dashed, and dotted lines corresponding to central values of the 1σ1\sigma confidence intervals shown in the legend.
Refer to caption
Figure 5: Results of the statistical analysis performed to extract best-fit parameters λf\lambda_{f} and λd\lambda_{d} by comparing data to theory [38]. χ2(λf,λd)χmin2\chi^{2}(\lambda_{f},\lambda_{d})-\chi^{2}_{\rm min} is shown for (a) e+e^{+} and (b) ee^{-}. Panel (c) shows the 1, 2, and 3σ\sigma confidence level regions, χ2(λf,λd)χmin2<n2\chi^{2}(\lambda_{f},\lambda_{d})-\chi^{2}_{\rm min}<n^{2} (n=1,2,3n=1,2,3).

TSSAs for each background source have been measured at PHENIX at midrapidity in p+pp^{\uparrow}+p collisions at s=200\sqrt{s}=200 GeV. The asymmetries for photonic background sources π0,η\pi^{0},\eta, and γ\gamma were all measured by PHENIX to be consistent with zero using the same dataset as this measurement [34, 37]. They are therefore set to zero in Eq. (9), with a systematic uncertainty σANBsys\sigma^{\rm sys}_{A_{N}^{B}} assigned for setting ANπ0=0A_{N}^{\pi^{0}}=0 and ANη=0A_{N}^{\eta}=0 based on propagating uncertainties from the measurements, while the uncertainty associated with setting the direct photon TSSA ANγ=0A_{N}^{\gamma}=0 is negligible because fγf_{\gamma} is on the order of 10310^{-3} (see Table 1). The TSSAs for J/ψJ/\psi [52] and charged hadrons [53] were measured with previous PHENIX data sets. The TSSA for J/ψJ/\psi has a large statistical uncertainty [52], and contributes significantly to the statistical uncertainty of this measurement, especially at high pTp_{T}. This is due to the azimuthal angle of the decay lepton becoming more strongly correlated with the azimuthal angle of the J/ψJ/\psi at higher pTp_{T}. Additionally, the statistical precision of AN(p+pJ/ψ+X)A_{N}(p^{\uparrow}+p\rightarrow J/\psi+X) could not be improved upon in the Run-15 data given the high degree of photonic electron background. The TSSA for midrapidity J/ψJ/\psi production measured in Ref. [52] was recalculated as a function of decay lepton pTp_{T} using pythia [54] decay simulations for the J/ψe+eJ/\psi\rightarrow e^{+}e^{-} channel to apply Eq. (9).

Due to the large contribution of statistical uncertainty coming from propagating the previously measured AN(p+pJ/ψ+X)A_{N}(p^{\uparrow}+p{\rightarrow}J/\psi+X) from Ref. [52] through the background correction formula (Eq. 9), we report nonphotonic electron and positron asymmetries in addition to the open-heavy-flavor-decay electron and positron asymmetries. This allows the statistical precision of the open-heavy-flavor result to be improved upon given a more statistically precise measurement of AN(p+pJ/ψ+X)A_{N}(p^{\uparrow}+p{\rightarrow}J/\psi+X). Figures 5 and  5 do not show the nonphotonic electron asymmetries because they are not the focus of this paper. However, these asymmetries are shown and discussed below. The formula for extracting the nonphotonic electron (NPe{\rm NP}e) asymmetry from the electron candidate sample asymmetry is

ANNPe=ANfh±ANh±1fh±fπ0fηfγ.A_{N}^{{\rm NP}e}=\frac{A_{N}-f_{h^{\pm}}A_{N}^{h^{\pm}}}{1-f_{h^{\pm}}-f_{\pi^{0}}-f_{\eta}-f_{\gamma}}. (10)

Note that Eq. 10 only differs from Eq. 9 by the omission of the terms including J/ψJ/\psi background fractions and asymmetries.

The TSSAs for midrapidity open charm production (ANDA_{N}^{D}) predicted in Refs. [38] and [39] were also recalculated as a function of decay lepton pTp_{T} for all possible semileptonic decay channels, with decay kinematics simulated in pythia [54] to obtain correlations between pTp_{T} and ϕ\phi of the decay lepton and DD meson. The ϕe\phi^{e} distribution was then weighted in accordance with w(ϕe)=1+AND(pTD)cosϕDw(\phi^{e})=1+A_{N}^{D}(p_{T}^{D})\cos\phi^{D} in each pTp_{T} bin and then fit with f(ϕ)=N0(1+ANecosϕ)f(\phi)=N_{0}(1+A_{N}^{e}\cos\phi) to extract the decay lepton asymmetry. D0D^{0} and D¯0\bar{D}^{0} production was considered for comparisons to results from Refs. [38] and [39], while D+D^{+} and DD^{-} production was additionally considered when comparing to results of Ref. [39]. OHF production is dominated by open charm at the relevant kinematics, for which D0,D¯0,D+D^{0},\bar{D}^{0},D^{+}, and DD^{-} cover a significant fraction. The effect of including D+D^{+} and DD^{-} in comparing to Ref. [39] makes very little difference as supported by our simulations, implying that comparing to D0D^{0} and D¯0\bar{D}^{0} for Ref. [38] is sufficient. A scan over (λf,λd)(\lambda_{f},\lambda_{d}) parameter space and independent scans over KGK_{G} and KGK_{G}^{\prime} were performed to generate a set of theory curves for comparison, allowing for best-fit parameters and confidence intervals to be determined from data.

Table 2: Summary of final asymmetries ANOHFe±A_{N}^{{\rm OHF}\rightarrow{e^{\pm}}} for open-heavy-flavor positrons and electrons with statistical σANOHFe±\sigma^{A_{N}^{{\rm OHF}\rightarrow{e^{\pm}}}} and systematic uncertainties, shown in Fig. 5.
e±e^{\pm} pTp_{T} range pT\left<p_{T}\right>
(GeV/cc) (GeV/cc) ANOHFe±A_{N}^{\rm OHF}\rightarrow{e^{\pm}} σANOHFe±\sigma^{A_{N}^{\rm OHF}\rightarrow{e^{\pm}}} σf+sys\sigma^{\rm sys}_{f^{+}} σfsys\sigma^{\rm sys}_{f^{-}} σANBsys\sigma^{\rm sys}_{A_{N}^{B}} σdiffsys\sigma^{\rm sys}_{\rm diff} σtot+sys\sigma^{\rm sys}_{{\rm tot}^{+}} σtotsys\sigma^{\rm sys}_{{\rm tot}^{-}}
e+e^{+} 1.0–1.3 1.161 -0.00256 0.0212 0.00193 0.000855 0.00264 0.000435 0.00330 0.00281
1.3–1.5 1.398 0.0105 0.0178 0.00142 0.00108 0.00143 0.000621 0.00211 0.00189
1.5–1.8 1.639 0.00571 0.0159 0.000468 0.000401 0.00118 0.000432 0.00134 0.00132
1.8–2.1 1.936 0.0126 0.0192 0.00101 0.000856 0.000889 0.00697 0.00710 0.00708
2.1–2.7 2.349 0.00208 0.0210 0.00140 0.00109 0.000719 0.00446 0.00473 0.00465
2.7–5.0 3.290 0.0357 0.0287 0.00595 0.00364 0.000474 0.00342 0.00688 0.00501
ee^{-} 1.0–1.3 1.161 -0.0113 0.0186 0.00404 0.00237 0.00247 0.000120 0.00474 0.00343
1.3–1.5 1.398 -0.0297 0.0181 0.00466 0.00335 0.00174 0.000672 0.00502 0.00384
1.5–1.8 1.639 0.0139 0.0167 0.00117 0.000789 0.00147 0.000917 0.00209 0.00191
1.8–2.1 1.936 0.0105 0.0207 0.00136 0.000990 0.00109 0.000234 0.00176 0.00149
2.1–2.7 2.349 -0.0267 0.0227 0.000104 0.000152 0.000899 0.00253 0.00269 0.00269
2.7–5.0 3.290 0.0237 0.0305 0.00509 0.00313 0.000589 0.00174 0.00541 0.00363
Table 3: Summary of final asymmetries ANNPeA_{N}^{\rm NP}e for nonphotonic positrons and electrons with statistical σANNPe\sigma^{A_{N}^{{\rm NP}e}} and systematic uncertainties.
e±e^{\pm} pTp_{T} range pT\left<p_{T}\right>
(GeV/cc) (GeV/cc) ANNPeA_{N}^{\rm NP}e σANNPe\sigma^{A_{N}^{\rm NP}e} σf+sys\sigma^{\rm sys}_{f^{+}} σfsys\sigma^{\rm sys}_{f^{-}} σANBsys\sigma^{\rm sys}_{A_{N}^{B}} σdiffsys\sigma^{\rm sys}_{\rm diff} σtot+sys\sigma^{\rm sys}_{{\rm tot}^{+}} σtotsys\sigma^{\rm sys}_{{\rm tot}^{-}}
e+e^{+} 1.0– 1.3 1.161 -0.00202 0.0207 0.00115 0.000531 0.00259 0.000435 0.00286 0.00268
1.3– 1.5 1.398 0.0103 0.0172 0.00128 0.000996 0.00138 0.000621 0.00198 0.00181
1.5– 1.8 1.639 0.00379 0.0148 0.000119 8.15e-05 0.00112 0.000432 0.00120 0.00120
1.8– 2.1 1.936 0.00836 0.0170 0.000222 0.000144 0.000825 0.00697 0.00702 0.00702
2.1– 2.7 2.349 -0.00371 0.0163 0.000239 7.51e-05 0.000642 0.00446 0.00452 0.00451
2.7– 5.0 3.290 0.0220 0.0201 0.00205 0.000814 0.000404 0.00342 0.00401 0.00354
ee^{-} 1.0–1.3 1.161 -0.0106 0.0182 0.00338 0.00203 0.00242 0.000120 0.00416 0.00316
1.3–1.5 1.398 -0.0284 0.0174 0.00386 0.00284 0.00168 0.000672 0.00426 0.00337
1.5–1.8 1.639 0.0111 0.0153 0.000538 0.000288 0.00138 0.000917 0.00174 0.00168
1.8–2.1 1.936 0.00565 0.0178 0.000282 0.000131 0.000996 0.000234 0.00106 0.00103
2.1–2.7 2.349 -0.0297 0.0171 0.000446 0.000351 0.000790 0.00253 0.00269 0.00268
2.7–5.0 3.290 0.0108 0.0207 0.00134 0.000466 0.000495 0.00174 0.00225 0.00187

III Results

The OHFe±{\rm OHF}\rightarrow{e^{\pm}} TSSAs are plotted in Fig. 5 alongside theoretical predictions of AN(p+p(D0/D0¯e±)+X)A_{N}(p^{\uparrow}+p\rightarrow(D^{0}/\bar{D^{0}}\rightarrow e^{\pm})+X) from Ref. [38] in (red/blue) solid lines, and AN(p+p(D/D¯e±)+X)A_{N}(p^{\uparrow}+p\rightarrow(D/\bar{D}\rightarrow e^{\pm})+X) from Ref. [39] in (red/blue) dashed and dotted lines, with λf\lambda_{f}, λd\lambda_{d}, KGK_{G} and KGK_{G}^{\prime} chosen to best fit the data for the separate charges simultaneously. The measurements are consistent with zero, and are statistically more precise than previous heavy-flavor measurements. The total systematic uncertainties come from combining those associated with the background fractions, background asymmetries, and the difference in calculating ANA_{N} with Eqs. (7) and (8); there is no dominant source of systematic uncertainty across charges and pTp_{T} bins. The systematic uncertainty reaches at most 37% of the corresponding statistical uncertainty (see Table 3), while it is typically suppressed by an order of magnitude or more. The placement of the theoretical curves in Fig. 5 differs for e+e^{+} vs ee^{-} due to the contribution of the symmetric trigluon correlator having opposing signs in charm vs anticharm production, leading to constructive vs destructive interference with the antisymmetric trigluon correlator contribution for the separate charges. This allows for constraining power on all parameters. Summaries for final asymmetries with statistical and systematic uncertainties are given in Table 3 for OHF positrons ANOHFe+A_{N}^{{\rm OHF}\rightarrow{e^{+}}} and electrons ANOHFeA_{N}^{{\rm OHF}\rightarrow{e^{-}}} and in Table 3 for nonphotonic (NP) positrons ANNPe+A_{N}^{{\rm NP}{e^{+}}} and electrons ANNPeA_{N}^{{\rm NP}{e^{-}}}.

To determine theoretical parameters that fit the data best, χ2(λf,λd)\chi^{2}(\lambda_{f},\lambda_{d}), χ2(KG)\chi^{2}(K_{G}), and χ2(KG)\chi^{2}(K_{G}^{\prime}) were calculated for the separate charges and summed to extract minimum values. The results along with 1σ1\sigma confidence intervals are λf=0.01±0.03\lambda_{f}=-0.01{\pm}0.03 GeV and λd=0.11±0.09\lambda_{d}=0.11{\pm}0.09 GeV for parameters introduced Ref. [38], and KG=0.00060.0017+0.0014K_{G}=0.0006^{+0.0014}_{-0.0017}, and KG=0.00025±0.00022K_{G}^{\prime}=0.00025{\pm}0.00022 for parameters introduced in Ref. [39]. This corresponds to the first constraints on (λf,λd)(\lambda_{f},\lambda_{d}), and is in agreement with previous constraints on KGK_{G} and KGK_{G}^{\prime} derived in Ref. [39]. Figure 5 summarizes the results of the statistical analysis performed to extract best-fit parameters λf\lambda_{f} and λd\lambda_{d}, where the theoretical asymmetries depend on both parameters. Nicely illustrated are the constraining power of the individual charges and the necessity of combining the charges in the statistical analysis. Both charges predict that contributions from trigluon correlations are small, indicating that λf\lambda_{f} and λd\lambda_{d} values that result in cancellation of their contributions to the asymmetry calculation are preferred.

IV Summary

In summary, the PHENIX experiment has measured the transverse single-spin asymmetry of midrapidity open-heavy-flavor decay electrons and positrons as a function of pTp_{T} in p+pp^{\uparrow}+p collisions at s=200\sqrt{s}=200 GeV. Open-heavy-flavor production at RHIC is an ideal channel for probing trigluon correlations in polarized protons because initial-state qgqqgq correlations in the proton and final-state twist-3 correlations in hadronization contribute negligibly. This measurement provides constraints for the antisymmetric and symmetric trigluon correlation functions in transversely polarized protons, including the first constraints on λf\lambda_{f} and λd\lambda_{d} as λf=0.01±0.03\lambda_{f}=-0.01{\pm}0.03 GeV and λd=0.11±0.09\lambda_{d}=0.11{\pm}0.09 GeV —  a necessary step forward in our understanding of proton structure through correlations between proton spin and gluon momentum.

Acknowledgements.
We thank the staff of the Collider-Accelerator and Physics Departments at Brookhaven National Laboratory and the staff of the other PHENIX participating institutions for their vital contributions. We also thank Z. Kang and S. Yoshida for providing AND(pT)A_{N}^{D}(p_{T}) calculations corresponding to the models introduced in Refs. [38] and [39]. We acknowledge support from the Office of Nuclear Physics in the Office of Science of the Department of Energy, the National Science Foundation, Abilene Christian University Research Council, Research Foundation of SUNY, and Dean of the College of Arts and Sciences, Vanderbilt University (U.S.A), Ministry of Education, Culture, Sports, Science, and Technology and the Japan Society for the Promotion of Science (Japan), Natural Science Foundation of China (People’s Republic of China), Croatian Science Foundation and Ministry of Science and Education (Croatia), Ministry of Education, Youth and Sports (Czech Republic), Centre National de la Recherche Scientifique, Commissariat à l’Énergie Atomique, and Institut National de Physique Nucléaire et de Physique des Particules (France), J. Bolyai Research Scholarship, EFOP, the New National Excellence Program (ÚNKP), NKFIH, and OTKA (Hungary), Department of Atomic Energy and Department of Science and Technology (India), Israel Science Foundation (Israel), Basic Science Research and SRC(CENuM) Programs through NRF funded by the Ministry of Education and the Ministry of Science and ICT (Korea). Ministry of Education and Science, Russian Academy of Sciences, Federal Agency of Atomic Energy (Russia), VR and Wallenberg Foundation (Sweden), University of Zambia, the Government of the Republic of Zambia (Zambia), the U.S. Civilian Research and Development Foundation for the Independent States of the Former Soviet Union, the Hungarian American Enterprise Scholarship Fund, the US-Hungarian Fulbright Foundation, and the US-Israel Binational Science Foundation.

References

  • Klem et al. [1976] R. D. Klem, J. E. Bowers, H. W. Courant, H. Kagan, M. L. Marshak, E. A. Peterson, K. Ruddick, W. H. Dragoset, and J. B. Roberts, Measurement of Asymmetries of Inclusive Pion Production in Proton Proton Interactions at 6 GeV/cc and 11.8 GeV/ccPhys. Rev. Lett. 36, 929 (1976).
  • Adams et al. [1991] D. L. Adams et al. (FNAL-E704 Collaboration), Analyzing power in inclusive π+\pi^{+} and π\pi^{-} production at high xFx_{F} with a 200-GeV polarized proton beam, Phys. Lett. B 264, 462 (1991).
  • Allgower et al. [2002] C. E. Allgower et al., Measurement of analyzing powers of π+\pi^{+} and π\pi^{-} produced on a hydrogen and a carbon target with a 22-GeV/cc incident polarized proton beam, Phys. Rev. D 65, 092008 (2002).
  • Arsene et al. [2008] I. Arsene et al. (BRAHMS Collaboration), Single Transverse Spin Asymmetries of Identified Charged Hadrons in Polarized p+pp+p Collisions at s\sqrt{s} = 62.4 GeV, Phys. Rev. Lett. 101, 042001 (2008).
  • Kane et al. [1978] G. L. Kane, J. Pumplin, and W. Repko, Transverse Quark Polarization in Large-pT{p}_{T} Reactions, e+ee^{+}e^{-} Jets, and Leptoproduction: A Test of Quantum Chromodynamics, Phys. Rev. Lett. 41, 1689 (1978).
  • Benic et al. [2019] S. Benic, Y. Hatta, H.-n. Li, and D.-J. Yang, Single-spin asymmetries at two loops, Phys. Rev. D 100, 094027 (2019).
  • Sivers [1990] D. Sivers, Single-spin production asymmetries from the hard scattering of pointlike constituents, Phys. Rev. D 41, 83 (1990).
  • Boer and Mulders [1998] D. Boer and P. J. Mulders, Time-reversal odd distribution functions in leptoproduction, Phys. Rev. D 57, 5780 (1998).
  • Collins [1993] J. Collins, Fragmentation of transversely polarized quarks probed in transverse momentum distributions, Nucl. Phys. B 396, 161 (1993).
  • Efremov and Teryaev [1985] A. V. Efremov and O. V. Teryaev, QCD Asymmetry and Polarized Hadron Structure Functions, Phys. Lett. B 150, 383 (1985).
  • Qiu and Sterman [1991] J.-W. Qiu and G. Sterman, Single transverse spin asymmetries, Phys. Rev. Lett. 67, 2264 (1991).
  • Anselmino et al. [2020] M. Anselmino, A. Mukherjee, and A. Vossen, Transverse spin effects in hard semi-inclusive collisions, Prog. Part. Nucl. Phys. 114, 103806 (2020).
  • Cammarota et al. [2020] J. Cammarota, L. Gamberg, Z.-B. Kang, J. A. Miller, D. Pitonyak, A. Prokudin, T. C. Rogers, and N. Sato (Jefferson Lab Angular Momentum Collaboration), Origin of single transverse-spin asymmetries in high-energy collisions, Phys. Rev. D 102, 054002 (2020).
  • Ji et al. [2006] X. Ji, J.-W. Qiu, W. Vogelsang, and F. Yuan, A Unified picture for single transverse-spin asymmetries in hard processes, Phys. Rev. Lett. 97, 082002 (2006).
  • Koike et al. [2008] Y. Koike, W. Vogelsang, and F. Yuan, On the relation between mechanisms for single-transverse-spin asymmetries, Phys. Lett. B 659, 878 (2008).
  • Yuan and Zhou [2009] F. Yuan and J. Zhou, Collins function and the single transverse spin asymmetry, Phys. Rev. Lett. 103, 052001 (2009).
  • Ji et al. [2003] X.-d. Ji, J.-P. Ma, and F. Yuan, Three quark light cone amplitudes of the proton and quark orbital motion dependent observables, Nucl. Phys. B 652, 383 (2003).
  • [18] Y. Hatta, K. Tanaka, and S. Yoshida, Twist-three relations of gluonic correlators for the transversely polarized nucleon, J. High Energy Phys. 02 04 (2013) 003.
  • Hatta and Yao [2019] Y. Hatta and X. Yao, QCD evolution of the orbital angular momentum of quarks and gluons: Genuine twist-three part, Phys. Lett. B 798, 134941 (2019).
  • Qiu and Sterman [1999] J.-w. Qiu and G. F. Sterman, Single transverse spin asymmetries in hadronic pion production, Phys. Rev. D 59, 014004 (1999).
  • Kouvaris et al. [2006] C. Kouvaris, J.-W. Qiu, W. Vogelsang, and F. Yuan, Single transverse-spin asymmetry in high transverse momentum pion production in pp collisions, Phys. Rev. D 74, 114013 (2006).
  • Ralston and Soper [1979] J. P. Ralston and D. E. Soper, Production of dimuons from high-energy polarized proton-proton collisions, Nucl. Phys. B 152, 109 (1979).
  • Norrbin and Sjostrand [2000] E. Norrbin and T. Sjostrand, Production and hadronization of heavy quarks, Eur. Phys. J. C 17, 137 (2000).
  • Qiu and Sterman [1992] J.-W. Qiu and G. F. Sterman, Single transverse spin asymmetries in direct photon production, Nucl. Phys. B 378, 52 (1992).
  • Ji [1992] X. Ji, Gluon correlations in the transversely polarized nucleon, Phys. Lett. B 289, 137 (1992).
  • Belitsky et al. [2001] A. V. Belitsky, X. Ji, W. Lu, and J. Osborne, Singlet g2g_{2} structure function in the next-to-leading order, Phys. Rev. D 63, 094012 (2001).
  • Braun et al. [2009] V. M. Braun, A. N. Manashov, and B. Pirnay, Scale dependence of twist-three contributions to single spin asymmetries, Phys. Rev. D 80, 114002 (2009).
  • Beppu et al. [2010] H. Beppu, Y. Koike, K. Tanaka, and S. Yoshida, Contribution of twist-3 multigluon correlation functions to single spin asymmetry in semi-inclusive deep inelastic scattering, Phys. Rev. D 82, 054005 (2010).
  • Kang and Qiu [2008] Z.-B. Kang and J.-W. Qiu, Single transverse-spin asymmetry for DD-meson production in semi-inclusive deep inelastic scattering, Phys. Rev. D 78, 034005 (2008).
  • Adamczyk et al. [2012] L. Adamczyk et al. (STAR Collaboration), Longitudinal and transverse spin asymmetries for inclusive jet production at mid-rapidity in polarized p+pp\mathbf{+}p collisions at s=200\sqrt{s}=200 gev, Phys. Rev. D 86, 032006 (2012).
  • Bland et al. [2015] L. C. Bland et al. (AnDY Collaboration), Cross Sections and Transverse Single-Spin Asymmetries in Forward Jet Production from Proton Collisions at s=500\sqrt{s}=500 GeV, Phys. Lett. B 750, 660 (2015).
  • Adolph et al. [2017] C. Adolph et al. (COMPASS Collaboration), First measurement of the Sivers asymmetry for gluons using SIDIS data, Phys. Lett. B 772, 854 (2017).
  • Adamczyk et al. [2018] L. Adamczyk et al. (STAR Collaboration), Azimuthal transverse single-spin asymmetries of inclusive jets and charged pions within jets from polarized-proton collisions at s=500\sqrt{s}=500 GeV, Phys. Rev. D 97, 032004 (2018).
  • Acharya et al. [2021a] U. Acharya et al. (PHENIX Collaboration), Transverse single-spin asymmetries of midrapidity π0\pi^{0} and η\eta mesons in polarized p+pp+p collisions at s=200\sqrt{s}=200 GeV, Phys. Rev. D 103, 052009 (2021a).
  • Abdallah et al. [2022] M. Abdallah et al. (STAR), Azimuthal transverse single-spin asymmetries of inclusive jets and identified hadrons within jets from polarized pppp collisions at s\sqrt{s} = 200 GeV, Phys. Rev. D 106, 072010 (2022).
  • Aidala et al. [2017] C. Aidala et al. (PHENIX Collaboration), Cross section and transverse single-spin asymmetry of muons from open heavy-flavor decays in polarized pp+pp collisions at s=200\sqrt{s}=200 GeV, Phys. Rev. D 95, 112001 (2017).
  • Acharya et al. [2021b] U. Acharya et al. (PHENIX Collaboration), Probing Gluon Spin-Momentum Correlations in Transversely Polarized Protons through Midrapidity Isolated Direct Photons in pp{\uparrow}++pp Collisions at s=200\sqrt{s}=200 GeV, Phys. Rev. Lett. 127, 162001 (2021b).
  • Kang et al. [2008] Z.-B. Kang, J.-W. Qiu, W. Vogelsang, and F. Yuan, Accessing tri-gluon correlations in the nucleon via the single spin asymmetry in open charm production, Phys. Rev. D 78, 114013 (2008).
  • Koike and Yoshida [2011] Y. Koike and S. Yoshida, Probing the three-gluon correlation functions by the single spin asymmetry in ppDXp^{\uparrow}p\to DXPhys. Rev. D 84, 014026 (2011).
  • Anselmino et al. [2004] M. Anselmino, M. Boglione, U. D’Alesio, E. Leader, and F. Murgia, Accessing Sivers gluon distribution via transverse single-spin asymmetries in ppDX{p}^{\uparrow}p\rightarrow DX processes at BNL RHIC, Phys. Rev. D 70, 074025 (2004).
  • D’Alesio et al. [2017] U. D’Alesio, F. Murgia, C. Pisano, and P. Taels, Probing the gluon Sivers function in ppJ/ψXp^{\uparrow}p\to J/\psi\,X and ppDXp^{\uparrow}p\to D\,XPhys. Rev. D 96, 036011 (2017).
  • D’Alesio et al. [2019] U. D’Alesio, C. Flore, F. Murgia, C. Pisano, and P. Taels, Unraveling the Gluon Sivers Function in Hadronic Collisions at RHIC, Phys. Rev. D 99, 036013 (2019).
  • Schmidke et al. [2018] W. B. Schmidke et al. (The RHIC Polarimetry Group), RHIC polarization for Runs 9–17 (2018), https://technotes.bnl.gov/Home/ViewTechNote/209057.
  • Adcox et al. [2003a] K. Adcox et al. (PHENIX Collaboration), PHENIX detector overview, Nucl. Instrum. Methods Phys. Res., Sec. A 499, 469 (2003a).
  • Nouicer et al. [2008] R. Nouicer et al. (PHENIX Collaboration), Silicon Vertex Tracker for PHENIX Upgrade at RICH: Capabilities and Detector Technology, Proc. Sci. Vertex 2007, 042 (2008).
  • Nouicer et al. [2009] R. Nouicer et al. (PHENIX Collaboration), Status and Performance of New Silicon Stripixel Detector for the PHENIX Experiment at RHIC: Beta Source, Cosmic-rays and Proton Beam at 120 GeV, J. Instrum. 4 (04), P04011.
  • Adcox et al. [2003b] K. Adcox et al. (PHENIX Collaboration), PHENIX central arm tracking detectors, Nucl. Instrum. Methods Phys. Res., Sec. A 499, 489 (2003b).
  • Aphecetche et al. [2003] L. Aphecetche et al. (PHENIX Collaboration), PHENIX calorimeter, Nucl. Instrum. Methods Phys. Res., Sec. A 499, 521 (2003).
  • Aizawa et al. [2003] M. Aizawa et al. (PHENIX Collaboration), PHENIX central arm particle ID detectors, Nucl. Instrum. Methods Phys. Res., Sec. A 499, 508 (2003).
  • Aidala et al. [2019] C. Aidala et al. (PHENIX Collaboration), Measurement of charm and bottom production from semileptonic hadron decays in p+pp+p collisions at sNN=200\sqrt{s_{NN}}=200 GeV, Phys. Rev. D 99, 092003 (2019).
  • Adare et al. [2016] A. Adare et al. (PHENIX Collaboration), Single electron yields from semileptonic charm and bottom hadron decays in Au++Au collisions at sNN=200\sqrt{s_{NN}}=200 GeV, Phys. Rev. C 93, 034904 (2016).
  • Adare et al. [2010] A. Adare et al. (PHENIX Collaboration), Measurement of Transverse Single-Spin Asymmetries for J/ψJ/\psi Production in Polarized p+pp+p Collisions at s=200\sqrt{s}=200 GeV, Phys. Rev. D 82, 112008 (2010), [Phys. Rev. D 86, 099904(E) (2012)].
  • Adler et al. [2005] S. S. Adler et al. (PHENIX Collaboration), Measurement of transverse single-spin asymmetries for mid-rapidity production of neutral pions and charged hadrons in polarized p+p collisions at s=200\sqrt{s}=200 GeV, Phys. Rev. Lett. 95, 202001 (2005).
  • Sjöstrand et al. [2001] T. Sjöstrand, P. Eden, C. Friberg, L. Lönnblad, G. Miu, S. Mrenna, and E. Norrbin, High-energy physics event generation with PYTHIA 6.1, Comput. Phys. Commun. 135, 238 (2001).