This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Impurity in a zero-temperature three-dimensional Fermi gas

P. L. Krapivsky Department of Physics, Boston University, Boston, Massachusetts 02215, USA Santa Fe Institute, Santa Fe, New Mexico 87501, USA
Abstract

We consider an impurity in a sea of zero-temperature fermions uniformly distributed throughout the space. The impurity scatters on fermions. On average, the momentum of impurity decreases with time as t1/(d+1)t^{-1/(d+1)} in dd dimensions, and the momentum distribution acquires a scaling form in the long time limit. We solve the Lorentz-Boltzmann equation for the scaled momentum distribution of the impurity in three dimensions. The solution is a combination of confluent hypergeometric functions. In two spatial dimensions, the Lorentz-Boltzmann equation is analytically intractable, so we merely extract a few exact predictions about asymptotic behaviors when the scaled momentum of the impurity is small or large.

I Introduction

Describing the properties of an impurity interacting with a bath of fermions, a Fermi polaron, remains an intriguing theoretical challenge. This problem has a long and venerable history Landau (1965); Landau and Pekar (1948); Meyer and Reif (1958); Alexandrov and Devreese (2010); Emin (2013). Experimental progress in cold atoms provides new motivation for studying polaronic phenomena Bruun et al. (2008); Schirotzek et al. (2009); Mora and Chevy (2010); Klawunn and Recati (2011); Baarsma et al. (2012); Kim and Huse (2012); Trefzger and Castin (2012, 2014); Doggen and Kinnunen (2013); Massignan et al. (2014); Li and Cui (2017); Schmidt et al. (2018); Yan et al. (2019); Dolgirev et al. (2021); Nishimura et al. (2021); Parish and Levinsen (2023); Chang et al. (2023). An extreme case of an impurity immersed in a zero-temperature Fermi gas has become relevant Lychkovskiy (2014, 2015); Pessoa et al. (2021), and the control of dimensionality Guan et al. (2013) suggests investigating polaronic phenomena in various dimensions. In one dimension, the impurity exhibits peculiar behaviors Castro Neto and Fisher (1996); Gangardt and Kamenev (2009); Schecter et al. (2012); Gamayun et al. (2014); Burovski et al. (2014); Knap et al. (2014); Gamayun et al. (2015, 2016); Schecter et al. (2016); Gamayun et al. (2020, 2022) including, e.g., momentum oscillations in the presence of an external force Gangardt and Kamenev (2009); Schecter et al. (2012); Gamayun et al. (2014), a drastic dependence on whether the masses of the impurity and the host fermions are equal or not Burovski et al. (2014), and quantum flutter phenomenon Knap et al. (2014). Qualitatively different and typically more robust behaviors emerge in d2d\geq 2 dimensions, particularly in three dimensions Kim and Huse (2012); Trefzger and Castin (2012, 2014).

The behavior of the impurity in a zero-temperature Fermi gas is particularly tractable in the physically important three-dimensional case. In Sec. II, we show that the governing equation for the scaled momentum distribution admits an analytical solution. In two dimensions, the governing equation for the scaled momentum distribution appears analytically intractable, but one still can extract asymptotic behaviors (Sec. III and Appendix A).

In Sec. IV, we outline a few challenges for future work, like analyzing the position distribution and more generally the joint position-momentum distribution of the impurity in a zero-temperature Fermi gas. We also discuss the massless impurity which may provide a curious implementation of the Fermi acceleration phenomenon in the zero-temperature Fermi gas.

II Three Dimensions

The momentum distribution F(q,t)F(q,t) of an impurity in a zero-temperature Fermi gas evolves according to

dF(q,t)dt=q𝑑QQ(Q2q2)F(Q,t)215q4F(q,t)\frac{dF(q,t)}{dt}=\int_{q}^{\infty}dQ\,Q(Q^{2}-q^{2})F(Q,t)-\frac{2}{15}\,q^{4}F(q,t) (1)

in three dimensions Kim and Huse (2012). Major assumptions underlying the applicability of Eq. (1) are the following: (i) the impurity is treated classically; (ii) the influence of the impurity on an infinite system of fermions is neglected, so the host fermions remain in a zero-temperature Fermi-Dirac distribution; (iii) the energy of impurity is low compared to Fermi energy; (iv) the momentum distribution is spherically symmetric in the long time limit; see Kim and Huse Kim and Huse (2012) for explanations and justifications of the above assumptions. For instance, when qq is low enough, no internal excitations of the polaron are possible. The average momentum decays with time as we see below, so if qpFq\ll p_{F} initially, it is expected to be satisfied throughout the evolution thereby supporting (iii). If F(𝐪,0)F({\bf q},0) is anisotropic, F(𝐪,t)F({\bf q},t) quickly becomes isotropic. We want to understand the asymptotic behavior, so (iv) is valid in the interesting regime. We also tacitly assume that the effective mass of the impurity is comparable with the mass of fermions. (Different behaviors may occur for the massless impurity as we mention in Sec. IV.)

It is convenient to measure the momentum of the impurity qq in units of the Fermi momentum pFp_{F}. In Eq. (1), we set to unity an amplitude in the gain term on the right-hand side. In dimensionful variables, the amplitude involves the (effective) mass of the impurity, the Planck constant, the scattering length, etc. Kim and Huse (2012). We absorbed the amplitude into the time variable. An amplitude in the loss term is then fixed by normalization

𝑑𝐪F(𝐪,t)=4π0𝑑qq2F(q,t)=1\int d{\bf q}\,F({\bf q},t)=4\pi\int_{0}^{\infty}dq\,q^{2}F(q,t)=1 (2)

Indeed,

0𝑑qq2q𝑑QQ(Q2q2)F(Q,t)\displaystyle\int_{0}^{\infty}dq\,q^{2}\int_{q}^{\infty}dQ\,Q(Q^{2}-q^{2})F(Q,t)
=0𝑑QQF(Q,t)0Q𝑑qq2(Q2q2)\displaystyle=\int_{0}^{\infty}dQ\,QF(Q,t)\int_{0}^{Q}dq\,q^{2}(Q^{2}-q^{2})
=2150𝑑QQ6F(Q,t)\displaystyle=\frac{2}{15}\int_{0}^{\infty}dQ\,Q^{6}F(Q,t)

The form of (2) accounts that the momentum distribution is spherically symmetric. As we have already asserted, Eq. (1) is applicable when q1q\ll 1.

Equations resembling (1) are known as linear Boltzmann or Lorentz-Boltzmann equations. In the realm of the Lorentz gas Lorentz (1905); Hauge (1974); Szász (2000), the impurity is effectively massless, and only the direction of velocity changes in elastic collisions of the impurity with scatters. The velocity distribution satisfies a simple Lorentz-Boltzmann equation. The joint position-velocity distribution of the impurity also satisfies a solvable Lorentz-Boltzmann equation Hauge (1974).) The linearity of Lorentz-Boltzmann equations makes them significantly more tractable than non-linear Boltzmann equations Resibois and Leener (1977); Krapivsky et al. (2010); Dorfman et al. (2021); Kremer (2010).

Our chief interest is the large-time behavior. In this situation, the momentum distribution approaches a scaling form, viz.

F(q,t)=t3/4g(s),s=t1/4qF(q,t)=t^{3/4}g(s),\quad s=t^{1/4}q (3)

when tt\to\infty and q0q\to 0 with scaled momentum s=t1/4qs=t^{1/4}q kept finite. In this scaling limit, Eq. (1) reduces Kim and Huse (2012) to the integro-differential equation

(34+s4dds)g(s)\displaystyle\left(\frac{3}{4}+\frac{s}{4}\,\frac{d}{ds}\right)g(s) =\displaystyle= 215s4g(s)\displaystyle-\frac{2}{15}\,s^{4}g(s) (4)
+\displaystyle+ s𝑑σσ(σ2s2)g(σ)\displaystyle\int_{s}^{\infty}d\sigma\,\sigma\big{(}\sigma^{2}-s^{2}\big{)}g(\sigma)

for the scaled momentum distribution.

It proves convenient to recast Eq. (4) to a differential equation. Differentiating (4) yields

g+14sg′′+215(s4g)=2sG(s)g^{\prime}+\tfrac{1}{4}sg^{\prime\prime}+\tfrac{2}{15}(s^{4}g)^{\prime}=-2sG(s) (5)

Here we shortly write ()=d()/ds(\cdot)^{\prime}=d(\cdot)/ds and use the auxiliary moment distribution function

G(s)=s𝑑σσg(σ)G(s)=\int_{s}^{\infty}d\sigma\,\sigma g(\sigma) (6)

Re-writing (5) in terms of GG we arrive at a linear ordinary differential equation

s2G′′′+2s(1+415s4)G′′=2(145s4)G+8s3Gs^{2}G^{\prime\prime\prime}+2s\big{(}1+\tfrac{4}{15}s^{4}\big{)}G^{\prime\prime}=2\big{(}1-\tfrac{4}{5}s^{4}\big{)}G^{\prime}+8s^{3}G (7)

This equation admits a remarkably simple solution

G(s)=AF[34;12;215s4]s2BF[14;32;215s4]G(s)=AF\big{[}-\tfrac{3}{4};\tfrac{1}{2};-\tfrac{2}{15}s^{4}\big{]}-s^{2}BF\big{[}-\tfrac{1}{4};\tfrac{3}{2};-\tfrac{2}{15}s^{4}\big{]} (8)

Here F[a;b;x]F[a;b;x] denotes a confluent hypergeometric function Graham et al. (1994) with parameters aa and bb.

The general solution of the third order linear ordinary differential equation (7) is a combination of three linearly independent solutions and only two appear in Eq. (8). The general solution of (7) is given by (8) plus

C(45s1+32s3)C\big{(}45s^{-1}+32s^{3}\big{)} (9)

The s1s^{-1} divergence at the origin and the s3s^{3} divergence at infinity are physically unacceptable, e.g., the normalization requirement is violated [cf. with (13)]. Therefore the amplitude must vanish, C=0C=0.

Hence the the auxiliary moment distribution is given by (8). We should also determine g(s)g(s). Combining (6) and (8), and recalling the identity Graham et al. (1994)

ddxF[a;b;x]=abF[1+a;1+b;x]\frac{d}{dx}\,F[a;b;x]=\frac{a}{b}\,F[1+a;1+b;x] (10)

we deduce the scaled momentum distribution of an impurity in a zero-temperature Fermi gas in three dimensions

g(s)\displaystyle g(s) =\displaystyle= 2BF[14;32;215s4]+B445s4F[34;52;215s4]\displaystyle 2B\,F\big{[}-\tfrac{1}{4};\tfrac{3}{2};-\tfrac{2}{15}s^{4}\big{]}+B\,\tfrac{4}{45}s^{4}F\big{[}\tfrac{3}{4};\tfrac{5}{2};-\tfrac{2}{15}s^{4}\big{]} (11)
\displaystyle- A45s2F[14;32;215s4]\displaystyle A\,\tfrac{4}{5}s^{2}F\big{[}\tfrac{1}{4};\tfrac{3}{2};-\tfrac{2}{15}s^{4}\big{]}

To determine the amplitudes in (8) and (11) we require the scaled momentum distribution vanish when ss\to\infty:

G()=g()=0G(\infty)=g(\infty)=0 (12)

Also, the normalization (2) must be obeyed. In terms of the scaled momentum distribution, Eq. (2) becomes

4π0𝑑ss2g(s)=4π0𝑑sG(s)=14\pi\int_{0}^{\infty}ds\,s^{2}g(s)=4\pi\int_{0}^{\infty}ds\,G(s)=1 (13)

Using Eqs. (12)–(13) we fix the amplitudes

A=Γ(1/4)51/4(3/2)5/4π5/2=0.083 493B=51/463/4π3/2Γ(9/4)=0.061 826\begin{split}A&=\frac{\Gamma(1/4)}{5^{1/4}\,(3/2)^{5/4}\,\pi^{5/2}}=0.083\,493\ldots\\ B&=\frac{5^{1/4}}{6^{3/4}\,\pi^{3/2}\,\Gamma(9/4)}=0.061\,826\ldots\end{split} (14)
Refer to caption
Figure 1: The plot of the scaled moment distribution function, Eq. (11), with amplitudes given by (14).

The asymptotic decay of the scaled momentum distribution is very sharp (see Fig. 1). The leading asymptotic can be extracted from Eq. (7) using the WKB approach Bender and Orszag (1978), viz., seeking the solution in the form G=eSG=e^{-S} with rapidly increasing SS. The dominant exponential decay is G(s)(s)=e2s4/15G(s)\propto\mathcal{E}(s)=e^{-2s^{4}/15}. A more accurate WKB treatment gives the leading algebraic pre-factor, Gs5(s)G\sim s^{-5}\mathcal{E}(s), which in conjunction with (6) yields

gs3exp[215s4]g\sim s^{-3}\exp\!\big{[}-\tfrac{2}{15}s^{4}\big{]} (15)

The scaled momentum distribution (11) is maximal at the origin. Near the origin

g(s)=2B45As2+215Bs4+4225As6+g(s)=2B-\tfrac{4}{5}As^{2}+\tfrac{2}{15}Bs^{4}+\tfrac{4}{225}As^{6}+\ldots (16)

III Two Dimensions

The two-dimensional case is also experimentally accessible. The momentum distribution of an impurity in a 2D zero-temperature Fermi gas approaches a scaling form

F(q,t)=t2/3g(s),s=t1/3qF(q,t)=t^{2/3}g(s),\quad s=t^{1/3}q (17)

The Lorentz-Boltzmann equation for the scaled momentum distribution

(23+s3dds)g(s)\displaystyle\left(\frac{2}{3}+\frac{s}{3}\,\frac{d}{ds}\right)g(s) =\displaystyle= s𝑑σ(σ2s2)K(sσ)g(σ)\displaystyle\int_{s}^{\infty}d\sigma\,\big{(}\sigma^{2}-s^{2}\big{)}K\big{(}\tfrac{s}{\sigma}\big{)}g(\sigma) (18)
\displaystyle- 539211025s3g(s)\displaystyle\frac{5392}{11025}\,s^{3}g(s)

involves the complete elliptic integral of the first kind

K(k)=0π2dθ1k2sin2θK(k)=\int_{0}^{\frac{\pi}{2}}\frac{d\theta}{\sqrt{1-k^{2}\sin^{2}\theta}} (19)

As in three dimensions, we set to unity the amplitude in the gain term on the right-hand side of Eq. (18). The amplitude in the loss term was determined numerically in Kim and Huse (2012) and found to be 0.45\approx 0.45. The precise value appearing in Eq. (18) is found from the identity

01𝑑kk(1k2)K(k)=539211025\int_{0}^{1}dk\,k\big{(}1-k^{2}\big{)}K(k)=\frac{5392}{11025} (20)

Indeed,

0𝑑sss𝑑σ(σ2s2)K(sσ)g(σ)\displaystyle\int_{0}^{\infty}ds\,s\int_{s}^{\infty}d\sigma\,\big{(}\sigma^{2}-s^{2}\big{)}K\big{(}\tfrac{s}{\sigma}\big{)}g(\sigma)
=0𝑑σg(σ)0σ𝑑ss(σ2s2)K(sσ)\displaystyle=\int_{0}^{\infty}d\sigma\,g(\sigma)\int_{0}^{\sigma}ds\,s\big{(}\sigma^{2}-s^{2}\big{)}K\big{(}\tfrac{s}{\sigma}\big{)}
=0𝑑σσ4g(σ)01𝑑kk(1k2)K(k)\displaystyle=\int_{0}^{\infty}d\sigma\,\sigma^{4}g(\sigma)\int_{0}^{1}dk\,k\big{(}1-k^{2}\big{)}K(k)
=5392110250𝑑σσ4g(σ)\displaystyle=\frac{5392}{11025}\int_{0}^{\infty}d\sigma\,\sigma^{4}g(\sigma) (21)

ensures that the normalization requirement

2π0𝑑ssg(s)=12\pi\int_{0}^{\infty}ds\,sg(s)=1 (22)

is satisfied.

We have not succeeded in solving Eq. (18). Differentiating (18) does not recast it into a differential equation. Some asymptotic behaviors of the scaled distribution g(s)g(s) can be established without solving (18). The asymptotic behavior in the large momentum limit,

gs2exp[539211025s3]g\sim s^{-2}\exp\!\big{[}-\tfrac{5392}{11025}s^{3}\big{]} (23)

for ss\to\infty, can be extracted from (18) using the WKB approach.

Near the origin

g(s)=g(0)964s2+g(s)=g(0)-\frac{9}{64}\,s^{2}+\ldots (24)

The precise value g(0)g(0) of the scaled distribution at the origin is unknown, while two first derivatives at the origin are known. The expansion (24) resembles the expansion (16) in three dimensions. The scaled distribution is maximal at the origin both in d=2d=2 and d=3d=3.

The derivation of the expansion (24) of the scaled distribution is relegated to Appendix A. In Appendix B, we outline generalizations to higher dimensions.

IV Discussion

The evolution of the momentum 𝐪{\bf q} is independent of the position 𝐫{\bf r} of the impurity, so the momentum distribution F(𝐪,t)F({\bf q},t) satisfies a closed equation. The position of the impurity is coupled with momentum, so the position distribution Φ(𝐫,t)\Phi({\bf r},t) does not satisfy a closed equation. Thus one should determine the joint position-momentum distribution Π(𝐫,𝐪,t)\Pi({\bf r},{\bf q},t) from which one then extracts the position distribution: Φ(𝐫,t)=𝑑𝐪Π(𝐫,𝐪,t)\Phi({\bf r},t)=\int d{\bf q}\,\Pi({\bf r},{\bf q},t). Heuristic arguments Kim and Huse (2012) imply that the length of the last step is typically comparable with total displacement. Therefore the typical distance traveled by the impurity scales as qttd/(d+1)qt\sim t^{d/(d+1)}. Computing the position and the joint position-momentum distributions of the impurity in a zero-temperature Fermi gas is the challenge.

The necessity of computing the joint distribution even if one is seeking the position distribution is a rather common phenomenon. For instance, it arose D’Alessio and Krapivsky (2011) for the massless impurity 111The assumption that the impurity is massless is extreme, but the same assumption underlies the classical Lorentz gas where the scatters are immobile Lorentz (1905); Hauge (1974); Szász (2000); Resibois and Leener (1977); Krapivsky et al. (2010); Dorfman et al. (2021). Thus, the impurity does not affect the scatters, which effectively implies that the mass of the impurity is much smaller than the mass of the scatters. in a monoatomic classical gas at equilibrium at temperature T>0T>0. If the massless impurity interacts with host atoms via repulsive rλr^{-\lambda} potential, the speed distribution approaches a scaling form

F(v,t)τd/Λe|v|Λ/τ,Λ=1+2(d1)λF(v,t)\sim\tau^{-d/\Lambda}e^{-|v|^{\Lambda}/\tau},\qquad\Lambda=1+\frac{2(d-1)}{\lambda} (25)

In the gas of hard spheres (λ=\lambda=\infty) of radii aa, the speed distribution is exponential, τde|v|/τ\tau^{-d}e^{-|v|/\tau}, with dimensionless time τρad1tT/m\tau\sim\rho a^{d-1}t\sqrt{T/m} where mm is the mass and ρ\rho the density of the host atoms. On average, the speed of the massless impurity increases since it more frequently collides with approaching than receding atoms. Thus, the massless impurity in an equilibrium classical gas provides a realization of the Fermi acceleration phenomenon Fermi (1949). It would be amusing if the massless Fermi polaron in a zero-temperature Fermi gas exhibited the Fermi acceleration.

Historically, driven impurities gave birth to the entire subject: Lorentz proposed Lorentz (1905) his model as an idealized classical description for electron transport, so in addition to collisions with immobile scatters the impurity is accelerated by an electric field. A constant (on average) drift velocity was originally anticipated Lorentz (1905), yet the lack of dissipation leads to the unbounded growth of the velocity of the massless Lorentz polaron in the Lorentz gas with immobile scatters Piasecki and Wajnryb (1979); Krapivsky and Redner (1997). In the quantum case, even more intriguing behaviors of the driven impurity with non-vanishing mass have been predicted in one dimension Gangardt and Kamenev (2009); Schecter et al. (2012); Gamayun et al. (2014). The behavior of the driven impurity in the three-dimensional Fermi gas is probably more robust than in one dimension.

The perturbation of the host atoms by impurity is usually ignored if we are chiefly interested by the behavior of the impurity. One can certainly do this if the impurity is massless. In the general case, the back reaction on the impurity is asymptotically negligible in d2d\geq 2 dimensions bcause (i) only a finite amount of energy can be transferred to the host atoms in the infinite system, (ii) the perturbation of the host atoms is local and decaying with time, and (iii) repeated collisions are rare when d2d\geq 2. One exception in the classical realm occurs when the host atoms are at zero temperature Antal et al. (2008). If host atoms are fermions at zero temperature, the back reaction can still be ignored Kim and Huse (2012).

If the impurity is much more massive than the host atoms, its influence on the host gas is profound. In the classical hard sphere gas, an infinitely heavy particle moving with constant velocity VV generates an infinitely strong bow shock if the host spheres are initially at rest. In the quantum case, the sonic speed is finite in the gas of fermions even at zero temperature, cρ1/d/mc\sim\hbar\rho^{1/d}/m. Thus, when an infinitely heavy impurity moves in this host gas in d2d\geq 2 dimensions, a hypersonic bow shock Landau and Lifshitz (1987) is formed only when the Mach number M=Vc1M=\frac{V}{c}\gg 1. More subtle behaviors are expected in one dimension Castro Neto and Fisher (1996).

Appendix A Derivation of (24)

Specializing (18) to s=0s=0 one gets

g(0)=3π40𝑑σσ2g(σ)g(0)=\frac{3\pi}{4}\int_{0}^{\infty}d\sigma\,\sigma^{2}g(\sigma) (26)

The integral on the right-hand side, the second moment of the scaled distribution, is unknown. One can try to determine it by multiplying Eq. (18) by s2s^{2} and integrating. This allows one to express the second moment via the fifth moment:

0𝑑ss2g(s)=21248330750𝑑ss5g(s)\int_{0}^{\infty}ds\,s^{2}g(s)=\frac{21248}{33075}\int_{0}^{\infty}ds\,s^{5}g(s) (27)

The calculation of the double integral is similar to the calculation (III) and uses the identity

01𝑑kk2(1k2)K(k)=545619845\int_{0}^{1}dk\,k^{2}\big{(}1-k^{2}\big{)}K(k)=\frac{5456}{19845} (28)

similar to (20). One can continue and express the fifth moment via the 8th8^{\text{th}}, etc. The asymptotic behavior of high moments can be extracted with the help of the asymptotic (23), perhaps allowing to connect g(0)g(0) with the amplitude in (23). This amplitude is unknown and hence omitted in Eq. (23).

Summarizing, we do not know g(0)g(0). Surprisingly, one can compute two first derivatives at the origin: g(0)=0g^{\prime}(0)=0 and g′′(0)=932g^{\prime\prime}(0)=-\frac{9}{32}. Differentiating (18) we obtain

g+s3g′′=38s+O(s2)g^{\prime}+\frac{s}{3}\,g^{\prime\prime}=-\frac{3}{8}\,s+O(s^{2}) (29)

In deriving (29) we used the normalization condition (22) and identities

K(0)=π2,limk0k1dK(k)dk=π4K(0)=\frac{\pi}{2}\,,\quad\lim_{k\to 0}k^{-1}\,\frac{dK(k)}{dk}=\frac{\pi}{4} (30)

The announced expansion (24) follows from (29).

Appendix B High Dimensions

Generally in d2d\geq 2 dimensions, the momentum distribution approaches a scaling form

F(q,t)=tdd+1g(s),s=t1d+1qF(q,t)=t^{\frac{d}{d+1}}g(s),\quad s=t^{\frac{1}{d+1}}q (31)

and the scaled momentum distribution obeys

(dd+1+sd+1dds)g(s)\displaystyle\left(\frac{d}{d+1}+\frac{s}{d+1}\,\frac{d}{ds}\right)g(s) =\displaystyle= s𝑑σhd(σ,s)g(σ)\displaystyle\int_{s}^{\infty}d\sigma\,h_{d}(\sigma,s)g(\sigma) (32)
\displaystyle- Cdsd+1g(s)\displaystyle C_{d}\,s^{d+1}g(s)

We already know h2h_{2} and h3h_{3}. Functions hdh_{d} can be computed also for d>3d>3. These functions are homogeneous, viz., hd(σ,s)=σdHd(k)h_{d}(\sigma,s)=\sigma^{d}H_{d}(k) with k=s/σk=s/\sigma. The normalization requirement gives Cd=01𝑑kkd1Hd(k)C_{d}=\int_{0}^{1}dk\,k^{d-1}H_{d}(k).

Applying the WKB approach to (32) yields

gsdexp[Cdsd+1]g\sim s^{-d}\exp\!\big{[}-C_{d}s^{d+1}\big{]} (33)

for s1s\gg 1. This asymptotic is valid for all d2d\geq 2.

Solving (32) is challenging. The physically relevant three-dimensional situation is the most tractable. Simplifications also occur in other odd dimensions. Recall that h3h_{3} is a polynomial, while h2h_{2} is a transcendental function. The same distinction between odd and even dd generally holds Kim and Huse (2012). The five-dimensional case is the simplest after d=3d=3. The scaled momentum distribution satisfies

(56+s6dds)g(s)\displaystyle\left(\frac{5}{6}+\frac{s}{6}\,\frac{d}{ds}\right)g(s) =\displaystyle= s𝑑σσ(σ46355σ2s2+855s4)g(σ)\displaystyle\int_{s}^{\infty}d\sigma\,\sigma\left(\sigma^{4}-\tfrac{63}{55}\sigma^{2}s^{2}+\tfrac{8}{55}s^{4}\right)g(\sigma) (34)
\displaystyle- 26495s6g(s)\displaystyle\tfrac{26}{495}\,s^{6}g(s)

Differentiating (34) eliminates the integral on the right-hand side at the cost of introducing two auxiliary functions, GG given by (6), and H=s𝑑σσ3g(σ)H=\int_{s}^{\infty}d\sigma\,\sigma^{3}g(\sigma). Massaging the outcome and using H=s2GH^{\prime}=s^{2}G^{\prime} one arrives at a closed linear ordinary differential equation for the auxiliary function G(s)G(s):

0\displaystyle 0 =\displaystyle= 1152s5G+(1980912s6)G+36s(13s655)G′′\displaystyle 1152s^{5}G+\big{(}1980-912s^{6}\big{)}G^{\prime}+36s\big{(}13s^{6}-55\big{)}G^{\prime\prime} (35)
+\displaystyle+ s2(495+52s6)G′′′+165s3G′′′′\displaystyle s^{2}\big{(}495+52s^{6}\big{)}G^{\prime\prime\prime}+165s^{3}G^{\prime\prime\prime\prime}

The general solution of Eq. (35) remaining finite at the origin is a combination of hypergeometric functions F22{}_{2}F_{2} with four indices:

G(s)\displaystyle G(s) =\displaystyle= C0F[14ω,14+ω;13,23;26495s6]\displaystyle C_{0}\,F\big{[}-\tfrac{1}{4}-\omega,-\tfrac{1}{4}+\omega;\tfrac{1}{3},\tfrac{2}{3};-\tfrac{26}{495}s^{6}\big{]} (36)
+\displaystyle+ C1s2F[112ω,112+ω;23,43;26495s6]\displaystyle C_{1}s^{2}\,F\big{[}\tfrac{1}{12}-\omega,\tfrac{1}{12}+\omega;\tfrac{2}{3},\tfrac{4}{3};-\tfrac{26}{495}s^{6}\big{]}
+\displaystyle+ C2s4F[512ω,512+ω;43,53;26495s6]\displaystyle C_{2}s^{4}\,F\big{[}\tfrac{5}{12}-\omega,\tfrac{5}{12}+\omega;\tfrac{4}{3},\tfrac{5}{3};-\tfrac{26}{495}s^{6}\big{]}

We display all indices and shortly write FF instead of F22{}_{2}F_{2}; we also use the shorthand notation

ω=i121113\omega=\frac{{\rm i}}{12}\sqrt{\frac{11}{13}} (37)

Recall that in three dimension, G(s)G(s) and g(s)g(s) are combination of standard confluent hypergeometric functions F11{}_{1}F_{1}, see (8) and (11).

Fixing the amplitudes C0,C1,C2C_{0},C_{1},C_{2} in the solution (36) could be cumbersome. The scaled momentum distribution must vanish when ss\to\infty, so we have again the boundary condition (12). The normalization requirement

8π230𝑑ss4g(s)=8π20𝑑ss2G(s)=1\frac{8\pi^{2}}{3}\int_{0}^{\infty}ds\,s^{4}g(s)=8\pi^{2}\int_{0}^{\infty}ds\,s^{2}G(s)=1 (38)

gives another constraint.

References

  • Landau (1965) L. D. Landau, “Electron motion in crystal lattices,” in Collected Papers of L. D. Landau, edited by D. Ter Haar (Pergamon, 1965) pp. 67–68.
  • Landau and Pekar (1948) L. D. Landau and S. I. Pekar, “Effective mass of a polaron,” Zh. Eksp. Teor. Fiz. 18, 419–423 (1948).
  • Meyer and Reif (1958) L. Meyer and F. Reif, “Mobilities of He ions in liquid helium,” Phys. Rev. 110, 279–280 (1958).
  • Alexandrov and Devreese (2010) A. S. Alexandrov and J. T. Devreese, Advances in Polaron Physics (Springer-Verlag, Berlin, 2010).
  • Emin (2013) D. Emin, Polarons (Cambridge University Press, Cambridge, 2013).
  • Bruun et al. (2008) G. M. Bruun, A. Recati, C. J. Pethick, H. Smith,  and S. Stringari, “Collisional properties of a polarized Fermi gas with resonant interactions,” Phys. Rev. Lett. 100, 240406 (2008).
  • Schirotzek et al. (2009) A. Schirotzek, C.-H. Wu, A. Sommer,  and M. W. Zwierlein, “Observation of Fermi polarons in a tunable Fermi liquid of ultracold atoms,” Phys. Rev. Lett. 102, 230402 (2009).
  • Mora and Chevy (2010) C. Mora and F. Chevy, “Normal phase of an imbalanced Fermi gas,” Phys. Rev. Lett. 104, 230402 (2010).
  • Klawunn and Recati (2011) M. Klawunn and A. Recati, “Fermi polaron in two dimensions: Importance of the two-body bound state,” Phys. Rev. A 84, 033607 (2011).
  • Baarsma et al. (2012) J. E. Baarsma, J. Armaitis, R. A. Duine,  and H. T. C. Stoof, “Polarons in extremely polarized Fermi gases: The strongly interacting 6Li-40K mixture,” Phys. Rev. A 85, 033631 (2012).
  • Kim and Huse (2012) H. Kim and D. A. Huse, “Superdiffusive nonequilibrium motion of an impurity in a Fermi sea,” Phys. Rev. A 85, 043603 (2012).
  • Trefzger and Castin (2012) C. Trefzger and Y. Castin, “Impurity in a Fermi sea on a narrow Feshbach resonance: A variational study of the polaronic and dimeronic branches,” Phys. Rev. A 85, 053612 (2012).
  • Trefzger and Castin (2014) C. Trefzger and Y. Castin, “Self-energy of an impurity in an ideal Fermi gas to second order in the interaction strength,” Phys. Rev. A 90, 033619 (2014).
  • Doggen and Kinnunen (2013) E. V. H. Doggen and J. J. Kinnunen, “Energy and contact of the one-dimensional Fermi polaron at zero and finite temperature,” Phys. Rev. Lett. 111, 025302 (2013).
  • Massignan et al. (2014) P. Massignan, M. Zaccanti,  and G. M. Bruun, “Polarons, dressed molecules and itinerant ferromagnetism in ultracold Fermi gases,” Rep. Prog. Phys. 77, 034401 (2014).
  • Li and Cui (2017) W. Li and X. Cui, “Repulsive Fermi polarons with negative effective mass,” Phys. Rev. A 96, 053609 (2017).
  • Schmidt et al. (2018) R. Schmidt, M. Knap, D. A. Ivanov, J.-S. You, M. Cetina,  and E. Demler, “Universal many-body response of heavy impurities coupled to a Fermi sea: a review of recent progress,” Rep. Prog. Phys. 81, 024401 (2018).
  • Yan et al. (2019) Z. Yan, P. B. Patel, B. Mukherjee, R. J. Fletcher, J. Struck,  and M. W. Zwierlein, “Boiling a unitary Fermi liquid,” Phys. Rev. Lett. 122, 093401 (2019).
  • Dolgirev et al. (2021) P. E. Dolgirev, Y.-F. Qu, M. B. Zvonarev, T. Shi,  and E. Demler, “Emergence of a sharp quantum collective mode in a one-dimensional Fermi polaron,” Phys. Rev. X 11, 041015 (2021).
  • Nishimura et al. (2021) K. Nishimura, E. Nakano, K. Iida, H. Tajima, T. Miyakawa,  and H. Yabu, “Ground state of the polaron in an ultracold dipolar Fermi gas,” Phys. Rev. A 103, 033324 (2021).
  • Parish and Levinsen (2023) M. M. Parish and J. Levinsen, “Fermi polarons and beyond,” arXiv:2306.01215  (2023).
  • Chang et al. (2023) M. Chang, X. Yin, L. Chen,  and Y. Zhang, “Correlation functions and polaron-molecule crossover in one-dimensional attractive Fermi gases,” Phys. Rev. A 107, 053312 (2023).
  • Lychkovskiy (2014) O. Lychkovskiy, “Perpetual motion of a mobile impurity in a one-dimensional quantum gas,” Phys. Rev. A 89, 033619 (2014).
  • Lychkovskiy (2015) O. Lychkovskiy, “Perpetual motion and driven dynamics of a mobile impurity in a quantum fluid,” Phys. Rev. A 91, 040101 (2015).
  • Pessoa et al. (2021) R. Pessoa, S. A. Vitiello,  and L. A. P. Ardila, “Finite-range effects in the unitary Fermi polaron,” Phys. Rev. A 104, 043313 (2021).
  • Guan et al. (2013) X.-W. Guan, M. T. Batchelor,  and C. Lee, “Fermi gases in one dimension: From Bethe ansatz to experiments,” Rev. Mod. Phys. 85, 1633–1691 (2013).
  • Castro Neto and Fisher (1996) A. H. Castro Neto and M. P. A. Fisher, “Dynamics of a heavy particle in a Luttinger liquid,” Phys. Rev. B 53, 9713–9718 (1996).
  • Gangardt and Kamenev (2009) D. M. Gangardt and A. Kamenev, “Bloch oscillations in a one-dimensional spinor gas,” Phys. Rev. Lett. 102, 070402 (2009).
  • Schecter et al. (2012) M. Schecter, D. M. Gangardt,  and A. Kamenev, “Dynamics and Bloch oscillations of mobile impurities in one-dimensional quantum liquids,” Ann. Phys. 327, 639–670 (2012).
  • Gamayun et al. (2014) O. Gamayun, O. Lychkovskiy,  and V. Cheianov, “Kinetic theory for a mobile impurity in a degenerate Tonks-Girardeau gas,” Phys. Rev. E 90, 032132 (2014).
  • Burovski et al. (2014) E. Burovski, V. Cheianov, O. Gamayun,  and O. Lychkovskiy, “Momentum relaxation of a mobile impurity in a one-dimensional quantum gas,” Phys. Rev. A 89, 041601 (2014).
  • Knap et al. (2014) M. Knap, C. J. M. Mathy, M. Ganahl, M. B. Zvonarev,  and E. Demler, “Quantum flutter: Signatures and robustness,” Phys. Rev. Lett. 112, 015302 (2014).
  • Gamayun et al. (2015) O. Gamayun, A. G. Pronko,  and M. B. Zvonarev, “Impurity Green’s function of a one-dimensional Fermi gas,” Nuclear Phys. B 892, 83–104 (2015).
  • Gamayun et al. (2016) O. Gamayun, A. G. Pronko,  and M. B. Zvonarev, “Time and temperature-dependent correlation function of an impurity in one-dimensional Fermi and Tonks–Girardeau gases as a Fredholm determinant,” New J. Phys. 18, 045005 (2016).
  • Schecter et al. (2016) M. Schecter, D. M. Gangardt,  and A. Kamenev, “Quantum impurities: from mobile Josephson junctions to depletons,” New J. Phys. 18, 065002 (2016).
  • Gamayun et al. (2020) O. Gamayun, O. Lychkovskiy,  and M. B. Zvonarev, “Zero temperature momentum distribution of an impurity in a polaron state of one-dimensional Fermi and Tonks–Girardeau gases,” SciPost Phys. 8, 053 (2020).
  • Gamayun et al. (2022) O. Gamayun, M. Panfil,  and F. T. Sant’Ana, “Mobile impurity in a one-dimensional gas at finite temperatures,” Phys. Rev. A 106, 023305 (2022).
  • Lorentz (1905) H. A. Lorentz, “The motion of electrons in metallic bodies. I,” Proc. KNAW 7, 438–453 (1905).
  • Hauge (1974) E. H. Hauge, “What can one learn from Lorentz models?” in Transport Phenomena. Lecture Notes in Physics, Vol. 31, edited by G. Kirczenow and J. Marro (Springer, Berlin, 1974) pp. 337–367.
  • Szász (2000) D. Szász, Hard Ball Systems and the Lorentz Gas (Springer-Verlag, Berlin, 2000).
  • Resibois and Leener (1977) P. Resibois and M. De Leener, Classical Kinetic Theory of Fluids (Wiley, New York, 1977).
  • Krapivsky et al. (2010) P. L. Krapivsky, S. Redner,  and E. Ben-Naim, A Kinetic View of Statistical Physics (Cambridge University Press, Cambridge, UK, 2010).
  • Dorfman et al. (2021) J. R. Dorfman, H. van Beijeren,  and T. R. Kirkpatrick, Contemporary Kinetic Theory of Matter (Cambridge University Press, Cambridge, UK, 2021).
  • Kremer (2010) G. M. Kremer, An introduction to the Boltzmann equation and transport processes in gases (Springer-Verlag, Berlin, 2010).
  • Graham et al. (1994) R. L. Graham, D. E. Knuth,  and O. Patashnik, Concrete Mathematics: A Foundation for Computer Science (Addison-Wesley, Reading, Massachusetts, 1994).
  • Bender and Orszag (1978) C. M. Bender and S. A. Orszag, Advanced Mathematical Methods for Scientists and Engineers (McGraw-Hill, New York, 1978).
  • D’Alessio and Krapivsky (2011) L. D’Alessio and P. L. Krapivsky, “Light impurity in an equilibrium gas,” Phys. Rev. E 83, 011107 (2011).
  • Note (1) The assumption that the impurity is massless is extreme, but the same assumption underlies the classical Lorentz gas where the scatters are immobile Lorentz (1905); Hauge (1974); Szász (2000); Resibois and Leener (1977); Krapivsky et al. (2010); Dorfman et al. (2021). Thus, the impurity does not affect the scatters, which effectively implies that the mass of the impurity is much smaller than the mass of the scatters.
  • Fermi (1949) E. Fermi, “On the origin of the cosmic radiation,” Phys. Rev. 75, 1169–1174 (1949).
  • Piasecki and Wajnryb (1979) J. Piasecki and E. Wajnryb, “Long-time behavior of the Lorentz electron gas in a constant, uniform electric field,” J. Stat. Phys. 21, 549–559 (1979).
  • Krapivsky and Redner (1997) P. L. Krapivsky and S. Redner, “Slowly divergent drift in the field-driven Lorentz gas,” Phys. Rev. E 56, 3822–3830 (1997).
  • Antal et al. (2008) T. Antal, P. L. Krapivsky,  and S. Redner, “Exciting hard spheres,” Phys. Rev. E 78, 030301 (2008).
  • Landau and Lifshitz (1987) L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Pergamon Press, New York, 1987).