This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Infinitely many normalized solutions for a quasilinear Schrödinger equation

Xianyong Yang1   Fukun Zhao2
1. School  of  Mathematics and Computer Science, Yunnan  Minzu  University,  Kunming  650500  P.R. China
2. School  of  Mathematics,  Yunnan  Normal  University,  Kunming  650500  P.R. China
Corresponding author. E-mail addresses:fukunzhao@163.com
Abstract

In this paper, we are concerned with the following quasilinear Schrödinger equation

{Δu+μuΔ(u2)u=g(u)inNN|u|2𝑑x=m,uH1(N),\begin{cases}-\Delta u+\mu u-\Delta(u^{2})u=g(u)~{}~{}\hbox{in}~{}~{}\mathbb{R}^{N}\\ \int_{\mathbb{R}^{N}}|u|^{2}dx=m,\\ u\in H^{1}(\mathbb{R}^{N}),\end{cases}

where N2N\geq 2, m>0m>0 is a given constant, μ\mu\in\mathbb{R} is a Lagrange multiplier, and gg satisfies the well-known Berestycki–Lions condition. The existence of infinitely many normalized solutions is obtained via a minimax argument.

Keywords: Quasilinear Schrödinger equation; Normalized solutions; Berestycki–Lions nonlinearity.

Mathematics Subject Classification: 35A15, 35B38, 35J10, 35J62.

1 Introduction and main results

Assume N2N\geq 2 and consider the following quasilinear Schrödinger equation

Δu+λuΔ(u2)u=g(u)inN,-\Delta u+\lambda u-\Delta(u^{2})u=g(u)~{}~{}\hbox{in}~{}~{}\mathbb{R}^{N}, (1.1)

which is related to the standing waves ψ(x,t)=u(x)eiEt\psi(x,t)=u(x)e^{-iEt} of the following Schrödinger equation

iψtΔψ+μψh(|ψ|2)ψΔ(|ψ|2)ψ=0,-i\psi_{t}-\Delta\psi+\mu\psi-h(|\psi|^{2})\psi-\Delta(|\psi|^{2})\psi=0, (1.2)

where ii denotes the imaginary unit, λ=μE\lambda=\mu-E, g(t)=h(|t|2)tg(t)=h(|t|^{2})t. The quasilinear Schrödinger equation (1.2) is derived as a model of several physical phenomena. For example, it was used for the superfluid film equation in plasma physics by Kurihara [20]. It also appears in the theory of Heisenberg ferromagnetism and magnons (see [19] and [36]), in dissipative quantum mechanics and the condensed matter theory [33]. In literature the study of standing waves of (1.1) has been pursed in two main directions, which opened two different challenging research fields.

The first topic regards the search for solutions of (1.1) with a prescribed frequency μ\mu and free mass, which is called unconstrained problem. To this aim, we consider the associated energy functional to (1.1)

I(u)=12N(1+2u2)|u|2𝑑x+λNu2𝑑xNG(u)𝑑xI(u)={1\over 2}\int_{\mathbb{R}^{N}}\big{(}1+2u^{2}\big{)}|\nabla u|^{2}dx+\lambda\int_{\mathbb{R}^{N}}u^{2}dx-\int_{\mathbb{R}^{N}}G(u)dx

defined on the natural space

X={uH1(N)|Nu2|u|2𝑑x<},X=\bigg{\{}u\in H^{1}(\mathbb{R}^{N})|\int_{\mathbb{R}^{N}}u^{2}|\nabla u|^{2}dx<\infty\bigg{\}},

where G(u)=0ug(s)𝑑s.G(u)=\int_{0}^{u}g(s)ds. A function uXu\in X is called a weak solution of (1.1) if

limt0I(u+tφ)I(u)t=0\lim_{t\rightarrow 0}\frac{I(u+t\varphi)-I(u)}{t}=0

for all φC0(N).\varphi\in C_{0}^{\infty}(\mathbb{R}^{N}). Recall that 22=4NN222^{\ast}=\frac{4N}{N-2} corresponds to a critical exponent of (1.1) when g(u)=|u|r2ug(u)=|u|^{r-2}u and N3N\geq 3, see [26]. Different from the semilinear case that κ=0\kappa=0, there is a non-convex term Δ(u2)u\Delta(u^{2})u appears in the quasilinear problem (1.1), and hence the search of solutions of such an equation must face a challenge: the functional

W(u)=Nu2|u|2𝑑xW(u)=\int_{\mathbb{R}^{N}}u^{2}|\nabla u|^{2}dx

associated with the quasilinear term is non differentiable in the space XX when N2N\geq 2. Consequently, the standard critical point theory can not be applied directly. In order to overcome this difficulty, several approaches have been successfully developed in the last decade, such as the constraint minimization ([29]), the Nehari manifold method ([27]), the perturbation method ([32]) and the nonsmooth critical point theory ([6, 22]). It seems that the first contribution to the equation (1.1) via variational methods dues to the work [11]. After this work, a series of subsequent studies have been done concerning with the existence, multiplicity and qualitative properties of solutions to (1.1), see for example [1, 12, 18, 25, 30, 28, 31, 35].

The second topic of investigation of the problem (1.1) consists of prescribing the mass m>0m>0, thus conserved by ψ\psi in time

Nψ(x,t)𝑑x=m,t[0,+),\int_{\mathbb{R}^{N}}\psi(x,t)dx=m,\forall t\in[0,+\infty),

and letting the frequency μ\mu to be free. Such a problem is usually called constrained one. The constrained problem has a significant relevance in Physics, not only for the quantum probability normalization, but also because the mass may also have specific meanings, such as the power supply in nonlinear optics, or the total number of atoms in Bose-Einstein condensation. Moreover, the investigation of constrained problems can give a better insight of the dynamical properties, as the orbital stability of solutions of (1.2), see for example [9]. For the case κ=0\kappa=0, (1.1) is reduced to the semilinear Schrödinger equation whose normalized solutions are studied widely in recent years. We can refer the interested readers to [7, 9, 13, 15, 39] and the references therein.

In recent years, there has been an increasing interest in studying of normalized solutions to the quasilinear Schrödinger equation. To obtain normalized solutions, a natural method is to look for the minimizer of the following constrained problem:

e(m):=infuS(m)E(u),e(m):=\inf_{u\in S(m)}E(u),

where

S(m)={uH1(N):Nu2|u|2𝑑x<andN|u|2𝑑x=m},S(m)=\bigg{\{}u\in H^{1}(\mathbb{R}^{N}):\int_{\mathbb{R}^{N}}u^{2}|\nabla u|^{2}dx<\infty~{}\text{and}~{}\int_{\mathbb{R}^{N}}|u|^{2}dx=m\bigg{\}},

and

E(u)=12N(1+2u2)|u|2𝑑xNG(u)𝑑x.E(u)={1\over 2}\int_{\mathbb{R}^{N}}\big{(}1+2u^{2}\big{)}|\nabla u|^{2}dx-\int_{\mathbb{R}^{N}}G(u)dx.

It is proved in[10, Theorem 4.6] that each minimizer of e(m)e(m), corresponds to a Lagrange multiplier λ<0\lambda<0 such that (u,λ)(u,\lambda) solves weakly (1.1)\eqref{eqA1} when g(u)=|u|r2ug(u)=|u|^{r-2}u. Moreover, it is easy to see that e(m)>e(m)>-\infty for 2<r<4+4N2<r<4+\frac{4}{N} and e(m)=e(m)=-\infty for 4+4N<r<4NN24+\frac{4}{N}<r<\frac{4N}{N-2}. From this point of view, r=4+4Nr=4+\frac{4}{N} plays a critical exponent for the constrained problem. By this constrained argument, Colin, Jeanjean and Squassina [10] first prove the following result for L2L_{2} -constrained problem (see also [16]).

Theorem 1.1

Assume that g(u)=|u|r2ug(u)=|u|^{r-2}u, where r(2,4NN2)r\in\big{(}2,\frac{4N}{N-2}\big{)} if N3N\geq 3 and r(2,)r\in(2,\infty) if N=1,2N=1,2. Then

  • (1)(1)

    For all m>0m>0 and r(2,2+4N)r\in(2,2+\frac{4}{N}), e(m)(,0)e(m)\in(-\infty,0) and e(m)e(m) has a minimizer.

  • (2)(2)

    For r(2+4N,4+4N)r\in(2+\frac{4}{N},4+\frac{4}{N}), there exists m(r,N)>0m(r,N)>0 such that

    (i)If m(0,m(r,N)),e(m)=0m\in\big{(}0,m(r,N)\big{)},e(m)=0 and e(m)e(m) has no minimizer;

    (ii)If m=m(r,N),m(c)=0m=m(r,N),m(c)=0 and e(m)e(m) has a minimizer;

    (iii) If m(c(r,N),+),e(m)<0m\in\big{(}c(r,N),+\infty\big{)},e(m)<0 and e(m)e(m) has a minimizer;

  • (3)(3)

    For all m>0m>0, r(4+4N,4NN2)r\in\big{(}4+\frac{4}{N},\frac{4N}{N-2}\big{)} if N3N\geq 3 and r(4+4N,)r\in\big{(}4+\frac{4}{N},\infty) if N=1,2N=1,2, there holds e(m)=e(m)=-\infty.

  • (4)(4)

    For r=4+4Nr=4+\frac{4}{N}, there exists mN>0m_{N}>0 such that

    e(m)={0,ifm(0,mN),,ifm(mN,).e(m)=\begin{cases}0,~{}~{}~{}~{}~{}~{}\hbox{if}~{}m\in(0,m_{N}),\\ -\infty,~{}~{}\hbox{if}~{}m\in(m_{N},\infty).\end{cases}

    Moreover, e(m)e(m) has no minimizer for all m>0m>0.

  • (5)(5)

    The standing waves obtained as minimizer of e(m)e(m) are orbitally stable.

Interestingly, by a combination of analytical and numerical arguments in dimension N=3N=3, Caliari and Squassina [5] studied the explicit bounds on m(r,N)m(r,N) and mNm_{N} given in Theorem 1.1. In particular, for r=133r=\frac{13}{3}, they find that there exists m¯,m¯>0\underline{m},~{}\overline{m}>0 such that

e(m)={0,ifm(0,m¯),,ifm(m¯,).e(m)=\begin{cases}0,~{}~{}~{}~{}~{}~{}\hbox{if}~{}m\in(0,\underline{m}),\\ -\infty,~{}~{}\hbox{if}~{}m\in(\overline{m},\infty).\end{cases}

Moreover, m¯19.73\underline{m}\approx 19.73 and m¯85.09\overline{m}\approx 85.09. However, the constrained minimization argument does not use much of smoothness of the variational functional, so it is not suitable for dealing with the existence of multiple solutions. Subsequently, Jeanjean, Luo and Wang [17] prove the existence of two normalized solutions for L2L_{2} -subcritical case via the perturbation approach. More precisely, they proved the following result.

Theorem 1.2

Assume that N1N\geq 1 and g(u)=|u|r2ug(u)=|u|^{r-2}u with r(2+4N,4+4N)r\in(2+\frac{4}{N},4+\frac{4}{N}).

  • (1)(1)

    There exists a m0(0,m(r,N))m_{0}\in(0,m(r,N)) such that for any m(0,m(r,N))m\in(0,m(r,N)) the functional EE admits a critical point vmv_{m} on S(m)S(m) which is a local minimum of EE when m(m0,m(r,N))m\in(m_{0},m(r,N)) and a global minimum of EE when m(m(r,N),+)m\in(m(r,N),+\infty). In particular,

    E(vm){>0,ifm(m0,m(r,N));=0,ifm=m(r,N);<0,ifm=(m(r,N),+).E(v_{m})\begin{cases}>0,~{}~{}\hbox{if}~{}m\in(m_{0},m(r,N));\\ =0,~{}~{}\hbox{if}~{}m=m(r,N);\\ <0,~{}~{}\hbox{if}~{}m=(m(r,N),+\infty).\end{cases}
  • (2)(2)

    Assuming in addition that r(2+4N,2+4N2)r\in(2+\frac{4}{N},2+\frac{4}{N-2}) if N5N\geq 5 there exists a second critical point umu_{m} on S(m)S(m) which satisfies

    (i) E(um)>0E(u_{m})>0 for all m(m0,+)m\in(m_{0},+\infty) and is a mountain pass level;

    (ii)E(um)>E(vm)E(u_{m})>E(v_{m}) for any m(m0,+)m\in(m_{0},+\infty).

Very recently, Ye and Yu [47] study the L2L_{2}-critical problem to (1.1) if g(u)=|u|r2rg(u)=|u|^{r-2}r for r=2+4Nr=2+\frac{4}{N} and r=4+4Nr=4+\frac{4}{N}. They prove the following result.

Theorem 1.3

Assume that g(u)=|u|r2ug(u)=|u|^{r-2}u. Then

  • (1)(1)

    For r=2+4Nr=2+\frac{4}{N}, there exists mN>0m_{N}>0 such that

    (i)If m(0,mN],e(m)=0m\in\big{(}0,m_{N}\big{]},e(m)=0 and E(u)E(u) has no critical point on the constraint S(m)S(m);

    (ii) If m(mN,+),e(m)<0m\in\big{(}m_{N},+\infty\big{)},e(m)<0 and e(m)e(m) has a minimizer;

  • (2)(2)

    For r=4+4Nr=4+\frac{4}{N}, there exists mN>0m_{N}>0 such that

    (i) E(u)E(u) has no critical point on the constraint S(m)S(m) for all m(0,mN]m\in\big{(}0,m_{N}\big{]};

    (ii) E(u)E(u) has a critical point on the constraint S(m)S(m) for all m(mN,+)m\in\big{(}m_{N},+\infty\big{)} when N3N\leq 3.

We also point out that some works focus on the existence and asymptotic behavior of normalized solutions related to some quasilinear elliptic equations with potential function, that is, μ\mu is replaced by V(x)V(x) satisfying different assumptions in (1.1), we can refer the interested readers to [2, 21, 50, 48, 49] and the references therein for this case.

However, to the best of our knowledge, the existing results in references of the constrained problem (1.1) mainly focus on the case where gg is a power function. It seems that there is no work considering the existence of normalized solutions for (1.1) when gg is a general nonlinearity. A natural question is whether the nonlinearity g(u)=|u|r2ug(u)=|u|^{r-2}u can be relaxed to a general nonlinearity gg or not? On the other hand, it seems that the multiplicity of normalized solutions for (1.1) only can be found in Jeanjean, Luo and Wang [17], where the authors partly obtained the existence of two normalized solutions for (1.1) when g(u)=|u|r2ug(u)=|u|^{r-2}u. Since such a power nonlinearity is odd, another natural question is whether (1.1) has infinitely many normalized solutions or not? Moreover, we note from Theorem 1.2 that r(2+4N,4+4N)r\in\big{(}2+\frac{4}{N},4+\frac{4}{N}\big{)} for N4N\leq 4 or r(2+4N,2+4N2)r\in\big{(}2+\frac{4}{N},2+\frac{4}{N-2}) for r5r\geq 5 are required. However, it is well-known that the existence of solutions of (1.1) can be obtained for the unconstrained problem when r(2,4NN2)r\in\big{(}2,\frac{4N}{N-2}\big{)} and N1N\geq 1. So the last natural questions is whether the scope of rr and the dimension of the space can be relaxed to obtain multiple normalized solutions of (1.1)?

Motivated by the above results especially by [16] and [17], in the present paper, we are concerned with the existence and multiplicity of normalized solutions of the following quasilinear Schrödinger equation

{Δu+μuΔ(u2)u=g(u)inN,N|u|2𝑑x=m,(Pμ,m)uH1(N),\begin{cases}-\Delta u+\mu u-\Delta(u^{2})u=g(u)~{}~{}\hbox{in}~{}~{}\mathbb{R}^{N},\\ \int_{\mathbb{R}^{N}}|u|^{2}dx=m,~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}(P_{\mu,m})\\ u\in H^{1}(\mathbb{R}^{N}),\end{cases}

where gg satisfies the well-known Berestycki–Lions condition, which is regarded as an almost optimal assumption of the existence of solutions for nonlinear Schrödinger equation (see [3, 4]). To state our main results, we need the following assumptions.

  • (g1)(g_{1})

    gC(,)g\in C(\mathbb{R},\mathbb{R}).

  • (g2)(g_{2})

    lims0g(s)s=0\lim\limits_{s\rightarrow 0}\frac{g(s)}{s}=0.

  • (g3)(g_{3})

    For p=4+4Np=4+\frac{4}{N}, lims|g(s)||s|p1=0\lim\limits_{s\rightarrow\infty}\frac{|g(s)|}{|s|^{p-1}}=0.

  • (g4)(g_{4})

    There exists some s0>0s_{0}>0 such that G(s0)>0G(s_{0})>0.

  • (g5)(g_{5})

    g(s)=g(s)g(-s)=-g(s) for all ss\in\mathbb{R}.

  • (g6)(g_{6})

    For q=2+4Nq=2+\frac{4}{N}, lim infs0|g(s)||s|q2s=\liminf\limits_{s\rightarrow 0}\frac{|g(s)|}{|s|^{q-2}s}=\infty.

  • (g7)(g_{7})

    g(s)s0g(s)s\geq 0 for all ss\in\mathbb{R}.

Definition 1.1

For any m>0m>0, a solution uH1(N)u\in H^{1}(\mathbb{R}^{N}) to (1.1) is called a least energy normalized solution, if uS(m)u\in S(m) and

E(u)=min{E(u):uS(m),μand(u,μ)solves(Pμ,m)}.E(u)=\min\{E(u):u\in S(m),\mu\in\mathbb{R}~{}\text{and}~{}(u,\mu)~{}\text{solves}~{}(P_{\mu,m})\}.

Now, our main results of this paper can be stated as follows.

Theorem 1.4

Assume that (g1)(g4)(g_{1})-(g_{4}) hold and N2N\geq 2. Then

  • (1)(1)

    There exists m10m_{1}\geq 0 such that (Pμ,m)(P_{\mu,m}) has at least a ground state normalized solution for m>m1m>m_{1}.

  • (2)(2)

    In addition that (g6)(g_{6}), (Pμ,m)(P_{\mu,m}) has at least a ground state normalized solution for any m>0m>0.

Theorem 1.5

Assume that (g1)(g5)(g_{1})-(g_{5}) hold and N2N\geq 2. Then

  • (1)(1)

    For any kk\in\mathbb{N}, there exists mk0m_{k}\geq 0 such that (Pμ,m)(P_{\mu,m}) has at least kk radial solutions for m>mkm>m_{k}.

  • (2)(2)

    In addition that (g6)(g_{6}), (Pμ,m)(P_{\mu,m}) has infinitely many radial solutions for any m>0m>0.

We immediately conclude the following result from Theorem 1.5:

Corollary 1.1

Assume that g(u)=|u|r2ug(u)=|u|^{r-2}u hold and N2N\geq 2.

  • (1)(1)

    (Pμ,m)(P_{\mu,m}) has infinitely many radial solutions for any 2<r<2+4N2<r<2+\frac{4}{N} and m>0m>0.

  • (2)(2)

    For any kk\in\mathbb{N}, there exists mk>0m_{k}>0 such that (Pμ,m)(P_{\mu,m}) has at least kk radial solutions for 2+4Nr<4+4N2+\frac{4}{N}\leq r<4+\frac{4}{N} when m>mkm>m_{k}.

Remark 1.1

If e(m)<0e(m)<0 for r(2,4+4N)r\in\big{(}2,4+\frac{4}{N}), by Theorem 1.1 and Theorem 1.2, we have e(m)=b1me(m)=b_{1}^{m} and m1=m(r,N)m_{1}=m(r,N), where b1mb_{1}^{m} is given in definition 3.1 below. In other words, the minimizer of E|S(m)E|_{S(m)} can be characterized by mountain pass level. Clearly, Corollary 1.1 improves Theorems 1.11.2.

Theorem 1.6

Assume that (g1)(g5)(g_{1})-(g_{5}), (g7)(g_{7}) hold and N2.N\geq 2. Then

  • (1)(1)

    e(m)e(m) has a minimizer for m>m1m>m_{1}, where m1m_{1} is given in Theorem 1.4.

  • (2)(2)

    In addition that (g6)(g_{6}), e(m)e(m) has a minimizer for any m>0m>0.

Remark 1.2

It is a natural question that if e(m)e(m) has a minimizer for m(0,m1]m\in(0,m_{1}]. For semilinear case, by proving a strict subadditivity inequality as follows

em1+m2<em1+em2,e_{m_{1}+m_{2}}<e_{m_{1}}+e_{m_{2}},

Shibata [40] gives a negative answer. For quasilinear case, however, it is not clear this subadditivity inequality holds, because the functional EE is non differentiable in the space XX when N2N\geq 2. So this problem still remains open.

To prove Theorems 1.41.5, we employ a new approach introduced by Hirata and Tanaka [14]. One advantage of this method is that it can be suitably adapted to derive multiplicity results of normalized solutions by using minimax and deformation arguments. Firstly, we consider a augmented functional Im(λ,u)I^{m}(\lambda,u), which is not well defined in the normal Sobolev space ×H1(N)\mathbb{R}\times H^{1}(\mathbb{R}^{N}). Consequently, one of the difficulties to deal with (1.1) stems from the fact that there is no suitable working space where the energy functional enjoys both the smoothness and compactness properties. In order to overcome this difficulty, inspired by [26], we make a change of variables and transform the quasilinear problem into a semilinear one.

Since gg only satisfies the Berestycki–Lions condition, it impossible for us to verify the boundedness of (PS)(PS) or (Cc)(C_{c}) sequence because of the absence of Ambrosetti-Rabinowize condition and monotonicity condition. Inspired by [14], we use a new deformation argument under a new version of the Palias–Samle condition related to a Pohozaev functional. Compared with the unconstrained case, we find that the corresponding functional seems to satisfies the compactness condition only at the negative energy level but not at positive energy level (see Lemma 2.4). Consequently, we have to construct a family of negative minimax values bmkb^{k}_{m} to prove Theorems 1.41.5. To this aim, a key problem is prove that none of bmkb^{k}_{m} is equal to -\infty and hence bmkb^{k}_{m} is well defined. In [14], Hirata and Tanaka accomplished it by comparing bmkb^{k}_{m} and the least energy of the following classic problem

Δu+u=|u|r2u,xN,-\Delta u+u=|u|^{r-2}u,~{}~{}x\in\mathbb{R}^{N}, (1.3)

where 2<r<2.2<r<2^{\ast}. This argument heavily relies on scaling properties of functional. However, it seems to fail for the quasilinear case because of the nonhomogeneous properties of change of variables and nonlinearity. In this paper, we will borrow from a Pohozaev Mountain developed in [9] to overcome this difficulty. We point out that a new property of change of variables play a important role in proof, see Lemma 2.1–(14).

To look for a minimizer of e(m)e(m), our work uses in particular some arguments of Steiner rearrangement (see [23, 24]) and a new scaling of [10]. We will see that a key point is show that e(m)<0e(m)<0. Indeed, for the homogeneous case that g(u)=|u|r2ug(u)=|u|^{r-2}u, one can achieve this by using a scaling argument. However, for the nonhomogeneous case, it is not easy to see whether e(m)<0e(m)<0 holds or not. In this paper, by using minimax method, we first find a least energy normalized solution with negative energy to (Pμ,m)(P_{\mu,m}), which concludes that e(m)<0e(m)<0. From this perspective, we gives a strategy for finding a minimizer for constraint problems.

The paper is organized as follows. In Section 2, we will focus on the variational frame and deformation lemma. In Section 3, we will construct the negative minimax level and and analyze their behavior. In Section 4, we will devote to the proofs of main results.

Notation. For the sake of notational simplicity, we omit integral symbols dxdx without causing confusion. Throughout this paper, \rightarrow and \rightharpoonup denote the strong convergence and the weak convergence, respectively. \|\cdot\| denotes the norm in H1(N)H^{1}(\mathbb{R}^{N}). (λ,u):=λ2+u2\|(\lambda,u)\|:=\sqrt{\lambda^{2}+\|u\|^{2}} denotes the norm of (λ,u)(\lambda,u) in ×H1(N)\mathbb{R}\times H^{1}(\mathbb{R}^{N}). For A×H1(N)A\subset\mathbb{R}\times H^{1}(\mathbb{R}^{N}) and ρ>0\rho>0, Nρ(A)={(λ,u):dist((λ,u),A)<ρ}N_{\rho}(A)=\{(\lambda,u):\hbox{dist}((\lambda,u),A)<\rho\}. p\|\cdot\|_{p} denotes the norm in Lp(N)L^{p}(\mathbb{R}^{N}) for 1p1\leq p\leq\infty. Dk={xk:|x|=1},Dk={xk:|x|1}.\partial D_{k}=\{x\in\mathbb{R}^{k}:|x|=1\},~{}~{}D_{k}=\{x\in\mathbb{R}^{k}:|x|\leq 1\}. Σρ={vH1(N):N(|v|2+f2(v))ρ}\Sigma_{\rho}=\big{\{}v\in H^{1}(\mathbb{R}^{N}):\int_{\mathbb{R}^{N}}\big{(}|\nabla v|^{2}+f^{2}(v)\big{)}\leq\rho\big{\}} and Σρ={vH1(N):N(|v|2+f2(v))=ρ}.\partial\Sigma_{\rho}=\big{\{}v\in H^{1}(\mathbb{R}^{N}):\int_{\mathbb{R}^{N}}\big{(}|\nabla v|^{2}+f^{2}(v)\big{)}=\rho\big{\}}. C0C_{0}, CC, CiC_{i} denote various positive constants whose value may change from line to line but are not essential to the analysis of the proof.

2 Palais-Smale-Pohozaev condition and deformation theory

2.1 Palais-Smale-Pohozaev condition

For the sake of notational simplicity, we denote μ=eλ\mu=e^{\lambda} . Since we are looking for normalized solutions to equation (Pμ,m)(P_{\mu,m}), we consider the following energy functional:

Im(λ,u)=12N(1+2u2)|u|2+eλ2(Nu2m)NG(u),I^{m}(\lambda,u)={1\over 2}\int_{\mathbb{R}^{N}}\big{(}1+2u^{2}\big{)}|\nabla u|^{2}+{e^{\lambda}\over 2}\bigg{(}\int_{\mathbb{R}^{N}}u^{2}-m\bigg{)}-\int_{\mathbb{R}^{N}}G(u),

which is not well defined in the normal Sobolev space ×H1(N)\mathbb{R}\times H^{1}(\mathbb{R}^{N}). In order to overcome this difficulty, inspired by [26], we make a change of variables v=f1(u)v=f^{-1}(u), where ff is defined by

{f(0)=0,f(t)=(1+2|f(t)|2)12,t>0,f(t)=f(t),t<0.\begin{cases}f(0)=0,\\ f^{\prime}(t)=\big{(}1+2|f(t)|^{2}\big{)}^{-\frac{1}{2}},~{}~{}~{}\forall~{}t>0,\\ f(t)=-f(-t),~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}\forall~{}t<0.\end{cases}
Lemma 2.1

The function ff satisfies the following properties:

  • (1)(1)

    fC(,)f\in C^{\infty}(\mathbb{R},\mathbb{R}) is uniquely defined function and invertible.

  • (2)(2)

    0<f(t)10<f^{\prime}(t)\leq 1 for all tt\in\mathbb{R}.

  • (3)(3)

    |f(t)||t||f(t)|\leq|t| for all tt\in\mathbb{R}.

  • (4)(4)

    limt0f(t)t=1.\lim\limits_{t\rightarrow 0}\frac{f(t)}{t}=1.

  • (5)(5)

    limt|f(t)|2|t|=2.\lim\limits_{t\rightarrow\infty}\frac{|f(t)|^{2}}{|t|}=\sqrt{2}.

  • (6)(6)

    12f(t)tf(t)f(t)\frac{1}{2}f(t)\leq tf^{\prime}(t)\leq f(t) for all t0t\geq 0.

  • (7)(7)

    |f(t)|214|t|12|f(t)|\leq 2^{\frac{1}{4}}|t|^{\frac{1}{2}} for all tt\in\mathbb{R}.

  • (8)(8)

    There exists a positive constant C>0C>0 such that

    f(t){C|t|,|t|1,C|t|12,|t|>1.f(t)\geq\begin{cases}C|t|,~{}~{}|t|\leq 1,\\ C|t|^{\frac{1}{2}},|t|>1.\end{cases}
  • (9)(9)

    |f(t)|f(t)12|f(t)|f^{\prime}(t)\leq\frac{1}{\sqrt{2}} for all tt\in\mathbb{R}.

  • (10)(10)

    For all θ>0\theta>0, there is a constant C(θ)>0C(\theta)>0 such that |f(θt)|2C(θ)|f(t)|2|f(\theta t)|^{2}\leq C(\theta)|f(t)|^{2} for all tt\in\mathbb{R}.

  • (11)(11)

    The function f(t)f(t)t1f(t)f^{\prime}(t)t^{-1} is decreasing for t>0t>0.

  • (12)(12)

    The function fr(t)f(t)t1f^{r}(t)f^{\prime}(t)t^{-1} is increasing for r3r\geq 3 and t>0t>0.

  • (13)(13)

    There exists C>0C>0 such that |t|rC|f(t)|2+C|f(t)|2r|t|^{r}\leq C|f(t)|^{2}+C|f(t)|^{2r} for all r2r\geq 2 and tt\in\mathbb{R}.

  • (14)(14)

    There exists a positive constant C>0C>0 such that f2(rt)Crf2(t)f^{2}(rt)\geq Crf^{2}(t) for all tt\in\mathbb{R} and r1r\geq 1; f2(rt)Cr2f2(t)f^{2}(rt)\geq Cr^{2}f^{2}(t) for all tt\in\mathbb{R} and r1r\leq 1.

  • (15)(15)

    Assume (g1)(g_{1})(g3)(g_{3}) hold. For any ε>0\varepsilon>0, there exists Cε>0C_{\varepsilon}>0 such that |G[f(t)]|ε|f(t)|2+Cε|t|p2|G[f(t)]|\leq\varepsilon|f(t)|^{2}+C_{\varepsilon}|t|^{\frac{p}{2}} for all tt\in\mathbb{R}.

  • (16)(16)

    Assume (g1)(g_{1}), (g3)(g_{3}) and (g6)(g_{6}) hold. Let r(q,+)r\in(q,+\infty) if N=2N=2, and r(q,2)r\in(q,2^{\ast}) if N3N\geq 3, then for any L>0L>0 there exists CL>0C_{L}>0 such that G[f(t)]L|t|qCL|t|rforallt.G[f(t)]\geq L|t|^{q}-C_{L}|t|^{r}~{}~{}\hbox{for}~{}~{}\hbox{all}~{}~{}t\in\mathbb{R}.

Proof:  (1)(1)-(13)(13) can be found in [43]. Here we only give the proof for (16)(16) because (14)(14)-(15)(15) is simple. For any L>0L>0, by (g6)(g_{6}) and (8)(8), there exists 0<δ=δ(L)<10<\delta=\delta(L)<1 such that

G[f(t)]>LC|f(t)|qL|t|qG[f(t)]>\frac{L}{C}\bigg{|}f(t)\bigg{|}^{q}\geq L|t|^{q}

for any 0<|t|δ0<|t|\leq\delta. From (g3)(g_{3}) , (5)(5) and r>q>p2r>q>\frac{p}{2}, we have

limtG[f(t)]L|t|q+|t|rlimt|f(t)|pL|t|q+|t|r=limt|t|p2L|t|q+|t|r=0.\lim_{t\rightarrow\infty}\frac{G[f(t)]}{-L|t|^{q}+|t|^{r}}\geq\lim_{t\rightarrow\infty}\frac{-|f(t)|^{p}}{-L|t|^{q}+|t|^{r}}=\lim_{t\rightarrow\infty}\frac{-|t|^{\frac{p}{2}}}{-L|t|^{q}+|t|^{r}}=0.

Then there exists M=M(L)>0M=M(L)>0 such that

G[f(t)]>L|t|q|t|rG[f(t)]>L|t|^{q}-|t|^{r}

for any |t|>M|t|>M. For δ|t|M\delta\leq|t|\leq M, by (g1)(g_{1}), there exists C(L)>0C(L)>0 such that

G[f(t)]C(L)C(L)δr|t|r.G[f(t)]\geq-C(L)\geq-C(L)\delta^{-r}|t|^{r}.

Consequently, for tt\in\mathbb{R},

G[f(t)]L|t|q(1+C(L)δr)|t|r:=L|t|qCL|t|r.G[f(t)]\geq L|t|^{q}-\big{(}1+C(L)\delta^{-r}\big{)}|t|^{r}:=L|t|^{q}-C_{L}|t|^{r}.

 

After making the change of variables, we consider the functional

Jm(λ,v)=12v22+eλ2(f(v)22m)NG[f(v)]J^{m}(\lambda,v)={1\over 2}\|\nabla v\|_{2}^{2}+{e^{\lambda}\over 2}\big{(}\|f(v)\|^{2}_{2}-m\big{)}-\int_{\mathbb{R}^{N}}G[f(v)]

and the corresponding semilinear problem

Δv+eλ(f(v)f(v)m)=g[f(v)]f(v).-\Delta v+e^{\lambda}\big{(}f(v)f^{\prime}(v)-m\big{)}=g[f(v)]f^{\prime}(v).

Let us recall the principle of symmetric criticality (see [42]) as follows.

Lemma 2.2

Assume that the action of the topological group GG on the Hilbert space XX is isometric. If φC1(X,)\varphi\in C^{1}(X,\mathbb{R}) is invariant and if uu is a critical point of φ\varphi restricted to Fix(G)Fix(G), then uu is a critical point of φ\varphi.

Lemma 2.3

Assume that (g1)(g4)(g_{1})-(g_{4}) hold. Then JmC1(×H1(N),)J^{m}\in C^{1}(\mathbb{R}\times H^{1}(\mathbb{R}^{N}),\mathbb{R}). Moreover, if (λ,v)(\lambda,v) is a critical point for Jm|×Hr1(N)J^{m}|_{\mathbb{R}\times H_{r}^{1}(\mathbb{R}^{N})}, then (eλ,f(v))(e^{\lambda},f(v)) solves equation (Pμ,m)(P_{\mu,m}).

Proof:  JmC1(×H1(N),)J^{m}\in C^{1}(\mathbb{R}\times H^{1}(\mathbb{R}^{N}),\mathbb{R}) directly follows from (g1)(g4)(g_{1})-(g_{4}) and Lemma 2.1. Suppose that (λ,v)(\lambda,v) is a critical point for Jm|×Hr1(N)J^{m}|_{\mathbb{R}\times H_{r}^{1}(\mathbb{R}^{N})}, by Lemma 2.2, (λ,v)(\lambda,v) is also a critical point for JmJ^{m}. Consequently,

0=vJm(λ,v),φ\displaystyle 0=\langle\partial_{v}J^{m}(\lambda,v),\varphi\rangle =Nvφ+eλNf(v)f(v)φNg[f(v)]f(v)φ,φC0(N)\displaystyle=\int_{\mathbb{R}^{N}}\nabla v\nabla\varphi+e^{\lambda}\int_{\mathbb{R}^{N}}f(v)f^{\prime}(v)\varphi-\int_{\mathbb{R}^{N}}g[f(v)]f^{\prime}(v)\varphi,~{}~{}~{}~{}~{}~{}~{}~{}\forall\varphi\in C_{0}^{\infty}(\mathbb{R}^{N})

and

0=λJm(λ,v)=eλ2(f(v)22m).\displaystyle 0=\partial_{\lambda}J^{m}(\lambda,v)={e^{\lambda}\over 2}\big{(}\|f(v)\|_{2}^{2}-m\big{)}.

Let u=f(v)u=f(v) and φ=ψf(v)\varphi=\frac{\psi}{f^{\prime}(v)}. Then

N(1+2u2)uψ+N2|u|2uψ+eλNuψNg(u)ψ=0,ψC0(N)\displaystyle\int_{\mathbb{R}^{N}}(1+2u^{2})\nabla u\nabla\psi+\int_{\mathbb{R}^{N}}2|\nabla u|^{2}u\psi+e^{\lambda}\int_{\mathbb{R}^{N}}u\psi-\int_{\mathbb{R}^{N}}g(u)\psi=0,~{}~{}~{}~{}~{}~{}~{}~{}\forall\psi\in C_{0}^{\infty}(\mathbb{R}^{N})

and

eλ2(u22m)=0.\displaystyle{e^{\lambda}\over 2}\bigg{(}\|u\|_{2}^{2}-m\bigg{)}=0.

Consequently, (μ,u)(\mu,u) solves equation (Pμ,m)(P_{\mu,m}) with μ=eλ\mu=e^{\lambda}.    

Now, we introduce the Pohozaev functional as follows:

P(λ,v)=N22v22+Neλ2f(v)22NNG[f(v)].P(\lambda,v)={N-2\over 2}\|\nabla v\|_{2}^{2}+{Ne^{\lambda}\over 2}\|f(v)\|_{2}^{2}-N\int_{\mathbb{R}^{N}}G[f(v)].

For cc\in\mathbb{R}, let

Kcm={(λ,v)×Hr1(N):Jm(λ,v)=c,λJm(λ,v)=0,vJm(λ,v)=0,P(λ,v)=0}.K^{m}_{c}=\{(\lambda,v)\in\mathbb{R}\times H_{r}^{1}(\mathbb{R}^{N}):J^{m}(\lambda,v)=c,~{}\partial_{\lambda}J^{m}(\lambda,v)=0,~{}\partial_{v}J^{m}(\lambda,v)=0,~{}P(\lambda,v)=0\}.
Definition 2.1

For cc\in\mathbb{R}, we call Jm(λ,v)J^{m}(\lambda,v) satisfies (PSP)c(PSP)_{c} condition, if any sequence {(λn,vn)}×Hr1(N)\{(\lambda_{n},v_{n})\}\subset\mathbb{R}\times H_{r}^{1}(\mathbb{R}^{N}) with

Jm(λn,vn)c,J^{m}(\lambda_{n},v_{n})\rightarrow c, (2.1)
λJm(λn,vn)0,\partial_{\lambda}J^{m}(\lambda_{n},v_{n})\rightarrow 0, (2.2)
vJm(λn,vn)0inHr1(N),\partial_{v}J^{m}(\lambda_{n},v_{n})\rightarrow 0~{}~{}\hbox{in}~{}~{}H_{r}^{1}(\mathbb{R}^{N})^{\ast}, (2.3)
P(λn,vn)0P(\lambda_{n},v_{n})\rightarrow 0 (2.4)

as nn\rightarrow\infty, then {(λn,vn)}\{(\lambda_{n},v_{n})\} has a strongly convergent subsequence in ×Hr1(N)\mathbb{R}\times H_{r}^{1}(\mathbb{R}^{N}).

Lemma 2.4

Assume that (g1)(g4)(g_{1})-(g_{4}) hold. Then Jm(λ,v)J^{m}(\lambda,v) satisfies (PSP)c(PSP)_{c} condition for all c<0c<0.

Proof:  If {(λn,vn)}×Hr1(N)\{(\lambda_{n},v_{n})\}\subset\mathbb{R}\times H_{r}^{1}(\mathbb{R}^{N}) satisfying (2.1)–(2.4), then

N2meλn=P(λn,vn)NJm(λn,vn)+vn22P(λn,vn)NJm(λn,vn),\frac{N}{2}me^{\lambda_{n}}=P(\lambda_{n},v_{n})-NJ^{m}(\lambda_{n},v_{n})+\|\nabla v_{n}\|_{2}^{2}\geq P(\lambda_{n},v_{n})-NJ^{m}(\lambda_{n},v_{n}),

implies that {λn}\{\lambda_{n}\} is bounded from below. Since

λJm(λn,vn)=eλn2(f(vn)22m)0,\partial_{\lambda}J^{m}(\lambda_{n},v_{n})={e^{\lambda_{n}}\over 2}\big{(}\|f(v_{n})\|_{2}^{2}-m\big{)}\rightarrow 0,

one has f(vn)22m\|f(v_{n})\|_{2}^{2}\rightarrow m. Next, we prove that {vn}\{\nabla v_{n}\} is bounded in L2(N)L^{2}(\mathbb{R}^{N}). We argue by contradiction that

vn22.\|\nabla v_{n}\|_{2}^{2}\rightarrow\infty. (2.5)

For small ε>0,\varepsilon>0, by Lemma 2.1 and the Gagliardo–Nirenberg inequality, there exists Cε>0C_{\varepsilon}>0 such that

N|g[f(vn)]f(vn)vn|\displaystyle\int_{\mathbb{R}^{N}}\big{|}g[f(v_{n})]f^{\prime}(v_{n})v_{n}\big{|}\leq Cεf(vn)22+εf(vn)pp\displaystyle C_{\varepsilon}\|f(v_{n})\|_{2}^{2}+\varepsilon\|f(v_{n})\|_{p}^{p} (2.6)
Cεf(vn)22+εf(vn)2θpf(vn)22(1θ)p\displaystyle\leq C_{\varepsilon}\|f(v_{n})\|_{2}^{2}+\varepsilon\|f(v_{n})\|_{2}^{\theta p}\|f(v_{n})\|_{22^{\ast}}^{(1-\theta)p}
Cεf(vn)22+εCf(vn)2θpvn2(1θ)p2\displaystyle\leq C_{\varepsilon}\|f(v_{n})\|_{2}^{2}+\varepsilon C\|f(v_{n})\|_{2}^{\theta p}\|v_{n}\|_{2^{\ast}}^{\frac{(1-\theta)p}{2}}
Cεf(vn)22+εCNf(vn)2θpvn2(1θ)p2\displaystyle\leq C_{\varepsilon}\|f(v_{n})\|_{2}^{2}+\varepsilon C_{N}\|f(v_{n})\|_{2}^{\theta p}\|\nabla v_{n}\|_{2}^{\frac{(1-\theta)p}{2}}
=Cεf(vn)22+εCNf(vn)24Nvn22,\displaystyle=C_{\varepsilon}\|f(v_{n})\|_{2}^{2}+\varepsilon C_{N}\|f(v_{n})\|_{2}^{\frac{4}{N}}\|\nabla v_{n}\|_{2}^{2},

where θ=1N+1\theta=\frac{1}{N+1}. Similarly, one has

vn22Cf(vn)22+Cf(vn)ppCf(vn)22+CNf(vn)24Nvn22.\|v_{n}\|_{2}^{2}\leq C\|f(v_{n})\|_{2}^{2}+C\|f(v_{n})\|_{p}^{p}\leq C\|f(v_{n})\|_{2}^{2}+C_{N}\|f(v_{n})\|_{2}^{\frac{4}{N}}\|\nabla v_{n}\|_{2}^{2}. (2.7)

For large nn, from (2.6)-(2.7) and Lemma 2.1, we have

2CNvn2\displaystyle 2C_{N}\|\nabla v_{n}\|_{2} (2.8)
vn22+Cf(vn)22+CNf(vn)24Nvn22\displaystyle\geq\sqrt{\|\nabla v_{n}\|_{2}^{2}+C\|f(v_{n})\|_{2}^{2}+C_{N}\|f(v_{n})\|_{2}^{\frac{4}{N}}\|\nabla v_{n}\|_{2}^{2}}
vJm(λn,vn)vn22+vn22\displaystyle\geq\|\partial_{v}J^{m}(\lambda_{n},v_{n})\|\sqrt{\|\nabla v_{n}\|_{2}^{2}+\|v_{n}\|_{2}^{2}}
vJm(λn,vn),vn\displaystyle\geq\langle\partial_{v}J^{m}(\lambda_{n},v_{n}),v_{n}\rangle
=vn22+eλnNf(vn)f(vn)vnNg[f(vn)]f(vn)vn\displaystyle=\|\nabla v_{n}\|_{2}^{2}+e^{\lambda_{n}}\int_{\mathbb{R}^{N}}f(v_{n})f^{\prime}(v_{n})v_{n}-\int_{\mathbb{R}^{N}}g[f(v_{n})]f^{\prime}(v_{n})v_{n}
vn22+12eλnf(vn)22Cεf(vn)22εCNf(vn)24Nvn22\displaystyle\geq\|\nabla v_{n}\|_{2}^{2}+\frac{1}{2}e^{\lambda_{n}}\|f(v_{n})\|_{2}^{2}-C_{\varepsilon}\|f(v_{n})\|_{2}^{2}-\varepsilon C_{N}\|f(v_{n})\|_{2}^{\frac{4}{N}}\|\nabla v_{n}\|_{2}^{2}
(1εCN(2m)2N)vn222Cεm,\displaystyle\geq\big{(}1-\varepsilon C_{N}(2m)^{\frac{2}{N}}\big{)}\|\nabla v_{n}\|_{2}^{2}-2C_{\varepsilon}m,

which contradicts (2.5) if we choose sufficiently small ε\varepsilon . Moreover, the proof of (LABEL:eqB16) implies that {λn}\{\lambda_{n}\} is bounded from above. By claim 22 of Lemma 2.2 in [45], up to a subsequence, we may assume that λnλ0\lambda_{n}\rightarrow\lambda_{0}, and

{vnv0inHr1(N),vnv0inLr(N)for2<r<2,vnv0inLlocs(N)for2s<2,vnv0a.e.inN.\begin{cases}v_{n}\rightharpoonup v_{0}~{}~{}\hbox{in}~{}~{}H_{r}^{1}(\mathbb{R}^{N}),\\ v_{n}\rightarrow v_{0}~{}~{}\hbox{in}~{}~{}L^{r}(\mathbb{R}^{N})~{}~{}\hbox{for}~{}~{}2<r<2^{\ast},\\ v_{n}\rightarrow v_{0}~{}~{}\hbox{in}~{}~{}L_{loc}^{s}(\mathbb{R}^{N})~{}~{}\hbox{for}~{}~{}2\leq s<2^{\ast},\\ v_{n}\rightarrow v_{0}~{}~{}a.e.~{}~{}\hbox{in}~{}~{}\mathbb{R}^{N}.\end{cases}

For small ε>0\varepsilon>0, by Lemma 2.1, there exists Cε>0C_{\varepsilon}>0 such that

|N(g[f(vn)]f(vn)g[f(v0)]f(v0))(vnv0)|\displaystyle\bigg{|}\int_{\mathbb{R}^{N}}\big{(}g[f(v_{n})]f^{\prime}(v_{n})-g[f(v_{0})]f^{\prime}(v_{0})\big{)}\big{(}v_{n}-v_{0}\big{)}\bigg{|} (2.9)
N(ε|f(vn)||f(vn)|+Cε|f(vn)|p1|f(vn)|+ε|f(v0)||f(v0)|+Cε|f(v0)|p1|f(v0)|)|vnv0|\displaystyle\leq\int_{\mathbb{R}^{N}}\big{(}\varepsilon|f(v_{n})||f^{\prime}(v_{n})|+C_{\varepsilon}|f(v_{n})|^{p-1}|f^{\prime}(v_{n})|+\varepsilon|f(v_{0})||f^{\prime}(v_{0})|+C_{\varepsilon}|f(v_{0})|^{p-1}|f^{\prime}(v_{0})|\big{)}\big{|}v_{n}-v_{0}\big{|}
N(ε|vn|+Cε|vn|p22+ε|v0|+Cε|v0|p22)|vnv0|\displaystyle\leq\int_{\mathbb{R}^{N}}\big{(}\varepsilon|v_{n}|+C_{\varepsilon}|v_{n}|^{\frac{p-2}{2}}+\varepsilon|v_{0}|+C_{\varepsilon}|v_{0}|^{\frac{p-2}{2}}\big{)}\big{|}v_{n}-v_{0}\big{|}
εC+Cε(vnp2p22+v0p2p22)vnv0p2\displaystyle\leq\varepsilon C+C_{\varepsilon}\bigg{(}\big{\|}v_{n}\big{\|}_{\frac{p}{2}}^{\frac{p-2}{2}}+\big{\|}v_{0}\big{\|}_{\frac{p}{2}}^{\frac{p-2}{2}}\bigg{)}\big{\|}v_{n}-v_{0}\big{\|}_{\frac{p}{2}}
=εC+on(1).\displaystyle=\varepsilon C+o_{n}(1).

Now, by view of Lemma 2.6 in [46], we have

on(1)\displaystyle o_{n}(1) =vJm(λn,vn)vJm(λn,v0),vnv0\displaystyle=\big{\langle}\partial_{v}J^{m}(\lambda_{n},v_{n})-\partial_{v}J^{m}(\lambda_{n},v_{0}),v_{n}-v_{0}\big{\rangle} (2.10)
=vnv022+eλnN(f(vn)f(vn)f(v0)f(v0))(vnv0)\displaystyle=\|\nabla v_{n}-\nabla v_{0}\|_{2}^{2}+e^{\lambda_{n}}\int_{\mathbb{R}^{N}}\big{(}f(v_{n})f^{\prime}(v_{n})-f(v_{0})f^{\prime}(v_{0})\big{)}\big{(}v_{n}-v_{0}\big{)}
N(g[f(vn)]f(vn)g[f(v0)]f(v0))(vnv0)\displaystyle~{}~{}~{}-\int_{\mathbb{R}^{N}}\big{(}g[f(v_{n})]f^{\prime}(v_{n})-g[f(v_{0})]f^{\prime}(v_{0})\big{)}\big{(}v_{n}-v_{0}\big{)}
Cvnv02+on(1),\displaystyle\geq C\|v_{n}-v_{0}\|^{2}+o_{n}(1),

which implies that vnvv_{n}\rightarrow v in Hr1(N)H_{r}^{1}(\mathbb{R}^{N}), and the proof is completed.    

2.2 Deformation Lemma

Following [14], we introduce the augmented functional to construct a deformation flow as follows:

m(θ,λ,v)=e(N2)θ2v2+eλ2(eNθf(v)22m)eNθNG[f(v)].\mathcal{F}^{m}(\theta,\lambda,v)={e^{(N-2)\theta}\over 2}\|\nabla v\|^{2}+{e^{\lambda}\over 2}\bigg{(}e^{N\theta}\|f(v)\|^{2}_{2}-m\bigg{)}-e^{N\theta}\int_{\mathbb{R}^{N}}G[f(v)].

Without causing symbol confusion, in this subsection we denote JmJ^{m} and m\mathcal{F}^{m} by JJ and \mathcal{F}, respectively. By a direct calculation, we obtain the following Lemma.

Lemma 2.5

For any (θ,λ,v)2×Hr1(N)(\theta,\lambda,v)\in\mathbb{R}^{2}\times H_{r}^{1}(\mathbb{R}^{N}), φHr1(N)\varphi\in H_{r}^{1}(\mathbb{R}^{N}) and β>0\beta>0,

(θ,λ,v)=J(λ,v(eθx)),\mathcal{F}(\theta,\lambda,v)=J\big{(}\lambda,v(e^{-\theta}x)\big{)},
θ(θ,λ,v)=P(λ,v(eθx)),~{}~{}~{}~{}\partial_{\theta}\mathcal{F}(\theta,\lambda,v)=P\big{(}\lambda,v(e^{-\theta}x)\big{)},
λ(θ,λ,v)=λJ(λ,v(eθx)),~{}~{}~{}~{}\partial_{\lambda}\mathcal{F}(\theta,\lambda,v)=\partial_{\lambda}J\big{(}\lambda,v(e^{-\theta}x)\big{)},
v(θ,λ,v),φ(x)=vJ(λ,v(eθx)),φ(eθx),~{}~{}~{}~{}\big{\langle}\partial_{v}\mathcal{F}(\theta,\lambda,v),\varphi(x)\big{\rangle}=\big{\langle}\partial_{v}J\big{(}\lambda,v(e^{-\theta}x)\big{)},\varphi\big{(}e^{-\theta}x\big{)}\big{\rangle},
(θ+β,λ,v(eβx))=(θ,λ,v(x)).~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}\mathcal{F}(\theta+\beta,\lambda,v(e^{\beta}x))=\mathcal{F}(\theta,\lambda,v(x)).

We introduce a metric on M:=2×Hr1(N)M:=\mathbb{R}^{2}\times H_{r}^{1}(\mathbb{R}^{N}) by

(α,ν,h)(θ,λ,v)2=|(α,ν,h(eθ))|2\|(\alpha,\nu,h)\|^{2}_{(\theta,\lambda,v)}=\big{|}(\alpha,\nu,\|h(e^{-\theta}\cdot)\|)\big{|}^{2}

for any (α,ν,h)T(θ,λ,v)M(\alpha,\nu,h)\in T_{(\theta,\lambda,v)}M. Then MM be a Hilbert manifold. We also denote the dual norm on T(θ,λ,v)MT^{\ast}_{(\theta,\lambda,v)}M by (θ,λ,v),\|\cdot\|_{(\theta,\lambda,v),\ast}.

Let

𝒟=(𝒟θ,𝒟λ,𝒟v).\mathcal{D}\mathcal{F}=(\mathcal{D}_{\theta}\mathcal{F},\mathcal{D}_{\lambda}\mathcal{F},\mathcal{D}_{v}\mathcal{F}).

By a direct computation, we have

𝒟(θ,λ,v)(θ,λ,v),=|P(λ,v(eθ))|2+|λJ(λ,v(eθ))|2+vJ(λ,v(eθ))2.\|\mathcal{D}\mathcal{F}(\theta,\lambda,v)\|_{(\theta,\lambda,v),\ast}=\big{|}P(\lambda,v(e^{-\theta}\cdot))\big{|}^{2}+\big{|}\partial_{\lambda}J\big{(}\lambda,v(e^{-\theta}\cdot)\big{)}\big{|}^{2}+\big{\|}\partial_{v}J\big{(}\lambda,v(e^{-\theta}\cdot)\big{)}\big{\|}^{2}.

We introduce a natural distance in Sobolev space 2×Hr1(N)\mathbb{R}^{2}\times H_{r}^{1}(\mathbb{R}^{N}) as follows:

dist((θ1,λ1,v1),(θ2,λ2,v2))\displaystyle\hbox{dist}\big{(}(\theta_{1},\lambda_{1},v_{1}),(\theta_{2},\lambda_{2},v_{2})\big{)}
=inf{01||σ˙(t)||dt:σ(t)C1([0,1],2×Hr1(N)),σ(0)=(θ1,λ1,v1),σ(1)=(θ2,λ2,v2)}.\displaystyle=\inf\bigg{\{}\int_{0}^{1}||\dot{\sigma}(t)||dt:\sigma(t)\in C^{1}([0,1],\mathbb{R}^{2}\times H_{r}^{1}(\mathbb{R}^{N})),\sigma(0)=(\theta_{1},\lambda_{1},v_{1}),\sigma(1)=(\theta_{2},\lambda_{2},v_{2})\bigg{\}}.

For cc\in\mathbb{R}, we denote

Kcm~={(θ,λ,v)2×Hr1(N):(θ,λ,v)=c,𝒟(θ,λ,v)=(0,0,0)}.\widetilde{K^{m}_{c}}=\{(\theta,\lambda,v)\in\mathbb{R}^{2}\times H_{r}^{1}(\mathbb{R}^{N}):\mathcal{F}(\theta,\lambda,v)=c,~{}\mathcal{D}\mathcal{F}(\theta,\lambda,v)=(0,0,0)\}.

By Lemma 2.5, we have

Kcm~={(θ,λ,v(eθx)):θ,(λ,v)Kcm}.\widetilde{K^{m}_{c}}=\{(\theta,\lambda,v(e^{\theta}x)):\theta\in\mathbb{R},~{}(\lambda,v)\in K^{m}_{c}\}.

For ρ>0\rho>0, A~2×Hr1(N)\widetilde{A}\in\mathbb{R}^{2}\times H_{r}^{1}(\mathbb{R}^{N}), cc\in\mathbb{R}, let us denote

N~ρ(A~)={(θ1,λ1,v1)2×Hr1(N):inf(θ2,λ2,v2)A~dist((θ1,λ1,v1),(θ2,λ2,v2))<ρ},\widetilde{N}_{\rho}(\widetilde{A})=\big{\{}(\theta_{1},\lambda_{1},v_{1})\in\mathbb{R}^{2}\times H_{r}^{1}(\mathbb{R}^{N}):\inf_{(\theta_{2},\lambda_{2},v_{2})\in\widetilde{A}}\hbox{dist}\big{(}(\theta_{1},\lambda_{1},v_{1}),(\theta_{2},\lambda_{2},v_{2})\big{)}<\rho\big{\}},
c={(θ,λ,v)2×Hr1(N):(θ,λ,v)c}.\mathcal{F}^{c}=\{(\theta,\lambda,v)\in\mathbb{R}^{2}\times H_{r}^{1}(\mathbb{R}^{N}):\mathcal{F}(\theta,\lambda,v)\leq c\}.

The following Lemma can be founded in ([14].

Lemma 2.6

If c<0c<0, then for any ε¯>0\overline{\varepsilon}>0 and ρ>0\rho>0 there exist ε(0,ε¯)\varepsilon\in(0,\overline{\varepsilon}) and a continuous map η~(t,θ,λ,v):[0,1]2×Hr1(N)\widetilde{\eta}(t,\theta,\lambda,v):[0,1]\rightarrow\mathbb{R}^{2}\times H_{r}^{1}(\mathbb{R}^{N}) such that

  • (1)(1)

    η~(0,θ,λ,v)=(θ,λ,v)\widetilde{\eta}(0,\theta,\lambda,v)=(\theta,\lambda,v) for all (θ,λ,v)2×Hr1(N).(\theta,\lambda,v)\in\mathbb{R}^{2}\times H_{r}^{1}(\mathbb{R}^{N}).

  • (2)(2)

    η~(0,θ,λ,v)=(θ,λ,v)\widetilde{\eta}(0,\theta,\lambda,v)=(\theta,\lambda,v) for all (λ,v)cε¯(\lambda,v)\in\mathcal{F}^{c-\overline{\varepsilon}} and t[0,1].t\in[0,1].

  • (3)(3)

    (η~(t,θ,λ,v))(θ,λ,v)\mathcal{F}(\widetilde{\eta}(t,\theta,\lambda,v))\leq\mathcal{F}(\theta,\lambda,v) for all (t,θ,λ,v)[0,1]×2×Hr1(N).(t,\theta,\lambda,v)\in[0,1]\times\mathbb{R}^{2}\times H_{r}^{1}(\mathbb{R}^{N}).

  • (4)(4)

    η~(1,c+εN~ρ(K~c))cε,\widetilde{\eta}(1,\mathcal{F}^{c+{\varepsilon}}\setminus\widetilde{N}_{\rho}(\widetilde{K}_{c}))\subset\mathcal{F}^{c-{\varepsilon}}, η~(1,c+ε)cεN~ρ(K~c).\widetilde{\eta}(1,\mathcal{F}^{c+{\varepsilon}})\subset\mathcal{F}^{c-{\varepsilon}}\cup\widetilde{N}_{\rho}(\widetilde{K}_{c}).

  • (5)(5)

    If K~c=\widetilde{K}_{c}=\emptyset, then η~(1,c+ε)cε\widetilde{\eta}(1,\mathcal{F}^{c+{\varepsilon}})\subset\mathcal{F}^{c-{\varepsilon}}.

  • (6)(6)

    Let η~(t,θ,λ,v)=(η1~(t,θ,λ,v),η2~(t,θ,λ,v),η3~(t,θ,λ,v))\widetilde{\eta}(t,\theta,\lambda,v)=(\widetilde{\eta_{1}}(t,\theta,\lambda,v),\widetilde{\eta_{2}}(t,\theta,\lambda,v),\widetilde{\eta_{3}}(t,\theta,\lambda,v)), we have

    η1~(t,θ,λ,v)=η1~(t,θ,λ,v),\widetilde{\eta_{1}}(t,\theta,\lambda,-v)=\widetilde{\eta_{1}}(t,\theta,\lambda,v),
    η2~(t,θ,λ,v)=η2~(t,θ,λ,v),\widetilde{\eta_{2}}(t,\theta,\lambda,-v)=\widetilde{\eta_{2}}(t,\theta,\lambda,v),
    η3~(t,θ,λ,v)=η3~(t,θ,λ,v)\widetilde{\eta_{3}}(t,\theta,\lambda,-v)=-\widetilde{\eta_{3}}(t,\theta,\lambda,v)

    for all (t,θ,λ,v)[0,1]×2×Hr1(N).(t,\theta,\lambda,v)\in[0,1]\times\mathbb{R}^{2}\times H_{r}^{1}(\mathbb{R}^{N}).

Lemma 2.7

( Deformation Lemma) If c<0c<0, then

  • (i)

    KcmK_{c}^{m} is compact in ×Hr1(N)\mathbb{R}\times H_{r}^{1}(\mathbb{R}^{N}) and Kcm{×{0}}=K_{c}^{m}\cap\{\mathbb{R}\times\{0\}\}=\emptyset.

  • (ii)({ii})

    For any open neighborhood NN of KcmK_{c}^{m} and ε¯>0\overline{\varepsilon}>0, there exist ε(0,ε¯)\varepsilon\in(0,\overline{\varepsilon}) and a continuous map η(t,λ,v):[0,1]×Hr1(N)\eta(t,\lambda,v):[0,1]\rightarrow\mathbb{R}\times H_{r}^{1}(\mathbb{R}^{N}) such that

  • (1)(1)

    η(0,λ,v)=(λ,v)\eta(0,\lambda,v)=(\lambda,v) for all (λ,v)×Hr1(N)(\lambda,v)\in\mathbb{R}\times H_{r}^{1}(\mathbb{R}^{N}).

  • (2)(2)

    η(t,λ,v)=(λ,v)\eta(t,\lambda,v)=(\lambda,v) for all (λ,v)Jcε¯(\lambda,v)\in J^{c-\overline{\varepsilon}} and t[0,1].t\in[0,1].

  • (3)(3)

    J(η(t,λ,v))J(λ,v)J(\eta(t,\lambda,v))\leq J(\lambda,v) for all (t,λ,v)[0,1]××Hr1(N).(t,\lambda,v)\in[0,1]\times\mathbb{R}\times H_{r}^{1}(\mathbb{R}^{N}).

  • (4)(4)

    η(1,Jc+εN)Jcε,\eta(1,J^{c+{\varepsilon}}\setminus N)\subset J^{c-{\varepsilon}}, η(1,Jc+ε)JcεN.\eta(1,J^{c+{\varepsilon}})\subset J^{c-{\varepsilon}}\cup N.

  • (5)(5)

    If Kcm=K_{c}^{m}=\emptyset, then η(1,Jc+ε)Jcε\eta(1,J^{c+{\varepsilon}})\subset J^{c-{\varepsilon}}.

  • (6)(6)

    Let η(t,λ,v)=(η1(t,λ,v),η2(t,λ,v))\eta(t,\lambda,v)=(\eta_{1}(t,\lambda,v),\eta_{2}(t,\lambda,v)), we have

    η1(t,λ,v)=η1(t,λ,v),\eta_{1}(t,\lambda,-v)=\eta_{1}(t,\lambda,v),
    η2(t,λ,v)=η2(t,λ,v),\eta_{2}(t,\lambda,-v)=-\eta_{2}(t,\lambda,v),

    for all (t,λ,v)[0,1]××Hr1(N).(t,\lambda,v)\in[0,1]\times\mathbb{R}\times H_{r}^{1}(\mathbb{R}^{N}).

Proof:  Consider the following maps:

π:2×Hr1(N)×Hr1(N),(θ,λ,v(x))(λ,v(eθx)),\pi:\mathbb{R}^{2}\times H_{r}^{1}(\mathbb{R}^{N})\rightarrow\mathbb{R}\times H_{r}^{1}(\mathbb{R}^{N}),~{}~{}(\theta,\lambda,v(x))\mapsto\big{(}\lambda,v(e^{-\theta}x)\big{)},
l:×Hr1(N)2×Hr1(N),(λ,v(x))(0,λ,v(x)).l:\mathbb{R}\times H_{r}^{1}(\mathbb{R}^{N})\rightarrow\mathbb{R}^{2}\times H_{r}^{1}(\mathbb{R}^{N}),~{}~{}(\lambda,v(x))\mapsto(0,\lambda,v(x)).

By Lemma 2.5, we have

π(l(λ,v))=(λ,v)forall(λ,v)×Hr1(N),\pi(l(\lambda,v))=(\lambda,v)~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}\hbox{for}~{}~{}\hbox{all}~{}~{}(\lambda,v)\in\mathbb{R}\times H_{r}^{1}(\mathbb{R}^{N}),
l(π(θ,λ,v))=(0,λ,v(eθx))forall(θ,λ,v)2×Hr1(N),l(\pi(\theta,\lambda,v))=\big{(}0,\lambda,v(e^{-\theta}x)\big{)}~{}~{}~{}~{}~{}~{}~{}~{}\hbox{for}~{}~{}\hbox{all}~{}~{}(\theta,\lambda,v)\in\mathbb{R}^{2}\times H_{r}^{1}(\mathbb{R}^{N}),
(θ,λ,v)=J(π(θ,λ,v))forall(θ,λ,v)2×Hr1(N).\mathcal{F}(\theta,\lambda,v)=J(\pi(\theta,\lambda,v))~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}\hbox{for}~{}~{}\hbox{all}~{}~{}(\theta,\lambda,v)\in\mathbb{R}^{2}\times H_{r}^{1}(\mathbb{R}^{N}).

π(Kc~)=Kc.\pi(\widetilde{K_{c}})=K_{c}. From those results above and Lemma 2.6, deformation Lemma follows. We can refer the readers to Lemma 3.5 in [44] for details.    

3 Minimax methods

3.1 Construction of multidimensional odd path

In what follows, we set

Jλ(v)=12v22+eλ2f(v)22NG[f(v)],J_{\lambda}(v)={1\over 2}\|\nabla v\|_{2}^{2}+{e^{\lambda}\over 2}\|f(v)\|_{2}^{2}-\int_{\mathbb{R}^{N}}G[f(v)],

and

λ0={ln(2sups0G(s)s2)ifsups0G(s)s2<,ifsups0G(s)s2=.\lambda_{0}=\begin{cases}\ln\bigg{(}2\sup\limits_{s\neq 0}\frac{G(s)}{s^{2}}\bigg{)}~{}~{}~{}~{}\hbox{if}~{}~{}\sup\limits_{s\neq 0}\frac{G(s)}{s^{2}}<\infty,\\ \infty~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}\hbox{if}~{}~{}\sup\limits_{s\neq 0}\frac{G(s)}{s^{2}}=\infty.\end{cases}
Definition 3.1

For k=1k=1 and λ(,λ0)\lambda\in(-\infty,\lambda_{0}), let

a1(λ)=infγΓ1(λ)maxξ[0,1]Jλ(γ(ξ)),a_{1}(\lambda)=\inf_{\gamma\in{\Gamma}_{1}(\lambda)}\max_{\xi\in[0,1]}{J}_{\lambda}(\gamma(\xi)),

where

Γ1(λ)={γC([0,1],Hr1(N)):γ(0)=0,Jλ(γ(1))<0};\Gamma_{1}(\lambda)=\{\gamma\in C([0,1],H_{r}^{1}(\mathbb{R}^{N})):\gamma(0)=0,{J}_{\lambda}(\gamma(1))<0\};

For k2k\geq 2 and λ(,λ0)\lambda\in(-\infty,\lambda_{0}), let

ak(λ)=infγΓk(λ)maxξDkJλ(γ(ξ)),a_{k}(\lambda)=\inf_{\gamma\in{\Gamma}_{k}(\lambda)}\max_{\xi\in D_{k}}{J}_{\lambda}(\gamma(\xi)),

where

Γk(λ)={γC(Dk,Hr1(N)):γ(ξ)=γ(ξ)forξDk,Jλ(γ(ξ))<0forξDk}.\Gamma_{k}(\lambda)=\{\gamma\in C(D_{k},H_{r}^{1}(\mathbb{R}^{N})):\gamma(-\xi)=-\gamma(\xi)~{}\hbox{for}~{}\xi\in D_{k},{J}_{\lambda}(\gamma(\xi))<0~{}\hbox{for}~{}\xi\in\partial D_{k}\}.
Lemma 3.1

Assume that λ(,λ0)\lambda\in(-\infty,\lambda_{0}) and (g1)(g4)(g_{1})-(g_{4}) hold, Γ1(λ).\Gamma_{1}(\lambda)\neq\emptyset. In addition (g5)(g_{5}) holds, then Γk(λ)\Gamma_{k}(\lambda)\neq\emptyset for any k1.k\geq 1.

Proof:  Now, we prove the case for k2k\geq 2. Let H(s):=eλ2f2(s)+G[f(s)]H(s):=-\frac{e^{\lambda}}{2}f^{2}(s)+G[f(s)], for any λ(,λ0)\lambda\in(-\infty,\lambda_{0}), by the definition of λ0,\lambda_{0}, there exists sλ>0s_{\lambda}>0 such that H(sλ)>0.H(s_{\lambda})>0. If (g1)(g5)(g_{1})-(g_{5}) hold, there exists δ>0\delta>0 such that

H(s)>0,s(sλδ,sλ+δ)(sλδ,sλ+δ).H(s)>0,~{}\forall s\in(s_{\lambda}-\delta,s_{\lambda}+\delta)\cup(-s_{\lambda}-\delta,-s_{\lambda}+\delta).

For R1R\gg 1 and h[0,1]h\in[0,1], let

A(R,h)={xN:Rh|x|R+h}A(R,h)=\{x\in\mathbb{R}^{N}:R-h\leq|x|\leq R+h\}

and

χ(R,h;x)={1,ifxA(R,h),0,otherwise.\chi(R,h;x)=\begin{cases}1,~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}\hbox{if}~{}~{}x\in A(R,h),\\ 0,~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}\hbox{otherwise}.\end{cases}

Consider the polyhedron

Σ:={t=(t1,,tk)k:max1ik|ti|=1}\Sigma:=\{t=(t_{1},...,t_{k})\in\mathbb{R}^{k}:\max\limits_{1\leq i\leq k}|t_{i}|=1\}

and define the odd map γ:ΣHr1(N)\gamma:\Sigma\rightarrow H_{r}^{1}(\mathbb{R}^{N}) by

γ(t)()=i=1ksgn(ti)(sλ+(|ti|1)δ)χ(2ki,|ti|;).\gamma(t)(\cdot)=\sum_{i=1}^{k}\hbox{sgn}(t_{i})\big{(}s_{\lambda}+(|t_{i}|-1)\delta\big{)}\chi(2ki,|t_{i}|;\cdot).

For all t=(t1,,tk)t=(t_{1},...,t_{k})\in\sum, we have χ(2ki,|ti|;x)χ(2kj,|tj|;)=0\chi(2ki,|t_{i}|;x)\cap\chi(2kj,|t_{j}|;\cdot)=0 if iji\neq j and

NH(γ(t)(x))\displaystyle\int_{\mathbb{R}^{N}}H(\gamma(t)(x)) =i=1kH(sgn(ti)(sλ+(|ti|1)δ))Nχ(2ki,|ti|;x)\displaystyle=\sum_{i=1}^{k}H\bigg{(}\hbox{sgn}(t_{i})\big{(}s_{\lambda}+(|t_{i}|-1)\delta\big{)}\bigg{)}\int_{\mathbb{R}^{N}}\chi(2ki,|t_{i}|;x) (3.1)
H(sλ)Nχ(2ki0,1;)C0.\displaystyle\geq H(s_{\lambda})\int_{\mathbb{R}^{N}}\chi(2k{i_{0}},1;\cdot)\geq C_{0}.

Let

χε(R,h;x)={1,ifRh|x|R+h,11εh(Rh|x|),ifRhεh|x|Rh,11εh(|x|Rh),ifR+h|x|R+h+εh,0,otherwise.\chi_{\varepsilon}(R,h;x)=\begin{cases}1,~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}\hbox{if}~{}~{}R-h\leq|x|\leq R+h,\\ 1-\frac{1}{\varepsilon h}\big{(}R-h-|x|\big{)},~{}~{}\hbox{if}~{}R-h-\varepsilon h\leq|x|\leq R-h,\\ 1-\frac{1}{\varepsilon h}\big{(}|x|-R-h\big{)},~{}~{}\hbox{if}~{}~{}R+h\leq|x|\leq R+h+\varepsilon h,\\ 0,~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}\hbox{otherwise}.\end{cases}

It is easy to see that

  • (i)

    χε(R,h;)Hr1(N);\chi_{\varepsilon}(R,h;\cdot)\in H_{r}^{1}(\mathbb{R}^{N});

  • (ii)

    For fixed R>0R>0 and small ε>0\varepsilon>0, χε(R,h;)iscontinuousinHr1(N)forh[0,1];\chi_{\varepsilon}(R,h;\cdot)~{}~{}\hbox{is}~{}~{}\hbox{continuous}~{}~{}\hbox{in}~{}~{}H_{r}^{1}(\mathbb{R}^{N})~{}~{}\hbox{for}~{}~{}h\in[0,1];

  • (iii)

    χε(R,h;)χ(R,h;)inLr(N)asε0uniformlyforh[0,1]andRC;\chi_{\varepsilon}(R,h;\cdot)\rightarrow\chi(R,h;\cdot)~{}~{}\hbox{in}~{}~{}L^{r}(\mathbb{R}^{N})~{}~{}\hbox{as}~{}~{}\varepsilon\rightarrow 0~{}~{}\hbox{uniformly}~{}~{}\hbox{for}~{}~{}h\in[0,1]~{}~{}\hbox{and}~{}~{}R\leq C;

  • (iv)

    χε(R,h;)0inLr(N)ash0uniformlyforsmallε>0andRC.\chi_{\varepsilon}(R,h;\cdot)\rightarrow 0~{}~{}\hbox{in}~{}~{}L^{r}(\mathbb{R}^{N})~{}~{}\hbox{as}~{}~{}h\rightarrow 0~{}~{}\hbox{uniformly}~{}~{}\hbox{for}~{}~{}\hbox{small}~{}~{}\varepsilon>0~{}~{}\hbox{and}~{}~{}R\leq C.

  • (v)

    For each t=(t1,,tk)t=(t_{1},...,t_{k})\in\sum, supp(χε(2ki,|ti|;))supp(χε(2kj,|tj|;))=ifij\hbox{supp}(\chi_{\varepsilon}(2ki,|t_{i}|;\cdot))\cap\hbox{supp}(\chi_{\varepsilon}(2kj,|t_{j}|;\cdot))=\emptyset~{}~{}\hbox{if}~{}~{}i\neq j.

Let γε:Hr1(N)\gamma_{\varepsilon}:\sum\rightarrow H_{r}^{1}(\mathbb{R}^{N}) defined by

γε(t)()=i=1ksgn(ti)(sλ+(|ti|1)δ)χε(2ki,|ti|;).\gamma_{\varepsilon}(t)(\cdot)=\sum_{i=1}^{k}\hbox{sgn}(t_{i})\big{(}s_{\lambda}+(|t_{i}|-1)\delta\big{)}\chi_{\varepsilon}(2ki,|t_{i}|;\cdot).

From (i)–(ii), (iv), γε\gamma_{\varepsilon} is odd and continuous. We observe that NH(v)\int_{\mathbb{R}^{N}}H(v) is continuous in Lr(N)L^{r}(\mathbb{R}^{N}) for r[2,2]r\in[2,2^{\ast}]. By using (3.1), (iii) and (v), there holds

NH(γε(t)(x))\displaystyle\int_{\mathbb{R}^{N}}H(\gamma_{\varepsilon}(t)(x)) =i=1kH(sgn(ti)(sλ+(|ti|1)δ))Nχε(2ki,|ti|;)\displaystyle=\sum_{i=1}^{k}H\bigg{(}\hbox{sgn}(t_{i})\big{(}s_{\lambda}+(|t_{i}|-1)\delta\big{)}\bigg{)}\int_{\mathbb{R}^{N}}\chi_{\varepsilon}(2ki,|t_{i}|;\cdot) (3.2)
H(sλ)Nχε(2ki0,1;)\displaystyle\geq H(s_{\lambda})\int_{\mathbb{R}^{N}}\chi_{\varepsilon}(2k{i_{0}},1;\cdot)
H(sλ)Nχ(2ki0,1;)\displaystyle\rightarrow H(s_{\lambda})\int_{\mathbb{R}^{N}}\chi(2k{i_{0}},1;\cdot)
C0.\displaystyle\geq C_{0}.

For small ε\varepsilon, since Σ\Sigma is homeomorphic to Dk\partial D_{k}, we may assume that

NH(γε(t))>CforalltDk.\int_{\mathbb{R}^{N}}H(\gamma_{\varepsilon}(t))>C~{}~{}\hbox{for}~{}~{}\hbox{all}~{}~{}t\in\partial D_{k}.

Note that

Jλ(γε(t)(L1))\displaystyle J_{\lambda}\big{(}\gamma_{\varepsilon}(t)(L^{-1}\cdot)\big{)} =12LN2γε(t)22LNNH(γε(t)()),\displaystyle={1\over 2}L^{N-2}\|\nabla\gamma_{\varepsilon}(t)\|_{2}^{2}-L^{N}\int_{\mathbb{R}^{N}}H(\gamma_{\varepsilon}(t)(\cdot)),

there exists some large L>0L>0 such that

Jλ(γε(t)(L1))<0foralltDk.J_{\lambda}\big{(}\gamma_{\varepsilon}(t)(L^{-1}\cdot)\big{)}<0~{}~{}\hbox{for}~{}~{}\hbox{all}~{}~{}t\in\partial D_{k}.

Let

η(s,t)()=sγε(t)(L1).\eta(s,t)(\cdot)=s\gamma_{\varepsilon}(t)(L^{-1}\cdot).

Then Dk={st|s[0,1],t}D_{k}=\{st|s\in[0,1],t\in\sum\}, and hence ηΓk(λ).\eta\in\Gamma_{k}(\lambda).

If (g1)(g4)(g_{1})-(g_{4}) hold, there exist sλ>0s_{\lambda}>0 and δ>0\delta>0 such that

H(s)>0,s(sλδ,sλ+δ).H(s)>0,~{}\forall s\in(s_{\lambda}-\delta,s_{\lambda}+\delta).

For t[0,1]t\in[0,1], we set γε(t)()=(sλ+(t1)δ)χε(R,t;).\gamma_{\varepsilon}(t)(\cdot)=\big{(}s_{\lambda}+(t-1)\delta\big{)}\chi_{\varepsilon}(R,t;\cdot). Then

NH(γε(1))=H(sλ)Nχε(R,1;)C.\int_{\mathbb{R}^{N}}H(\gamma_{\varepsilon}(1))=H(s_{\lambda})\int_{\mathbb{R}^{N}}\chi_{\varepsilon}(R,1;\cdot)\geq C.

Take large L>0L>0 and let η(t)()=γε(t)(L1)\eta(t)(\cdot)=\gamma_{\varepsilon}(t)(L^{-1}\cdot), we have ηΓ1(λ).\eta\in\Gamma_{1}(\lambda).    

For any ε>0\varepsilon>0, by Lemma 2.1 and the Sobolev theorem, there exists Cε>0C_{\varepsilon}>0 such that

|NG[f(v)]|ε(v22+f(v)22)+Cε(v22+f(v)22)22.\bigg{|}\int_{\mathbb{R}^{N}}G[f(v)]\bigg{|}\leq\varepsilon\big{(}\|\nabla v\|_{2}^{2}+\|f(v)\|_{2}^{2}\big{)}+C_{\varepsilon}\big{(}\|\nabla v\|_{2}^{2}+\|f(v)\|_{2}^{2}\big{)}^{\frac{2^{*}}{2}}.

For all vΣρv\in\partial\Sigma_{\rho} and small ε>0\varepsilon>0, we have

Jλ(v)\displaystyle J_{\lambda}(v) =12v22+eλ2f(v)22NG[f(v)]\displaystyle={1\over 2}\|\nabla v\|_{2}^{2}+{e^{\lambda}\over 2}\|f(v)\|_{2}^{2}-\int_{\mathbb{R}^{N}}G[f(v)] (3.3)
(Cλε)(v22+f(v)22)Cε(v22+f(v)22)22\displaystyle\geq\big{(}C_{\lambda}-\varepsilon\big{)}\big{(}\|\nabla v\|_{2}^{2}+\|f(v)\|_{2}^{2}\big{)}-C_{\varepsilon}\big{(}\|\nabla v\|_{2}^{2}+\|f(v)\|_{2}^{2}\big{)}^{\frac{2^{*}}{2}}
Cλ2ρCλρ22.\displaystyle\geq{C_{\lambda}\over 2}\rho-C_{\lambda}^{\prime}\rho^{\frac{2^{*}}{2}}.

Then for any small ρ>0\rho>0, there exists αρ>0\alpha_{\rho}>0 such that Jλ(v)αρJ_{\lambda}(v)\geq\alpha_{\rho} for vΣρv\in\partial\Sigma_{\rho}. By the definition of ak(λ)a_{k}(\lambda), we get that 0mkmk+1,k,0\leq m_{k}\leq m_{k+1},~{}\forall~{}k\in\mathbb{N}^{\ast}, where

mk:=2infλ(,λ0)ak(λ)eλ.m_{k}:=2\inf\limits_{\lambda\in(-\infty,\lambda_{0})}\frac{a_{k}(\lambda)}{e^{\lambda}}.

Furthermore, we have the following result:

Lemma 3.2

Assume that λ(,λ0)\lambda\in(-\infty,\lambda_{0}) and (g1)(g4)(g_{1})-(g_{4}) hold. For any kk\in\mathbb{N},

  • (1)(1)

    mk=0m_{k}=0, if (g6)(g_{6}) holds.

  • (2)(2)

    mk>0m_{k}>0, if lim sups0|g(s)||s|q2s<.\limsup\limits_{s\rightarrow 0}\frac{|g(s)|}{|s|^{q-2}s}<\infty.

Proof:  Denote Ek=span{e1,e2,,ek}E_{k}=\hbox{span}\{e_{1},e_{2},...,e_{k}\}, where {ei}\{e_{i}\} is a sequence of orthonormal basis in Hr1(N)H_{r}^{1}(\mathbb{R}^{N}). Since EkE_{k} is a finite dimensional space, for any 2s22\leq s\leq 2^{\ast} there exists cs>0c_{s}>0 such that

csvsvcs1vs,vEk.c_{s}\|v\|_{s}\leq\|v\|\leq c_{s}^{-1}\|v\|_{s},~{}~{}~{}~{}\forall v\in E_{k}. (3.4)

Thus, we may choose some R>0R>0 such that

12v21svss<0,vEkBR(0).\frac{1}{2}\|v\|^{2}-\frac{1}{s}\|v\|^{s}_{s}<0,~{}~{}~{}~{}\forall v\in E_{k}\setminus B_{R}(0).

Let η:kEk\eta:\mathbb{R}^{k}\rightarrow E_{k} defined by

η(ξ)=Ri=1kξiei,\eta(\xi)=R\sum_{i=1}^{k}\xi_{i}e_{i},

where ξ=(ξ1,,ξk)k\xi=(\xi_{1},...,\xi_{k})\in\mathbb{R}^{k}. For any ξDk\xi\in\partial D_{k}, we have

12η(ξ)21qη(ξ)qq<0.\frac{1}{2}\|\eta(\xi)\|^{2}-\frac{1}{q}\|\eta(\xi)\|^{q}_{q}<0. (3.5)

Let γ(ξ)()=eλq2η(ξ)(eλ2)\gamma(\xi)(\cdot)=e^{\frac{\lambda}{q-2}}\eta(\xi)(e^{\frac{\lambda}{2}}\cdot). For any ξDk\xi\in\partial D_{k} with L>1qL>\frac{1}{q}, it follow (3.4) and Lemma 2.1-(16)(16) that

Jλ(γ(ξ))\displaystyle J_{\lambda}(\gamma(\xi)) 12γ(ξ)22+eλ2γ(ξ)22Lγ(ξ)qq+CLγ(ξ)rr\displaystyle\leq{1\over 2}\|\nabla\gamma(\xi)\|_{2}^{2}+{e^{\lambda}\over 2}\|\gamma(\xi)\|_{2}^{2}-L\|\gamma(\xi)\|_{q}^{q}+C_{L}\|\gamma(\xi)\|_{r}^{r}
=eλ(12η(ξ)2Lη(ξ)qq+CLerqq2λη(ξ)rr)\displaystyle=e^{\lambda}\big{(}{1\over 2}\|\eta(\xi)\|^{2}-L\|\eta(\xi)\|_{q}^{q}+C_{L}e^{\frac{r-q}{q-2}\lambda}\|\eta(\xi)\|_{r}^{r}\big{)}
eλ(12η(ξ)21qη(ξ)qq+(1qL)η(ξ)qq+CLerqq2λγk(ξ)rr)\displaystyle\leq e^{\lambda}\bigg{(}{1\over 2}\|\eta(\xi)\|^{2}-\frac{1}{q}\|\eta(\xi)\|^{q}_{q}+\big{(}\frac{1}{q}-L\big{)}\|\eta(\xi)\|^{q}_{q}+C_{L}e^{\frac{r-q}{q-2}\lambda}\|\gamma_{k}(\xi)\|^{r}_{r}\bigg{)}
eλ(12η(ξ)21qη(ξ)q+(1qL)(Rcq)q+CLerqq2λ(Rcr1)r),\displaystyle\leq e^{\lambda}\bigg{(}{1\over 2}\|\eta(\xi)\|^{2}-\frac{1}{q}\|\eta(\xi)\|^{q}+\big{(}\frac{1}{q}-L\big{)}(Rc_{q})^{q}+C_{L}e^{\frac{r-q}{q-2}\lambda}(Rc_{r}^{-1})^{r}\bigg{)},

which implies that γΓk(λ)\gamma\in\Gamma_{k}(\lambda) as λ\lambda\rightarrow-\infty. Consequently,

lim supλak(λ)eλ\displaystyle\limsup_{\lambda\rightarrow-\infty}\frac{a_{k}(\lambda)}{e^{\lambda}} maxξDk(12η(ξ)2Lη(ξ)qq)\displaystyle\leq\max_{\xi\in D_{k}}\bigg{(}{1\over 2}\|\eta(\xi)\|^{2}-L\|\eta(\xi)\|^{q}_{q}\bigg{)}
maxξDk(12η(ξ)2L(cq)qη(ξ)q)\displaystyle\leq\max_{\xi\in D_{k}}\bigg{(}{1\over 2}\|\eta(\xi)\|^{2}-L(c_{q})^{q}\|\eta(\xi)\|^{q}\bigg{)}
maxs0(12|s|2L(cq)q|s|q)\displaystyle\leq\max_{s\geq 0}\bigg{(}{1\over 2}|s|^{2}-L(c_{q})^{q}|s|^{q}\bigg{)}
=(12|s|2L(cq)q|s|q+1)|s=(Lq(cq)q)1q2\displaystyle=\bigg{(}{1\over 2}|s|^{2}-L(c_{q})^{q}|s|^{q+1}\bigg{)}\bigg{|}_{s=\big{(}Lq(c_{q})^{q}\big{)}^{-\frac{1}{q-2}}}
0\displaystyle\rightarrow 0

as L+L\rightarrow+\infty, and hence (1)(1) holds. If lim sups0|g(s)||s|q2s<,\limsup\limits_{s\rightarrow 0}\frac{|g(s)|}{|s|^{q-2}s}<\infty, it follows from (g1)(g_{1}) and (g3)(g_{3}) that

G[f(s)]C|s|qforalls.G[f(s)]\leq C|s|^{q}~{}~{}\hbox{for}~{}~{}\hbox{all}~{}~{}s\in\mathbb{R}.

For any λ\lambda\rightarrow-\infty and γλΓk(λ)\gamma_{\lambda}\in{\Gamma}_{k}(\lambda), let ηλ(ξ)()=eλq2γλ(ξ)(eλ2)\eta_{\lambda}(\xi)(\cdot)=e^{-\frac{\lambda}{q-2}}\gamma_{\lambda}(\xi)(e^{-\frac{\lambda}{2}}\cdot). Since eλq21e^{\frac{\lambda}{q-2}}\leq 1, by Lemma 2.1 and Sobolev theorem, one has

maxξDkJλ(λ,γλ(ξ))\displaystyle\max_{\xi\in D_{k}}J_{\lambda}(\lambda,\gamma_{\lambda}(\xi)) =maxξDk(12γλ(ξ)22+eλ2f[γλ(ξ)]22NG[f(γλ(ξ))])\displaystyle=\max_{\xi\in D_{k}}\bigg{(}{1\over 2}\|\nabla\gamma_{\lambda}(\xi)\|_{2}^{2}+{e^{\lambda}\over 2}\|f[\gamma_{\lambda}(\xi)]\|_{2}^{2}-\int_{\mathbb{R}^{N}}G[f(\gamma_{\lambda}(\xi))]\bigg{)}
maxξDk(12γλ(ξ)22+eλ2f[γλ(ξ)]22Cγλ(ξ)qq)\displaystyle\geq\max_{\xi\in D_{k}}\bigg{(}{1\over 2}\|\nabla\gamma_{\lambda}(\xi)\|_{2}^{2}+{e^{\lambda}\over 2}\|f[\gamma_{\lambda}(\xi)]\|_{2}^{2}-C\|\gamma_{\lambda}(\xi)\|_{q}^{q}\bigg{)}
eλmaxξDk(12(ηλ(ξ)22+12f[ηλ(ξ)]22Cηλ(ξ)qq)\displaystyle\geq e^{\lambda}\max_{\xi\in D_{k}}\bigg{(}{1\over 2}\big{(}\|\nabla\eta_{\lambda}(\xi)\|_{2}^{2}+{1\over 2}\|f[\eta_{\lambda}(\xi)]\|_{2}^{2}-C\|\eta_{\lambda}(\xi)\|_{q}^{q}\bigg{)}
eλmaxξDk(12(ηλ(ξ)22+12f[ηλ(ξ)]22εf[ηλ(ξ)]22Cεfηλ(ξ)]22)\displaystyle\geq e^{\lambda}\max_{\xi\in D_{k}}\bigg{(}{1\over 2}\big{(}\|\nabla\eta_{\lambda}(\xi)\|_{2}^{2}+{1\over 2}\|f[\eta_{\lambda}(\xi)]\|_{2}^{2}-\varepsilon\|f[\eta_{\lambda}(\xi)]\|_{2}^{2}-C_{\varepsilon}\|f\eta_{\lambda}(\xi)]\|_{2^{*}}^{2^{*}}\bigg{)}
eλmaxξDk(14(ηλ(ξ)22+f[ηλ(ξ)]22)C(ηλ(ξ)22+f[ηλ(ξ)]22)22)\displaystyle\geq e^{\lambda}\max_{\xi\in D_{k}}\bigg{(}{1\over 4}\big{(}\|\nabla\eta_{\lambda}(\xi)\|_{2}^{2}+\|f[\eta_{\lambda}(\xi)]\|_{2}^{2}\big{)}-C\big{(}\|\nabla\eta_{\lambda}(\xi)\|_{2}^{2}+\|f[\eta_{\lambda}(\xi)]\|_{2}^{2}\big{)}^{\frac{2^{*}}{2}}\bigg{)}
=eλmaxρ0(14ρCρ22)\displaystyle=e^{\lambda}\max_{\rho\geq 0}\bigg{(}\frac{1}{4}\rho-C\rho^{\frac{2^{\ast}}{2}}\bigg{)}
=eλ12N(N24NC)N22\displaystyle=e^{\lambda}\frac{1}{2N}\bigg{(}\frac{N-2}{4NC}\bigg{)}^{\frac{N-2}{2}}

Since γλ\gamma_{\lambda} is arbitrary, we have mk12N(N24NC)N22m_{k}\geq\frac{1}{2N}\big{(}\frac{N-2}{4NC}\big{)}^{\frac{N-2}{2}}, and the proof is completed.    

Lemma 3.3

Assume that λ0=\lambda_{0}=\infty and (g1)(g4)(g_{1})-(g_{4}) hold. Then limλ+ak(λ)eλ=+.\lim\limits_{\lambda\rightarrow+\infty}\frac{a_{k}(\lambda)}{e^{\lambda}}=+\infty.

Proof:  We denote eλe^{\lambda} by μ\mu for simplicity. Since 0<a1(μ)ak(μ)0<a_{1}(\mu)\leq a_{k}(\mu) for each kk\in\mathbb{N}^{\ast}, it is sufficient to show the conclusion for k=1k=1. Let wr,s()=rv(s)w_{r,s}(\cdot)=rv(s\cdot) for any vHr1(N)v\in H_{r}^{1}(\mathbb{R}^{N}), by Lemma 2.1, we have

Jμ(wr,s)\displaystyle J_{\mu}(w_{r,s}) =12wr,s22+μ2f(wr,s)22NG[f(wr,s)]\displaystyle={1\over 2}\|\nabla w_{r,s}\|_{2}^{2}+{\mu\over 2}\|f(w_{r,s})\|_{2}^{2}-\int_{\mathbb{R}^{N}}G[f(w_{r,s})] (3.6)
=12r2s2Nv22+μ2sNf(rv)22sNNG[f(rv)]\displaystyle={1\over 2}r^{2}s^{2-N}\|\nabla v\|_{2}^{2}+{\mu\over 2}s^{-N}\|f(rv)\|_{2}^{2}-s^{-N}\int_{\mathbb{R}^{N}}G[f(rv)]
12r2s2Nv22+(μ2ε)sNf(rv)22CεsNrp2vp2p2\displaystyle\geq{1\over 2}r^{2}s^{2-N}\|\nabla v\|_{2}^{2}+\big{(}{\mu\over 2}-\varepsilon\big{)}s^{-N}\|f(rv)\|_{2}^{2}-C_{\varepsilon}s^{-N}r^{\frac{p}{2}}\|v\|_{\frac{p}{2}}^{\frac{p}{2}}
12r2s2Nv22+Cr(μ2Cε)sNf(v)22εsNrp2vp2p2\displaystyle\geq{1\over 2}r^{2}s^{2-N}\|\nabla v\|_{2}^{2}+Cr\big{(}{\mu\over 2}-C_{\varepsilon}\big{)}s^{-N}\|f(v)\|_{2}^{2}-\varepsilon s^{-N}r^{\frac{p}{2}}\|v\|_{\frac{p}{2}}^{\frac{p}{2}}
12r2s2Nv22+[Cr(μ2Cε)sNεsNrp2]f(v)22CεsNrp2f(v)pp.\displaystyle\geq{1\over 2}r^{2}s^{2-N}\|\nabla v\|_{2}^{2}+\bigg{[}Cr\big{(}{\mu\over 2}-C_{\varepsilon}\big{)}s^{-N}-\varepsilon s^{-N}r^{\frac{p}{2}}\bigg{]}\|f(v)\|_{2}^{2}-C\varepsilon s^{-N}r^{\frac{p}{2}}\|f(v)\|_{p}^{p}.

Letting wμ()=μ2p2v(μp42p4)w_{\mu}(\cdot)=\mu^{\frac{2}{p-2}}v\big{(}\mu^{\frac{p-4}{2p-4}}\cdot\big{)} and taking r=μ2p2r=\mu^{\frac{2}{p-2}} with s=μp42p4s=\mu^{\frac{p-4}{2p-4}}, by (3.6), there exists κ>0\kappa>0 such that

Jμ(wμ)μ12v22+(κCεμ1)f(v)22εf(v)pp.\frac{J_{\mu}(w_{\mu})}{\mu}\geq{1\over 2}\|\nabla v\|_{2}^{2}+\big{(}\kappa-C_{\varepsilon}\mu^{-1}\big{)}\|f(v)\|_{2}^{2}-\varepsilon\|f(v)\|_{p}^{p}. (3.7)

For A>0A>0, let

JA,ε(v)=12v22+Af(v)22εf(v)pp.J_{A,\varepsilon}(v)={1\over 2}\|\nabla v\|_{2}^{2}+A\|f(v)\|_{2}^{2}-\varepsilon\|f(v)\|_{p}^{p}.

As in the proof of Theorem 1.1 of [45], there exists vA,εHr1(N)v_{A,\varepsilon}\in H_{r}^{1}(\mathbb{R}^{N}) such that JA,ε(vA,ε)=c(A,ε)>0J_{A,\varepsilon}(v_{A,\varepsilon})=c(A,\varepsilon)>0 and JA,ε(vA,ε)=0J^{\prime}_{A,\varepsilon}(v_{A,\varepsilon})=0, where the minimax level is defined by

c(A,ε):=infγΓA,εmaxt[0,1]JA,ε(γ(t)),c(A,\varepsilon):=\inf\limits_{\gamma\in\Gamma_{A,\varepsilon}}\max\limits_{t\in[0,1]}J_{A,\varepsilon}(\gamma(t)),

and

ΓA,ε={γC([0,1],Hr1(N)):γ(0)=0,JA,ε(γ(1))<0}.\Gamma_{A,\varepsilon}=\{\gamma\in C\big{(}[0,1],H_{r}^{1}(\mathbb{R}^{N})\big{)}:\gamma(0)=0,~{}J_{A,\varepsilon}(\gamma(1))<0\}.

Claim 1: limε0c(A,ε)=+.\lim_{\varepsilon\rightarrow 0}c(A,\varepsilon)=+\infty.

Since

vA,ε22+Af(vA,ε)22\displaystyle\|\nabla v_{A,\varepsilon}\|_{2}^{2}+A\|f(v_{A,\varepsilon})\|_{2}^{2} vA,ε22+2ANf(vA,ε)f(vA,ε)vA,ε\displaystyle\leq\|\nabla v_{A,\varepsilon}\|_{2}^{2}+2A\int_{\mathbb{R}^{N}}f(v_{A,\varepsilon})f^{\prime}(v_{A,\varepsilon})v_{A,\varepsilon} (3.8)
=εpN|f(vA,ε)|p2f(vA,ε)f(vA,ε)vA,ε\displaystyle=\varepsilon p\int_{\mathbb{R}^{N}}\big{|}f(v_{A,\varepsilon})\big{|}^{p-2}f(v_{A,\varepsilon})f^{\prime}(v_{A,\varepsilon})v_{A,\varepsilon}
Cεf(vA,ε22+Cεf(vA,ε)2222\displaystyle\leq C\varepsilon\|f(v_{A,\varepsilon}\|_{2}^{2}+C\varepsilon\|f(v_{A,\varepsilon})\|_{22^{\ast}}^{22^{\ast}}
Cε(vA,ε22+f(vA,ε)22)+Cε(vA,ε22+f(vA,ε)22)22,\displaystyle\leq C\varepsilon\big{(}\|\nabla v_{A,\varepsilon}\|_{2}^{2}+\|f(v_{A,\varepsilon})\|_{2}^{2}\big{)}+C\varepsilon\bigg{(}\|\nabla v_{A,\varepsilon}\|_{2}^{2}+\|f(v_{A,\varepsilon})\|_{2}^{2}\bigg{)}^{\frac{2^{*}}{2}},

one has vA,ε22+f(vA,ε)22C\|\nabla v_{A,\varepsilon}\|_{2}^{2}+\|f(v_{A,\varepsilon})\|_{2}^{2}\geq C for samll ε\varepsilon. Moreover, (3.8) leads to

vA,ε22+f(vA,ε)22+asε0.\|\nabla v_{A,\varepsilon}\|_{2}^{2}+\|f(v_{A,\varepsilon})\|_{2}^{2}\rightarrow+\infty~{}~{}\hbox{as}~{}~{}\varepsilon\rightarrow 0.

Consequently,

c(A,ε)\displaystyle c(A,\varepsilon) =JA,ε(vA,ε)2pJA,ε(vA,ε),vA,ε\displaystyle=J_{A,\varepsilon}(v_{A,\varepsilon})-\frac{2}{p}\langle J^{\prime}_{A,\varepsilon}(v_{A,\varepsilon}),v_{A,\varepsilon}\rangle (3.9)
(12p)(vA,ε22+Af(vA,ε)22)+asε0.\displaystyle\geq\bigg{(}1-\frac{2}{p}\bigg{)}\big{(}\|\nabla v_{A,\varepsilon}\|_{2}^{2}+A\|f(v_{A,\varepsilon})\|_{2}^{2}\big{)}\rightarrow+\infty~{}~{}\hbox{as}~{}~{}\varepsilon\rightarrow 0.

Claim 2: c(A,ε)c(A,\varepsilon) is continuous with respect to AA.

Without loss of generality, we may assume ε=1\varepsilon=1. For fixed AA, we denote Jδ:=JA+δ,1J_{\delta}:=J_{A+\delta,1}, so do cδc_{\delta} and Γδ\Gamma_{\delta}. Clearly, cδc0c_{\delta}\leq c_{0} if δ<0\delta<0. Suppose that δk0\delta_{k}\rightarrow 0^{-}, we claim that limkcδk=c0\lim_{k\rightarrow\infty}c_{\delta_{k}}=c_{0}. Otherwise, up to a subsequence, limkcδk:=c¯<c0\lim_{k\rightarrow\infty}c_{\delta_{k}}:=\underline{c}<c_{0}, because c(A,1)c(B,1)c(A,1)\leq c(B,1) if A<BA<B. Take {vk}Hr1(N)\{v_{k}\}\subset H_{r}^{1}(\mathbb{R}^{N}) with vk\|v_{k}\|=1 such that

maxt0Jδk(tvk)cδk+1k2.\max\limits_{t\geq 0}J_{\delta_{k}}(tv_{k})\leq c_{\delta_{k}}+\frac{1}{k^{2}}.

Using the proof of Lemma 2.5 in [45] and Proposition 3.11 in [38], there exists γkΓk\gamma_{k}\in\Gamma_{k} with γk(t)=ψk(t)vk\gamma_{k}(t)=\psi_{k}(t)v_{k} such that

maxt[0,1]Jδk(γk(t))=maxt0Jδk(tvk)cδk+1k2.\max\limits_{t\in[0,1]}J_{\delta_{k}}(\gamma_{k}(t))=\max\limits_{t\geq 0}J_{\delta_{k}}(tv_{k})\leq c_{\delta_{k}}+\frac{1}{k^{2}}.

According to Theorem 4.34.3 of [34], there exist {wk}Hr1(N)\{w_{k}\}\subset H_{r}^{1}(\mathbb{R}^{N}) and {tk}[0,1]\{t_{k}\}\subset[0,1] such that

wkγk(tk)1k,\displaystyle\|w_{k}-\gamma_{k}(t_{k})\|\leq\frac{1}{k}, (3.10)
Jδk(wk)(cδk1k,cδk+1k),\displaystyle J_{\delta_{k}}(w_{k})\in\big{(}c_{\delta_{k}}-\frac{1}{k},c_{\delta_{k}}+\frac{1}{k}\big{)},
Jδk(wk)1k.\displaystyle\|J^{\prime}_{\delta_{k}}(w_{k})\|\leq\frac{1}{k}.

Let maxt0J0(tvk):=J0(φ(vk)vk)\max\limits_{t\geq 0}J_{0}(tv_{k}):=J_{0}(\varphi(v_{k})v_{k}). Then

c0\displaystyle c_{0} maxt0J0(tvk)\displaystyle\leq\max\limits_{t\geq 0}J_{0}(tv_{k}) (3.11)
=J0(φ(vk)vk)\displaystyle=J_{0}(\varphi(v_{k})v_{k})
=Jδk(φ(vk)vk)δkf[φ(vk)vk]22\displaystyle=J_{\delta_{k}}(\varphi(v_{k})v_{k})-\delta_{k}\|f[\varphi(v_{k})v_{k}]\|_{2}^{2}
maxt[0,1]Jδk(tvk)δkf[φ(vk)vk]22\displaystyle\leq\max\limits_{t\in[0,1]}J_{\delta_{k}}(tv_{k})-\delta_{k}\|f[\varphi(v_{k})v_{k}]\|_{2}^{2}
cδk+1k2δkf[φ(vk)vk]22.\displaystyle\leq c_{\delta_{k}}+\frac{1}{k^{2}}-\delta_{k}\|f[\varphi(v_{k})v_{k}]\|_{2}^{2}.

Up to a subsequence, if φ(vk){\varphi(v_{k})} is bounded above, by

f[φ(vk)vk]22φ2(vk)\|f[\varphi(v_{k})v_{k}]\|_{2}^{2}\leq\varphi^{2}(v_{k})

and (3.12), a contradiction will be obtained. Thus we may assume that φ(vk)1\varphi(v_{k})\geq 1 for all kk, by Lemma 2.1, we have

C1φ2(vk)\displaystyle C_{1}\varphi^{2}(v_{k}) φ2(vk)vk22+2ANf[φ(vk)vk]f[φ(vk)vk]φ(vk)vk\displaystyle\geq\varphi^{2}(v_{k})\|\nabla v_{k}\|_{2}^{2}+2A\int_{\mathbb{R}^{N}}f[\varphi(v_{k})v_{k}]f^{\prime}[\varphi(v_{k})v_{k}]\varphi(v_{k})v_{k}
=pN|f[φ(vk)vk]|p2f[φ(vk)vk]f[φ(vk)vk]φ(vk)vk\displaystyle=p\int_{\mathbb{R}^{N}}\big{|}f[\varphi(v_{k})v_{k}]\big{|}^{p-2}f[\varphi(v_{k})v_{k}]f^{\prime}[\varphi(v_{k})v_{k}]\varphi(v_{k})v_{k}
C2(φ(vk))p2vkp2p2,\displaystyle\geq C_{2}(\varphi(v_{k}))^{\frac{p}{2}}\|v_{k}\|_{\frac{p}{2}}^{\frac{p}{2}},

which leads to

φ(vk)vkp2p82p.\varphi(v_{k})\leq\|v_{k}\|_{\frac{p}{2}}^{\frac{p}{8-2p}}.

If, along a subsequence, vkp2C>0\|v_{k}\|_{\frac{p}{2}}\geq C>0, then we get upper bound for φ(vk){\varphi(v_{k})}. Otherwise,

vk0inLp2(N).v_{k}\rightarrow 0~{}~{}\hbox{in}~{}~{}L^{\frac{p}{2}}(\mathbb{R}^{N}).

We claim that there exist R,δ>0R,\delta>0 and {yk}N\{y_{k}\}\subset\mathbb{R}^{N} such that

lim infnBR(yk)|wk|2δ.\liminf_{n\rightarrow\infty}\int_{B_{R}(y_{k})}|w_{k}|^{2}\geq\delta.

If not, for any r>0r>0

limksupyNBr(y)|wk|2=0.\lim_{k\rightarrow\infty}\sup_{y\in\mathbb{R}^{N}}\int_{B_{r}(y)}|w_{k}|^{2}=0.

By (LABEL:eqBB150), {wk}\{w_{k}\} is bounded in Hr1(N)H_{r}^{1}(\mathbb{R}^{N}). It follows from Lemma 1.21 of [42] and its proof that vk0v_{k}\rightarrow 0 in Ls(N)L^{s}(\mathbb{R}^{N}), where 2s<22\leq s<2^{*}. Consequently,

0<c0cδk\displaystyle 0<c_{0}\leq c_{\delta_{k}} =limk(Jδk(wk)Jδk(wk),wk)\displaystyle=\lim_{k\rightarrow\infty}\bigg{(}J_{\delta_{k}}(w_{k})-\langle J^{\prime}_{\delta_{k}}(w_{k}),w_{k}\rangle\bigg{)}
pN|f(wk)|p2f(wk)f(wk)wk+f(wk)pp\displaystyle\leq p\int_{\mathbb{R}^{N}}|f(w_{k})|^{p-2}f(w_{k})f^{\prime}(w_{k})w_{k}+\|f(w_{k})\|_{p}^{p}
Cwkp2p20,\displaystyle\leq C\|w_{k}\|_{\frac{p}{2}}^{\frac{p}{2}}\rightarrow 0,

a contradiction. In view of

ψk(t)=ψk(t)vkwkψk(t)vk+wkC,\psi_{k}(t)=\|\psi_{k}(t)v_{k}\|\leq\|w_{k}-\psi_{k}(t)v_{k}\|+\|w_{k}\|\leq C,

we have for large kk,

vk2\displaystyle\|v_{k}\|_{2} vk2,BR(yk)\displaystyle\geq\|v_{k}\|_{2,B_{R}(y_{k})}
ψk(t)1(wk2,BR(yk)wkψk(t)vk2,BR(yk))\displaystyle\geq{\psi_{k}(t)}^{-1}\big{(}\|w_{k}\|_{2,B_{R}(y_{k})}-\|w_{k}-\psi_{k}(t)v_{k}\|_{2,B_{R}(y_{k})}\big{)}
C1(δ1k)\displaystyle\geq C^{-1}\big{(}\delta-\frac{1}{k}\big{)}
δ2C,\displaystyle\geq\frac{\delta}{2C},

a contradiction.

Suppose that δk0+\delta_{k}\rightarrow 0^{+}. If, up to a subsequence, limkcδk:=c¯>c0\lim_{k\rightarrow\infty}c_{\delta_{k}}:=\overline{c}>c_{0}. Take {vk}Hr1(N)\{v_{k}\}\subset H_{r}^{1}(\mathbb{R}^{N}) with vk\|v_{k}\|=1 such that

maxt0J0(tvk)c0+1k2.\max\limits_{t\geq 0}J_{0}(tv_{k})\leq c_{0}+\frac{1}{k^{2}}.

Observe that

cδk\displaystyle c_{\delta_{k}} maxt0Jδk(tvk)\displaystyle\leq\max\limits_{t\geq 0}J_{\delta_{k}}(tv_{k}) (3.12)
=Jδk(φδk(vk)vk)\displaystyle=J_{\delta_{k}}(\varphi_{\delta_{k}}(v_{k})v_{k})
=J0(φδk(vk)vk)+δkf[φδk(vk)vk]22\displaystyle=J_{0}(\varphi_{\delta_{k}}(v_{k})v_{k})+\delta_{k}\|f[\varphi_{\delta_{k}}(v_{k})v_{k}]\|_{2}^{2}
maxt[0,1]J0(tvk)+δkf[φδk(vk)vk]22\displaystyle\leq\max\limits_{t\in[0,1]}J_{0}(tv_{k})+\delta_{k}\|f[\varphi_{\delta_{k}}(v_{k})v_{k}]\|_{2}^{2}
c0+1k2+δkf[φδk(vk)vk]22\displaystyle\leq c_{0}+\frac{1}{k^{2}}+\delta_{k}\|f[\varphi_{\delta_{k}}(v_{k})v_{k}]\|_{2}^{2}
c0+1k2+δkφδk(vk)2,\displaystyle\leq c_{0}+\frac{1}{k^{2}}+\delta_{k}\varphi_{\delta_{k}}(v_{k})^{2},

where maxt0Jδk(tvk):=Jδk(φδk(vk)vk)\max\limits_{t\geq 0}J_{\delta_{k}}(tv_{k}):=J_{\delta_{k}}(\varphi_{\delta_{k}}(v_{k})v_{k}). Similarly, we can obtain a contradiction by proving that {φδk(vk)}\{\varphi_{\delta_{k}}(v_{k})\} is bounded above.

For any γΓ1(μ)\gamma\in\Gamma_{1}(\mu) and ξ[0,1]\xi\in[0,1], let

η(ξ)()=μ2p2γ(ξ)(μp42p4).\eta(\xi)(\cdot)=\mu^{-\frac{2}{p-2}}\gamma(\xi)\big{(}\mu^{-\frac{p-4}{2p-4}}\cdot\big{)}.

In view of (3.7), we get ηΓκCεμ1,ε\eta\in\Gamma_{\kappa-C_{\varepsilon}\mu^{-1},\varepsilon} and

maxξ[0,1]Jμ(γ(ξ))=maxξ[0,1]Jμ(η(ξ)μ)μmaxξ[0,1]JκCεμ1,ε(η(ξ))μc(κCεμ1,ε),\displaystyle\max_{\xi\in[0,1]}J_{\mu}(\gamma(\xi))=\max_{\xi\in[0,1]}J_{\mu}({\eta(\xi)}_{\mu})\geq\mu\max_{\xi\in[0,1]}J_{\kappa-C_{\varepsilon}\mu^{-1},\varepsilon}(\eta(\xi))\geq\mu c\big{(}\kappa-C_{\varepsilon}\mu^{-1},\varepsilon\big{)},

which implies that

a1(μ)μc(κCεμ1,ε).\frac{a_{1}(\mu)}{\mu}\geq c\big{(}\kappa-C_{\varepsilon}\mu^{-1},\varepsilon\big{)}.

It follows claim 22 that

limμ+a1(μ)μlimμ+c(κCεμ1,ε)=c(κ,ε).\lim\limits_{\mu\rightarrow+\infty}\frac{a_{1}(\mu)}{\mu}\geq\lim\limits_{\mu\rightarrow+\infty}c\big{(}\kappa-C_{\varepsilon}\mu^{-1},\varepsilon\big{)}=c\big{(}\kappa,\varepsilon\big{)}.

Since ε>0\varepsilon>0 is arbitrary, by claim 11, we have

limμ+a1(μ)μ=+.\lim\limits_{\mu\rightarrow+\infty}\frac{a_{1}(\mu)}{\mu}=+\infty.

 

3.2 Construction of Pohozaev Mountain and Minimax level

Following [9], we introduce the Pohozaev level set

Ω:={(λ,v)×Hr1(N):P(λ,v)>0}{(λ,0):λ}.\Omega:=\{(\lambda,v)\in\mathbb{R}\times H_{r}^{1}(\mathbb{R}^{N}):P(\lambda,v)>0\}\cup\{(\lambda,0):\lambda\in\mathbb{R}\}.

As in the proof of (3.3), we have P(λ,v)>0P(\lambda,v)>0 for vΣρv\in\partial\Sigma_{\rho} if ρ\rho is small. Hence {(λ,0):λ}int(Ω)\{(\lambda,0):\lambda\in\mathbb{R}\}\subset\hbox{int}(\Omega), and hence

Ω={(λ,v)×Hr1(N):P(λ,v)=0,v0}\partial\Omega=\{(\lambda,v)\in\mathbb{R}\times H_{r}^{1}(\mathbb{R}^{N}):P(\lambda,v)=0,v\neq 0\}

Combining Theorem 1.11.1 in [18] and a Pohozaev identity given in Lemma 3.13.1 in [10], we have Ω\partial\Omega\neq\emptyset. We also remark that nonlinearity odd is required and thus the existence of infinitely many solutions can be obtain in [18]. However, we can still prove the existence of solutions if we remove the odd hypothesis.

Lemma 3.4

The following statements hold:

  • (1)(1)

    Jλ(v)0J_{\lambda}(v)\geq 0 for all (λ,v)Ω(\lambda,v)\in\Omega.

  • (2)(2)

    Jλ(v)a1(λ)>0J_{\lambda}(v)\geq a_{1}(\lambda)>0 for all (λ,v)Ω.(\lambda,v)\in\partial\Omega.

  • (3)(3)

    EmBm>E_{m}\geq B_{m}>-\infty, where

    Em:=inf(λ,v)ΩJm(λ,v)andBm:=infλ(,λ0)(a1(λ)eλ2m).E_{m}:=\inf_{(\lambda,v)\in\partial\Omega}J^{m}(\lambda,v)~{}~{}\hbox{and}~{}~{}B_{m}:=\inf_{\lambda\in(-\infty,\lambda_{0})}\bigg{(}a_{1}(\lambda)-{e^{\lambda}\over 2}m\bigg{)}.

Proof:  Note that

Jλ(v)Jλ(v)1NP(λ,v)=1Nv220J_{\lambda}(v)\geq J_{\lambda}(v)-\frac{1}{N}P(\lambda,v)=\frac{1}{N}\|\nabla v\|_{2}^{2}\geq 0

and (1)(1) follows.

For any (λ,v)Ω(\lambda,v)\in\partial\Omega, we claim that λ<λ0.\lambda<\lambda_{0}. Otherwise, by the definition of λ0\lambda_{0}, we have

G(s)Neλ2s20foralls.G(s)-{Ne^{\lambda}\over 2}s^{2}\leq 0~{}~{}\hbox{for}~{}~{}\hbox{all}~{}~{}s\in\mathbb{R}.

This leads to

0=P(λ,v)=N22v22N(NG[f(v)]eλ2f(v)2)N22v22>0,\displaystyle 0=P(\lambda,v)={N-2\over 2}\|\nabla v\|_{2}^{2}-N\bigg{(}\int_{\mathbb{R}^{N}}G[f(v)]-{e^{\lambda}\over 2}\|f(v)\|^{2}\bigg{)}\geq{N-2\over 2}\|\nabla v\|_{2}^{2}>0,

a contradiction. For any (λ,v)Ω(\lambda,v)\in\partial\Omega, we have

0<N22v22=N(NG[f(v)]eλ2f(v)22).\displaystyle 0<{N-2\over 2}\|\nabla v\|_{2}^{2}=N\bigg{(}\int_{\mathbb{R}^{N}}G[f(v)]-{e^{\lambda}\over 2}\|f(v)\|_{2}^{2}\bigg{)}.

Set h(t)=ddt(Jλ(v(/t)))h(t)=\frac{d}{dt}\big{(}J_{\lambda}(v(\cdot/t))\big{)}. It follows from

h(t)=N22t(N2)v22(1t2)h^{\prime}(t)=\frac{N-2}{2}t^{(N-2)}\|\nabla v\|_{2}^{2}(1-t^{2})

that

maxt0Jλ(v(/t))=Jλ(v).\max_{t\geq 0}J_{\lambda}(v(\cdot/t))=J_{\lambda}(v).

Since Jλ(v(/t)J_{\lambda}(v(\cdot/t)\rightarrow-\infty as t+t\rightarrow+\infty, there exists t0>0t_{0}>0 such that Jλ(v(/t0))<0J_{\lambda}(v(\cdot/t_{0}))<0. Let

γ(t)={v(/tt0),if0<t1,0,ift=0.\gamma(t)=\begin{cases}v(\cdot/tt_{0}),~{}~{}~{}\hbox{if}~{}~{}0<t\leq 1,\\ 0,~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}\hbox{if}~{}~{}t=0.\end{cases}

Clearly, γΓ1(λ)\gamma\in{\Gamma}_{1}(\lambda) and

Jλ(v)=maxξ[0,1]Jλ(γ(t))a1(λ).{J_{\lambda}}(v)=\max_{\xi\in[0,1]}J_{\lambda}(\gamma(t))\geq a_{1}(\lambda).

Passing to the infimum over Γ1(λ){\Gamma}_{1}(\lambda), (2)(2) follows. Hence EmBmE_{m}\geq B_{m}, while the fact that Bm>B_{m}>-\infty follows from Lemma 3.3.    

Next, let us define a family of minimax values as follows.

Definition 3.2

For any k=1k=1, set

b1m=infΥΓ1mmaxξ[0,1]Jm(γ(ξ)),b^{m}_{1}=\inf_{\Upsilon\in\Gamma^{m}_{1}}\max_{\xi\in[0,1]}J^{m}(\gamma(\xi)),

where

Γ1m={Υ=(Υ1,Υ2)C([0,1],×Hr1(N)):Υsatisfies(i)(ii)below}.\Gamma^{m}_{1}=\{\Upsilon=(\Upsilon_{1},\Upsilon_{2})\in C([0,1],\mathbb{R}\times H_{r}^{1}(\mathbb{R}^{N})):\Upsilon~{}\hbox{satisfies}~{}(\rm{{i}})-(\rm{{ii}})~{}~{}\hbox{below}\}.
  • (i)

    Jm(Υ(0))Bm1J^{m}(\Upsilon(0))\leq B_{m}-1.

  • (ii)

    Υ(1)Ω\Upsilon(1)\notin\Omega and Jm(Υ(1))Bm1J^{m}(\Upsilon(1))\leq B_{m}-1.

For any k2k\geq 2, set

bkm=infΥΓkmmaxξDkJm(γ(ξ)),b^{m}_{k}=\inf_{\Upsilon\in\Gamma^{m}_{k}}\max_{\xi\in D_{k}}J^{m}(\gamma(\xi)),

where

Γkm={Υ=(Υ1,Υ2)C(Dk,×Hr1(N)):Υsatisfies(i)(iii)below}.\Gamma^{m}_{k}=\{\Upsilon=(\Upsilon_{1},\Upsilon_{2})\in C(D_{k},\mathbb{R}\times H_{r}^{1}(\mathbb{R}^{N})):\Upsilon~{}\hbox{satisfies}~{}(\rm{{i}})-(\rm{{iii}})~{}~{}\hbox{below}\}.
  • (i)

    ΥΓkm\Upsilon\in\Gamma^{m}_{k} to be 2\mathbb{Z}_{2}-equivariant, that is Υ1(ξ)=Υ1(ξ)\Upsilon_{1}(-\xi)=\Upsilon_{1}(\xi), Υ2(ξ)=Υ2(ξ)\Upsilon_{2}(-\xi)=-\Upsilon_{2}(\xi) for all ξDk\xi\in D_{k}.

  • (ii)

    Jm(Υ(0))Bm1J^{m}(\Upsilon(0))\leq B_{m}-1.

  • (iii)

    Υ|DkΩ=\Upsilon|_{\partial D_{k}}\cap\Omega=\emptyset and Jm(Υ|Dk)Bm1J^{m}(\Upsilon|_{\partial D_{k}})\leq B_{m}-1.

Lemma 3.5

For any kk\in\mathbb{N}, Γkm\Gamma^{m}_{k}\neq\emptyset. Moreover, Bmbkm<0B_{m}\leq b^{m}_{k}<0 if m>mkm>m_{k}.

Proof:  Here we only prove the case for k2k\geq 2, since the case k=1k=1 is similar. In order to prove BmbkmB_{m}\leq b^{m}_{k}, it suffices to prove that any path in Γkm\Gamma^{m}_{k} passes through Ω\partial\Omega. In fact, for all ΥΓkm\Upsilon\in\Gamma^{m}_{k}, there exist ξ1int(Dk)\xi_{1}\in\hbox{int}~{}(D_{k}) and ξ2int(Dk)\xi_{2}\in\hbox{int}~{}(D_{k}) such that P(Υ(ξ1))>0P(\Upsilon(\xi_{1}))>0 and P(Υ(ξ2))<0P(\Upsilon(\xi_{2}))<0. Let

α:=sup{t[0,1]:χ(t)>0},β:=inf{t[0,1]:χ(t)<0},\alpha:=\sup\{t\in[0,1]:\chi(t)>0\},~{}~{}\beta:=\inf\{t\in[0,1]:\chi(t)<0\},

where χ(t)=P(Υ(tξ1+(1t)ξ2)).\chi(t)=P(\Upsilon(t\xi_{1}+(1-t)\xi_{2})). Clearly, 0<αβ<10<\alpha\leq\beta<1 and χ(α)=χ(β)=0\chi(\alpha)=\chi(\beta)=0. We divide the proof into two cases as follows.

Case 1: If α=β\alpha=\beta, for small δ>0\delta>0, by the definition of α\alpha and β\beta, there exist t1,t2(αδ,α+δ)t_{1},t_{2}\in(\alpha-\delta,\alpha+\delta) such that χ(t1)>0\chi(t_{1})>0 and χ(t2)<0\chi(t_{2})<0. By the fact that {(λ,0)|λ}int(Ω)\{(\lambda,0)|\lambda\in\mathbb{R}\}\subset\hbox{int}(\Omega), we have Υ2(αξ1+(1α)ξ2))0\Upsilon_{2}(\alpha\xi_{1}+(1-\alpha)\xi_{2}))\neq 0, and hence Υ(αξ1+(1α)ξ2))Ω\Upsilon(\alpha\xi_{1}+(1-\alpha)\xi_{2}))\in\partial\Omega.

Case 2: If α<β\alpha<\beta, for small δ>0\delta>0, there exist t1(αδ,α)t_{1}\in(\alpha-\delta,\alpha) such that χ(t1)>0\chi(t_{1})>0 and χ(t)0\chi(t)\equiv 0 for t[α,β]t\in[\alpha,\beta]. Thus Υ(αξ1+(1α)ξ2))Ω\Upsilon(\alpha\xi_{1}+(1-\alpha)\xi_{2}))\in\partial\Omega.

Fix λ(,λ0)\lambda\in(-\infty,\lambda_{0}), for any γΓk(λ)\gamma\in\Gamma_{k}(\lambda) and ξDk\xi\in\partial D_{k}, we have

Jλ(γ(ξ)(L1))\displaystyle J_{\lambda}\big{(}\gamma(\xi)(L^{-1}\cdot)\big{)} =12LN2γ(ξ)22+eλ2LNf(γ(ξ))22LNNG[f(γ(ξ))]\displaystyle={1\over 2}L^{N-2}\|\nabla\gamma(\xi)\|_{2}^{2}+{e^{\lambda}\over 2}L^{N}\|f(\gamma(\xi))\|_{2}^{2}-L^{N}\int_{\mathbb{R}^{N}}G[f(\gamma(\xi))]
12LNγ(ξ)22+eλ2LNf(γ(ξ))22LNNG[f(γ(ξ))]\displaystyle\leq{1\over 2}L^{N}\|\nabla\gamma(\xi)\|_{2}^{2}+{e^{\lambda}\over 2}L^{N}\|f(\gamma(\xi))\|_{2}^{2}-L^{N}\int_{\mathbb{R}^{N}}G[f(\gamma(\xi))]
LNM,asL,\displaystyle\leq L^{N}M\rightarrow-\infty,~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}\hbox{as}~{}~{}L\rightarrow\infty,

where M=maxξDkJλ(γ(ξ))<0M=\max\limits_{\xi\in\partial D_{k}}J_{\lambda}(\gamma(\xi))<0. Consequently, limLJλ(γ(ξ)(L1))=\lim\limits_{L\rightarrow\infty}J_{\lambda}\big{(}\gamma(\xi)(L^{-1}\cdot)\big{)}=-\infty uniformly for ξDk\xi\in\partial D_{k}. Taking large L>0L>0 and setting

γ0(ξ)()={γ(2ξ)()if|ξ|[0,12],γ(ξ|ξ|)(((2|ξ|1)L+1)1)if|ξ|(12,1],\gamma_{0}(\xi)(\cdot)=\begin{cases}\gamma(2\xi)(\cdot)~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}\hbox{if}~{}~{}|\xi|\in[0,\frac{1}{2}],\\ \gamma\big{(}\frac{\xi}{|\xi|}\big{)}\big{(}((2|\xi|-1)L+1)^{-1}\cdot\big{)}~{}~{}\hbox{if}~{}~{}|\xi|\in(\frac{1}{2},1],\end{cases}

then γ0Γk(λ)\gamma_{0}\in\Gamma_{k}(\lambda). Moreover,

maxξDkJλ(γ0(ξ))=maxξDkJλ(γ(ξ)),maxξDkJλ(γ0(ξ))Bm1.\max_{\xi\in D_{k}}J_{\lambda}(\gamma_{0}(\xi))=\max_{\xi\in D_{k}}J_{\lambda}(\gamma(\xi)),~{}~{}\max_{\xi\in\partial D_{k}}J_{\lambda}(\gamma_{0}(\xi))\leq B_{m}-1. (3.13)

Now, let us define Υ=(Υ1,Υ2)\Upsilon=(\Upsilon_{1},\Upsilon_{2}) as follows:

Υ1(ξ)={λ+R(12|ξ|)if|ξ|[0,12],λif|ξ|(12,1],\Upsilon_{1}(\xi)=\begin{cases}\lambda+R(1-2|\xi|)~{}~{}~{}\hbox{if}~{}~{}|\xi|\in[0,\frac{1}{2}],\\ \lambda~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}\hbox{if}~{}~{}|\xi|\in(\frac{1}{2},1],\end{cases}
Υ2(ξ)={0if|ξ|[0,12],γ0(ξ|ξ|(2|ξ|1))if|ξ|(12,1].\Upsilon_{2}(\xi)=\begin{cases}0~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}\hbox{if}~{}~{}|\xi|\in[0,\frac{1}{2}],\\ \gamma_{0}\big{(}\frac{\xi}{|\xi|}(2|\xi|-1)\big{)}~{}~{}\hbox{if}~{}~{}|\xi|\in(\frac{1}{2},1].\end{cases}

It is easy to see that

Jm(Υ(ξ))=eλ+R(12|ξ|)2mfor|ξ|[0,12],J^{m}(\Upsilon(\xi))=-\frac{e^{\lambda+R(1-2|\xi|)}}{2}m~{}~{}\hbox{for}~{}~{}|\xi|\in[0,\frac{1}{2}],
Jm(Υ(ξ))=Jm(λ,Υ2(ξ))=Jλ(Υ2(ξ))eλ2mfor|ξ|(12,1].J^{m}(\Upsilon(\xi))=J^{m}(\lambda,\Upsilon_{2}(\xi))=J_{\lambda}(\Upsilon_{2}(\xi))-\frac{e^{\lambda}}{2}m~{}~{}\hbox{for}~{}~{}|\xi|\in(\frac{1}{2},1].

By choosing a large R>0R>0, we have Jm(Υ(0))Bm1J^{m}(\Upsilon(0))\leq B_{m}-1. If ξDk\xi\in\partial D_{k}, by (3.13), we have for large LL

Jm(Υ(ξ))=Jλ(γ0(ξ))eλ2mBm1J^{m}(\Upsilon(\xi))=J_{\lambda}(\gamma_{0}(\xi))-\frac{e^{\lambda}}{2}m\leq B_{m}-1

and

P(Υ(ξ))=P(λ,γ0(ξ))=P(λ,γ0(ξ)(L+1)1))<0.P(\Upsilon(\xi))=P(\lambda,\gamma_{0}(\xi))=P\big{(}\lambda,\gamma_{0}(\xi)(L+1)^{-1}\cdot)\big{)}<0.

Consequently, ΥΓkm\Upsilon\in\Gamma_{k}^{m}. By (3.13), we have

bkm\displaystyle b^{m}_{k} maxξDjJm(Υ(ξ))\displaystyle\leq\max_{\xi\in D_{j}}J^{m}(\Upsilon(\xi))
=max|ξ|(12,1]Jm(Υ(ξ))\displaystyle=\max_{|\xi|\in(\frac{1}{2},1]}J^{m}(\Upsilon(\xi))
=maxξDkJλ(γ0(ξ))eλ2m\displaystyle=\max_{\xi\in D_{k}}J_{\lambda}(\gamma_{0}(\xi))-\frac{e^{\lambda}}{2}m
=maxξDkJλ(γ(ξ))eλ2m.\displaystyle=\max_{\xi\in D_{k}}J_{\lambda}(\gamma(\xi))-\frac{e^{\lambda}}{2}m.

Since γ\gamma is arbitrary, for any λ(,λ0),\lambda\in(-\infty,\lambda_{0}),

bkmak(λ)eλ2m.b^{m}_{k}\leq a_{k}(\lambda)-\frac{e^{\lambda}}{2}m. (3.14)

Hence

infλ(,λ0)bkmeλinfλ(,λ0)ak(λ)eλm2=mk2m2<0,\inf_{\lambda(-\infty,\lambda_{0})}\frac{b^{m}_{k}}{e^{\lambda}}\leq\inf_{\lambda\in(-\infty,\lambda_{0})}\frac{a_{k}(\lambda)}{e^{\lambda}}-\frac{m}{2}=\frac{m_{k}}{2}-\frac{m}{2}<0,

and hence bkm<0b^{m}_{k}<0. This completes the proof of Lemma 3.5.    

In order to study the multiplicity of radial for equation (Pμ,m)(P_{\mu,m}), let us define another family of minimax values as follows:

Definition 3.3

For k2k\geq 2, we set

ckm=infAΛkmmax(λ,v)AJm(λ,v),c_{k}^{m}=\inf_{A\in\Lambda^{m}_{k}}\max_{(\lambda,v)\in A}J^{m}(\lambda,v),

where

Λkm={Υ(Dk+jY¯):j,ΥΓk+jm,YDk+j{0}isclosed,Y=Y,andgenus(Y)j}.\Lambda_{k}^{m}=\{\Upsilon(\overline{D_{k+j}\setminus Y}):j\in\mathbb{N},\Upsilon\in\Gamma^{m}_{k+j},Y\subset D_{k+j}\setminus\{0\}~{}~{}\hbox{is}~{}~{}\hbox{closed},~{}-Y=Y,~{}\hbox{and}~{}~{}\hbox{genus}(Y)\leq j\}.

Let P2:×Hr1(N)Hr1(N)P_{2}:\mathbb{R}\times H_{r}^{1}(\mathbb{R}^{N})\rightarrow H_{r}^{1}(\mathbb{R}^{N}) be a projection defined by

P2(λ,v)=vfor(λ,v)×Hr1(N).P_{2}(\lambda,v)=v~{}~{}~{}\hbox{for}~{}~{}(\lambda,v)\in\mathbb{R}\times H_{r}^{1}(\mathbb{R}^{N}).
Lemma 3.6

We have the following results:

  • (i)

    Λkm.\Lambda^{m}_{k}\neq\emptyset.

  • (ii)

    ΛkmΛk+1m\Lambda^{m}_{k}\subset\Lambda^{m}_{k+1}, and thus ckmck+1mc^{m}_{k}\leq c^{m}_{k+1}.

  • (iii)

    ckmbkm.c^{m}_{k}\leq b^{m}_{k}.

  • (iv)

    Let AΛkmA\in\Lambda^{m}_{k} and Z×Hr1(N)Z\subset\mathbb{R}\times H_{r}^{1}(\mathbb{R}^{N}) be 2\mathbb{Z}_{2}-invariant, closed, and such that 0P2(Z)¯0\notin\overline{P_{2}(Z)} and genusP2(Z)¯i<n\hbox{genus}\overline{P_{2}(Z)}\leq i<n. Then AZ¯Λkim.\overline{A\setminus Z}\in\Lambda^{m}_{k-i}.

Proof:  The proof is given in [14] and [8].    

Lemma 3.7

The following statements hold:

  • (i)

    b1mb_{1}^{m} and ckmc_{k}^{m} are critical values of Jm(λ,v)J^{m}(\lambda,v) for all k2k\geq 2.

  • (ii)({ii})

    If ck=ck+1==ck+j:=cc_{k}=c_{k+1}=\cdot\cdot\cdot=c_{k+j}:=c, then genus(P2(Kcm))j+1\hbox{genus}(P_{2}(K^{m}_{c}))\geq j+1.

Proof:  Since the (PSP)c(PSP)_{c} condition holds for c<0c<0 by Lemma 2.4, we can develop deformation theory given in Lemma 2.7. We can also observe that the negative minimax values b1mb_{1}^{m} and ckmc_{k}^{m} are stable under the deformation. Thus (i) follows from Lemma 2.7, see [44] for details. Essentially, the proof of (ii) is similar as Proposition 3.3 in [14]. Here we give some details for completeness. By Lemma 2.7–(i), P2(Kcm)P_{2}(K_{c}^{m}) is compact, symmetric with respect to 0 and 0P2(Kcm)0\notin P_{2}(K_{c}^{m}). By the fundamental properties of genus [37], we have

  • (1)

    genus(P2(Kcm))\hbox{genus}(P_{2}(K_{c}^{m}))\leq\infty,

  • (2)

    there exists δ>0\delta>0 small such that genus(P2(Nδ(Kcm))¯)=genus(P2(Kcm))\hbox{genus}(\overline{P_{2}(N_{\delta}(K_{c}^{m}))})=\hbox{genus}(P_{2}(K_{c}^{m})).

Let ε(0,1)\varepsilon\in(0,1) and AΛk+jmA\in\Lambda^{m}_{k+j} such that A(Jm)cεA\subset{(J^{m})}^{c-\varepsilon}. By Lemma 2.7–(4), one has

η(1,AP2(Nδ(Kc))¯)(Jm)cε.\eta(1,\overline{A\setminus P_{2}(N_{\delta}(K_{c}))})\subset{(J^{m})}^{c-\varepsilon}.

We argue by contradiction that genus(P2(Kcm))j\hbox{genus}(P_{2}(K_{c}^{m}))\leq j. By Lemma 2.4–(iv) in [14], one can check that

AP2(Nδ(Kcm))¯Λk+jgenus(P2(Nδ(Kcm))¯)mΛkm.\overline{A\setminus P_{2}(N_{\delta}(K_{c}^{m}))}\in\Lambda^{m}_{k+j-\hbox{genus}(\overline{P_{2}(N_{\delta}(K_{c}^{m}))})}\subset\Lambda_{k}^{m}.

Through a similar argument to (i), we have η(1,AP2(Nδ(Kcm))¯)Λkm\eta(1,\overline{A\setminus P_{2}(N_{\delta}(K_{c}^{m}))})\in\Lambda^{m}_{k}, and hence

Jm(η(1,AP2(Nδ(Kcm))¯))c.J^{m}(\eta(1,\overline{A\setminus P_{2}(N_{\delta}(K_{c}^{m}))}))\geq c.

This leads to ccεc\leq c-\varepsilon, a contradiction.    

4 The proofs of main results

The proof of Theorems 1.41.5

Proof:  By Lemma 2.3 and Lemma 3.7, it suffices to prove that b1mb_{1}^{m} be least energy on

{u:uS(m),μand(u,μ)solves(Pμ,m)}.\{u:u\in S(m),\mu\in\mathbb{R}~{}\hbox{and}~{}(u,\mu)~{}\hbox{solves}~{}(P_{\mu,m})\}.

We argue by contradiction that there exists (μ,u)(\mu_{\ast},u_{\ast}) solves (Pμ,m)(P_{\mu,m}) with E(u)<b1m<0E(u_{\ast})<b_{1}^{m}<0, that is, (μ,v)(\mu_{\ast},v_{\ast}) satisfies

Δv+μf(v)f(v)=g[f(v)]f(v)-\Delta v+\mu f(v)f^{\prime}(v)=g[f(v)]f^{\prime}(v)

and f(v)22=m\|f(v_{\ast})\|_{2}^{2}=m, where v:=f1(u)v_{\ast}:=f^{-1}(u_{\ast}). By corollary B.4 in [42], we have vv_{\ast} satisfies Pohozaev identity

N22v22+Nμf(v)22NNG[f(v)]=0.\frac{N-2}{2}\|\nabla v_{\ast}\|_{2}^{2}+{N\mu_{\ast}}\|f(v_{\ast})\|_{2}^{2}-N\int_{\mathbb{R}^{N}}G[f(v_{\ast})]=0.

Since

NE(u)v2+Nμm=N22v22+Nμf(v)22NNG[f(v)]=0,NE(u\ast)-\|\nabla v\ast\|^{2}+N\mu_{\ast}m=\frac{N-2}{2}\|\nabla v_{\ast}\|_{2}^{2}+{N\mu_{\ast}}\|f(v_{\ast})\|_{2}^{2}-N\int_{\mathbb{R}^{N}}G[f(v_{\ast})]=0,

μ>0\mu_{\ast}>0. Next we claim that vJlogμ(v)v\mapsto J_{\log\mu_{\ast}}(v) satisfies mountain pass geometry, that is, logμ<λ0\log\mu_{\ast}<\lambda_{0}. To this aim, it is suffice to show Jlogμ(v)<0J_{\log\mu_{\ast}}(v)<0 for some vHr1(N)v\in H^{1}_{r}(\mathbb{R}^{N}). Recall that H(s):=μ2f2(s)+G[f(s)]H(s):=-\frac{\mu_{\ast}}{2}f^{2}(s)+G[f(s)]. If N3N\geq 3, by P(λ,v)=0P(\lambda_{\ast},v_{\ast})=0, we have

NH(v)=N22Nv22>0.\displaystyle\int_{\mathbb{R}^{N}}H(v_{\ast})={N-2\over 2N}\|\nabla v_{\ast}\|_{2}^{2}>0.

Thus, we take v=vv=v_{\ast} for N3N\geq 3. If N=2N=2, by P(λ,v)=0P(\lambda_{\ast},v_{\ast})=0, we have

NH(v)=0\int_{\mathbb{R}^{N}}H(v_{\ast})=0

and

ddsNH(sv)|s=1=Nμ2f(v)f(v)v+g[f(v)]f(v)v=N|v|2>0.\frac{d}{ds}\int_{\mathbb{R}^{N}}H(sv_{\ast})\big{|}_{s=1}=\int_{\mathbb{R}^{N}}-\frac{\mu_{\ast}}{2}f(v_{\ast})f^{\prime}(v_{\ast})v_{\ast}+g[f(v_{\ast})]f^{\prime}(v_{\ast})v_{\ast}=\int_{\mathbb{R}^{N}}|\nabla v_{\ast}|^{2}>0.

So we can choose some t1+t_{\ast}\rightarrow 1^{+} such that NH(tv)>0.\int_{\mathbb{R}^{N}}H(t^{\ast}v_{\ast})>0. Thus, we take v=vv=v_{\ast} for N=2N=2. Consequently, as θ\theta\rightarrow\infty,

Jlogμ(v(/θ))=12θN2v22θNNH(v).\displaystyle J_{\log\mu_{\ast}}(v(\cdot/\theta))={1\over 2}\theta^{N-2}\|\nabla v\|_{2}^{2}-\theta^{N}\int_{\mathbb{R}^{N}}H(v)\rightarrow-\infty.

Fix large θ>0\theta>0 and let

γ(t)={v(/tθ),if0<t1,0,ift=0.\gamma(t)=\begin{cases}v(\cdot/t\theta),~{}~{}~{}\hbox{if}~{}~{}0<t\leq 1,\\ 0,~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}\hbox{if}~{}~{}t=0.\end{cases}

Clearly, γΓ1(logμ)\gamma\in{\Gamma}_{1}(\log\mu_{\ast}). It follows (3.14) that

E(u)<b1ma1(logμ)μ2mmaxt[0,1]Jlogμ(γ(t))μ2m=Jlogμ(v)μ2m=E(u),E(u_{\ast})<b_{1}^{m}\leq a_{1}(\log\mu_{\ast})-\frac{\mu_{\ast}}{2}m\leq\max_{t\in[0,1]}J_{\log\mu_{\ast}}(\gamma(t))-\frac{\mu_{\ast}}{2}m=J_{\log\mu_{\ast}}(v_{\ast})-\frac{\mu_{\ast}}{2}m=E(u_{\ast}),

a contradiction.    

The proof of Theorems 1.6

Proof:  If m>m1m>m_{1}, by Lemma 3.7, there exists (λm,vm)Kbm1m(\lambda_{m},v_{m})\in K_{b^{1}_{m}}^{m}. Let um:=f(vm)u_{m}:=f(v_{m}). Then Jm(λm,vm)=bm1J^{m}(\lambda_{m},v_{m})=b^{1}_{m} and

0=λJm(λm,vm)=eλm2(um22m),0=\partial_{\lambda}J^{m}(\lambda_{m},v_{m})={e^{\lambda_{m}}\over 2}\bigg{(}\|u_{m}\|_{2}^{2}-m\bigg{)},

which implies that um22=m\|u_{m}\|_{2}^{2}=m and

0>bm1=Jm(λm,vm)\displaystyle 0>b^{1}_{m}=J^{m}(\lambda_{m},v_{m}) =12vm22+eλm2(f(vm)22m)NG[f(vm)]\displaystyle={1\over 2}\|\nabla v_{m}\|_{2}^{2}+{e^{\lambda_{m}}\over 2}\big{(}\|f(v_{m})\|^{2}_{2}-m\big{)}-\int_{\mathbb{R}^{N}}G[f(v_{m})]
=12N(1+2um2)|um|2NG(um).\displaystyle={1\over 2}\int_{\mathbb{R}^{N}}\big{(}1+2u_{m}^{2}\big{)}|\nabla u_{m}|^{2}-\int_{\mathbb{R}^{N}}G(u_{m}).

Consequently, e(m)bm1<0e(m)\leq b^{1}_{m}<0. Let {un}X\{u_{n}\}\subset X be a minimizing sequence for e(m)e(m), that is, {un}S(m)\{u_{n}\}\subset S(m) with E(un)emE(u_{n})\rightarrow e_{m}. Let unu_{n}^{\ast} be the Steiner rearrangement of unu_{n}. By (g5)(g_{5}) and (g7)(g_{7}), and (ii) of Proposition 2.1 in [41], we have

NG(un)=NG(un).\int_{\mathbb{R}^{N}}G(u_{n})=\int_{\mathbb{R}^{N}}G(u_{n}^{\ast}).

From standard rearrangement inequalities, we have un22=un22\|u_{n}\|^{2}_{2}=\|u_{n}^{\ast}\|^{2}_{2} and

N(1+2(un)2)|un|2N(1+2un2)|un|2.\int_{\mathbb{R}^{N}}\big{(}1+2(u_{n}^{\ast})^{2}\big{)}|\nabla u_{n}^{\ast}|^{2}\leq\int_{\mathbb{R}^{N}}\big{(}1+2u_{n}^{2}\big{)}|\nabla u_{n}|^{2}.

Thus, {un}\{u_{n}\} can be replaced by {un}\{u_{n}^{\ast}\} as minimizing sequence. We still denote {un}\{u_{n}^{\ast}\} by {un}\{u_{n}\} for simplicity. By the Gagliardo-Nirenberg inequality, for any 2<r<222<r<22^{\ast}, there exists c(r,N)>0c(r,N)>0 such that

unrr\displaystyle\|u_{n}\|_{r}^{r} c(r,N)(un22)3N+2(N2)(r1)2N+4(un22)N(r2)2N+4\displaystyle\leq c(r,N)\big{(}\|u_{n}\|_{2}^{2}\big{)}^{\frac{3N+2-(N-2)(r-1)}{2N+4}}\big{(}\|\nabla u_{n}\|_{2}^{2}\big{)}^{\frac{N(r-2)}{2N+4}} (4.1)
c(r,N)m3N+2(N2)(r1)2N+4(N(1+2un2)|un|2)N(r2)2N+4.\displaystyle\leq c(r,N)m^{\frac{3N+2-(N-2)(r-1)}{2N+4}}\bigg{(}\int_{\mathbb{R}^{N}}\big{(}1+2u_{n}^{2}\big{)}|\nabla u_{n}|^{2}\bigg{)}^{\frac{N(r-2)}{2N+4}}.

For any 2<r<p2<r<p and ε>0\varepsilon>0, by (g1)(g3)(g_{1})-(g_{3}), there exists Cε>0C_{\varepsilon}>0 such that

|G(t)|<ε|t|2+ε|t|p+Cε|t|r,|G(t)|<\varepsilon|t|^{2}+\varepsilon|t|^{p}+C_{\varepsilon}|t|^{r},

Consequently, for small ε\varepsilon,

E(un)\displaystyle E(u_{n}) =12N(1+2un2)|un|2NG(un)\displaystyle={1\over 2}\int_{\mathbb{R}^{N}}\big{(}1+2u_{n}^{2}\big{)}|\nabla u_{n}|^{2}-\int_{\mathbb{R}^{N}}G(u_{n})
12N(1+2u2)|u|2εun22Cεunrrεunpp\displaystyle\geq{1\over 2}\int_{\mathbb{R}^{N}}\big{(}1+2u^{2}\big{)}|\nabla u|^{2}-\varepsilon\|u_{n}\|_{2}^{2}-C_{\varepsilon}\|u_{n}\|_{r}^{r}-\varepsilon\|u_{n}\|_{p}^{p}
N(1+2un2)|un|2c(r,N)Cεm3N+2(N2)(r1)2N+4(N(1+2un2)|un|2)N(r2)2N+4\displaystyle\geq\int_{\mathbb{R}^{N}}\big{(}1+2u_{n}^{2}\big{)}|\nabla u_{n}|^{2}-c(r,N)C_{\varepsilon}m^{\frac{3N+2-(N-2)(r-1)}{2N+4}}\bigg{(}\int_{\mathbb{R}^{N}}\big{(}1+2u_{n}^{2}\big{)}|\nabla u_{n}|^{2}\bigg{)}^{\frac{N(r-2)}{2N+4}}
c(p,N)εm3N+2(N2)(p1)2N+4N(1+2un2)|un|2εm\displaystyle~{}~{}~{}~{}-c(p,N)\varepsilon m^{\frac{3N+2-(N-2)(p-1)}{2N+4}}\int_{\mathbb{R}^{N}}\big{(}1+2u_{n}^{2}\big{)}|\nabla u_{n}|^{2}-\varepsilon m
14N(1+2un2)|un|2mCc(r,N)m3N+2(N2)(r1)2N+4(N(1+2un2)|un|2)N(r2)2N+4\displaystyle\geq\frac{1}{4}\int_{\mathbb{R}^{N}}\big{(}1+2u_{n}^{2}\big{)}|\nabla u_{n}|^{2}-m-Cc(r,N)m^{\frac{3N+2-(N-2)(r-1)}{2N+4}}\bigg{(}\int_{\mathbb{R}^{N}}\big{(}1+2u_{n}^{2}\big{)}|\nabla u_{n}|^{2}\bigg{)}^{\frac{N(r-2)}{2N+4}}

Since 2<r<p=4+4N2<r<p=4+\frac{4}{N} and e(m)<0e(m)<0, {un}\{u_{n}\} and {un2}\{\nabla u_{n}^{2}\} are bounded in H1(N)H^{1}(\mathbb{R}^{N}) and L2(N)L^{2}(\mathbb{R}^{N}), respectively. By the interpolation inequality, we may assume that

{unuinHr1(N),unuinLr(N)for2<r<22,unua.e.inN.\begin{cases}u_{n}\rightharpoonup u~{}~{}\hbox{in}~{}~{}H_{r}^{1}(\mathbb{R}^{N}),\\ u_{n}\rightarrow u~{}~{}\hbox{in}~{}~{}L^{r}(\mathbb{R}^{N})~{}~{}\hbox{for}~{}~{}2<r<22^{\ast},\\ u_{n}\rightarrow u~{}~{}a.e.~{}~{}\hbox{in}~{}~{}\mathbb{R}^{N}.\end{cases}

A standard argument implies that

NG(un)NG(un)\int_{\mathbb{R}^{N}}G(u_{n})\rightarrow\int_{\mathbb{R}^{N}}G(u_{n})

and

lim infnN(1+2un2)|un|2N(1+2u2)|u|2.\liminf_{n\rightarrow\infty}\int_{\mathbb{R}^{N}}\big{(}1+2u_{n}^{2}\big{)}|\nabla u_{n}|^{2}\leq\int_{\mathbb{R}^{N}}\big{(}1+2u^{2}\big{)}|\nabla u|^{2}.

Then

E(u)lim infnE(un)=e(m)<0.E(u)\leq\liminf_{n\rightarrow\infty}E(u_{n})=e(m)<0.

From this, we have u0u\neq 0. To prove Theorems 1.6, it suffices to prove that u22=m\|u\|_{2}^{2}=m. We argue by contradiction that 0<u22=c<m0<\|u\|_{2}^{2}=c<m, because 0<u22m0<\|u\|_{2}^{2}\leq m. Consider the scaling v()=u(σ1N)v(\cdot)=u\big{(}\sigma^{-\frac{1}{N}}\cdot\big{)}, where σ=mρ\sigma=\frac{m}{\rho}. Then v22=m\|v\|_{2}^{2}=m and

E(v)\displaystyle E(v) =(mρ)12N(12N(1+2u2)|u|2)mρNG(u)\displaystyle=\bigg{(}\frac{m}{\rho}\bigg{)}^{1-\frac{2}{N}}\bigg{(}{1\over 2}\int_{\mathbb{R}^{N}}\big{(}1+2u^{2}\big{)}|\nabla u|^{2}\bigg{)}-\frac{m}{\rho}\int_{\mathbb{R}^{N}}G(u)
mρ(12N(1+2u2)|u|2)mρNG(u)\displaystyle\leq\frac{m}{\rho}\bigg{(}{1\over 2}\int_{\mathbb{R}^{N}}\big{(}1+2u^{2}\big{)}|\nabla u|^{2}\bigg{)}-\frac{m}{\rho}\int_{\mathbb{R}^{N}}G(u)
<E(u),\displaystyle<E(u),

which gives a contradiction, and the proof is completed.    

Acknowledgments

This work is supported partially by NSFC (No. 12161091).

References

  • [1] G. Autuori and P. Pucci. Entire solutions of nonlocal elasticity models for composite materials. Discrete Contin. Dyn. Syst. Ser. S, 11(3):357–377, 2018.
  • [2] W. Bao, Y. Cai, and X. Ruan. Ground states of Bose-Einstein condensates with higher order interaction. Phys. D, 386/387:38–48, 2019.
  • [3] H. Berestycki and P.-L. Lions. Nonlinear scalar field equations. I. Existence of a ground state. Arch. Rational Mech. Anal., 82(4):313–345, 1983.
  • [4] H. Berestycki and P.-L. Lions. Nonlinear scalar field equations. II. Existence of infinitely many solutions. Arch. Rational Mech. Anal., 82(4):347–375, 1983.
  • [5] M. Caliari and M. Squassina. On a bifurcation value related to quasi-linear Schrödinger equations. J. Fixed Point Theory Appl., 12(1-2):121–133, 2012.
  • [6] A. Canino and M. Degiovanni. Nonsmooth critical point theory and quasilinear elliptic equations. In Topological methods in differential equations and inclusions, volume 472 of NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., pages 1–50. Kluwer , Dordrecht, 1995.
  • [7] T. Cazenave and L. Lions. Orbital stability of standing waves for some nonlinear Schrödinger equations. Commun. Math. Phys., 85:549–61, 1982.
  • [8] S. Cingolani, M. Gallo, and K. Tanaka. Normalized solutions for fractional nonlinear scalar field equations via Lagrangian formulation. Nonlinearity, 34(6):4017–4056, 2021.
  • [9] S. Cingolani, M. Gallo, and K. Tanaka. Multiple solutions for the nonlinear Choquard equation with even or odd nonlinearities. Calc. Var. Partial Differential Equations, 61(2):Paper No. 68, 34, 2022.
  • [10] M. Colin, L. Jeanjean, and M. Squassina. Stability and instability results for standing waves of quasi-linear Schrödinger equations. Nonlinearity, 23(6):1353–1385, 2010.
  • [11] A. de Bouard, N. Hayashi, and J. Saut. Global existence of small solutions to a relativistic nonlinear Schrödinger equation. Comm. Math. Phys., 189(1):73–105, 1997.
  • [12] J. M. B. do Ó, O.H. Miyagaki, and S.H. M. Soares. Soliton solutions for quasilinear Schrödinger equations with critical growth. J. Differential Equations, 248(4):722–744, 2010.
  • [13] H. Hajaiej and C. A. Stuart. On the variational approach to the stability of standing waves for the nonlinear Schrödinger equation. Adv. Nonlinear Stud., 4(4):469–501, 2004.
  • [14] J. Hirata and K. Tanaka. Nonlinear scalar field equations with L2L^{2} constraint: mountain pass and symmetric mountain pass approaches. Adv. Nonlinear Stud., 19(2):263–290, 2019.
  • [15] L. Jeanjean and S. Lu. Nonradial normalized solutions for nonlinear scalar field equations. Nonlinearity, 32(12):4942–4966, 2019.
  • [16] L. Jeanjean and T. Luo. Sharp nonexistence results of prescribed L2L^{2}-norm solutions for some class of Schrödinger-Poisson and quasi-linear equations. Z. Angew. Math. Phys., 64(4):937–954, 2013.
  • [17] L. Jeanjean, T. Luo, and Z.-Q. Wang. Multiple normalized solutions for quasi-linear Schrödinger equations. J. Differential Equations, 259(8):3894–3928, 2015.
  • [18] Y. Jing, H. Liu, and Z. Liu. Quasilinear Schrödinger equations involving singular potentials. Nonlinearity, 35(4):1810–1856, 2022.
  • [19] A. M. Kosevich, B.A. Ivanov, and A. S. Kovalev. Magnetic solitons. Phys. Rep., 194(3):117–238, 1990.
  • [20] S. Kurihara. Large-amplitude quasi-solitons in superfluid films. J. phys. Soc. Jpn., 50(10):3262–3267, 1981.
  • [21] H. Li and W. Zou. Quasilinear Schrödinger equations: Ground state and infinitely many normalized solutions. Topol. Methods Nonlinear Anal., 2023.
  • [22] Z. Li and Y. Shen. Nonsmooth critical point theorems and its applications to quasilinear Schrödinger equations. Acta Math. Sci. Ser. B (Engl. Ed.), 36(1):73–86, 2016.
  • [23] E.H. Lieb and M. Loss. Analysis, volume 14 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, second edition, 2001.
  • [24] P.-L. Lions. The concentration-compactness principle in the calculus of variations. The locally compact case. II. Ann. Inst. H. Poincaré Anal. Non Linéaire, 1(4):223–283, 1984.
  • [25] J. Liu, X. Liu, and Z.-Q. Wang. Multiple sign-changing solutions for quasilinear elliptic equations via perturbation method. Comm. Partial Differential Equations, 39(12):2216–2239, 2014.
  • [26] J. Liu, Y. Wang, and Z.-Q. Wang. Soliton solutions for quasilinear Schrödinger equations. II. J. Differential Equations, 187(2):473–493, 2003.
  • [27] J. Liu, Y. Wang, and Z.-Q. Wang. Solutions for quasilinear Schrödinger equations via the Nehari method. Comm. Partial Differential Equations, 29(5-6):879–901, 2004.
  • [28] J. Liu, Z. Wang, and Y. Guo. Multibump solutions for quasilinear elliptic equations. J. Funct. Anal., 262(9):4040–4102, 2012.
  • [29] J. Liu and Z.-Q. Wang. Soliton solutions for quasilinear Schrödinger equations. I. Proc. Amer. Math. Soc., 131(2):441–448, 2003.
  • [30] J. Liu and Z.-Q. Wang. Multiple solutions for quasilinear elliptic equations with a finite potential well. J. Differential Equations, 257(8):2874–2899, 2014.
  • [31] X. Liu, J. Liu, and Z.-Q. Wang. Ground states for quasilinear Schrödinger equations with critical growth. Calc. Var. Partial Differential Equations, 46(3-4):641–669, 2013.
  • [32] X. Liu, J. Liu, and Z.-Q. Wang. Quasilinear elliptic equations via perturbation method. Proc. Amer. Math. Soc., 141(1):253–263, 2013.
  • [33] V. G. Makhankov and V. K. Fedyanin. Non-linear effects in quasi-one-dimensional models of condensed matter theory. Phys. Rep., 104(1):1–86, 1984.
  • [34] J. Mawhin and M. Willem. Critical Point Theory and Hamiltonian Systems, volume 24. Springer Verlag, Berlin, 1989.
  • [35] M. Poppenberg, K. Schmitt, and Z. Wang. On the existence of soliton solutions to quasilinear Schrödinger equations. Calc. Var. Partial Differential Equations, 14(3):329–344, 2002.
  • [36] G. R. W. Quispel and H. W. Capel. Equation of motion for the Heisenberg spin chain. Phys. A, 110(1-2):41–80, 1982.
  • [37] P.H. Rabinowitz. Minimax methods in critical point theory with applications to differential equations, volume 65 of CBMS Regional Conference Series in Mathematics. American Mathematical Society, Providence, RI, 1986.
  • [38] P.H. Rabinowitz. On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys., 43(2):270–291, 1992.
  • [39] M. Shibata. Stable standing waves of nonlinear Schrödinger equations with a general nonlinear term. Manuscripta Math., 143(1-2):221–237, 2014.
  • [40] M. Shibata. Stable standing waves of nonlinear Schrödinger equations with a general nonlinear term. Manuscripta Math., 143(1-2):221–237, 2014.
  • [41] M. Shibata. A new rearrangement inequality and its application for L2L^{2}-constraint minimizing problems. Math. Z., 287(1-2):341–359, 2017.
  • [42] M. Willem. Minimax theorems, volume 24 of Progress in Nonlinear Differential Equations and their Applications. Birkhäuser Boston, Inc., Boston, MA, 1996.
  • [43] X. Wu. Multiple solutions for quasilinear Schrödinger equations with a parameter. J. Differential Equations, 256(7):2619–2632, 2014.
  • [44] X. Yang, X. Tang, and B. Cheng. Multiple radial and nonradial normalized solutions for a quasilinear Schrödinger equation. J. Math. Anal. Appl., 501(2):Paper No. 125122, 21, 2021.
  • [45] X. Yang, X. Tang, and Y. Zhang. Positive, negative, and sign-changing solutions to a quasilinear Schrödinger equation with a parameter. J. Math. Phys., 60(12):121510, 24, 2019.
  • [46] X. Yang, W. Wang, and F. Zhao. Infinitely many radial and non-radial solutions to a quasilinear Schrödinger equation. Nonlinear Anal., 114:158–168, 2015.
  • [47] H. Ye and Y. Yu. The existence of normalized solutions for L2L^{2}-critical quasilinear Schrödinger equations. J. Math. Anal. Appl., 497(1):Paper No. 124839, 15, 2021.
  • [48] X. Zeng and Y. Zhang. Existence and asymptotic behavior for the ground state of quasilinear elliptic equations. Adv. Nonlinear Stud., 18(4):725–744, 2018.
  • [49] X. Zeng and Y. Zhang. Asymptotic behaviors of ground states for a modified Gross-Pitaevskii equation. Discrete Contin. Dyn. Syst., 39(9):5263–5273, 2019.
  • [50] L. Zhang, Y. Li, and Z.-Q. Wang. Multiple normalized solutions for a quasilinear Schrödinger equation via dual approach. Topol. Methods Nonlinear Anal., 61(1):465–489, 2023.