This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Inhomogeneous entropy production in active crystals with point imperfections

L. Caprini1    H. Löwen1    U. Marini Bettolo Marconi2 1 Heinrich Heine Universität Düsseldorf, Düsseldorf, Germany.
2 Scuola di Scienze e Tecnologie, Università di Camerino - via Madonna delle Carceri, 62032, Camerino, Italy and INFN Sezione di Perugia, I-06123 Perugia, Italy
(May 8, 2025)
Abstract

The presence of defects in solids formed by active particles breaks their discrete translational symmetry. As a consequence, many of their properties become space-dependent and different from those characterizing perfectly ordered structures. Motivated by recent numerical investigations concerning the nonuniform distribution of entropy production and its relation to the configurational properties of active systems, we study theoretically and numerically the spatial profile of the entropy production rate when an active solid contains an isotopic mass defect. The theoretical study of such an imperfect active crystal is conducted by employing a perturbative analysis that considers the perfectly ordered harmonic solid as a reference system. The perturbation theory predicts a nonuniform profile of the entropy production extending over large distances from the position of the impurity. The entropy production rate decays exponentially to its bulk value with a typical healing length that coincides with the correlation length of the spatial velocity correlations characterizing the perfect active solids in the absence of impurities. The theory is validated against numerical simulations of an active Brownian particle crystal in two dimensions with Weeks-Chandler-Andersen repulsive interparticle potential.

I Introduction

Active matter comprehends many systems of biological and technological interest such as bird flocks, cell colonies, spermatozoa, and Janus particles, to mention just a few of them [1, 2]. All these systems are capable of self-propulsion, namely a mechanism that converts energy from the environment into directed and persistent motion and drives them out of equilibrium. Based on experimental evidence, such a self-propulsion or active force is represented at a coarse-grained level by a stochastic process with memory. In other words, the value of the active force acting on a given particle at a given instant is correlated with the values it took in the past.

In this study, we shall focus on the properties of active matter at high density, a regime characterizing several systems ranging from biological tissues and cell monolayers [3, 4, 5] populating our skin, to dense colonies of bacteria [6, 7, 8] capable of self-organizing into active two-dimensional crystals of rotating cells [9]. Moreover, solid-like configurations have been observed in systems of active Janus colloids [10, 11, 12, 13] and active granular particles [14, 15, 16, 17, 18]. Several numerical and theoretical studies investigate the effect of the active force on high-density phases of active matter, such as liquid, hexatic, and solid [19, 20, 21, 22, 23, 24, 25, 26, 27]. In two dimensions, the activity shifts the liquid-hexatic and hexatic-solid transition to larger values of the density [28, 29], somehow, increasing the effective temperature of the system and broadens the size of the hexatic region that in the passive case is quite narrow [28]. More recently, it has been found that dense phases of active matter display spatial velocity correlations [30, 31, 32, 33, 34, 35] a feature absent in equilibrium systems but observed in active glasses [36, 37, 38]. This is a phenomenon of dynamical origin determined by the tendency of the particle velocities to align spontaneously even in the absence of direct alignment force [39]: it results from the combined action of the persistence of the direction of motion and the steric repulsion among the particles, while attractive interactions can even induce a flocking transition [40].

To mark the difference between an active and an equilibrium solid with similar structural properties, one can apply the tools of stochastic thermodynamics [41, 42]. In particular, the so-called entropy production rate (EPR) provides a quantitative measure of the distance of a system from equilibrium [43, 44, 45, 46]. This analysis discriminates between non-equilibrium steady states which produce entropy [47, 48, 49, 50, 51] and truly equilibrium states whose EPR is zero. The non-vanishing of the EPR is a universal feature of non-equilibrium systems and occurs when their dynamics break the time-reversal symmetry, i.e. the detailed balance condition is violated. In the present problem, the system produces both entropy and steady probability currents, a situation that never occurs under equilibrium conditions.

Being intrinsically out of equilibrium, active matter is an ideal platform to investigate entropy production and shed light on several general properties of non-equilibrium systems. However, except for specific cases [52, 53], such as non-interacting active particles [54, 55] and harmonically confined systems [56, 57], analytical results for the EPR are difficult to achieve: in general, the EPR for non-linear confining forces or interacting systems has been obtained numerically [58, 59]. Other numerical investigations focused on the study of the EPR of systems spatially inhomogeneous through particle-resolved simulations [60, 61, 62] or using field-theoretical descriptions [63, 64, 65, 66].

Recently, we have studied active crystals and found that their vibrational excitations are of two different kinds: the first is identified with the conventional collective oscillatory modes, known as phonons, and the second describes additional vibrational excitations, absent at equilibrium and termed entropons because are the modes associated with the entropy production of the system [67]. Under small deviations from equilibrium conditions, entropons coexist without interfering with the conventional phonons, the equilibrium-like excitations. Entropons vanish in equilibrium whereas dominate over phonons when the system is far from equilibrium. While we have a satisfactory description of the EPR in an ideal solid phase much less is known when its order is altered by the presence of imperfections such as surfaces, defects, or other departures from the perfect periodic arrangement of the active particles.

The aim of this paper is to investigate the EPR in active systems with inhomogeneities and determine its spatial distribution in the non-equilibrium steady-state. We consider a case that lends itself to analytical and numerical scrutiny: the active crystal containing point imperfections that are due to particles with different masses and destroy the periodic order characterizing perfect crystalline structures. This is a classical problem of Solid State Physics [68] where it is studied to understand the localization of the phonon modes near the impurity. We employ this model to shed some light on the EPR in active systems with broken translational invariance by developing a suitable perturbation theory around the perfect crystal state by considering a small defect mass. Our method predicts analytically the spatial profile of the EPR as a function of the distance from the lattice imperfection and relates this feature to the existence of a velocity correlation profile.

The paper is structured as follows: in Sec. II, we present the model to describe a solid formed by active particles and calculate the entropy production employing a path-integral technique. Section III reports the main results of the paper: we derive the perturbative method introduced to calculate the spatial profile of the EPR in the presence of a mass impurity in the solid. We evaluate explicitly the zeroth-order perturbative EPR, i.e. the entropy production rate of a perfectly ordered crystal, and the first-order perturbative correction that describes the effect of the point imperfection that breaks the translational discrete symmetry of the periodic array. Details about the derivations are presented in the appendices to render the exposition. Finally, the conclusions are presented in Sec. IV.

II Model

We investigate a solid formed by NN ABP’s [69, 70, 71, 39, 72, 73, 74, 75] in two dimensions, in a square box of size L×LL\times L and apply periodic boundary conditions. The evolution of the position, 𝐱p\mathbf{x}_{p} and velocity, 𝐯p=𝐱˙p\mathbf{v}_{p}=\dot{\mathbf{x}}_{p} of each ABP of mass mpm_{p} (with p=1,,Np=1,...,N) is governed by the following an underdamped stochastic equation

mp𝐯˙p=γ𝐯p+𝐅p+2Tγ𝝃p+𝐟pam_{p}\dot{\mathbf{v}}_{p}=-\gamma\mathbf{v}_{p}+\mathbf{F}_{p}+\sqrt{2T\gamma}\,\boldsymbol{\xi}_{p}+\mathbf{f}^{a}_{p} (1)

where 𝝃p\boldsymbol{\xi}_{p} is a white noise with zero average and unit variance. The coefficients γ\gamma and TT are the friction coefficient and the temperature of the solvent bath, respectively. For equal masses, the ratio, mγm\gamma corresponds to the typical inertial time, τI\tau_{I}, representing the relaxation time of the velocity in equilibrium systems (we remark that in active systems the relaxation of the velocity is determined both by τI\tau_{I} and τ\tau [32]).

The active force, 𝐟pa\mathbf{f}^{a}_{p}, provides a certain persistence of the particle trajectory and drives the system out of equilibrium. In the absence of any other force but the friction, 𝐟pa\mathbf{f}^{a}_{p} and for τI0\tau_{I}\to 0 the ABP’s would travel at the swim velocity, v0v_{0}, as shown by the relation:

𝐟pa=γv0𝐧p.\mathbf{f}^{a}_{p}=\gamma v_{0}\mathbf{n}_{p}\,. (2)

The stochastic vector 𝐧=(cosθp,sinθp)\mathbf{n}=(\cos\theta_{p},\sin\theta_{p}) is a unit vector, whose orientation is determined by the angle θp\theta_{p}, subject to Brownian motion

θ˙p=2Drηp,\dot{\theta}_{p}=\sqrt{2D_{r}}\eta_{p}\,, (3)

where ηp\eta_{p} is a white noise with zero average and unit variance and DrD_{r} is the rotational diffusion coefficient. DrD_{r} determines the persistence time of the dynamics τ=1/Dr\tau=1/D_{r}, i.e. the average time needed by a particle to change direction [76, 77]. The analysis of the mean square displacement in the independent particle limit leads to the introduction of the so-called active temperature, Ta=v02γτT_{a}=v_{0}^{2}\gamma\tau, that is an increasing function of both τ\tau and v02v_{0}^{2}.

The force 𝐅p\mathbf{F}_{p} represents the inter-particle interaction due to a pairwise potential, Utot=i>jU(|𝐫i𝐫j|)U_{\text{tot}}=\sum_{i>j}U(|\mathbf{r}_{i}-\mathbf{r}_{j}|), that we choose as a purely repulsive and given by the shift-and-cut WCA potential

U(r)=4ϵ[(d0r)12(d0r)6]+ϵ,U(r)=4\epsilon\left[\left(\frac{d_{0}}{r}\right)^{12}-\left(\frac{d_{0}}{r}\right)^{6}\right]+\epsilon\,, (4)

for r<21/6r<2^{1/6} and zero otherwise. The parameters ϵ\epsilon and d0d_{0} represent the energy scale and the particle diameter, respectively. To consider a solid configuration in numerical simulations, the packing fraction of the system is set to ϕ=ρd02π/4=1.1\phi=\rho d_{0}^{2}\pi/4=1.1 that for the range of parameters explored in this study will result in a solid configuration as in the phase diagram reported in Ref. [30].

Above a certain density, the particles spontaneously arrange themselves to form an almost regular triangular lattice. Assuming that this configuration corresponds to the minimum of the total potential energy of the system, we Taylor expand UtotU_{tot} around it up to second order in the displacements, 𝐮p\mathbf{u}_{p}.  [30, 78]. These are defined as the deviations of the particles’ coordinates from the perfect lattice positions, 𝐫p0\mathbf{r}^{0}_{p}, through the relation 𝐮p=𝐫p𝐫p0\mathbf{u}_{p}=\mathbf{r}_{p}-\mathbf{r}^{0}_{p}. Within this approximation, the force 𝐅p\mathbf{F}_{p} acting on the pp particle reads:

𝐅pmωE2j(𝐮j𝐮p),\mathbf{F}_{p}\approx m\omega^{2}_{E}\sum_{j}(\mathbf{u}_{j}-\mathbf{u}_{p})\,, (5)

where the sum is restricted to the first neighbor particles and ωE\omega_{E} is the Einstein frequency of the solid:

ωE2=12m(U′′(x¯)+U(x¯)x¯).\omega^{2}_{E}=\frac{1}{2m}\left(U^{\prime\prime}(\bar{x})+\frac{U^{\prime}(\bar{x})}{\bar{x}}\right)\,. (6)

ωE\omega_{E} depends explicitly on the derivatives of UU calculated at x¯\bar{x}, i.e. the average distance between neighboring particles of the solid (i.e. the lattice constant), which is determined by the packing fraction.

Refer to caption
Figure 1: A typical solid-like snapshot of the ABP’s. The red-yellow particle has a mass m+δmm+\delta m, whereas the remaining grey-black particles have mass mm. The different colors of each half-disk represent the instantaneous orientation, along the normal to the diameter, of the active force acting on each particle. The hexagons have been drawn to emphasize the presence of the triangular lattice.

II.1 Calculation of entropy production

The stochastic thermodynamics [41, 42, 79, 80] is a powerful tool to measure how far from thermodynamic equilibrium is a system, i.e. its degree of irreversibility. Such information is contained in the so-called entropy production rate (EPR), s˙\dot{s}, which can be determined by considering the probabilities of the trajectories connecting two different states of the system. The EPR is expressed in terms of path-probability by resorting to path-integral techniques [81, 50, 82, 83] as

s˙=limt1tlog(𝒫𝒫r),\dot{s}=\lim_{t\to\infty}\frac{1}{t}\left\langle\log\left(\frac{\mathcal{P}}{\mathcal{P}_{r}}\right)\right\rangle\,, (7)

where the symbol \langle\cdot\rangle represents the steady-state average performed over the realizations of the noise and 𝒫\mathcal{P} and 𝒫r\mathcal{P}_{r} are the path probabilities of the forward and backward trajectories of the system, respectively. These probabilities depend on the whole time history of the dynamical variables of the system (𝐱p,𝐯p,𝐟pa)(\mathbf{x}_{p},\mathbf{v}_{p},\mathbf{f}^{a}_{p}) conditioned to their initial values (𝐱p(0),𝐯p(0),𝐟pa(0))(\mathbf{x}_{p}(0),\mathbf{v}_{p}(0),\mathbf{f}^{a}_{p}(0)). In the case of equilibrium systems, in virtue of the detailed balance condition, which is tantamount to the probabilistic time-reversal symmetry, this ratio is one and the EPR vanishes. To estimate 𝒫\mathcal{P} and 𝒫r\mathcal{P}_{r}, let us remark that the probability of the trajectory of a stochastic system is uniquely determined by the probability of observing a path-trajectory of the stochastic noises, that in our case have a Gaussian distribution. Therefore, one performs a transformation from the noise variables to the dynamical variables by using the equation of motion (1) together with Eq. (3). In doing so, we neglect the determinant of the transformation because, in the present case of additive noise, this term does not contribute to the EPR. Applying this procedure, the probability of forward and backward trajectories are expressed as 𝒫e𝒜\mathcal{P}\sim e^{\mathcal{A}} and 𝒫re𝒜r\mathcal{P}_{r}\sim e^{\mathcal{A}_{r}}, respectively, where 𝒜\mathcal{A} and 𝒜r\mathcal{A}_{r} are actions associated to backward and reverse dynamics. The action 𝒜\mathcal{A} is obtained by expressing the Gaussian distribution of the noise variables, 𝝃p\boldsymbol{\xi}_{p}, in terms of the state variables (𝐱p,𝐯p,𝐟pa)(\mathbf{x}_{p},\mathbf{v}_{p},\mathbf{f}^{a}_{p}) using the relation between the two sets of variables given by Eq. (1) with the result:

𝒜=pmp24Tγ𝑑t[𝐯˙p𝐅pmp𝐟pamp+γmp𝐯p]2\mathcal{A}=-\sum_{p}\frac{m_{p}^{2}}{4T\gamma}\int dt\left[\dot{\mathbf{v}}_{p}-\frac{\mathbf{F}_{p}}{m_{p}}-\frac{\mathbf{f}^{a}_{p}}{m_{p}}+\frac{\gamma}{m_{p}}\mathbf{v}_{p}\right]^{2} (8)

Here, we have not included in the action the contribution associated with the rotational noise, ηp\eta_{p}, since it is known that the simple Brownian process of Eq. (3) does not generate entropy. The action of the backward trajectory 𝒜r\mathcal{A}_{r} can be obtained by applying the time-reversal transformation to the dynamics (1) and considering the parity of the dynamical variables, (𝐱p,𝐯p,𝐟pa)(\mathbf{x}_{p},\mathbf{v}_{p},\mathbf{f}^{a}_{p}), under this transformation. By denoting with the subscript rr the time-reversed variables, we assume:

𝐱r𝐱\displaystyle\mathbf{x}_{r}\to\mathbf{x} (9a)
𝐯r𝐯\displaystyle\mathbf{v}_{r}\to-\mathbf{v} (9b)
𝐟ra𝐟a\displaystyle\mathbf{f}^{a}_{r}\to\mathbf{f}^{a} (9c)

for each particle (above, the particle index has been suppressed for notational convenience). In this way, the backward action, 𝒜r\mathcal{A}_{r}, reads

𝒜r=pmp24Tγ𝑑t[𝐯˙p𝐅pmp𝐟pampγmp𝐯]2,\mathcal{A}_{r}=-\sum_{p}\frac{m_{p}^{2}}{4T\gamma}\int dt\left[\dot{\mathbf{v}}_{p}-\frac{\mathbf{F}_{p}}{m_{p}}-\frac{\mathbf{f}^{a}_{p}}{m_{p}}-\frac{\gamma}{m_{p}}\mathbf{v}\right]^{2}\,, (10)

where we have again neglected the irrelevant contribution of the angular dynamics, for the same reasons given above.

Performing algebraic calculations, the expression for s˙\dot{s} can be analytically derived and reads:

s˙=ps˙p\dot{s}=\sum_{p}\dot{s}_{p} (11)

where s˙p\dot{s}_{p} is the entropy production generated by a single particle given by

s˙p=1T𝐟pa𝐯p+b.t..\dot{s}_{p}=\frac{1}{T}\langle\mathbf{f}^{a}_{p}\cdot\mathbf{v}_{p}\rangle+{\text{b.t.}}\,. (12)

The expression b.t. means boundary terms, i.e. the additional terms that do not contribute to the steady-state entropy production and vanish in the long-time limit. Such a result holds, in general, for underdamped active particles subject to a persistent active force and in contact with a thermal bath, independently of their density and of the dimension of the system.

By introducing the spatial Fourier transform of the dynamical variables denoted by hat-symbols, and by neglecting boundary terms, s˙p\dot{s}_{p} can be calculated in the Fourier space, in particular, in the frequency domain, obtaining

s˙p\displaystyle\dot{s}_{p} =limt1tdω2π𝐟^pa(ω)𝐯^p(ω)T+c.c.\displaystyle=\lim_{t\to\infty}\frac{1}{t}\int\frac{d\omega}{2\pi}\frac{\langle\hat{\mathbf{f}}^{a}_{p}(-\omega)\cdot\hat{\mathbf{v}}_{p}(\omega)\rangle}{T}+c.c. (13)

where 𝐟^pa(ω)\hat{\mathbf{f}}^{a}_{p}(\omega) and 𝐯^p(ω)\hat{\mathbf{v}}_{p}(\omega) are the Fourier transforms in the frequency domain of the active force and velocity of the pp particle, respectively, defined in appendix A and the symbol ”c.cc.c” stands for complex conjugate. The EPR, s˙\dot{s}, is proportional to the frequency integral of the real part of the cross-correlation between the Fourier components of active force and velocity. We also introduce the spectral entropy σp(ω)\sigma_{p}(\omega) for each particle as the integrand in Eq. (13)

σp(ω)=limt1t𝐯^p(ω)𝐟^pa(ω)T+c.c.\sigma_{p}(\omega)=\lim_{t\to\infty}\frac{1}{t}\frac{\langle\hat{\mathbf{v}}_{p}(\omega)\cdot\hat{\mathbf{f}}^{a}_{p}(-\omega)\rangle}{T}+c.c. (14)

Note that this term corresponds to the spectral dissipation of the particle pp due to the active force, divided by the temperature of the bath.

III Entropy production of active solids with impurities

A real solid may contain various kinds of imperfections or surfaces which affect the properties of the perfect crystal. For the sake of simplicity, we confine ourselves to isolated defects such as substitutional particles of different mass [68].

To understand the effect of substitutional impurities on the EPR, we modify the mass of one particle, setting m1mm_{1}\neq m and mp=mm_{p}=m for all remaining particles. Since this operation breaks the discrete translational symmetry of the lattice, both the displacement and the EPR, s˙p\dot{s}_{p}, become position dependent. In the continuum limit, the local EPR, s˙ps˙(r)\dot{s}_{p}\to\dot{s}(r), becomes a function of the distance rr from the location of the impurity. A sketch of the model is shown in Fig. 1. Notwithstanding the problem described by Eqs.(1) and (5) is linear and one could use a numerical matrix inversion method to determine with great accuracy the solution 𝐮p\mathbf{u}_{p} and s˙(r)\dot{s}(r), we are interested in getting explicit predictions. Therefore, we apply an analytical perturbative approach choosing the mass difference δm=(m1m)\delta m=(m_{1}-m) as a small parameter.

III.1 General strategy of the perturbation scheme

To proceed analytically, we choose m1=m+δmm_{1}=m+\delta m with |δm|m|\delta m|\ll m and apply a perturbative method by expanding the solution in powers of the small parameter δm/m1\delta m/m\ll 1. Explicitly the modified equation of motion for the imperfect lattice reads

(m+δp0δm)𝐯˙p=γ𝐯p+𝐅p+2Tγ𝝃p+𝐟pa(m+\delta_{p0}\delta m)\dot{\mathbf{v}}_{p}=-\gamma\mathbf{v}_{p}+\mathbf{F}_{p}+\sqrt{2T\gamma}\boldsymbol{\xi}_{p}+\mathbf{f}^{a}_{p} (15)

where the Kronecker delta function δp0\delta_{p0} selects the particle p=0p=0 corresponding to the imperfection. The force 𝐅p\mathbf{F}_{p} is approximated within the harmonic approximation of Eq. (5).

By introducing the continuous Fourier transforms in the frequency domain ω\omega of the displacement 𝐮^p=𝐮^p(ω)\hat{\mathbf{u}}_{p}=\hat{\mathbf{u}}_{p}(\omega), the velocity 𝐯^p=iω𝐮^p(ω)\hat{\mathbf{v}}_{p}=i\omega\hat{\mathbf{u}}_{p}(\omega), the active force 𝐟^pa(ω)\hat{\mathbf{f}}^{a}_{p}(\omega) and the white noise 𝝃^p(ω)\hat{\boldsymbol{\xi}}_{p}(\omega) Eq. (15) can be rewritten as

Lpk(ω)𝐮^kδmω2𝐮^0δp0=𝐟^pa+2γT𝝃^pL_{pk}(\omega)\hat{\mathbf{u}}_{k}-\delta m\omega^{2}\hat{\mathbf{u}}_{0}\delta_{p0}=\hat{\mathbf{f}}^{a}_{p}+\sqrt{2\gamma T}\hat{\boldsymbol{\xi}}_{p} (16)

where the time-Fourier transform of a generic observable is denoted by the hat symbol and the Einstein summation convention used. The matrix elements Lpk(ω)L_{pk}(\omega) have the following form

Lpk(ω)=(mω2+iωγ)δpkmωE2jδp,k+jL_{pk}(\omega)=(-m\omega^{2}+i\omega\gamma)\delta_{pk}-m\omega^{2}_{E}\sum_{j}^{*}\delta_{p,k+j} (17)

where the sum over the index jj runs over the nearest neighbors (k+j)(k+j) of the particle pp. When δm=0\delta m=0, Eq. (16) corresponds to the dynamics of a perfect lattice and can be rewritten with the help of the lattice Green’s function, Gpn(ω)G_{pn}(\omega), in the ω\omega-representation as:

𝐮^p(ω)=Gpn(ω)(𝐟^na+2γT𝝃^n).\hat{\mathbf{u}}_{p}(\omega)=G_{pn}(\omega)(\hat{\mathbf{f}}^{a}_{n}+\sqrt{2\gamma T}\hat{\boldsymbol{\xi}}_{n})\,. (18)

where Gpn(ω)G_{pn}(\omega) is expressed with the help of the discrete spatial-Fourier transform:

Gpn(ω)=Lpn1(ω)=1N𝐪ei𝐪(𝐫𝐧0𝐫𝐩0)mω2+iωγ+mω2(𝐪),G_{pn}(\omega)=L^{-1}_{pn}(\omega)=\frac{1}{N}\sum_{\mathbf{q}}\frac{e^{-i\mathbf{q}\cdot(\mathbf{r}^{0}_{\mathbf{n}}-\mathbf{r}^{0}_{\mathbf{p}}})}{-m\omega^{2}+i\omega\gamma+m\omega^{2}(\mathbf{q})}\,, (19)

where the sum runs over the dimensionless reciprocal lattice wave vectors 𝐪\mathbf{q} (see appendix C). The quantity ω(𝐪)\omega(\mathbf{q}) represents the dispersion relation of the vibrational modes of the lattice and depends on the Einstein frequency, ωE\omega_{E} and on the lattice structure. It is obtained by solving the secular equation associated with the lattice harmonic oscillations [84]. Since the perturbative method discussed below is independent of the specific lattice structure, being the relative information contained in ω(𝐪)\omega(\mathbf{q}), we postpone (see Eq. (34)) the presentation of the explicit expression of ω(𝐪)\omega(\mathbf{q}) for the case of the triangular lattice in two dimensions and nearest neighbor interactions. By solving Eq. (16) when δm0\delta m\neq 0, we obtain

𝐮^p(ω)=Gpn(𝐟^na+2γT𝝃^n)+δmω2Gp0𝐮^0.\hat{\mathbf{u}}_{p}(\omega)=G_{pn}(\hat{\mathbf{f}}^{a}_{n}+\sqrt{2\gamma T}\hat{\boldsymbol{\xi}}_{n})+\delta m\omega^{2}G_{p0}\,\hat{\mathbf{u}}_{0}\,. (20)

The entropy production s˙\dot{s} can now be calculated by using Eq. (13), which requires the knowledge of the cross-dynamical correlation between the active force and velocity. We multiply Eq. (20) by 𝐟na(ω)\mathbf{f}^{a}_{n}(-\omega), take the average over the realizations of the noise, and obtain

𝐮^p(ω)𝐟^pa(ω)=\displaystyle\langle\hat{\mathbf{u}}_{p}(\omega)\hat{\mathbf{f}}_{p}^{a}(-\omega)\rangle= Gpn(ω)𝐟^na(ω)𝐟^pa(ω)\displaystyle G_{pn}(\omega)\langle\hat{\mathbf{f}}_{n}^{a}(\omega)\hat{\mathbf{f}}_{p}^{a}(-\omega)\rangle (21)
+δmω2Gpn𝐮^n(ω)𝐟^pa(ω)δn0.\displaystyle+\delta m\,\omega^{2}G_{pn}\langle\hat{\mathbf{u}}_{n}(\omega)\hat{\mathbf{f}}_{p}^{a}(-\omega)\rangle\delta_{n0}\,.

Multiplying both sides of Eq. (21) by (iω)(i\omega) we find a relation for the average 𝐯^p(ω)𝐟^pa(ω)\langle\hat{\mathbf{v}}_{p}(\omega)\hat{\mathbf{f}}_{p}^{a}(-\omega)\rangle. To proceed further, we need the explicit expression of the correlation 𝐟^pa(ω)𝐟^pa(ω)\langle\hat{\mathbf{f}}^{a}_{p}(\omega)\hat{\mathbf{f}}_{p}^{a}(-\omega)\rangle, which is estimated by approximating the ABP dynamics with the AOUP model [85, 86, 87, 88, 89]. This strategy has been often adopted with success in the literature to get analytical predictions [90, 91, 43, 92]. We obtain

limt1t𝐟^na(ω)𝐟^pa(ω)=2v02γ2τ1+ω2τ2δnp,\lim_{t\to\infty}\frac{1}{t}\langle\hat{\mathbf{f}}^{a}_{n}(\omega)\hat{\mathbf{f}}_{p}^{a}(-\omega)\rangle=2v_{0}^{2}\gamma^{2}\frac{\tau}{1+\omega^{2}\tau^{2}}\delta_{np}\,, (22)

and

𝐟^pa(ω)=0\langle\hat{\mathbf{f}}^{a}_{p}(\omega)\rangle=0 (23)

as discussed in Appendix D. By replacing the expression (22) in Eq. (21), we finally get the equation describing the dynamical cross correlation between active force and velocity

limt1t\displaystyle\lim_{t\to\infty}\frac{1}{t} 𝐯^p(ω)𝐟^pa(ω)=2iωGnp(ω)v02γ2τ1+ω2τ2δnp\displaystyle\langle\hat{\mathbf{v}}_{p}(\omega)\hat{\mathbf{f}}_{p}^{a}(-\omega)\rangle=2i\omega G_{np}(\omega)v_{0}^{2}\gamma^{2}\frac{\tau}{1+\omega^{2}\tau^{2}}\delta_{np} (24)
+limtitδmω3Gp0(ω)𝐮^0(ω)𝐟^pa(ω).\displaystyle+\lim_{t\to\infty}\frac{i}{t}\delta m\,\omega^{3}G_{p0}(\omega)\langle\hat{\mathbf{u}}_{0}(\omega)\hat{\mathbf{f}}_{p}^{a}(-\omega)\rangle\,.

By dividing by the temperature TT and taking the real part of Eq. (24), we obtain the equation to determine σp(ω)\sigma_{p}(\omega), that reads

T\displaystyle T σp(ω)=2ωv02γ2τ1+ω2τ2Im[Gnp(ω)]δnp\displaystyle\sigma_{p}(\omega)=-2\omega v_{0}^{2}\gamma^{2}\frac{\tau}{1+\omega^{2}\tau^{2}}\text{Im}[G_{np}(\omega)]\delta_{np} (25)
limt1tδmω3Im[Gp0(ω)𝐮^0(ω)𝐟^pa(ω)].\displaystyle-\lim_{t\to\infty}\frac{1}{t}\delta m\omega^{3}\text{Im}[G_{p0}(\omega)\langle\hat{\mathbf{u}}_{0}(\omega)\hat{\mathbf{f}}_{p}^{a}(-\omega)\rangle]\,.

Equation (25) is not closed and cannot be used to determine the entropy production rate because contains the dependence on the unknown correlation 𝐮^0(ω)𝐟^pa(ω)\langle\hat{\mathbf{u}}_{0}(\omega)\hat{\mathbf{f}}_{p}^{a}(-\omega)\rangle. To proceed we employ a perturbative method and expand the solution in powers of λ=δm/m1\lambda=\delta m/m\ll 1:

𝐮^p(ω)=𝐮^p(0)(ω)+λ𝐮^p(1)(ω)+λ2𝐮^p(2)(ω)+.\hat{\mathbf{u}}_{p}(\omega)=\hat{\mathbf{u}}_{p}^{(0)}(\omega)+\lambda\hat{\mathbf{u}}_{p}^{(1)}(\omega)+\lambda^{2}\hat{\mathbf{u}}_{p}^{(2)}(\omega)+...\,. (26)

where the superscript (n) denotes the order of the perturbative solution that is consistent with a perturbative solution of the spectral entropy production:

σp(ω)=σp(0)(ω)+λσp(1)(ω)+λ2σp(2)(ω)+.{\sigma}_{p}(\omega)={\sigma}_{p}^{(0)}(\omega)+\lambda{\sigma}_{p}^{(1)}(\omega)+\lambda^{2}{\sigma}_{p}^{(2)}(\omega)+...\,. (27)

and of its integral over ω\omega, i.e. s˙\dot{s}, so that

s˙p=s˙p(0)+λs˙p(1)+λ2s˙p(2)+.\dot{s}_{p}=\dot{s}_{p}^{(0)}+\lambda\dot{s}_{p}^{(1)}+\lambda^{2}\dot{s}_{p}^{(2)}+...\,. (28)

Note that the zeroth-order entropy production is independent of the particle index pp, which can be dropped at this order. Instead, the EPR is spatially dependent starting from the first correction in δm/m\delta m/m.

In our discrete formalism, this implies that s˙p(0)=s˙(0)\dot{s}_{p}^{(0)}=\dot{s}^{(0)} and σp(0)(ω)=σ(0)(ω)\sigma_{p}^{(0)}(\omega)=\sigma^{(0)}(\omega) for every pp, while, in general, we expect a dependence on pp, or in other words a spatial dependence, only starting from the first correction in δm/m\delta m/m.

III.2 Zeroth-order result: the homogeneous solid

The zero-order solution of Eq. (25) (obtained for δm=0\delta m=0) corresponds to the spectral entropy, σ(0)(ω){\sigma}^{(0)}(\omega), of the homogeneous solid, in the absence of the impurity.

Setting δm=0\delta m=0 in Eq. (25), we obtain the zeroth-order value of the spectral entropy production per particle

Tσ(0)(ω)=\displaystyle T\sigma^{(0)}(\omega)= 2ωv02γ2τ1+ω2τ2Im[G00(ω)],\displaystyle-2\omega v_{0}^{2}\gamma^{2}\frac{\tau}{1+\omega^{2}\tau^{2}}\text{Im}[G_{00}(\omega)]\,, (29)

which is independent of the position. By integrating over ω\omega, we get the zeroth-order expression for the entropy production rate

Ts˙(0)\displaystyle T\dot{s}^{(0)} =2Nqdω2πτγ1+ω2τ2ω2v02γ2m2(ω2(𝐪)ω2)2+ω2γ2\displaystyle=\frac{2}{N}\sum_{q}\int_{-\infty}^{\infty}\frac{d\omega}{2\pi}\frac{\tau\gamma}{1+\omega^{2}\tau^{2}}\frac{\omega^{2}v_{0}^{2}\gamma^{2}}{m^{2}(\omega^{2}(\mathbf{q})-\omega^{2})^{2}+\omega^{2}\gamma^{2}} (30)
=v02τγτ+τI𝒢00.\displaystyle=\frac{v_{0}^{2}\tau\gamma}{\tau+\tau_{I}}\mathcal{G}_{00}.

The second equality introduces the propagator, 𝒢00\mathcal{G}_{00}, whose expression is:

𝒢00=1Nq11+τ2τIτ+τIω2(𝐪).\mathcal{G}_{00}=\frac{1}{N}\sum_{q}\frac{1}{1+\frac{\tau^{2}\tau_{I}}{\tau+\tau_{I}}\omega^{2}(\mathbf{q})}\,. (31)

The ω\omega-integration in Eq.(76) leading to Eq.(31) is reported in appendix E (see Eq.(76)). In practice, we convert the sum over wave-vectors into an integral over the Brillouin zone of volume Ω\Omega by replacing 1NqΩd𝐪Ω\frac{1}{N}\sum_{q}\to\int_{\Omega}\frac{d{\mathbf{q}}}{\Omega} and 𝒢00𝒢(0)\mathcal{G}_{00}\to\mathcal{G}(0). The prefactor in Eq.(30) is identified with the EPR of the non-interacting system, s˙free\dot{s}_{\text{free}}, according to the relation:

s˙free=v02τγT1τI+τ,\dot{s}_{\text{free}}=\frac{v_{0}^{2}\tau\gamma}{T}\frac{1}{\tau_{I}+\tau}\,, (32)

and rewrite:

s˙(0)=s˙free𝒢(0).\dot{s}^{(0)}=\dot{s}_{\text{free}}\mathcal{G}(0)\,. (33)

The quantity s˙free\dot{s}_{\text{free}} is a function of the ratio between the active temperature, v02γτv_{0}^{2}\gamma\tau, and the thermal temperature. At fixed active temperature, it decreases as the persistence time, τ\tau, and inertial time, τI\tau_{I} increase . Instead, the term 𝒢00\mathcal{G}_{00} accounts for the interactions among the particles in the solid, is 11 in the non-interacting limit, and 𝒢001\mathcal{G}_{00}\leq 1 for the interacting case since ω2(𝐪)0\omega^{2}(\mathbf{q})\geq 0. In other words, the interaction decreases the value of the EPR with respect to the free-particles case because the interactions characterizing the solid hinder the particle’s ability to move with the same speed as free particles so that |𝐯|v0|\mathbf{v}|\ll v_{0}. As a consequence, the entropy production of a solid formed by NN active particles is always smaller than the entropy production of NN potential-free active particles, s˙s˙free\dot{s}\leq\dot{s}_{\text{free}}.

III.2.1 Explicit evaluation of the zeroth-order correction

To obtain an explicit expression for the zeroth order EPR of Eq.(30) we, now, compute analytically 𝒢(0)\mathcal{G}(0) whose value depends on the dimension of the system and the lattice structure. In the case of a triangular lattice, which is the structure found in our simulations at high-density, the dispersion relation reads:

ω2(𝐪)=2ωE2(3cos(qxx¯)2cos(qxx¯2)cos(32qyx¯)).\omega^{2}(\mathbf{q})=2\omega_{E}^{2}\left(3-\cos(q_{x}\bar{x})-2\cos\left(q_{x}\frac{\bar{x}}{2}\right)\cos\left(\frac{\sqrt{3}}{2}q_{y}\bar{x}\right)\right). (34)

The summand appearing in Eq.(31) when |𝐪|0|\mathbf{q}|\to 0 becomes of the Ornstein-Zernike form (1+ξ2q2)1\propto(1+\xi^{2}q^{2})^{-1} and thus we can define a correlation length ξ\xi from the relation:

ξ2=32x¯2τ21+τ/τIωE2.\xi^{2}=\frac{3}{2}\bar{x}^{2}\frac{\tau^{2}}{1+\tau/\tau_{I}}\omega_{E}^{2}\,. (35)

This length coincides with the correlation length of the spatial velocity correlation of an active solid, 𝐯(𝐫)𝐯(0)\langle\mathbf{v}(\mathbf{r})\cdot\mathbf{v}(0)\rangle and, as already discussed in Ref.[23], is an increasing function of τ\tau and of τI\tau_{I}. The integral can be computed exactly as shown in the appendix B where we find

𝒢(0)=11+ξ26πzcK[k]\mathcal{G}(0)=\frac{1}{1+\xi^{2}}\frac{6}{\pi z\sqrt{c}}K[k] (36)

where the parameters c,zc,z and kk are also given in appendix and K[k]K[k] is the complete elliptic integral of the first kind [93].

In Fig. 2, the theoretical EPR, s˙(0)\dot{s}^{(0)}, is compared with the one obtained in numerical simulations of the solid phase. Results are plotted as a function of the rescaled inertial time τI/τ\tau_{I}/\tau: s˙(0)\dot{s}^{(0)} increases from zero, attains a maximum value before vanishing for large values of τI/τ\tau_{I}/\tau, a behavior consistent with the Clausius inequality, s˙0\dot{s}\geq 0, being s˙=0\dot{s}=0 at equilibrium. In fact, when the persistence time, τ\tau, is the shortest time scale of the system, (τI/τ\tau_{I}/\tau\to\infty), the active force 𝐟pa\mathbf{f}^{a}_{p} can be assimilated to a Brownian process (persistence time 0\approx 0) whose EPR is null: it is easy to verify from Eqs.(31) and (33) that when ξ0\xi\to 0 also s˙0\dot{s}\to 0 because the factor s˙free\dot{s}_{\text{free}} vanishes. This situation corresponds to an underdamped colloidal solid under equilibrium conditions, described by standard Boltzmann statistics. By decreasing τI/τ\tau_{I}/\tau (i.e. increasing the persistence time), the system departs from equilibrium and s˙\dot{s} increases. For small deviations from equilibrium, the growth of s˙\dot{s} is essentially determined by the factor s˙free\dot{s}_{\text{free}} because 𝒢(0)\mathcal{G}(0) remains close to 11 and the EPR scales as s˙s˙freeτ/(τ+τI)τ/τI\dot{s}\approx\dot{s}_{\text{free}}\sim\tau/(\tau+\tau_{I})\approx\tau/\tau_{I} for τI/τ1\tau_{I}/\tau\gg 1. Such a linear increase continues up to values of τI/τ\tau_{I}/\tau where 𝒢(0)\mathcal{G}(0) sensibly departs from 11. This situation occurs when the size of coherent domains of the velocities becomes relevant, as revealed by the increasing velocity correlations. Indeed, when the correlation length of these domains reaches the size of the particle diameter, ξσ\xi\approx\sigma, the entropy production rate attains its maximum. A further decrease of τI/τ\tau_{I}/\tau leads to the decrease of s˙\dot{s} because the most relevant contribution to the EPR stems from the boundaries of the domains, whereas the particles (whose velocities are more aligned) located in their interior provide less relevant contributions. As a consequence, s˙0\dot{s}\to 0 when τI/τ0\tau_{I}/\tau\to 0, the limit where ξ\xi\to\infty. We remark that this decrease is in agreement with the presence of arrested states observed numerically in systems of dense active particles in the infinite persistence time limit [94, 95] for which s˙0\dot{s}\approx 0.

Refer to caption
Figure 2: EPR of a perfect two-dimensional crystal with triangular structure, s˙\dot{s}, rescaled by the inertial time, τI=m/γ\tau_{I}=m/\gamma, as a function of the reduced inertial time τI/τ)\tau_{I}/\tau). Points are obtained by numerical simulations obtained by integrating the dynamics (1) in the absence of defects, i.e. mp=mm_{p}=m for every ii, while the solid black line is calculated from the theoretical prediction (33). The parameters of the simulations are N=104N=10^{4} and ϕ=1.1\phi=1.1.

III.3 First-order result: the effect of an impurity

Imperfections always break the discrete spatial translational symmetry of the crystal. Hence, some observables, including the local entropy production rate, are expected to become spatially dependent on the distance from the defect and take a constant value away from it, the one characterizing the perfect crystal.

To analytically predict the local EPR, we employ the first-order perturbative expression, σp(1)(ω)\sigma_{p}^{(1)}(\omega), given by Eq. (25):

Tσp(1)(ω)=\displaystyle T\sigma_{p}^{(1)}(\omega)= mω3Im[Gp0(ω)𝐮^0(0)(ω)𝐟^pa(ω)],\displaystyle-m\omega^{3}\text{Im}[G_{p0}(\omega)\langle\hat{\mathbf{u}}^{(0)}_{0}(\omega)\hat{\mathbf{f}}_{p}^{a}(-\omega)\rangle]\,, (37)

where 𝐮^0(0)(ω)\hat{\mathbf{u}}^{(0)}_{0}(\omega) is the unperturbed displacement at the location of the impurity. Eq. (20) gives the expression 𝐮^0(0)(ω)=G0n(𝐟^na+2γT𝝃^n)\hat{\mathbf{u}}^{(0)}_{0}(\omega)=G_{0n}(\hat{\mathbf{f}}^{a}_{n}+\sqrt{2\gamma T}\hat{\boldsymbol{\xi}}_{n}) that substituted in Eq. (37) yields:

Tσp(1)(ω)=\displaystyle T\sigma_{p}^{(1)}(\omega)= mω3Im[Gp0(ω)G0n(ω)limt1t𝐟^na(ω)𝐟^pa(ω)]\displaystyle-m\omega^{3}\text{Im}[G_{p0}(\omega)G_{0n}(\omega)\lim_{t\to\infty}\frac{1}{t}\langle\hat{\mathbf{f}}^{a}_{n}(\omega)\hat{\mathbf{f}}_{p}^{a}(-\omega)\rangle] (38)
=\displaystyle= mω3Im[Gp0(ω)G0p(ω)]2v02γ2τ1+ω2τ2.\displaystyle-m\omega^{3}\text{Im}[G_{p0}(\omega)G_{0p}(\omega)]\frac{2v_{0}^{2}\gamma^{2}\tau}{1+\omega^{2}\tau^{2}}\,.

where we employed the correlator of the active force, Eqs.(22), to obtain the last equality.

After replacing the expression for G0p(ω)G_{0p}(\omega) and Gp0(ω)G_{p0}(\omega) using Eq.(19) and integrating over the frequency ω\omega, we obtain the first-order perturbative correction to the EPR. Since the calculations are rather lengthy, here, we show only the final results while details of the derivation are reported in Appendix C:

s˙p(1)=v02τγτIT(τ+τI)2𝒢0p𝒢p0=s˙freeτIτ+τI𝒢0p𝒢p0,\dot{s}^{(1)}_{p}=-\frac{v_{0}^{2}\tau\gamma\tau_{I}}{T(\tau+\tau_{I})^{2}}\mathcal{G}_{0p}\mathcal{G}_{p0}=-\frac{\dot{s}_{\text{free}}\tau_{I}}{\tau+\tau_{I}}\mathcal{G}_{0p}\mathcal{G}_{p0}\,, (39)

where

𝒢0p=1Nqei𝐪𝐫p01+τ2τIτ+τIω2(𝐪)\mathcal{G}_{0p}=\frac{1}{N}\sum_{q}\frac{e^{-i\mathbf{q}\cdot\mathbf{r}_{p}^{0}}}{1+\frac{\tau^{2}\tau_{I}}{\tau+\tau_{I}}\omega^{2}(\mathbf{q})} (40)

and 𝒢p0=𝒢0p\mathcal{G}_{p0}=\mathcal{G}^{*}_{0p}. By approximating the sum q\sum_{q} by an integral,

𝒢0p𝒢(r)=\displaystyle\mathcal{G}_{0p}\to\mathcal{G}(r)= Ωd𝐪Ωei𝐪𝐫p01+τ2τIτ+τIω2(𝐪).\displaystyle\int_{\Omega}\frac{d{\mathbf{q}}}{\Omega}\frac{e^{-i\mathbf{q}\cdot\mathbf{r}_{p}^{0}}}{1+\frac{\tau^{2}\tau_{I}}{\tau+\tau_{I}}\omega^{2}(\mathbf{q})}\,. (41)

The above integral depends on the distance from the impurity, rr and converges to the value 𝒢(0)\mathcal{G}(0) as r0r\to 0. Thus, the first-order correction to the entropy production, at distance rr from the impurity, becomes:

s˙p(1)s˙(1)(r)=s˙free𝒢(r)2τIτI+τ.\dot{s}^{(1)}_{p}\to\dot{s}^{(1)}(r)=-\dot{s}_{\text{free}}\mathcal{G}(r)^{2}\frac{\tau_{I}}{\tau_{I}+\tau}\,. (42)

.

According to Eq. (42) the first order perturbative correction to the EPR at the position of the impurity, r=0r=0, is

s˙(1)(0)=s˙freeτIτ+τI[𝒢(0)]2=s˙(0)𝒢(0)τIτ+τI.\dot{s}^{(1)}(0)=-\frac{\dot{s}_{\text{free}}\tau_{I}}{\tau+\tau_{I}}[\mathcal{G}(0)]^{2}=-\dot{s}^{(0)}\mathcal{G}(0)\frac{\tau_{I}}{\tau+\tau_{I}}\,. (43)

We estimated numerically s˙(1)(0)\dot{s}^{(1)}(0) from the difference (s˙(0)s˙(0))(\dot{s}(0)-\dot{s}^{(0)}), i.e. by subtracting the zeroth-order EPR from the total EPR obtained from the simulations. The resulting value of s˙(1)(0)\dot{s}^{(1)}(0) together with the zeroth-order theoretical prediction s˙(0)\dot{s}^{(0)}, shown for comparison, is plotted in Fig. 3 as a function of the reduced inertial time τI/τ\tau_{I}/\tau. Both s˙(0)\dot{s}^{(0)} and s˙(1)(0)\dot{s}^{(1)}(0) are bell-shaped curves but the two maxima do not coincide. Indeed, s˙(1)(0)\dot{s}^{(1)}(0) tends to zero as equilibrium is approached, i.e. when τI/τ1\tau_{I}/\tau\gg 1. By decreasing the ratio τI/τ\tau_{I}/\tau the system departs from equilibrium and s˙(1)(0)\dot{s}^{(1)}(0) grows, as s˙(0)\dot{s}^{(0)} also does, and reaches a peak for τI/τ10\tau_{I}/\tau\approx 10. Such an increase when τI/τ\tau_{I}/\tau decreases is mainly due to the prefactor s˙free\dot{s}_{\text{free}} in Eq. (43).

In the large persistence regime, τI/τ10\tau_{I}/\tau\leq 10, the first-order correction s˙(1)(0)\dot{s}^{(1)}(0) displays a decrease similar to s˙(0)\dot{s}^{(0)}. From Eq. (43) we see that |s˙(1)(0)s˙(0)|=𝒢(0)τIτ+τI1\left|\frac{\dot{s}^{(1)}(0)}{\dot{s}^{(0)}}\right|=\mathcal{G}(0)\frac{\tau_{I}}{\tau+\tau_{I}}\leq 1\,. The inequality holds because both 𝒢(0)\mathcal{G}(0) and τI/(τ+τI)\tau_{I}/(\tau+\tau_{I}) are less or equal to 1. Moreover, s˙(1)(0)s˙(0)\frac{\dot{s}^{(1)}(0)}{\dot{s}^{(0)}} is a decreasing function of τ\tau and an increasing function of τI\tau_{I}. In the limit of infinite τ\tau, the system approaches an arrested state (with decreasing speed, |𝐯||\mathbf{v}|), and, as a consequence, not only the entropy production of the bulk s˙(0)\dot{s}^{(0)} decreases but also the EPR due to the imperfection at r=0r=0 does.

Refer to caption
Figure 3: Entropy production rate, s˙(0)\dot{s}(0) (rescaled by τI=m/γ\tau_{I}=m/\gamma) calculated at the position of the defect, as a function of the reduced inertial time, τI/τ\tau_{I}/\tau. The yellow curve denotes the zeroth-order prediction s˙(0)\dot{s}^{(0)} i.e. the bulk value of the EPR theoretically predicted (see Eq. (33)). The blue light curve and the light blue points are the first-order correction of the entropy production, s˙(1)(0)\dot{s}^{(1)}(0), calculated at the same position. The solid line represents the theoretical predicition (43), while points are obtained from numerical simulations conducted by integrating the dynamics (1) with |δm|/m=0.2|\delta m|/m=0.2. The values of the blue points, s˙(1)(0)\dot{s}^{(1)}(0), are estimated from the difference s˙(0)s˙(0)\dot{s}(0)-\dot{s}^{(0)} between the theoretical bulk value s˙(0)\dot{s}^{(0)} and the numerical value of s˙(0)\dot{s}(0). The parameters of the simulations were fixed at N=104N=10^{4} and ϕ=1.1\phi=1.1.

III.3.1 Spatial profile of the entropy production generated by the impurity

To obtain explicitly the spatial profile of the entropy production, we consider 𝒢(r)\mathcal{G}(r). Since we could not find an exact expression for it, we evaluated the integral (41) by approximating τ2τI/(τ+τI)ω2(𝐪)ξ2q2\tau^{2}\tau_{I}/(\tau+\tau_{I})\omega^{2}(\mathbf{q})\approx\xi^{2}q^{2} and extending the integration to the whole reciprocal space. Within this approximation, the resulting formula reads:

𝒢(r)K0(r/ξ)(πξ2r)1/2er/ξ\mathcal{G}(r)\approx K_{0}(r/\xi)\approx\left(\frac{\pi\xi}{2r}\right)^{1/2}e^{-r/\xi} (44)

where K0(r/ξ)K_{0}(r/\xi) is the zeroth-order modified Bessel function of the second kind [93] and the length ξ\xi is given by Eq. (35). The divergence at r=0r=0 is the result of the absence of an upper cutoff in the qq-integral caused by the replacement of the Brillouin zone with an infinite integration domain. Since this problem can be easily fixed by recalling the exact evaluation of 𝒢(0)\mathcal{G}(0), Eq. (36), we have an estimate of the long distance (rξr\gg\xi) exponential behavior of 𝒢(r)\mathcal{G}(r).

By using the approximation (44), the first order correction to the profile of s˙(r)\dot{s}(r) is given by

s˙(1)(r)\displaystyle\dot{s}^{(1)}(r) =τIτI+τs˙free[K0(r/ξ)]2\displaystyle=-\frac{\tau_{I}}{\tau_{I}+\tau}\dot{s}_{\text{free}}\left[K_{0}(r/\xi)\right]^{2} (45)
τIτI+τs˙free(πξ2r)e2r/ξ.\displaystyle\approx-\frac{\tau_{I}}{\tau_{I}+\tau}\dot{s}_{\text{free}}\left(\frac{\pi\xi}{2r}\right)e^{-2r/\xi}\,.

It displays an exponential-like decay towards its bulk value 0, since the EPR of the homogeneous crystal is just s˙(0)\dot{s}^{(0)}. The spatial profile of s˙(1)(r)\dot{s}^{(1)}(r) is shown in Fig. 4 for two values of the reduced inertial time τI/τ\tau_{I}/\tau and reveals a good agreement between the prediction (45) and simulations where s˙(1)(r)\dot{s}^{(1)}(r) was estimated from the difference (s˙(r)s˙(0))(\dot{s}(r)-\dot{s}^{(0)}), which is exact except for terms order (δm/m)2(\delta m/m)^{2}.

Refer to caption
Figure 4: Spatial profile of the EPR, s˙(1)(r)/s˙(1)(0)\dot{s}^{(1)}(r)/\dot{s}^{(1)}(0) as a function of the distance from the defect, r/σr/\sigma, calculated for two different values of the reduced inertial time τI/τ\tau_{I}/\tau as indicated in the plot. Points are obtained by numerically integrating the dynamics (1) with |δm/m|=0.2|\delta m/m|=0.2, while the solid colored lines are calculated from the theoretical prediction (45). The EPR profiles, s˙(1)(r)\dot{s}^{(1)}(r), are estimated from the difference s˙(r)s˙(0)\dot{s}(r)-\dot{s}^{(0)} between the numerical value, s˙(r)\dot{s}(r) and the theoretical bulk value s˙(0)\dot{s}^{(0)}. The parameters of the simulations were fixed at N=104N=10^{4} and ϕ=1.1\phi=1.1.

The spatial profile of s˙(r)\dot{s}(r) indicates that ξ/2\xi/2 is the typical distance beyond which the entropy production is unchanged by the presence of the impurity: therefore, for large values of ξ\xi an impurity affects the entropy production of the crystal even at long distances from its position. We recall that ξ\xi increases as τ\tau for τ/τI1\tau/\tau_{I}\ll 1 (in the underdamped regime), and as ξτ\xi\sim\sqrt{\tau} for τ/τI1\tau/\tau_{I}\gg 1 (in the overdamped regime), while in general the value of ξ\xi decreases as the inertia is increased (with the growth of τI\tau_{I}). Interestingly, ξ/2\xi/2 coincides with half of the correlation length of the spatial velocity correlations characterizing active crystals. The correlation between the velocities of two distant particles means a transfer of information that is reflected in the value of the entropy production.

Let us remark that the sign of the first-order correction to s˙(r)\dot{s}(r) depends on the sign of δm\delta m: a defect of the crystal with a mass larger than the one of the remaining particles (heavy impurity) decreases the total entropy production of the system, while an impurity with smaller mass (light impurity) increases the total entropy production. This phenomenon occurs because a light impurity means more freedom to move for the particles close to the imperfection, whereas a heavy impurity reduces the amplitude of their displacements. Regarding higher order terms in the perturbative expansion, it is possible to carry on the calculation using the same method as reported in appendix E.3 where we have derived a theoretical formula valid for two imperfections up to order (δm/m)2(\delta m/m)^{2}. However, its application to the present problem is complicated because one would need higher statistics in the numerical simulations. This task remains to be carried out in future work.

IV Conclusions

As shown in the recent literature the EPR is an important theoretical tool to characterize the physics of active and living systems which often involve the presence of many degrees of freedom. However, in the case of nonuniform systems such a tool becomes much more accurate if instead of employing a global description in terms of the total EPR we use its local version, the space dependent EPR. In general, this goal is complicated to achieve because of the high dimensionality of the state space. In this paper, we have analytically and numerically investigated the space dependent EPR in the case of a active solid with point imperfections These lattice defects break the discrete translational symmetry of the crystal and induce a spatial dependence of the observable quantities. This work provides an explicit representation of the spatial variation of the EPR in a very simple model of a nonuniform system. Our analytical results for the entropy production in the non-equilibrium steady-state of an active harmonic solid, derived utilizing a perturbative expansion in powers of the mass of the impurity, agree fairly well with the numerical data obtained by computer simulation of the active solid with a soft repulsive shift and cut WCA interparticle potential and ABP dynamics. The non-uniform profile of the EPR has been calculated as a function of the distance from the impurity position. The zeroth-order result of the perturbation theory gives the value of the entropy production of a homogeneous solid [67], whose explicit expression has been reported in the case of a two-dimensional active crystal, while the first-order result accounts for the spatial dependence of the entropy production. Our study demonstrates that, in regimes of large persistence, an impurity affects the properties of the crystal also at a large distance from the impurity. Interestingly, the typical length scale that rules the spreading of information, described by the EPR, is the same length that controls the extent of the spatial velocity correlations in active crystals [30, 78]. Finally, we remark that the lattice imperfection is the cause of the non uniform EPR, but would not cause any velocity correlation profile in the case where only thermal noise would be present. This is in agreement with the argument that 𝐯p𝐯j=2Tδij\langle{\bf v}_{p}\cdot{\bf v}_{j}\rangle=2T\delta_{ij} for any equilibrium system. Future work should extend our approach to binary and polydisperse crystals, to active crystals in three dimensions and to different kind of defects (dislocations, disclinations, grain boundaries) [96].

Data availability statement

All data that support the findings of this study are included within the article (and any supplementary files).

acknowlegments

This paper is dedicated to the memory of Luis Felipe Rull (1949-2022).

LC acknowledges support from the Alexander Von Humboldt foundation, while HL acknowledges support by the Deutsche Forschungsgemeinschaft (DFG) through the SPP 2265 under the grant number LO 418/25-1.

Appendix A Fourier transforms

Continuous Fourier transforms in the frequency domain ω\omega of the generic variable 𝐎n{\mathbf{O}}_{n} are defined as:

𝐎^n(ω)=𝑑teiωt𝐎n(t)\hat{\mathbf{O}}_{n}(\omega)=\int_{-\infty}^{\infty}dte^{i\omega t}{\mathbf{O}}_{n}(t) (46)

and its inverse is

𝐎n(t)=dω2πeiωt𝐎^n(ω){\mathbf{O}}_{n}(t)=\int_{\infty}^{\infty}\frac{d\omega}{2\pi}e^{-i\omega t}\hat{\mathbf{O}}_{n}(\omega) (47)

We also employ, in order to decouple the dynamical degrees of freedom, the following discrete spatial Fourier transform of a lattice variable 𝐎𝐧{\mathbf{O}}_{\mathbf{n}}

𝐎𝐪=1N𝐧𝐎𝐧ei𝐪𝐫𝐧0{\mathbf{O}}_{\mathbf{q}}=\frac{1}{N}\sum_{\mathbf{n}}{\mathbf{O}}_{\mathbf{n}}e^{-i\mathbf{q}\cdot\mathbf{r}^{0}_{\mathbf{n}}} (48)

where 𝐧\mathbf{n} spans the indices identifying the NN particles of the lattice. Using both the time and lattice Fourier transform the perfect lattice dynamics (m𝐧=mm_{\mathbf{n}}=m) takes a particularly simple form since in this representation each q-mode (wave) becomes independent from the remaining modes and we can write:

mω2𝐮~𝐪=iωγ𝐮~𝐪mω2(𝐪)𝐮~𝐪+2Tγ𝝃~𝐪+𝐟~𝐪a-m\omega^{2}\tilde{\mathbf{u}}_{\mathbf{q}}=-i\omega\gamma\tilde{\mathbf{u}}_{\mathbf{q}}-m\omega^{2}(\mathbf{q})\tilde{\mathbf{u}}_{\mathbf{q}}+\sqrt{2T\gamma}\,\tilde{\boldsymbol{\xi}}_{\mathbf{q}}+\tilde{\mathbf{f}}^{a}_{\mathbf{q}} (49)

where the tilde symbol stands for the Fourier time and spatial simultaneous transformations and

ω2(𝐪)=2ωE2[3cos(qxx¯)2cos(12qxx¯)cos(32qyx¯)]\omega^{2}(\mathbf{q})=2\omega_{E}^{2}\Bigl{[}3-\cos(q_{x}\bar{x})-2\cos(\frac{1}{2}q_{x}\bar{x})\cos(\frac{\sqrt{3}}{2}q_{y}\bar{x})\Bigr{]} (50)

Such a structure function representing the dispersion relation of the triangular lattice is obtained as follows. One considers the six vectors giving the displacements connecting an arbitrary lattice site to its nearest neighbors:

𝐬(n1,n2)=n1𝐚1+n2𝐚2{\bf s}(n_{1},n_{2})=n_{1}{\bf a}_{1}+n_{2}{\bf a}_{2} (51)

where

(n1,n2)=±(1,0)\displaystyle(n_{1},n_{2})=\pm(1,0) (52)
(n1,n2)=±(0,1)\displaystyle(n_{1},n_{2})=\pm(0,1) (53)
(n1,n2)=±(1,1)\displaystyle(n_{1},n_{2})=\pm(1,1) (54)

and 𝐚1,𝐚2{\bf a}_{1},{\bf a}_{2} are the two primitive vectors of the triangular Bravais lattice:

𝐚1=x¯2𝐱^32x¯𝐲^\displaystyle{\bf a}_{1}=\frac{\bar{x}}{2}{\bf\hat{x}}-\frac{\sqrt{3}}{2}\bar{x}{\bf\hat{y}} (55)
𝐚2=x¯2𝐱^+32x¯𝐲^\displaystyle{\bf a}_{2}=\frac{\bar{x}}{2}{\bf\hat{x}}+\frac{\sqrt{3}}{2}\bar{x}{\bf\hat{y}} (56)

The dispersion relation is obtained by performing the following sum:

ω2(𝐪)=ωE2(6n1,n2exp(i𝐪𝐬(n1,n2)))\omega^{2}(\mathbf{q})=\omega_{E}^{2}\Bigl{(}6-\sum_{n_{1},n_{2}}\exp(-i\mathbf{q}\cdot{\bf s}(n_{1},n_{2}))\Bigr{)} (57)

Appendix B Variable transformation

In order to perform the integration over the wavevector 𝐪{\bf q} in Eq.(31) it is convenient, following the literature [97], perform the following change of variables and define two new phases k1k_{1} and k2k_{2} via the transformation:

k1=12qxx¯32qyx¯\displaystyle k_{1}=\frac{1}{2}q_{x}\bar{x}-\frac{\sqrt{3}}{2}q_{y}\bar{x} (58)
k2=12qxx¯+32qyx¯.\displaystyle k_{2}=\frac{1}{2}q_{x}\bar{x}+\frac{\sqrt{3}}{2}q_{y}\bar{x}. (59)

With this mapping, the 𝐪{\bf q}-integration domain, that is the hexagonal Brillouin-zone, becomes a square domain and the resulting integrations analytically simpler: we first substitute these relations in eq. (34) and set 𝐤(k1,k2)\mathbf{k}\equiv(k_{1},k_{2}):

ω2(𝐪)6ωE2(1r(𝐤)).\omega^{2}(\mathbf{q})\to 6\omega_{E}^{2}\Bigl{(}1-r(\mathbf{k})\Bigr{)}. (60)

The last equality defines the new function, r(𝐤)=(cos(k1+k2)+cos(k1)+cos(k2))r(\mathbf{k})=\Bigl{(}\cos(k_{1}+k_{2})+\cos(k_{1})+\cos(k_{2})\Bigr{)}, the so-called structure function of the triangular lattice in two-dimensions. Thus we rewrite

𝒢(0)=Ωd𝐪Ω11+τ2τIτ+τIω2(𝐪)=11+6ωE2τ21+τ/τIππdk12πππdk22π111+τ/τI6ωE2τ2r(𝐤)\mathcal{G}(0)=\int_{\Omega}\frac{d{\mathbf{q}}}{\Omega}\frac{1}{1+\frac{\tau^{2}\tau_{I}}{\tau+\tau_{I}}\omega^{2}(\mathbf{q})}\,=\frac{1}{1+\frac{6\omega_{E}^{2}\tau^{2}}{1+\tau/\tau_{I}}}\int_{-\pi}^{\pi}\frac{dk_{1}}{2\pi}\int_{-\pi}^{\pi}\frac{dk_{2}}{2\pi}\frac{1}{1-\frac{1+\tau/\tau_{I}}{6\omega_{E}^{2}\tau^{2}}r(\mathbf{k})} (61)

The result of the last integration can be found in Ref. [97] and reads:

𝒢(0)=11+ξ26πz(ξ)c(ξ)K[k(ξ)]\mathcal{G}(0)=\frac{1}{1+\xi^{2}}\frac{6}{\pi z(\xi)\sqrt{c(\xi)}}K[k(\xi)] (62)

where K(k)K(k) is the complete elliptic integral of the first kind and z(ξ)z(\xi), c(ξ)c(\xi) and k(ξ)k(\xi) are explicit functions of the parameters of the model and are given by:

z(ξ)=11+x¯24ξ2\displaystyle z(\xi)=\frac{1}{1+\frac{\bar{x}^{2}}{4\xi^{2}}} (63)
c(ξ)=9z(ξ)23+23+6z(ξ)\displaystyle c(\xi)=\frac{9}{z(\xi)^{2}}-3+2\sqrt{3+\frac{6}{z(\xi)}} (64)
k(ξ)=2(3+6z(ξ))1/4c(ξ)1/2.\displaystyle k(\xi)=2\frac{\left(3+\frac{6}{z(\xi)}\right)^{1/4}}{c(\xi)^{1/2}}\,. (65)
ξ2=32x¯2τ21+τ/τIωE2.\xi^{2}=\frac{3}{2}\bar{x}^{2}\frac{\tau^{2}}{1+\tau/\tau_{I}}\omega_{E}^{2}\,.

Appendix C Lattice Green’s function and perturbative solution

Let us multiply Eq. (16) at the right by the inverse operator L1=GL^{-1}=G such that GpnLnk=δpkG_{pn}L_{nk}=\delta_{pk} and get:

𝐮^p(ω)=Gpn(ω)(𝐟^na+2γT𝝃^n)+λmω2Gp0𝐮^0\hat{\mathbf{u}}_{p}(\omega)=G_{pn}(\omega)\Bigl{(}\hat{\mathbf{f}}^{a}_{n}+\sqrt{2\gamma T}\hat{\boldsymbol{\xi}}_{n}\Bigr{)}+\lambda m\omega^{2}G_{p0}\hat{\mathbf{u}}_{0} (66)

where λ\lambda is a small perturbative parameter. This equation is solved by iteration using λ\lambda as a smallness parameter:

𝐮^p=(Gpm(ω)+λGpn(ω)bn(ω)Gnm(ω)+λ2Gpn(ω)bn(ω)Gnk(ω)bk(ω)Gkm(ω)+)(𝐟^ma+2γT𝝃^m)\hat{\mathbf{u}}_{p}=\Bigl{(}G_{pm}(\omega)+\lambda G_{pn}(\omega)b_{n}(\omega)G_{nm}(\omega)+\lambda^{2}G_{pn}(\omega)b_{n}(\omega)G_{nk}(\omega)b_{k}(\omega)G_{km}(\omega)+\dots\Bigr{)}\Bigl{(}\hat{\mathbf{f}}^{a}_{m}+\sqrt{2\gamma T}\hat{\boldsymbol{\xi}}_{m}\Bigr{)} (67)

where bn=mω2δn0b_{n}=m\omega^{2}\delta_{n0} for a single impurity sitting at site 0. The explicit representation of the matrix element Gpn(ω)G_{pn}(\omega) is obtained by first solving the homogeneous eigenvalue problem:

Lpn(ω)ϕ𝐧(𝐪)=λ(𝐪,ω)ϕ𝐩(𝐪)L_{pn}(\omega)\phi_{\mathbf{n}}(\mathbf{q})=\lambda(\mathbf{q},\omega)\phi_{\mathbf{p}}(\mathbf{q}) (68)

with eigenvalues

λ(𝐪,ω)=mω2+iωγ+mω2(𝐪)\lambda(\mathbf{q},\omega)=-m\omega^{2}+i\omega\gamma+m\omega^{2}(\mathbf{q}) (69)

and eigenvectors

ϕ𝐧(𝐪)=1Nei𝐪𝐫𝐧0\phi_{\mathbf{n}}(\mathbf{q})=\frac{1}{\sqrt{N}}e^{-i\mathbf{q}\cdot\mathbf{r}^{0}_{\mathbf{n}}}

that depend on the wavevector 𝐪\mathbf{q}. The resolvent or Greens’s function has the following spectral representation:

Gpn(ω)=𝐪1mω2+iωγ+mω2(𝐪)ϕ𝐩(𝐪)ϕ𝐧(𝐪)G_{pn}(\omega)=\sum_{\mathbf{q}}\frac{1}{-m\omega^{2}+i\omega\gamma+m\omega^{2}(\mathbf{q})}\phi^{*}_{\mathbf{p}}(\mathbf{q})\phi_{\mathbf{n}}(\mathbf{q}) (70)

Appendix D Active Ornstein-Uhlenbeck approximation and derivation of Eq. (22)

Here, we discuss the argument justifying the replacement of the ABP dynamics with the AOUP dynamics. The motivation is twofold: i) the theoretical manipulation of the AOUP equations of evolution is simpler than the ABP equations used in the numerical work, ii) there is a correspondence between the two models based on the property that the respective autocorrelation functions of the active force have the same form. To prove the second statement, consider that the ABP dynamics of 𝐟na\mathbf{f}^{a}_{n}, described by Eqs. (2) and (3), can be expressed in Cartesian coordinates as [32, 77]:

𝐟˙na=Dr𝐟na+γv02Dr𝜼n×𝐟na,\dot{\mathbf{f}}^{a}_{n}=-D_{r}\mathbf{f}^{a}_{n}+\gamma v_{0}\sqrt{2D_{r}}\boldsymbol{\eta}_{n}\times\mathbf{f}^{a}_{n}\,, (71)

where we adopt the Ito convention to interpret the second term in the r.h.s.. The noise vector 𝜼n=(0,0,ηn)\boldsymbol{\eta}_{n}=(0,0,\eta_{n}) is normal to the plane of motion (x,y)(x,y) ηn\eta_{n} isa white noise with zero average and unit variance. It is easy to show (see Ref. [76]) that the autocorrelation function of 𝐟pa\mathbf{f}^{a}_{p} is an exponential of the form:

𝐟na(t)𝐟ma(0)=δnmv02γ2e|t|/τ\ \langle\mathbf{f}^{a}_{n}(t)\cdot\mathbf{f}^{a}_{m}(0)\rangle=\delta_{nm}v_{0}^{2}\gamma^{2}e^{-|t|/\tau}\, (72)

where τ=1/Dr\tau=1/D_{r}. As anticipated, in theoretical work, it is convenient to modify the dynamics of faf^{a} while preserving the form of its autocorrelation function. This goal is achieved by replacing the ABP noise term, 2Dr𝜼n×𝐟na\sqrt{2D_{r}}\boldsymbol{\eta}_{n}\times\mathbf{f}^{a}_{n}, by a two-dimensional white noise vector of white noises, 𝜻n\boldsymbol{\zeta}_{n} such that 𝜻n(t)𝜻m(0)=δnmδ(t)\langle\boldsymbol{\zeta}_{n}(t)\boldsymbol{\zeta}_{m}(0)\rangle=\delta_{nm}\delta(t). This replacement corresponds to approximate the dynamics of 𝐟pa\mathbf{f}^{a}_{p} by the following two-dimensional Ornstein-Uhlenbeck process

𝐟˙na=Dr𝐟na+γv02Dr𝜻n.\dot{\mathbf{f}}^{a}_{n}=-D_{r}\mathbf{f}^{a}_{n}+\gamma v_{0}\sqrt{2D_{r}}\boldsymbol{\zeta}_{n}. (73)

It is easy to verify that this new equation for the active force yields the same autocorrelation function as the ABP model. Equation (73) together with Eq. (1) corresponds to the active Ornstein-Uhlenbeck particles (AOUP) model.

The dynamics (73) in the Fourier Space (in the frequency ω\omega domain), can be obtained by applying the Fourier transform and is given by

iωτ𝐟^na(ω)=𝐟^na(ω)+v0γ2τ𝜻^n(ω),\displaystyle i\omega\tau\hat{\mathbf{f}}^{a}_{n}(\omega)=-\hat{\mathbf{f}}^{a}_{n}(\omega)+v_{0}\gamma\sqrt{2\tau}\hat{\boldsymbol{\zeta}}_{n}(\omega)\,, (74a)

and allows to find the explicit solution for 𝐟^na(ω)\hat{\mathbf{f}}^{a}_{n}(\omega) as

𝐟^na(ω)=v0γ2τ1+iωτ𝜻^n(ω).\hat{\mathbf{f}}^{a}_{n}(\omega)=\frac{v_{0}\gamma\sqrt{2\tau}}{1+i\omega\tau}\hat{\boldsymbol{\zeta}}_{n}(\omega)\,. (75)

By multiplying by 𝐟^ma(ω)\hat{\mathbf{f}}^{a}_{m}(-\omega), taking the average over the realizations of the noise, dividing by tt, and applying the limit tt\to\infty, we obtain Eq. (22).

Appendix E Integrals over the frequency domain

This appendix contains some details about the derivation of the formula for first order correction to the EPR. We first compute the following integral over frequencies which appears in Eq.(LABEL:eq:zerothspectralentropy)

I2(𝐪)=dω2π11+ω2τ2ω2m2(ω2(𝐪)ω2)2+ω2γ2=12γm1[1+γτ/m+τ2ω2(𝐪)]I_{2}(\mathbf{q})=\int_{-\infty}^{\infty}\frac{d\omega}{2\pi}\frac{1}{1+\omega^{2}\tau^{2}}\,\frac{\omega^{2}}{m^{2}(\omega^{2}(\mathbf{q})-\omega^{2})^{2}+\omega^{2}\gamma^{2}}=\frac{1}{2\gamma m}\frac{1}{\Bigl{[}1+\gamma\tau/m+\tau^{2}\omega^{2}(\mathbf{q})\Bigr{]}}\\ (76)

E.1 Zeroth order EPR

Using the result (76) we evaluate the zeroth order entropy production:

Ts˙(0)=2Nqdω2πτγ1+ω2τ2ω2v02γ2m2(ω2(𝐪)ω2)2+ω2γ2=v02γmτγ1Nq1[1+γτ/m+τ2ω2(𝐪)]T\dot{s}^{(0)}=\frac{2}{N}\sum_{q}\int_{-\infty}^{\infty}\frac{d\omega}{2\pi}\frac{\tau\gamma}{1+\omega^{2}\tau^{2}}\frac{\omega^{2}v_{0}^{2}\gamma^{2}}{m^{2}(\omega^{2}(\mathbf{q})-\omega^{2})^{2}+\omega^{2}\gamma^{2}}=\frac{v_{0}^{2}\gamma}{m}\tau\gamma\,\frac{1}{N}\sum_{q}\frac{1}{\Bigl{[}1+\gamma\tau/m+\tau^{2}\omega^{2}(\mathbf{q})\Bigr{]}}
Ts˙(0)=v02τγ1τ+τI1Nq1[1+τ2τIω2(𝐪)τ+τI]T\dot{s}^{(0)}=v_{0}^{2}\tau\gamma\,\frac{1}{\tau+\tau_{I}}\frac{1}{N}\sum_{q}\frac{1}{\Bigl{[}1+\frac{\tau^{2}\tau_{I}\omega^{2}(\mathbf{q})}{\tau+\tau_{I}}\Bigr{]}}

By using (see Eq.(40))

𝒢0p=1Nqei𝐪𝐫p01+τ2τIτ+τIω2(𝐪)Ωd𝐪Ωei𝐪𝐫p011+τ2τIτ+τIω2(𝐪)\mathcal{G}_{0p}=\frac{1}{N}\sum_{q}\frac{e^{-i\mathbf{q}\cdot\mathbf{r}_{p}^{0}}}{1+\frac{\tau^{2}\tau_{I}}{\tau+\tau_{I}}\omega^{2}(\mathbf{q})}\to\int_{\Omega}\frac{d{\mathbf{q}}}{\Omega}e^{-i\mathbf{q}\cdot\mathbf{r}_{p}^{0}}\,\frac{1}{1+\frac{\tau^{2}\tau_{I}}{\tau+\tau_{I}}\omega^{2}(\mathbf{q})} (77)

We arrive at

Ts˙(0)=v02τγ1τ+τI𝒢00T\dot{s}^{(0)}=v_{0}^{2}\tau\gamma\,\frac{1}{\tau+\tau_{I}}\mathcal{G}_{00}

E.2 First order EPR

According to the second equality in Eq.(38) We now consider the first order correction. We need to perform the following frequency integral

(78)
Ts˙p(1)=2mv02γ2τdω2πω31+ω2τ2Im[Gp0(ω)G0p(ω)]=\displaystyle T\dot{s}^{(1)}_{p}=-2mv_{0}^{2}\gamma^{2}\tau\int_{-\infty}^{\infty}\frac{d\omega}{2\pi}\frac{\omega^{3}}{1+\omega^{2}\tau^{2}}\text{Im}[G_{p0}(\omega)G_{0p}(\omega)]=
2mv02γ2τN2𝐪,𝐪ei(𝐪𝐪)𝐫𝐩0dω2πω31+ω2τ2Im[1mω2iωγmω2(𝐪)1mω2iωγmω𝐪2]\displaystyle-\frac{2mv_{0}^{2}\gamma^{2}\tau}{N^{2}}\sum_{\mathbf{q},\mathbf{q}^{\prime}}e^{i(\mathbf{q}-\mathbf{q^{\prime}})\cdot\mathbf{r}^{0}_{\mathbf{p}}}\int_{-\infty}^{\infty}\frac{d\omega}{2\pi}\frac{\omega^{3}}{1+\omega^{2}\tau^{2}}\text{Im}[\frac{1}{m\omega^{2}-i\omega\gamma-m\omega^{2}(\mathbf{q})}\frac{1}{m\omega^{2}-i\omega\gamma-m\omega_{\mathbf{q^{\prime}}}^{2}}] (79)

We use the following identity

(1ω2ωq2iωγ/m)(1ω2ωq2iωγ/m)=1ωq2ωq2(1ω2ωq2iωγ/m1ω2ωq2iωγ/m)\Bigl{(}\frac{1}{\omega^{2}-\omega^{2}_{q}-i\omega\gamma/m}\Bigr{)}\Bigl{(}\frac{1}{\omega^{2}-\omega^{2}_{q^{\prime}}-i\omega\gamma/m}\Bigr{)}=\frac{1}{\omega^{2}_{q}-\omega^{2}_{q^{\prime}}}\Bigl{(}\frac{1}{\omega^{2}-\omega^{2}_{q}-i\omega\gamma/m}-\frac{1}{\omega^{2}-\omega^{2}_{q^{\prime}}-i\omega\gamma/m}\Bigr{)}

After multiplying the previous expression by ω31+ω2τ2\frac{\omega^{3}}{1+\omega^{2}\tau^{2}} and taking its imaginary part, we arrive at the following form of the frequency integral appearing in Eq.(E.2) which is evaluated by residue theorem method:

γ/mω2(𝐪)ω𝐪2dω2πω41+ω2τ2(1(ω2ω2(𝐪))2+ω2γ2/m21(ω2ω𝐪2)2+ω2γ2/m2)\displaystyle\frac{\gamma/m}{\omega^{2}(\mathbf{q})-\omega_{\mathbf{q^{\prime}}}^{2}}\int_{-\infty}^{\infty}\frac{d\omega}{2\pi}\frac{\omega^{4}}{1+\omega^{2}\tau^{2}}\Bigl{(}\frac{1}{(\omega^{2}-\omega^{2}(\mathbf{q}))^{2}+\omega^{2}\gamma^{2}/m^{2}}-\frac{1}{(\omega^{2}-\omega_{\mathbf{q^{\prime}}}^{2})^{2}+\omega^{2}\gamma^{2}/m^{2}}\Bigr{)} (80)
=121(1+γτ/m+ω2(𝐪)τ2)(1+γτ/m+ω𝐪2τ2)\displaystyle\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad=\frac{1}{2}\frac{1}{(1+\gamma\tau/m+\omega^{2}(\mathbf{q})\tau^{2})(1+\gamma\tau/m+\omega_{\mathbf{q^{\prime}}}^{2}\tau^{2})}

Finally, inserting this result in Eq.(E.2) and performing separately the two independent integrations over 𝐪\mathbf{q^{\prime}} and 𝐪\mathbf{q} we find:

(81)
dω2πω31+ω2τ2Im[Gp0(ω)G0p(ω)]=\displaystyle\int_{-\infty}^{\infty}\frac{d\omega}{2\pi}\frac{\omega^{3}}{1+\omega^{2}\tau^{2}}\text{Im}[G_{p0}(\omega)G_{0p}(\omega)]=
=1m212N2𝐪,𝐪ei(𝐪𝐪)𝐫𝐩0(1+τ/τI)211+τ2τIτ+τIω2(𝐪)11+τ2τIτ+τIω2(𝐪)=12m21(1+τ/τI)2𝒢0p𝒢p0\displaystyle=\frac{1}{m^{2}}\frac{1}{2N^{2}}\sum_{\mathbf{q},\mathbf{q}^{\prime}}\frac{e^{i(\mathbf{q}-\mathbf{q^{\prime}})\cdot\mathbf{r}^{0}_{\mathbf{p}}}}{(1+\tau/\tau_{I})^{2}}\frac{1}{1+\frac{\tau^{2}\tau_{I}}{\tau+\tau_{I}}\omega^{2}(\mathbf{q})}\frac{1}{1+\frac{\tau^{2}\tau_{I}}{\tau+\tau_{I}}\omega^{2}(\mathbf{q^{\prime}})}=\frac{1}{2m^{2}}\frac{1}{(1+\tau/\tau_{I})^{2}}\mathcal{G}_{0p}\mathcal{G}_{p0} (82)

where we used Eq.(40). Finally, we write:

Tsp(1)(ω)=\displaystyle Ts_{p}^{(1)}(\omega)= 2mv02γ2τdω2πω3Im[Gp0(ω)G0p(ω)]11+ω2τ2=v02τγτI(τ+τI)2𝒢0p𝒢p0\displaystyle-2mv_{0}^{2}\gamma^{2}\tau\int_{-\infty}^{\infty}\frac{d\omega}{2\pi}\omega^{3}\text{Im}[G_{p0}(\omega)G_{0p}(\omega)]\frac{1}{1+\omega^{2}\tau^{2}}\,=-\frac{v_{0}^{2}\tau\gamma\tau_{I}}{(\tau+\tau_{I})^{2}}\mathcal{G}_{0p}\mathcal{G}_{p0} (83)

E.3 Calculation of EPR up to Second order

Here we consider two impurities at positions aa and bb and having mass defects δma\delta m_{a} and δmb\delta m_{b}, respectively. To study the EPR due to two defects we need to carry on a second order calculation in the perturbation parameters δm\delta m. Thus we write the expression of the average of the product between the active force and the velocity of a single particle as a function of its lattice position, pp:

f^pa(ω)V^p(ω)=iω2v02γ2τ1+ω2τ2(G^pp(ω)+λ[b^a(ω)G^pa(ω)G^ap(ω)+b^b(ω)G^pb(ω)G^bp(ω)]+\displaystyle\langle\hat{f}^{a}_{p}(-\omega)\hat{V}_{p}(\omega)\rangle=i\omega 2v_{0}^{2}\gamma^{2}\frac{\tau}{1+\omega^{2}\tau^{2}}\Bigl{(}\hat{G}_{pp}(\omega)+\lambda\bigl{[}\hat{b}_{a}(\omega){\hat{G}}_{pa}(\omega){\hat{G}}_{ap}(\omega)+\hat{b}_{b}(\omega){\hat{G}}_{pb}(\omega){\hat{G}}_{bp}(\omega)\bigr{]}+
λ2[b^a2(ω)G^pa(ω)G^aa(ω)G^ap(ω)+b^b2(ω)G^pb(ω)G^bb(ω)G^bp(ω)+b^a(ω)b^b(ω)G^pa(ω)G^ab(ω)G^bp(ω)\displaystyle\lambda^{2}\bigl{[}\hat{b}_{a}^{2}(\omega){\hat{G}}_{pa}(\omega){\hat{G}}_{aa}(\omega){\hat{G}}_{ap}(\omega)+\hat{b}_{b}^{2}(\omega){\hat{G}}_{pb}(\omega){\hat{G}}_{bb}(\omega){\hat{G}}_{bp}(\omega)+\hat{b}_{a}(\omega)\hat{b}_{b}(\omega){\hat{G}}_{pa}(\omega){\hat{G}}_{ab}(\omega){\hat{G}}_{bp}(\omega)
+b^a(ω)b^b(ω)G^pb(ω)G^ba(ω)G^ap(ω)])\displaystyle+\hat{b}_{a}(\omega)\hat{b}_{b}(\omega){\hat{G}}_{pb}(\omega){\hat{G}}_{ba}(\omega){\hat{G}}_{ap}(\omega)\bigr{]}\Bigr{)} (84)

where b^a(ω)=δmaω2\hat{b}_{a}(\omega)=\delta m_{a}\,\omega^{2} and we truncate the expansion at the second order in λ\lambda. To obtain the second order correction to the EPR, we add its complex conjugate (c.c) and divide by a factor 22 and the resulting formula must be integrated over ω\omega.

Since we have already computed the expansion up to the first order, we here write only the second order correction contained in the long expression (E.3). In the following, for conciseness, we set ωn2=ω2(qn)\omega_{n}^{2}=\omega^{2}(q_{n}).

Using the Fourier representation of the lattice Green’s functions (19) the second order correction involves the following type of integrals over frequencies and sums over wavevectors:

dω2πiτω51+ω2τ2G^p0(ω)G^00(ω)G^0p(ω)+c.c\displaystyle\int_{-\infty}^{\infty}\frac{d\omega}{2\pi}\frac{i\tau\omega^{5}}{1+\omega^{2}\tau^{2}}{\hat{G}}_{p0}(\omega){\hat{G}}_{00}(\omega){\hat{G}}_{0p}(\omega)+c.c
=(1N1m)3q1q2q3dω2πiω5τ1+ω2τ2(ei𝐪𝟏𝐫p0ω2iγω/mω12)(1ω2iγω/mω22)(ei𝐪𝟑𝐫p0ω2iγω/mω32)+c.c.\displaystyle=-\Bigl{(}\frac{1}{N}\frac{1}{m}\Bigr{)}^{3}\sum_{q_{1}}\sum_{q_{2}}\sum_{q_{3}}\int_{-\infty}^{\infty}\frac{d\omega}{2\pi}\frac{i\omega^{5}\tau}{1+\omega^{2}\tau^{2}}(\frac{e^{-i\mathbf{q_{1}}\cdot\mathbf{r}_{p}^{0}}}{\omega^{2}-i\gamma\omega/m-\omega^{2}_{1}})(\frac{1}{\omega^{2}-i\gamma\omega/m-\omega^{2}_{2}})(\frac{e^{i\mathbf{q_{3}}\cdot\mathbf{r}_{p}^{0}}}{\omega^{2}-i\gamma\omega/m-\omega^{2}_{3}})+c.c.
(85)

Using the residue theorem to perform the above ω\omega-integral we arrive at:

dω2πf^pa(ω)V^p(ω)\displaystyle\int_{-\infty}^{\infty}\frac{d\omega}{2\pi}\langle\hat{f}^{a}_{p}(-\omega)\hat{V}_{p}(\omega)\rangle =v02γ2τ(δm)2(1N1m)3q1q2q3ei𝐪𝟏𝐫p0ei𝐪𝟑𝐫p0×\displaystyle=v_{0}^{2}\gamma^{2}\tau(\delta m)^{2}\Bigl{(}\frac{1}{N}\frac{1}{m}\Bigr{)}^{3}\sum_{q_{1}}\sum_{q_{2}}\sum_{q_{3}}e^{-i\mathbf{q_{1}}\cdot\mathbf{r}_{p}^{0}}e^{-i\mathbf{q_{3}}\cdot\mathbf{r}_{p}^{0}}\times (86)
×{1(1+τ/τI+ω12τ2)(1+τ/τI+ω22τ2)(1+τ/τI+ω32τ2)}\displaystyle\times\Bigl{\{}\frac{1}{(1+\tau/\tau_{I}+\omega_{1}^{2}\tau^{2})\,(1+\tau/\tau_{I}+\omega_{2}^{2}\tau^{2})\,(1+\tau/\tau_{I}+\omega_{3}^{2}\tau^{2})}\Bigr{\}}

Gathering all together, we find the following nice formula for the EPR:

ns˙p=12Tp(Vp(ω)fpa(ω)+c.c)=1Tv02γ2mτn{11+τ/τI𝒢pp(11+τ/τI)2(δmam𝒢ap𝒢pa+δmbm𝒢bp𝒢pb)\displaystyle\sum_{n}\dot{s}_{p}=\frac{1}{2T}\sum_{p}\Bigl{(}\langle V_{p}(\omega)f_{p}^{a}(-\omega)\rangle+c.c\Bigr{)}=\frac{1}{T}\frac{v_{0}^{2}\gamma^{2}}{m}\tau\sum_{n}\Bigl{\{}\frac{1}{1+\tau/\tau_{I}}\,{\mathcal{G}}_{pp}-(\frac{1}{1+\tau/\tau_{I}})^{2}\Bigl{(}\frac{\delta m_{a}}{m}{\mathcal{G}}_{ap}{\mathcal{G}}_{pa}+\frac{\delta m_{b}}{m}{\mathcal{G}}_{bp}{\mathcal{G}}_{pb}\Bigr{)}
+(11+τ/τI)3(δma2m2𝒢pa𝒢aa𝒢ap+δmb2m2𝒢pb𝒢bb𝒢bp+2δmaδmbm2𝒢pa𝒢ab𝒢bp)}+\displaystyle+(\frac{1}{1+\tau/\tau_{I}})^{3}\Bigl{(}\frac{\delta m_{a}^{2}}{m^{2}}{\mathcal{G}}_{pa}{\mathcal{G}}_{aa}{\mathcal{G}}_{ap}+\frac{\delta m_{b}^{2}}{m^{2}}{\mathcal{G}}_{pb}{\mathcal{G}}_{bb}{\mathcal{G}}_{bp}+2\frac{\delta m_{a}\delta m_{b}}{m^{2}}{\mathcal{G}}_{pa}{\mathcal{G}}_{ab}{\mathcal{G}}_{bp}\Bigr{)}\Bigr{\}}+\dots (87)

The propagators 𝒢aa{\mathcal{G}}_{aa} and 𝒢bb{\mathcal{G}}_{bb} are equal but the prefactors depend on the signs and amplitudes of the mass ratios. Switching to continuous notation 𝒢ab𝒢(rab)\mathcal{G}_{ab}\to{\mathcal{G}}(r_{ab}). It decays exponentially with the separation rabr_{ab} between two lattice points and a characteristic length ξ\xi. Perhaps, the most interesting term is the last because describes the local value of the EPR (i.e. at 𝐫p{\bf r}_{p}) due to the combined effect of two imperfections sitting at 𝐫a{\bf r}_{a} and 𝐫b{\bf r}_{b}, respectively.

References

  • Marchetti et al. [2013] M. Marchetti, J. Joanny, S. Ramaswamy, T. Liverpool, J. Prost, M. Rao,  and R. A. Simha, Reviews of Modern Physics 85, 1143 (2013).
  • Bechinger et al. [2016] C. Bechinger, R. Di Leonardo, H. Löwen, C. Reichhardt, G. Volpe,  and G. Volpe, Reviews of Modern Physics 88, 045006 (2016).
  • Alert and Trepat [2020] R. Alert and X. Trepat, Annual Review of Condensed Matter Physics 11, 77 (2020).
  • Garcia et al. [2015] S. Garcia, E. Hannezo, J. Elgeti, J.-F. Joanny, P. Silberzan,  and N. S. Gov, PNAS 112, 15314 (2015).
  • Henkes et al. [2020] S. Henkes, K. Kostanjevec, J. M. Collinson, R. Sknepnek,  and E. Bertin, Nature Communications 11, 1405 (2020).
  • Dell’Arciprete et al. [2018] D. Dell’Arciprete, M. Blow, A. Brown, F. Farrell, J. S. Lintuvuori, A. McVey, D. Marenduzzo,  and W. C. Poon, Nat. Comm. 9, 4190 (2018).
  • Peruani et al. [2012] F. Peruani, J. Starruß, V. Jakovljevic, L. Søgaard-Andersen, A. Deutsch,  and M. Bär, Physical Review Letters 108, 098102 (2012).
  • Wioland et al. [2016] H. Wioland, F. G. Woodhouse, J. Dunkel,  and R. E. Goldstein, Nature Physics 12, 341 (2016).
  • Petroff et al. [2015] A. P. Petroff, X.-L. Wu,  and A. Libchaber, Physical Review Letters 114, 158102 (2015).
  • Buttinoni et al. [2013] I. Buttinoni, J. Bialké, F. Kümmel, H. Löwen, C. Bechinger,  and T. Speck, Physical Review Letters 110, 238301 (2013).
  • Ginot et al. [2018] F. Ginot, I. Theurkauff, F. Detcheverry, C. Ybert,  and C. Cottin-Bizonne, Nat. Comm. 9, 696 (2018).
  • Palacci et al. [2013] J. Palacci, S. Sacanna, A. P. Steinberg, D. J. Pine,  and P. M. Chaikin, Science 339, 936 (2013).
  • Mognetti et al. [2013] B. M. Mognetti, A. Šarić, S. Angioletti-Uberti, A. Cacciuto, C. Valeriani,  and D. Frenkel, Physical Review Letters 111, 245702 (2013).
  • Briand and Dauchot [2016] G. Briand and O. Dauchot, Physical Review Letters 117, 098004 (2016).
  • Briand et al. [2018] G. Briand, M. Schindler,  and O. Dauchot, Physical Review Letters 120, 208001 (2018).
  • Baconnier et al. [2022] P. Baconnier, D. Shohat, C. Hernandèz, C. Coulais, V. Démery, G. Düring,  and O. Dauchot, Nature Physics 18, 1234–1239 (2022).
  • Plati et al. [2019] A. Plati, A. Baldassarri, A. Gnoli, G. Gradenigo,  and A. Puglisi, Physical review letters 123, 038002 (2019).
  • Plati and Puglisi [2022] A. Plati and A. Puglisi, Physical review letters 128, 208001 (2022).
  • Ferrante et al. [2013] E. Ferrante, A. E. Turgut, M. Dorigo,  and C. Huepe, Physical Review Letters 111, 268302 (2013).
  • Menzel and Löwen [2013] A. M. Menzel and H. Löwen, Physical Review Letters 110, 055702 (2013).
  • Pasupalak et al. [2020] A. Pasupalak, L. Yan-Wei, R. Ni,  and M. P. Ciamarra, Soft Matter 16, 3914 (2020).
  • Praetorius et al. [2018] S. Praetorius, A. Voigt, R. Wittkowski,  and H. Löwen, Physical Review E 97, 052615 (2018).
  • Caprini and Marini Bettolo Marconi [2020] L. Caprini and U. Marini Bettolo Marconi, The Journal of Chemical Physics 153, 184901 (2020).
  • Huang et al. [2020] Z.-F. Huang, A. M. Menzel,  and H. Löwen, Physical Review Letters 125, 218002 (2020).
  • Li and Ai [2021] J.-j. Li and B.-q. Ai, New Journal of Physics 23, 083044 (2021).
  • Bialké et al. [2012] J. Bialké, T. Speck,  and H. Löwen, Physical Review Letters 108, 168301 (2012).
  • Omar et al. [2021] A. K. Omar, K. Klymko, T. GrandPre,  and P. L. Geissler, Physical Review Letters 126, 188002 (2021).
  • Digregorio et al. [2018] P. Digregorio, D. Levis, A. Suma, L. F. Cugliandolo, G. Gonnella,  and I. Pagonabarraga, Physical Review Letters 121, 098003 (2018).
  • Klamser et al. [2018] J. U. Klamser, S. C. Kapfer,  and W. Krauth, Nature Communications 9, 5045 (2018).
  • Caprini et al. [2020a] L. Caprini, U. M. B. Marconi, C. Maggi, M. Paoluzzi,  and A. Puglisi, Physical Review Research 2, 023321 (2020a).
  • Caprini and Marconi [2020] L. Caprini and U. M. B. Marconi, Physical Review Research 2, 033518 (2020).
  • Marconi et al. [2021] U. M. B. Marconi, L. Caprini,  and A. Puglisi, New Journal of Physics 23, 103024 (2021).
  • Szamel and Flenner [2021] G. Szamel and E. Flenner, EPL (Europhysics Letters) 133, 60002 (2021).
  • Kuroda et al. [2023] Y. Kuroda, H. Matsuyama, T. Kawasaki,  and K. Miyazaki, Physical Review Research 5, 013077 (2023).
  • Kopp and Klapp [2023] R. A. Kopp and S. H. Klapp, arXiv preprint arXiv:2301.11829  (2023).
  • Keta et al. [2022] Y.-E. Keta, R. L. Jack,  and L. Berthier, Physical Review Letters 129, 048002 (2022).
  • Flenner et al. [2016] E. Flenner, G. Szamel,  and L. Berthier, Soft Matter 12, 7136 (2016).
  • Debets et al. [2023] V. E. Debets, H. Löwen,  and L. M. Janssen, Physical Review Letters 130, 058201 (2023).
  • Caprini et al. [2020b] L. Caprini, U. M. B. Marconi,  and A. Puglisi, Physical Review Letters 124, 078001 (2020b).
  • Caprini and Löwen [2023] L. Caprini and H. Löwen, Physical Review Letters 130, 148202 (2023).
  • Sekimoto [2010] K. Sekimoto, Stochastic energetics, Vol. 799 (Springer, 2010).
  • Seifert [2012] U. Seifert, Reports on Progress in Physics 75, 126001 (2012).
  • Fodor et al. [2016] É. Fodor, C. Nardini, M. E. Cates, J. Tailleur, P. Visco,  and F. van Wijland, Physical Review Letters 117, 038103 (2016).
  • Fodor et al. [2021] É. Fodor, R. L. Jack,  and M. E. Cates, Annual Review of Condensed Matter Physics 13 (2021).
  • O’Byrne et al. [2022] J. O’Byrne, Y. Kafri, J. Tailleur,  and F. van Wijland, Nature Reviews Physics 4, 167–183 (2022).
  • Datta et al. [2022] A. Datta, P. Pietzonka,  and A. C. Barato, Physical Review X 12, 031034 (2022).
  • Mandal et al. [2017] D. Mandal, K. Klymko,  and M. R. DeWeese, Physical Review Letters 119, 258001 (2017).
  • Caprini et al. [2018] L. Caprini, U. M. B. Marconi, A. Puglisi,  and A. Vulpiani, Physical Review Letters 121, 139801 (2018).
  • Pietzonka and Seifert [2017] P. Pietzonka and U. Seifert, Journal of Physics A: Mathematical and Theoretical 51, 01LT01 (2017).
  • Caprini et al. [2019a] L. Caprini, U. M. B. Marconi, A. Puglisi,  and A. Vulpiani, Journal of Statistical Mechanics: Theory and Experiment 2019, 053203 (2019a).
  • Puglisi and Marini Bettolo Marconi [2017] A. Puglisi and U. Marini Bettolo Marconi, Entropy 19, 356 (2017).
  • Cocconi et al. [2020] L. Cocconi, R. Garcia-Millan, Z. Zhen, B. Buturca,  and G. Pruessner, Entropy 22, 1252 (2020).
  • Razin [2020] N. Razin, Physical Review E 102, 030103 (2020).
  • Shankar and Marchetti [2018] S. Shankar and M. C. Marchetti, Physical Review E 98, 020604 (2018).
  • Chaki and Chakrabarti [2018] S. Chaki and R. Chakrabarti, Physica A: Statistical Mechanics and its Applications 511, 302 (2018).
  • Garcia-Millan and Pruessner [2021] R. Garcia-Millan and G. Pruessner, Journal of Statistical Mechanics: Theory and Experiment 2021, 063203 (2021).
  • Frydel [2023] D. Frydel, Physical Review E 107, 014604 (2023).
  • Dabelow et al. [2021] L. Dabelow, S. Bo,  and R. Eichhorn, Journal of Statistical Mechanics: Theory and Experiment 2021, 033216 (2021).
  • GrandPre et al. [2021] T. GrandPre, K. Klymko, K. K. Mandadapu,  and D. T. Limmer, Physical Review E 103, 012613 (2021).
  • Chiarantoni et al. [2020] P. Chiarantoni, F. Cagnetta, F. Corberi, G. Gonnella,  and A. Suma, Journal of Physics A: Mathematical and Theoretical 53, 36LT02 (2020).
  • Crosato et al. [2019] E. Crosato, M. Prokopenko,  and R. E. Spinney, Physical Review E 100, 042613 (2019).
  • Guo et al. [2021] B. Guo, S. Ro, A. Shih, T. V. Phan, R. H. Austin, S. Martiniani, D. Levine,  and P. M. Chaikin, arXiv preprint arXiv:2105.12707  (2021).
  • Nardini et al. [2017] C. Nardini, É. Fodor, E. Tjhung, F. Van Wijland, J. Tailleur,  and M. E. Cates, Physical Review X 7, 021007 (2017).
  • Borthne et al. [2020] Ø. L. Borthne, É. Fodor,  and M. E. Cates, New Journal of Physics 22, 123012 (2020).
  • Pruessner and Garcia-Millan [2022] G. Pruessner and R. Garcia-Millan, arXiv preprint arXiv:2211.11906  (2022).
  • Paoluzzi [2022] M. Paoluzzi, Physical Review E 105, 044139 (2022).
  • Caprini et al. [2022a] L. Caprini, U. M. B. Marconi, A. Puglisi,  and H. Löwen, arXiv preprint arXiv:2207.02369  (2022a).
  • Ziman [1972] J. M. Ziman, Principles of the Theory of Solids (Cambridge university press, 1972).
  • Fily and Marchetti [2012] Y. Fily and M. C. Marchetti, Physical Review Letters 108, 235702 (2012).
  • Solon et al. [2015] A. P. Solon, J. Stenhammar, R. Wittkowski, M. Kardar, Y. Kafri, M. E. Cates,  and J. Tailleur, Physical review letters 114, 198301 (2015).
  • Siebert et al. [2018] J. T. Siebert, F. Dittrich, F. Schmid, K. Binder, T. Speck,  and P. Virnau, Physical Review E 98, 030601 (2018).
  • Caporusso et al. [2020] C. B. Caporusso, P. Digregorio, D. Levis, L. F. Cugliandolo,  and G. Gonnella, Physical Review Letters 125, 178004 (2020).
  • Martin-Roca et al. [2021] J. Martin-Roca, R. Martinez, L. C. Alexander, A. L. Diez, D. G. Aarts, F. Alarcon, J. Ramírez,  and C. Valeriani, The Journal of Chemical Physics 154, 164901 (2021).
  • Vuijk et al. [2020] H. D. Vuijk, J.-U. Sommer, H. Merlitz, J. M. Brader,  and A. Sharma, Physical Review Research 2, 013320 (2020).
  • Hecht et al. [2022] L. Hecht, S. Mandal, H. Löwen,  and B. Liebchen, Physical Review Letters 129, 178001 (2022).
  • Farage et al. [2015] T. F. Farage, P. Krinninger,  and J. M. Brader, Physical Review E 91, 042310 (2015).
  • Caprini et al. [2022b] L. Caprini, A. R. Sprenger, H. Löwen,  and R. Wittmann, The Journal of Chemical Physics 156, 071102 (2022b).
  • Caprini and Marconi [2021] L. Caprini and U. M. B. Marconi, Soft Matter 17, 4109 (2021).
  • Speck [2016] T. Speck, EPL (Europhysics Letters) 114, 30006 (2016).
  • Szamel [2019] G. Szamel, Physical Review E 100, 050603 (2019).
  • Spinney and Ford [2012] R. E. Spinney and I. J. Ford, Physical Review Letters 108, 170603 (2012).
  • Dabelow et al. [2019] L. Dabelow, S. Bo,  and R. Eichhorn, Physical Review X 9, 021009 (2019).
  • Pigolotti et al. [2017] S. Pigolotti, I. Neri, É. Roldán,  and F. Jülicher, Physical Review Letters 119, 140604 (2017).
  • Ashcroft and Mermin [2022] N. W. Ashcroft and N. D. Mermin, Solid state physics (Cengage Learning, 2022).
  • Szamel [2014] G. Szamel, Physical Review E 90, 012111 (2014).
  • Maggi et al. [2015] C. Maggi, U. M. B. Marconi, N. Gnan,  and R. Di Leonardo, Scientific Reports 5, 10742 (2015).
  • Szamel et al. [2015] G. Szamel, E. Flenner,  and L. Berthier, Physical Review E 91, 062304 (2015).
  • Wittmann et al. [2017] R. Wittmann, C. Maggi, A. Sharma, A. Scacchi, J. M. Brader,  and U. M. B. Marconi, Journal of Statistical Mechanics: Theory and Experiment 2017, 113207 (2017).
  • Caprini et al. [2019b] L. Caprini, U. Marini Bettolo Marconi, A. Puglisi,  and A. Vulpiani, The Journal of Chemical Physics 150, 024902 (2019b).
  • Das et al. [2018] S. Das, G. Gompper,  and R. G. Winkler, New Journal of Physics 20, 015001 (2018).
  • Caprini and Marconi [2018] L. Caprini and U. M. B. Marconi, Soft Matter 14, 9044 (2018).
  • Maggi et al. [2021] C. Maggi, M. Paoluzzi, A. Crisanti, E. Zaccarelli,  and N. Gnan, Soft Matter 17, 3807 (2021).
  • Abramowitz et al. [1988] M. Abramowitz, I. A. Stegun,  and R. H. Romer, “Handbook of mathematical functions with formulas, graphs, and mathematical tables,”  (1988).
  • Casiulis et al. [2021] M. Casiulis, D. Hexner,  and D. Levine, Physical Review E 104, 064614 (2021).
  • Debets et al. [2021] V. E. Debets, X. M. De Wit,  and L. M. Janssen, Physical Review Letters 127, 278002 (2021).
  • Chaikin et al. [1995] P. M. Chaikin, T. C. Lubensky,  and T. A. Witten, Principles of condensed matter physics, Vol. 10 (Cambridge University Press Cambridge, 1995).
  • Guttmann [2010] A. J. Guttmann, Journal of Physics A: Mathematical and Theoretical 43, 305205 (2010).