This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Initial-Value Privacy of Linear Dynamical Systems

Lei Wang, Ian R. Manchester, Jochen Trumpf and Guodong Shi *This research is supported by the Australian Research Council Discovery Project DP190103615. A preliminary work is scheduled to be presented at the 59th IEEE Conference on Decision and Control [23].L. Wang, I. R. Manchester and G. Shi are with Australian Center for Field Robotics, The University of Sydney, Australia. (E-mail: lei.wang2; ian.manchester; guodong.shi@sydney.edu.au) J. Trumpf is with College of Engineering and Computer Science, The Australian National University, Australia. (E-mail: Jochen.Trumpf@anu.edu.au)
Abstract

This paper studies initial-value privacy problems of linear dynamical systems. We consider a standard linear time-invariant system with random process and measurement noises. For such a system, eavesdroppers having access to system output trajectories may infer the system initial states, leading to initial-value privacy risks. When a finite number of output trajectories are eavesdropped, we consider a requirement that any guess about the initial values can be plausibly denied. When an infinite number of output trajectories are eavesdropped, we consider a requirement that the initial values should not be uniquely recoverable. In view of these two privacy requirements, we define differential initial-value privacy and intrinsic initial-value privacy, respectively, for the system as metrics of privacy risks. First of all, we prove that the intrinsic initial-value privacy is equivalent to unobservability, while the differential initial-value privacy can be achieved for a privacy budget depending on an extended observability matrix of the system and the covariance of the noises. Next, the inherent network nature of the considered linear system is explored, where each individual state corresponds to a node and the state and output matrices induce interaction and sensing graphs, leading to a network system. Under this network system perspective, we allow the initial states at some nodes to be public, and investigate the resulting intrinsic initial-value privacy of each individual node. We establish necessary and sufficient conditions for such individual node initial-value privacy, and also prove that the intrinsic initial-value privacy of individual nodes is generically determined by the network structure. These results may be extended to linear systems with time-varying dynamics under the same analysis framework.

1 Introduction

The rapid developments in networked control systems [1], internet of things [2, 3], smart grids [4], intelligent transportation [5, 6] during the past decade shed lights on how future infrastructures of our society can be made smart via interconnected sensing, dynamics, and control over cyber-physical systems. The operation of such systems inherently relies on users and subsystems sharing signals such as measurements, dynamical states, control inputs in their local views, so that collective decisions become possible. The shared signals might directly contain sensitive information of a private nature, e.g., loads and currents in a grid reflect directly activities in a residence or productions in a company [7]; or they might indirectly encode physical parameters, user preferences, economic inclination, e.g., control inputs in economic model predictive control implicitly carry information about the system’s economic objective as it is used as the objective function [8].

Several privacy metrics have been developed to address privacy expectations of dynamical systems. A notable metric is differential privacy, which originated in computer science[9, 10, 11]. When a mechanism is applied taking the sensitive information as input and producing an output as the learning outcome, differential privacy guarantees plausible deniability of any inference about the private information by eavesdroppers having access to the output. Differential privacy has become the canonical solutions for privacy risk characterization in dataset processing, due to its quantitative nature and robustness to post-processing and side information [10, 11]. The differential privacy framework has also been generalized to dynamical systems for problems ranging from average consensus seeking [12] and distributed optimization [13, 14] to estimation and filtering [15, 7] and feedback control [16, 17]. Consistent with its root, differential privacy for a dynamical system provides the system with the ability to have plausible deniability facing eavesdroppers, e.g., recent surveys in [19, 18].

Besides differential privacy, another related but different privacy risk lies in the possibility that an eavesdropper makes an accurate enough estimation of the sensitive parameters or signals, perhaps from a number of repeated observations. In [20], the variance matrix of the maximum likelihood estimation was utilized to measure how accurate the initial node states in a consensus network maybe estimated from the trajectories of one or more malicious nodes. In [21], a measure of privacy was developed using the inverse of the trace of the Fisher information matrix, which is a lower bound of the variance of estimation error of unbiased estimators.

In particular, initial values of a dynamical system may carry sensitive private information, leading to privacy risks related to the initial values. For instance, when distributed load shedding in micro-grid systems is performed by employing an average consensus dynamics, initial values represent load demands of individual users [22]. In [12, 20], the initial-value privacy of the average consensus algorithm over dynamical networks was studied, and injecting exponentially decaying noises was used as a privacy-protection approach. The privacy of the initial value for a dynamical system is also of significant theoretical interest as the system trajectories or distributions of the system trajectories are fully parametrized by the initial value, in the presence of the plant knowledge. In [21], the initial-value privacy of a linear system was studied, and an optimal privacy-preserving policy was established for the probability density function of the additive noise such that the balance between the Fisher information-based privacy level and output performance is achieved.

In this paper, we study initial-value privacy problems of linear dynamical systems in the presence of random process and sensor noises. For such a system, eavesdroppers having access to system output trajectories may infer the system initial states. When a finite number of output trajectories are eavesdropped, we consider a requirement that any guess about the initial values can be plausibly denied. When an infinite number of output trajectories are eavesdropped, we consider a requirement that the initial values should not be uniquely recoverable. These requirements inspire us to define and investigate two initial-value privacy metrics for the considered linear system: differential initial-value privacy on the plausible deniability, and intrinsic initial-value privacy on the fundamental non-identifiability. Next, we turn to the inherent network nature of linear systems, where each dimension of the system state corresponds to a node, and the state and output matrices induce interaction and sensing graphs. In the presence of malicious users or additional observations, the initial states at a subset of the nodes may be known to the eavesdroppers as well. With such a public disclosure set, the intrinsic initial-value privacy of each individual node, and the structural privacy metric of the entire network, become interesting and challenging questions.

The main results of this paper are summarized in the following:

  • For general linear systems, we prove that intrinsic initial-value privacy is equivalent to unobservability; and that differential initial-value privacy can be achieved for a privacy budget depending on an extended observability matrix of the system and the covariance of the noises.

  • For networked linear systems, we establish necessary and sufficient conditions for intrinsic initial-value privacy of individual nodes, in the presence of a public disclosure set consisting of nodes with known initial states. We also show that the network structure plays a generic role in determining the privacy of each node’s initial value, and the maximally allowed number of arbitrary disclosed nodes under privacy guarantee as a network privacy index.

These results may be extended to linear (network) systems with time-varying dynamics under the same analysis framework. The network privacy as proven to be a generic structural property, is a generalization to the classical structural observability results.

A preliminary version of the results is presented in [23] where the technical proofs, illustrative examples, and many discussions were not included. The remainder of the paper is organized as follows. Section 2 formulates the problem of interest for linear dynamical systems. In Section 3, intrinsic initial-value privacy and differential privacy are explicitly defined and studied by regarding all initial values as a whole. Then regarding the system from the network system perspective, Section 4 analyzes the intrinsic initial-value privacy of individual nodes with a public disclosure set and studies a quantitative network privacy index, from exact and generic perspectives. Finally a brief conclusion is made in Section 5. All technical proofs are presented in the Appendix.

Notations. We denote by \mathbb{R} the real numbers and n\mathbb{R}^{n} the real space of nn dimension for any positive integer nn. For a vector xnx\in\mathbb{R}^{n}, the norm x=(xx)12\|x\|=(x^{\top}x)^{\frac{1}{2}}. For any x1,,xmnx_{1},\ldots,x_{m}\in\mathbb{R}^{n}, we denote [x1;;xm][x_{1};\ldots;x_{m}] as a vector [x1xm]mn\begin{bmatrix}x_{1}^{\top}&\ldots&x_{m}^{\top}\end{bmatrix}^{\top}\in\mathbb{R}^{mn}, and [x1,,xm][x_{1},\ldots,x_{m}] as a matrix of which the ii-the column is xix_{i}, i=1,,mi=1,\ldots,m. For any square matrix AA, let σ(A)\sigma(A) denote the set of all eigenvalues of AA, and σM(A),σm(A)\sigma_{M}(A),\sigma_{m}(A) denote the maximum and minimum eigenvalues, respectively. For any matrix An×mA\in\mathbb{R}^{n\times m}, the norm A=σM(AA)12\|A\|=\sigma_{M}(A^{\top}A)^{\frac{1}{2}}. For any set XnX\in\mathbb{R}^{n}, we let 1X(x)1_{X}(x) be a characteristic function, satisfying 1X(x)=11_{X}(x)=1 for xXx\in X and 1X(x)=01_{X}(x)=0 for xXx\notin X. The range of a matrix or a function is denoted as range()\textnormal{range}(\cdot), and the span of a matrix is denoted as span()\textnormal{span}(\cdot). We denote pdf()\textnormal{pdf}(\cdot) as the probability density function, and 𝐞in\mathbf{e}_{i}\in\mathbb{R}^{n} as a vector whose entries are all zero except the ii-th being one.

2 Problem Statement

2.1 Initial-Value Privacy for Linear Systems

We consider the following linear time-invariant (LTI) system

𝐱t+1=𝐀𝐱t+𝝂t𝐲t=𝐂𝐱t+𝝎t{\begin{array}[]{rcl}\mathbf{x}_{t+1}&=&\mathbf{A}\,\mathbf{x}_{t}+\bm{\nu}_{t}\\ \mathbf{y}_{t}&=&\mathbf{C}\,\mathbf{x}_{t}+\bm{\omega}_{t}\end{array}} (1)

for t=0,1,t=0,1,\ldots, where 𝐱tn\mathbf{x}_{t}\in\mathbb{R}^{n} is state, 𝐲tm\mathbf{y}_{t}\in\mathbb{R}^{m} is output, 𝝂tn\bm{\nu}_{t}\in\mathbb{R}^{n} is process noise, and 𝝎tm\bm{\omega}_{t}\in\mathbb{R}^{m} is measurement noise. Throughout this paper, we assume that 𝝂t\bm{\nu}_{t} and 𝝎t\bm{\omega}_{t} are random variables according to some zero-mean distributions, and rank(𝐂)>0\textnormal{rank}\;(\mathbf{C})>0.

In this paper, we suppose that initial values 𝐱0\mathbf{x}_{0} are privacy-sensitive information for the system. Eavesdroppers having access to the output trajectory (𝐲t)t=0T(\mathbf{y}_{t})_{t=0}^{T} with Tn1T\geq n-1 attempt to infer the private initial values. To facilitate subsequent analysis, we denote the measurement vector 𝐘t=[𝐲Tt;𝐲Tt+1;;𝐲T]\mathbf{Y}_{t}=[\mathbf{y}_{T-t};\mathbf{y}_{T-t+1};\ldots;\mathbf{y}_{T}], the noise vectors 𝐕t=[𝝂Tt;𝝂Tt+1;;𝝂T1]\mathbf{V}_{t}=[\bm{\nu}_{T-t};\bm{\nu}_{T-t+1};\ldots;\bm{\nu}_{T-1}] and 𝐖t=[𝝎Tt;𝝎Tt+1;;𝝎T]\mathbf{W}_{t}=[\bm{\omega}_{T-t};\bm{\omega}_{T-t+1};\ldots;\bm{\omega}_{T}], and let

𝐎ob=[𝐂𝐂𝐀𝐂𝐀n1],𝐎t=[𝐂𝐂𝐀𝐂𝐀t],𝐇t=[0000𝐂000𝐂𝐀𝐂00𝐂𝐀t2𝐂𝐀t3𝐂0𝐂𝐀t1𝐂𝐀t2𝐂𝐀𝐂].\begin{array}[]{l}\mathbf{O}_{\textnormal{o}b}=\begin{bmatrix}\mathbf{C}\\ \mathbf{C}\mathbf{A}\\ \vdots\\ \mathbf{C}\mathbf{A}^{n-1}\end{bmatrix}\,,\quad\mathbf{O}_{t}=\begin{bmatrix}\mathbf{C}\\ \mathbf{C}\mathbf{A}\\ \vdots\\ \mathbf{C}\mathbf{A}^{t}\end{bmatrix}\,,\\ \mathbf{H}_{t}=\begin{bmatrix}0&0&\cdots&0&0\\ \mathbf{C}&0&\ddots&0&0\\ \mathbf{C}\mathbf{A}&\mathbf{C}&\ddots&0&0\\ \vdots&\ddots&\ddots&\ddots&\vdots\\ \mathbf{C}\mathbf{A}^{t-2}&\mathbf{C}\mathbf{A}^{t-3}&\ddots&\mathbf{C}&0\\ \mathbf{C}\mathbf{A}^{t-1}&\mathbf{C}\mathbf{A}^{t-2}&\cdots&\mathbf{C}\mathbf{A}&\mathbf{C}\end{bmatrix}\,.\end{array}

Here 𝐎ob\mathbf{O}_{\textnormal{o}b} is observability matrix, and 𝐎t\mathbf{O}_{t} denotes extended observability matrix for tnt\geq n and 𝐇t\mathbf{H}_{t} is a lower block triangular Toeplitz matrix. Thus, the mapping from initial state 𝐱0\mathbf{x}_{0} to the output trajectory 𝐘T\mathbf{Y}_{T} as :nm(T+1)\mathcal{M}:\mathbb{R}^{n}\rightarrow\mathbb{R}^{m(T+1)} can be described by

𝐘T=(𝐱0):=𝐎T𝐱0+𝐇T𝐕T+𝐖T.{\mathbf{Y}_{T}=\mathcal{M}(\mathbf{x}_{0}):=\mathbf{O}_{T}\mathbf{x}_{0}+\mathbf{H}_{T}\mathbf{V}_{T}+\mathbf{W}_{T}\,.} (2)

The system (1) may be implemented or run independently for multiple times with the same initial state 𝐱0\mathbf{x}_{0}. When all resulting output trajectories are eavesdropped, the eavesdropper may derive an estimate of 𝐱0\mathbf{x}_{0} by statistical inference methods such as maximum likelihood estimation (MLE). The resulting estimate accuracy may converge to zero as the number of eavesdropped output trajectories converges to infinity, leading to initial-value privacy risks. In view of this, we consider a requirement that

  • (R1)

    the initial values should not be uniquely recoverable by an eavesdropper having an infinite number of output trajectories.

To address the requirement (R1), we define intrinsic initial-value privacy as below.

Definition 1

The system (1) preserves intrinsic initial-value privacy if the initial state 𝐱0\mathbf{x}_{0} is statistically non-identifiable from observing (𝐲t)t=0T(\mathbf{y}_{t})_{t=0}^{T}, i.e., for any 𝐱0n\mathbf{x}_{0}\in\mathbb{R}^{n}, there exists a 𝐱0𝐱0n\mathbf{x}^{\prime}_{0}\neq\mathbf{x}_{0}\in\mathbb{R}^{n} such that

pdf(𝐘T|𝐱0)=pdf(𝐘T|𝐱0).\textnormal{pdf}\left(\mathbf{Y}_{T}|\mathbf{x}_{0}\right)=\textnormal{pdf}\left(\mathbf{Y}_{T}|\mathbf{x}^{\prime}_{0}\right)\,. (3)

In Definition 1, equality (3) indicates that there exist other values 𝐱0\mathbf{x}^{\prime}_{0}, yielding the same output trajectory distribution as that of the initial value 𝐱0\mathbf{x}_{0}. This in turn guarantees that the system preserving the intrinsic initial-value privacy satisfies the requirement (R1).

Remark 1

The intrinsic initial-value privacy guarantees the initial state 𝐱0\mathbf{x}_{0} indistinguishable from the 𝐱0\mathbf{x}^{\prime}_{0} satisfying (3), which is related to the notion of undetectable attacks in the secure control literature, e.g. [28], where the attacker tries to inject signals that are indistinguishable.

On the other hand, when a finite NN output trajectories are eavesdropped, the eavesdroppers may infer the initial values under which there is a probability of generating these output trajectories. In view of this, we consider a requirement that

  • (R2)

    any inference about the true initial value from the eavesdroppers can be denied by supplying any value within a range to the inference with a similar probability of generating the eavesdropped NN output trajectories.

This property is referred to as plausible deniability in the literature [27]. With this in mind, we denote the eavesdropped output trajectories as 𝐘T1,,𝐘TN\mathbf{Y}_{T}^{1},\ldots,\mathbf{Y}_{T}^{N}. The mapping from initial state 𝐱0\mathbf{x}_{0} to 𝐘T1,,𝐘TN\mathbf{Y}_{T}^{1},\ldots,\mathbf{Y}_{T}^{N} is a concatenation of NN mappings (𝐱0)\mathcal{M}(\mathbf{x}_{0}), i.e.,

[𝐘T1𝐘TN]=N(𝐱0):=[(𝐱0)(𝐱0)].{\begin{bmatrix}\mathbf{Y}_{T}^{1}\cr\vdots\cr\mathbf{Y}_{T}^{N}\end{bmatrix}=\mathcal{M}^{N}(\mathbf{x}_{0}):=\begin{bmatrix}\mathcal{M}(\mathbf{x}_{0})\cr\vdots\cr\mathcal{M}(\mathbf{x}_{0})\end{bmatrix}\,.} (4)

We then define differential initial-value privacy as below [9, 10].

Definition 2

We define two initial values 𝐱0,𝐱0n\mathbf{x}_{0},\mathbf{x}^{\prime}_{0}\in\mathbb{R}^{n} as dd-adjacent if 𝐱0𝐱0d\|\mathbf{x}_{0}-\mathbf{x}^{\prime}_{0}\|\leq d. The system (1) preserves (ϵ,δ)(\epsilon,\delta)-differential privacy of initial values for some privacy budgets ϵ>0,0.5>δ>0\epsilon>0,0.5>\delta>0 under dd-adjacency if for all Rrange(N)R\subset\mbox{range}(\mathcal{M}^{N}),

(N(𝐱0)R)eϵ(N(𝐱0)R)+δ{\mathbb{P}(\mathcal{M}^{N}(\mathbf{x}_{0})\in R)\leq e^{\epsilon}\cdot\mathbb{P}(\mathcal{M}^{N}(\mathbf{x}^{\prime}_{0})\in R)+\delta} (5)

holds for any two dd-adjacent initial values 𝐱0,𝐱0n\mathbf{x}_{0},\mathbf{x}^{\prime}_{0}\in\mathbb{R}^{n}.

In Definition 2, inequality (5) indicates that the system can plausibly deny any guess from the eavesdroppers having NN output trajectories, using any value from its dd-adjacency. Namely, the system preserving the differential initial-value privacy satisfies the requirement (R2).

Remark 2

The requirement (R1) indeed can be understood from a perspective of denability. Namely,

  • (R1)

    [Deniability from non-identifiability] any inference 𝐱^0\hat{\mathbf{x}}_{0} about the true initial value from the eavesdroppers having an infinite number of output trajectories, can be denied by supplying any other value 𝐱0\mathbf{x}_{0}^{\prime} satisfying

    pdf(𝐘T|𝐱^0)=pdf(𝐘T|𝐱0).{\textnormal{pdf}\left(\mathbf{Y}_{T}|\hat{\mathbf{x}}_{0}\right)=\textnormal{pdf}\left(\mathbf{Y}_{T}|\mathbf{x}^{\prime}_{0}\right)\,.} (6)

Note that the derivation of such 𝐱0\mathbf{x}_{0}^{\prime} needs extra computation such that (6) is fulfilled and the resulting 𝐱0\mathbf{x}_{0}^{\prime} may be very close to or far away from the inference 𝐱^0\hat{\mathbf{x}}_{0}. In contrast, the 𝐱0\mathbf{x}_{0}^{\prime} used to deny 𝐱^0\hat{\mathbf{x}}_{0} in (R2) is arbitrarily selected within a range to 𝐱^0\hat{\mathbf{x}}_{0}. In view of this, the plausible deniability in (R2) provides the system with a more convenient denial mechanism. On the other hand, it can be seen that (6) indicates that (5) holds with (ϵ,δ)=(0,0)(\epsilon,\delta)=(0,0), yielding that the eavesdroppers cannot distinguish between 𝐱^0\hat{\mathbf{x}}_{0} and 𝐱0\mathbf{x}_{0}^{\prime} with probability one. The above analysis thus demonstrates that intrinsic initial-value privacy and differential initial-value privacy are not inclusive mutually.

2.2 An Illustrative Example

In this subsection, an illustrative example is presented to demonstrate the relation and practical difference between the above two types of privacy metrics.

Example 1. Consider system (1) with 𝐀=[0101]\mathbf{A}=\begin{bmatrix}0&1\\ 0&-1\end{bmatrix} and let T=1T=1 and the private initial states 𝐱0=[x1,0;x2,0]=[2;1]\mathbf{x}_{0}=[x_{1,0};x_{2,0}]=[2;1]. Let 𝝂t𝒩(0,σ12𝐈2)\bm{\nu}_{t}\backsim\mathcal{N}(0,\sigma_{1}^{2}\mathbf{I}_{2}) and 𝝎t𝒩(0,σ22)\bm{\omega}_{t}\backsim\mathcal{N}(0,\sigma_{2}^{2}).

  • (a)

    Let output 𝐲t=𝐂1𝐱t\mathbf{y}_{t}=\mathbf{C}_{1}\mathbf{x}_{t} with 𝐂1=[11]\mathbf{C}_{1}=\begin{bmatrix}1&1\end{bmatrix}, and σ2=0\sigma_{2}=0. We then obtain that

    𝐲0=x1,0+x2,0,𝐲1=[11]𝝂0.\begin{array}[]{l}\mathbf{y}_{0}=x_{1,0}+x_{2,0}\,,\\ \mathbf{y}_{1}=\begin{bmatrix}1&1\end{bmatrix}\bm{\nu}_{0}\,.\end{array}

For system with the output in Case (a), it is clear that pdf(𝐘T|𝐱0)=pdf(𝐘T|𝐱0)\textnormal{pdf}\left(\mathbf{Y}_{T}|\mathbf{x}_{0}\right)=\textnormal{pdf}\left(\mathbf{Y}_{T}|\mathbf{x}^{\prime}_{0}\right) for all 𝐱0=[x1,0;x2,0]\mathbf{x}_{0}^{\prime}=[x_{1,0}^{\prime};x_{2,0}^{\prime}] satisfying x1,0+x2,0=x1,0+x2,0x_{1,0}^{\prime}+x_{2,0}^{\prime}=x_{1,0}+x_{2,0}. This indicates that intrinsic initial-value privacy is preserved.

Regarding the differential privacy of initial values, we observe that 𝐲0\mathbf{y}_{0} is deterministic. By choosing any 𝐱0\mathbf{x}_{0}^{\prime} from 11-adjacency of 𝐱0\mathbf{x}_{0} such that x1,0+x2,0x1,0+x2,0x_{1,0}^{\prime}+x_{2,0}^{\prime}\neq x_{1,0}+x_{2,0}, the inequality (5) is not satisfied for any ϵ>0,0.5>δ>0\epsilon>0,0.5>\delta>0, which implies that the system does not preserve the differential privacy.

  • (b)

    Let output 𝐲t=𝐂2𝐱t\mathbf{y}_{t}=\mathbf{C}_{2}\mathbf{x}_{t} with 𝐂2=[10]\mathbf{C}_{2}=\begin{bmatrix}1&0\end{bmatrix}, and σ1=σ2=1\sigma_{1}=\sigma_{2}=1. We then obtain that

    𝐲0=x1,0+𝝎0,𝐲1=x2,0+[10]𝝂0+𝝎1.\begin{array}[]{l}\mathbf{y}_{0}=x_{1,0}+\bm{\omega}_{0}\,,\\ \mathbf{y}_{1}=x_{2,0}+\begin{bmatrix}1&0\end{bmatrix}\bm{\nu}_{0}+\bm{\omega}_{1}\,.\end{array}

If an infinite number of output trajectories were eavesdropped, then the eavesdroppers could obtain the expectations of 𝐲0,𝐲1\mathbf{y}_{0},\mathbf{y}_{1}, denoted by 𝔼(𝐲0),𝔼(𝐲1)\mathbb{E}(\mathbf{y}_{0}),\mathbb{E}(\mathbf{y}_{1}). The initial values x1,0,x2,0x_{1,0},x_{2,0} then can be uniquely recovered by x1,0=𝔼(𝐲0)x_{1,0}=\mathbb{E}(\mathbf{y}_{0}) and x2,0=𝔼(𝐲1)x_{2,0}=\mathbb{E}(\mathbf{y}_{1}), leading to loss of intrinsic initial-value privacy. Though it is impossible to eavesdrop an infinite number of output trajectories, we note that the eavesdroppers may obtain a large number of output trajectories, by which the initial values can be accurately inferred. To address this issue, we realize the system for 10410^{4} times and use the MLE method. The resulting estimate of 𝐱0\mathbf{x}_{0} is [2.0038;0.9920][2.0038;0.9920], leading to loss of the intrinsic initial-value privacy as well. In view of this, the privacy requirement (R1) and Definition 1 are of practical significance.

Regarding the differential privacy, we let 𝐲1=2,𝐲2=2\mathbf{y}_{1}=2,\mathbf{y}_{2}=2 be the eavesdropped output trajectory, and 𝐱^0=[1.5;1.8]\hat{\mathbf{x}}_{0}=[1.5;1.8] be a guess from the eavesdroppers. The system then denies this guess by stating that for example 𝐱0𝐱^0>0.5\|\mathbf{x}_{0}-\hat{\mathbf{x}}_{0}\|>0.5. To verify whether this deny is plausible, the eavesdroppers thus compute pdf(𝐘T|𝐱0)\textnormal{pdf}(\mathbf{Y}_{T}|\mathbf{x}_{0}) and pdf(𝐘T|𝐱0)\textnormal{pdf}(\mathbf{Y}_{T}|\mathbf{x}_{0}^{\prime}) with any value 𝐱0=[1;1.2]\mathbf{x}_{0}^{\prime}=[1;1.2] satisfying 𝐱0𝐱^0>0.5\|\mathbf{x}_{0}^{\prime}-\hat{\mathbf{x}}_{0}\|>0.5, and find pdf(𝐘T|𝐱0)e0.6pdf(𝐘T|𝐱0)\textnormal{pdf}(\mathbf{Y}_{T}|\mathbf{x}_{0})\leq e^{0.6}\textnormal{pdf}(\mathbf{Y}_{T}|\mathbf{x}_{0}^{\prime}). In this way, the system has gained plausible deniability measured by δ=0.48\delta=0.48 and ϵ=0.6\epsilon=0.6. On the other hand, we randomly choose four adjacent initial values 𝐱¯0=[1.4;1.7],𝐱¯0=[1.6;1.8],𝐱^0=[1.5;1.9],𝐱^0=[1.3;2]\bar{\mathbf{x}}_{0}=[1.4;1.7],\bar{\mathbf{x}}_{0}^{\prime}=[1.6;1.8],\hat{\mathbf{x}}_{0}=[1.5;1.9],\hat{\mathbf{x}}_{0}^{\prime}=[1.3;2]. The resulting distributions of 𝐲0,𝐲1\mathbf{y}_{0},\mathbf{y}_{1} under these initial values 𝐱¯0,𝐱¯0,𝐱^0,𝐱^0\bar{\mathbf{x}}_{0},\bar{\mathbf{x}}_{0}^{\prime},\hat{\mathbf{x}}_{0},\hat{\mathbf{x}}_{0}^{\prime} are presented in Figures 1 and 2. From Figures 1 and 2, it can be seen that the resulting probabilities of output trajectory 𝐘T\mathbf{Y}_{T} at any set are similar. This thus can imply that the system in Case (b) preserves the differential privacy of initial values.

Refer to caption
Figure 1: Distributions of 𝐲0\mathbf{y}_{0} under different initial values 𝐱¯0,𝐱¯0,𝐱^0,𝐱^0\bar{\mathbf{x}}_{0},\bar{\mathbf{x}}_{0}^{\prime},\hat{\mathbf{x}}_{0},\hat{\mathbf{x}}_{0}^{\prime}.
Refer to caption
Figure 2: Distributions of 𝐲1\mathbf{y}_{1} under different initial values 𝐱¯0,𝐱¯0,𝐱^0,𝐱^0\bar{\mathbf{x}}_{0},\bar{\mathbf{x}}_{0}^{\prime},\hat{\mathbf{x}}_{0},\hat{\mathbf{x}}_{0}^{\prime}.

In view of the previous analysis for Cases (a) and (b), we can see that neither the intrinsic initial-value privacy implies the differential initial-value privacy, nor the differential initial-value privacy implies the intrinsic initial-value privacy. Therefore, both privacy metrics in Definitions 1 and 2 are mutually neither inclusive nor exclusive. \blacksquare

2.3 Related Works

Of relevance to our paper are recent works [15, 17, 16]. In [15], the considered linear dynamical systems take the form

𝐱t+1=𝐀𝐱t+𝐁𝝎t𝐲t=𝐂𝐱t+𝐃𝝎t𝐳t=𝐋𝐱t\begin{array}[]{rcl}\mathbf{x}_{t+1}&=&\mathbf{A}\,\mathbf{x}_{t}+\mathbf{B}\bm{\omega}_{t}\\ \mathbf{y}_{t}&=&\mathbf{C}\,\mathbf{x}_{t}+\mathbf{D}\bm{\omega}_{t}\\ \mathbf{z}_{t}&=&\mathbf{L}\,\mathbf{x}_{t}\end{array}

where 𝐳t\mathbf{z}_{t} is a signal to be estimated, and the problem is to design a filter

𝐱^t+1=𝐅𝐱^t+𝐆𝐲t𝐳^t=𝐇𝐱^t+𝐊𝐲t+𝝂t{\begin{array}[]{rcl}\hat{\mathbf{x}}_{t+1}&=&\mathbf{F}\,\hat{\mathbf{x}}_{t}+\mathbf{G}\,\mathbf{y}_{t}\\ \hat{\mathbf{z}}_{t}&=&\mathbf{H}\,\hat{\mathbf{x}}_{t}+\mathbf{K}\,\mathbf{y}_{t}+\bm{\nu}_{t}\end{array}} (7)

with filter output 𝐳^t\hat{\mathbf{z}}_{t}, for the purpose of obtaining an optimal mean squared error between 𝐳t\mathbf{z}_{t} and 𝐳^t\hat{\mathbf{z}}_{t}, while preserving the differential privacy of system state trajectory 𝐗T=(xt)t=0T\mathbf{X}_{T}=(x_{t})_{t=0}^{T}, with the initial state considered in this paper as a particular case. Despite of this, we note that our framework can be extended to the scenario where 𝐗T\mathbf{X}_{T} are sensitive, which will be explicitly addressed in Remark 5. On the other hand, in [15], the eavesdropped information is a filter output trajectory 𝐙^T=(𝐳^t)t=0T\widehat{\mathbf{Z}}_{T}=(\hat{\mathbf{z}}_{t})_{t=0}^{T}, that is different from our paper where the eavesdroppers can directly measure system outputs. To address the desired privacy concerns, [15] studies the differential privacy of a composite mapping 𝐙^T=f(𝐗T):=21(𝐗T)\widehat{\mathbf{Z}}_{T}=\mathcal{M}_{f}(\mathbf{X}_{T}):=\mathcal{M}_{2}\circ\mathcal{M}_{1}(\mathbf{X}_{T}), the mapping 𝐘T=(𝐈T+1C)𝐗T+𝐖T\mathbf{Y}_{T}=(\mathbf{I}_{T+1}\otimes C)\mathbf{X}_{T}+\mathbf{W}_{T} and the mapping 𝐙^T=2(𝐘T)\widehat{\mathbf{Z}}_{T}=\mathcal{M}_{2}(\mathbf{Y}_{T}) is defined over the filter dynamics (7). This is different mechanism compared to our mapping (4).

In [17] a cloud-based linear quadratic regulation problem is studied for systems of the form

𝐱t+1=𝐀𝐱t+𝐁𝐮t+𝝂t𝐲t=𝐂𝐱t+𝝎t\begin{array}[]{rcl}\mathbf{x}_{t+1}&=&\mathbf{A}\,\mathbf{x}_{t}+\mathbf{B}\,\mathbf{u}_{t}+\bm{\nu}_{t}\\ \mathbf{y}_{t}&=&\mathbf{C}\,\mathbf{x}_{t}+\bm{\omega}_{t}\\ \end{array}

where the outputs 𝐲t\mathbf{y}_{t} are transmitted to the cloud for an optimal control, having the form

𝐱¯t+1=𝐅𝐱¯t+𝐆𝐲t𝐮t=𝐇𝐱¯t.\begin{array}[]{rcl}\bar{\mathbf{x}}_{t+1}&=&\mathbf{F}\,\bar{\mathbf{x}}_{t}+\mathbf{G}\,\mathbf{y}_{t}\\ \mathbf{u}_{t}&=&\mathbf{H}\,\bar{\mathbf{x}}_{t}\,.\end{array}

The privacy issue of interest is to protect privacy of the state trajectory 𝐗T\mathbf{X}_{T}, against the eavesdroppers having access to the transmitted information consisting of 𝐲t,𝐮t\mathbf{y}_{t},\mathbf{u}_{t} by cyber attack. To address the state-trajectory privacy, [17] studies the differential privacy of the mapping 𝐘T=y(𝐗T):=(𝐈T+1C)𝐗T+𝐖T\mathbf{Y}_{T}=\mathcal{M}_{y}(\mathbf{X}_{T}):=(\mathbf{I}_{T+1}\otimes C)\mathbf{X}_{T}+\mathbf{W}_{T}. Therefore, again this is different mechanism compared to our mapping (4).

In [16], the authors consider a control system

𝐱t+1=𝐀𝐱t+𝐁(𝐮t+𝝂t)𝐲t=𝐂𝐱t+𝐃(𝐮t+𝝂t)+𝝎t,\begin{array}[]{rcl}\mathbf{x}_{t+1}&=&\mathbf{A}\,\mathbf{x}_{t}+\mathbf{B}\,(\mathbf{u}_{t}+\bm{\nu}_{t})\\ \mathbf{y}_{t}&=&\mathbf{C}\,\mathbf{x}_{t}+\mathbf{D}\,(\mathbf{u}_{t}+\bm{\nu}_{t})+\bm{\omega}_{t}\,,\end{array}

where 𝝂t,𝝎t\bm{\nu}_{t},\bm{\omega}_{t} are injected input and measurement noise for privacy protection, and to achieve the desired control objective, the control input 𝐮t\mathbf{u}_{t} is designed as a form

𝐱¯t+1=𝐅𝐱¯t+𝐆𝐲t𝐮t=𝐇𝐱¯t+𝐋𝐲t.{\begin{array}[]{rcl}\bar{\mathbf{x}}_{t+1}&=&\mathbf{F}\,\bar{\mathbf{x}}_{t}+\mathbf{G}\,\mathbf{y}_{t}\\ \mathbf{u}_{t}&=&\mathbf{H}\,\bar{\mathbf{x}}_{t}+\mathbf{L}\,\mathbf{y}_{t}\,.\end{array}} (8)

The eavesdroppers having access to an output trajectory 𝐘T\mathbf{Y}_{T} through cyber attack attempt to infer control inputs 𝐮t\mathbf{u}_{t} and initial values 𝐱0\mathbf{x}_{0}. In this setting, [16] studies the differential privacy of a mapping from ((𝐮t)t=0T,x0)\big{(}(\mathbf{u}_{t})_{t=0}^{T},x_{0}\big{)} to 𝐘T\mathbf{Y}_{T} over the 𝐱t\mathbf{x}_{t}-dynamics. Compared to our mapping (4), the considered mapping in [16] is similar in the sense that both are established over the 𝐱t\mathbf{x}_{t}-dynamics, while is different in the sense that there are NN output trajectories and no control input in our mapping (4).

In addition to the previous distinctions, we note that this paper also studies privacy issues when an infinite number of output trajectories are eavesdropped, while it is absent in [15, 17, 16]. This extra study benefits us to understand whether the initial-value privacy can be preserved if the eavesdroppers have obtained a large number of output trajectories.

3 Initial-Value Privacy of General Linear Systems

In this section, both intrinsic and differential initial-value privacy of systems (1) are analyzed. We first present the following result on the equivalence of intrinsic initial-value privacy and unobservability.

Proposition 1

The system (1) preserves intrinsic initial-value privacy if and only if (𝐀,𝐂)(\mathbf{A},\mathbf{C}) is not observable, i.e., rank(𝐎ob)<n\textnormal{rank}\;(\mathbf{O}_{ob})<n.

Remark 3

Observability has been extensively studied in the fields of estimation [25] and feedback control [26]. In [16], for a linear control system the input observability is also explored to preserve differential privacy of control inputs and initial states. In Proposition 1, the intrinsic initial-value privacy and observability are bridged for linear systems (1).

Next, the differential privacy of initial values for (1) is studied. As in [15], we define 𝒬(w):=12πwev22𝑑v\mathcal{Q}(w):=\frac{1}{\sqrt{2\pi}}\int_{w}^{\infty}e^{-\frac{v^{2}}{2}}dv, and κ(ϵ,δ):=𝒬1(δ)+(𝒬1(δ))2+2ϵ2ϵ\kappa(\epsilon,\delta):=\frac{\mathcal{Q}^{-1}(\delta)+\sqrt{(\mathcal{Q}^{-1}(\delta))^{2}+2\epsilon}}{2\epsilon}.

Theorem 1

Suppose that (𝐕T;𝐖T)(\mathbf{V}_{T};\mathbf{W}_{T}) are random variables according to (𝐕T;𝐖T)𝒩(0,ΣT)(\mathbf{V}_{T};\mathbf{W}_{T})\backsim\mathcal{N}(0,\Sigma_{T}). Then the dynamical system (1) preserves (ϵ,δ)(\epsilon,\delta)-differential privacy of initial state under dd-adjacency, with ϵ>0\epsilon>0 and 0.5>δ>00.5>\delta>0, if

σm([𝐇T𝐈m(T+1)]ΣT[𝐇T𝐈m(T+1)])d2N𝐎T2κ(ϵ,δ)2.{\begin{array}[]{l}\vspace{1mm}\sigma_{m}\left(\begin{bmatrix}\mathbf{H}_{T}&\mathbf{I}_{m(T+1)}\end{bmatrix}\Sigma_{T}\begin{bmatrix}\mathbf{H}_{T}&\mathbf{I}_{m(T+1)}\end{bmatrix}^{\top}\right)\geq d^{2}N\|\mathbf{O}_{T}\|^{2}\kappa(\epsilon,\delta)^{2}\,.\end{array}} (9)
Remark 4

In Theorem 1, 𝛎t,𝛚t\bm{\nu}_{t},\bm{\omega}_{t} are assumed to admit Gaussian distributions. This renders the mapping (4) to be a Gaussian mechanism [15, 10], resulting in the (ϵ,δ)(\epsilon,\delta)-differential privacy. One may wonder if assuming Laplacian noise 𝛎t,𝛚t\bm{\nu}_{t},\bm{\omega}_{t} would lead to a stronger (ϵ,0)(\epsilon,0)-differential privacy, as in [14]. However, we note that the resulting mapping (4) is not a Laplace mechanism, because there is no guarantee that 𝐇T𝐕T+𝐖T\mathbf{H}_{T}\mathbf{V}_{T}+\mathbf{W}_{T} is still Laplacian, even if 𝛎t,𝛚t\bm{\nu}_{t},\bm{\omega}_{t} are Laplacian variables.

Remark 5

Though only initial values of system (1) are treated as private information, we note that the results in Theorem 1 can be extended to the case that all states 𝐱t\mathbf{x}_{t} are sensitive. For dynamical systems (1), the outputs 𝐲k\mathbf{y}_{k} for all ktk\geq t in 𝐘T\mathbf{Y}_{T} contain the information of 𝐱t\mathbf{x}_{t}, rendering a mapping from 𝐱t\mathbf{x}_{t} and 𝐘Tt\mathbf{Y}_{T-t} as

𝐘Tt=t(𝐱t):=𝐎Tt𝐱t+𝐇Tt𝐕Tt+𝐖Tt.\mathbf{Y}_{T-t}=\mathcal{M}_{t}(\mathbf{x}_{t}):=\mathbf{O}_{T-t}\mathbf{x}_{t}+\mathbf{H}_{T-t}\mathbf{V}_{T-t}+\mathbf{W}_{T-t}\,.

By combining all t(𝐱t)\mathcal{M}_{t}(\mathbf{x}_{t}), t=0,1,,Tt=0,1,\ldots,T together, one then can establish a mapping from the state trajectory (𝐱t)t=0T(\mathbf{x}_{t})_{t=0}^{T} to the output trajectory 𝐘T\mathbf{Y}_{T}. For such a combined mapping, following the arguments in the proof of Theorem 1, one then can establish (ϵ,δ)(\epsilon,\delta)-differential privacy of the state trajectory (𝐱t)t=0T(\mathbf{x}_{t})_{t=0}^{T} with some ϵ>0\epsilon>0 and 0.5>δ>00.5>\delta>0. In this way, our framework can be further applied to solve the problems in [15, 17], where the state trajectory is private information.

We note that given any covariance matrix ΣT>0\Sigma_{T}>0, there always exist ϵ>0\epsilon>0 and 0.5>δ>00.5>\delta>0, depending on the norm of extended observability matrix 𝐎T\mathbf{O}_{T} such that (9) is satisfied, yielding the (ϵ,δ)(\epsilon,\delta)-differential initial-value privacy. Thus, the (ϵ,δ)(\epsilon,\delta)-differential initial-value privacy and the intrinsic initial-value privacy are mutually independent, with the latter determined by the unobservability of systems (1), i.e., rank(𝐎ob)<n\textnormal{rank}\;(\mathbf{O}_{ob})<n by Proposition 1. If the noise can be designed, then there always exists a sufficiently large covariance matrix ΣT\Sigma_{T} such that (9) holds for any privacy budgets ε>0,0.5>δ>0\varepsilon>0,0.5>\delta>0. To have a better view of this, we consider a particular case that 𝝂t\bm{\nu}_{t} and 𝝎t\bm{\omega}_{t} are i.i.d. random variables. The following corollary can be easily derived by verifying the condition (9).

Corollary 1

Suppose 𝛎t\bm{\nu}_{t} and 𝛚t\bm{\omega}_{t}, t=0,1,,Tt=0,1,\ldots,T are i.i.d. random variables according to 𝛎t𝒩(0,σ𝛎2𝐈n)\bm{\nu}_{t}\backsim\mathcal{N}(0,\sigma_{\bm{\nu}}^{2}\mathbf{I}_{n}) and 𝛚t𝒩(0,σ𝛚2𝐈m)\bm{\omega}_{t}\backsim\mathcal{N}(0,\sigma_{\bm{\omega}}^{2}\mathbf{I}_{m}). Then for any ϵ>0\epsilon>0, 0.5>δ>00.5>\delta>0, and all σ𝛎0\sigma_{\bm{\nu}}\geq 0 and σ𝛚dN𝐎Tκ(ϵ,δ)\sigma_{\bm{\omega}}\geq d\sqrt{N}\|\mathbf{O}_{T}\|\kappa(\epsilon,\delta), the dynamical system (1) preserves (ϵ,δ)(\epsilon,\delta)-differential privacy of initial state under dd-adjacency.

Remark 6

Though in Corollary 1 arbitrary (ϵ,δ)(\epsilon,\delta)-differential privacy can be achieved by choosing a sufficiently large σ𝛚\sigma_{\bm{\omega}}, this doesn’t mean that the process noise 𝛎t\bm{\nu}_{t} does not contribute to the differential privacy. In fact, simple calculations following the proof of Theorem 1 can lead to a less restrictive condition as

𝐎T(σ𝝂2𝐇T𝐇T+σ𝝎2𝐈m)1𝐎T1d2Nκ(ϵ,δ)2,\|\mathbf{O}_{T}^{\top}(\sigma_{\bm{\nu}}^{2}\mathbf{H}_{T}\mathbf{H}_{T}^{\top}+\sigma_{\bm{\omega}}^{2}\mathbf{I}_{m})^{-1}\mathbf{O}_{T}\|\leq\frac{1}{d^{2}N\kappa(\epsilon,\delta)^{2}}\,,

from which it can be seen that σ𝛎\sigma_{\bm{\nu}} also plays a role in achieving arbitrary differential privacy of initial values.

Remark 7

If the considered systems take a time-varying form

𝐱t+1=𝐀t𝐱t+𝝂t𝐲t=𝐂t𝐱t+𝝎t{\begin{array}[]{rcl}\mathbf{x}_{t+1}&=&\mathbf{A}_{t}\,\mathbf{x}_{t}+\bm{\nu}_{t}\\ \mathbf{y}_{t}&=&\mathbf{C}_{t}\,\mathbf{x}_{t}+\bm{\omega}_{t}\end{array}} (10)

where the state and output matrices 𝐀t,𝐂t\mathbf{A}_{t},\mathbf{C}_{t} vary as tt evolves, it can be easily verified that the claims in Proposition 1 and Theorem 1 are still preserved by replacing the observability matrix 𝐎ob\mathbf{O}_{ob} and the extended observability matrix 𝐎T\mathbf{O}_{T} by their time-varying version 𝐎^:=[𝐂0,𝐀0𝐂1,,𝐀0𝐀T1𝐂T]\widehat{\mathbf{O}}:=\big{[}\mathbf{C}_{0}^{\top},\,\mathbf{A}_{0}^{\top}\mathbf{C}_{1}^{\top},\,\cdots,\,\mathbf{A}_{0}^{\top}\cdots\mathbf{A}_{T-1}^{\top}\mathbf{C}_{T}^{\top}\big{]}^{\top}.

4 Intrinsic Initial-Value Privacy of Networked Linear Systems

The system (1) can also be understood from a network system perspective, e.g.,[24]. Let xi,tx_{i,t} be the ii-th entry of 𝐱t\mathbf{x}_{t}. If each xi,tx_{i,t} is viewed as the dynamical state of a node, the matrix 𝐀\mathbf{A} would indicate a graph of interactions among the nodes. If each entry of 𝐲t\mathbf{y}_{t} is viewed as the measurement of a sensor, then the matrix 𝐂\mathbf{C} would indicate a graph of interactions between the nodes and the sensors.

In view of this, we consider a network consisting of nn network nodes and mm sensing nodes, leading to a network node set V={1,,n}\mathrm{V}=\{1,\ldots,n\} and a sensing node set VS={s1,,sm}\mathrm{V}_{\textnormal{S}}=\{s_{1},\ldots,s_{m}\} 111To be distinguished with notations for nodes in the interaction graph G\mathrm{G}, we use sis_{i} to denote the ii-th sensing node whose measurement is yiy_{i}., respectively. Define the interaction graph G=(V,E)\mathrm{G}=(\mathrm{V},\mathrm{E}) with edge set EV×V\mathrm{E}\subset\mathrm{V}\times\mathrm{V}, and the sensing graph GS=(V,VS,ES)\mathrm{G}_{\textnormal{S}}=(\mathrm{V},\mathrm{V}_{\textnormal{S}},\mathrm{E}_{\textnormal{S}}) with edge set ESV×VS\mathrm{E}_{\textnormal{S}}\subset\mathrm{V}\times\mathrm{V}_{\textnormal{S}}. Let 𝐀=[aij]n×n\mathbf{A}=[a_{ij}]\in\mathbb{R}^{n\times n} and 𝐂=[cij]m×n\mathbf{C}=[c_{ij}]\in\mathbb{R}^{m\times n}.

To this end, this section aims to study how topological effects affect the privacy analysis of the networked system (1) with (𝐀,𝐂)(\mathbf{A},\mathbf{C}) being a configuration complying with the graphs G,GS\mathrm{G},\mathrm{G}_{\textnormal{S}}, i.e., if aij=0a_{ij}=0 for (j,i)E(j,i)\notin\mathrm{E} and cij=0c_{ij}=0 for (j,si)ES(j,s_{i})\notin\mathrm{E}_{\textnormal{S}}.

Remark 8

For the LTV systems (10), the corresponding network structure becomes time-varying, where matrix 𝐀t\mathbf{A}_{t} indicates a graph of interactions among the network nodes at time tt and matrix 𝐂t\mathbf{C}_{t} indicates a graph of interactions between the network and sensing nodes at time tt. Thus we define the time-varying interaction graph Gt=(V,Et)\mathrm{G}_{t}=(\mathrm{V},\mathrm{E}_{t}) with edge set EtV×V\mathrm{E}_{t}\subset\mathrm{V}\times\mathrm{V}, and the sensing graph GS,t=(V,VS,ES,t)\mathrm{G}_{\textnormal{S},t}=(\mathrm{V},\mathrm{V}_{\textnormal{S}},\mathrm{E}_{\textnormal{S},t}) with edge set ES,tV×VS\mathrm{E}_{\textnormal{S},t}\subset\mathrm{V}\times\mathrm{V}_{\textnormal{S}}.

4.1 Intrinsic privacy of individual initial values

It is noted that in Definition 1 regarding intrinsic initial-value privacy, the initial state vector 𝐱0\mathbf{x}_{0} is considered as a whole, and we suppose that the eavesdroppers have no prior knowledge of any individual initial values. In the following, we present several definitions that refine the notion in Definition 1 to dynamical networked systems (1) by studying intrinsic privacy of individual initial values, i.e., xi,0x_{i,0}, against eavesdroppers having knowledge of the whole sensor measurements (i.e., 𝐲t\mathbf{y}_{t}) and initial values of some network nodes. For convenience, we term the set of nodes whose initial values are prior knowledge to eavesdroppers as a public disclosure set.

Definition 3

For any given configuration (𝐀,𝐂)(\mathbf{A},\mathbf{C}) complying with graphs G,GS\mathrm{G},\mathrm{G}_{\textnormal{S}}, take iVi\in\mathrm{V} and let PV{\mathrm{P}}\subset\mathrm{V}. The networked system (1) preserves intrinsic initial-value privacy of node ii w.r.t. public disclosure set P{\mathrm{P}} if for any initial state 𝐱0n\mathbf{x}_{0}\in\mathbb{R}^{n}, there exists an 𝐱0=[x1,0;;xn,0]n\mathbf{x}^{\prime}_{0}=[x_{1,0}^{\prime};\ldots;x_{n,0}^{\prime}]\in\mathbb{R}^{n} such that xi,0xi,0x_{i,0}\neq x_{i,0}^{\prime}, xj,0=xj,0x_{j,0}=x_{j,0}^{\prime} for all jPj\in{\mathrm{P}}, and

pdf(𝐘T|𝐱0)=pdf(𝐘T|𝐱0).{\textnormal{pdf}\left(\mathbf{Y}_{T}|\mathbf{x}_{0}\right)=\textnormal{pdf}\left(\mathbf{Y}_{T}|\mathbf{x}^{\prime}_{0}\right)\,.} (11)
Remark 9

The equality (11) indicates that even if the initial values of some nodes jPj\in{\mathrm{P}} are public, the initial value xi,0x_{i,0} cannot be identified from trajectories of 𝐲t\mathbf{y}_{t}, even with an infinite number of realizations of the dynamic networked system (1).

Remark 10

If the eavesdroppers have no prior knowledge of any node initial states, the above definition is also applicable with P={\mathrm{P}}=\emptyset. In this case, according to Proposition 1, the notion of intrinsic initial-value privacy of node ii is related to state variable unobservability of state xi,tx_{i,t}, that is a dual notion of state variable uncontrollability in [29].

Let l=|P|l=|{\mathrm{P}}| and P={p1,,pl}V{\mathrm{P}}=\{p_{1},\ldots,p_{l}\}\subset\mathrm{V}. Define P¯:={p¯1,,p¯nl}=V\P\bar{{\mathrm{P}}}:=\{\bar{p}_{1},\ldots,\bar{p}_{n-l}\}=\mathrm{V}\backslash{\mathrm{P}}. For convenience, we further let 𝐄P=[𝐞p1,,𝐞pl]n×l\mathbf{E}_{\mathrm{P}}=[\mathbf{e}_{p_{1}},\ldots,\mathbf{e}_{p_{l}}]\in\mathbb{R}^{n\times l} and 𝐄P¯=[𝐞p¯1,,𝐞p¯nl]n×(nl)\mathbf{E}_{\bar{{\mathrm{P}}}}=[\mathbf{e}_{\bar{p}_{1}},\ldots,\mathbf{e}_{\bar{p}_{n-l}}]\in\mathbb{R}^{n\times(n-l)}, and 𝐊job\mathbf{K}_{j}^{ob} be the jj-the column of matrix 𝐎ob\mathbf{O}_{ob}.

Theorem 2

Let the dynamical networked system (1) be equipped with configuration (𝐀,𝐂)(\mathbf{A},\mathbf{C}) complying with graphs G,GS\mathrm{G},\mathrm{G}_{\textnormal{S}}. Let iVi\in\mathrm{V} and PV{\mathrm{P}}\subset\mathrm{V} with iPi\notin{\mathrm{P}}. The following statements are equivalent.

  • a).

    The networked system (1) preserves intrinsic initial-value privacy of node ii w.r.t. P{\mathrm{P}}.

  • b).

    rank(𝐎ob𝐄P¯)=rank([𝐊i1ob,,𝐊inl1ob])\textnormal{rank}\;(\mathbf{O}_{ob}\mathbf{E}_{\bar{{\mathrm{P}}}})=\textnormal{rank}\;([\mathbf{K}_{i_{1}}^{\textnormal{o}b},\ldots,\mathbf{K}_{i_{n-l-1}}^{\textnormal{o}b}]) with {i1,,inl1}=V\(P{i})\{i_{1},\ldots,i_{n-l-1}\}=\mathrm{V}\backslash({\mathrm{P}}\cup\{i\}).

  • c).

    rank([𝐎ob𝐄P𝐞i])=rank([𝐎ob𝐄P])+1\textnormal{rank}\;\left(\begin{bmatrix}\mathbf{O}_{ob}\cr\mathbf{E}_{\mathrm{P}}^{\top}\cr\mathbf{e}_{i}^{\top}\end{bmatrix}\right)=\textnormal{rank}\;\left(\begin{bmatrix}\mathbf{O}_{ob}\cr\mathbf{E}_{\mathrm{P}}^{\top}\end{bmatrix}\right)+1.

Remark 11

Recalling (2), it can be seen that each initial state xj,0x_{j,0} is multiplied by the jj-th column of the (extended) observability matrix. We term each jj-th column of the observability matrix as a “feature” vector of the corresponding node jj, and the columns corresponding to nodes in public set P{\mathrm{P}} and unpublic set P¯\bar{\mathrm{P}} as public and unpublic “feature” vectors, respectively. Then, the equivalence of statements a)a) and b)b) demonstrates that the intrinsic initial-value privacy of node ii is preserved if and only if its “feature” vector can be expressed by a linear combination of the remainder unpublic “feature” vectors, i.e., the ii-th “feature” vector is encrypted by the remainder unpublic ones.

Remark 12

In Theorem 2, the equivalence of statements a)a) and c)c) demonstrates that the intrinsic initial-value privacy of node ii is preserved if and only if 𝐞i\mathbf{e}_{i}^{\top} does not belong to the P\mathrm{P}-extended observable subspace, denoted by span([𝐎ob𝐄P])\textnormal{span}\left(\begin{bmatrix}\mathbf{O}_{ob}\cr\mathbf{E}_{\mathrm{P}}^{\top}\end{bmatrix}\right).

Remark 13

It is worth noting that the verification of statement c)c) can be simplified as

  • c).

    rank([𝐎ob𝐞i]𝐄P¯)=rank(𝐎ob𝐄P¯)+1\textnormal{rank}\;\left(\begin{bmatrix}\mathbf{O}_{ob}\cr\mathbf{e}_{i}^{\top}\end{bmatrix}\mathbf{E}_{\bar{\mathrm{P}}}\right)=\textnormal{rank}\;\left(\mathbf{O}_{ob}\mathbf{E}_{\bar{{\mathrm{P}}}}\right)+1 .

This can be easily verified by using the following facts that

rank([𝐎ob𝐄P𝐞i])=rank([𝐎ob𝐞i]𝐄P¯)+rank(𝐄P)rank([𝐎ob𝐄P])=rank(𝐎ob𝐄P¯)+rank(𝐄P).\begin{array}[]{l}\vspace{1mm}\textnormal{rank}\;\left(\begin{bmatrix}\mathbf{O}_{ob}\cr\mathbf{E}_{\mathrm{P}}^{\top}\cr\mathbf{e}_{i}^{\top}\end{bmatrix}\right)=\textnormal{rank}\;\left(\begin{bmatrix}\mathbf{O}_{ob}\cr\mathbf{e}_{i}^{\top}\end{bmatrix}\mathbf{E}_{\bar{{\mathrm{P}}}}\right)+\textnormal{rank}\;(\mathbf{E}_{{{\mathrm{P}}}})\\ \textnormal{rank}\;\left(\begin{bmatrix}\mathbf{O}_{ob}\cr\mathbf{E}_{\mathrm{P}}^{\top}\end{bmatrix}\right)=\textnormal{rank}\;\left(\mathbf{O}_{ob}\mathbf{E}_{\bar{{\mathrm{P}}}}\right)+\textnormal{rank}\;(\mathbf{E}_{{{\mathrm{P}}}})\,.\end{array}

In view of this, we occasionally use c) to replace c) in Theorem 2 in the sequel.

In Theorem 2, explicit rank conditions are proposed to determine whether the intrinsic initial-value privacy of individual nodes is preserved, with respect to any given public disclosure set P{\mathrm{P}}. On the other hand, for a networked system, one may naturally ask what is the maximum allowable disclosure such that there always exists at least one node whose initial-value privacy is preserved. To address this issue, the network privacy index is introduced below.

Definition 4

The networked system (1) achieves level-ll network privacy, if for any public disclosure set PV{{\mathrm{P}}}\subset\mathrm{V} with |P|=l|{{\mathrm{P}}}|=l, there exists a node iV\Pi\in\mathrm{V}\backslash{{\mathrm{P}}} whose intrinsic initial-value privacy is preserved w.r.t. P{{\mathrm{P}}}. The network privacy index of (1), denoted as 𝐈𝐫𝐩\bf I_{rp}, is defined as the maximal value of ll such that level-ll relative privacy is achieved.

Proposition 2

The network privacy index of networked system (1) is 𝐈rp=nrank(𝐎ob)1{\mathbf{I}_{rp}}=n-\textnormal{rank}\;(\mathbf{O}_{ob})-1.

Remark 14

By Definition 4, the full initial value is not disclosed irrespective of which 𝐈rp{\mathbf{I}_{rp}} nodes are public. It is clear that a larger 𝐈rp{\mathbf{I}_{rp}} means a stronger privacy-preservation ability of the networked system (1). According to Proposition 2, this further implies that a networked system possesses a better privacy-preservation ability, if the dimension of its unobservable subspace (i.e., nrank(𝐎ob)n-\textnormal{rank}\;(\mathbf{O}_{ob})) is higher.

Example 2. We present an example to illustrate Theorem 2 and Proposition 2. Consider a networked system (1) with (𝐀,𝐂)(\mathbf{A},\mathbf{C}) complying with the graphs G,GS\mathrm{G},\mathrm{G}_{\textnormal{S}} in Fig. 3, consisting of 20 network nodes and 2 sensing nodes. Each edge of E,ES\mathrm{E},\mathrm{E}_{\textnormal{S}} is assigned with the same weight 1.

Refer to caption
Figure 3: Network topologies (G,GS)(\mathrm{G},\mathrm{G}_{\textnormal{S}}) with 20 network nodes (blue circles) and 2 sensing nodes (red circles). The edges in E\mathrm{E} and ES\mathrm{E}_{\textnormal{S}} are drawn in blue and red lines, respectively, where the lines without arrows denote bidirectional edges.

Firstly, suppose the eavesdroppers have no prior knowledge of initial values of any nodes, i.e., P={\mathrm{P}}=\emptyset. We observe that rank(𝐎ob)=17\textnormal{rank}\;(\mathbf{O}_{ob})=17. According to Proposition 2, this indicates that the network privacy index 𝐈rp=2{\mathbf{I}_{rp}}=2. Moreover, for all iV\{8,18}i\in\mathrm{V}\backslash\{8,18\}, there holds

rank([𝐎ob𝐞i])=18.\textnormal{rank}\;\left(\begin{bmatrix}\mathbf{O}_{ob}\cr\mathbf{e}_{i}^{\top}\end{bmatrix}\right)=18\,.

According to Theorem 2, this indicates that the networked system preserves intrinsic initial-value privacy of all iV\{8,18}i\in\mathrm{V}\backslash\{8,18\}.

Let the public disclosure set P={1,2,7}{\mathrm{P}}=\{1,2,7\}. Taking into account the intrinsic initial-value privacy of individual nodes, we note that

rank([𝐎ob𝐄P])=19,rank([𝐎ob𝐄P𝐞i])=20\textnormal{rank}\;\left(\begin{bmatrix}\mathbf{O}_{ob}\cr\mathbf{E}_{{\mathrm{P}}}\end{bmatrix}\right)=19\,,\quad\textnormal{rank}\;\left(\begin{bmatrix}\mathbf{O}_{ob}\cr\mathbf{E}_{{\mathrm{P}}}\cr\mathbf{e}_{i}^{\top}\end{bmatrix}\right)=20\,

for all i{3,5,6,9,10,11,12,13,14,16,17}i\in\{3,5,6,9,10,11,12,13,14,16,17\}. This verifies statement c)c) and thus indicates that the networked system preserves intrinsic initial-value privacy of all nodes i{3,5,6,9,10,11,12,13,14,16,17}i\in\{3,5,6,9,10,11,12,13,14,16,17\}, even if the initial states of nodes 1,2,71,2,7 are public. \blacksquare

4.2 Generic intrinsic initial-value privacy

In the previous subsection, the intrinsic initial-value privacy of individual nodes w.r.t. the public disclosure set P{{\mathrm{P}}} of networked systems (1) is studied, and a network privacy index 𝐈rp\mathbf{I}_{rp} is proposed to quantify the privacy of networked system (1). In the following, we turn to study the effect of network structure (G,GS)(\mathrm{G},\mathrm{G}_{\textnormal{S}}) to the intrinsic privacy and the network privacy index. To be precise, we demonstrate that these properties are indeed generic, i.e., are fulfilled for almost all edge weights under any network structure (G,GS)(\mathrm{G},\mathrm{G}_{\textnormal{S}}).

Theorem 3

Let PV{{\mathrm{P}}}\subset\mathrm{V} and iVi\in\mathrm{V}. Then the intrinsic initial-value privacy of node ii w.r.t. P{{\mathrm{P}}} is generically determined by the network topology. To be precise, exactly one of the following statements holds for any non-trivial network structure (G,GS)(\mathrm{G},\mathrm{G}_{\textnormal{S}}).

  • (i)

    The intrinsic initial-value privacy of node ii is preserved generically, i.e., for almost all configurations (𝐀,𝐂)(\mathbf{A},\mathbf{C}) complying with the network structure (G,GS)(\mathrm{G},\mathrm{G}_{\textnormal{S}}).

  • (ii)

    The intrinsic initial-value privacy of node ii is lost generically, i.e., for almost all configurations (𝐀,𝐂)(\mathbf{A},\mathbf{C}) complying with the network structure (G,GS)(\mathrm{G},\mathrm{G}_{\textnormal{S}}).

Theorem 3 demonstrates that given any network structure (G,GS)(\mathrm{G},\mathrm{G}_{\textnormal{S}}) and PV{{\mathrm{P}}}\subset\mathrm{V}, the intrinsic initial-value privacy of node ii is either preserved or lost generically. We note that if there exists a configuration (𝐀,𝐂)(\mathbf{A},\mathbf{C}) complying with (G,GS)(\mathrm{G},\mathrm{G}_{\textnormal{S}}) such that the intrinsic initial-value privacy of node ii is preserved (or lost), there is no guarantee that such property is preserved (or lost) generically. This is different from other common generic properties like structural controllability [34], for which if there exists a configuration such that a linear system is controllable, then it must be controllable for almost all configurations, i.e., structurally controllable. To have a better view of this, the following examples are formulated.

Example 3. Consider the intrinsic initial-value privacy of node 1 with (𝐀,𝐂)(\mathbf{A},\mathbf{C}) complying with the network structure in Fig. 4. Let T=2T=2, and the system output trajectory 𝐘T\mathbf{Y}_{T} is given by (2) with

𝐎T=[c110c130c11a120c11a12a210c11a12a23].\mathbf{O}_{T}=\begin{bmatrix}c_{11}&0&c_{13}\\ 0&c_{11}a_{12}&0\\ c_{11}a_{12}a_{21}&0&c_{11}a_{12}a_{23}\end{bmatrix}\,.

It is clear that 𝐎T\mathbf{O}_{T} is full-rank for almost all configurations (𝐀,𝐂)(\mathbf{A},\mathbf{C}) complying with Fig. 4. Thus, for any 𝐱0,𝐱0\mathbf{x}_{0},\mathbf{x}_{0}^{\prime} with x1,0x1,0x_{1,0}\neq x_{1,0}^{\prime}, 𝐎T𝐱0𝐎T𝐱0\mathbf{O}_{T}\mathbf{x}_{0}\neq\mathbf{O}_{T}\mathbf{x}_{0}^{\prime} and thus pdf(𝐘T|𝐱0)pdf(𝐘T|𝐱0)\textnormal{pdf}\left(\mathbf{Y}_{T}|\mathbf{x}_{0}\right)\neq\textnormal{pdf}\left(\mathbf{Y}_{T}|\mathbf{x}^{\prime}_{0}\right) hold for almost all configurations (𝐀,𝐂)(\mathbf{A},\mathbf{C}) complying with Fig. 4. According to Definition 3, this indicates that the intrinsic initial-value privacy of node 1 is lost generically.

Refer to caption
Figure 4: Network topologies (G,GS)(\mathrm{G},\mathrm{G}_{\textnormal{S}}) with 3 network nodes (blue circles) and 1 sensing nodes (red circles). The line without arrow denotes a bidirectional edge.

However, by letting the configuration (𝐀,𝐂)(\mathbf{A},\mathbf{C}) be such that c11a23=c13a21c_{11}a_{23}=c_{13}a_{21}, simple calculations show that pdf(𝐘T|𝐱0)=pdf(𝐘T|𝐱0)\textnormal{pdf}\left(\mathbf{Y}_{T}|\mathbf{x}_{0}\right)=\textnormal{pdf}\left(\mathbf{Y}_{T}|\mathbf{x}^{\prime}_{0}\right) holds for any 𝐱0,𝐱0\mathbf{x}_{0},\mathbf{x}_{0}^{\prime} with x1,0x1,0x_{1,0}\neq x_{1,0}^{\prime} and c13(x3,0x3,0)=c11(x1,0x1,0)c_{13}(x_{3,0}^{\prime}-x_{3,0})=c_{11}(x_{1,0}-x_{1,0}^{\prime}). According to Definition 3, this indicates that the intrinsic initial-value privacy of node 1 is preserved under the configuration (𝐀,𝐂)(\mathbf{A},\mathbf{C}) satisfying c11a23=c13a21c_{11}a_{23}=c_{13}a_{21}.

Thus, even if there exists a configuration such that the intrinsic initial-value privacy of node ii is preserved, this property may still be lost generically. This validates the statement (i) of Theorem 3. \blacksquare

Example 4. Consider the intrinsic initial-value privacy of node 4 under the network structure in Fig. 5. Let T=3T=3, and the output trajectory 𝐘T\mathbf{Y}_{T} is given by (2) with

𝐎T=[c110c130c11a11c11a120c11a14c11a112c11a12(a11+a22)c11a12a23c11a11a14c11a113?c11a112a14]\mathbf{O}_{T}=\begin{bmatrix}c_{11}&0&c_{13}&0\\ c_{11}a_{11}&c_{11}a_{12}&0&c_{11}a_{14}\\ c_{11}a_{11}^{2}&c_{11}a_{12}(a_{11}+a_{22})&c_{11}a_{12}a_{23}&c_{11}a_{11}a_{14}\\ c_{11}a_{11}^{3}&\ast&?&c_{11}a_{11}^{2}a_{14}\\ \end{bmatrix}\,

with =c11a12(a112+a11a22+a222)\ast=c_{11}a_{12}(a_{11}^{2}+a_{11}a_{22}+a_{22}^{2}) and ?=c11a12a23(a11+a22)?=c_{11}a_{12}a_{23}(a_{11}+a_{22}). Simple calculations then can show that pdf(𝐘T|𝐱0)=pdf(𝐘T|𝐱0)\textnormal{pdf}\left(\mathbf{Y}_{T}|\mathbf{x}_{0}\right)=\textnormal{pdf}\left(\mathbf{Y}_{T}|\mathbf{x}^{\prime}_{0}\right) holds for any 𝐱0,𝐱0\mathbf{x}_{0},\mathbf{x}_{0}^{\prime} with x4,0x4,0x_{4,0}\neq x_{4,0}^{\prime} and xj,0=xj,0+ηjx_{j,0}^{\prime}=x_{j,0}+\eta_{j} for j=1,2,3j=1,2,3, where ηj\eta_{j}’s satisfy

c11η1+c13η3=0a11η1+a12η2=a14(x4,0x4,0)a22η2+a23η3=0.{\begin{array}[]{l}c_{11}\eta_{1}+c_{13}\eta_{3}=0\\ a_{11}\eta_{1}+a_{12}\eta_{2}=a_{14}(x_{4,0}-x_{4,0}^{\prime})\\ a_{22}\eta_{2}+a_{23}\eta_{3}=0\,.\end{array}} (12)

It is clear that the above matrix equations (12) have a solution for almost all configurations (𝐀,𝐂)(\mathbf{A},\mathbf{C}) complying with Fig. 5, which, by Definition 3, indicates that the intrinsic initial-value privacy of node 4 is preserved generically.

Refer to caption
Figure 5: Network topologies (G,GS)(\mathrm{G},\mathrm{G}_{\textnormal{S}}) with 4 network nodes (blue circles) and 1 sensing nodes (red circles).

However, by letting the configuration (𝐀,𝐂)(\mathbf{A},\mathbf{C}) be such that c13a11a22+c11a12a23=0c_{13}a_{11}a_{22}+c_{11}a_{12}a_{23}=0 and c11a14a220c_{11}a_{14}a_{22}\neq 0, it can be seen that there exists no ηj\eta_{j}’s such that the matrix equations (12) holds for any x4,0x4,0x_{4,0}\neq x_{4,0}^{\prime}, and

(a22+a11)𝐲1a11a22𝐲0𝐲2=c11a14a22x4,0+g(𝐖T,𝐕T)(a_{22}+a_{11})\mathbf{y}_{1}-a_{11}a_{22}\mathbf{y}_{0}-\mathbf{y}_{2}=c_{11}a_{14}a_{22}x_{4,0}+g(\mathbf{W}_{T},\mathbf{V}_{T})

with g(𝐖T,𝐕T)g(\mathbf{W}_{T},\mathbf{V}_{T}) being some function of noise vectors 𝐖T,𝐕T\mathbf{W}_{T},\mathbf{V}_{T}. This immediately yields pdf(𝐘T|𝐱0)pdf(𝐘T|𝐱0)\textnormal{pdf}\left(\mathbf{Y}_{T}|\mathbf{x}_{0}\right)\neq\textnormal{pdf}\left(\mathbf{Y}_{T}|\mathbf{x}^{\prime}_{0}\right) for all 𝐱0,𝐱0\mathbf{x}_{0},\mathbf{x}_{0}^{\prime} with x4,0x4,0x_{4,0}\neq x_{4,0}^{\prime}. By Definition 3, this indicates that the intrinsic initial-value privacy of node 4 is lost under the configuration (𝐀,𝐂)(\mathbf{A},\mathbf{C}) satisfying c13a11a22+c11a12a23=0c_{13}a_{11}a_{22}+c_{11}a_{12}a_{23}=0 and c11a14a220c_{11}a_{14}a_{22}\neq 0.

Thus, even if there exists a configuration such that the intrinsic initial-value privacy of node ii is lost, such property may still be preserved generically. This is consistent with the statement (ii) of Theorem 3. \blacksquare

Denote the maximal rank of 𝐎ob𝐄P¯\mathbf{O}_{ob}\mathbf{E}_{\bar{{\mathrm{P}}}} over the matrix pairs (𝐀,𝐂)(\mathbf{A},\mathbf{C}) that comply with the network structure (G,GS)(\mathrm{G},\mathrm{G}_{\textnormal{S}}) as nPobn_{\rm P}^{ob}. By Lemma 2 in Appendix E, it is noted that rank(𝐎ob𝐄P¯)=nPob\textnormal{rank}\;(\mathbf{O}_{ob}\mathbf{E}_{\bar{{\mathrm{P}}}})=n_{\rm P}^{ob} holds for almost all configurations (𝐀,𝐂)(\mathbf{A},\mathbf{C}) complying with the network structure (G,GS)(\mathrm{G},\mathrm{G}_{\textnormal{S}}). We now present a practical verification approach of the intrinsic initial-value privacy of a node ii over the network structure (G,GS)(\mathrm{G},\mathrm{G}_{\textnormal{S}}).

Let the entries of 𝐀\mathbf{A} and 𝐂\mathbf{C} be generated independently and randomly according to the uniform distribution over the interval [0,1][0,1], and complying with the structure (G,GS)(\mathrm{G},\mathrm{G}_{\textnormal{S}}). We introduce the following three conditions:

  • (C1C1)

    rank([𝐎ob𝐞i]𝐄P¯)=nPob+1\textnormal{rank}\;\left(\begin{bmatrix}\mathbf{O}_{ob}\cr\mathbf{e}_{i}^{\top}\end{bmatrix}\mathbf{E}_{\bar{{\mathrm{P}}}}\right)=n_{\rm P}^{ob}+1.

  • (C2C2)

    rank([𝐊i1ob,𝐊i2ob,,𝐊inl1ob])=nPob\textnormal{rank}\;\left([\mathbf{K}_{i_{1}}^{\textnormal{o}b},\mathbf{K}_{i_{2}}^{\textnormal{o}b},\ldots,\mathbf{K}_{i_{n-l-1}}^{\textnormal{o}b}]\right)=n_{\rm P}^{ob} with {i1,i2,,inl1}=V\(P{i})\{i_{1},i_{2},\ldots,i_{n-l-1}\}=\mathrm{V}\backslash({\mathrm{P}}\cup\{i\}).

  • (C3C3)

    rank([𝐎ob𝐄P𝐞i])=nPob+l+1.\textnormal{rank}\;\left(\begin{bmatrix}\mathbf{O}_{ob}\cr\mathbf{E}_{\mathrm{P}}^{\top}\cr\mathbf{e}_{i}^{\top}\end{bmatrix}\right)=n_{\rm P}^{ob}+l+1.

Denote 𝖠,𝖢\mathsf{A},\mathsf{C} as one realized sample from this randomization, from which we define the following event

(𝖠,𝖢):={(𝖠,𝖢):either(C1),(C2)or(C3)holds}.\mathcal{E}_{(\mathsf{A},\mathsf{C})}:=\{(\mathsf{A},\mathsf{C}):\mbox{either}\,(C1),\,(C2)\,or\,(C3)\ {\rm holds}\}.

We present the following result.

Theorem 4

The following statements hold.

  • (i)

    If the event (𝖠,𝖢)\mathcal{E}_{(\mathsf{A},\mathsf{C})} occurs, then we know with certainty (in the deterministic sense) that intrinsic initial-value privacy of node ii is preserved generically over the network structure (G,GS)(\mathrm{G},\mathrm{G}_{\textnormal{S}}).

  • (ii)

    If intrinsic initial-value privacy of node ii is preserved generically, then (𝖠,𝖢)\mathcal{E}_{(\mathsf{A},\mathsf{C})} must occur with probability one.

Theorem 4 indeed indicates a two-step approach to verify whether the intrinsic initial-value privacy of individual nodes is preserved generically. Given any set PV{{\mathrm{P}}}\subset\mathrm{V} and node iVi\in\mathrm{V}, the first step is to compute the maximal rank nPobn_{\rm P}^{ob} of 𝐎ob𝐄P¯\mathbf{O}_{ob}\mathbf{E}_{\bar{\mathrm{P}}}. In practice, since rank(𝐎ob𝐄P¯)=nPob\textnormal{rank}\;(\mathbf{O}_{ob}\mathbf{E}_{\bar{\mathrm{P}}})=n_{\rm P}^{ob} holds for almost all configurations (𝐀,𝐂)(\mathbf{A},\mathbf{C}) complying with the network structure (G,GS)(\mathrm{G},\mathrm{G}_{\textnormal{S}}), the value nPobn_{\rm P}^{ob} can be obtained by computing the maximal rank(𝐎ob𝐄P¯)\textnormal{rank}\;(\mathbf{O}_{ob}\mathbf{E}_{\bar{\mathrm{P}}}) under a few independently and randomly generated configurations (𝐀,𝐂)(\mathbf{A},\mathbf{C}). The second step is to verify whether the event (𝖠,𝖢)\mathcal{E}_{(\mathsf{A},\mathsf{C})} occurs under the independently and randomly generated configurations. If the event (𝖠,𝖢)\mathcal{E}_{(\mathsf{A},\mathsf{C})} occurs, one then conclude that the intrinsic initial-value privacy of node ii is preserved generically. Otherwise, if the event (𝖠,𝖢)\mathcal{E}_{(\mathsf{A},\mathsf{C})} does not occur, the intrinsic initial-value privacy of node ii is lost generically by Theorem 3.

Remark 15

When P=\mathrm{P}=\emptyset, according to Theorem 2, the generic intrinsic initial-value privacy of node ii indicates that the node state xi,tx_{i,t} is unobservable for almost all configurations (𝐀,𝐂)(\mathbf{A},\mathbf{C}) complying with (G,GS)(\mathrm{G},\mathrm{G}_{\textnormal{S}}), i.e., structurally unobservable, that is an extension of the dual notion to structural state variable controllability [29], and structural observability [30, 32].

Similar to Theorem 3, the network privacy index is also generically determined by the network structure (G,GS)(\mathrm{G},\mathrm{G}_{\textnormal{S}}).

Theorem 5

The network privacy index is generically determined by the network topology. Namely, for almost all configurations (𝐀,𝐂)(\mathbf{A},\mathbf{C}) complying with the network structure (G,GS)(\mathrm{G},\mathrm{G}_{\textnormal{S}}), the network privacy index 𝐈rp=nnobg1{\mathbf{I}_{rp}}=n-n_{ob}^{g}-1 with nobgn_{ob}^{g} given by the maximal rank of the observability matrix 𝐎ob\mathbf{O}_{ob}.

Remark 16

By the proof of Theorem 5, rank(𝐎ob)=nobg\textnormal{rank}\;(\mathbf{O}_{ob})=n_{ob}^{g} holds for almost all configurations (𝐀,𝐂)(\mathbf{A},\mathbf{C}) complying with (G,GS)(\mathrm{G},\mathrm{G}_{\textnormal{S}}). According to [31] and the duality principle between controllability and observability, the nobgn_{ob}^{g} indeed is given by the maximal number of edges in the set of stem-cycle disjoint graphs [29, 31].

Remark 17

We remark that the results in Theorems 25 and Proposition 2 can be easily extended to time-varying networked systems (10) under time-varying graphs (Gt,GS,t)(\mathrm{G}_{t},\mathrm{G}_{\textnormal{S},t}), by replacing the observability matrix 𝐎ob\mathbf{O}_{ob} by its time-varying version 𝐎^\widehat{\mathbf{O}}.

Example 5. Now an example is presented to illustrate Theorems 4-5. We consider a networked system (1) with (𝐀,𝐂)(\mathbf{A},\mathbf{C}) complying with the graphs G,GS\mathrm{G},\mathrm{G}_{\textnormal{S}} in Fig. 6, consisting of 12 network nodes and 2 sensing nodes.

Refer to caption
Figure 6: Network topologies (G,GS)(\mathrm{G},\mathrm{G}_{\textnormal{S}}) with 12 network nodes (blue circles) and 2 sensing nodes (red circles). The lines without arrows denote bidirectional edges.

We choose five configurations (𝐀,𝐂)(\mathbf{A},\mathbf{C}) with the entries generated independently and randomly according to the uniform distribution over the interval [0,1][0,1], and complying with the graph in Fig. 6. Under these configurations, we check the corresponding ranks of matrix 𝐎ob\mathbf{O}_{ob}, and find that the maximal rank is nobg=10n_{ob}^{g}=10. According to Theorem 5, the network privacy index is 𝐈rp=1{\mathbf{I}_{rp}}=1, for almost all configurations complying with the graph in Fig. 6. Then, for each iVi\in\mathrm{V} by fixing all edge weights as 1, it can be verified that

rank([𝐎ob𝐞i])=11,for i=3,6,7,12.\mbox{rank}\left(\begin{bmatrix}\mathbf{O}_{ob}\cr\mathbf{e}_{i}^{\top}\end{bmatrix}\right)=11\,,\quad\mbox{for $i=3,6,7,12$}.

Using Theorem 4, this indicates that the network system preserves the intrinsic initial-value privacy of nodes 3,6,7,123,6,7,12 for almost all configurations (𝐀,𝐂)(\mathbf{A},\mathbf{C}) complying with the graph in Fig. 6.

Let the public disclosure set P={3,6}{\mathrm{P}}=\{3,6\}. Under the previously generated five configurations (𝐀,𝐂)(\mathbf{A},\mathbf{C}), we check the corresponding ranks of matrix 𝐎ob𝐄P¯\mathbf{O}_{ob}\mathbf{E}_{\bar{\mathrm{P}}}, and find that the maximal rank is nPob=9n_{\rm P}^{ob}=9. Then fix all edge weights as 1 in Fig. 6, and we can obtain

rank([𝐎ob𝐄P¯𝐞i𝐄P¯])=10,for i=7,12.\mbox{rank}\left(\begin{bmatrix}\mathbf{O}_{ob}\mathbf{E}_{\bar{\mathrm{P}}}\cr\mathbf{e}_{i}^{\top}\mathbf{E}_{\bar{\mathrm{P}}}\end{bmatrix}\right)=10\,,\quad\mbox{for $i=7,12$}.

By Theorem 4, this indicates that the network system preserves the intrinsic initial-value privacy of nodes 7,127,12 for almost all configurations (𝐀,𝐂)(\mathbf{A},\mathbf{C}) complying with the graph in Fig. 6, under the the public disclosure set P={3,6}{\mathrm{P}}=\{3,6\}.

Furthermore, let P={3,7}{\mathrm{P}}=\{3,7\}. Similarly, we check the corresponding ranks of matrix 𝐎ob𝐄P¯\mathbf{O}_{ob}\mathbf{E}_{\bar{\mathrm{P}}} under the previously generated five configurations (𝐀,𝐂)(\mathbf{A},\mathbf{C}), and can find that nPob=10n_{\rm P}^{ob}=10, i.e., 𝐎ob𝐄P¯\mathbf{O}_{ob}\mathbf{E}_{\bar{\mathrm{P}}} is full-column-rank for almost all configurations (𝐀,𝐂)(\mathbf{A},\mathbf{C}) complying with the graph in Fig. 6. This implies that for all ii, there is no configuration (𝐀,𝐂)(\mathbf{A},\mathbf{C}) such that

rank([𝐎ob𝐄P¯𝐞i𝐄P¯])=11.\mbox{rank}\left(\begin{bmatrix}\mathbf{O}_{ob}\mathbf{E}_{\bar{\mathrm{P}}}\cr\mathbf{e}_{i}^{\top}\mathbf{E}_{\bar{\mathrm{P}}}\end{bmatrix}\right)=11\,.

Thus, by Theorem 4 the intrinsic initial-value privacy of all nodes is generically lost. \blacksquare

Remark 18

We remark that for a large-scale system (1), it is generally difficult to determine the generic intrinsic initial-value privacy of individual nodes, due to the high computational complexity to compute the maximal rank of 𝐎ob𝐄P¯\mathbf{O}_{ob}\mathbf{E}_{\bar{\mathrm{P}}} and verify the rank conditions in (C1)-(C3). A possible solution is to find topological conditions as in [34, 33]. However, the extension of ideas in [34, 33] to our settings is nontrivial, particularly in the presence of a public disclosure set P\mathrm{P}. This will be further explored in future works.

5 Conclusions

In this paper, we have studied the intrinsic initial-value privacy and differential initial-value privacy of linear dynamical systems with random process and measurement noises. We proved that the intrinsic initial-value privacy is equivalent to unobservability, while the differential initial-value privacy can be achieved for a privacy budget depending on an extended observability matrix of the system and the covariance of the noises. Next, by regarding the considered linear system as a network system, we proposed necessary and sufficient conditions on the intrinsic initial-value privacy of individual nodes, in the presence of some nodes whose initial-value privacy is public. A quantitative network privacy index was also proposed using the largest number of arbitrary public nodes such that the whole initial values are not fully exposed. In addition, we showed that both the intrinsic initial-value privacy and the network privacy index are generically determined by the network structure. In future works, topological conditions (see e.g. [33, 34]) will be explored for generic intrinsic initial-value privacy of individual nodes, and the considered privacy metrics will be utilized to develop privacy-preservation approaches for linear dynamical systems.

Appendix A Proof of Proposition 1

Sufficiency. If rank(𝐎ob)<n\textnormal{rank}\;(\mathbf{O}_{ob})<n, then rank(𝐎T)<n\textnormal{rank}\;(\mathbf{O}_{T})<n and for all 𝜼ker(𝐎T)\bm{\eta}\in\ker(\mathbf{O}_{T}), we have

pdf(𝐘T|𝐱0)=pdf(𝐘T|𝐱0+𝜼).\textnormal{pdf}\left(\mathbf{Y}_{T}|\mathbf{x}_{0}\right)=\textnormal{pdf}\left(\mathbf{Y}_{T}|\mathbf{x}_{0}+\bm{\eta}\right)\,. (13)

This, according to Definition 1, completes the sufficiency.

Necessity. To show the necessity part, the contradiction method is used. With the system (1) preserving intrinsic initial-value privacy, we suppose that rank(𝐎T)=n\textnormal{rank}\;(\mathbf{O}_{T})=n. This implies that the mapping ()\mathcal{M}(\cdot) is invertible, i.e.,

𝐱0=1(𝐘T):=(𝐎T𝐎T)1𝐎T(𝐘T𝐇T𝐕T𝐖T).\mathbf{x}_{0}=\mathcal{M}^{-1}(\mathbf{Y}_{T}):=\big{(}\mathbf{O}_{T}^{\top}\mathbf{O}_{T}\big{)}^{-1}\mathbf{O}_{T}^{\top}\big{(}\mathbf{Y}_{T}-\mathbf{H}_{T}\mathbf{V}_{T}-\mathbf{W}_{T}\big{)}\,.

It is clear that 𝐱0\mathbf{x}_{0} is identifiable from 𝐘T\mathbf{Y}_{T}, i.e., the initial value 𝐱0\mathbf{x}_{0} of the system (1) is not private. This contradicts with the fact that the system (1) preserves intrinsic initial-value privacy. Therefore, it can be concluded that rank(𝐎T)<n\textnormal{rank}\;(\mathbf{O}_{T})<n. This completes the proof.

Appendix B Proof of Theorem 1

Let 𝐕Ti,𝐖Ti\mathbf{V}_{T}^{i},\mathbf{W}_{T}^{i} be the process and measurement noise vectors, respectively for the ii-th implementation. Define 𝐳i:=𝐇T𝐕Ti+𝐖Ti\mathbf{z}^{i}:=\mathbf{H}_{T}\mathbf{V}_{T}^{i}+\mathbf{W}_{T}^{i} and 𝐳:=[𝐳1;𝐳2;;𝐳N]\mathbf{z}:=[\mathbf{z}^{1};\mathbf{z}^{2};\ldots;\mathbf{z}^{N}]. Hence, 𝐳𝒩(0,𝐈NΣ)\mathbf{z}\backsim\mathcal{N}(0,\mathbf{I}_{N}\otimes\Sigma) with

Σ:=[𝐇T𝐈m(T+1)]ΣT[𝐇T𝐈m(T+1)].\Sigma:=\begin{bmatrix}\mathbf{H}_{T}&\mathbf{I}_{m(T+1)}\end{bmatrix}\Sigma_{T}\begin{bmatrix}\mathbf{H}_{T}&\mathbf{I}_{m(T+1)}\end{bmatrix}^{\top}\,.

As in [15], with the mapping N\mathcal{M}^{N} defined in (4), for any Rrange(N)R\subset\mbox{range}(\mathcal{M}^{N}) and ϵ>0\epsilon>0, we have

(N(𝐱0)R)=((𝟏N𝐎T)𝐱0+𝐳R)=a)(2π)Nm(T+1)2det(Σ)N2Rexp(12(𝐈NΣ12)(u(𝟏N𝐎T)𝐱0)2)du=b)exp(ϵ)(N(𝐱0)R)+(2π)Nm(T+1)2det(Σ)N2Rexp(12(𝐈NΣ12)(u(𝟏N𝐎T)𝐱0)2)(1exp(ϵ(u(𝟏N𝐎T)𝐱0)(𝟏NΣ1𝐎T)𝐱~0N2𝐱~0𝐎TΣ1𝐎T𝐱~0))duc)exp(ϵ)(N(𝐱0)R)+(2π)Nm(T+1)2Nm(T+1)1vT(𝟏NΣ12𝐎T)𝐱~0ϵN2Σ12𝐎T𝐱~02exp(v22)dvd)exp(ϵ)(N(𝐱0)R)+(𝐱~0(𝟏N𝐎TΣ12)vϵN2Σ12𝐎T𝐱~02)\begin{array}[]{l}\vspace{2mm}\mathbb{P}(\mathcal{M}^{N}(\mathbf{x}_{0})\in R)=\mathbb{P}\big{(}(\mathbf{1}_{N}\otimes\mathbf{O}_{T})\mathbf{x}_{0}+\mathbf{z}\in R\big{)}\\ \vspace{2mm}\overset{a)}{=}(2\pi)^{-\frac{Nm(T+1)}{2}}\textnormal{det}(\Sigma)^{-\frac{N}{2}}\displaystyle\int_{R}\exp\bigg{(}-\frac{1}{2}\|(\mathbf{I}_{N}\otimes\Sigma^{-\frac{1}{2}})(u-(\mathbf{1}_{N}\otimes\mathbf{O}_{T})\mathbf{x}_{0})\|^{2}\bigg{)}\,\textnormal{d}u\\ \vspace{2mm}\overset{b)}{=}\exp(\epsilon)\mathbb{P}(\mathcal{M}^{N}(\mathbf{x}_{0}^{\prime})\in R)+(2\pi)^{-\frac{Nm\,(T+1)}{2}}\textnormal{det}(\Sigma)^{-\frac{N}{2}}\displaystyle\int_{R}\exp\left(-\frac{1}{2}\|(\mathbf{I}_{N}\otimes\Sigma^{-\frac{1}{2}})(u-(\mathbf{1}_{N}\otimes\mathbf{O}_{T})\mathbf{x}_{0})\|^{2}\right)\cdot\\ \vspace{2mm}\qquad\cdot\left(1-\exp\bigg{(}\epsilon-(u-(\mathbf{1}_{N}\otimes\mathbf{O}_{T})\mathbf{x}_{0})^{\top}(\mathbf{1}_{N}\otimes\Sigma^{-1}\mathbf{O}_{T})\tilde{\mathbf{x}}_{0}-\frac{N}{2}\tilde{\mathbf{x}}_{0}^{\top}\mathbf{O}_{T}^{\top}\Sigma^{-1}\mathbf{O}_{T}\tilde{\mathbf{x}}_{0}\bigg{)}\right)\,\textnormal{d}u\\ \vspace{2mm}\overset{c)}{\leq}\exp(\epsilon)\mathbb{P}(\mathcal{M}^{N}(\mathbf{x}_{0}^{\prime})\in R)+(2\pi)^{-\frac{Nm\,(T+1)}{2}}\displaystyle\int_{\mathbb{R}^{Nm(T+1)}}1_{v^{T}(\mathbf{1}_{N}\otimes\Sigma^{-\frac{1}{2}}\mathbf{O}_{T})\tilde{\mathbf{x}}_{0}\geq\epsilon-\frac{N}{2}\|\Sigma^{-\frac{1}{2}}\mathbf{O}_{T}\tilde{\mathbf{x}}_{0}\|^{2}}\exp\big{(}-\frac{\|v\|^{2}}{2}\big{)}\,\textnormal{d}v\\ \vspace{2mm}\overset{d)}{\leq}\exp(\epsilon)\mathbb{P}(\mathcal{M}^{N}(\mathbf{x}_{0}^{\prime})\in R)+\mathbb{P}\bigg{(}\tilde{\mathbf{x}}_{0}^{\top}\left(\mathbf{1}_{N}^{\top}\otimes\mathbf{O}_{T}^{\top}\Sigma^{-\frac{1}{2}}\right)v\geq\epsilon-\frac{N}{2}\|\Sigma^{-\frac{1}{2}}\mathbf{O}_{T}\tilde{\mathbf{x}}_{0}\|^{2}\bigg{)}\end{array}

where a)a) is obtained by setting u=(𝟏N𝐎T)𝐱0+𝐳u=(\mathbf{1}_{N}^{\top}\otimes\mathbf{O}_{T})\mathbf{x}_{0}+\mathbf{z}, b)b) is obtained by adding and subtracting the term exp(ϵ)(N(𝐱0)R)\exp(\epsilon)\mathbb{P}(\mathcal{M}^{N}(\mathbf{x}_{0}^{\prime})\in R), and setting 𝐱~0=𝐱0𝐱0\tilde{\mathbf{x}}_{0}=\mathbf{x}_{0}-\mathbf{x}^{\prime}_{0}, c)c) is obtained by choosing R=Nm(T+1)R=\mathbb{R}^{Nm(T+1)} and setting v=(𝐈NΣ12)[u(𝟏N𝐎T)𝐱0]v=(\mathbf{I}_{N}\otimes\Sigma^{-\frac{1}{2}})[u-(\mathbf{1}_{N}\otimes\mathbf{O}_{T})\mathbf{x}_{0}] with v𝒩(0,𝐈Nm(T+1))v\backsim\mathcal{N}(0,\mathbf{I}_{Nm(T+1)}), and d) is derived by using the fact that 𝐱~0(𝟏N𝐎TΣ12)v𝒩(0,NΣ12𝐎T𝐱~02)\tilde{\mathbf{x}}_{0}^{\top}\left(\mathbf{1}_{N}^{\top}\otimes\mathbf{O}_{T}^{\top}\Sigma^{-\frac{1}{2}}\right)v\backsim\mathcal{N}\big{(}0,N\|\Sigma^{-\frac{1}{2}}\mathbf{O}_{T}\tilde{\mathbf{x}}_{0}\|^{2}\big{)}. It is noted that

(𝐱~0(𝟏N𝐎TΣ12)vϵN2Σ12𝐎T𝐱~02)(Zϵσm(Σ)dN𝐎TdN𝐎T2σm(Σ))\begin{array}[]{rcl}\vspace{2mm}\hfil&&\mathbb{P}\bigg{(}\tilde{\mathbf{x}}_{0}^{\top}\left(\mathbf{1}_{N}^{\top}\otimes\mathbf{O}_{T}^{\top}\Sigma^{-\frac{1}{2}}\right)v\geq\epsilon-\frac{N}{2}\|\Sigma^{-\frac{1}{2}}\mathbf{O}_{T}\tilde{\mathbf{x}}_{0}\|^{2}\bigg{)}\\ &\leq&\mathbb{P}\bigg{(}Z\geq\frac{\epsilon\sqrt{\sigma_{m}(\Sigma)}}{d\sqrt{N}\|\mathbf{O}_{T}\|}-\frac{d\sqrt{N}\|\mathbf{O}_{T}\|}{2\sqrt{\sigma_{m}(\Sigma)}}\bigg{)}\\ \end{array}

with Z𝒩(0,1)Z\backsim\mathcal{N}(0,1).

Thus, it can be concluded that the (ϵ,δ)(\epsilon,\delta)-differential privacy is preserved if ϵ,δ\epsilon,\delta satisfy

δ𝒬(ϵσm(Σ)dN𝐎TdN𝐎T2σm(Σ)).{\delta\geq\mathcal{Q}\bigg{(}\frac{\epsilon\sqrt{\sigma_{m}(\Sigma)}}{d\sqrt{N}\|\mathbf{O}_{T}\|}-\frac{d\sqrt{N}\|\mathbf{O}_{T}\|}{2\sqrt{\sigma_{m}(\Sigma)}}\bigg{)}\,\,.} (14)

With 𝒬(w)\mathcal{Q}(w) being a strictly decreasing smooth function, it is clear that (14) is equivalent to

ϵσm(Σ)dN𝐎T𝒬1(δ)σm(Σ)dN𝐎T20,\frac{\epsilon\sigma_{m}(\Sigma)}{d\sqrt{N}\|\mathbf{O}_{T}\|}-\mathcal{Q}^{-1}(\delta)\sqrt{\sigma_{m}(\Sigma)}-\frac{d\sqrt{N}\|\mathbf{O}_{T}\|}{2}\geq 0\,,

which is fulfilled if (9) holds. The proof is thus completed.

Appendix C Proof of Theorem 2

Let 𝐊j\mathbf{K}_{j} be the jj-the column of matrix 𝐎T\mathbf{O}_{T}. Fundamental to the proof is the following technical lemma.

Lemma 1

Statement b) and c) in Theorem 2 are respectively equivalent to the following b) and c).

  • b).

    rank([𝐊p¯1,,𝐊p¯nl])=rank([𝐊i1,,𝐊inl1])\textnormal{rank}\;([\mathbf{K}_{\bar{p}_{1}},\ldots,\mathbf{K}_{\bar{p}_{n-l}}])=\textnormal{rank}\;([\mathbf{K}_{i_{1}},\ldots,\mathbf{K}_{i_{n-l-1}}]) with {i1,,inl1}=V\(P{i})\{i_{1},\ldots,i_{n-l-1}\}=\mathrm{V}\backslash({\mathrm{P}}\cup\{i\}).

  • c).

    rank([𝐎T𝐞i]𝐄P¯)=rank(𝐎T𝐄P¯)+1\textnormal{rank}\;\left(\begin{bmatrix}\mathbf{O}_{T}\cr\mathbf{e}_{i}^{\top}\end{bmatrix}\mathbf{E}_{\bar{{\mathrm{P}}}}\right)=\textnormal{rank}\;\left(\mathbf{O}_{T}\mathbf{E}_{\bar{{\mathrm{P}}}}\right)+1.

Proof. We observe that 𝐎T=𝐐T𝐎ob\mathbf{O}_{T}=\mathbf{Q}_{T}\mathbf{O}_{ob} with 𝐐Tm(T+1)×mn\mathbf{Q}_{T}\in\mathbb{R}^{m(T+1)\times mn} being full-column-rank, which yields

rank(𝐎T𝐄P¯)=rank(𝐎ob𝐄P¯).{\textnormal{rank}\;(\mathbf{O}_{T}\mathbf{E}_{\bar{\mathrm{P}}})=\textnormal{rank}\;(\mathbf{O}_{ob}\mathbf{E}_{\bar{\mathrm{P}}})\,.} (15)

Namely,

rank([𝐊p¯1,,𝐊p¯nl])=rank([𝐊p¯1ob,,𝐊p¯nlob]).\textnormal{rank}\;([\mathbf{K}_{\bar{p}_{1}},\ldots,\mathbf{K}_{\bar{p}_{n-l}}])=\textnormal{rank}\;([\mathbf{K}_{\bar{p}_{1}}^{\textnormal{o}b},\ldots,\mathbf{K}_{\bar{p}_{n-l}}^{\textnormal{o}b}])\,.

Similarly, it can be verified that rank([𝐊i1,,𝐊inl1])=rank([𝐊i1ob,,𝐊inl1ob])\textnormal{rank}\;([\mathbf{K}_{i_{1}},\ldots,\mathbf{K}_{i_{n-l-1}}])=\textnormal{rank}\;([\mathbf{K}_{i_{1}}^{\textnormal{o}b},\ldots,\mathbf{K}_{i_{n-l-1}}^{\textnormal{o}b}]). Therefore, the statements b) and b) are equivalent.

To show the equivalence between statements c) and c), we observe that

rank([𝐎ob𝐄P])=rank([𝐎T𝐄P])=rank(𝐎T𝐄P¯)+lrank([𝐎ob𝐄P𝐞i])=rank([𝐎T𝐄P𝐞i])=rank([𝐎T𝐞i]𝐄P¯)+l.\begin{array}[]{l}\vspace{2mm}\textnormal{rank}\;\left(\begin{bmatrix}\mathbf{O}_{ob}\cr\mathbf{E}_{\mathrm{P}}^{\top}\end{bmatrix}\right)=\textnormal{rank}\;\left(\begin{bmatrix}\mathbf{O}_{T}\cr\mathbf{E}_{\mathrm{P}}^{\top}\end{bmatrix}\right)=\textnormal{rank}\;\left(\mathbf{O}_{T}\mathbf{E}_{\bar{{\mathrm{P}}}}\right)+l\\ \vspace{2mm}\textnormal{rank}\;\left(\begin{bmatrix}\mathbf{O}_{ob}\cr\mathbf{E}_{\mathrm{P}}^{\top}\cr\mathbf{e}_{i}^{\top}\end{bmatrix}\right)=\textnormal{rank}\;\left(\begin{bmatrix}\mathbf{O}_{T}\cr\mathbf{E}_{\mathrm{P}}^{\top}\cr\mathbf{e}_{i}^{\top}\end{bmatrix}\right)\\ \qquad\qquad\qquad\,\quad=\textnormal{rank}\;\left(\begin{bmatrix}\mathbf{O}_{T}\cr\mathbf{e}_{i}^{\top}\end{bmatrix}\mathbf{E}_{\bar{{\mathrm{P}}}}\right)+l\,.\end{array}

This thus establishes the equivalence between statements c)c) and c). \blacksquare

With the above lemma in mind, we now proceed to show a)b)a)\Longleftrightarrow b^{\dagger}) and b)c)b)\Longleftrightarrow c^{\dagger}), which in turn will complete the proof.

a)b)a)\Longrightarrow b^{\dagger}). Given any node iVi\in\mathrm{V}, we now proceed to show, if the initial-value privacy of node ii is preserved w.r.t. P{{\mathrm{P}}}, 𝐊irange([𝐊i1,𝐊i2,,𝐊inl1])\mathbf{K}_{i}\in\textnormal{range}([\mathbf{K}_{i_{1}},\mathbf{K}_{i_{2}},\ldots,\mathbf{K}_{i_{n-l-1}}]). The contradiction method is used by supposing there exists no vector Γnl1\Gamma\in\mathbb{R}^{n-l-1} such that [𝐊i1,𝐊i2,,𝐊inl1]Γ=𝐊i[\mathbf{K}_{i_{1}},\mathbf{K}_{i_{2}},\ldots,\mathbf{K}_{i_{n-l-1}}]\Gamma=\mathbf{K}_{i}. This, in turn, implies there exists a vector 𝐃im(T+1)\mathbf{D}_{i}\in\mathbb{R}^{m(T+1)} such that 𝐃i𝐊i0\mathbf{D}_{i}^{\top}\mathbf{K}_{i}\neq 0 and 𝐃i𝐊ij=0\mathbf{D}_{i}^{\top}\mathbf{K}_{i_{j}}=0 for all j=1,,nl1j=1,\ldots,n-l-1. Thus, given any initial condition 𝐱0=[x1,0;;xn,0]\mathbf{x}_{0}=[x_{1,0};\ldots;x_{n,0}], we have

𝐃i𝐘T=jP𝐃i𝐊jxj,0+𝐃i𝐊ixi,0+𝐃i(𝐇T𝐕T+𝐖T),\mathbf{D}_{i}^{\top}\mathbf{Y}_{T}=\sum\limits_{j\in{{\mathrm{P}}}}\mathbf{D}_{i}^{\top}\mathbf{K}_{j}x_{j,0}+\mathbf{D}_{i}^{\top}\mathbf{K}_{i}x_{i,0}+\mathbf{D}_{i}^{\top}(\mathbf{H}_{T}\mathbf{V}_{T}+\mathbf{W}_{T})\,,

which implies

xi,0=(𝐃i𝐊i)1𝐃i𝐘TjP𝐃i𝐊jxj,0(𝐃i𝐊i)1𝐃i𝐇T𝐕T(𝐃i𝐊i)1𝐃i𝐖T.\begin{array}[]{rcl}\vspace{2mm}x_{i,0}&=&(\mathbf{D}_{i}^{\top}\mathbf{K}_{i})^{-1}\mathbf{D}_{i}^{\top}\mathbf{Y}_{T}-\sum\limits_{j\in{{\mathrm{P}}}}\mathbf{D}_{i}^{\top}\mathbf{K}_{j}x_{j,0}\\ &&-(\mathbf{D}_{i}^{\top}\mathbf{K}_{i})^{-1}\mathbf{D}_{i}^{\top}\mathbf{H}_{T}\mathbf{V}_{T}-(\mathbf{D}_{i}^{\top}\mathbf{K}_{i})^{-1}\mathbf{D}_{i}^{\top}\mathbf{W}_{T}\,.\end{array}

It is clear that the initial condition xi,0x_{i,0} of node ii is identifiable for system (1) w.r.t. P{{\mathrm{P}}}, which contradicts with the fact that xi,0x_{i,0} is private. Therefore, we conclude that 𝐊irange([𝐊i1,𝐊i2,,𝐊inl1])\mathbf{K}_{i}\in\textnormal{range}([\mathbf{K}_{i_{1}},\mathbf{K}_{i_{2}},\ldots,\mathbf{K}_{i_{n-l-1}}]), i.e., a)a) implies b)b^{\prime}).

b)a)b^{\dagger})\Longrightarrow a). Clearly, if

rank([𝐊i,𝐊i1,,𝐊inl1])=rank([𝐊i1,,𝐊inl1]),\textnormal{rank}\;([\mathbf{K}_{i},\mathbf{K}_{i_{1}},\ldots,\mathbf{K}_{i_{n-l-1}}])=\textnormal{rank}\;([\mathbf{K}_{i_{1}},\ldots,\mathbf{K}_{i_{n-l-1}}])\,,

then there exists a vector Γ=[γ1;;γnl1]\Gamma=[\gamma_{1};\ldots;\gamma_{n-l-1}] such that 𝐊i=j=1nl1γj𝐊ij\mathbf{K}_{i}=\sum\limits_{j=1}^{n-l-1}\gamma_{j}\mathbf{K}_{i_{j}}. Given any 𝐱0=[x1,0;;xn,0]\mathbf{x}_{0}=[x_{1,0};\ldots;x_{n,0}] and 𝐱0=[x1,0;;xn,0]\mathbf{x}^{\prime}_{0}=[x_{1,0}^{\prime};\ldots;x_{n,0}^{\prime}] with xi,0xi(0)x_{i,0}\neq x_{i}^{\prime}(0), xj,0=xj,0x_{j,0}=x_{j,0}^{\prime} for jPj\in{{\mathrm{P}}}, and xij,0x_{i_{j},0}^{\prime}, j=1,,nl1j=1,\ldots,n-l-1 satisfying

xij,0=xij,0+γj(xi,0xi,0),x_{i_{j},0}^{\prime}=x_{i_{j},0}+\gamma_{j}(x_{i,0}-x_{i,0}^{\prime})\,,

we can obtain

𝐘T=j=1n𝐊jxj,0+𝐇T𝐕T+𝐖T=jP𝐊jxj,0+𝐊ixi,0+j=1nl1𝐊ijxij,0+𝐇T𝐕T+𝐖T=jP𝐊jxj,0+𝐊ixi,0+j=1nl1γj𝐊ij(xi,0xi,0)+j=1nl1𝐊ijxij,0j=1nl1𝐊ijγj(xi,0xi,0)+𝐇T𝐕T+𝐖T=j=1n𝐊jxj,0+𝐇T𝐕T+𝐖T.\begin{array}[]{l}\mathbf{Y}_{T}=\sum\limits_{j=1}^{n}\mathbf{K}_{j}x_{j,0}+\mathbf{H}_{T}\mathbf{V}_{T}+\mathbf{W}_{T}\\ =\sum\limits_{j\in\mathrm{P}}\mathbf{K}_{j}x_{j,0}+\mathbf{K}_{i}x_{i,0}+\sum\limits_{j=1}^{{n-l-1}}\mathbf{K}_{i_{j}}x_{i_{j},0}+\mathbf{H}_{T}\mathbf{V}_{T}+\mathbf{W}_{T}\\ =\sum\limits_{j\in\mathrm{P}}\mathbf{K}_{j}x_{j,0}^{\prime}+\mathbf{K}_{i}x_{i,0}^{\prime}+\sum\limits_{j=1}^{n-l-1}\gamma_{j}\mathbf{K}_{i_{j}}(x_{i,0}-x_{i,0}^{\prime})\,+\sum\limits_{j=1}^{{n-l-1}}\mathbf{K}_{i_{j}}x_{i_{j},0}^{\prime}-\sum\limits_{j=1}^{{n-l-1}}\mathbf{K}_{i_{j}}\gamma_{j}(x_{i,0}-x_{i,0}^{\prime})+\mathbf{H}_{T}\mathbf{V}_{T}+\mathbf{W}_{T}\\ =\sum\limits_{j=1}^{n}\mathbf{K}_{j}x_{j,0}^{\prime}+\mathbf{H}_{T}\mathbf{V}_{T}+\mathbf{W}_{T}\,.\end{array}

Thus, given any nonzero ηi\eta_{i}, we let ηj=0\eta_{j}=0 for all jPj\in{{\mathrm{P}}} and ηij=γjηi\eta_{i_{j}}=\gamma_{j}\eta_{i} for all j=1,,nl1j=1,\ldots,n-l-1, we have

pdf(𝐘T|𝐱0)=pdf(𝐘T|𝐱0+𝜼)\textnormal{pdf}\left(\mathbf{Y}_{T}|\mathbf{x}_{0}\right)=\textnormal{pdf}\left(\mathbf{Y}_{T}|\mathbf{x}_{0}+\bm{\eta}\right)\, (16)

with 𝜼:=col(η1,,ηn)\bm{\eta}:=\textnormal{col}(\eta_{1},\ldots,\eta_{n}). This, according to Definition 3, proves b)a)b^{\dagger})\Longrightarrow a).

b)c)b^{\dagger})\Longleftrightarrow c^{\dagger}). The equivalence between b)b^{\dagger}) and c)c^{\dagger}) can be easily inferred by using the facts that

rank([𝐎T𝐞i]𝐄P¯)=rank([𝐊i𝐊i1𝐊inl1100])=rank([𝐊i1,,𝐊inl1])+1.\begin{array}[]{l}\vspace{2mm}\textnormal{rank}\;\left(\begin{bmatrix}\mathbf{O}_{T}\cr\mathbf{e}_{i}^{\top}\end{bmatrix}\mathbf{E}_{\bar{{\mathrm{P}}}}\right)=\textnormal{rank}\;\left(\begin{bmatrix}\mathbf{K}_{i}&\mathbf{K}_{i_{1}}&\ldots&\mathbf{K}_{i_{n-l-1}}\cr 1&0&\cdots&0\end{bmatrix}\right)\\ =\textnormal{rank}\;\left([\mathbf{K}_{i_{1}},\ldots,\mathbf{K}_{i_{n-l-1}}]\right)+1\,.\end{array}

Appendix D Proof of Proposition 2

The proof is completed if the following two statements are proved.

  • (i)

    Given any PV{{\mathrm{P}}}\subset\mathrm{V} with |P|=nrank(𝐎ob)1|{{\mathrm{P}}}|=n-\textnormal{rank}\;(\mathbf{O}_{ob})-1, there exists a node whose initial value is private.

  • (ii)

    There exists a set PV{{\mathrm{P}}}\subset\mathrm{V} with |P|=nrank(𝐎ob)|{{\mathrm{P}}}|=n-\textnormal{rank}\;(\mathbf{O}_{ob}) such that initial values of all nodes are identifiable.

Proof of part (i). Given any PV{{\mathrm{P}}}\subset\mathrm{V} with |P|:=l=nrank(𝐎ob)1|{{\mathrm{P}}}|:=l=n-\textnormal{rank}\;(\mathbf{O}_{ob})-1, it is clear that the matrix [𝐊p¯1ob,𝐊p¯2ob,,𝐊p¯nlob][\mathbf{K}_{\bar{p}_{1}}^{ob},\mathbf{K}_{{\bar{p}_{2}}}^{ob},\ldots,\mathbf{K}_{\bar{p}_{n-l}}^{ob}] is not full-column-rank, which indicates there exits an i=pj{p¯1,p¯2,,p¯nl}i=p_{j}\in\{\bar{p}_{1},\bar{p}_{2},\ldots,\bar{p}_{n-l}\} such that

𝐊iobrange([𝐊p¯1ob,,𝐊p¯j1ob,𝐊p¯j+1ob,,𝐊p¯nlob]).\mathbf{K}_{i}^{ob}\in\textnormal{range}([\mathbf{K}_{\bar{p}_{1}}^{ob},\ldots,\mathbf{K}_{\bar{p}_{j-1}}^{ob},\mathbf{K}_{\bar{p}_{j+1}}^{ob},\ldots,\mathbf{K}_{\bar{p}_{n-l}}^{ob}])\,.

According to Theorem 2, this yields that the initial value of node ii is private.

Proof of part (ii). Let r=rank(𝐎ob)r=\textnormal{rank}\;(\mathbf{O}_{ob}) and l=nrl=n-r. Then, select p¯jV\bar{p}_{j}\in\mathrm{V}, j=1,,rj=1,\ldots,r such that rank([𝐊p¯1ob,𝐊p¯2ob,,𝐊p¯rob])=r\textnormal{rank}\;([\mathbf{K}_{\bar{p}_{1}}^{ob},\mathbf{K}_{\bar{p}_{2}}^{ob},\ldots,\mathbf{K}_{\bar{p}_{r}}^{ob}])=r. Thus let P=V\{p¯1,p¯2,,p¯r}{{\mathrm{P}}}=\mathrm{V}\backslash\{\bar{p}_{1},\bar{p}_{2},\ldots,\bar{p}_{r}\}. According to Theorem 2, it can be concluded that the initial values of all nodes i{p¯1,p¯2,,p¯r}=V\Pi\in\{\bar{p}_{1},\bar{p}_{2},\ldots,\bar{p}_{r}\}=\mathrm{V}\backslash{{\mathrm{P}}} are identifiable.

In summary of the previous analysis, we conclude that 𝐈rp=nrank(𝐎ob)1{\mathbf{I}_{rp}}=n-\textnormal{rank}\;(\mathbf{O}_{ob})-1 for system (1).

Appendix E Proof of Theorem 3

To ease the subsequent analysis, we collect all edge weights aij,cija_{ij},c_{ij} in a configuration vector θN\theta\in\mathbb{R}^{N} with NN being the total number of edges in (G,GS)(\mathrm{G},\mathrm{G}_{\textnormal{S}}). In this way, all matrices 𝐀,𝐂\mathbf{A},\mathbf{C} are indeed functions of θ\theta, and so is the resulting observability matrix 𝐎ob\mathbf{O}_{ob}.

Instrumental to the proof is the following lemma.

Lemma 2

There exists a nPobnln_{\rm P}^{ob}\leq n-l such that

rank(𝐎ob(θ)𝐄P¯)=nPob,for almost all θN\textnormal{rank}\;(\mathbf{O}_{ob}(\theta)\mathbf{E}_{\bar{\mathrm{P}}})=n_{\rm P}^{ob}\,,\quad\mbox{for almost all $\theta\in\mathbb{R}^{N}$} (17)
rank(𝐎ob(θ)𝐄P¯)nPob,for all θN.\textnormal{rank}\;(\mathbf{O}_{ob}(\theta)\mathbf{E}_{\bar{\mathrm{P}}})\leq n_{\rm P}^{ob}\,,\quad\mbox{for all $\theta\in\mathbb{R}^{N}$}.\qquad\,\,\,\, (18)

Proof. The proof of this lemma is to find the maximal value of rank(Φ(θ))\mbox{rank}(\Phi(\theta)) with Φ(θ):=𝐎ob(θ)𝐄P¯\Phi(\theta):=\mathbf{O}_{ob}(\theta)\mathbf{E}_{\bar{\mathrm{P}}}. Let α¯j(θ):N\bar{\alpha}_{j}(\theta):\mathbb{R}^{N}\rightarrow\mathbb{R}, j=1,,nlj=1,\ldots,n-l be such that

det(s𝐈Φ(θ)Φ(θ))=j=1nlα¯j(θ)sj1+snl.\textnormal{det}\left(s\mathbf{I}-\Phi(\theta)^{\top}\Phi(\theta)\right)=\sum_{j=1}^{n-l}\bar{\alpha}_{j}(\theta)s^{j-1}+s^{n-l}\,.

We run the following recursive algorithm from k=1k=1 until nPobn_{\rm P}^{ob} is found.

Step kk: Check whether there exists θN\theta^{\prime}\in\mathbb{R}^{N} such that α¯k(θ)0\bar{\alpha}_{k}(\theta^{\prime})\neq 0. If so, using the fact that analytic functions that are not identically zero vanish only on a zero-measure set, we can conclude that α¯k(θ)0\bar{\alpha}_{k}(\theta)\neq 0 holds for almost all θN\theta\in\mathbb{R}^{N}. This, together with the fact that α¯j(θ)=0\bar{\alpha}_{j}(\theta)=0 for all jk1j\leq k-1 and all θN\theta\in\mathbb{R}^{N}, indicates that (17) and (18) hold with nPob=nlk+1n_{\rm P}^{ob}=n-l-k+1. Otherwise, if for all θN\theta\in\mathbb{R}^{N}, α¯k(θ)=0\bar{\alpha}_{k}(\theta)=0, we then proceed to Step k+1k+1.

If at the nln-l-th recursion of the above algorithm, we still cannot find a θN\theta\in\mathbb{R}^{N} such that α¯nl(θ)0\bar{\alpha}_{n-l}(\theta)\neq 0, we then can conclude that nPob=0n_{\rm P}^{ob}=0. \blacksquare

With this lemma, we now proceed to prove the theorem. Let Θ1N\Theta_{1}\subseteq\mathbb{R}^{N} be a set of configuration vector θ\theta such that the intrinsic initial-value privacy of node ii is preserved for all θΘ1\theta\in\Theta_{1} and lost for all θN\Θ1\theta\in\mathbb{R}^{N}\backslash\Theta_{1}. It is clear that the proof is done if we show that either Θ1\Theta_{1} or N\Θ1\mathbb{R}^{N}\backslash\Theta_{1} is zero-measure. To prove it, we use the contradiction method, and assume that there exists a nonzero-measure set Θ1N\Theta_{1}\in\mathbb{R}^{N} of configuration vector θ\theta such that

  • (P1P1)

    the set N\Θ1\mathbb{R}^{N}\backslash\Theta_{1} is nonzero-measure, and

  • (P2P2)

    the intrinsic initial-value privacy of node ii is preserved only for θΘ1\theta\in\Theta_{1} under (G,GS)(\mathrm{G},\mathrm{G}_{\textnormal{S}}), and

  • (P3P3)

    the intrinsic initial-value privacy of node ii is lost for θN\Θ1\theta\in\mathbb{R}^{N}\backslash\Theta_{1} under (G,GS)(\mathrm{G},\mathrm{G}_{\textnormal{S}}).

Then, according to Theorem 2 and Remark 13, it can be inferred that

(P2)rank[𝐎ob(θ)𝐄P¯𝐞i𝐄P¯]=rank(𝐎ob(θ)𝐄P¯)+1,for all θΘ1.\begin{array}[]{l}\vspace{1mm}(P2)\Longleftrightarrow\textnormal{rank}\;\begin{bmatrix}\mathbf{O}_{ob}(\theta)\mathbf{E}_{\bar{\mathrm{P}}}\\ \mathbf{e}_{i}^{\top}\mathbf{E}_{\bar{\mathrm{P}}}\end{bmatrix}=\textnormal{rank}\;\left(\mathbf{O}_{ob}(\theta)\mathbf{E}_{\bar{\mathrm{P}}}\right)+1\,,\mbox{for all }\theta\in\Theta_{1}\,.\end{array}

Let αj(θ):N\alpha_{j}(\theta):\mathbb{R}^{N}\rightarrow\mathbb{R}, j=1,,nj=1,\ldots,n be such that

det(s𝐈[𝐎ob(θ)𝐄P¯𝐞i𝐄P¯][𝐎ob(θ)𝐄P¯𝐞i𝐄P¯])=j=1nlαj(θ)sj1+snl.\begin{array}[]{l}\textnormal{det}\left(s\mathbf{I}-\begin{bmatrix}\mathbf{O}_{ob}(\theta)\mathbf{E}_{\bar{\mathrm{P}}}\\ \mathbf{e}_{i}^{\top}\mathbf{E}_{\bar{\mathrm{P}}}\end{bmatrix}^{\top}\begin{bmatrix}\mathbf{O}_{ob}(\theta)\mathbf{E}_{\bar{\mathrm{P}}}\\ \mathbf{e}_{i}^{\top}\mathbf{E}_{\bar{\mathrm{P}}}\end{bmatrix}\right)=\sum\limits_{j=1}^{n-l}\alpha_{j}(\theta)s^{j-1}+s^{n-l}\,.\end{array}

By Lemma 2, there exists a nonzero-measure set ΘobN\Theta_{ob}\subseteq\mathbb{R}^{N} such that the set N\Θob\mathbb{R}^{N}\backslash\Theta_{ob} is zero-measure, and for all θΘob\theta\in\Theta_{ob}, rank(𝐎ob(θ)𝐄P¯)=nPob\textnormal{rank}\;(\mathbf{O}_{ob}(\theta)\mathbf{E}_{\bar{\mathrm{P}}})=n_{\rm P}^{ob}. Besides, it is clear that, for all θN\theta\in\mathbb{R}^{N}

rank([𝐎ob(θ)𝐄P¯𝐞i𝐄P¯])rank(𝐎T(θ)𝐄P¯)+1.{\textnormal{rank}\;\left(\begin{bmatrix}\mathbf{O}_{ob}(\theta)\mathbf{E}_{\bar{\mathrm{P}}}\\ \mathbf{e}_{i}^{\top}\mathbf{E}_{\bar{\mathrm{P}}}\end{bmatrix}\right)\leq\textnormal{rank}\;\left(\mathbf{O}_{T}(\theta)\mathbf{E}_{\bar{\mathrm{P}}}\right)+1\,.} (19)

Since Θ1\Theta_{1} is nonzero-measure and N\Θob\mathbb{R}^{N}\backslash\Theta_{ob} is zero-measure, we have Θ1Θob\Theta_{1}\cap\Theta_{ob}\neq\emptyset. Thus letting θΘ1Θob\theta^{\ast}\in\Theta_{1}\cap\Theta_{ob} yields that rank(𝐎ob(θ)𝐄P¯)=nPob\textnormal{rank}\;(\mathbf{O}_{ob}(\theta^{\ast})\mathbf{E}_{\bar{\mathrm{P}}})=n_{\rm P}^{ob} and

rank[𝐎ob(θ)𝐄P¯𝐞i𝐄P¯]=rank(𝐎ob(θ)𝐄P¯)+1=nPob+1.\begin{array}[]{rcl}\textnormal{rank}\;\begin{bmatrix}\mathbf{O}_{ob}(\theta^{\ast})\mathbf{E}_{\bar{\mathrm{P}}}\\ \mathbf{e}_{i}^{\top}\mathbf{E}_{\bar{\mathrm{P}}}\end{bmatrix}&=&\textnormal{rank}\;(\mathbf{O}_{ob}(\theta^{\ast})\mathbf{E}_{\bar{\mathrm{P}}})+1\\ &=&n_{\rm P}^{ob}+1\,.\end{array}

This then implies αnuo(θ)0\alpha_{n_{uo}}(\theta^{\ast})\neq 0 with nuo=nlnPobn_{uo}=n-l-n_{\rm P}^{ob}. Note that analytic functions that are not identically zero vanish only on a zero-measure set. This indicates that there is a nonzero-measure set Θ2N\Theta_{2}\subseteq\mathbb{R}^{N} of configuration vector θ\theta such that

  • (P4P4)

    the set N\Θ2\mathbb{R}^{N}\backslash\Theta_{2} is zero-measure, and

  • (P5P5)

    the inequality αnuo(θ)0\alpha_{n_{uo}}(\theta)\neq 0 holds for all θΘ2\theta\in\Theta_{2}.

Thus, for all θΘobΘ2\theta\in\Theta_{ob}\cap\Theta_{2}, we have

rank([𝐎ob(θ)𝐄P¯𝐞i𝐄P¯])nPob+1=rank(𝐎T(θ)𝐄P¯)+1,\textnormal{rank}\;\left(\begin{bmatrix}\mathbf{O}_{ob}(\theta)\mathbf{E}_{\bar{\mathrm{P}}}\\ \mathbf{e}_{i}^{\top}\mathbf{E}_{\bar{\mathrm{P}}}\end{bmatrix}\right)\geq n_{\rm P}^{ob}+1\,=\textnormal{rank}\;\left(\mathbf{O}_{T}(\theta)\mathbf{E}_{\bar{\mathrm{P}}}\right)+1\,,

which, together with (19), yields

rank([𝐎ob(θ)𝐄P¯𝐞i𝐄P¯])=rank(𝐎T(θ)𝐄P¯)+1\textnormal{rank}\;\left(\begin{bmatrix}\mathbf{O}_{ob}(\theta)\mathbf{E}_{\bar{\mathrm{P}}}\\ \mathbf{e}_{i}^{\top}\mathbf{E}_{\bar{\mathrm{P}}}\end{bmatrix}\right)=\textnormal{rank}\;\left(\mathbf{O}_{T}(\theta)\mathbf{E}_{\bar{\mathrm{P}}}\right)+1\,

for all θΘobΘ2\theta\in\Theta_{ob}\cap\Theta_{2}. According to Theorem 2 and Remark 13, this implies that the intrinsic initial-value privacy of node ii is preserved for all configuration vector θΘobΘ2\theta\in\Theta_{ob}\cap\Theta_{2}. Then by (P2P2) and (P3P3), it immediately follows that (N\Θ1)N\(ΘobΘ2)(\mathbb{R}^{N}\backslash\Theta_{1})\subseteq\mathbb{R}^{N}\backslash(\Theta_{ob}\cap\Theta_{2}), where the set N\(ΘobΘ2)=(N\Θob)(N\Θ2)\mathbb{R}^{N}\backslash(\Theta_{ob}\cap\Theta_{2})=(\mathbb{R}^{N}\backslash\Theta_{ob})\cup(\mathbb{R}^{N}\backslash\Theta_{2}) is zero-measure. This indicates that N\Θ1\mathbb{R}^{N}\backslash\Theta_{1} is zero-measure, which contradicts with (P1P1), and thus completes the proof.

Appendix F Proof of Theorem 4

Recalling Theorem 2 and Remark 13, we can easily see that (C1),(C2)(C1),(C2) and (C3)(C3) are equivalent. Thus, the proof is done if the following two statements are proved.

  • (S1S1)

    If the condition (C1C1) holds, then the intrinsic initial-value privacy of node ii is preserved generically.

  • (S2S2)

    If the intrinsic initial-value privacy of node ii is preserved generically, then the condition (C1C1) holds for almost all configurations complying with G,GP\mathrm{G},\mathrm{G}_{\rm P}.

Proof of (S1S1). By the condition (C1), there exists a θN\theta^{\ast}\in\mathbb{R}^{N} such that

rank([𝐎ob(θ)𝐞i]𝐄P¯)=nPob+1.\textnormal{rank}\;\left(\begin{bmatrix}\mathbf{O}_{ob}(\theta^{\ast})\cr\mathbf{e}_{i}^{\top}\end{bmatrix}\mathbf{E}_{\bar{{\mathrm{P}}}}\right)=n_{\rm P}^{ob}+1\,.

Following the notations in section E, we can obtain

αnuo(θ)0\alpha_{n_{uo}}(\theta^{\ast})\neq 0

with nuo=nlnPobn_{uo}=n-l-n_{\rm P}^{ob}. Therefore, according to the standard arguments, there exists a nonzero-measure set Θ3N\Theta_{3}\subseteq\mathbb{R}^{N} such that the set N\Θ3\mathbb{R}^{N}\backslash\Theta_{3} is zero-measure, and the inequality αnuo(θ)0\alpha_{n_{uo}}(\theta)\neq 0 holds for all θΘ3\theta\in\Theta_{3}. This yields

rank([𝐎ob(θ)𝐞i]𝐄P¯)nPob+1,for all θΘ3.\textnormal{rank}\;\left(\begin{bmatrix}\mathbf{O}_{ob}(\theta)\cr\mathbf{e}_{i}^{\top}\end{bmatrix}\mathbf{E}_{\bar{{\mathrm{P}}}}\right)\geq n_{\rm P}^{ob}+1\,,\quad\mbox{for all $\theta\in\Theta_{3}$}\,.

Therefore, with (18) we have

rank([𝐎ob(θ)𝐞i]𝐄P¯)=nPob+1{\textnormal{rank}\;\left(\begin{bmatrix}\mathbf{O}_{ob}(\theta)\cr\mathbf{e}_{i}^{\top}\end{bmatrix}\mathbf{E}_{\bar{{\mathrm{P}}}}\right)=n_{\rm P}^{ob}+1\,} (20)

for all θΘ3\theta\in\Theta_{3}. Since rank(𝐎ob(θ)𝐄P¯)=nPob\textnormal{rank}\;(\mathbf{O}_{ob}(\theta)\mathbf{E}_{\bar{\mathrm{P}}})=n_{\rm P}^{ob} for all θΘob\theta\in\Theta_{ob} with N\Θob\mathbb{R}^{N}\backslash\Theta_{ob} being zero-measure by Lemma 2, we thus obtain

rank([𝐎ob(θ)𝐞i]𝐄P¯)=rank(𝐎ob(θ)𝐄P¯)+1{\textnormal{rank}\;\left(\begin{bmatrix}\mathbf{O}_{ob}(\theta)\cr\mathbf{e}_{i}^{\top}\end{bmatrix}\mathbf{E}_{\bar{{\mathrm{P}}}}\right)=\textnormal{rank}\;(\mathbf{O}_{ob}(\theta)\mathbf{E}_{\bar{\mathrm{P}}})+1\,} (21)

for all θΘ3Θob\theta\in\Theta_{3}\cap\Theta_{ob}. By Theorem 2 and Remark 13, this implies that the intrinsic initial-value privacy of node ii is preserved for all configurations θΘ3Θob\theta\in\Theta_{3}\cap\Theta_{ob}. Note that N\(Θ3Θob)=N\Θ3N\Θob\mathbb{R}^{N}\backslash(\Theta_{3}\cap\Theta_{ob})=\mathbb{R}^{N}\backslash\Theta_{3}\cup\mathbb{R}^{N}\backslash\Theta_{ob} is zero-measure, which proves (S1S1).

Proof of (S2S2). Suppose the intrinsic initial-value privacy of node ii is preserved generically. By Theorem 2 and Remark 13, this implies there exists a nonzero-measure set Θ4N\Theta_{4}\subseteq\mathbb{R}^{N} such that the set N\Θ4\mathbb{R}^{N}\backslash\Theta_{4} is zero-measure, and for all θΘ4\theta\in\Theta_{4}, (21) holds.

Recalling the fact that rank(𝐎ob(θ)𝐄P¯)=nPob\textnormal{rank}\;(\mathbf{O}_{ob}(\theta)\mathbf{E}_{\bar{\mathrm{P}}})=n_{\rm P}^{ob} for all θΘob\theta\in\Theta_{ob}, we have

rank([𝐎ob(θ)𝐞i]𝐄P¯)=nPob+1{\textnormal{rank}\;\left(\begin{bmatrix}\mathbf{O}_{ob}(\theta)\cr\mathbf{e}_{i}^{\top}\end{bmatrix}\mathbf{E}_{\bar{{\mathrm{P}}}}\right)=n_{\rm P}^{ob}+1\,} (22)

for all θΘobΘ4\theta\in\Theta_{ob}\cap\Theta_{4}, where N\(ΘobΘ4)\mathbb{R}^{N}\backslash(\Theta_{ob}\cap\Theta_{4}) is zero-measure. This thus proves (S2S2).

Appendix G Proof of Theorem 5

Let α^j(θ):N\hat{\alpha}_{j}(\theta):\mathbb{R}^{N}\rightarrow\mathbb{R}, j=1,,nj=1,\ldots,n be such that

det(s𝐈𝐎ob(θ)𝐎ob(θ))=j=1nα^j(θ)sj1+sn.\textnormal{det}\left(s\mathbf{I}-\mathbf{O}_{ob}(\theta)^{\top}\mathbf{O}_{ob}(\theta)\right)=\sum_{j=1}^{n}\hat{\alpha}_{j}(\theta)s^{j-1}+s^{n}\,.

Since the maximal rank of 𝐎ob(θ)\mathbf{O}_{ob}(\theta) is nobgn_{ob}^{g}, it immediately follows that there exists a θN\theta^{\ast}\in\mathbb{R}^{N} such that α^n+1nobg(θ)0\hat{\alpha}_{n+1-n_{ob}^{g}}(\theta^{\ast})\neq 0, and α^j(θ)=0\hat{\alpha}_{j}(\theta)=0 for all θN\theta\in\mathbb{R}^{N} and jnnobgj\leq n-n_{ob}^{g}. Note that analytic functions that are not identically zero vanish only on a zero-measure set. This indicates that there is a nonzero-measure set Θ5N\Theta_{5}\subseteq\mathbb{R}^{N} of configuration vector θ\theta such that the set N\Θ5\mathbb{R}^{N}\backslash\Theta_{5} is zero-measure, and the inequality α^n+1nobg(θ)0\hat{\alpha}_{n+1-n_{ob}^{g}}(\theta)\neq 0 holds for all θΘ5\theta\in\Theta_{5}. Thus, we have rank(𝐎ob(θ))=nobg\textnormal{rank}\;(\mathbf{O}_{ob}(\theta))=n_{ob}^{g} holds for all θΘ5\theta\in\Theta_{5}. Recalling that N\Θ5\mathbb{R}^{N}\backslash\Theta_{5} is zero-measure, this indeed proves that rank(𝐎ob(θ))=nobg\textnormal{rank}\;(\mathbf{O}_{ob}(\theta))=n_{ob}^{g} holds for almost all θN\theta\in\mathbb{R}^{N}.

With this in mind, we further combine with Proposition 2 and find that for all configuration θΘ5\theta\in\Theta_{5}, the resulting network privacy index 𝐈rp=nnobg1{\mathbf{I}_{rp}}=n-n_{ob}^{g}-1. Recalling that N\Θ5\mathbb{R}^{N}\backslash\Theta_{5} is zero-measure, one then can conclude that the network privacy index 𝐈rp=nnobg1{\mathbf{I}_{rp}}=n-n_{ob}^{g}-1 holds for almost all configurations θN\theta\in\mathbb{R}^{N}. This completes the proof.

References

  • [1] J. P. Hespanha, P. Naghshtabrizi, Y. Xu, “A survey of recent results in networked control systems,” Proceedings of the IEEE, vol. 95, no. 1, pp. 138-162, 2007.
  • [2] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,” Computer Networks, vol. 54, no. 15, pp. 2787-2805, 2010.
  • [3] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of Things (IoT): A vision, architectural elements, and future directions,” Future Generation Computer Systems, vol. 29, no. 7, pp. 1645-1660, 2013.
  • [4] M. Kolhe, “Smart grid: Charting a new energy future: Research, development and demonstration,” The Electricity Journal, vol. 25, pp. 88–93, 2012.
  • [5] P. Papadimitratos, A. D. La Fortelle, K. Evenssen, R. Brignolo and S. Cosenza, “Vehicular communication systems: Enabling technologies, applications, and future outlook on intelligent transportation,” IEEE Communications Magazine, vol. 47, no. 11, pp. 84-95, 2009.
  • [6] J. Zhang, F. Wang, K. Wang, W. Lin, X. Xu and C. Chen, “Data-Driven Intelligent Transportation Systems: A Survey,” IEEE Transactions on Intelligent Transportation Systems, vol. 12, no. 4, pp. 1624-1639, 2011.
  • [7] H. Sandberg, G. Dan, and R. Thobaben, “Differentially private state estimation in distribution networks with smart meters,” in Proc. 54th IEEE Conference on Decision and Control, pp. 4492-4498, 2015.
  • [8] J. Ma, J. Qin, T. Salsbury, and P. Xu, “Demand reduction in building energy systems based on economic model predictive control,” Chemical Engineering Science, vol. 67, no.1, pp. 92-100, 2012.
  • [9] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise to sensitivity in private data analysis,” in Proc. 3rd Theory of Cryptography Conference, pp. 265-284, 2006.
  • [10] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and M. Naor, “Our data, ourselves: Privacy via distributed noise generation,” Annual International Conference on the Theory and Applications of Cryptographic Techniques, pp. 486-503, 2006.
  • [11] A. Roth, “New algorithms for preserving differential privacy,” Ph.D., Carnegie Mellon Univ., Pittsburgh, PA, USA, 2010.
  • [12] Z. Huang, S. Mitra, and G. Dullerud, “Differentially private iterative synchronous consensus,” in Pro. 2012 ACM Workshop on Privacy in the Electronic Society, pp. 81–90, ACM, 2012.
  • [13] S. Han, U. Topcu, and G. J. Pappas, “Differentially private distributed constrained optimization,” IEEE Transactions on Automatic Control, vol. 62, no. 1, pp. 50–64, 2017.
  • [14] E. Nozari, P. Tallapragada, and J. Cortes, “Differentially private distributed convex optimization via functional perturbation,” IEEE Transactions on Control of Network Systems, vol. 5, no. 1, pp. 395-408, 2018.
  • [15] J. Le Ny and G. J. Pappas, “Differentially private filtering,” IEEE Transactions on Automatic Control, vol. 59, no. 2, pp. 341–354, 2014.
  • [16] Y. Kawano and M. Cao, “Design of privacy-preserving dynamic controllers,” IEEE Transactions on Automatic Control, DOI:10.1109/TAC.2020.2994030.
  • [17] M. Hale, A. Jones, K.Leahy, “Privacy in feedback: The differentially private LQG,” in Pro. IEEE American Control Conference, pp. 3386-3391, 2018.
  • [18] S. Han and G. J. Pappas, “Privacy in control and dynamical systems,” Annual Review of Control, Robotics, and Autonomous Systems, vol.1, pp. 309-332, 2018.
  • [19] J. Cortes, G. E. Dullerud, S. Han, J. Le Ny, S. Mitra, and G. J. Pappas, “Differential Privacy in control and network systems,” in Pro. 55th IEEE Conference on Decision and Control, pp. 4252-4272, 2016.
  • [20] Y. Mo and R. M. Murray, “Privacy preserving average consensus,” IEEE Transactions on Automatic Control, vol. 62, no. 2, pp. 753-765, 2017.
  • [21] F. Farokhi, and H. Sandberg, “Ensuring privacy with constrained additive noise by minimizing Fisher information,” Automatica, vol. 99, pp.275-288, 2019.
  • [22] Y. Xu, W. Liu, and J. Gong, “Stable multi-agent-based load shedding algorithm for power systems,” IEEE Transactions on Power Systems, vol. 26, no. 4, pp. 2006-2014, 2011.
  • [23] L. Wang, I. Manchester, J. Trumpf, and G. Shi, “Differential Observability for Initial-Value Privacy of Linear Dynamical Systems,” in Proc. 59th IEEE Conference on Decision and Control (CDC), 2020.
  • [24] M. Mesbahi, M. Egerstedt. Graph Theoretic Methods in Multiagent Networks. Princeton University Press, 2010.
  • [25] K. A. Clanents, G. R. Krutnpholz, P. W. Davis, “Power system state estimation with measurement deficiency: An observability/measurement placement algorithm,” IEEE Transactions on Power Apparatus and Systems, vol.7, pp. 2012-2020, 1983.
  • [26] E. D. Sontag, Mathematical Control Theory, Texts in Applied Mathematics, 1998.
  • [27] C. Dwork, A. Roth. The Algorithmic Foundations of Differential Privacy. Foundations and Trends in Theoretical Computer Science, 2014.
  • [28] F. Pasqualetti, F. Dorfler, and F. Bullo, “Control-theoretic methods for cyberphysical security: Geometric principles for optimal cross-layer resilient control systems” IEEE Control Systems Magazin, vol. 35, no. 1, pp. 110-127, 2015
  • [29] L. Blackhall, and D. Hill, “On the structural controllability of networks of linear systems,” in Proc. 2nd IFAC Workshop on Distributed Estimation and Control in Networked Systems, pp.245-250, 2010.
  • [30] J. L. Willems, “Structural controllability and observability,” Systems & Control Letters, vol.8, pp.5-12, 1986.
  • [31] S. Hosoe, “Determination of generic dimensions of controllable subspaces and its application,” IEEE Transactions on Automatic Control, vol.25, no.6, pp.1192-1196, 1981.
  • [32] B. Y. Chang, R. D. Shachter, “Structural controllability and observability in influence diagrams,” in Proc. 8th Conference on Uncertaity in Artificial Intelligence, Standford University, pp. 25-32, 1992.
  • [33] J. M. Hendrickx, M. Gevers, and A. S. Bazanella, “Identifiability of dynamical networks with partial node measurements,” IEEE Transactions on Automatic Control, vol. 64, no. 6, pp. 2240–2253, 2019.
  • [34] C. T. Lin, “Structural controllability,” IEEE Transactions on Automatic Control, vol. 19, no. 3, pp. 201-208, 1974.