This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Insights into photosynthetic energy transfer gained from free-energy structure: Coherent transport, incoherent hopping, and vibrational assistance revisited

Akihito Ishizaki Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8585, Japan School of Physical Sciences, Graduate University for Advanced Studies, Okazaki 444-8585, Japan    Graham R. Fleming Department of Chemistry, University of California, Berkeley, CA 94720, USA Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA Kavli Energy NanoSciences Institute at Berkeley, Berkeley, CA 94720, USA
(September 1, 2025)
Abstract

Giant strides in ultrashort laser pulse technology have enabled real-time observation of dynamical processes in complex molecular systems. Specifically, the discovery of oscillatory transients in the two-dimensional electronic spectra of photosynthetic systems stimulated a number of theoretical investigations exploring possible physical mechanisms of the remarkable quantum efficiency of light harvesting processes. However, the theories employed have reached a high degree of sophistication and have become complex, making it difficult to gain insights into microscopic processes and biologically significant questions. In this work, we revisit the elementary aspects of environment-induced fluctuations in the involved electronic energies and present a simple way to understand energy flow with the intuitive picture of relaxation in a funnel-type free-energy landscape. The presented free-energy description of energy transfer reveals that typical photosynthetic systems operate in an almost barrierless regime. The approach also provides insights into the distinction between coherent and incoherent energy transfer and criteria by which the necessity of the vibrational assistance is considered.

I Introduction

The development of new techniques of ultrafast spectroscopy have enabled real-time observation of dynamical processes in complex chemical, biological, and material systems. In the last decade, Fleming and coworkers have applied third-order nonlinear spectroscopic techniques such as two-dimensional (2D) Fourier-transformed photon echo spectroscopy to explore photosynthetic light harvesting processes Brixner et al. (2005); Cho et al. (2005) and revealed the existence of long-lasting oscillatory transients in 2D spectra. Engel et al. (2007); Lee et al. (2007); Calhoun et al. (2009) Although earlier work found coherent beats with the use of pump-probe techniques, Savikhin et al. (1997) the newer experiments stimulated a rapid increase in the number of experimental and theoretical investigations to explore possible roles that quantum effects may play in the remarkable quantum efficiency of light harvesting processes in natural and artificial systems. Olaya-Castro et al. (2008); Mohseni et al. (2008); Plenio and Huelga (2008); Rebentrost et al. (2009); Ishizaki and Fleming (2009a); Nazir (2009); Caruso et al. (2009); Panitchayangkoon et al. (2010); Collini et al. (2010); Caruso et al. (2010); Sarovar et al. (2010); Ishizaki and Fleming (2010); Hoyer et al. (2010); Fassioli et al. (2010); Abramavicius and Mukamel (2010); Panitchayangkoon et al. (2011); Scholak et al. (2011); Schlau-Cohen et al. (2012); Lewis and Ogilvie (2012); Westenhoff et al. (2012); Dawlaty et al. (2012); Chang and Cheng (2012); Hoyer et al. (2012); Shabani et al. (2012); Wu et al. (2012); Dijkstra and Tanimura (2012); Hildner et al. (2013); Chin et al. (2013); Gelzinis et al. (2013); Rivera et al. (2013); O’Reilly and Olaya-Castro (2014); De et al. (2014); Dijkstra and Tanimura (2015); Scholes et al. (2017); Knee et al. (2017); Dutta and Bagchi (2017); Sakamoto and Tanimura (2017); Thyrhaug et al. (2018); Saito et al. (2019); Kim et al. (2019); Muñoz and Schlawin (2020); Cao et al. (2020); Chan et al. (2013); Gélinas et al. (2014); Lee et al. (2015); Bredas et al. (2016); Kato and Ishizaki (2018)

Initially, the beats were interpreted as signatures of quantum superpositions between delocalized energy eigenstates (electronic excitons) of excited pigments, and it was argued that the unexpectedly slow dephasing could enhance the efficiency of electronic energy transfer (EET). However, it has become clear that the experimentally observed oscillations have dephasing time that persist for much longer than the theoretically predicted electronic coherence lifetime, particularly at cryogenic temperatures.Panitchayangkoon et al. (2010); Ishizaki and Fleming (2009a) Hence, the possibility of vibrational contributions was addressed.Nemeth et al. (2010); Mančal et al. (2010); Butkus et al. (2012); Yuen-Zhou et al. (2012); Caycedo-Soler et al. (2012); Christensson et al. (2012); Tiwari et al. (2013) A plausible explanation for the moderately long-lived spectral beats was that a quantum mixture between the electronic states and the Franck–Condon active vibrational states serves to create vibronic exciton states and produce oscillations that exhibit picosecond dephasing times, Christensson et al. (2012) while very long-lived beats likely arise from ground state vibrational wave-packets.Tiwari et al. (2013) Furthermore, oscillatory transients in the 2D electronic spectra of the photosystem II reaction center were observed, Romero et al. (2014); Fuller et al. (2014) suggesting that the electronic-vibrational resonance might represent an important design principle for enabling charge separation with high quantum efficiency in oxygenic photosynthesis. However, it was questionable whether such electronic-vibrational mixtures could be robust and could play a role under the influence of protein-induced fluctuations at physiological temperatures. By using quantum dynamics calculations, it was demonstrated that such electronic-vibrational quantum mixtures do not necessarily play a significant role in the energy transfer and charge separation dynamics, despite contributing to the enhancement of long-lived beating in 2D electronic spectra. Fujihashi et al. (2015); Monahan et al. (2015); Fujihashi et al. (2016, 2018) Given the variety of pigment types and range of energy gaps in natural light harvesting systems, it is not possible to make completely general statements regarding the roles of intramolecular vibrations upon photosynthetic energy/charge transfer. However, the results of Refs. Fujihashi et al., 2015; Monahan et al., 2015; Fujihashi et al., 2016, 2018 suggest the need for further examination on the relevance of information provided by the oscillatory behaviors in the 2D data on the studied systems and dynamics.

As stated above, quantum dynamics calculations have helped us elucidate the nature of the experimentally observed signals. However, the theories employed have reached a high degree of sophistication and have become correspondingly complex, Jang et al. (2008); Ishizaki and Fleming (2009b); Prior et al. (2010); Huo and Coker (2010); Tao and Miller (2010); Kelly and Rhee (2011); Nalbach et al. (2011); Berkelbach et al. (2012); Kelly and Markland (2013); Banchi et al. (2013); Jang et al. (2014); Banchi et al. (2013); Hwang-Fu et al. (2015); Tamascelli et al. (2019) making it difficult to draw broadly applicable conclusions about biologically significant questions regarding the physical origin of the remarkable speed and efficiency of photosynthetic light harvesting. For example, (1) What is the key distinction between coherent and incoherent energy transfer? Does the absence of observable beats necessarily imply that the energy transfer is incoherent hopping? (2) What do the answers to these questions imply regarding the physical origin of the remarkable speed and efficiency of photosynthetic light harvesting? (3) Theoretical approaches generally assume ultrafast initial excitation, meaning that the ensemble begins its evolution in phase. What is the difference, if any, between ultrafast laser excitation and excitation by sunlight?

In this paper, we try to describe a way of understanding and visualizing the energy flow in pigment-protein complexes (PPCs) that connects the somewhat complex quantum dynamical theories to the intuitive picture of relaxation in a funnel-type free-energy landscape, which might be rough or smooth (i.e., with or without significant energy barriers for the consecutive steps). The model also relates such an energy flow to the classical Marcus picture while properly accounting for both delocalized states and independent environmental fluctuations on the individual sites. The free-energy description of ultrafast energy transfer reveals that photosynthetic systems operate in a barrierless regime when absorption energy differences among pigments are 200cm1\lesssim 200\,\mathrm{cm^{-1}}. This situation is found, for example, in the Fenna-Matthews-Olson (FMO) complex. Brixner et al. (2005); Cho et al. (2005); Adolphs and Renger (2006) This makes the initial condition rather unimportant, suggesting that the method of excitation will not play a significant role in determining the microscopic dynamics. The free energy approach also provides insight into the importance of the vibrational contributions and the distinction between coherent and incoherent energy transfer, showing that the absence of observable beats in the spectroscopy does not necessarily imply that the energy transfer occurs by incoherent hopping.

II Theoretical background

II.1 Hamiltonian of a pigment-protein complex

To describe EET, we restrict the electronic spectra of the mm-th pigment in a PPC to the ground state, |φmg\lvert\varphi_{m{\mathrm{g}}}\rangle, and the first excited state, |φme\lvert\varphi_{m\mathrm{e}}\rangle, although higher excited states may result in nonlinear spectroscopic signals. Thus, the Hamiltonian of a PPC comprising NN pigments is expressed as H^PPC=m=1Na=g,eH^ma(xm)|φmaφma|+m=1Nn=1NJmn|φmeφmg||φngφne|\hat{H}_{\rm PPC}=\sum_{m=1}^{N}\sum_{a=\mathrm{g},\mathrm{e}}\hat{H}_{ma}(x_{m})\lvert\varphi_{ma}\rangle\langle\varphi_{ma}\rvert+\sum_{m=1}^{N}\sum_{n=1}^{N}J_{mn}\lvert\varphi_{m\mathrm{e}}\rangle\langle\varphi_{m\mathrm{g}}\rvert\otimes\lvert\varphi_{n\mathrm{g}}\rangle\langle\varphi_{n\mathrm{e}}\rvert. Here, H^ma(xm)\hat{H}_{ma}(x_{m}) represents the diabatic Hamiltonian for the environmental and intramolecular vibrational degrees of freedom (DoFs), xmx_{m}, when the system is in the |φma\lvert\varphi_{ma}\rangle state for a=ga=\mathrm{g} and a=ea=\mathrm{e}. The electronic coupling between the pigments, JmnJ_{mn}, may also be modulated by the environmental and nuclear DoFs. In the following, however, it is assumed that the nuclear dependence of JmnJ_{mn} is vanishingly small and the Condon-like approximation is employed as usual. The Franck–Condon transition energy of the mm-th pigment is obtained as

Emabs=H^meH^mgmg,\displaystyle E_{m}^{\rm abs}=\langle\hat{H}_{m\mathrm{e}}-\hat{H}_{m{\mathrm{g}}}\rangle_{m{\mathrm{g}}}, (2.1)

where the canonical average has been introduced, ma=tr(ρmaeq)\langle\dots\rangle_{ma}=\mathrm{tr}(\dots\rho_{ma}^{\rm eq}) with the environmental equilibrium state for the |φma\lvert\varphi_{ma}\rangle state, ρ^maeq=eβH^ma/treβH^ma\hat{\rho}_{ma}^{\rm eq}=\mathrm{e}^{-\beta\hat{H}_{ma}}/\mathrm{tr}\,\mathrm{e}^{-\beta\hat{H}_{ma}}. Here, β\beta is the inverse temperature, 1/kBT1/k_{\rm B}T. The electronic energy of each diabatic state experiences fluctuations caused by the environmental and nuclear dynamics; these dynamics are described by the collective energy gap coordinate, such that

X^m=H^meH^mgEmabs.\displaystyle\hat{X}_{m}=\hat{H}_{m\mathrm{e}}-\hat{H}_{m{\mathrm{g}}}-E_{m}^{\rm abs}. (2.2)

By definition, the mean values of the coordinate with respect to the electronic ground and excited states are given by

μmg\displaystyle\mu_{m{\mathrm{g}}} =X^mmg=0,\displaystyle=\langle\hat{X}_{m}\rangle_{m{\mathrm{g}}}=0, (2.3a)
μme\displaystyle\mu_{m\mathrm{e}} =X^mme=EmemEmabs,\displaystyle=\langle\hat{X}_{m}\rangle_{m\mathrm{e}}=E_{m}^{\rm em}-E_{m}^{\rm abs}, (2.3b)

respectively, where the emission energy has been introduced,

Emem=H^meH^mgme.\displaystyle E_{m}^{\rm em}=\langle\hat{H}_{m\mathrm{e}}-\hat{H}_{m{\mathrm{g}}}\rangle_{m{\mathrm{e}}}. (2.4)

For the sake of simplicity, the contribution of intramolecular vibrational modes are not considered at the current stage. The vibrational contribution will be discussed in Sec. III.3.

II.2 Statistics of fluctuations in electronic energy

Let the probability distribution function for the classical collective energy gap coordinate XmX_{m} be Pma(Xm)P_{ma}(X_{m}) when the system is in the |φma\lvert\varphi_{ma}\rangle state. The corresponding free energy is given by Fma(Xm)=kBTlnPma(Xm)+constF_{ma}(X_{m})=-k_{\rm B}T\ln P_{ma}(X_{m})+\mathrm{const}. In this work, it is assumed that the environmentally induced fluctuations can be described as a Gaussian process.Kubo et al. (1985) Under the assumption that XmX_{m} is described as a Gaussian random variable, the probability distribution function Pma(Xm)P_{ma}(X_{m}) is expressed as a Gaussian function,

Pma(Xm)exp[12σma2(Xmμma)2],\displaystyle P_{ma}(X_{m})\propto\exp\left[-\frac{1}{2\sigma_{ma}^{2}}(X_{m}-\mu_{ma})^{2}\right], (2.5)

where σma2\sigma_{ma}^{2} denotes the variance of XmX_{m} with respect to the equilibrium state associated with the |φma\lvert\varphi_{ma}\rangle state. Hence, the free energy with respect to XmX_{m} is given as a quadratic function,

Fma(Xm)=kBT2σma2(Xmμma)2+const.,\displaystyle F_{ma}(X_{m})=\frac{k_{\rm B}T}{2\sigma_{ma}^{2}}(X_{m}-\mu_{ma})^{2}+\mathrm{const.}, (2.6)

and the environmental reorganization energy associated with the optical transition to the |φma\lvert\varphi_{ma}\rangle state, EmaR=|Fma(μmg)Fma(μme)|E_{ma}^{\rm R}=\lvert F_{ma}(\mu_{m{\mathrm{g}}})-F_{ma}(\mu_{m{\mathrm{e}}})\rvert, is obtained as

EmaR\displaystyle E_{ma}^{\rm R} =kBT2σma2(μmeμmg)2.\displaystyle=\frac{k_{\rm B}T}{2\sigma_{ma}^{2}}(\mu_{m{\mathrm{e}}}-\mu_{m{\mathrm{g}}})^{2}. (2.7)

As described in Appendix A, the relation μme=βσmg2\mu_{m\mathrm{e}}=-\beta\sigma_{m\mathrm{g}}^{2} is valid under the Gaussian assumption, and the variances and hence the reorganization energies are independent of the electronic states, namely σmg2=σme2=σm2\sigma_{m{\mathrm{g}}}^{2}=\sigma_{m{\mathrm{e}}}^{2}=\sigma_{m}^{2} and EmgR=EmeR=EmRE_{m{\mathrm{g}}}^{\rm R}=E_{m{\mathrm{e}}}^{\rm R}=E_{m}^{\rm R}. Hence, eqs (2.3) and (2.7) lead to

EmabsEmem=2EmR,\displaystyle E_{m}^{\rm abs}-E_{m}^{\rm em}=2E_{m}^{\rm R}, (2.8)

and a simple relation among the variance of the fluctuations σm2\sigma_{m}^{2}, temperature TT, and the reorganization energy ERE^{\rm R} is obtained:

σm2=kBT2EmR.\displaystyle\sigma_{m}^{2}=k_{\rm B}T\cdot 2E_{m}^{\rm R}. (2.9)

Consequently, the expressions of the free energies for the electronic ground and excited states are obtained as Marchi et al. (1993); Chandler (1998)

Fmg(Xm)\displaystyle F_{m{\mathrm{g}}}(X_{m}) =14EmRXm2,\displaystyle=\frac{1}{4E_{m}^{\rm R}}X_{m}^{2}, (2.10a)
Fme(Xm)\displaystyle F_{m{\mathrm{e}}}(X_{m}) =EmabsEmR+14EmR(Xm+2EmR).\displaystyle=E_{m}^{\rm abs}-E_{m}^{\rm R}+\frac{1}{4E_{m}^{\rm R}}(X_{m}+2E_{m}^{\rm R}). (2.10b)

These expressions are consistent with the environmental dynamics in which the electronic and environmental states relax from the equilibrium configuration with respect to the |φmg\lvert\varphi_{m{\mathrm{g}}}\rangle state and to the actual equilibrium configuration in the |φme\lvert\varphi_{m{\mathrm{e}}}\rangle state after the vertical Franck–Condon excitation, as is formulated in Appendix B.

III Free energy for photosynthetic energy transfer

III.1 Free energy of activation required for EET to proceed

There is no experimental evidence of nonadiabatic transitions and radiative/nonradiative decays between |φme\lvert\varphi_{m{\mathrm{e}}}\rangle and |φmg\lvert\varphi_{m{\mathrm{g}}}\rangle in light-harvesting pigment-protein complexes on the picosecond timescales, and hence, we organize the product states in order of elementary excitation number. The overall ground state with zero excitation is |0=m=1N|φmg\lvert 0\rangle=\prod_{m=1}^{N}\lvert\varphi_{m{\mathrm{g}}}\rangle, whereas the presence of a single excitation at the mm-th pigment is expressed as |m=|φmek(m)|φkg\lvert m\rangle=\lvert\varphi_{m{\mathrm{e}}}\rangle\prod_{k(\neq m)}\lvert\varphi_{kg}\rangle. The corresponding expansion of the complete PPC Hamiltonian yields H^PPC=H^PPC(0)+H^PPC(1)+\hat{H}_{\rm PPC}=\hat{H}_{\rm PPC}^{(0)}+\hat{H}_{\rm PPC}^{(1)}+\dots, where H^PPC(n)\hat{H}_{\rm PPC}^{(n)} describes nn-excitation manifold comprising nn elementary excitations. The Hamiltonian of the zero-excitation manifold is

H^PPC(0)=H^(0)|00|\displaystyle\hat{H}_{\rm PPC}^{(0)}=\hat{H}^{(0)}\lvert 0\rangle\langle 0\rvert (3.1)

with H^(0)=m=1NH^mg\hat{H}^{(0)}=\sum_{m=1}^{N}\hat{H}_{m{\mathrm{g}}}. The Hamiltonian of the one-excitation manifold takes the form,

H^PPC(1)=m=1NH^m|mm|+m,nJmn|mn|,\displaystyle\hat{H}_{\rm PPC}^{(1)}=\sum_{m=1}^{N}\hat{H}_{m}\lvert m\rangle\langle m\rvert+\sum_{m,n}J_{mn}\lvert m\rangle\langle n\rvert, (3.2)

where H^m\hat{H}_{m} has been introduced as

H^m\displaystyle\hat{H}_{m} =H^me+k(m)H^kg\displaystyle=\hat{H}_{m{\mathrm{e}}}+\textstyle\sum_{k(\neq m)}\hat{H}_{kg}
=Emabs+X^m+H^(0).\displaystyle=E_{m}^{\rm abs}+\hat{X}_{m}+\hat{H}^{(0)}. (3.3)

The intensity of sunlight is weak and, thus, the single-excitation manifold is of primary importance under physiological conditions, although nonlinear spectroscopic techniques such as 2D electronic spectroscopy can populate higher excitation manifolds.

Refer to caption
Figure 1: Contour plot of the adiabatic free-energy surface of a dimer as a function of the two collective energy gap coordinates, X1X_{1} and X2X_{2}, which describe fluctuations in the electronic energies. The parameters are chosen to be E1absE2abs=100cm1E_{1}^{\rm abs}-E_{2}^{\rm abs}=100\,\mathrm{cm^{-1}}, J12=10cm1J_{12}=-10\,\mathrm{cm^{-1}}, and E1R=E2R=500cm1E_{1}^{\rm R}=E_{2}^{\rm R}=500\,\mathrm{cm^{-1}}. Contour lines are drawn at 50cm150\,\mathrm{cm^{-1}} intervals. In the case of large reorganization energy, the adiabatic free-energy surface F(X1,X2)F_{-}(X_{1},X_{2}) typically possesses two local minima corresponding to the environmental equilibria associated with states |1=|φ1e|φ2g\lvert 1\rangle=\lvert\varphi_{1\mathrm{e}}\rangle\lvert\varphi_{2\mathrm{g}}\rangle and |2=|φ1g|φ2e\lvert 2\rangle=\lvert\varphi_{1\mathrm{g}}\rangle\lvert\varphi_{2\mathrm{e}}\rangle. The point of origin corresponds to the Franck–Condon state. Incoherent hopping EET taking place from one minimum to another requires overcoming the free-energy barrier via thermal activation.

Correspondingly to the Hamiltonians, the free energy surfaces for the zero- and one-excitation manifolds are given as

F(0)(𝐗)\displaystyle F^{(0)}({\bf X}) =m=1NFmg(Xm),\displaystyle=\sum_{m=1}^{N}F_{m{\mathrm{g}}}(X_{m}), (3.4)
F(1)(𝐗)\displaystyle F^{(1)}({\bf X}) =m=1NFm(𝐗)|mm|+m,nJmn|mn|,\displaystyle=\sum_{m=1}^{N}F_{m}({\bf X})\lvert m\rangle\langle m\rvert+\sum_{m,n}J_{mn}\lvert m\rangle\langle n\rvert, (3.5)

where the free-energy Fm(𝐗)F_{m}({\bf X}) has been introduced correspondingly to the Hamiltonian in eq (3.3) as

Fm(𝐗)\displaystyle F_{m}({\bf X}) =Fme(Xm)+k(m)Fkg(Xk)\displaystyle=F_{m{\mathrm{e}}}(X_{m})+\textstyle\sum_{k(\neq m)}F_{kg}(X_{k})
=Emabs+Xm+F(0)(𝐗).\displaystyle=E_{m}^{\rm abs}+X_{m}+F^{(0)}({\bf X}). (3.6)

For simplicity, the study addresses a dimer comprising pigments 1 and 2 and considers the two-dimensional reaction coordinate space, 𝐗=(X1,X2){\bf X}=(X_{1},X_{2}). In this case, eq (3.5) is easily diagonalized, and the adiabatic free energy surfaces in the one-excitation manifold are obtained. Figure 1 draws the adiabatic free energy surface as a function of the two collective energy gap coordinates, X1X_{1} and X2X_{2}. For demonstration purpose, the parameters are chosen to be E1absE2abs=100cm1E_{1}^{\rm abs}-E_{2}^{\rm abs}=100\,\mathrm{cm^{-1}}, J12=10cm1J_{12}=-10\,\mathrm{cm^{-1}}, and E1R=E2R=500cm1E_{1}^{\rm R}=E_{2}^{\rm R}=500\,\mathrm{cm^{-1}}. In the case of weak electronic coupling, the adiabatic free-energy surface F(X1,X2)F_{-}(X_{1},X_{2}) typically possesses two local minima corresponding to the environmental equilibria associated with states |1=|φ1e|φ2g\lvert 1\rangle=\lvert\varphi_{1e}\rangle\lvert\varphi_{2g}\rangle and |2=|φ1g|φ2e\lvert 2\rangle=\lvert\varphi_{1g}\rangle\lvert\varphi_{2e}\rangle. The point of origin corresponds to the Franck–Condon state. The free energy of the point is higher than the barrier between the minima; therefore, delocalized excitons may be found immediately after the excitation even in the Förster regime, depending on the magnitude of the electronic coupling. Ishizaki and Fleming (2009b); Ishizaki et al. (2010) As time increases, dissipation of reorganization energy proceeds and the excitation will fall into one of the minima and become localized, and subsequent incoherent hopping EET taking place from one minimum to another requires overcoming the free-energy barrier via thermal activation.

Refer to caption
Figure 2: Contour plot of the free energy of activation required for the electronic energy transfer to proceed. The free energy of activation ΔF12\Delta F^{\ast}_{1\to 2} is plotted as a function of the difference between the absorption energies E1absE2absE_{1}^{\rm abs}-E_{2}^{\rm abs} and the reorganization energy ER=E1R=E2RE^{\rm R}=E^{\rm R}_{1}=E^{\rm R}_{2}. Contour lines are drawn at 100cm1100\,\mathrm{cm^{-1}} intervals. The box with the solid line indicates the typical values for the photosynthetic electronic energy transfer, 0E1absE2abs200cm10\leq E_{1}^{\rm abs}-E_{2}^{\rm abs}\leq 200\,\mathrm{cm^{-1}} and 10cm1ER100cm110\,\mathrm{cm^{-1}}\leq E^{\rm R}\leq 100\,\mathrm{cm^{-1}}. van Amerongen et al. (2000) The thermal energy is evaluated as kBT200cm1k_{\rm B}T\simeq 200\,\mathrm{cm^{-1}} at physiological temperature T=300KT=300\,{\rm K}, and therefore, for energy gap 200cm1\leq 200\,\mathrm{cm^{-1}} EET takes place in an almost activationless fashion in the parameter region corresponding to natural photosynthesis. For large energy gap an activation free energy is required (dashed box).

A question naturally arises concerning the height of the free energy barrier or the free energy of activation. In the absence of the electronic coupling, the intersection of the diabatic free energy surfaces, F1(X1,X2)F_{1}(X_{1},X_{2}) and F2(X1,X2)F_{2}(X_{1},X_{2}), is expressed as X1+E1R=X2+E2RX_{1}+E_{1}^{\rm R}=X_{2}+E_{2}^{\rm R}, and the coordinates of the saddle point are given by X1=E1R(E2absE1abs2E2R)/(E1R+E2R)X_{1}^{\ast}={E_{1}^{\rm R}(E_{2}^{\rm abs}-E_{1}^{\rm abs}-2E_{2}^{\rm R})}/(E_{1}^{\rm R}+E_{2}^{\rm R}), and X2=E2R(E1absE2abs2E1R)/(E1R+E2R)X_{2}^{\ast}={E_{2}^{\rm R}(E_{1}^{\rm abs}-E_{2}^{\rm abs}-2E_{1}^{\rm R})}/(E_{1}^{\rm R}+E_{2}^{\rm R}). Hence, the height of the free-energy barrier associated with the transfer from pigments 1 to 2 is given by a simple formula similar to the Marcus’ energy gap law, Marcus (1993)

ΔF12=(E1absE2abs2E1R)24(E1R+E2R).\displaystyle\Delta F^{\ast}_{1\to 2}=\frac{(E_{1}^{\rm abs}-E_{2}^{\rm abs}-2E_{1}^{\rm R})^{2}}{4(E_{1}^{\rm R}+E_{2}^{\rm R})}. (3.7)

In deriving eq (3.7), the electronic coupling JmnJ_{mn} has been assumed to be vanishingly small for simplicity. The finite value of the coupling lowers the free-energy barrier by JmnJ_{mn}. Equation (3.7) is regarded as a multidimensional extension of Marcus theory; however, it can be recast in terms of the donor emission energy as ΔF12=(E1emE2abs)2/4(E1R+E2R)\Delta F^{\ast}_{1\to 2}={(E_{1}^{\rm em}-E_{2}^{\rm abs})^{2}}/{4(E_{1}^{\rm R}+E_{2}^{\rm R})}. This is physically consistent with the Förster rate formula expressed by the overlap integral of the donor-emission lineshape F1(ω)F_{1}(\omega) and the acceptor-absorption lineshape A2(ω)A_{2}(\omega).

Figure 2 presents the free energy of activation, ΔF12\Delta F_{1\to 2}^{\ast}, as a function of the reorganization energy, ER=E1R=E2RE^{\rm R}=E_{1}^{\rm R}=E_{2}^{\rm R} and the absorption energy difference, E1absE2absE_{1}^{\rm abs}-E_{2}^{\rm abs}. For typical values of 0E1absE2abs200cm10\leq E_{1}^{\rm abs}-E_{2}^{\rm abs}\leq 200\,\mathrm{cm^{-1}} and 10cm1ER100cm110\,\mathrm{cm^{-1}}\leq E^{\rm R}\leq 100\,\mathrm{cm^{-1}}, van Amerongen et al. (2000) the free energy of activation is very small in comparison to the thermal energy, kBT200cm1k_{\rm B}T\simeq 200\,\mathrm{cm^{-1}} at physiological temperature T=300KT=300\,{\rm K}. In other words, EET takes place in a practically activationless fashion. This clarifies the physical origin of ultrafast EET. In Figure 2 of Ref. Ishizaki and Fleming, 2009b, it is shown that the EET rate in the case of E1absE2abs=100cm1E_{1}^{\rm abs}-E_{2}^{\rm abs}=100\,\mathrm{cm^{-1}} is maximized for values of the reorganization energy typical in natural light harvesting systems. This optimization is consistent with the activationless nature of the free-energy surface. In natural light harvesting systems, there is a manifold of states. Although the coordinates involved span multiple dimensions, this can be visualized as relaxation down a slightly “bumpy” funnel in a rather similar fashion to the Wolynes’ picture of protein folding landscapes. Bryngelson and Wolynes (1987) Furthermore, the barrierless nature of the energy transfer over the wide range of parameters typical in natural light harvesting systems means that inhomogeneous broadening has rather little influence on the dynamics. Similarly, there should be a very weak temperature dependence as observed, for example, in the LH2 complex of purple bacteria. Yang et al. (2001)

III.2 Coherent versus incoherent

In the literature, the term of “coherent transfer” indicates that excitation travels as a quantum mechanical wave packet keeping its phase coherence; otherwise, the term of “incoherent transfer” is employed. As has been already discussed above, the incoherent “hopping” takes place from one minimum on the free-energy surface to another by overcoming a free-energy barrier that requires thermal activation. As demonstrated in eq (3.7) and Figure 2, however, the barrier is insignificantly small in comparison to the thermal energy when energy gaps of 200cm1\leq 200\,\mathrm{cm^{-1}} are considered, and thus the EET takes place in a nearly activationless fashion. Although this transfer process does not have coherent dynamics in the sense of the macroscopic ensemble, the transfer is still mainly driven by the electronic interaction between the pigments rather than by the thermal activation. The absence of long-lasting oscillatory transients in the ensemble average does not necessarily provide a correct insight into the microscopic nature of the EET dynamics.Ishizaki and Fleming (2011) Therefore, activationless EET needs to be distinguished from genuine incoherent “hopping” that requires thermal activation.

The current approach also has an implication regarding the importance of the initial excitation, either by pulsed coherent light, by incoherent thermal light such as sunlight, or by energy transfer. If the barrier for energy transfer is substantial, the initial condition is influenced accordingly. That is, on a bumpy free energy landscape with a free-energy well traps, the initial state would determine the course of the EET. However, if the process is barrierless, the sensitivity on the initial condition is greatly reduced.

III.3 Vibrational contribution

Refer to caption
Figure 3: EET rate influenced by a resonant vibrational mode whose frequency is ωvib=E1absE2abs\omega_{\rm vib}=E_{1}^{\rm abs}-E_{2}^{\rm abs}. The calculated rates are presented as a function of the absorption energy difference, E1absE2absE_{1}^{\rm abs}-E_{2}^{\rm abs}. They were obtained in the same fashion as in Ref. Fujihashi et al., 2015 with the following parameters: the inter-site electronic coupling, J12=50cm1J_{12}=50\,\mathrm{cm^{-1}}; the environmental reorganization energy, the reorganization time constant, and the temperature set to λenv=35cm1\lambda_{\rm env}=35\,\mathrm{cm^{-1}}, τenv=100fs\tau_{\rm env}=100\,{\rm fs}, and T=300KT=300\,{\rm K}, respectively; the vibrational relaxation time constant and the Huang-Rhys factor set to γvib1=2ps\gamma_{\rm vib}^{-1}=2\,{\rm ps} and S=0.025S=0.025, respectively. The Condon approximation was employed for the transition dipole moments.

The examination of the free energy of activation can also provide an insight into the necessity of a vibrational contribution to assist the EET. In the case that the free energy of activation does not exceed the thermal energy, the EET can take place easily without the assistance of vibrational modes, even though spectroscopic measurements may detect vibrational and vibronic signatures. This situation corresponds to the parameter region marked with the solid line box in Figure 2. Indeed, Ref. Fujihashi et al., 2015 demonstrated that the electronic-vibrational quantum mixtures do not necessarily play a significant role in EET dynamics in the FMO complex, despite contributing to the enhancement of long-lived quantum beating in 2D electronic spectra. In other photosynthetic pigment-protein complexes, however, relatively large differences among the absorption energies are found, e.g., in light harvesting complex II (LHCII),Novoderezhkin et al. (2005); Schlau-Cohen et al. (2009); Bhattacharyya and Fleming (2020); Arsenault et al. (2020) phycoerythrin 545, Collini et al. (2010); Kolli et al. (2012); O’Reilly and Olaya-Castro (2014) phycocyanin 645. Dean et al. (2016); Blau et al. (2018); Bennett et al. (2018) Hence, the parameter region marked with the dashed line box in Figure 2 was addressed, where 600cm1E1absE2abs800cm1600\,\mathrm{cm^{-1}}\leq E_{1}^{\rm abs}-E_{2}^{\rm abs}\leq 800\,\mathrm{cm^{-1}} and 10cm1ER100cm110\,\mathrm{cm^{-1}}\leq E^{\rm R}\leq 100\,\mathrm{cm^{-1}}. In this region, the free energy of activation is high compared to the thermal energy at physiological temperatures.

Some possible options for lowering the barrier with the fixed absorption energy difference are: (1) an increase in the environmental reorganization energy ERE^{\rm R}, (2) an increase in the inter-site electronic coupling JmnJ_{mn}, (3) correlated fluctuations in electronic energies,Lee et al. (2007); Ishizaki and Fleming (2010) or (4) assistance by vibrational modes. When the energy acceptor is a vibrationally excited state of pigment 2, the absorption energy difference is reduced to E1abs(E2abs+ωvib)E_{1}^{\rm abs}-(E_{2}^{\rm abs}+\hbar\omega_{\rm vib}). In particular, the resonance between the vibrational frequency and the absorption energy difference leads to E1abs(E2abs+ωvib)=0E_{1}^{\rm abs}-(E_{2}^{\rm abs}+\hbar\omega_{\rm vib})=0, and thus, the free-energy barrier in Figure 2 is substantially lowered. When the Condon approximation is valid for the transition dipole moments, the inter-pigment coupling is reduced as JmnJmneS/2SJ_{mn}\to-J_{mn}\mathrm{e}^{-S/2}\sqrt{S}, with SS being the Huang-Rhys factor of the vibrational mode. Nevertheless, a substantial rate enhancement by a high-frequency vibrational mode is possible, as demonstrated in Figure 3. This is consistent with the recent theoretical result on vibrationally assisted EET in LHCII.Bhattacharyya and Fleming (2020) When the non-Condon effect is more prominent, the effect results in the enhancement of the vibronic transitions, Zhang et al. (2016) possibly leading to the further acceleration of the vibrationally assisted EET.Arsenault et al. (2020)

Figure 3 presents the EET rate influenced by a resonant vibrational mode whose frequency is a function of the absorption energy difference, E1absE2absE_{1}^{\rm abs}-E_{2}^{\rm abs}. Consistently with the insight gained from the free-energy barrier in Figure 2, the extent of the vibrational assistance increases with increasing the value of E1absE2absE_{1}^{\rm abs}-E_{2}^{\rm abs}. Here, it is noted that the vibrationally assisted EET rate exhibits a plateau in the region of E1absE2abs>700cm1E_{1}^{\rm abs}-E_{2}^{\rm abs}>700\,\mathrm{cm^{-1}}, indicating that the EET is promoted only by the vibrationally excited state. This can be also understood via the Förster rate formula. In the presence of a high-frequency vibrational mode, the absorption lineshape of pigment 2 is expressed as A2(ω)=A2(0)(ω)+A2(1)(ω)+A_{2}(\omega)=A_{2}^{(0)}(\omega)+A_{2}^{(1)}(\omega)+\dots, where A2(v)(ω)A_{2}^{(v)}(\omega) is the lineshape associated with the optical transition to the vv-th vibrational level in the electronically excited state and is approximately expressed as A2(v)(ω)(Sv/v!)A2(0)(ωvωvib)A_{2}^{(v)}(\omega)\simeq({S^{v}}/{v!})A_{2}^{(0)}(\omega-v\omega_{\rm vib}). In the case of high-frequency vibrational mode, the overlap between A2(0)(ω)A_{2}^{(0)}(\omega) and A2(1)(ω)A_{2}^{(1)}(\omega) vanishes, and hence, the vibrationally assisted EET rate is evaluated with the overlap integral between F1(ω)F_{1}(\omega) and A2(1)(ω)=SA2(0)(ωωvib)A_{2}^{(1)}(\omega)=SA_{2}^{(0)}(\omega-\omega_{\rm vib}). It should be noted that the overlap integral is independent of the value of E1absE2absE_{1}^{\rm abs}-E_{2}^{\rm abs} under the condition of E1absE2abs=ωvibE_{1}^{\rm abs}-E_{2}^{\rm abs}=\omega_{\rm vib}.

IV Concluding remarks

This paper presented a description of the photosynthetic energy transfer using a free-energy surface in order to unveil the physical origins of its remarkable speed and to connect the complex quantum dynamical models to the intuitive picture of energy flow in photosynthetic pigment-protein complexes. The presented free-energy description of ultrafast energy transfer reveals that photosynthetic systems operate in the barrierless regime when absorption energy differences among the pigments are 200cm1\lesssim 200\,\mathrm{cm^{-1}}. This makes the initial condition rather unimportant, suggesting that the method of excitation will not play a significant role in determining the microscopic processes. Our approach also provides insight into the necessity of the vibrational contribution and the distinction between coherent and incoherent energy transfer, showing that the absence of observable beats in the spectroscopy does not necessarily imply that the energy transfer is incoherent hopping. It is noted that the conclusions are valid when relatively weak electronic coupling, small Huang-Rhys factors and the Condon approximation can be employed. Although these are often the appropriate regime for photosynthetic light harvesting, they are not always so. For such cases, more careful treatment should be necessary.

Although ways to electronically excite pigments will not play a significant role in determining the microscopic processes in the parameter region typical of photosynthetic light harvesting systems, it is still intriguing to elucidate how photo-excitation by natural light and the subsequent dynamics proceed with quantitative underpinnings. There are multiple spatiotemporal hierarchies related to the interaction between molecules and natural light, and thus, an issue similar to the above “coherent vs incoherent” is also present. In the timescales of direct human observation, sunlight photons continuously pump photosynthetic systems, and therefore, the excitation is sometimes considered as by an incoherent continuous wave Brumer and Shapiro (2012) or modeled as a photon bath. Mančal and Valkunas (2010); Fassioli et al. (2012); Pachón et al. (2017) As discussed in Ref. Blankenship, 2013, however, the sunlight flux is estimated to be about 10s1Å210\,{\rm s^{-1}}{\rm\AA ^{-2}} at full sunlight, and the number of photons absorbed by a chlorophyll molecule is at most 10s110\,{\rm s^{-1}}. On sub-picosecond and nanometer scales, consequently, the photon density is vanishingly small and a single photosynthetic pigment will be influenced by only a single photon. Chan et al. (2018) In such a situation, photons may not be treated as continuous or pulsed waves in a classical manner, because the single-photon state |ψ\lvert\psi\rangle leads to ψ|E^(𝐫,t)|ψ=0\langle\psi|\hat{E}({\bf r},t)|\psi\rangle=0 for the electric field operator, E^(𝐫,t)\hat{E}({\bf r},t). Therefore, it might be necessary to take into account the quantum mechanical nature of the photons. Recently, a nonclassical Hong-Ou-Mandel interference between sunlight and single photons from a semiconductor quantum dot was experimentally demonstrated.Deng et al. (2019) The theoretical investigation on pseudo-sunlight through the use of quantum entangled photons and its interaction with molecules Fujihashi et al. (2020) is also an attempt along this line. More elaborate investigations of photo-excitation by natural light and the subsequent excited-state dynamics in molecular systems are left for future studies.

Acknowledgements.
The authors are grateful to Yuta Fujihashi for drafting the figures. This work was supported by JSPS KAKENHI Grant No. 17H02946, MEXT KAKENHI Grant No. 17H06437 in Innovative Areas “Innovations for Light-Energy Conversion,” and MEXT Quantum Leap Flagship Program Grant No. JPMXS0120330644. GRF’s contribution was supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences.

Appendix A Static properties of the environmental degrees of freedom

The definition of the collective energy gap coordinate in eq (2.2) is recast into

H^me=H^mg+X^m+Emg,\displaystyle\hat{H}_{m{\mathrm{e}}}=\hat{H}_{m{\mathrm{g}}}+\hat{X}_{m}+E_{m{\mathrm{g}}}, (A.8)

and thus, H^mg\hat{H}_{m{\mathrm{g}}} and X^m\hat{X}_{m} may be regarded as an unperturbed system Hamiltonian and an external field, respectively. The linear response theory Kubo et al. (1985) allows to approximate the environmental equilibrium state associated with |φme\lvert\varphi_{m\mathrm{e}}\rangle as

ρ^meeq=ρ^mgeq(10βdλeλH^mgX^meλH^mg).\displaystyle\hat{\rho}_{m{\mathrm{e}}}^{\rm eq}=\hat{\rho}_{m{\mathrm{g}}}^{\rm eq}\left(1-\int^{\beta}_{0}\mathrm{d}\lambda\,\mathrm{e}^{\lambda\hat{H}_{m{\mathrm{g}}}}\hat{X}_{m}\mathrm{e}^{-\lambda\hat{H}_{m{\mathrm{g}}}}\right). (A.9)

Consequently, the mean value of the collective energy gap coordinate with respect to the electronic excited state μme=X^mme\mu_{m{\mathrm{e}}}=\langle\hat{X}_{m}\rangle_{m\mathrm{e}} is evaluated as

μme=βX^m;X^mmg,\displaystyle\mu_{m{\mathrm{e}}}=-\beta\langle\hat{X}_{m};\hat{X}_{m}\rangle_{m{\mathrm{g}}}, (A.10)

where X^mmg=0\langle\hat{X}_{m}\rangle_{m\mathrm{g}}=0 in eq (2.3) has been employed, and O^1;O^2ma\langle\hat{O}_{1};\hat{O}_{2}\rangle_{ma} stands for the canonical correlation Kubo et al. (1985) defined by O^1;O^2ma=β10βdλeλH^maO^1eλH^maO^2ma\langle\hat{O}_{1};\hat{O}_{2}\rangle_{ma}=\beta^{-1}\int^{\beta}_{0}\mathrm{d}\lambda\langle\mathrm{e}^{\lambda\hat{H}_{ma}}\hat{O}_{1}\mathrm{e}^{-\lambda\hat{H}_{ma}}\hat{O}_{2}\rangle_{ma}. In the classical limit of 0\hbar\to 0, the canonical correlation function can be approximated as the classical correlation function, and thus eq (A.10) yields

μme=βσmg2.\displaystyle\mu_{m{\mathrm{e}}}=-\beta\sigma_{m\mathrm{g}}^{2}. (A.11)

Furthermore, the variance of the coordinate with respect to the electronic excited state is evaluated as

σme2=X^m2me=tr(X^m2ρ^meq)=X^m2mg=σmg2,\displaystyle\sigma_{m{\mathrm{e}}}^{2}=\langle\hat{X}_{m}^{2}\rangle_{m{\mathrm{e}}}=\mathrm{tr}(\hat{X}_{m}^{2}\hat{\rho}_{m}^{\rm eq})=\langle\hat{X}_{m}^{2}\rangle_{m{\mathrm{g}}}=\sigma_{m{\mathrm{g}}}^{2}, (A.12)

where three-body correlation functions such as X^m;X^m2mg\langle\hat{X}_{m};\hat{X}_{m}^{2}\rangle_{m{\mathrm{g}}} have vanished owing to the Gaussian statistics. As a consequence, eq (2.7) leads to EmgR=EmeRE_{m{\mathrm{g}}}^{\rm R}=E_{m{\mathrm{e}}}^{\rm R}.

Appendix B Dynamic properties of the environmental degrees of freedom

After the electronic excitation in accordance with the vertical Franck–Condon transition, the electronic states and their surrounding environment reorganize from the equilibrium configuration with respect to the electronic ground state to reach the actual equilibrium configuration in the excited state. To formulate this process, let ρ^me(t)\hat{\rho}_{m{\mathrm{e}}}(t) be the density operator that describes dynamics of the environmental DoFs associated with the electronically excited state of the mm-th pigment. The time-evolution after the photoexcitation at t=0t=0 is described with the Hamiltonian,

H^me(t)=H^mg+(X^m+Emg)θ(t),\displaystyle\hat{H}_{m{\mathrm{e}}}(t)=\hat{H}_{m{\mathrm{g}}}+(\hat{X}_{m}+E_{m{\mathrm{g}}})\theta(t), (B.13)

with θ(t)\theta(t) being the Heaviside step function, and hence the Liouville equation is written as

tρ^me(t)=i[H^mg+X^mθ(t),ρ^me(t)].\displaystyle\frac{\partial}{\partial t}\hat{\rho}_{m{\mathrm{e}}}(t)=-\frac{i}{\hbar}\left[\hat{H}_{m{\mathrm{g}}}+\hat{X}_{m}\theta(t),\hat{\rho}_{m{\mathrm{e}}}(t)\right]. (B.14)

Similarly to Appendix A, H^mg\hat{H}_{m{\mathrm{g}}} and X^mθ(t)\hat{X}_{m}\theta(t) can be regarded as an unperturbed system Hamiltonian and a time-dependent external field, respectively. The linear response theory Kubo et al. (1985) allows to approximate ρ^me(t)\hat{\rho}_{m{\mathrm{e}}}(t) as

ρ^me(t)=ρ^mgeqi0tds𝒢^mg(ts)[X^m,ρ^mgeq],\displaystyle\hat{\rho}_{m{\mathrm{e}}}(t)=\hat{\rho}^{\rm eq}_{m{\mathrm{g}}}-\frac{i}{\hbar}\int^{t}_{0}\mathrm{d}s\,\hat{\mathcal{G}}_{m{\mathrm{g}}}(t-s)\left[\hat{X}_{m},\hat{\rho}^{\rm eq}_{m{\mathrm{g}}}\right], (B.15)

where 𝒢^mg(t)\hat{\mathcal{G}}_{m{\mathrm{g}}}(t) is the time-evolution operator in the Liouville space, 𝒢^mg(t)O^=eiH^mgt/O^eiH^mgt/\hat{\mathcal{G}}_{m{\mathrm{g}}}(t)\hat{O}=\mathrm{e}^{-i\hat{H}_{m{\mathrm{g}}}t/\hbar}\hat{O}\mathrm{e}^{i\hat{H}_{m{\mathrm{g}}}t/\hbar} for any operator O^\hat{O}. The environmental dynamics can be measured by using the time-dependent fluorescence Stokes shift experiment. The experiment records the nonequilibrium energy difference between the electronic ground and excited states as a function of the delay time tt after the photoexcitation,

ΔEm(t)=tr[(H^meH^mg)ρ^me(t)].\displaystyle\Delta E_{m}(t)=\mathrm{tr}\left[(\hat{H}_{m{\mathrm{e}}}-\hat{H}_{m{\mathrm{g}}})\hat{\rho}_{m{\mathrm{e}}}(t)\right]. (B.16)

Substituting eq (B.15), we obtain

ΔEm(t)=EmabsΨm(0)+Ψm(t),\displaystyle\Delta E_{m}(t)=E_{m}^{\rm abs}-\Psi_{m}(0)+\Psi_{m}(t), (B.17)

with Ψm(t)\Psi_{m}(t) being the relaxation function defined by

Ψm(t)=βX~m(t);X~m(0)mg,\displaystyle\Psi_{m}(t)=\beta\langle\tilde{X}_{m}(t);\tilde{X}_{m}(0)\rangle_{m{\mathrm{g}}}, (B.18)

where the notation X~m(t)=eiH^mgt/X^meiH^mgt/\tilde{X}_{m}(t)=\mathrm{e}^{i\hat{H}_{m{\mathrm{g}}}t/\hbar}\hat{X}_{m}\mathrm{e}^{-i\hat{H}_{m{\mathrm{g}}}t/\hbar} has been introduced. According to eqs (A.10) and (2.3), the identity Ψm(0)=μme=EmabsEmem\Psi_{m}(0)=-\mu_{m\mathrm{e}}=E_{m}^{\rm abs}-E_{m}^{\rm em} holds valid. Typically, the relaxation function Ψm(t)\Psi_{m}(t) converges to 0 in the long time limit, and therefore, ΔE(0)=Emabs\Delta E(0)=E_{m}^{\rm abs} and ΔE()=Emem\Delta E(\infty)=E_{m}^{\rm em} are obtained.

References

  • Brixner et al. (2005) T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, Nature 434, 625 (2005).
  • Cho et al. (2005) M. Cho, H. M. Vaswani, T. Brixner, J. Stenger, and G. R. Fleming, J. Phys. Chem. B 109, 10542 (2005).
  • Engel et al. (2007) G. S. Engel, T. R. Calhoun, E. L. Read, T. K. Ahn, T. Mančal, Y.-C. Cheng, R. E. Blankenship, and G. R. Fleming, Nature 446, 782 (2007).
  • Lee et al. (2007) H. Lee, Y.-C. Cheng, and G. R. Fleming, Science 316, 1462 (2007).
  • Calhoun et al. (2009) T. R. Calhoun, N. S. Ginsberg, G. S. Schlau-Cohen, Y.-C. Cheng, M. Ballottari, R. Bassi, and G. R. Fleming, J. Phys. Chem. B 113, 16291 (2009).
  • Savikhin et al. (1997) S. Savikhin, D. R. Buck, and W. S. Struve, Chem. Phys. 223, 303 (1997).
  • Olaya-Castro et al. (2008) A. Olaya-Castro, C. Lee, F. Olsen, and N. Johnson, Phys. Rev. B 78, 085115 (2008).
  • Mohseni et al. (2008) M. Mohseni, P. Rebentrost, S. Lloyd, and A. Aspuru-Guzik, J. Chem. Phys. 129, 174106 (2008).
  • Plenio and Huelga (2008) M. B. Plenio and S. F. Huelga, New J. Phys. 10, 113019 (2008).
  • Rebentrost et al. (2009) P. Rebentrost, M. Mohseni, I. Kassal, S. Lloyd, and A. Aspuru-Guzik, New J. Phys. 11, 033003 (2009).
  • Ishizaki and Fleming (2009a) A. Ishizaki and G. R. Fleming, Proc. Natl. Acad. Sci. USA 106, 17255 (2009a).
  • Nazir (2009) A. Nazir, Phys. Rev. Lett. 103, 146404 (2009).
  • Caruso et al. (2009) F. Caruso, A. W. Chin, A. Datta, S. F. Huelga, and M. B. Plenio, J. Chem. Phys. 131, 105106 (2009).
  • Panitchayangkoon et al. (2010) G. Panitchayangkoon, D. Hayes, K. A. Fransted, J. R. Caram, E. Harel, J. Wen, R. E. Blankenship, and G. S. Engel, Proc. Natl. Acad. Sci. USA 107, 12766 (2010).
  • Collini et al. (2010) E. Collini, C. Y. Wong, K. E. Wilk, P. M. G. Curmi, P. Brumer, and G. D. Scholes, Nature 463, 644 (2010).
  • Caruso et al. (2010) F. Caruso, A. W. Chin, A. Datta, S. F. Huelga, and M. B. Plenio, Phys. Rev. A 81, 062346 (2010).
  • Sarovar et al. (2010) M. Sarovar, A. Ishizaki, G. R. Fleming, and K. B. Whaley, Nat. Phys. 6, 462 (2010).
  • Ishizaki and Fleming (2010) A. Ishizaki and G. R. Fleming, New J. Phys. 12, 055004 (2010).
  • Hoyer et al. (2010) S. Hoyer, M. Sarovar, and K. Birgitta Whaley, New J. Phys. 12, 065041 (2010).
  • Fassioli et al. (2010) F. Fassioli, A. Nazir, and A. Olaya-Castro, J. Phys. Chem. Lett. 1, 2139 (2010).
  • Abramavicius and Mukamel (2010) D. Abramavicius and S. Mukamel, J. Chem. Phys. 133, 064510 (2010).
  • Panitchayangkoon et al. (2011) G. Panitchayangkoon, D. V. Voronine, D. Abramavicius, J. R. Caram, N. H. C. Lewis, S. Mukamel, and G. S. Engel, Proc. Natl. Acad. Sci. USA 108, 20908 (2011).
  • Scholak et al. (2011) T. Scholak, F. de Melo, T. Wellens, F. Mintert, and A. Buchleitner, Phys. Rev. E 83, 021912 (2011).
  • Schlau-Cohen et al. (2012) G. S. Schlau-Cohen, A. Ishizaki, T. R. Calhoun, N. S. Ginsberg, M. Ballottari, R. Bassi, and G. R. Fleming, Nat. Chem. 4, 389 (2012).
  • Lewis and Ogilvie (2012) K. L. M. Lewis and J. P. Ogilvie, J. Phys. Chem. Lett. 3, 503 (2012).
  • Westenhoff et al. (2012) S. Westenhoff, D. Palec̆ek, P. Edlund, P. Smith, and D. Zigmantas, J. Am. Chem. Soc. 134, 16484 (2012).
  • Dawlaty et al. (2012) J. M. Dawlaty, A. Ishizaki, A. K. De, and G. R. Fleming, Phil. Trans. R. Soc. A 370, 3672 (2012).
  • Chang and Cheng (2012) H.-T. Chang and Y.-C. Cheng, J. Chem. Phys. 137, 165103 (2012).
  • Hoyer et al. (2012) S. Hoyer, A. Ishizaki, and K. B. Whaley, Phys. Rev. E 86, 041911 (2012).
  • Shabani et al. (2012) A. Shabani, M. Mohseni, H. Rabitz, and S. Lloyd, Phys. Rev. E 86, 011915 (2012).
  • Wu et al. (2012) J. Wu, F. Liu, J. Ma, R. J. Silbey, and J. Cao, J. Chem. Phys. 137, 174111 (2012).
  • Dijkstra and Tanimura (2012) A. G. Dijkstra and Y. Tanimura, New J. Phys. 14, 073027 (2012).
  • Hildner et al. (2013) R. Hildner, D. Brinks, J. B. Nieder, R. J. Cogdell, and N. F. van Hulst, Science 340, 1448 (2013).
  • Chin et al. (2013) A. W. Chin, S. F. Huelga, and M. B. Plenio, Nat. Phys. 9, 113 (2013).
  • Gelzinis et al. (2013) A. Gelzinis, L. Valkunas, F. D. Fuller, J. P. Ogilvie, S. Mukamel, and D. Abramavicius, New J. Phys. 15, 075013 (2013).
  • Rivera et al. (2013) E. Rivera, D. Montemayor, M. Masia, and D. F. Coker, J. Phys. Chem. B 117, 5510 (2013).
  • O’Reilly and Olaya-Castro (2014) E. J. O’Reilly and A. Olaya-Castro, Nat. Commun. 5, 1 (2014).
  • De et al. (2014) A. K. De, D. Monahan, J. M. Dawlaty, and G. R. Fleming, J. Chem. Phys. 140, 194201 (2014).
  • Dijkstra and Tanimura (2015) A. G. Dijkstra and Y. Tanimura, J. Chem. Phys. 142, 212423 (2015).
  • Scholes et al. (2017) G. D. Scholes, G. R. Fleming, L. X. Chen, A. Aspuru-Guzik, A. Buchleitner, D. F. Coker, G. S. Engel, R. van Grondelle, A. Ishizaki, D. M. Jonas, et al., Nature 543, 647 (2017).
  • Knee et al. (2017) G. C. Knee, P. Rowe, L. D. Smith, A. Troisi, and A. Datta, J. Phys. Chem. Lett. 8, 2328 (2017).
  • Dutta and Bagchi (2017) R. Dutta and B. Bagchi, J Phys Chem Lett 8, 5566 (2017).
  • Sakamoto and Tanimura (2017) S. Sakamoto and Y. Tanimura, J. Phys. Chem. Lett. 8, 5390 (2017).
  • Thyrhaug et al. (2018) E. Thyrhaug, R. Tempelaar, M. J. P. Alcocer, K. Žídek, D. Bína, J. Knoester, T. L. C. Jansen, and D. Zigmantas, Nature Chemistry 10, 780 (2018).
  • Saito et al. (2019) S. Saito, M. Higashi, and G. R. Fleming, J. Phys. Chem. B 123, 9762 (2019).
  • Kim et al. (2019) C. W. Kim, W.-G. Lee, I. Kim, and Y. M. Rhee, J. Phys. Chem. A 123, 1186 (2019).
  • Muñoz and Schlawin (2020) C. S. Muñoz and F. Schlawin, Phys. Rev. Lett. 124, 203601 (2020).
  • Cao et al. (2020) J. Cao, R. J. Cogdell, D. F. Coker, H.-G. Duan, J. Hauer, U. Kleinekathoefer, T. L. C. Jansen, T. Mančal, R. J. D. Miller, J. P. Ogilvie, et al., Science Advances 6, eaaz4888 (2020).
  • Chan et al. (2013) W.-L. Chan, T. C. Berkelbach, M. R. Provorse, N. R. Monahan, J. R. Tritsch, M. S. Hybertsen, D. R. Reichman, J. Gao, and X. Y. Zhu, Acc. Chem. Res. 46, 1321 (2013).
  • Gélinas et al. (2014) S. Gélinas, A. Rao, A. Kumar, S. L. Smith, A. W. Chin, J. Clark, T. S. van der Poll, G. C. Bazan, and R. H. Friend, Science 343, 512 (2014).
  • Lee et al. (2015) M. H. Lee, J. Aragó, and A. Troisi, J. Phys. Chem. C 119, 14989 (2015).
  • Bredas et al. (2016) J.-L. Bredas, E. H. Sargent, and G. D. Scholes, Nat. Mater. 16, 35 (2016).
  • Kato and Ishizaki (2018) A. Kato and A. Ishizaki, Phys. Rev. Lett. 121, 026001 (2018).
  • Nemeth et al. (2010) A. Nemeth, F. Milota, T. Mančal, V. Lukeš, J. Hauer, H. F. Kauffmann, and J. Sperling, J. Chem. Phys. 132, 184514 (2010).
  • Mančal et al. (2010) T. Mančal, A. Nemeth, F. Milota, V. Lukeš, H. F. Kauffmann, and J. Sperling, J. Chem. Phys. 132, 184515 (2010).
  • Butkus et al. (2012) V. Butkus, D. Zigmantas, L. Valkunas, and D. Abramavicius, Chem. Phys. Lett. 545, 40 (2012).
  • Yuen-Zhou et al. (2012) J. Yuen-Zhou, J. J. Krich, and A. Aspuru-Guzik, J. Chem. Phys. 136, 234501 (2012).
  • Caycedo-Soler et al. (2012) F. Caycedo-Soler, A. W. Chin, J. Almeida, S. F. Huelga, and M. B. Plenio, J. Chem. Phys. 136, 155102 (2012).
  • Christensson et al. (2012) N. Christensson, H. F. Kauffmann, T. Pullerits, and T. Mančal, J. Phys. Chem. B 116, 7449 (2012).
  • Tiwari et al. (2013) V. Tiwari, W. K. Peters, and D. M. Jonas, Proc. Natl. Acad. Sci. USA 110, 1203 (2013).
  • Romero et al. (2014) E. Romero, R. Augulis, V. I. Novoderezhkin, M. Ferretti, J. Thieme, D. Zigmantas, and R. van Grondelle, Nat. Phys. 10, 677 (2014).
  • Fuller et al. (2014) F. D. Fuller, J. Pan, A. Gelzinis, V. Butkus, S. S. Senlik, D. E. Wilcox, C. F. Yocum, L. Valkunas, D. Abramavicius, and J. P. Ogilvie, Nat. Chem. 6, 706 (2014).
  • Fujihashi et al. (2015) Y. Fujihashi, G. R. Fleming, and A. Ishizaki, J. Chem. Phys. 142, 212403 (2015).
  • Monahan et al. (2015) D. M. Monahan, L. Whaley-Mayda, A. Ishizaki, and G. R. Fleming, J. Chem. Phys. 143, 065101 (2015).
  • Fujihashi et al. (2016) Y. Fujihashi, G. R. Fleming, and A. Ishizaki, J. Chin. Chem. Soc. 63, 49 (2016).
  • Fujihashi et al. (2018) Y. Fujihashi, M. Higashi, and A. Ishizaki, J. Phys. Chem. Lett. 9, 4921 (2018).
  • Jang et al. (2008) S. Jang, Y.-C. Cheng, D. R. Reichman, and J. D. Eaves, J. Chem. Phys. 129, 101104 (2008).
  • Ishizaki and Fleming (2009b) A. Ishizaki and G. R. Fleming, J. Chem. Phys. 130, 234111 (2009b).
  • Prior et al. (2010) J. Prior, A. W. Chin, S. F. Huelga, and M. B. Plenio, Phys. Rev. Lett. 105, 050404 (2010).
  • Huo and Coker (2010) P. Huo and D. F. Coker, J. Chem. Phys. 133, 184108 (2010).
  • Tao and Miller (2010) G. Tao and W. H. Miller, J. Phys. Chem. Lett. 1, 891 (2010).
  • Kelly and Rhee (2011) A. Kelly and Y. M. Rhee, J. Phys. Chem. Lett. 2, 808 (2011).
  • Nalbach et al. (2011) P. Nalbach, A. Ishizaki, G. R. Fleming, and M. Thorwart, New J. Phys. 13, 063040 (2011).
  • Berkelbach et al. (2012) T. C. Berkelbach, T. E. Markland, and D. R. Reichman, J. Chem. Phys. 136, 084104 (2012).
  • Kelly and Markland (2013) A. Kelly and T. E. Markland, J. Chem. Phys. 139, 014104 (2013).
  • Banchi et al. (2013) L. Banchi, G. Costagliola, A. Ishizaki, and P. Giorda, J. Chem. Phys. 138, 184107 (2013).
  • Jang et al. (2014) S. Jang, S. Hoyer, G. R. Fleming, and K. B. Whaley, Phys. Rev. Lett. 113, 188102 (2014).
  • Hwang-Fu et al. (2015) Y.-H. Hwang-Fu, W. Chen, and Y.-C. Cheng, Chem. Phys. 447, 46 (2015).
  • Tamascelli et al. (2019) D. Tamascelli, A. Smirne, J. Lim, S. F. Huelga, and M. B. Plenio, Phys. Rev. Lett. 123, 090402 (2019).
  • Adolphs and Renger (2006) J. Adolphs and T. Renger, Biophys. J. 91, 2778 (2006).
  • Kubo et al. (1985) R. Kubo, M. Toda, and N. Hashitsume, Statistical Physics II (Springer, Berlin, Heidelberg, 1985).
  • Marchi et al. (1993) M. Marchi, J. N. Gehlen, D. Chandler, and M. Newton, J. Am. Chem. Soc. 115, 4178 (1993).
  • Chandler (1998) D. Chandler, in Classical and Quantum Dynamics in Condensed Phase Simulations, edited by B. J. Berne, G. Ciccotti, and D. F. Coker (World Scientific, Singapore, 1998), pp. 25–49.
  • Ishizaki et al. (2010) A. Ishizaki, T. R. Calhoun, G. S. Schlau-Cohen, and G. R. Fleming, Phys. Chem. Chem. Phys. 12, 7319 (2010).
  • van Amerongen et al. (2000) H. van Amerongen, L. Valkunas, and R. van Grondelle, Photosynthetic excitons (World Scientific, Singapore, 2000).
  • Marcus (1993) R. A. Marcus, Rev. Mod. Phys. 65, 599 (1993).
  • Bryngelson and Wolynes (1987) J. D. Bryngelson and P. G. Wolynes, Proc. Natl. Acad. Sci. USA 84, 7524 (1987).
  • Yang et al. (2001) M. Yang, R. Agarwal, and G. R. Fleming, J. Photochem. Photobiol. A 142, 107 (2001).
  • Ishizaki and Fleming (2011) A. Ishizaki and G. R. Fleming, J. Phys. Chem. B 115, 6227 (2011).
  • Novoderezhkin et al. (2005) V. I. Novoderezhkin, M. A. Palacios, H. van Amerongen, and R. van Grondelle, J. Phys. Chem. B 109, 10493 (2005).
  • Schlau-Cohen et al. (2009) G. S. Schlau-Cohen, T. R. Calhoun, N. S. Ginsberg, E. L. Read, M. Ballottari, R. Bassi, R. van Grondelle, and G. R. Fleming, J. Phys. Chem. B 113, 15352 (2009).
  • Bhattacharyya and Fleming (2020) P. Bhattacharyya and G. R. Fleming, J. Chem. Phys. 153, 044119 (2020).
  • Arsenault et al. (2020) E. A. Arsenault, Y. Yoneda, M. Iwai, K. K. Niyogi, and G. R. Fleming, Nat. Commun. 11, 1 (2020).
  • Kolli et al. (2012) A. Kolli, E. J. O’Reilly, G. D. Scholes, and A. Olaya-Castro, J. Chem. Phys. 137, 174109 (2012).
  • Dean et al. (2016) J. C. Dean, T. Mirkovic, Z. S. D. Toa, D. G. Oblinsky, and G. D. Scholes, Chem 1, 858 (2016).
  • Blau et al. (2018) S. M. Blau, D. I. G. Bennett, C. Kreisbeck, G. D. Scholes, and A. Aspuru-Guzik, Proc. Natl. Acad. Sci. U.S.A. 115, E3342 (2018).
  • Bennett et al. (2018) D. I. G. Bennett, P. Malý, C. Kreisbeck, R. van Grondelle, and A. Aspuru-Guzik, J Phys Chem Lett 9, 2665 (2018).
  • Zhang et al. (2016) H.-D. Zhang, Q. Qiao, R.-X. Xu, and Y. Yan, J. Chem. Phys. 145, 204109 (2016).
  • Brumer and Shapiro (2012) P. Brumer and M. Shapiro, Proc. Natl. Acad. Sci. USA 109, 19575 (2012).
  • Mančal and Valkunas (2010) T. Mančal and L. Valkunas, New J. Phys. 12, 065044 (2010).
  • Fassioli et al. (2012) F. Fassioli, A. Olaya-Castro, and G. D. Scholes, J. Phys. Chem. Lett. 3, 3136 (2012).
  • Pachón et al. (2017) L. A. Pachón, J. D. Botero, and P. Brumer, J. Phys. B.: At. Mol. Opt. Phys. 50, 184003 (2017).
  • Blankenship (2013) R. E. Blankenship, Molecular Mechanisms of Photosynthesis (Wiley Blackwell, West Sussex, 2013).
  • Chan et al. (2018) H. C. H. Chan, O. E. Gamel, G. R. Fleming, and K. B. Whaley, J. Phys. B: At. Mol. Opt. Phys. 51 (2018).
  • Deng et al. (2019) Y.-H. Deng, H. Wang, X. Ding, Z. C. Duan, J. Qin, M. C. Chen, Y. He, Y.-M. He, J.-P. Li, Y.-H. Li, et al., Phys. Rev. Lett. 123, 080401 (2019).
  • Fujihashi et al. (2020) Y. Fujihashi, R. Shimizu, and A. Ishizaki, Phys. Rev. Research 2, 023256 (2020).