This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Integrated Wishart bridge processes and generalised Hartman-Watson law

Jason Leung 111School of Mathematics and Statistics, e-mail: jason.leung@unimelb.edu.au 222Supported by the Albert Shimmins fund The University of Melbourne
(June, 2019)
Abstract

This article is concerned with the joint law of an integrated Wishart bridge process and the trace of an integrated inverse Wishart bridge process over the interval [0,t]\left[0,t\right]. Its Laplace transform is obtained by studying the Wishart bridge processes and the absolute continuity property of Wishart laws.

1 Introduction

Suppose XX is a solution to the stochastic differential equation on the cone 𝒮~n+\tilde{\mathcal{S}}_{n}^{+} of n×nn\times n symmetric positive semi-definite matrices

dXt=XtdWta+adWtXt+(bXt+Xtb+αaa)dt,t0,\displaystyle dX_{t}=\sqrt{X}_{t}dW_{t}a+a^{\top}dW^{\top}_{t}\sqrt{X}_{t}+\left(bX_{t}+X_{t}b+\alpha a^{\top}a\right)dt,\quad t\geq 0, (1.1)

where X0=x𝒮~n+X_{0}=x\in\tilde{\mathcal{S}}^{+}_{n}, WW is an n×nn\times n matrix-valued Brownian motion, aa in the space GL(n)GL(n) of n×nn\times n invertible matrices, bb in the cone 𝒮~\tilde{\mathcal{S}}^{-} of negative semi-definite matrices such that ab=baab=ba and α{1,2,,n1}(n1,)\alpha\in\{1,2,\dots,n-1\}\cup(n-1,\infty).

The process XX satisfying (1.1), first introduced in Bru (1991), is called a Wishart process of dimension nn, index α\alpha and parameters a,ba,b with initial value xx and is denoted WIS(n,α,a,b,x)WIS(n,\alpha,a,b,x). It was shown in Cuchiero et al. (2011) that the stochastic differential equation (1.1) has a unique weak solution for αn1\alpha\geq n-1 as well as for α{1,2,,n1}\alpha\in\{1,2,\dots,n-1\} with the additional condition of rank(x)α\text{rank}(x)\leq\alpha. For αn+1\alpha\geq n+1, Mayerhofer et al. (2011) showed that the solution to (1.1) exists as a strong solution and is unique for t0t\geq 0. Moroever, it was shown in Mayerhofer et al. (2011) that if the initial value xx belongs to the space 𝒮n+\mathcal{S}_{n}^{+} of n×nn\times n positive definite matrices, the solution to (1.1) also belongs to 𝒮n+\mathcal{S}_{n}^{+}.

Given αn+1\alpha\geq n+1 and x𝒮~n+x\in\tilde{\mathcal{S}}_{n}^{+}, then for t0t\geq 0, the determinant of XX satisfies the stochastic differential equation

ln(det(Xt))=0t(αn1)Tr(aaXs1)+2Tr(b)ds+0t2Tr(Xs1dWsa),0t<τ,\displaystyle\begin{split}\ln\left(\det(X_{t})\right)&=\int_{0}^{t}\left(\alpha-n-1\right)Tr\left(a^{\top}aX^{-1}_{s}\right)+2Tr\left(b\right)ds\\ &\qquad+\int_{0}^{t}2Tr\left(\sqrt{X^{-1}_{s}}dW_{s}a\right),\qquad 0\leq t<\tau,\end{split} (1.2)

where τ=inf{t0:det(Xt)=0}\tau=\inf\left\{t\geq 0:\det{(X_{t})}=0\right\}. It was shown in Mayerhofer et al. (2011) Theorem 3.4 that for αn+1\alpha\geq n+1 and x𝒮n+x\in\mathcal{S}_{n}^{+}, τ=\tau=\infty almost surely.

Given t0t\geq 0, the Laplace transform of XtX_{t} can be computed directly from solving the matrix Riccati ordinary differential equation (see Ahdida and Alfonsi (2013) Proposition 4) and is given by

𝔼eTr(uXt)=exp{Tr[u(I2σtu)1ebtxebt]}det(I2σtu)α/2,u𝒮~n+,\displaystyle\mathbb{E}e^{-Tr\left(uX_{t}\right)}=\frac{\exp\left\{Tr\left[u\left(I-2\sigma_{t}u\right)^{-1}e^{bt}xe^{bt}\right]\right\}}{\det\left(I-2\sigma_{t}u\right)^{\alpha/2}},\quad u\in\tilde{\mathcal{S}}^{+}_{n},

where σt=0tebsaaebs𝑑s\sigma_{t}=\int_{0}^{t}e^{bs}a^{\top}ae^{b^{\top}s}ds . Therefore, by comparing the above expression to the Laplace transform of the non-central Wishart random variable computed in Letac and Massam (2008), we deduce that XtX_{t} follows the non-central Wishart distribution with α\alpha degrees of freedom, covariance matrix σt\sigma_{t} and non-centrality matrix ebtxebtσt1e^{bt}xe^{bt}\sigma_{t}^{-1}, denoted 𝒲n(α,σt,ebtxebtσt1)\mathcal{W}_{n}(\alpha,\sigma_{t},e^{bt}xe^{bt}\sigma_{t}^{-1}).

We denote the space of n×nn\times n matrix-valued continuous function defined on [0,t][0,t] by 𝒞([0,),n×n)\mathcal{C}\left([0,\infty),\mathbb{R}^{n\times n}\right), the law of a Wishart process XX on 𝒞([0,),n×n)\mathcal{C}\left([0,\infty),\mathbb{R}^{n\times n}\right) and its respective semi-group by Qxα,a,bn{}^{n}Q^{\alpha,a,b}_{x}, or simply Qxα,a,bQ^{\alpha,a,b}_{x} when there is no ambiguities about the dimension nn. Moreover, we assume Ω=𝒞([0,),n×n)\Omega=\mathcal{C}\left([0,\infty),\mathbb{R}^{n\times n}\right), the set of n×n\mathbb{R}^{n\times n}-valued continuous functions defined on [0,)[0,\infty), and denote XX the coordinate process Xt(ω)=ωtX_{t}(\omega)=\omega_{t}.

For αn+1\alpha\geq n+1, the Wishart law Qxα,a,bQ^{\alpha,a,b}_{x} is absolutely continuous with respect to the parameters α\alpha and bb, their respective Cameron-Martin-Girsanov formulae are given as follows:

Lemma 1.1 (Absolute continuity of Wishart laws).

Let αn+1\alpha\geq n+1, t0t\geq 0 and Qxα,a,bQ^{\alpha,a,b}_{x} be the law of WIS(n,α,a,b,x)WIS(n,\alpha,a,b,x) on 𝒞([0,),n×n)\mathcal{C}([0,\infty),\mathbb{R}^{n\times n}).

  1. (i)

    For u𝒮~nu\in\tilde{\mathcal{S}}_{n}^{-} such that ua=auua=au,

    dQxα,a,b+u=exp{Tr[12(aa)1u(XtX0)12αut0t(aa)1(u2+bu)Xsds]}dQα,a,bx.\displaystyle\begin{split}dQ^{\alpha,a,b+u}_{x}=&\exp\left\{Tr\left[\frac{1}{2}(a^{\top}a)^{-1}u\left(X_{t}-X_{0}\right)\right.\right.\\ &\left.\left.-\frac{1}{2}\alpha ut-\int_{0}^{t}\left(a^{\top}a\right)^{-1}\left(u^{2}+bu\right)X_{s}ds\right]\right\}dQ^{\alpha,a,b}_{x}.\end{split} (1.3)
  2. (ii)

    For x𝒮n+x\in\mathcal{S}^{+}_{n} and ν[(n+1α)/2,)\nu\in[\left(n+1-\alpha\right)/2,\infty),

    dQxα+2ν,a,b=(detXtdetx)ν/2exp{Tr[νbt+(αn1+ν)ν20t(aa)Xs1ds]}dQα,a,bx.\displaystyle\begin{split}dQ_{x}^{\alpha+2\nu,a,b}=&\left(\frac{\det X_{t}}{\det x}\right)^{\nu/2}\exp\bigg{\{}-Tr\bigg{[}\nu bt\\ &+\left(\alpha-n-1+\nu\right)\frac{\nu}{2}\int_{0}^{t}\left(a^{\top}a\right)X^{-1}_{s}ds\bigg{]}\bigg{\}}dQ^{\alpha,a,b}_{x}.\end{split} (1.4)

Main result

This article is concerned with the joint conditional Laplace transform of the pair for

(0tXs𝑑s,0tTr(a1aXs1)𝑑s),\displaystyle\left(\int_{0}^{t}X_{s}ds,\int_{0}^{t}Tr\left(a^{-1}aX^{-1}_{s}\right)ds\right), (1.5)

for a WIS(n,α,a,b,x)WIS(n,\alpha,a,b,x) process XX and αn+1\alpha\geq n+1, given XtX_{t} for a fixed t0t\geq 0.

Let us first state the main result of this article,

Theorem 1.1.

Let XX be a WIS(n,α,a,b,x)WIS(n,\alpha,a,b,x) process and αn+1\alpha\geq n+1, then

𝔼(exp{Tr[u20tXs𝑑s]λ22Tr[0t(aa)Xs1𝑑s]}|Xt=y)=qtα+2νλ,a,b+δu(x,y)qtα,a,b(x,y)(detydetx)νλ/2exp{Tr[νλbt+(12(aa)3/2(u2+bu)1/2(yx)αt)]},\displaystyle\begin{split}&\mathbb{E}\left(\left.\exp\left\{-Tr\left[u^{2}\int_{0}^{t}X_{s}ds\right]-\frac{\lambda^{2}}{2}Tr\left[\int_{0}^{t}\left(a^{\top}a\right)X^{-1}_{s}ds\right]\right\}\right|X_{t}=y\right)\\ =&\frac{q^{\alpha+2\nu_{\lambda},a,b+\delta_{u}}_{t}(x,y)}{q^{\alpha,a,b}_{t}(x,y)}\left(\frac{\det y}{\det x}\right)^{-\nu_{\lambda}/2}\\ &\quad\exp\left\{Tr\left[\nu_{\lambda}bt+\left(\frac{1}{2}\left(a^{\top}a\right)^{-3/2}\left(u^{2}+bu\right)^{1/2}\left(y-x\right)-\alpha t\right)\right]\right\},\end{split} (1.6)

where

u\displaystyle u 𝒟,λ,\displaystyle\in\mathcal{D},\quad\lambda\in\mathbb{R},
δu\displaystyle\delta_{u} =12(b+b24aau2),\displaystyle=\frac{1}{2}\left(-b+\sqrt{b^{2}-4a^{\top}au^{2}}\right),
𝒟\displaystyle\mathcal{D} ={u𝒮n:δu+b𝒮~n+,au=ua},\displaystyle=\left\{u\in\mathcal{S}_{n}:\delta_{u}+b\in\tilde{\mathcal{S}}_{n}^{+},au=ua\right\},
νλ\displaystyle\nu_{\lambda} =λ2+(αn1)2α+n+1,\displaystyle=\sqrt{\lambda^{2}+(\alpha-n-1)^{2}}-\alpha+n+1,

and qtα,a,b(x,y)q^{\alpha,a,b}_{t}(x,y) denotes the density of a WIS(n,α,a,b,x)WIS(n,\alpha,a,b,x) semi-group.

Formula (1.6) is an extension of that given in Proposition 2.4 of Donati-Martin et al. (2004), where aa is assumed to be the identity matrix 𝐢𝐝\mathbf{id} and bb is 0. The proof for Theorem 1.1 relies on, as in that of Donati-Martin et al. (2004), the absolute continuity of Wishart law with respect to the dimension parameter α\alpha and the drift parameter bb as well as the law of a Wishart bridge process over [0,t]\left[0,t\right], which will be defined in the next section.

2 Wishart bridge processes

A bridge of a Wishart process can be thought of as a Wishart process with its two end points “pinned down” over a fixed time interval. We define the law of a Wishart bridge process as a regular conditional probability measure, analogous to that of a squared Bessel bridge process as defined in Revuz and Yor (1999) Chapter XI.

We denote the space of n×nn\times n matrix-valued continuous function defined on A[0,)A\subseteq[0,\infty) by 𝒞(A,n×n)\mathcal{C}\left(A,\mathbb{R}^{n\times n}\right), the law of XX on 𝒞([0,),n×n)\mathcal{C}\left([0,\infty),\mathbb{R}^{n\times n}\right) and its respective semi-group by Qxα,a,bn{}^{n}Q^{\alpha,a,b}_{x}, or simply Qxα,a,bQ^{\alpha,a,b}_{x} when there is no ambiguities about the dimension nn. Throughout this article, we assume Ω=𝒞([0,),n×n)\Omega=\mathcal{C}\left([0,\infty),\mathbb{R}^{n\times n}\right) and denote XX the coordinate process Xt(ω)=ωtX_{t}(\omega)=\omega_{t}.

For every t0t\geq 0, let us consider the space 𝕎t=𝒞([0,t],n×n)\mathbb{W}_{t}=\mathcal{C}([0,t],\mathbb{R}^{n\times n}) endowed with the topology generated by the uniform metric ρ\rho and the Borel σ\sigma-algebra (𝕎t)\mathcal{B}(\mathbb{W}_{t}) generated by this topology. Therefore the metric space (𝕎t,ρ)\left(\mathbb{W}_{t},\rho\right) is complete and separable (see Billingsley (1968)). Consequently, there exists a unique regular conditional distribution of Qxα,a,bn(|Xt){}^{n}Q^{\alpha,a,b}_{x}({}\cdot|X_{t}), namely a family of probability measures Qx,y,tα,a,bn{}^{n}Q^{\alpha,a,b}_{x,y,t} on 𝕎t\mathbb{W}_{t} such that for every BB\in\mathcal{B},

Qxα,a,bn(B)=Qx,y,tα,a,bn(B)μt(dy),{}^{n}Q^{\alpha,a,b}_{x}(B)=\int{{}^{n}Q^{\alpha,a,b}_{x,y,t}}(B)\mu_{t}(dy),

where μt\mu_{t} is the density of XtX_{t} under Qxα,a,bn{}^{n}Q^{\alpha,a,b}_{x}.

Therefore we can define a Wishart bridge process by specifying its law as follow:

Definition 2.1.

A continuous process of which law is Qx,y,tα,a,bn{}^{n}Q^{\alpha,a,b}_{x,y,t} is called an nn-dimensional Wishart Bridge process (with parameters α,a,b\alpha,a,b) from xx to yy over [0,t][0,t] and is denoted by WIStn,α,a,b(x,y)WIS^{n,\alpha,a,b}_{t}(x,y).

As for the law of a Wishart process, we simply write Qx,y,tα,a,bQ^{\alpha,a,b}_{x,y,t} for the law of a Wishart bridge process when there is no ambiguities about the dimension. Loosely speaking, the law of a Wishart bridge can be understood in a sense that for every B(𝕎t)B\in\mathcal{B}(\mathbb{W}_{t}),

Qx,y,tα,a,b(B)=Qxα,a,b(B|Xt=y),\displaystyle Q^{\alpha,a,b}_{x,y,t}(B)=Q^{\alpha,a,b}_{x}(B|X_{t}=y),

where XX is the coordinate process.

From the definition of a regular conditional probability (see, for example Ikeda and Watanabe (1989)), we observe that for every B(𝕎t)B\in\mathcal{B}(\mathbb{W}_{t}), the map yQx,y,tα,a,b(B)y\mapsto Q^{\alpha,a,b}_{x,y,t}(B) is measurable and for every measurable function ff on 𝕎t×n×n\mathbb{W}_{t}\times\mathbb{R}^{n\times n},

f(ω,ωt)Qxα,a,b(dω)=f(ω,y)Qx,y,tα,a,b(dω)μt(dy).\displaystyle\int f(\omega,\omega_{t})Q^{\alpha,a,b}_{x}\left(d\omega\right)=\int\int f(\omega,y)Q^{\alpha,a,b}_{x,y,t}\left(d\omega\right)\mu_{t}\left(dy\right). (2.1)

Throughout this article, we follow the notation in Revuz and Yor (1999) Chapter III, denoting a semi-group PtP_{t} acting on an element ff in 𝒞0(n×n,)\mathcal{C}_{0}\left(\mathbb{R}^{n\times n},\mathbb{R}\right) by PtfP_{t}f, that is

Ptf=f(y)Pt(x,dy),\displaystyle P_{t}f=\int f(y)P_{t}(x,dy),

where 𝒞0(n×n,)\mathcal{C}_{0}\left(\mathbb{R}^{n\times n},\mathbb{R}\right) denotes the set of real-valued continuous functions on n×n\mathbb{R}^{n\times n} vanishing at infinity. And the function pt(x,y)p_{t}(x,y) such that

f(y)Pt(x,dy)=f(y)pt(x,y)𝑑y,\displaystyle\int f(y)P_{t}(x,dy)=\int f(y)p_{t}(x,y)dy,

for every Borel measurable function ff is called the density of the semi-group PtP_{t}.

We also make use of the square bracket Pt[f]P_{t}\left[f\right] instead of Pt(f)P_{t}\left(f\right) to avoid confusion with probability measures.

2.1 Integrated Wishart bridge processes

Suppose XX is a Wishart process with law Qxα,a,bQ^{\alpha,a,b}_{x}, we call the process YY defined by

Yt=0tXs𝑑s,t0,\displaystyle Y_{t}=\int_{0}^{t}X_{s}ds,\quad t\geq 0,

an integrated Wishart process. An explicit formula for the conditional Laplace transform of YtY_{t} given XtX_{t} at a fixed t0t\geq 0 was derived in Donati-Martin et al. (2004) for αn+1\alpha\geq n+1, a=𝐢𝐝a=\mathbf{id} and b=0b=0 using the absolute continuity property of Wishart laws. Similarly, the aforementioned formula can be extended to a more general class of Wishart processes by using the absolute continuity property of Wishart laws.

Theorem 2.1.

Let αn+1\alpha\geq n+1, aGL(n)a\in GL(n) and b𝒮~nb\in\tilde{\mathcal{S}}_{n}^{-} be commutative. Then for t0t\geq 0,

Qx,yb[exp{Tr[(u2+bu)0t(aa)1Xs𝑑s]}]\displaystyle Q_{x,y}^{b}\left[\exp\left\{-Tr\left[\left(u^{2}+bu\right)\int_{0}^{t}\left(a^{\top}a\right)^{-1}X_{s}ds\right]\right\}\right]
=qtb+u(x,y)qtb(x,y)exp{Tr[12u((aa)1(yx)αt)]},u𝒟,\displaystyle=\frac{q_{t}^{b+u}(x,y)}{q_{t}^{b}(x,y)}\exp\left\{Tr\left[-\frac{1}{2}u\left(\left(a^{\top}a\right)^{-1}\left(y-x\right)-\alpha t\right)\right]\right\},\quad u\in\mathcal{D}, (2.2)

where

𝒟={u𝒮n:u+b𝒮~n,au=ua},\displaystyle\mathcal{D}=\left\{u\in\mathcal{S}_{n}:u+b\in\tilde{\mathcal{S}}_{n}^{-},au=ua\right\},

and XX is the coordinate process, Qx,ybQ^{b}_{x,y} and qtbq_{t}^{b} denotes the WIStn,α,a,b(x,y)WIS^{n,\alpha,a,b}_{t}(x,y) law and the density of a WIS(n,α,a,b,x)WIS(n,\alpha,a,b,x) semigroup respectively.

Proof.

For every measurable Borel measurable function ff, it follows from (2.1) and the Cameron-Martin-Girsanov formula (1.3) that

Qx,yb[exp{0t(aa)1(u2+bu)Xs𝑑s}]f(y)qtb(x,y)𝑑y\displaystyle\int Q_{x,y}^{b}\left[\exp\left\{-\int_{0}^{t}\left(a^{\top}a\right)^{-1}\left(u^{2}+bu\right)X_{s}ds\right\}\right]f(y)q^{b}_{t}(x,y)dy
=\displaystyle= Qxb[exp{0t(aa)1(u2+bu)Xs𝑑s}f(Xt)]\displaystyle Q_{x}^{b}\left[\exp\left\{-\int_{0}^{t}\left(a^{\top}a\right)^{-1}\left(u^{2}+bu\right)X_{s}ds\right\}f\left(X_{t}\right)\right]
=\displaystyle= Qxb+u[exp{Tr[12u((aa)1(Xtx)αt)]}f(Xt)]\displaystyle Q^{b+u}_{x}\left[\exp\left\{Tr\left[-\frac{1}{2}u\left(\left(a^{\top}a\right)^{-1}\left(X_{t}-x\right)-\alpha t\right)\right]\right\}f(X_{t})\right]
=\displaystyle= Qx,yb+u[exp{Tr[12u((aa)1(Xtx)αt)]}]f(y)qtb+u(x,y)𝑑y\displaystyle\int Q^{b+u}_{x,y}\left[\exp\left\{Tr\left[-\frac{1}{2}u\left(\left(a^{\top}a\right)^{-1}\left(X_{t}-x\right)-\alpha t\right)\right]\right\}\right]f(y)q^{b+u}_{t}(x,y)dy
=\displaystyle= exp{Tr[12u((aa)1(yx)αt)]}f(y)qtb+u(x,y)𝑑y.\displaystyle\int\exp\left\{Tr\left[-\frac{1}{2}u\left(\left(a^{\top}a\right)^{-1}\left(y-x\right)-\alpha t\right)\right]\right\}f(y)q^{b+u}_{t}(x,y)dy.

Therefore, we have

Qx,yb[exp{Tr(0t(u2+bu)(aa)1Xs)ds}]qtb(x,y)\displaystyle Q_{x,y}^{b}\left[\exp\left\{-Tr\left(\int_{0}^{t}\left(u^{2}+bu\right)\left(a^{\top}a\right)^{-1}X_{s}\right)ds\right\}\right]q^{b}_{t}(x,y)
=\displaystyle= exp{Tr[12u((aa)1(yx)αt)]}qtb+u(x,y),\displaystyle\exp\left\{Tr\left[-\frac{1}{2}u\left(\left(a^{\top}a\right)^{-1}\left(y-x\right)-\alpha t\right)\right]\right\}q^{b+u}_{t}(x,y),

almost surely. ∎

Replacing u2+buu^{2}+bu in Theorem 2.1 with u2u^{2} and solve

u2=(aa)1(δu2+bδu),\displaystyle u^{2}=\left(a^{\top}a\right)^{-1}\left(\delta_{u}^{2}+b\delta_{u}\right),

for δu\delta_{u}, we obtain the followings,

Corollary 2.1.

Let αn+1\alpha\geq n+1, aGL(n)a\in GL(n) and b𝒮~nb\in\tilde{\mathcal{S}}_{n}^{-} be commutative. Then for t0t\geq 0,

Qx,yb[exp{Tr(u20tXs𝑑s)}]\displaystyle Q_{x,y}^{b}\left[\exp\left\{-Tr\left(u^{2}\int_{0}^{t}X_{s}ds\right)\right\}\right]
=qtb+δu(x,y)qtb(x,y)exp{Tr[12(aa)3/2(u2+bu)1/2u(yxαt)]},u𝒟,\displaystyle=\frac{q_{t}^{b+\delta_{u}}(x,y)}{q_{t}^{b}(x,y)}\exp\left\{Tr\left[\frac{1}{2}(a^{\top}a)^{-3/2}\left(u^{2}+bu\right)^{1/2}u\left(y-x-\alpha t\right)\right]\right\},\quad u\in\mathcal{D}, (2.3)

where

δu\displaystyle\delta_{u} =12(b+b24aau2),\displaystyle=\frac{1}{2}\left(-b+\sqrt{b^{2}-4a^{\top}au^{2}}\right),
𝒟\displaystyle\mathcal{D} ={u𝒮n:δu+b𝒮~n,au=ua},\displaystyle=\left\{u\in\mathcal{S}_{n}:\delta_{u}+b\in\tilde{\mathcal{S}}^{-}_{n},au=ua\right\},

and XX is the coordinate process, Qx,ybQ^{b}_{x,y} and qtbq_{t}^{b} denotes the WIStn,α,a,b(x,y)WIS^{n,\alpha,a,b}_{t}(x,y) law and the density of a WIS(n,α,a,b,x)WIS(n,\alpha,a,b,x) semigroup respectively.

In the case of WIS(n,α,In,0,x)WIS(n,\alpha,I_{n},0,x), as considered in Donati-Martin et al. (2004), Corollary 2.1 allows us to find an explicit expression for the Laplace transform of an integrated Wishart bridge process. This extends formula (2.8) of Donati-Martin et al. (2004), where the Laplace transform of the trace of an integrated Wishart bridge process was considered. We summarise this result in the corollary below, which can also be considered as the matrix extension of formula (2.m) of Pitman and Yor (1982).

Corollary 2.2.

Let αn+1\alpha\geq n+1. For every u𝒮~nu\in\tilde{\mathcal{S}}^{-}_{n},

Qx,y[exp{Tr(u20tXs𝑑s)}]=qtu(x,y)qt0(x,y)exp(Tr[u2(αt+xy)]),\displaystyle Q_{x,y}\left[\exp\left\{-Tr\left(u^{2}\int_{0}^{t}X_{s}ds\right)\right\}\right]=\frac{q_{t}^{u}(x,y)}{q_{t}^{0}(x,y)}\exp\left(Tr\left[-\frac{u}{2}\left(\alpha t+x-y\right)\right]\right),

where Qx,yQ_{x,y} and qtb(x,y)q^{b}_{t}(x,y) denote the WIStn,α,I,b(x,y)WIS^{n,\alpha,I,b}_{t}(x,y) law and the density of a WIS(n,α,I,0,x)WIS(n,\alpha,I,0,x) semigroup respectively.

2.2 Generalised Hartman-Watson law

The generalised Hartman-Watson law of a Wishart process XX for a=𝐢𝐝a=\mathbf{id} and b=0b=0, namely the conditional distribution of

Tr(0tXs1𝑑s),\displaystyle Tr\left(\int_{0}^{t}X^{-1}_{s}ds\right),

given XtX_{t}, was studied in Donati-Martin et al. (2004) through its Laplace transform. By using the Wishart bridge processes and absolute continuity property of Wishart laws, the Laplace transform of the generalised Hartman-Watson law given in Donati-Martin et al. (2004) can also be obtained for a𝐢𝐝a\neq\mathbf{id}.

As in Theorem 2.1, by the definition of Wishart bridge processes and the Cameron-Martin-Girsanov formula (1.4), we have the followings,

Theorem 2.2.

Let αn+1\alpha\geq n+1, ν[(n+1α)/2,)\nu\in[\left(n+1-\alpha\right)/2,\infty) and t0t\geq 0, then

Qx,yα\displaystyle Q^{\alpha}_{x,y} [exp{(αn1+ν)ν2Tr[(aa)0tXs1𝑑s]}]\displaystyle\left[\exp\left\{-\left(\alpha-n-1+\nu\right)\frac{\nu}{2}Tr\left[\left(a^{\top}a\right)\int_{0}^{t}X^{-1}_{s}ds\right]\right\}\right]
=qtα+2ν(x,y)qtα(x,y)(detydetx)ν/2exp{νTr(b)t},\displaystyle=\frac{q_{t}^{\alpha+2\nu}(x,y)}{q_{t}^{\alpha}(x,y)}\left(\frac{\det y}{\det x}\right)^{-\nu/2}\exp\{\nu Tr(b)t\},

where Qx,yαQ^{\alpha}_{x,y} and qtα(x,y)q^{\alpha}_{t}(x,y) denote the WIStn,α,a,b(x,y)WIS^{n,\alpha,a,b}_{t}(x,y) law and the density of a WIS(n,α,a,b,x)WIS(n,\alpha,a,b,x) semigroup respectively.

Proof.

As in the proof of Theorem 2.1 by applying (1.4) and (2.1). ∎

We can therefore compute the Laplace transform of the generalised Hartman-Watson law, which extends Proposition 2.4 of Donati-Martin et al. (2004) to a wider class of Wishart processes.

Corollary 2.3.

Let αn+1\alpha\geq n+1 and t0t\geq 0, then for every uu\in\mathbb{R},

Qx,yα[exp{u22Tr[(aa)0tXs1𝑑s]}]=qtα+2νu(x,y)qtα(x,y)(detydetx)νu2exp{νuTr(b)t},\displaystyle Q^{\alpha}_{x,y}\left[\exp\left\{-\frac{u^{2}}{2}Tr\left[\left(a^{\top}a\right)\int_{0}^{t}X^{-1}_{s}ds\right]\right\}\right]=\frac{q_{t}^{\alpha+2\nu_{u}}(x,y)}{q_{t}^{\alpha}(x,y)}\left(\frac{\det y}{\det x}\right)^{-\frac{\nu_{u}}{2}}\exp\{\nu_{u}Tr(b)t\},

where

νu=u2+(αn1)2α+n+1,\displaystyle\nu_{u}=\sqrt{u^{2}+(\alpha-n-1)^{2}}-\alpha+n+1,

Qx,yαQ^{\alpha}_{x,y} and qtαq_{t}^{\alpha} denote the WIStn,α,a,b(x,y)WIS^{n,\alpha,a,b}_{t}(x,y) law and the density of a WIS(n,α,a,b,x)WIS(n,\alpha,a,b,x) semigroup respectively.

2.3 Proof of Theorem 1.1

Combining the arguments made in the proofs of Theorem 2.1 and Theorem 2.2, we have the following,

Theorem 2.3.

Let aGL(n)a\in GL(n), b𝒮~nb\in\tilde{\mathcal{S}}_{n}^{-} be commutative, αn+1\alpha\geq n+1. Then for every u𝒮~nu\in\tilde{\mathcal{S}}_{n} such that u+b𝒮~nu+b\in\tilde{\mathcal{S}}_{n}^{-}, ua=auua=au and λ\lambda\in\mathbb{R},

Qx,y,tα,a,b[exp{Tr[(u2+bu)0t(aa)1Xs𝑑s]λ22Tr[0t(aa)Xs1𝑑s]}]\displaystyle Q_{x,y,t}^{\alpha,a,b}\left[\exp\left\{-Tr\left[\left(u^{2}+bu\right)\int_{0}^{t}\left(a^{\top}a\right)^{-1}X_{s}ds\right]-\frac{\lambda^{2}}{2}Tr\left[\int_{0}^{t}\left(a^{\top}a\right)X^{-1}_{s}ds\right]\right\}\right]
=qtα+2νλ,a,b+u(x,y)qtα,a,b(x,y)(detydetx)νλ2exp{Tr[νλbt12u((aa)1(yx)αt)]},\displaystyle=\frac{q^{\alpha+2\nu_{\lambda},a,b+u}_{t}(x,y)}{q^{\alpha,a,b}_{t}(x,y)}\left(\frac{\det y}{\det x}\right)^{-\frac{\nu_{\lambda}}{2}}\exp\left\{Tr\left[\nu_{\lambda}bt-\frac{1}{2}u\left(\left(a^{\top}a\right)^{-1}\left(y-x\right)-\alpha t\right)\right]\right\},

where

νλ=λ2+(αn1)2α+n+1,\displaystyle\nu_{\lambda}=\sqrt{\lambda^{2}+(\alpha-n-1)^{2}}-\alpha+n+1,

Qx,ybQ^{b}_{x,y} and qtbq_{t}^{b} denotes the WIStn,α,a,b(x,y)WIS^{n,\alpha,a,b}_{t}(x,y) law and the density of a WIS(n,α,a,b,x)WIS(n,\alpha,a,b,x) semigroup respectively.

Therefore, Theorem 2.3 can be reformulated to give the joint Laplace transform of the pair

(0tXs𝑑s,0tTr(a1aXs1)𝑑s),\displaystyle\left(\int_{0}^{t}X_{s}ds,\int_{0}^{t}Tr\left(a^{-1}aX^{-1}_{s}\right)ds\right),

under the Wishart bridge law.

Corollary 2.4.

Let aGL(n)a\in GL(n), b𝒮~nb\in\tilde{\mathcal{S}}_{n}^{-} be commutative, αn+1\alpha\geq n+1. Then,

Qx,y,tα,a,b\displaystyle Q_{x,y,t}^{\alpha,a,b} [exp{Tr[u20tXs𝑑s]λ22Tr[0t(aa)Xs1𝑑s]}]\displaystyle\left[\exp\left\{-Tr\left[u^{2}\int_{0}^{t}X_{s}ds\right]-\frac{\lambda^{2}}{2}Tr\left[\int_{0}^{t}\left(a^{\top}a\right)X^{-1}_{s}ds\right]\right\}\right]
=\displaystyle= qtα+2νλ,a,b+δu(x,y)qtα,a,b(x,y)(detydetx)νλ/2\displaystyle\frac{q^{\alpha+2\nu_{\lambda},a,b+\delta_{u}}_{t}(x,y)}{q^{\alpha,a,b}_{t}(x,y)}\left(\frac{\det y}{\det x}\right)^{-\nu_{\lambda}/2}
exp{Tr[νλbt+(12(aa)3/2(u2+bu)1/2(yx)αt)]},\displaystyle\quad\qquad\exp\left\{Tr\left[\nu_{\lambda}bt+\left(\frac{1}{2}\left(a^{\top}a\right)^{-3/2}\left(u^{2}+bu\right)^{1/2}\left(y-x\right)-\alpha t\right)\right]\right\},

where

u\displaystyle u 𝒟,λ,\displaystyle\in\mathcal{D},\quad\lambda\in\mathbb{R},
δu\displaystyle\delta_{u} =12(b+b24aau2),\displaystyle=\frac{1}{2}\left(-b+\sqrt{b^{2}-4a^{\top}au^{2}}\right),
𝒟\displaystyle\mathcal{D} ={u𝒮n:δu+b𝒮~n,au=ua},\displaystyle=\left\{u\in\mathcal{S}_{n}:\delta_{u}+b\in\tilde{\mathcal{S}}_{n}^{-},au=ua\right\},
νλ\displaystyle\nu_{\lambda} =λ2+(αn1)2α+n+1,\displaystyle=\sqrt{\lambda^{2}+(\alpha-n-1)^{2}}-\alpha+n+1,

Qx,ybQ^{b}_{x,y} and qtbq_{t}^{b} denote the WIStn,α,a,b(x,y)WIS^{n,\alpha,a,b}_{t}(x,y) law and the density of a WIS(n,α,a,b,x)WIS(n,\alpha,a,b,x) semi-group respectively.

Given a filtered probability space (Ω,,(t)t0,)\left(\Omega,\mathcal{F},\left(\mathcal{F}_{t}\right)_{t\geq 0},\mathbb{P}\right) and a Wishart process XX defined on it. Then Theorem 1.1 follows from Corollary 2.4 by identifying 𝔼(|Xt=y)\mathbb{E}\left({}\cdot{}|X_{t}=y\right) to 𝔼(|σ(Xt))(ωy)\mathbb{E}\left({}\cdot{}|\sigma(X_{t})\right)(\omega_{y}) where ωy{ωΩ:Xt(ω)=y}\omega_{y}\in\left\{\omega\in\Omega:X_{t}(\omega)=y\right\}.

References

  • (1)
  • Ahdida and Alfonsi (2013) Ahdida, A. and Alfonsi, A. (2013), ‘Exact and high-order discretization schemes for Wishart processes and their affine extensions’, The Annals of Applied Probability 23(3), 1025–1073.
  • Billingsley (1968) Billingsley, P. (1968), Convergence of Probability Measures, Wiley Series in probability and Mathematical Statistics: Tracts on probability and statistics, Wiley.
  • Bru (1991) Bru, M.-F. (1991), ‘Wishart processes’, Journal of Theoretical Probability 4(4), 725–751.
  • Cuchiero et al. (2011) Cuchiero, C., Filipović, D., Mayerhofer, E. and Teichmann, J. (2011), ‘Affine processes on positive semidefinite matrices’, The Annals of Applied Probability 21(2), 397–463.
  • Donati-Martin et al. (2004) Donati-Martin, C., Doumerc, Y., Matsumoto, H. and Yor, M. (2004), ‘Some properties of the Wishart processes and a matrix extension of the Hartman-Watson laws’, Publications of the Research Institute for Mathematical Sciences 40(4), 1385–1412.
  • Ikeda and Watanabe (1989) Ikeda, N. and Watanabe, S. (1989), Stochastic Differential Equations and Diffusion Processes, Kodansha scientific books, North-Holland.
  • Letac and Massam (2008) Letac, G. and Massam, H. (2008), ‘The noncentral Wishart as an exponential family, and its moments’, Journal of Multivariate Analysis 99(7), 1393 – 1417. Special Issue: Multivariate Distributions, Inference and Applications in Memory of Norman L. Johnson.
  • Mayerhofer et al. (2011) Mayerhofer, E., Pfaffel, O. and Stelzer, R. (2011), ‘On strong solutions for positive definite jump diffusions’, Stochastic Processes and their Applications 121(9), 2072 – 2086.
  • Pitman and Yor (1982) Pitman, J. and Yor, M. (1982), ‘A decomposition of Bessel bridges’, Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 59(4), 425–457.
  • Revuz and Yor (1999) Revuz, D. and Yor, M. (1999), Continuous Martingales and Brownian Motion, Grundlehren der mathematischen Wissenchaften A series of comprehensive studies in mathematics, Springer.