This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.



Integration of the geodesic equations via Noether Symmetries

Ugur Camci ucamci@rwu.edu,ugurcamci@gmail.com Department of Chemistry and Physics, Roger Williams University, Bristol, Rhode Island 02809, USA
Abstract

Through this article, I will overview the use of Noether symmetry approach in discussing the integration of geodesic equations for the geodesic Lagrangians of spacetimes. I will also give some examples to reveal the efficiency of Noether symmetry approach by finding the first integrals related for the geodesic Lagrangians of the Gödel-type, Schwarzschild, Reissner-Nordström and Kerr spacetimes. After obtaining the approximate Noether symmetries of the Schwarzschild, Reissner-Nordström and Kerr spacetimes, the first integrals associated with each of approximate Noether symmetries have been integrated to find a general solution of geodesic equations in terms of the arc length ss.

pacs:
04.20.-q, 11.30.-j, 45.05.+x

I Introduction

The differential equations can be deduced from a Lagrangian function through a variational technique. Noether symmetries noether which are the special classes of Lie symmetries are intimately connected with conservation laws, or the first integrals in the case of ordinary differential equations (ODEs) derived from the corresponding Lagrangian. The equations of geodesic motion are expressed in terms of the configuration space variables, i.e., the metric coefficients. Therefore, the configuration space of our model is a 44-dimensional Riemannian manifold with coordinates xi(i=0,1,2,3)x^{i}\,(i=0,1,2,3), in which we construct a point-like geodesic Lagrangian to produce the geodesic equations of motion. The geodesic equations are a system of second order ODEs and can be derived from a Lagrangian function (τ,xi,x˙i)\mathcal{L}(\tau,x^{i},\dot{x}^{i}) of the system related to the geodesic motion. Here the dot represents the derivative with respect to an affine parameter τ\tau, and this is the arc length ss in most of the spacetimes. Note that Q={xi,i=0,1,2,3}Q=\{x^{i},i=0,1,2,3\} is the configuration space from which it is possible to derive the corresponding tangent space TQ={xi,x˙i}TQ=\{x^{i},\dot{x}^{i}\} where the Lagrangian \mathcal{L} is defined. Taking the variation of the geodesic Lagrangian

(s,xk,x˙k)=12gij(xk)x˙ix˙jV(s,xk),\mathcal{L}(s,x^{k},\dot{x}^{k})=\frac{1}{2}g_{ij}(x^{k})\dot{x}^{i}\dot{x}^{j}-V(s,x^{k})\,, (1)

with respect to the coordinates xix^{i}, it follows the geodesic equations of motion,

x¨i+Γjkix˙jx˙k=Fi(s,x),\ddot{x}^{i}+\Gamma^{i}_{jk}\dot{x}^{j}\dot{x}^{k}=F^{i}(s,x^{\ell}), (2)

where Γjki(x)\Gamma^{i}_{jk}(x^{\ell}) are the connection coefficients of the metric and Fi=gijV,jF^{i}=g^{ij}V_{,j} is the conservative force field. The energy functional associated with \mathcal{L} is

E=x˙jx˙j=12gijx˙ix˙j+V(s,xk),E_{\mathcal{L}}=\dot{x}^{j}\frac{\partial\mathcal{L}}{\partial\dot{x}^{j}}-\mathcal{L}=\frac{1}{2}g_{ij}\dot{x}^{i}\dot{x}^{j}+V(s,x^{k})\,, (3)

which is the Hamiltonian of the system.

Noether symmetries are associated with differential equations possessing a Lagrangian, and they describe physical features of differential equations in terms of conservation laws admitted by them ibragimov . Thus one can use the geodesic Lagrangian associated with the geodesic motion for spacetimes to integrate the geodesic equations of motion if it is possible. It is capable to construct analytical solutions of geodesic equations by reducing their complexity, using not only the Noether symmetry but also the approximate Noether symmetry approach. In order to find out analytical solutions of geodesic equations for the considered geodesic Lagrangian, one can use the obtained first integrals of motion which are Noether constants. Recently the Noether symmetries of geodesic Lagrangian for some spacetimes have been calculated, and classified according to their Noether symmetry generators feroze1 -hussain2020 . In this study we consider Noether symmetries (the approximate Noether symmetries) of the geodesic Lagrangian (the perturbed geodesic Lagrangian) for the line elements of some known spacetimes, rather than those of the geodesic equations.

We design this study as follows. In the following section, we aim to give some examples of Noether symmetries for the geodesic Lagrangian \mathcal{L} of some well-known spacetimes. In Section III, we present a detailed analysis of the approximate Noether symmetries of Schwarzschild, Reissner-Nordström and Kerr spacetimes. Finally, we conclude with a brief summary and discussions in Section IV.

II Noether Symmetries for the geodesic Lagrangians

The Noether symmetry (NS) generator for the geodesic Lagrangian associated with the system of ODEs in (2) is

𝐗=ξ(s,xk)τ+ηi(s,xk)xi,\displaystyle{\bf X}=\xi(s,x^{k})\frac{\partial}{\partial\tau}+\eta^{i}(s,x^{k})\frac{\partial}{\partial x^{i}}\,, (4)

if there exists a function f(s,xk)f(s,x^{k}) which is sometimes called a gauge function, and the NS condition

𝐗[1]+(Dsξ)=Dsf,{\bf X}^{[1]}\mathcal{L}+\mathcal{L}(D_{s}\xi)=D_{s}f\,, (5)

is satisfied, where Ds=/s+x˙j/xjD_{s}=\partial/\partial s+\dot{x}^{j}\partial/\partial x^{j} is the total derivative operator and 𝐗[1]{\bf X}^{[1]} is the first prolongation of NS generator 𝐗{\bf X}, i.e.

𝐗[1]=𝐗+η˙j(s,x,x˙)x˙j,{\bf X}^{[1]}={\bf X}+\dot{\eta}^{j}(s,x^{\ell},\dot{x}^{\ell})\frac{\partial}{\partial\dot{x}^{j}}\,, (6)

with η˙j(s,x,x˙)=Dsηjx˙jDsξ\dot{\eta}^{j}(s,x^{\ell},\dot{x}^{\ell})=D_{s}\eta^{j}-\dot{x}^{j}D_{s}\xi. It has to be noted here that the NS condition (5) takes the alternative form

ξ,i=0,gijη,sj=f,i,£ηgij=ξ,sgij,£ηV=ξ,sVf,s,\displaystyle\xi_{,i}=0,\qquad g_{ij}\eta^{j}_{,s}=f_{,i}\,,\qquad\pounds_{\bf\eta}g_{ij}=\xi_{,s}g_{ij}\,,\qquad\pounds_{\bf\eta}V=-\xi_{,s}V-f_{,s}\,, (7)

where £η\pounds_{\bf\eta} is the Lie derivative operator along η{\bf\eta} ,and the set of all NSs form a finite dimensional Lie algebra denoted by 𝒩\mathcal{N}.

For every NS, there is a conserved quantity (or a first integral) of the system of equations (2) given by

I=ξE+gijηix˙jf,I=-\xi E_{\mathcal{L}}+g_{ij}\eta^{i}\dot{x}^{j}-f\,, (8)

where the energy functional EE_{\mathcal{L}} of the geodesic Lagrangian is the same as in Eq. (3).

Now let us recall the spacetime symmetries. A vector field 𝐊{\bf K}, satisfying the equation katzin

£𝐊gij=2ψgij,\pounds_{\bf K}g_{ij}=2\psi g_{ij}\,, (9)

is called a conformal Killing vector (CKV), where £𝐊\pounds_{\bf K} is the Lie derivative operator along the vector field 𝐊{\bf K}, and ψ=ψ(xi)\psi=\psi(x^{i}) is a conformal factor. For ψ;ij0\psi_{;ij}\neq 0, the CKV field 𝐊{\bf K} is said to be proper, otherwise it is a special conformal Killing vector (SCKV) field (ψ;ij=0\psi_{;ij}=0). The vector field 𝐊{\bf K} is a homothetic vector (HV) for ψ,i=0\psi_{,i}=0, and it is an isometry or a Killing vector (KV) field for ψ=0\psi=0. The set of all CKV (respectively SCKV, HKV and KV) form a finite-dimensional Lie algebra denoted by 𝒞\mathcal{C} (respectively 𝒮,\mathcal{S},\mathcal{H} and 𝒢\mathcal{G}).

II.1 Noether Symmetries of the Gödel-type Spacetimes

In cylindrical coordinates xi=(t,r,ϕ,z),i=0,1,2,3x^{i}=(t,r,\phi,z),\,i=0,1,2,3, the line element for the Gödel-type spacetimes can be written as

ds2=[dt+H(r)dϕ]2dr2D(r)2fϕ2dz2.ds^{2}=\left[dt+H(r)d\phi\right]^{2}-dr^{2}-D(r)^{2}f\phi^{2}-dz^{2}. (10)

The necessary and sufficient conditions for a Gödel-type manifold to be spacetime homogeneous (STH) are given by

D′′D=const.m2,HD=const.2ω,\frac{D^{\prime\prime}}{D}={\rm const.}\equiv m^{2},\qquad\frac{H^{\prime}}{D}={\rm const.}\equiv-2\omega\,, (11)

where prime () denotes derivative with respect to the radial coordinate rr. All STH Riemannian manifolds endowed with the Gödel-type spacetime (10) are obtained by solving equations in (11) as follows:
Class I: m2>0,ω0m^{2}>0,\omega\neq 0.

H(r)=2ωm2[1cosh(mr)],D(r)=1msinh(mr).H(r)=\frac{2\omega}{m^{2}}\left[1-\cosh(mr)\right],\qquad D(r)=\frac{1}{m}\sinh(mr). (12)

Class II : m2=0,ω0m^{2}=0,\omega\neq 0.

H(r)=ωr2,D(r)=r.H(r)=-\omega r^{2}\,,\qquad D(r)=r\,. (13)

Class III : m2μ2<0,ω0m^{2}\equiv-\mu^{2}<0,\omega\neq 0.

H(r)=2ωμ2[cos(μr)1],D(r)=1μsin(μr).H(r)=\frac{2\omega}{\mu^{2}}\left[\cos(\mu r)-1\right],\qquad D(r)=\frac{1}{\mu}\sin(\mu r). (14)

Class IV : m2<0,ω=0m^{2}\neq<0,\omega=0. This class yields a degenerate Gödel-type manifolds, since the cross term related to the rotation ω\omega in the line element vanishes. One can make H=0H=0 by a trivial coordinate transformation with D(r)D(r) given as in Classes I and III depending on whether m2>0m^{2}>0 or m2μ2<0m^{2}\equiv-\mu^{2}<0.

Using the Gödel-type spacetime (10), the geodesic Lagrangian takes such a form

=12[t˙2r˙2z˙2+(H(r)2D(r)2)ϕ˙2]+H(r)t˙ϕ˙V(t,r,ϕ,z).\mathcal{L}=\frac{1}{2}\left[\dot{t}^{2}-\dot{r}^{2}-\dot{z}^{2}+(H(r)^{2}-D(r)^{2})\dot{\phi}^{2}\right]+H(r)\dot{t}\dot{\phi}-V(t,r,\phi,z)\,. (15)

Then it follows for this Lagrangian that the energy functional is

E=12[t˙2r˙2z˙2+(H(r)2D(r)2)ϕ˙2]+H(r)t˙ϕ˙+V(t,r,ϕ,z),E_{\mathcal{L}}=\frac{1}{2}\left[\dot{t}^{2}-\dot{r}^{2}-\dot{z}^{2}+(H(r)^{2}-D(r)^{2})\dot{\phi}^{2}\right]+H(r)\dot{t}\dot{\phi}+V(t,r,\phi,z)\,, (16)

and the conserved quantity associated with NS generator 𝐗{\bf X} is

I=ξE+(η0+Hη2)t˙η1r˙+[Hη0+(H2D2)η2]ϕ˙η3z˙f(s,t,r,ϕ,z).I=-\xi E_{\mathcal{L}}+\left(\eta^{0}+H\eta^{2}\right)\dot{t}-\eta^{1}\dot{r}+\left[H\eta^{0}+(H^{2}-D^{2})\eta^{2}\right]\dot{\phi}-\eta^{3}\dot{z}-f(s,t,r,\phi,z)\,. (17)

The complete NS analysis of Gödel-type spacetimes for classes I, II, III and IV has been given by Camciug2014 ; ug2015 . Let us briefly summarize the results. The geodesic Lagrangian \mathcal{L} of Gödel-type spacetimes for classes I, II, III and IV yields 7 NS generators. Thus, the Gödel-type spacetimes corresponding to those classes admit the algebra 𝒩7𝒢5\mathcal{N}_{7}\supset\mathcal{G}_{5}. In special class I (where m2=4w2m^{2}=4w^{2}) and class IV, it is found 9 NS generators. The NS algebra admitted by the special class I is 𝒩9𝒢7\mathcal{N}_{9}\supset\mathcal{G}_{7} while the Gödel-type spacetime in class IV admits the algebra 𝒩9𝒢6\mathcal{N}_{9}\supset\mathcal{G}_{6}. The first integrals have been obtained by using the geodesic Lagrangians for the Gödel-type spacetimes of each classes I, II, III and IV, due to the existence of NS vector fields including the KVs. Using the first integrals obtained in all classes of Gödel-type spacetimes, the analytical solutions of geodesic equations have been derived. This result represents the usefulness of the NSs.

As an example, we give only the obtained NSs and associated first integrals for class I as follows (See Ref. ug2014 for the details of calculation). For class I there are seven NSs such that 𝐗1,,𝐗5{\bf X}_{1},...,{\bf X}_{5} are KVs,

𝐗1=t,𝐗2=z,𝐗3=2ωmtmϕ,\displaystyle{\bf X}_{1}=\partial_{t},\quad{\bf X}_{2}=\partial_{z},\quad{\bf X}_{3}=\frac{2\omega}{m}\partial_{t}-m\partial_{\phi},
𝐗4=HDsinϕt+cosϕrDDsinϕϕ,\displaystyle{\bf X}_{4}=-\frac{H}{D}sin\phi\partial_{t}+cos\phi\partial_{r}-\frac{D^{\prime}}{D}sin\phi\partial_{\phi}, (18)
𝐗5=HDcosϕtsinϕrDDcosϕϕ,\displaystyle{\bf X}_{5}=-\frac{H}{D}cos\phi\partial_{t}-sin\phi\partial_{r}-\frac{D^{\prime}}{D}cos\phi\partial_{\phi},

and 𝐘1,𝐘2{\bf Y}_{1},{\bf Y}_{2} are two non-Killing NSs,

𝐘1=s,𝐘2=szwithf=z.\displaystyle{\bf Y}_{1}=\partial_{s}\,,\qquad{\bf Y}_{2}=s\partial_{z}\quad{\rm with}\,\,f=-z\,. (19)

Then the first integrals associated with 𝐗𝟏,,𝐗𝟓,𝐘𝟏{\bf X_{1}},...,{\bf X_{5}},{\bf Y_{1}} and 𝐘𝟐{\bf Y_{2}} are found by the relation (17) as

I1=t˙+Hϕ˙,I2=z˙,I3=2wmI1m[Ht˙+(H2D2)ϕ˙],\displaystyle I_{1}=\dot{t}+H\dot{\phi},\quad I_{2}=-\dot{z},\quad I_{3}=\frac{2w}{m}I_{1}-m\left[H\dot{t}+(H^{2}-D^{2})\dot{\phi}\right], (20)
I4=sinϕD{H(1+D)t˙+[H2+(H2D2)D]ϕ˙}cosϕr˙,\displaystyle I_{4}=-\frac{\sin\phi}{D}\left\{H(1+D^{\prime})\dot{t}+\left[H^{2}+(H^{2}-D^{2})D^{\prime}\right]\dot{\phi}\right\}-\cos\phi\,\dot{r}, (21)
I5=cosϕD{H(1+D)t˙+[H2+(H2D2)D]ϕ˙}+sinϕr˙,\displaystyle I_{5}=-\frac{\cos\phi}{D}\left\{H(1+D^{\prime})\dot{t}+\left[H^{2}+(H^{2}-D^{2})D^{\prime}\right]\dot{\phi}\right\}+\sin\phi\,\dot{r}, (22)
I6=E,I7=sz˙+z,\displaystyle I_{6}=-E_{\mathcal{L}},\qquad I_{7}=-s\dot{z}+z, (23)

where the EE_{\mathcal{L}} is the Hamiltonian of the dynamical system and yields

E=12{I12I221D2[HI1(2wm2I1I3m)]2r˙2}.\displaystyle E_{\mathcal{L}}=\frac{1}{2}\left\{I_{1}^{2}-I_{2}^{2}-\frac{1}{D^{2}}\left[HI_{1}-\left(\frac{2w}{m^{2}}I_{1}-\frac{I_{3}}{m}\right)\right]^{2}-\dot{r}^{2}\right\}. (24)

After integrating the above first integrals (20)-(23), the general solution can be obtained as follows:

z(s)=pzs+I7,\displaystyle z(s)=-p_{z}s+I_{7}\,,
u(s)=12η[1β2+2wγ+(1β2+2wγ)2ηm2γ2sin(mptη(ss0))],\displaystyle u(s)=\frac{1}{2\eta}\left[1-\beta^{2}+2w\gamma+\sqrt{(1-\beta^{2}+2w\gamma)^{2}-\eta m^{2}\gamma^{2}}\sin(mp_{t}\sqrt{\eta}(s-s_{0}))\right],
t(s)=2w(γ+4w/m2)mη(1+p)2q2arctan[(1+p)tan(mptη(ss0)/2)+q(1+p)2q2]+pt(14w2m2)s+t0,\displaystyle t(s)=\frac{2w(\gamma+4w/m^{2})}{m\sqrt{\eta}\sqrt{(1+p)^{2}-q^{2}}}\arctan\left[\frac{(1+p)\tan(mp_{t}\sqrt{\eta}(s-s_{0})/2)+q}{\sqrt{(1+p)^{2}-q^{2}}}\right]+p_{t}\left(1-\frac{4w^{2}}{m^{2}}\right)s+t_{0},
ϕ(s)=m(γ+4w/m2)2η(1+p)2q2arctan[(1+p)tan(mptη(ss0)/2)+q(1+p)2q2]\displaystyle\phi(s)=\frac{m(\gamma+4w/m^{2})}{2\sqrt{\eta}\sqrt{(1+p)^{2}-q^{2}}}\arctan\left[\frac{(1+p)\tan(mp_{t}\sqrt{\eta}(s-s_{0})/2)+q}{\sqrt{(1+p)^{2}-q^{2}}}\right]
arctan[2ηmγ{ptan(mptη(ss0)/2)+q}]+ϕ0,\displaystyle\qquad\qquad-\arctan\left[\frac{2\sqrt{\eta}}{m\gamma}\left\{p\tan(mp_{t}\sqrt{\eta}(s-s_{0})/2)+q\right\}\right]+\phi_{0},

where uu is a new variable defined by u=m2H/4wu=m^{2}H/4w which is equivalent to sinh2(mr/2)\sinh^{2}(mr/2) for the class I, η0\eta\neq 0, (1β2+2wγ)2ηm2γ20(1-\beta^{2}+2w\gamma)^{2}-\eta m^{2}\gamma^{2}\geq 0, (1+p)2>q2,t0=t(0)(1+p)^{2}>q^{2},\,t_{0}=t(0) and ϕ0=ϕ(0)\phi_{0}=\phi(0) . Here the constants of motion pt=I1,p_{t}=I_{1}, pϕ=2ωI1/m2p_{\phi}=2\omega I_{1}/m^{2} and pz=I2p_{z}=I_{2} represent the conservation of energy, angular momentum and zz component of momentum, respectively, and we have introduced the parameters pp and qq such as

p:=1β2+2wγ2η,q:=p2m2γ24η,\displaystyle p:=\frac{1-\beta^{2}+2w\gamma}{2\eta},\qquad q:=\sqrt{p^{2}-\frac{m^{2}\gamma^{2}}{4\eta}},

where p2m2γ2/4ηp^{2}\geq m^{2}\gamma^{2}/4\eta.

II.2 Noether Symmetries of the Spherically Symmetric Spacetimes

The field of a spherically symmetric gravitational source at rest at the origin is given by the Schwarzschild line element

ds2=(12GMc2r)c2dt2dr2(12GMc2r)r2dΩ2,\displaystyle ds^{2}=\left(1-\frac{2GM}{c^{2}r}\right)c^{2}dt^{2}-\frac{dr^{2}}{\left(1-\frac{2GM}{c^{2}r}\right)}-r^{2}d\Omega^{2}, (25)

where dΩ2dθ2+sin2θdϕ2d\Omega^{2}\equiv d\theta^{2}+\sin^{2}\theta d\phi^{2}, GG is Newton’s gravitational constant, MM is the mass of the point gravitational source and cc is the speed of light in vacuum.

The geodesic Lagrangian of the Schwarzschild metric

=12[(12GMc2r)c2t˙2r˙2(12GMc2r)r2(θ˙2+sin2θϕ˙2)]V(t,r,θ,ϕ),\displaystyle\mathcal{L}=\frac{1}{2}\left[\left(1-\frac{2GM}{c^{2}r}\right)c^{2}\dot{t}^{2}-\frac{\dot{r}^{2}}{\left(1-\frac{2GM}{c^{2}r}\right)}-r^{2}(\dot{\theta}^{2}+\sin^{2}\theta\,\dot{\phi}^{2})\right]-V(t,r,\theta,\phi)\,,

has five NSs kmq2008 ; tsamparlis1 for constant potential, which are four KVs corresponding the conservation of energy and angular momentum only, i.e.,

𝐊0=t,𝐊1=cosϕθcotθsinϕϕ,𝐊2=sinϕθ+cotθcosϕϕ,𝐊3=ϕ,\displaystyle{\bf K}_{0}=\partial_{t},\qquad{\bf K}_{1}=\cos\phi\partial_{\theta}-\cot\theta\sin\phi\partial_{\phi},\qquad{\bf K}_{2}=\sin\phi\partial_{\theta}+\cot\theta\cos\phi\partial_{\phi},\qquad{\bf K}_{3}=\partial_{\phi}, (26)

and the translation of the arc length ss, i.e., 𝐘0=s{\bf Y}_{0}=\partial_{s}. Note that conservations of linear momentum and the spin angular momentum are lost.

The Reissner-Nordström (RN) metric is a static, spherically symmetric and asymptotically flat spacetime

ds2=(12GMc2r+GQ2c4r2)c2dt2dr212GMc2r+GQ2c4r2r2dΩ2,\displaystyle ds^{2}=\left(1-\frac{2GM}{c^{2}r}+\frac{GQ^{2}}{c^{4}r^{2}}\right)c^{2}dt^{2}-\frac{dr^{2}}{1-\frac{2GM}{c^{2}r}+\frac{GQ^{2}}{c^{4}r^{2}}}-r^{2}d\Omega^{2}, (27)

where QQ is the electric charge of the point gravitational source.

The geodesic Lagrangian of the Reissner-Nordström metric

=12[(12GMc2r+GQ2c4r2)c2t˙2r˙2(12GMc2r+GQ2c4r2)r2(θ˙2+sin2θϕ˙2)]V(t,r,θ,ϕ),\displaystyle\mathcal{L}=\frac{1}{2}\left[\left(1-\frac{2GM}{c^{2}r}+\frac{GQ^{2}}{c^{4}r^{2}}\right)c^{2}\dot{t}^{2}-\frac{\dot{r}^{2}}{\left(1-\frac{2GM}{c^{2}r}+\frac{GQ^{2}}{c^{4}r^{2}}\right)}-r^{2}(\dot{\theta}^{2}+\sin^{2}\theta\,\dot{\phi}^{2})\right]-V(t,r,\theta,\phi)\,,

has also five NSs hmq2007 for constant potential, which are four KVs given in (26) for the Schwarzschild metric and the translation symmetry 𝐘0=s{\bf Y}_{0}=\partial_{s}.

II.3 Noether Symmetries of the Kerr Spacetime

Here I will use the signature (,+,+,+)(-,+,+,+) for the Kerr spacetime, in which the line element in Boyer-Lindqust coordinates is given by

ds2=(12GMrΣc2)c2dt2+ΣΔdr2+Σdθ24GMarsin2θΣc2dtdϕ+[(r2+a2c2)2a2c2Δsin2θ]sin2θΣdϕ2,\displaystyle ds^{2}=-\left(1-\frac{2GMr}{\Sigma c^{2}}\right)c^{2}dt^{2}+\frac{\Sigma}{\Delta}dr^{2}+\Sigma d\theta^{2}-\frac{4GMar\sin^{2}\theta}{\Sigma c^{2}}dtd\phi+\left[\left(r^{2}+\frac{a^{2}}{c^{2}}\right)^{2}-\frac{a^{2}}{c^{2}}\Delta\sin^{2}\theta\right]\frac{\sin^{2}\theta}{\Sigma}d\phi^{2}\,,\qquad (28)

where Σ=r2+a2c2cos2θ\Sigma=r^{2}+\frac{a^{2}}{c^{2}}\cos^{2}\theta and Δ=r2+a2c22GMrc2\Delta=r^{2}+\frac{a^{2}}{c^{2}}-\frac{2GMr}{c^{2}} with the mass MM and the spin a=J/(Mc)a=J/(Mc) (units of length) of the gravitating source.

The geodesic Lagrangian (1) for the Kerr metric (28) is

=12[(12GMrΣc2)c2t˙2+ΣΔr˙2+Σθ˙2\displaystyle\mathcal{L}=\frac{1}{2}\Big{[}-\left(1-\frac{2GMr}{\Sigma c^{2}}\right)c^{2}\dot{t}^{2}+\frac{\Sigma}{\Delta}\dot{r}^{2}+\Sigma\dot{\theta}^{2}
+((r2+a2c2)2a2c2Δsin2θ)sin2θΣϕ˙24GMarsin2θΣc2t˙ϕ˙]V(t,r,θ,ϕ),\displaystyle\qquad\qquad+\left(\left(r^{2}+\frac{a^{2}}{c^{2}}\right)^{2}-\frac{a^{2}}{c^{2}}\Delta\sin^{2}\theta\right)\frac{\sin^{2}\theta}{\Sigma}\dot{\phi}^{2}-\frac{4GMar\sin^{2}\theta}{\Sigma c^{2}}\,\dot{t}\,\dot{\phi}\Big{]}-V(t,r,\theta,\phi)\,,

Solving the NS equations for the geodesic Lagrangian of the Kerr metric we get two isometries and the translation of the geodesic parameter as NS generators hmq2009a

𝐊0=t,𝐊3=ϕ,𝐘0=s,{\bf K}_{0}=\partial_{t}\,,\qquad{\bf K}_{3}=\partial_{\phi}\,,\qquad{\bf Y}_{0}=\partial_{s}\,, (29)

corresponding to the conservation of total energy, conservation of the angular momentum per unit mass at azimuthal direction, and the translation of the arc length, respectively.

III Approximate Noether Symmetries for the geodesic Lagrangians

In this section, we introduce the approximate Noether symmetry (ANS) approach of the first-order perturbed Lagrangian extending the procedure of obtaining ANSs until the nthn^{th}-order. A perturbed Lagrangian to nthn^{th}-order can be written as

(s,xi,x˙i;ϵ)=0(s,xi,x˙i)+ϵ1(s,xi,x˙i)++ϵnn(s,xi,x˙i)+O(ϵn+1).\displaystyle\mathcal{L}(s,x^{i},\dot{x}^{i};\epsilon)=\mathcal{L}_{0}(s,x^{i},\dot{x}^{i})+\epsilon\mathcal{L}_{1}(s,x^{i},\dot{x}^{i})+\ldots+\epsilon^{n}\mathcal{L}_{n}(s,x^{i},\dot{x}^{i})+O(\epsilon^{n+1}). (30)

Then an ANS generator related with the above Lagrangian is given by

𝐗=𝐗0+ϵ𝐗1+ϵ2𝐗2++ϵn𝐗n,{\bf X}={\bf X}_{0}+\epsilon{\bf X}_{1}+\epsilon^{2}{\bf X}_{2}+\ldots+\epsilon^{n}{\bf X}_{n}, (31)

up to the gauge function

f(s,xi;ϵ)=f0(s,xi)+ϵf1(s,xi)+ϵ2f2(s,xi)++ϵnfn(s,xi),f(s,x^{i};\epsilon)=f_{0}(s,x^{i})+\epsilon f_{1}(s,x^{i})+\epsilon^{2}f_{2}(s,x^{i})+\ldots+\epsilon^{n}f_{n}(s,x^{i}),

if the ANS generator (31) satisfies the approximate Noether symmetry conditions

𝐗0[1]0+0(Dsξ0)=Dsf0,\displaystyle{\bf X}_{0}^{[1]}\mathcal{L}_{0}+\mathcal{L}_{0}\,(D_{s}\xi_{0})=D_{s}f_{0},
𝐗1[1]0+𝐗0[1]1+0(Dsξ1)+1(Dsξ0)=Dsf1,\displaystyle{\bf X}_{1}^{[1]}\mathcal{L}_{0}+{\bf X}_{0}^{[1]}\mathcal{L}_{1}+\mathcal{L}_{0}\,(D_{s}\xi_{1})+\mathcal{L}_{1}\,(D_{s}\xi_{0})=D_{s}f_{1},
𝐗2[1]0+𝐗1[1]1+𝐗0[1]2+0(Dsξ2)+1(Dsξ1)+2(Dsξ0)=Dsf2,\displaystyle{\bf X}_{2}^{[1]}\mathcal{L}_{0}+{\bf X}_{1}^{[1]}\mathcal{L}_{1}+{\bf X}_{0}^{[1]}\mathcal{L}_{2}+\mathcal{L}_{0}\,(D_{s}\xi_{2})+\mathcal{L}_{1}\,(D_{s}\xi_{1})+\mathcal{L}_{2}\,(D_{s}\xi_{0})=D_{s}f_{2},
\displaystyle\cdots
𝐗n[1]0+𝐗n1[1]1+𝐗n2[1]2++0(Dsξn)+1(Dsξn1)+2(Dsξn2)+=Dsfn,\displaystyle{\bf X}_{n}^{[1]}\mathcal{L}_{0}+{\bf X}_{n-1}^{[1]}\mathcal{L}_{1}+{\bf X}_{n-2}^{[1]}\mathcal{L}_{2}+\ldots+\mathcal{L}_{0}\,(D_{s}\xi_{n})+\mathcal{L}_{1}\,(D_{s}\xi_{n-1})+\mathcal{L}_{2}\,(D_{s}\xi_{n-2})+\ldots=D_{s}f_{n},

where n1n\geq 1, and 𝐗0{\bf X}_{0} is the exact NS generator, 𝐗1,𝐗2,𝐗n{\bf X}_{1},{\bf X}_{2},\ldots{\bf X}_{n} are the first-order, second-order, ,nth\ldots,n^{th}-order ANS generators, respectively, which are defined as

𝐗α=ξαs+ηαixi,(α=0,1,2,,n),\displaystyle{\bf X}_{\alpha}=\xi_{\alpha}\frac{\partial}{\partial s}+\eta^{i}_{\alpha}\frac{\partial}{\partial x^{i}},\quad(\alpha=0,1,2,\ldots,n),
𝐗α[1]=𝐗α+ηα(τ)ix˙i,ηα(τ)i=Dsηαix˙iDsξα.\displaystyle{\bf X}_{\alpha}^{[1]}={\bf X}_{\alpha}+\eta^{i}_{{\alpha}(\tau)}\frac{\partial}{\partial\dot{x}^{i}},\qquad{\eta^{i}_{{\alpha}(\tau)}}=D_{s}\eta^{i}_{\alpha}-\dot{x}^{i}D_{s}\xi_{\alpha}\,.

The spacetime metric gijg_{ij} can be decomposed up to nthn^{th}-order as follows:

gij=γij+ϵhij+ϵ2σij++ϵnλij,g_{ij}=\gamma_{ij}+\epsilon h_{ij}+\epsilon^{2}\sigma_{ij}+\ldots+\epsilon^{n}\lambda_{ij}\,, (32)

which means by (30) and (32) that the exact and perturbed geodesic Lagrangians of motion have the form

0(s,xk,x˙k)=12γijx˙ix˙jV0(s,xk),\displaystyle\mathcal{L}_{0}(s,x^{k},\dot{x}^{k})=\frac{1}{2}\gamma_{ij}\dot{x}^{i}\dot{x}^{j}-V_{0}(s,x^{k})\,,
1(s,xk,x˙k)=12hijx˙ix˙jV1(s,xk),\displaystyle\mathcal{L}_{1}(s,x^{k},\dot{x}^{k})=\frac{1}{2}h_{ij}\dot{x}^{i}\dot{x}^{j}-V_{1}(s,x^{k}),
2(s,xk,x˙k)=12σijx˙ix˙iV2(s,xk),\displaystyle\mathcal{L}_{2}(s,x^{k},\dot{x}^{k})=\frac{1}{2}\sigma_{ij}\dot{x}^{i}\dot{x}^{i}-V_{2}(s,x^{k})\,,
\displaystyle\cdots
n(s,xk,x˙k)=12λijx˙ix˙jVn(s,xk),\displaystyle\mathcal{L}_{n}(s,x^{k},\dot{x}^{k})=\frac{1}{2}\lambda_{ij}\dot{x}^{i}\dot{x}^{j}-V_{n}(s,x^{k}),

where γij\gamma_{ij}, hijh_{ij}, σij\sigma_{ij} and λij\lambda_{ij} are the exact, the first-order, the second-order and the nthn^{th}-order perturbed metrics, respectively. The metric γij\gamma_{ij} should be non-degenerate (i.e., det(γij)0\det(\gamma_{ij})\neq 0). But the other metrics hij,σij,,λijh_{ij},\sigma_{ij},\ldots,\lambda_{ij} can be degenerate (i.e., det(hij)=0,det(σij)=0,,det(λij)=0\det(h_{ij})=0,\det(\sigma_{ij})=0,\ldots,\det(\lambda_{ij})=0) or non-degenerate, and they represent slight deviations from flat spacetime geometry if the metric γij\gamma_{ij} represents flat geometry.

The above perturbed Lagrangian (30) yields a nthn^{th}-order (in ϵ\epsilon) perturbed system of ODEs. If 𝐗α{\bf X}_{\alpha} are the ANSs corresponding to the perturbed geodesic Lagrangians α(s,xi,x˙i)\mathcal{L}_{\alpha}(s,x^{i},\dot{x}^{i}), then

I0=ξ0E0+η0iγijx˙jf0,\displaystyle I_{0}=-\xi_{0}E_{\mathcal{L}_{0}}+\eta^{i}_{0}\gamma_{ij}\dot{x}^{j}-f_{0},
I1=ξ0E1ξ1E0+(η0ihij+η1iγij)x˙jf1,\displaystyle I_{1}=-\xi_{0}E_{\mathcal{L}_{1}}-\xi_{1}E_{\mathcal{L}_{0}}+\left(\eta^{i}_{0}h_{ij}+\eta^{i}_{1}\gamma_{ij}\right)\dot{x}^{j}-f_{1},
I2=ξ0E2ξ1E1ξ2E0+(η0iσij+η1ihij+η2iγij)x˙jf2,\displaystyle I_{2}=-\xi_{0}E_{\mathcal{L}_{2}}-\xi_{1}E_{\mathcal{L}_{1}}-\xi_{2}E_{\mathcal{L}_{0}}+\left(\eta^{i}_{0}\sigma_{ij}+\eta^{i}_{1}h_{ij}+\eta^{i}_{2}\gamma_{ij}\right)\dot{x}^{j}-f_{2}, (33)
\displaystyle\cdots
In=ξ0Enξ1En1ξnE0+(η0iλij++ηn2iσij+ηn1ihij+ηniγij)x˙jfn,\displaystyle I_{n}=-\xi_{0}E_{\mathcal{L}_{n}}-\xi_{1}E_{\mathcal{L}_{n-1}}-\ldots-\xi_{n}E_{\mathcal{L}_{0}}+\Big{(}\eta^{i}_{0}\lambda_{ij}+\ldots+\eta^{i}_{n-2}\sigma_{ij}+\eta^{i}_{n-1}h_{ij}+\eta^{i}_{n}\gamma_{ij}\Big{)}\dot{x}^{j}-f_{n},

are the first integrals associated with ANSs 𝐗α,(α=0,1,2,,n){\bf X}_{\alpha},\,(\alpha=0,1,2,\ldots,n). Here the exact and the perturbed energy functionals for the perturbed Lagrangian (30) are

E0=12γijx˙ix˙j+V0,E1=12hijx˙ix˙j+V1,E2=12σijx˙ix˙j+V2,,En=12λijx˙ix˙j+Vn.\displaystyle E_{\mathcal{L}_{0}}=\frac{1}{2}\gamma_{ij}\dot{x}^{i}\dot{x}^{j}+V_{0}\,,\quad E_{\mathcal{L}_{1}}=\frac{1}{2}h_{ij}\dot{x}^{i}\dot{x}^{j}+V_{1}\,,\quad E_{\mathcal{L}_{2}}=\frac{1}{2}\sigma_{ij}\dot{x}^{i}\dot{x}^{j}+V_{2}\quad\,,\ldots,\quad E_{\mathcal{L}_{n}}=\frac{1}{2}\lambda_{ij}\dot{x}^{i}\dot{x}^{j}+V_{n}\,.

It has been investigated the ANSs and conservation laws of the geodesic equations without the potential function for the Schwarzschild kmq2008 and the RN hmq2007 the spacetimes. Constructing the geometrical set of equations corresponding to the ANS equations with an arbitrary potential function, the ANSs of the geodesic Lagrangian for the Schwarzschild, the RN and the Bardeen spacetimes have been determined by Camci camci2014a ; camci2014b . Hussain et al. hmq2009a have recovered all the lost conservation laws as trivial second-order approximate conservation laws of a Lagrangian for the geodesic equations by using the ANS approach in the Kerr and the charged-Kerr spacetimes. They have also discussed the problem of energy in cylindrical and plane gravitational wave spacetimes using approximate Noether symmetry method hmq2009b . Ali and Feroze at2015 have generalized the work in Ref.hmq2009a such that the ANS of the most general plane symmetric static spacetime are obtained.

III.1 Approximate Symmetries of the Schwarzschild Spacetime

First, we will look at the ANSs of geodesic Lagrangian for the Schwarzschild metric. In that context, we consider the Schwarzschild line element given in (25). Setting 2GMc2=r0ϵ2GMc^{-2}=r_{0}\epsilon and using

(12GMc2r)1=1+ϵr0r+O(ϵ2),\left(1-\frac{2GM}{c^{2}r}\right)^{-1}=1+\frac{\epsilon\,r_{0}}{r}+O(\epsilon^{2}),

the first-order perturbed geodesic Lagrangian of Schwarzschild metric is given by

=12[t˙2r˙2r2(θ˙2+sin2θϕ˙2)]ϵr02r(t˙2+r˙2)V(t,r,θ,ϕ)+O(ϵ2),\displaystyle\mathcal{L}=\frac{1}{2}\left[\dot{t}^{2}-\dot{r}^{2}-r^{2}(\dot{\theta}^{2}+\sin^{2}\theta\,\dot{\phi}^{2})\right]-\frac{\epsilon\,r_{0}}{2r}\left(\dot{t}^{2}+\dot{r}^{2}\right)-V(t,r,\theta,\phi)+O(\epsilon^{2}),\qquad (34)

which yields

0=12[t˙2r˙2r2(θ˙2+sin2θϕ˙2)]V0,1=r02r(t˙2+r˙2)V1,\displaystyle\mathcal{L}_{0}=\frac{1}{2}\left[\dot{t}^{2}-\dot{r}^{2}-r^{2}(\dot{\theta}^{2}+\sin^{2}\theta\,\dot{\phi}^{2})\right]-V_{0},\quad\mathcal{L}_{1}=-\frac{r_{0}}{2r}\left(\dot{t}^{2}+\dot{r}^{2}\right)-V_{1}, (35)

where r0r_{0} is a dimensional parameter (units of length), γij=diag(1,1,r2,r2sin2θ)\gamma_{ij}={\rm diag}(1,-1,-r^{2},-r^{2}\sin^{2}\theta) is called as the Minkowski metric, and hij=diag(r0/r,r0/r,0,0)h_{ij}={\rm diag}(-r_{0}/r,-r_{0}/r,0,0). Moreover, the above Lagrangian reduces to the geodesic Lagrangian of the Minkowski metric in the limit ϵ=0\epsilon=0.

Applying the ANS approach to these exact and perturbed metrics γij\gamma_{ij} and hijh_{ij} for the Schwarzschild spacetime, we find from the exact and first-order ANS equations that for the constant potential, e.g. V(t,r,θ,ϕ)=V0+ϵV1V(t,r,\theta,\phi)=V_{0}+\epsilon V_{1} where V0,V1V_{0},V_{1} are constants, we find 5 exact ANSs and 17 first-order ANSs which includes also exact ones. Here the exact ANSs are the four KVs given in (LABEL:kv-01) and (LABEL:kv-23) and one non-Killing vector field 𝐘0=s{\bf Y}_{0}=\partial_{s} which gives translation in geodetic parameter ss and it always exists for the canonical geodesic Lagrangian (1). The remaining first-order nontrivial ANSs are

𝐘1=sinθcosϕr+cosθcosϕrθcscθsinϕrϕ,\displaystyle{\bf Y}_{1}=\sin\theta\cos\phi\partial_{r}+\frac{\cos\theta\cos\phi}{r}\partial_{\theta}-\frac{\csc\theta\sin\phi}{r}\partial_{\phi}\,,
𝐘2=sinθsinϕr+cosθsinϕrθ+cscθcosϕrϕ,\displaystyle{\bf Y}_{2}=\sin\theta\sin\phi\partial_{r}+\frac{\cos\theta\sin\phi}{r}\partial_{\theta}+\frac{\csc\theta\cos\phi}{r}\partial_{\phi}\,,
𝐘3=cosθrsinθrθ,\displaystyle{\bf Y}_{3}=\cos\theta\partial_{r}-\frac{\sin\theta}{r}\partial_{\theta}\,,
𝐘4=rsinθcosϕt+t𝐘1,\displaystyle{\bf Y}_{4}=r\sin\theta\cos\phi\partial_{t}+t{\bf Y}_{1}\,,
𝐘5=rsinθsinϕt+t𝐘2,\displaystyle{\bf Y}_{5}=r\sin\theta\sin\phi\partial_{t}+t{\bf Y}_{2}\,,
𝐘6=rcosθt+t𝐘3,\displaystyle{\bf Y}_{6}=r\cos\theta\partial_{t}+t{\bf Y}_{3}\,, (36)
𝐘7=ss+12(tt+rr),withf1=V0s,\displaystyle{\bf Y}_{7}=s\partial_{s}+\frac{1}{2}\left(t\partial_{t}+r\partial_{r}\right),\quad{\rm with\,\,}f_{1}=-V_{0}s\,,
𝐘8=s𝐊0,withf1=t,\displaystyle{\bf Y}_{8}=s{\bf K}_{0}\,,\quad\,\,{\rm with\,\,}f_{1}=t\,,
𝐘9=s𝐘1,withf1=rsinθcosϕ,\displaystyle{\bf Y}_{9}=s{\bf Y}_{1}\,,\quad\,\,{\rm with\,\,}f_{1}=-r\sin\theta\cos\phi\,,
𝐘10=s𝐘2,withf1=rsinθsinϕ,\displaystyle{\bf Y}_{10}=s{\bf Y}_{2}\,,\quad{\rm with\,\,}f_{1}=-r\sin\theta\sin\phi\,,
𝐘11=s𝐘3,withf1=rcosθ,\displaystyle{\bf Y}_{11}=s{\bf Y}_{3}\,,\quad{\rm with\,\,}f_{1}=-r\cos\theta\,,
𝐘12=s(ss+tt+rr),withf1=12(t2r22V0s2).\displaystyle{\bf Y}_{12}=s\left(s\partial_{s}+t\partial_{t}+r\partial_{r}\right)\,,\,\,{\rm with\,\,}f_{1}=\frac{1}{2}\left(t^{2}-r^{2}-2V_{0}s^{2}\right)\,.

For the Schwarzschild spacetime considered as a first perturbation of the Minkowski metric, three nontrivial ANS generators 𝐘1,𝐘2,𝐘3{\bf Y}_{1},{\bf Y}_{2},{\bf Y}_{3} provide the conservation of linear momentum, and three nontrivial ANS generators 𝐘4,𝐘5,𝐘6{\bf Y}_{4},{\bf Y}_{5},{\bf Y}_{6} give the conservation of spin angular momentum due to Lorentz invariance.


The first integrals associated with the 5 exact ANSs are

I01=E0,I02=t˙,I03=r2sin2θϕ˙,I04=r2[cosϕθ˙sinθcosθsinϕϕ˙],I05=r2[sinϕθ˙+sinθcosθcosϕϕ˙],\displaystyle I_{0}^{1}=-E_{\mathcal{L}_{0}},\,I_{0}^{2}=\dot{t},\,I_{0}^{3}=-r^{2}\sin^{2}\theta\,\dot{\phi},\,I_{0}^{4}=-r^{2}\left[\cos\phi\,\dot{\theta}-\sin\theta\cos\theta\sin\phi\,\dot{\phi}\right],\,I_{0}^{5}=-r^{2}\left[\sin\phi\,\dot{\theta}+\sin\theta\cos\theta\cos\phi\,\dot{\phi}\right],\quad (37)

where the exact energy functional E0E_{\mathcal{L}_{0}} is

E0=12[t˙2r˙2r2(θ˙2+sin2θϕ˙2)]+V0.E_{\mathcal{L}_{0}}=\frac{1}{2}\left[\dot{t}^{2}-\dot{r}^{2}-r^{2}(\dot{\theta}^{2}+\sin^{2}\theta\,\dot{\phi}^{2})\right]+V_{0}. (38)

Then the first integrals associated with the 17 first-order ANSs are given by

I11=(E0+E1),I12=(1r0r)t˙,I13=r2sin2θϕ˙,\displaystyle I_{1}^{1}=-(E_{\mathcal{L}_{0}}+E_{\mathcal{L}_{1}}),\quad I_{1}^{2}=\left(1-\frac{r_{0}}{r}\right)\dot{t},\quad I_{1}^{3}=-r^{2}\sin^{2}\theta\,\dot{\phi},
I14=r2[cosϕθ˙sinθcosθsinϕϕ˙],I15=r2[sinϕθ˙+sinθcosθcosϕϕ˙],\displaystyle I_{1}^{4}=-r^{2}\left[\cos\phi\,\dot{\theta}-\sin\theta\cos\theta\sin\phi\,\dot{\phi}\right],\,\,I_{1}^{5}=-r^{2}\left[\sin\phi\,\dot{\theta}+\sin\theta\cos\theta\cos\phi\,\dot{\phi}\right],
I16=sinθcosϕr˙rcosθcosϕθ˙+rsinθsinϕϕ˙,\displaystyle I_{1}^{6}=-\sin\theta\cos\phi\,\dot{r}-r\cos\theta\cos\phi\,\dot{\theta}+r\sin\theta\sin\phi\,\dot{\phi},
I17=sinθsinϕr˙rcosθsinϕθ˙rsinθcosϕϕ˙,\displaystyle I_{1}^{7}=-\sin\theta\sin\phi\,\dot{r}-r\cos\theta\sin\phi\,\dot{\theta}-r\sin\theta\cos\phi\,\dot{\phi},
I18=cosθr˙+rsinθθ˙,I19=rsinθcosϕt˙+I16t,\displaystyle I_{1}^{8}=-\cos\theta\,\dot{r}+r\sin\theta\,\dot{\theta},\qquad I_{1}^{9}=r\sin\theta\cos\phi\,\dot{t}+I_{1}^{6}t, (39)
I110=rsinθsinϕt˙+I17t,I111=rcosθt˙+I18t,\displaystyle I_{1}^{10}=r\sin\theta\sin\phi\,\dot{t}+I_{1}^{7}t,\quad\,\,\,I_{1}^{11}=r\cos\theta\,\dot{t}+I_{1}^{8}t,
I112=st˙t,I113=(E0V0)s+12(tt˙rr˙),\displaystyle I_{1}^{12}=s\,\dot{t}-t\,,\quad I_{1}^{13}=-(E_{\mathcal{L}_{0}}-V_{0})s+\frac{1}{2}(t\,\dot{t}-r\,\dot{r})\,,
I114=(E0V0)s2+s(tt˙rr˙)12(t2r2),\displaystyle I_{1}^{14}=-(E_{\mathcal{L}_{0}}-V_{0})s^{2}+s(t\,\dot{t}-r\,\dot{r})-\frac{1}{2}(t^{2}-r^{2})\,,
I115=I16s+rsinθcosϕ,I116=I17s+rsinθsinϕ,I117=I18s+rcosθ,\displaystyle I_{1}^{15}=I_{1}^{6}s+r\sin\theta\cos\phi\,,\quad I_{1}^{16}=I_{1}^{7}s+r\sin\theta\sin\phi\,,\quad I_{1}^{17}=I_{1}^{8}s+r\cos\theta,

where the first-order energy functional E1E_{\mathcal{L}_{1}} is

E1=r02r(t˙2+r˙2)+V1.E_{\mathcal{L}_{1}}=-\frac{r_{0}}{2r}\left(\dot{t}^{2}+\dot{r}^{2}\right)+V_{1}. (40)

Defining the Noether constants as I12=EI_{1}^{2}=-E, I13=LzI_{1}^{3}=L_{z}, I14=a1I_{1}^{4}=a_{1}, I15=a2I_{1}^{5}=a_{2}, I16=a3I_{1}^{6}=a_{3}, I17=a4I_{1}^{7}=a_{4}, I18=a5I_{1}^{8}=a_{5}, I19=a6I_{1}^{9}=a_{6}, I110=a7I_{1}^{10}=a_{7}, I111=a8I_{1}^{11}=a_{8}, I11=b1I_{1}^{1}=b_{1}, I112=b2I_{1}^{12}=b_{2}, I113=b3I_{1}^{13}=b_{3}, I114=b4I_{1}^{14}=b_{4}, I115=b5I_{1}^{15}=b_{5}, I116=b6I_{1}^{16}=b_{6}, I117=b7I_{1}^{17}=b_{7}, and using the first integrals (39), it follows that

E0+E1=b1,E=t0(1r0r),Lz=r2sin2θϕ˙,\displaystyle E_{\mathcal{L}_{0}}+E_{\mathcal{L}_{1}}=-b_{1},\quad E=-t_{0}\left(1-\frac{r_{0}}{r}\right),\quad L_{z}=-r^{2}\sin^{2}\theta\,\dot{\phi}, (41)
t(s)=t0sb2,t0=1b2(a3b5+a4b6+a5b72b3),\displaystyle t(s)=t_{0}\,s-b_{2},\qquad t_{0}=\frac{1}{b_{2}}(a_{3}b_{5}+a_{4}b_{6}+a_{5}b_{7}-2b_{3}), (42)
rsinθcosϕ=a3s+b5,rsinθsinϕ=a4s+b6,rcosθ=a5s+b7,\displaystyle r\sin\theta\cos\phi=-a_{3}s+b_{5},\,\,r\sin\theta\sin\phi=-a_{4}s+b_{6},\,\,r\cos\theta=-a_{5}s+b_{7},\qquad (43)
a1=a3b7a5b5,a2=a4b7a5b6,b4=12(b52+b62+b72b22),\displaystyle a_{1}=a_{3}b_{7}-a_{5}b_{5},\quad a_{2}=a_{4}b_{7}-a_{5}b_{6},\quad b_{4}=\frac{1}{2}\left(b_{5}^{2}+b_{6}^{2}+b_{7}^{2}-b_{2}^{2}\right), (44)
a6=t0b5a3b2,a7=t0b6a4b2,a8=t0b7a5b2,\displaystyle a_{6}=t_{0}b_{5}-a_{3}b_{2},\quad a_{7}=t_{0}b_{6}-a_{4}b_{2},\quad a_{8}=t_{0}b_{7}-a_{5}b_{2}, (45)

where t0t_{0} is a constant of integration and b20b_{2}\neq 0. Thus, Eq. (43) yields

r(s)=(a3sb5)2+(a4sb6)2+(a5sb7)2,\displaystyle r(s)=\sqrt{(a_{3}s-b_{5})^{2}+(a_{4}s-b_{6})^{2}+(a_{5}s-b_{7})^{2}}, (46)
θ(s)=tan1((a3sb5)2+(a4sb6)2a5s+b7),ϕ(s)=tan1(a4sb6a3sb5).\displaystyle\theta(s)=\tan^{-1}\left(\frac{\sqrt{(a_{3}s-b_{5})^{2}+(a_{4}s-b_{6})^{2}}}{-a_{5}s+b_{7}}\right),\,\,\phi(s)=\tan^{-1}\left(\frac{a_{4}s-b_{6}}{a_{3}s-b_{5}}\right).\qquad (47)

After considering Eqs. (38) and (40), we have found the exact and the first-order energy functionals as

E0=12(t02a32a42a52)+V0,\displaystyle E_{\mathcal{L}_{0}}=\frac{1}{2}\left(t_{0}^{2}-a_{3}^{2}-a_{4}^{2}-a_{5}^{2}\right)+V_{0}\,, (48)
E1=r02r[t02+1r2[(a32+a42+a52)s(a3b5+a4b6+a5b7)]2]+V1.\displaystyle E_{\mathcal{L}_{1}}=-\frac{r_{0}}{2r}\left[t_{0}^{2}+\frac{1}{r^{2}}\left[\left(a_{3}^{2}+a_{4}^{2}+a_{5}^{2}\right)s-(a_{3}b_{5}+a_{4}b_{6}+a_{5}b_{7})\right]^{2}\right]+V_{1}\,.\qquad (49)

Further, using Eqs. (46) and (47), it follows from Eq.(41) that the component of angular momentum LzL_{z} becomes a constant such as Lz=a4b5a3b6L_{z}=a_{4}b_{5}-a_{3}b_{6}. We point out the fact that the exact energy functional E0E_{\mathcal{L}_{0}} given in (48) is already a constant. It is seen from Eq. (49) if a32+a42+a52=0a_{3}^{2}+a_{4}^{2}+a_{5}^{2}=0 and a3b5+a4b6+a5b7=0a_{3}b_{5}+a_{4}b_{6}+a_{5}b_{7}=0, i.e., this means r=b52+b62+b72=const.r=\sqrt{b_{5}^{2}+b_{6}^{2}+b_{7}^{2}}=const., then the first-order energy functional E1E_{\mathcal{L}_{1}} becomes constant, i.e. E1=r0t022r+V1E_{\mathcal{L}_{1}}=-\frac{r_{0}t_{0}^{2}}{2\,r}+V_{1}.

III.2 Approximate Symmetries of the Reissner-Nordström Spacetime

Setting 2GMc2=r0ϵ2GMc^{-2}=r_{0}\,\epsilon and GQ2c4=qϵ2GQ^{2}c^{-4}=q\epsilon^{2} at the RN spacetime (27), the RN metric coefficients become

gtt=1ϵr0r+kϵ2r2+O(ϵ3)andgrr=[1+ϵr0r+(1q)ϵ2r2]+O(ϵ3).\displaystyle g_{tt}=1-\frac{\epsilon\,r_{0}}{r}+\frac{k\epsilon^{2}}{r^{2}}+O(\epsilon^{3})\quad{\rm and}\quad g_{rr}=-\left[1+\frac{\epsilon\,r_{0}}{r}+(1-q)\frac{\epsilon^{2}}{r^{2}}\right]+O(\epsilon^{3}).

Therefore, the second-order perturbed geodesic Lagrangian of the RN metric has the form:

=12[t˙2r˙2r2(θ˙2+sin2θϕ˙2)]ϵr02r(t˙2+r˙2)+ϵ22r2[qt˙2+(q1)r˙2]V(t,r,θ,ϕ)+O(ϵ3),\displaystyle\mathcal{L}=\frac{1}{2}\left[\dot{t}^{2}-\dot{r}^{2}-r^{2}(\dot{\theta}^{2}+\sin^{2}\theta\,\dot{\phi}^{2})\right]-\frac{\epsilon\,r_{0}}{2r}\left(\dot{t}^{2}+\dot{r}^{2}\right)+\frac{\epsilon^{2}}{2r^{2}}\left[q\dot{t}^{2}+(q-1)\dot{r}^{2}\right]-V(t,r,\theta,\phi)+O(\epsilon^{3}), (50)

which yields the same 0\mathcal{L}_{0} and 1\mathcal{L}_{1} given for the Schwarzschild spacetime, and

2=12r2[qt˙2+(q1)r˙2]V2,\displaystyle\mathcal{L}_{2}=\frac{1}{2r^{2}}\left[q\dot{t}^{2}+(q-1)\dot{r}^{2}\right]-V_{2}, (51)

where γij=diag(1,1,r2,r2sin2θ)\gamma_{ij}={\rm diag}(1,-1,-r^{2},-r^{2}\sin^{2}\theta), hij=diag(r0/r,r0/r,0,0)h_{ij}={\rm diag}\left(-r_{0}/r,-r_{0}/r,0,0\right) and σij=diag(q/r2,(q1)/r2,0,0)\sigma_{ij}={\rm diag}\left(q/r^{2},(q-1)/r^{2},0,0\right). Retaining only the first order terms in the above Lagrangian and neglecting O(ϵ2)O(\epsilon^{2}), it reduces to the first-order perturbed geodesic Lagrangian for the Schwarzschild metric.

It is seen from the solutions of ANS equations of the RN metric that the exact ANSs of the Schwarzschild metric are retained, i.e., there exist 5 exact ANS generators, which are 𝐘0,𝐊0,𝐊1,𝐊2{\bf Y}_{0},{\bf K}_{0},{\bf K}_{1},{\bf K}_{2} and 𝐊3{\bf K}_{3}. There exist also 5 first-order ANSs for the RN metric as for the exact ones. The lost symmetries for the RN metric appear in the second-order ANS generators which are solutions of ANS conditions with the constant potential, and the number of the second-order nontrivial ANS generators is seventeen, which are the same with 𝐊0,,𝐊3,𝐘0,,𝐘12{\bf K}_{0},\ldots,{\bf K}_{3},{\bf Y}_{0},\ldots,{\bf Y}_{12} given the symmetry generators for the first-order perturbed Schwarzschild metric. The first integrals of the second-order ANSs for the RN metric have the same form given by the Schwarzschild metric. In summary, the solutions for these first integrals are as follows:

t(s)=t0sb2,r(s)=(a3sb5)2+(a4sb6)2+(a5sb7)2,\displaystyle t(s)=t_{0}\,s-b_{2}\,,\quad r(s)=\sqrt{(a_{3}s-b_{5})^{2}+(a_{4}s-b_{6})^{2}+(a_{5}s-b_{7})^{2}}, (52)
θ(s)=tan1((a3sb5)2+(a4sb6)2a5s+b7),ϕ(s)=tan1(a4sb6a3sb5),\displaystyle\theta(s)=\tan^{-1}\left(\frac{\sqrt{(a_{3}s-b_{5})^{2}+(a_{4}s-b_{6})^{2}}}{-a_{5}s+b_{7}}\right),\,\,\phi(s)=\tan^{-1}\left(\frac{a_{4}s-b_{6}}{a_{3}s-b_{5}}\right), (53)

together with the constraints depending on the Noether constants,

E0+E1+E2=b1,E=t0(1r0r+qr2),Lz=a4b5a3b6,\displaystyle E_{\mathcal{L}_{0}}+E_{\mathcal{L}_{1}}+E_{\mathcal{L}_{2}}=-b_{1}\,,\,\,E=-t_{0}\left(1-\frac{r_{0}}{r}+\frac{q}{r^{2}}\right)\,,\,\,L_{z}=a_{4}b_{5}-a_{3}b_{6}\,,\qquad (54)
t0=1b2(a3b5+a4b6+a5b72b3),\displaystyle t_{0}=\frac{1}{b_{2}}(a_{3}b_{5}+a_{4}b_{6}+a_{5}b_{7}-2b_{3})\,, (55)
a1=a3b7a5b5,a2=a4b7a5b6,b4=12(b52+b62+b72b22),\displaystyle a_{1}=a_{3}b_{7}-a_{5}b_{5}\,,\qquad a_{2}=a_{4}b_{7}-a_{5}b_{6}\,,\qquad b_{4}=\frac{1}{2}\left(b_{5}^{2}+b_{6}^{2}+b_{7}^{2}-b_{2}^{2}\right), (56)
a6=t0b5a3b2,a7=t0b6a4b2,a8=t0b7a5b2.\displaystyle a_{6}=t_{0}b_{5}-a_{3}b_{2}\,,\qquad a_{7}=t_{0}b_{6}-a_{4}b_{2}\,,\qquad a_{8}=t_{0}b_{7}-a_{5}b_{2}\,. (57)

Here the exact and first-order energy functionals are the same with (48) and (49), and the second-order energy functional E2E_{\mathcal{L}_{2}} reads

E2=12r2[qt02+(q1)r2[(a32+a42+a52)s(a3b5+a4b6+a5b7)]2]+V2.E_{\mathcal{L}_{2}}=\frac{1}{2r^{2}}\left[q\,t_{0}^{2}+\frac{(q-1)}{r^{2}}\left[\left(a_{3}^{2}+a_{4}^{2}+a_{5}^{2}\right)s-(a_{3}b_{5}+a_{4}b_{6}+a_{5}b_{7})\right]^{2}\right]+V_{2}. (58)

We point out again that for the RN metric the component of angular momentum LzL_{z} and the exact energy functional E0E_{\mathcal{L}_{0}} are constants. But, the energy EE and the energy functionals E1,E2E_{\mathcal{L}_{1}},E_{\mathcal{L}_{2}} are explicitly depend on the arc length ss. Further, using the first and second relations given in Eq. (54), we have found the energy EE as

E=2t0[b112(a32+a42+a52)+V0+V1+V2]\displaystyle E=\frac{2}{t_{0}}\left[b_{1}-\frac{1}{2}(a_{3}^{2}+a_{4}^{2}+a_{5}^{2})+V_{0}+V_{1}+V_{2}\right]
+1t0r(s)3(r0+q1r(s))[(a32+a42+a52)s(a3b5+a4b6+a5b7)]2,\displaystyle\qquad\quad+\frac{1}{t_{0}r(s)^{3}}\left(-r_{0}+\frac{q-1}{r(s)}\right)\left[\left(a_{3}^{2}+a_{4}^{2}+a_{5}^{2}\right)s-(a_{3}b_{5}+a_{4}b_{6}+a_{5}b_{7})\right]^{2}\,, (59)

where r(s)r(s) is of the form (52).

III.3 Approximate Symmetries of the Kerr Spacetime

In Boyer-Lindqust coordinates the Kerr spacetime is given in (28), where

Σ=r2+a2c2cos2θ,Δ=r2+a2c22GMrc2,\displaystyle\Sigma=r^{2}+\frac{a^{2}}{c^{2}}\cos^{2}\theta,\qquad\Delta=r^{2}+\frac{a^{2}}{c^{2}}-\frac{2GMr}{c^{2}}\,, (60)

with the mass MM and the spin parameter aa. Introducing the small parameter ϵ\epsilon as

2GMc2=r0ϵ,ac=kϵ,\frac{2GM}{c^{2}}=r_{0}\,\epsilon\,,\qquad\frac{a}{c}=k\epsilon\,, (61)

and retaining third power of ϵ\epsilon and neglecting higher powers, the metric coefficients in the Kerr spacetime become

gtt=1+ϵr0rr0k2r3ϵ3cos2θ+O(ϵ4),\displaystyle g_{tt}=-1+\frac{\epsilon\,r_{0}}{r}-\frac{r_{0}k^{2}}{r^{3}}\epsilon^{3}\cos^{2}\theta+O(\epsilon^{4})\,, (62)
grr=1+ϵr0r+(r02k2sin2θ)ϵ2r2+(r022k2+k2cos2θ)ϵ3r3+O(ϵ4),\displaystyle g_{rr}=1+\frac{\epsilon\,r_{0}}{r}+\left(r_{0}^{2}-k^{2}\sin^{2}\theta\right)\frac{\epsilon^{2}}{r^{2}}+\left(r_{0}^{2}-2k^{2}+k^{2}\cos^{2}\theta\right)\frac{\epsilon^{3}}{r^{3}}+O(\epsilon^{4}),\qquad (63)
gθθ=r2+ϵ2k2cos2θ,gtϕ=kr0rϵ2sin2θ+O(ϵ4),\displaystyle g_{\theta\theta}=r^{2}+\epsilon^{2}k^{2}\cos^{2}\theta,\quad g_{t\phi}=-\frac{kr_{0}}{r}\epsilon^{2}\sin^{2}\theta+O(\epsilon^{4})\,, (64)
gϕϕ=sin2θ(r2+k2ϵ2+r0k2rϵ3sin2θ)+O(ϵ4).\displaystyle g_{\phi\phi}=\sin^{2}\theta\left(r^{2}+k^{2}\epsilon^{2}+\frac{r_{0}k^{2}}{r}\epsilon^{3}\sin^{2}\theta\right)+O(\epsilon^{4})\,. (65)

The third-order perturbed geodesic Lagrangian for the Kerr spacetime is given by

=0+ϵ1+ϵ22+ϵ33+O(ϵ4),\mathcal{L}=\mathcal{L}_{0}+\epsilon\mathcal{L}_{1}+\epsilon^{2}\mathcal{L}_{2}+\epsilon^{3}\mathcal{L}_{3}+O(\epsilon^{4})\,, (66)

where the exact, first-order, second-order and third-order geodesic Lagrangians are as follows:

0=12[t˙2+r˙2+r2(θ˙2+sin2θϕ˙2)]V0,1=r02r(t˙2+r˙2)V1,\displaystyle\mathcal{L}_{0}=\frac{1}{2}\left[-\dot{t}^{2}+\dot{r}^{2}+r^{2}(\dot{\theta}^{2}+\sin^{2}\theta\,\dot{\phi}^{2})\right]-V_{0},\quad\mathcal{L}_{1}=\frac{r_{0}}{2r}\left(\dot{t}^{2}+\dot{r}^{2}\right)-V_{1},
2=12[(r02k2sin2θ)r2r˙2+k2cos2θθ˙2+sin2θ(k2ϕ˙22kr0rt˙ϕ˙)]V2,\displaystyle\mathcal{L}_{2}=\frac{1}{2}\left[\frac{(r_{0}^{2}-k^{2}\sin^{2}\theta)}{r^{2}}\dot{r}^{2}+k^{2}\cos^{2}\theta\,\dot{\theta}^{2}+\sin^{2}\theta\left(k^{2}\,\dot{\phi}^{2}-\frac{2kr_{0}}{r}\,\dot{t}\,\dot{\phi}\right)\right]-V_{2},
3=12[r0k2r3cos2θt˙2+(r022k2+k2cos2θ)r3r˙2+r0k2rsin4θϕ˙2]V3.\displaystyle\mathcal{L}_{3}=\frac{1}{2}\left[-\frac{r_{0}k^{2}}{r^{3}}\cos^{2}\theta\,\dot{t}^{2}+\frac{(r_{0}^{2}-2k^{2}+k^{2}\cos^{2}\theta)}{r^{3}}\dot{r}^{2}+\frac{r_{0}k^{2}}{r}\sin^{4}\theta\,\dot{\phi}^{2}\right]-V_{3}.

There are only three ANS generators for the exact geodesic Lagrangian of the geodesic equations of Kerr spacetime such as

𝐊0=t,𝐊3=ϕ,𝐘0=s.{\bf K}_{0}=\partial_{t}\,,\qquad{\bf K}_{3}=\partial_{\phi}\,,\qquad{\bf Y}_{0}=\partial_{s}\,. (67)

This is also pointed out by the Ref. hmq2009a , where they have proceeded the ANS to the second-order ANS of the geodesic Lagrangian for the Kerr spacetime. After proceeding the ANS to the third-order ANS, the solution of first-order ANS equations for constant potential yields three ANSs as in (67), and the two additional ANS generators arise for the second-order approximation as the following

𝐊1=cosϕθcotθsinϕϕ,𝐊2=sinϕθ+cotθcosϕϕ.\displaystyle{\bf K}_{1}=\cos\phi\partial_{\theta}-\cot\theta\sin\phi\partial_{\phi}\,,\qquad{\bf K}_{2}=\sin\phi\partial_{\theta}+\cot\theta\cos\phi\partial_{\phi}\,. (68)

In addition to the symmetries 𝐊0,𝐊1,𝐊2,𝐊3{\bf K}_{0},{\bf K}_{1},{\bf K}_{2},{\bf K}_{3} and 𝐘0{\bf Y}_{0}, the lost symmetries of the Kerr spacetime are appeared as the solution of the third-order ANS equations such that the symmetries 𝐘1,,𝐘7{\bf Y}_{1},\ldots,{\bf Y}_{7} are the same as given in (36), and the remaining ones are

𝐘8=s𝐊0,withf3=t,\displaystyle{\bf Y}_{8}=s{\bf K}_{0},\quad\,\,{\rm with\,\,}f_{3}=-t,
𝐘9=s𝐘1,withf3=rsinθcosϕ,\displaystyle{\bf Y}_{9}=s{\bf Y}_{1},\quad\,\,{\rm with\,\,}f_{3}=r\sin\theta\cos\phi,
𝐘10=s𝐘2,withf3=rsinθsinϕ,\displaystyle{\bf Y}_{10}=s{\bf Y}_{2},\quad{\rm with\,\,}f_{3}=r\sin\theta\sin\phi, (69)
𝐘11=s𝐘3,withf3=rcosθ,\displaystyle{\bf Y}_{11}=s{\bf Y}_{3},\quad{\rm with\,\,}f_{3}=r\cos\theta,
𝐘12=s(ss+tt+rr),withf3=12(r2t22V0s2).\displaystyle{\bf Y}_{12}=s\left(s\partial_{s}+t\partial_{t}+r\partial_{r}\right),\,\,{\rm with\,\,}f_{3}=\frac{1}{2}\left(r^{2}-t^{2}-2V_{0}s^{2}\right).

Hence, the number of third-order ANSs for the geodesic Lagrangian of the Kerr spacetime is seventeen. The first integrals associated with the three exact and first-order ANSs are

I01=E0,I02=t˙,I03=r2sin2θϕ˙,I_{0}^{1}=-E_{\mathcal{L}_{0}},\quad I_{0}^{2}=-\dot{t},\quad I_{0}^{3}=r^{2}\sin^{2}\theta\,\dot{\phi}\,, (70)

and

I11=(E0+E1),I12=(1r0r)t˙,I13=r2sin2θϕ˙,I_{1}^{1}=-(E_{\mathcal{L}_{0}}+E_{\mathcal{L}_{1}}),\quad I_{1}^{2}=-\left(1-\frac{r_{0}}{r}\right)\dot{t},\quad I_{1}^{3}=r^{2}\sin^{2}\theta\,\dot{\phi}\,, (71)

where the exact and first-order energy functionals are, respectively,

E0=12[t˙2+r˙2+r2(θ˙2+sin2θϕ˙2)]+V0andE1=r02r(t˙2+r˙2)+V1.\displaystyle E_{\mathcal{L}_{0}}=\frac{1}{2}\left[-\dot{t}^{2}+\dot{r}^{2}+r^{2}(\dot{\theta}^{2}+\sin^{2}\theta\,\dot{\phi}^{2})\right]+V_{0}\qquad{\rm and}\qquad E_{\mathcal{L}_{1}}=\frac{r_{0}}{2r}\left(\dot{t}^{2}+\dot{r}^{2}\right)+V_{1}\,. (72)

The conservation laws for the second-order ANSs of Kerr spacetime are found as:

I21=(E0+E1+E2),I22=(r0r1)t˙kr0rsin2θϕ˙,I23=kr0rt˙+(r2+k2)sin2θϕ˙,\displaystyle I_{2}^{1}=-\left(E_{\mathcal{L}_{0}}+E_{\mathcal{L}_{1}}+E_{\mathcal{L}_{2}}\right)\,,\qquad I_{2}^{2}=\left(\frac{r_{0}}{r}-1\right)\dot{t}-\frac{kr_{0}}{r}\sin^{2}\theta\,\dot{\phi}\,,\qquad I_{2}^{3}=-\frac{kr_{0}}{r}\dot{t}+(r^{2}+k^{2})\sin^{2}\theta\,\dot{\phi}\,,
I24=r2[cosϕθ˙sinθcosθsinϕϕ˙],I25=r2[sinϕθ˙+sinθcosθcosϕϕ˙],\displaystyle I_{2}^{4}=r^{2}\left[\cos\phi\,\dot{\theta}-\sin\theta\cos\theta\sin\phi\,\dot{\phi}\right]\,,\qquad I_{2}^{5}=r^{2}\left[\sin\phi\,\dot{\theta}+\sin\theta\cos\theta\cos\phi\,\dot{\phi}\right], (73)

where the second-order energy functional has the form

E2=12[(r02k2sin2θ)r2r˙2+k2cos2θθ˙2+sin2θ(k2ϕ˙22kr0rt˙ϕ˙)]+V2.E_{\mathcal{L}_{2}}=\frac{1}{2}\left[\frac{(r_{0}^{2}-k^{2}\sin^{2}\theta)}{r^{2}}\dot{r}^{2}+k^{2}\cos^{2}\theta\,\dot{\theta}^{2}+\sin^{2}\theta\left(k^{2}\,\dot{\phi}^{2}-\frac{2kr_{0}}{r}\,\dot{t}\,\dot{\phi}\right)\right]+V_{2}\,. (74)

Further, the first integrals associated with the 17 third-order ANSs are

I31=(E0+E1+E2+E3),I32=(1+r0rr0k2r3cos2θ)t˙r0krsin2θϕ˙,\displaystyle I_{3}^{1}=-(E_{\mathcal{L}_{0}}+E_{\mathcal{L}_{1}}+E_{\mathcal{L}_{2}}+E_{\mathcal{L}_{3}})\,,\qquad I_{3}^{2}=\left(-1+\frac{r_{0}}{r}-\frac{r_{0}k^{2}}{r^{3}}\cos^{2}\theta\right)\dot{t}-\frac{r_{0}k}{r}\sin^{2}\theta\,\dot{\phi}\,,
I33=r0krsin2θt˙+(r2+k2+r0k2rsin2θ)sin2θϕ˙,\displaystyle I_{3}^{3}=-\frac{r_{0}k}{r}\sin^{2}\theta\,\dot{t}+\left(r^{2}+k^{2}+\frac{r_{0}k^{2}}{r}\sin^{2}\theta\right)\sin^{2}\theta\,\dot{\phi},
I34=r2[cosϕθ˙sinθcosθsinϕϕ˙],I35=r2[sinϕθ˙+sinθcosθcosϕϕ˙],\displaystyle I_{3}^{4}=r^{2}\left[\cos\phi\,\dot{\theta}-\sin\theta\cos\theta\sin\phi\,\dot{\phi}\right]\,,\qquad I_{3}^{5}=r^{2}\left[\sin\phi\,\dot{\theta}+\sin\theta\cos\theta\cos\phi\,\dot{\phi}\right],
I36=sinθcosϕr˙+rcosθcosϕθ˙rsinθsinϕϕ˙,I37=sinθsinϕr˙+rcosθsinϕθ˙+rsinθcosϕϕ˙,\displaystyle I_{3}^{6}=\sin\theta\cos\phi\,\dot{r}+r\cos\theta\cos\phi\,\dot{\theta}-r\sin\theta\sin\phi\,\dot{\phi},\quad I_{3}^{7}=\sin\theta\sin\phi\,\dot{r}+r\cos\theta\sin\phi\,\dot{\theta}+r\sin\theta\cos\phi\,\dot{\phi}, (75)
I38=cosθr˙rsinθθ˙,I39=rsinθcosϕt˙+I36t,I310=rsinθsinϕt˙+I37t,I311=rcosθt˙+I38t,\displaystyle I_{3}^{8}=\cos\theta\,\dot{r}-r\sin\theta\,\dot{\theta},\qquad I_{3}^{9}=-r\sin\theta\cos\phi\,\dot{t}+I_{3}^{6}t,\,\,I_{3}^{10}=-r\sin\theta\sin\phi\,\dot{t}+I_{3}^{7}t,\quad I_{3}^{11}=-r\cos\theta\,\dot{t}+I_{3}^{8}t,
I312=st˙+t,I313=(E0V0)s+12(tt˙+rr˙),I314=(E0V0)s2+s(tt˙+rr˙)12(r2t2),\displaystyle I_{3}^{12}=-s\,\dot{t}+t\,,\quad I_{3}^{13}=-(E_{\mathcal{L}_{0}}-V_{0})s+\frac{1}{2}(-t\,\dot{t}+r\,\dot{r})\,,\quad I_{3}^{14}=-(E_{\mathcal{L}_{0}}-V_{0})s^{2}+s(-t\,\dot{t}+r\,\dot{r})-\frac{1}{2}(r^{2}-t^{2})\,,
I315=I36srsinθcosϕ,I316=I37srsinθsinϕ,I317=I38srcosθ,\displaystyle I_{3}^{15}=I_{3}^{6}s-r\sin\theta\cos\phi,\qquad I_{3}^{16}=I_{3}^{7}s-r\sin\theta\sin\phi,\qquad I_{3}^{17}=I_{3}^{8}s-r\cos\theta,

where the third-order energy functional E3E_{\mathcal{L}_{3}} is

E3=12[r0k2r3cos2θt˙2+(r022k2+k2cos2θ)r3r˙2+r0k2rsin4θϕ˙2]+V3.E_{\mathcal{L}_{3}}=\frac{1}{2}\left[-\frac{r_{0}k^{2}}{r^{3}}\cos^{2}\theta\,\dot{t}^{2}+\frac{(r_{0}^{2}-2k^{2}+k^{2}\cos^{2}\theta)}{r^{3}}\dot{r}^{2}+\frac{r_{0}k^{2}}{r}\sin^{4}\theta\,\dot{\phi}^{2}\right]+V_{3}\,. (76)

Defining I32=EI_{3}^{2}=-E, I33=LzI_{3}^{3}=L_{z}, I34=a1I_{3}^{4}=a_{1}, I35=a2I_{3}^{5}=a_{2}, I36=a3I_{3}^{6}=a_{3}, I37=a4I_{3}^{7}=a_{4}, I38=a5I_{3}^{8}=a_{5}, I39=a6I_{3}^{9}=a_{6}, I310=a7I_{3}^{10}=a_{7}, I311=a8I_{3}^{11}=a_{8}, I31=b1I_{3}^{1}=b_{1}, I312=b2I_{3}^{12}=b_{2}, I313=b3I_{3}^{13}=b_{3}, I314=b4I_{3}^{14}=b_{4}, I315=b5I_{3}^{15}=b_{5}, I316=b6I_{3}^{16}=b_{6} and I317=b7I_{3}^{17}=b_{7}, one can find from the first integrals given by (75) that

t(s)=t0s+b2,r(s)=(a3sb5)2+(a4sb6)2+(a5sb7)2,\displaystyle t(s)=t_{0}\,s+b_{2}\,,\qquad r(s)=\sqrt{(a_{3}s-b_{5})^{2}+(a_{4}s-b_{6})^{2}+(a_{5}s-b_{7})^{2}}\,, (77)
θ(s)=tan1((a3sb5)2+(a4sb6)2a5sb7),ϕ(s)=tan1(a4sb6a3sb5),\displaystyle\theta(s)=\tan^{-1}\left(\frac{\sqrt{(a_{3}s-b_{5})^{2}+(a_{4}s-b_{6})^{2}}}{a_{5}s-b_{7}}\right)\,,\qquad\phi(s)=\tan^{-1}\left(\frac{a_{4}s-b_{6}}{a_{3}s-b_{5}}\right)\,, (78)

and

E=t0[1mr+mk2r5(a5sb7)2]+kr0L0r3,\displaystyle E=t_{0}\left[1-\frac{m}{r}+\frac{mk^{2}}{r^{5}}\left(a_{5}s-b_{7}\right)^{2}\right]+\frac{kr_{0}L_{0}}{r^{3}}\,, (79)
Lz=kr0r3(kL0r2t0)[r2(a5sb7)2]+L0(1+k2r2),\displaystyle L_{z}=\frac{kr_{0}}{r^{3}}\left(\frac{kL_{0}}{r^{2}}-t_{0}\right)\left[r^{2}-\left(a_{5}s-b_{7}\right)^{2}\right]+L_{0}\left(1+\frac{k^{2}}{r^{2}}\right)\,, (80)
E0+E1+E2+E3=b1,\displaystyle E_{\mathcal{L}_{0}}+E_{\mathcal{L}_{1}}+E_{\mathcal{L}_{2}}+E_{\mathcal{L}_{3}}=-b_{1}\,, (81)
t0=1b2(a3b5+a4b6+a5b7+2b3),b20,b4=12(b22b52b62b72),\displaystyle t_{0}=-\frac{1}{b_{2}}(a_{3}b_{5}+a_{4}b_{6}+a_{5}b_{7}+2b_{3})\,,\,\,b_{2}\neq 0,\qquad b_{4}=\frac{1}{2}\left(b_{2}^{2}-b_{5}^{2}-b_{6}^{2}-b_{7}^{2}\right), (82)
a1=a5b5a3b7,a2=a5b6a4b7,a6=t0b5+a3b2,a7=t0b6+a4b2,a8=t0b7+a5b2,\displaystyle a_{1}=a_{5}b_{5}-a_{3}b_{7}\,,\quad a_{2}=a_{5}b_{6}-a_{4}b_{7}\,,\quad a_{6}=t_{0}b_{5}+a_{3}b_{2}\,,\quad a_{7}=t_{0}b_{6}+a_{4}b_{2}\,,\quad a_{8}=t_{0}b_{7}+a_{5}b_{2}, (83)

where t0t_{0} is a constant of integration, b20b_{2}\neq 0 and L0a3b6a4b5L_{0}\equiv a_{3}b_{6}-a_{4}b_{5}. Using (77)-(78) in Eqs. (72), (74) and (76), the exact, first-order, second-order and third order energy functionals for the Kerr spacetime take the following forms:

E0=12(t02+a32+a42+a52)+V0,E1=r02r(t02+r˙2)+V1,\displaystyle E_{\mathcal{L}_{0}}=\frac{1}{2}\left(-t_{0}^{2}+a_{3}^{2}+a_{4}^{2}+a_{5}^{2}\right)+V_{0}\,,\qquad E_{\mathcal{L}_{1}}=\frac{r_{0}}{2r}\left(t_{0}^{2}+\dot{r}^{2}\right)+V_{1},\qquad (84)
E2=12r2[r02k2+k2r2(a5sb7)2]r˙2+k22r2(a5sb7)2θ˙2+k2L022r2[r2(a5sb7)2]kr0t0L0r3+V2,\displaystyle E_{\mathcal{L}_{2}}=\frac{1}{2r^{2}}\left[r_{0}^{2}-k^{2}+\frac{k^{2}}{r^{2}}(a_{5}s-b_{7})^{2}\right]\dot{r}^{2}+\frac{k^{2}}{2r^{2}}(a_{5}s-b_{7})^{2}\,\dot{\theta}^{2}+\frac{k^{2}L_{0}^{2}}{2r^{2}\left[r^{2}-\left(a_{5}s-b_{7}\right)^{2}\right]}-\frac{kr_{0}t_{0}L_{0}}{r^{3}}+V_{2}\,, (85)
E3=12r5{r0k2[L02t02(a5sb7)2]+[(r022k2)r2+k2(a5sb7)2]r˙2}+V3,\displaystyle E_{\mathcal{L}_{3}}=\frac{1}{2r^{5}}\Big{\{}r_{0}k^{2}\left[L_{0}^{2}-t_{0}^{2}(a_{5}s-b_{7})^{2}\right]+\left[(r_{0}^{2}-2k^{2})r^{2}+k^{2}(a_{5}s-b_{7})^{2}\right]\,\dot{r}^{2}\Big{\}}+V_{3}\,,\quad (86)

where r˙=1r[(a32+a42+a52)s(a3b5+a4b6+a5b7)],\dot{r}=\frac{1}{r}\left[(a_{3}^{2}+a_{4}^{2}+a_{5}^{2})s-(a_{3}b_{5}+a_{4}b_{6}+a_{5}b_{7})\right], and

θ˙2=1r4[r2(a5sb7)2]([a5L1b7(a32+a42)]sa5(b52+b62)+b7L1)2,\dot{\theta}^{2}=\frac{1}{r^{4}\left[r^{2}-(a_{5}s-b_{7})^{2}\right]}\left(\left[a_{5}L_{1}-b_{7}(a_{3}^{2}+a_{4}^{2})\right]s-a_{5}(b_{5}^{2}+b_{6}^{2})+b_{7}L_{1}\right)^{2}\,,

with L1=a3b5+a4b6L_{1}=a_{3}b_{5}+a_{4}b_{6}. The photon orbits staying at the extrema, i.e., the circular equatorial orbits or the spherical photon orbits, imply r˙=0\dot{r}=0 and r¨=0\ddot{r}=0, from which one can find the following constraint equations:

a32+a42+a52=0,a3b5+a4b6+a5b7=0.a_{3}^{2}+a_{4}^{2}+a_{5}^{2}=0\,,\qquad a_{3}b_{5}+a_{4}b_{6}+a_{5}b_{7}=0\,. (87)

The latter equations yield r=b52+b62+b72=const.r=\sqrt{b_{5}^{2}+b_{6}^{2}+b_{7}^{2}}={\rm const.} Then the approximate energy functionals for the photon orbits read

E0=t022+V0,E1=r0t022r+V1,\displaystyle E_{\mathcal{L}_{0}}=-\frac{t_{0}^{2}}{2}+V_{0},\qquad E_{\mathcal{L}_{1}}=\frac{r_{0}t_{0}^{2}}{2r}+V_{1}\,, (88)
E2=k22r2(a5sb7)2θ˙2+k2L022r2[r2(a5sb7)2]kr0t0L0r3+V2,\displaystyle E_{\mathcal{L}_{2}}=\frac{k^{2}}{2r^{2}}(a_{5}s-b_{7})^{2}\,\dot{\theta}^{2}+\frac{k^{2}L_{0}^{2}}{2r^{2}\left[r^{2}-\left(a_{5}s-b_{7}\right)^{2}\right]}-\frac{kr_{0}t_{0}L_{0}}{r^{3}}+V_{2}\,, (89)
E3=r0k22r5[L02t02(a5sb7)2]+V3,\displaystyle E_{\mathcal{L}_{3}}=\frac{r_{0}k^{2}}{2r^{5}}\left[L_{0}^{2}-t_{0}^{2}(a_{5}s-b_{7})^{2}\right]+V_{3}\,, (90)

where θ˙=a5(b52+b62+b72)/(r2[r2(a5sb7)2])\dot{\theta}=a_{5}(b_{5}^{2}+b_{6}^{2}+b_{7}^{2})/(r^{2}\left[r^{2}-(a_{5}s-b_{7})^{2}\right]). It is seen from the above relations that if a5=0a_{5}=0, then θ\theta is a constant and so all energy functionals become constants.

IV Summary and Conclusion

In this study, for the Gödel-type, Schwarzschild, Reissner-Nordström and Kerr spacetimes, we reviewed the Noether symmetries of the corresponding canonical geodesic Lagrangians. To get the approximate Lagrangian in the background of some of those spacetimes, we set up a perturbed geodesic Lagrangian in terms of metric coefficients to use it in the ANS approach. Thus we considered the latter perturbed Lagrangians and used it to calculate and classify ANS generators by considering the ANS conditions for the Schwarzschild, Reissner-Nordström and Kerr spacetimes. In the previous section, the ANSs of the Schwarzschild, Reissner-Nordström and Kerr spacetimes have been calculated, and used to integrate the geodesic equations of motion by means of the first integrals that are due to the existence of ANS generators including the KVs. The analytical solutions for the perturbed geodesic equations of these black hole spacetimes have been derived by the aid of the first integrals associated with ANSs in complete detail.

Furthermore we note that the geodesic Lagrangian involves the potential function V(xk)V(x^{k}) which is an unknown quantity. Using the Noether symmetry approach or the approximate Noether symmetry approach for the geodesic Lagrangian, the form of the unknown potential function may be determined.

Acknowledgments

The author would like to thank the organizers for the successful meeting “International Conference on Gravitation and Cosmology (PUICGC)”, The University of Punjab, Department of Mathematics, Lahore-Pakistan held in November 22-25, 2021. I dedicate this study to Prof. Dr. Ghulam Shabbir.

References

  • (1) E. Noether, Invariante Variationsprobleme, Göttingen Math. Phys. Kl. 2, 235 (1918); English translation by M.A. Tavel, Invariant Variation Problems, Transport Theory and Statistical Physics1(3), 186 (1971).
  • (2) N. H. Ibragimov, CRC Handbook of Lie Group Analysis of Differential Equations: Symmetries, Exact Solutions and Conservation Laws, (CRC Press: Boca Raton, FL, USA, 1994).
  • (3) T. Feroze, F. M. Mahomed and A. Qadir, Nonlinear Dyn. 45, 65 (2006).
  • (4) T. Feroze, Modern Phys. Lett. A25, 1107 (2010).
  • (5) T. Feroze and I. Hussain, J. Geom. Phys. 61, 658 (2011).
  • (6) M. Tsamparlis and A. Paliathanasis, Gen. Relativ. Gravit. 42, 2657 (2010).
  • (7) M. Tsamparlis and A. Paliathanasis, Gen. Relativ. Gravit. 43, 1861 (2011).
  • (8) U. Camci, JCAP07, 002 (2014).
  • (9) U. Camci, Int. J. Mod. Phys. Conf. Series 38, 1560072 (2015).
  • (10) U. Camci and A. Yildirim, Int. J. Geom. Meth. Mod. Phys. 12, 1550120 (2015).
  • (11) T. Hussain, S. S. Akhtar and A. H. Bokhari, J. Math. Analy. App. 483, 123574 (2020).
  • (12) G. H. Katzin, J. Levine and W. R. Davis, J. Math. Phys. 10, 617 (1969).
  • (13) A. H. Kara, F. M. Mahomed, and A. Qadir, Nonlinear Dyn. 51, 183 (2008).
  • (14) I. Hussain, F. M. Mahomed and A. Qadir, SIGMA 3, 115 (2007).
  • (15) U. Camci, Gen. Relativ. Gravit. 46, 1824 (2014).
  • (16) U. Camci, Eur. Phys. J. C 74, 3201 (2014).
  • (17) I. Hussain, F. M. Mahomed, and A. Qadir, Gen. Relativ. Gravit. 41, 2399 (2009).
  • (18) I. Hussain, F. M. Mahomed, and A. Qadir, Phys. Rev. D 79, 125014 (2009).
  • (19) F. Ali and T. Feroze, Int. J. Geom. Meth. Mod. Phys. 12, 1550124 (2015).