This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Interferometric Geometric Phases of 𝒫𝒯\mathcal{PT}-symmetric Quantum Mechanics

Xin Wang School of Physics, Southeast University, Jiulonghu Campus, Nanjing 211189, China    Zheng Zhou School of Physics, Southeast University, Jiulonghu Campus, Nanjing 211189, China    Jia-Chen Tang School of Physics, Southeast University, Jiulonghu Campus, Nanjing 211189, China    Xu-Yang Hou houxuyangwow@seu.edu.cn School of Physics, Southeast University, Jiulonghu Campus, Nanjing 211189, China    Hao Guo guohao.ph@seu.edu.cn School of Physics, Southeast University, Jiulonghu Campus, Nanjing 211189, China    Chih-Chun Chien Department of physics, University of California, Merced, CA 95343, USA
Abstract

We present a generalization of the geometric phase to pure and thermal states in 𝒫𝒯\mathcal{PT}-symmetric quantum mechanics (PTQM) based on the approach of the interferometric geometric phase (IGP). The formalism first introduces the parallel-transport conditions of quantum states and reveals two geometric phases, θ1\theta^{1} and θ2\theta^{2}, for pure states in PTQM according to the states under parallel-transport. Due to the non-Hermitian Hamiltonian in PTQM, θ1\theta^{1} is complex and θ2\theta^{2} is its real part. The imaginary part of θ1\theta^{1} plays an important role when we generalize the IGP to thermal states in PTQM. The generalized IGP modifies the thermal distribution of a thermal state, thereby introducing effective temperatures. At certain critical points, the generalized IGP exhibits discrete jumps at finite temperatures, signaling a geometric phase transition. We demonstrate the finite-temperature geometric phase transition in PTQM by a two-level system and visualize its results.

I Introduction

The introduction of non-Hermitian quantum mechanics (NHQM) [1, 2, 3] has uncovered many fascinating phenomena, including the Anderson localization [4], gapless quantum phase transitions [5], unconventional behavior of quantum emitters [6, 7], tachyonic dynamics [8, 9], and distinctive topological properties [10, 11, 12]. A major branch of NHQM includes systems with non-Hermitian Hamiltonians obeying parity-time reversal (𝒫𝒯\mathcal{PT}) symmetry, which can possess real-valued eigenvalues, making them a relevant extension of conventional quantum mechanics. Therefore, 𝒫𝒯\mathcal{PT}-symmetric quantum mechanics (PTQM) has attracted considerable research attention in many aspects [13, 14, 15, 16, 17, 18, 19, 20] and has been experimentally realized across different fields, including acoustics, optics, electronics and quantum systems [21, 22]. It has also catalyzed extensive investigations into physical and topological characteristics of non-Hermitian systems [23, 24, 25, 26, 27, 28, 29, 30, 31].

Geometric phases in quantum systems, including the Berry phase [32] and the Aharonov-Anandan phase [33], have advanced our understanding of the geometric structures behind interesting physical systems and shown significant influence across various fields. For instance, the Berry phase is fundamental in the study of topological matter since it connects geometric objects from the underlying mathematical structure to measurable physical quantities [34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45]. Recently, the notion of geometric phase has been generalized to non-Hermitian quantum systems [46], which is further applied to the construction of the quantum geometric tensor for non-Hermitian systems [47]. On the other hand, the geometric phase has also been generalized to mixed quantum states via different approaches [48, 49, 50, 51, 52, 53, 54, 55, 56]. In this work, we will generalize the one proposed by Sjöqvist et al [57] based on an extension of the optical process in the Mach-Zehnder interferometer, which is referred to as the interferometric geometric phase (IGP). Numerous studies [58, 59, 60, 61, 62, 63] have been dedicated to this field, and the IGP has been observed by various techniques, including the nuclear magnetic resonance [64, 65], polarized neutrons [66], and the Mach-Zehnder interferometer [67]. A different approach was introduced by Uhlmann [68, 69, 70] soon after the discovery of the Berry phase and the phase is usually called the Uhlmann phase. This approach incorporates a full mathematical structure based on fiber bundles and has gained attention due to its relevance to condensed matter and quantum information [71, 72, 73, 74, 75, 76, 77, 78].

We aim at generalizing the concept of IGP to thermal states in PTQM. In the beginning, we establish a formalism for pure-state geometric phase in 𝒫𝒯\mathcal{PT}-symmetric systems by using the conventional derivation and then introducing the parallel-transport conditions of quantum states. In contrast to conventional QM, a PTQM system is shown to allow two distinct geometric phases, called θ1\theta^{1} and θ2\theta^{2}, which are differentiated by the states undergoing parallel-transport. On the one hand, θ2\theta^{2} exactly coincides with the known result in Ref. [46] and is the real part of θ1\theta^{1}. On the other hand, θ1\theta^{1} is a complex-valued phase with its imaginary part adjusting the amplitude of the wavefunction due to the lack of Hermiticity. Since θ1\theta^{1} will be shown to be associated with the non-Hermitian Hamiltonian, the generalization to thermal states in PTQM will be based on it.

Following the construction of the IGP of thermal states in conventional QM and the derivation of the geometric phase θ1\theta^{1}, we develop a framework of the IGP of thermal states in PTQM. In general, the IGP is the argument of the thermal-weighted sum of the geometric phase factor for each individual energy level. The imaginary part of the generalized IGP will be shown to alter the relative thermal weights, which introduces effective temperatures to the thermal states. Consequently, there may be quantized jumps of the IGP at certain temperatures and system parameters. This phenomenon signifies a geometric phase transition at finite temperature in PTQM. To illustrate our findings and visualize the results, we study a 𝒫𝒯\mathcal{PT}-symmetric two-level system and present its generalized IGP. The geometric phase transitions of the model at finite temperatures are located and analyzed.

The rest of the paper is organized as follows. Sec. II briefly reviews the basics of PTQM and its statistical physics. We also review the geometric phases of pure and mixed quantum states in Hermitian systems via parallel-transport. In Sec. III, we generalize the formalism of geometric phase to PTQM, first by deriving two different expressions due to their associated evolution equations or parallel-transport conditions. We then generalize the results to thermal states in PTQM and derive the generalized IGP. Sec. IV presents the IGP of a 𝒫𝒯\mathcal{PT}-symmetric two-level system and its geometric phase transitions at finite temperatures. Sec. V concludes our work. Some details and derivations are summarized in the Appendix.

II Theoretical background

II.1 𝒫𝒯\mathcal{PT}-symmetric quantum and statistical mechanics

Before presenting our findings, we first give a brief outline of PTQM and lay the foundation for its geometric description. We will set c==kB=1c=\hbar=k_{B}=1 throughout the paper. We consider a parameter-dependent finite-dimensional non-Hermitian quantum system described by a 𝒫𝒯\mathcal{PT}-symmetric Hamiltonian H(𝐑)H(\mathbf{R}). Here 𝐑=(R1,R2,,Rk)T\mathbf{R}=(R_{1},R_{2},\cdots,R_{k})^{T} is a collection of external parameters forming a parameter manifold MM. The system may evolve along a curve 𝐑(t)\mathbf{R}(t) in MM. The 𝒫𝒯\mathcal{PT}-symmetry is manifested by the condition

W(𝐑)H(𝐑)=H(𝐑)W(𝐑),\displaystyle W(\mathbf{R})H(\mathbf{R})=H^{\dagger}(\mathbf{R})W(\mathbf{R}), (1)

where W(𝐑)W(\mathbf{R}) is Hermitian, and its role will become clear later. A Hamiltonian satisfying Eq. (1) is called a pseudo-Hermitian Hamiltonian [79]. Assuming HH describes a NN-level quantum system, the eigen-equations of H(𝐑)H(\mathbf{R}) and H(𝐑)H^{\dagger}(\mathbf{R}) are respectively given by

H(𝐑)|Ψn(𝐑)\displaystyle H(\mathbf{R})|\Psi_{n}(\mathbf{R})\rangle =En(𝐑)|Ψn(𝐑),\displaystyle=E_{n}(\mathbf{R})|\Psi_{n}(\mathbf{R})\rangle, (2)
H(𝐑)|Φn(𝐑)\displaystyle H^{\dagger}(\mathbf{R})|\Phi_{n}(\mathbf{R})\rangle =En(𝐑)|Φn(𝐑)\displaystyle=E_{n}(\mathbf{R})|\Phi_{n}(\mathbf{R})\rangle (3)

for n=1,2,Nn=1,2,\cdots N. No energy degeneracy is considered here for simplicity. Eq. (1) implies |Φn(𝐑)=W(𝐑)|Ψn(𝐑)|\Phi_{n}(\mathbf{R})\rangle=W(\mathbf{R})|\Psi_{n}(\mathbf{R})\rangle. Here WW bears the role of a metric to ensure the orthonormal relation Ψm(𝐑)|W(𝐑)|Ψn(𝐑)=δmn\langle\Psi_{m}(\mathbf{R})|W(\mathbf{R})|\Psi_{n}(\mathbf{R})\rangle=\delta_{mn}, or equivalently, Φm(𝐑)|Ψn(𝐑)=δmn\langle\Phi_{m}(\mathbf{R})|\Psi_{n}(\mathbf{R})\rangle=\delta_{mn}. Thus, the inner product between the ordinary bra and ket states is defined as |W|\langle\cdot|W|\cdot\rangle. The associated completeness of {|Ψn(𝐑)}\{|\Psi_{n}(\mathbf{R})\rangle\} is given by n|Ψn(𝐑)Φn(𝐑)|=1\sum_{n}|\Psi_{n}(\mathbf{R})\rangle\langle\Phi_{n}(\mathbf{R})|=1.

Following Eq. (1), HH is similar to a Hermitian Hamiltonian H0H_{0} via H=SH0S1H=SH_{0}S^{-1}, where W=(S1)S1W=(S^{-1})^{\dagger}S^{-1} [80]. The operator SS is not unitary. Hereafter, we sometimes suppress the argument 𝐑\mathbf{R} if no confusion may arise. In some situations, SS may also be Hermitian and then W=(S1)2W=(S^{-1})^{2}. Diagonalizing H0H_{0} as H0|Ψn0=En|Ψn0H_{0}|\Psi^{0}_{n}\rangle=E_{n}|\Psi^{0}_{n}\rangle, one gets

|Ψn=S|Ψn0,|Φn=(S1)|Ψn0.\displaystyle|\Psi_{n}\rangle=S|\Psi^{0}_{n}\rangle,\quad|\Phi_{n}\rangle=(S^{-1})^{\dagger}|\Psi^{0}_{n}\rangle. (4)

For a generic time-dependent state |Ψ(t)|\Psi(t)\rangle in PTQM, its equation of motion is described by the Schrödinger-like equation [46]:

iddt|Ψ(t)=(Hi2W1W˙)|Ψ(t).\displaystyle\mathrm{i}\frac{\mathrm{d}}{\mathrm{d}t}|\Psi(t)\rangle=\left(H-\frac{\mathrm{i}}{2}W^{-1}\dot{W}\right)|\Psi(t)\rangle. (5)

If SS is a proper mapping satisfying S˙1S=(S˙1S)\dot{S}^{-1}S=(\dot{S}^{-1}S)^{\dagger}, this equation further reduces to

iddt|Ψ(t)=H~|Ψ(t).\displaystyle\mathrm{i}\frac{\mathrm{d}}{\mathrm{d}t}|\Psi(t)\rangle=\tilde{H}|\Psi(t)\rangle. (6)

Here H~=HSS˙1\tilde{H}=H-S\dot{S}^{-1}, and the second term is anti-symmetric under the 𝒫𝒯\mathcal{PT} transformation. Thus, H~\tilde{H} is not Hermitian in general. For PTQM, a proper SS always exists [46]. Comparing Eqs. (6) and (2), it is important to emphasize that for a 𝒫𝒯\mathcal{PT}-symmetric quantum system, the stationary and dynamic Schrödinger equations are respectively governed by HH and H~\tilde{H}. This distinction leads to nontrivial contributions to both the dynamic and geometric phases in PTQM, which will be elucidated in the subsequent discussions. Introducing |Ψ0=S1|Ψ|\Psi^{0}\rangle=S^{-1}|\Psi\rangle, its dynamic evolution can be shown to obey the corresponding Schrödinger equation

iddt|Ψ0(t)=H0|Ψ0(t).\displaystyle\mathrm{i}\frac{\mathrm{d}}{\mathrm{d}t}|\Psi^{0}(t)\rangle=H_{0}|\Psi^{0}(t)\rangle. (7)

Thus, the proper SS acts like a “gauge” mapping between a PTQM system and its corresponding Hermitian counterpart.

So far the discussion concerns pure quantum states only. Recently, there have been studies on non-Hermitian quantum models at finite temperatures [19, 81, 82]. To broaden the scope of non-Hermitian physics to mixed quantum states, we note that the density matrix of a mixed state from the generalization may also be non-Hermitian as well. As a first attempt, we focus on states in thermal equilibrium depicted by ρ=eβHZ\rho=\frac{\mathrm{e}^{-\beta H}}{Z}. Here β=1T\beta=\frac{1}{T} is the inverse temperature and Z=neβEnZ=\sum_{n}\mathrm{e}^{-\beta E_{n}} is the partition function. In the generalized case, ρρ\rho^{\dagger}\neq\rho due to HHH^{\dagger}\neq H. By expressing H=nEn|ΨnΦn|H=\sum_{n}E_{n}|\Psi_{n}\rangle\langle\Phi_{n}|, the density matrix is given by

ρ=neβEnZ|ΨnΦn|,\displaystyle\rho=\sum_{n}\frac{\mathrm{e}^{-\beta E_{n}}}{Z}|\Psi_{n}\rangle\langle\Phi_{n}|, (8)

whose trace follows the normalization Trρ=nΦn|ρ|Ψn=1\text{Tr}\rho=\sum_{n}\langle\Phi_{n}|\rho|\Psi_{n}\rangle=1. Applying Eq. (4), we get a relation ρ=Sρ0S1\rho=S\rho_{0}S^{-1} connecting ρ\rho and ρ0=eβH0TreβH0\rho_{0}=\frac{\mathrm{e}^{-\beta H_{0}}}{\text{Tr}\mathrm{e}^{-\beta H_{0}}}.

II.2 Geometric phase of Hermitian systems

II.2.1 Pure states

The geometric phase, especially the Berry phase [32], reflects the underlying geometry of quantum physics. For Hermitian systems, its formulation can be derived through the concept of the parallel condition among quantum states. Two states, |ψ1|\psi_{1}\rangle and |ψ2|\psi_{2}\rangle, are considered parallel with each other if ψ1|ψ2=ψ2|ψ1>0\langle\psi_{1}|\psi_{2}\rangle=\langle\psi_{2}|\psi_{1}\rangle>0 [83]. The overlap is also referred to as the fidelity [83]. The parallel condition complements the concept of orthogonality of quantum states and builds a binary relation between quantum states. However, it is not an equivalence relation since it lacks transitivity. This means even when a state |Ψ(t)|Ψ(𝐑(t))|\Psi(t)\rangle\equiv|\Psi(\mathbf{R}(t))\rangle evolves along a path 𝐑(t)\mathbf{R}(t) and preserves the condition of instantaneous parallel-transport, or being “in-phase”, denoted as

Ψ(t)|Ψ(t+dt)>0,\displaystyle\langle\Psi(t)|\Psi(t+\mathrm{d}t)\rangle>0, (9)

it is possible that the final state may not remain parallel to the initial state. The loss of the parallelity is measured by the geometric phase, as explained here. By expanding the left-hand-side of Eq. (9) and noticing that Ψ(t)|ddt|Ψ(t)dt\langle\Psi(t)|\frac{\mathrm{d}}{\mathrm{d}t}|\Psi(t)\rangle\mathrm{d}t is imaginary, the parallel-transport condition is equivalent to

Ψ(t)|ddt|Ψ(t)=0.\displaystyle\langle\Psi(t)|\frac{\mathrm{d}}{\mathrm{d}t}|\Psi(t)\rangle=0. (10)

The we rewrite |Ψ(t)|\Psi(t)\rangle as |Ψ(t)=eiθ(t)|ψ(t)|\Psi(t)\rangle=\mathrm{e}^{\mathrm{i}\theta(t)}|\psi(t)\rangle, where θ(t)\theta(t) contains the information about the phase, including the dynamic and geometric components. However, the parallel-transport condition only allows the geometric phase to survive. Explicitly, if |Ψ(t)|\Psi(t)\rangle experiences a dynamic evolution described by iddt|Ψ(t)=H|Ψ(t)\mathrm{i}\frac{\mathrm{d}}{\mathrm{d}t}|\Psi(t)\rangle=H|\Psi(t)\rangle with HH being the Hamiltonian of a Hermitian quantum system, the condition (10) indicates 0tdtΨ(t)|H|Ψ(t)=0{\int_{0}^{t}}\mathrm{d}t^{\prime}\langle\Psi(t^{\prime})|H|\Psi(t^{\prime})\rangle=0, i.e., the dynamic phase vanishes instantaneously. Substituting |Ψ(t)=eiθ(t)|ψ(t)|\Psi(t)\rangle=\mathrm{e}^{\mathrm{i}\theta(t)}|\psi(t)\rangle into the parallel-transport condition, we get

iθ˙+ψ(t)|ddt|ψ(t)=0.\displaystyle\mathrm{i}\dot{\theta}+\langle\psi(t)|\frac{\mathrm{d}}{\mathrm{d}t}|\psi(t)\rangle=0. (11)

In a cyclic process of duration τ\tau, the solution to Eq. (11) is the geometric phase

θ(τ)=i0τdtψ(t)|ddt|ψ(t).\displaystyle\theta(\tau)=\mathrm{i}\int_{0}^{\tau}\mathrm{d}t\langle\psi(t)|\frac{\mathrm{d}}{\mathrm{d}t}|\psi(t)\rangle. (12)

II.2.2 Thermal states

The geometric-phase formalism can be generalized to mixed quantum states undergoing a unitary evolution [48]. When a density matrix evolves as ρ(t)=U(t)ρ(0)U(t)\rho(t)=U(t)\rho(0)U^{\dagger}(t) with a unitary U(t)U(t), it acquires a phase θ(t)=argTr[ρ(0)U(t)]\theta(t)=\arg\text{Tr}\left[\rho(0)U(t)\right]. Here “Tr” is the ordinary trace in the Hermitian quantum system. It can be shown that ρ(t+dt)=U(t+dt)U(t)ρ(t)U(t)U(t+dt)\rho(t+\mathrm{d}t)=U(t+\mathrm{d}t)U^{\dagger}(t)\rho(t)U(t)U^{\dagger}(t+\mathrm{d}t), yielding that ρ(t)\rho(t) evolves into ρ(t+dt)\rho(t+\mathrm{d}t) via U(t+dt)U(t)U(t+\mathrm{d}t)U^{\dagger}(t). Accordingly, the condition argTr[ρ(t)U(t+dt)U(t)]=0\arg\text{Tr}\left[\rho(t)U(t+\mathrm{d}t)U^{\dagger}(t)\right]=0 means that ρ(t+dt)\rho(t+\mathrm{d}t) is “in phase” with ρ(t)\rho(t) since no extra phase is accumulated during the evolution. Taking the differential form, we obtain the parallel-transport condition

Tr[ρ(t)U˙(t)U(t)]=Tr[ρ(0)U(t)U˙(t)]=0.\displaystyle\text{Tr}\left[\rho(t)\dot{U}(t)U^{\dagger}(t)\right]=\text{Tr}\left[\rho(0)U^{\dagger}(t)\dot{U}(t)\right]=0. (13)

Under this condition,

θG(t)=argTr[ρ(0)U(t)]\displaystyle\theta_{\text{G}}(t)=\arg\text{Tr}\left[\rho(0)U(t)\right] (14)

is the interferometric geometric phase (IGP), introduced in Ref. [48]. Similar to its pure-state counterpart, the parallel-transport condition (13) also prevents the accumulation of the dynamic phase. If U(t)U(t) represents a dynamic evolution, then iU˙=HU\mathrm{i}\dot{U}=HU, or equivalently, H=iU˙UH=\mathrm{i}\dot{U}U^{\dagger}. Thus, the dynamic phase accumulated during this evolution vanishes identically:

θD(t)\displaystyle\theta_{\text{D}}(t) =0tdtTr[ρ(t)H(t)]\displaystyle=-\int_{0}^{t}\mathrm{d}t^{\prime}\text{Tr}\left[\rho(t^{\prime})H(t^{\prime})\right]
=i0tdtTr[ρ(t)U˙(t)U(t)]=0.\displaystyle=-\mathrm{i}\int_{0}^{t}\mathrm{d}t^{\prime}\text{Tr}\left[\rho(t^{\prime})\dot{U}(t^{\prime})U^{\dagger}(t^{\prime})\right]=0. (15)

If the trace is evaluated with the eigenstates {|n(t)}\{|n(t)\rangle\} of ρ(t)\rho(t), only the diagonal elements n(t)|U(t)|n(t)\langle n(t)|U(t)|n(t)\rangle is relevant to the determination of θG(t)\theta_{\text{G}}(t). Thus, to specify U(t)U(t), it was suggested by Sjo¨\ddot{\text{o}}qvist et al. [48] to strengthen the parallel-transport condition as

n(t)|U˙(t)U(t)|n(t)=0,n=1,2,,N.\displaystyle\langle n(t)|\dot{U}(t)U^{\dagger}(t)|n(t)\rangle=0,\quad n=1,2,\cdots,N. (16)

If ρ(t)\rho(t) is the density matrix of a pure state, Eq. (13) naturally reduces to the condition (10) for pure states.

III Geometric phase of PT-symmetric quantum systems

III.1 Geometric phase for pure states

III.1.1 Adiabatic approaches

The concept of geometric phase has been generalized to some non-Hermitian systems in Ref. [46], where the expression of the Berry phase was obtained by following Berry’s formalism of adiabatic evolution. Explicitly, for a 𝒫𝒯\mathcal{PT}-symmetric system undergoing evolution along a loop C(t):=𝐑(t)C(t):=\mathbf{R}(t) with 0<t<τ0<t<\tau and 𝐑(0)=𝐑(τ)\mathbf{R}(0)=\mathbf{R}(\tau) in the parameter manifold, the nnth eigenstate at the end of this evolution is given by

|Ψn(𝐑(τ))=eiθnD(τ)+iθnB(C)|Ψn(𝐑(0)).\displaystyle|\Psi_{n}(\mathbf{R}(\tau))\rangle=\mathrm{e}^{\mathrm{i}\theta^{\text{D}}_{n}(\tau)+\mathrm{i}\theta^{\text{B}}_{n}(C)}|\Psi_{n}(\mathbf{R}(0))\rangle. (17)

Here, θnD(t)=0tdtEn(𝐑(t))\theta^{\text{D}}_{n}(t)=-{\int}_{0}^{t}\mathrm{d}t^{\prime}E_{n}(\mathbf{R}(t^{\prime})) represents the instantaneous dynamic phase, and

θnB(C)=iCd𝐑[Ψn|W|Ψn+12Ψn|(W)|Ψn]\displaystyle\theta^{\text{B}}_{n}(C)=\mathrm{i}\oint_{C}\mathrm{d}\mathbf{R}\cdot\left[\left\langle\Psi_{n}|W\nabla|\Psi_{n}\right\rangle+\frac{1}{2}\left\langle\Psi_{n}|(\nabla W)|\Psi_{n}\right\rangle\right] (18)

is the Berry phase of PTQM following this approach. It should be noted that this result is obtained by beginning with the stationary Schrödinger equation shown in Eq. (2) [46]. In this approach, θnD(t)\theta^{\text{D}}_{n}(t) is generated through the time evolution controlled by H0H_{0}, as indicated by Eq. (7).

Meanwhile, a different approach is based on the time evolution described by Eq. (6), whose dynamics is governed by the effective Hamiltonian H~=HiSS˙1\tilde{H}=H-\mathrm{i}S\dot{S}^{-1}. Different from the prior approach, it will be shown that the “gauge” map SS imparts significant effects on both the dynamic and geometric phases. This also influences the generalization of the geometric phase to thermal states in 𝒫𝒯\mathcal{PT}-symmetric systems.

When following Eq. (6) along the loop C(t)C(t), the nnth eigenstate acquires an instantaneous dynamic phase

θDn1(t)\displaystyle\theta^{1}_{\text{D}n}(t) =0tdtΨn(t)|WH~|Ψn(t)\displaystyle=-\int_{0}^{t}\mathrm{d}t^{\prime}\langle\Psi_{n}(t^{\prime})|W\tilde{H}|\Psi_{n}(t^{\prime})\rangle
=0tdtEn(t)+i0tdtΨn0(t)|S˙1S|Ψn0(t)\displaystyle=-\int_{0}^{t}\mathrm{d}t^{\prime}E_{n}(t^{\prime})+\mathrm{i}\int_{0}^{t}\mathrm{d}t^{\prime}\langle\Psi^{0}_{n}(t^{\prime})|\dot{S}^{-1}S|\Psi^{0}_{n}(t^{\prime})\rangle
=θnD(t)i0tdtΨn0(t)|S1S˙|Ψn0(t),\displaystyle=\theta^{\text{D}}_{n}(t)-\mathrm{i}\int_{0}^{t}\mathrm{d}t^{\prime}\langle\Psi^{0}_{n}(t^{\prime})|S^{-1}\dot{S}|\Psi^{0}_{n}(t^{\prime})\rangle, (19)

where |Ψn(t)|Ψn(𝐑(t))|\Psi_{n}(t)\rangle\equiv|\Psi_{n}(\mathbf{R}(t))\rangle and |Ψn0(t)|Ψn0(𝐑(t))|\Psi^{0}_{n}(t)\rangle\equiv|\Psi_{n}^{0}(\mathbf{R}(t))\rangle. Importantly, θnD(t)\theta^{\text{D}}_{n}(t) is real-valued, while θDn1(t)\theta^{1}_{\text{D}n}(t) is in general complex-valued since the dynamic equation (6) is governed by the non-Hermitian H~\tilde{H}. This is reasonable since PTQM may be realized by open systems, and complex phases implies gain or decay of the amplitude. Moreover, the second term in the last line of Eq. (III.1.1) is purely imaginary if SS is a proper mapping. To derive the geometric phase, we consider a state |Ψ(t)|\Psi(t)\rangle and expand it in terms of the instantaneous eigenstates of H(t)H(t) as

|Ψ(t)=ncn(t)eiθDn1(t)|Ψn(t).\displaystyle|\Psi(t)\rangle=\sum_{n}c_{n}(t)\mathrm{e}^{\mathrm{i}\theta^{1}_{\text{D}n}(t)}|\Psi_{n}(t)\rangle. (20)

If the system experiences an adiabatic evolution along C(t)C(t), no level crossing occurs. Thus, we found cn(t)cn(0)eiθn1(t)c_{n}(t)\approx c_{n}(0)\mathrm{e}^{\mathrm{i}\theta^{1}_{n}(t)}, or

|Ψn(t)\displaystyle|\Psi_{n}(t)\rangle =eiθDn1(t)+iθn1(t)|Ψn(0).\displaystyle=\mathrm{e}^{\mathrm{i}\theta^{1}_{\text{D}n}(t)+\mathrm{i}\theta^{1}_{n}(t)}|\Psi_{n}(0)\rangle. (21)

Here

θn1(t)\displaystyle\theta^{1}_{n}(t) =i0tdtΦn(t)|ddt|Ψn(t).\displaystyle=\mathrm{i}\int_{0}^{t}\mathrm{d}t^{\prime}\langle\Phi_{n}(t^{\prime})|\frac{\mathrm{d}}{\mathrm{d}t^{\prime}}|\Psi_{n}(t^{\prime})\rangle. (22)

A detailed derivation is outlined in Appendix A. We come to an interesting result: There exist two types of geometric phases in PTQM due to the evolutionary equations associated with the non-Hermitian Hamiltonian and its Hermitian counterpart.

III.1.2 Parallel-transport conditions

What is the relation between the geometric phases derived previously? Moreover, we have pointed out that there is an equivalent way to derive the geometric phase based on the parallelity between quantum states in conventional QM. Does this approach also apply to PTQM? To answer these questions, we first generalize the previously introduced parallel-transport condition to PTQM. Note the time evolution (6) in a 𝒫𝒯\mathcal{PT}-symmetric system is controlled by HH, which is related to the Hermitian Hamiltonian H0H_{0} that governs the dynamic equation (7) via a similarity transformation SS.

It has been shown that in conventional QM, the parallel-transport condition (10) ensures that the dynamic phase vanishes. Equivalently, the appearance of a non-vanishing dynamic phase violates the instantaneous parallelity when a state is evolved. Hence, in order to avoid violation of the instantaneous parallelity, we follow an approach similar to that of conventional QM to remove the dynamic phase θDn1\theta^{1}_{\text{D}n} from Eq. (20) and introduce |Ψ~n(t)=eiθn1(t)|Ψn(t)|\tilde{\Psi}_{n}(t)\rangle=\mathrm{e}^{\mathrm{i}\theta^{1}_{n}(t)}|\Psi_{n}(t)\rangle. Similarly, we also define |Ψ~n0(t)=eiθn2(t)|Ψn0(t)|\tilde{\Psi}^{0}_{n}(t)\rangle=\mathrm{e}^{\mathrm{i}\theta^{2}_{n}(t)}|\Psi^{0}_{n}(t)\rangle by eliminating θnD\theta^{\text{D}}_{n} generated during a dynamic evolution controlled by H0H_{0}. A generalizations of Eq. (10) leads to the following parallel-transport (or instantaneous in-phase) conditions:

Φ~n(t)|ddt|Ψ~n(t)\displaystyle\langle\tilde{\Phi}_{n}(t)|\frac{\mathrm{d}}{\mathrm{d}t}|\tilde{\Psi}_{n}(t)\rangle =0,\displaystyle=0, (23)
Ψ~n0(t)|ddt|Ψ~n0(t)\displaystyle\langle\tilde{\Psi}^{0}_{n}(t)|\frac{\mathrm{d}}{\mathrm{d}t}|\tilde{\Psi}^{0}_{n}(t)\rangle =0.\displaystyle=0. (24)

Thus, θn1,2(t)\theta^{1,2}_{n}(t) is the accumulated phase during the respective parallel transport. Solving these equations, we get

θn1(C)\displaystyle\theta^{1}_{n}(C) =iCdtΦn(t)|ddt|Ψn(t),\displaystyle=\mathrm{i}\oint_{C}\mathrm{d}t\langle\Phi_{n}(t)|\frac{\mathrm{d}}{\mathrm{d}t}|\Psi_{n}(t)\rangle, (25)
θn2(C)\displaystyle\theta^{2}_{n}(C) =iCdtΨn0(t)|ddt|Ψn0(t),\displaystyle=\mathrm{i}\oint_{C}\mathrm{d}t\langle\Psi^{0}_{n}(t)|\frac{\mathrm{d}}{\mathrm{d}t}|\Psi^{0}_{n}(t)\rangle, (26)

at the end of the corresponding parallel transport. Eq. (23) reproduces the geometric phase of Eq. (22) derived by the adiabatic approach. Moreover, it can be verified that θn2\theta^{2}_{n} matches the Berry phase shown in Eq. (18):

θn2(C)=θnB(C)\displaystyle\theta^{2}_{n}(C)=\theta^{\text{B}}_{n}(C) (27)

as long as SS is a proper mapping.

While Eq. (III.1.1) gives a relation between the two dynamic phases θDn1\theta^{1}_{\text{D}n} and θnD\theta^{\text{D}}_{n}, there is a similar relation connecting θn1\theta^{1}_{n} and θn2\theta^{2}_{n}:

θn1=θn2+idtΨn0(t)|S1S˙|Ψn0(t).\displaystyle\theta^{1}_{n}=\theta^{2}_{n}+\mathrm{i}\oint\mathrm{d}t\langle\Psi^{0}_{n}(t)|S^{-1}\dot{S}|\Psi^{0}_{n}(t)\rangle. (28)

The proofs of Eqs. (27) and (28) are outlined in Appendix A. Interestingly, θn1\theta^{1}_{n} can be complex-valued due to the presence of the non-Hermitian H~\tilde{H} in the dynamic evolution (6). Since the dynamic phase θDn1\theta^{1}_{\text{D}n} is excluded by the parallel-transport condition, what remains is the geometric component θn1\theta^{1}_{n}. The imaginary part of θn1\theta^{1}_{n} implies a change of the amplitude of the wavefunction since the system is non-Hermitian. We will find similar results in our subsequent discussions on thermal states.

In the framework of the IGP, the geometric phase for mixed states is intricately linked to that of pure states. This raises a pertinent question: In the context of PTQM, which one of θn1,2\theta^{1,2}_{n} is more natural for a generalization to thermal states? Referring back to Eqs. (7), (17), and (24), it can be inferred that both θn2\theta^{2}_{n} and θnD\theta^{\text{D}}_{n} may arise in a quantum system governed by H0H_{0}. In contrast, θn1\theta^{1}_{n} and θDn1\theta^{1}_{\text{D}n} can be generated in a 𝒫𝒯\mathcal{PT}-symmetric system controlled by HH. Consequently, we choose θn1\theta^{1}_{n} and the corresponding approach to develop the formalism of the IGP of thermal states in PTQM.

III.2 Interferometric geometric phase for thermal states

To generalize the IGP to PTQM, we focus on states in thermal equilibrium at temperature TT described by their non-Hermitian density matrix ρ=1ZeβH\rho=\frac{1}{Z}\mathrm{e}^{-\beta H} as stated before. Since the density matrix may be a non-Hermitian operator in those cases, it usually experiences non-unitary evolution since HH is non-Hermitian. We consider a general form ρ(t)=U(t)ρ(0)U1(t)\rho(t)=U(t)\rho(0)U^{-1}(t) with ρ(0)=ρ\rho(0)=\rho. Similar to conventional QM, the system acquires a (total) phase

θtot(t)=argTr[ρ(0)U(t)]\displaystyle\theta_{\text{tot}}(t)=\arg\text{Tr}\left[\rho(0)U(t)\right] (29)

during this evolution. Since a statistical ensemble encompasses all energy levels, each weighted by its respective thermal weight, it is more suitable to introduce the geometric phase via the parallel-transport condition, which also fixes the form of U(t)U(t). To ensure that ρ(t+dt)\rho(t+\mathrm{d}t) is in phase with ρ(t)\rho(t) during the evolution, the condition (13) is generalized as

Tr[ρ(t)U˙(t)U1(t)]=Tr[ρ(0)U1(t)U˙(t)]=0.\displaystyle\text{Tr}\left[\rho(t)\dot{U}(t)U^{-1}(t)\right]=\text{Tr}\left[\rho(0)U^{-1}(t)\dot{U}(t)\right]=0. (30)

If U(t)U(t) is a time evolution along a loop in the parameter manifold, then Eq. (6) yields iU˙=H~U\mathrm{i}\dot{U}=\tilde{H}U or iU˙U1=H~\mathrm{i}\dot{U}U^{-1}=\tilde{H}. Similar to Eq. (II.2.2), the parallel-transport condition (30) causes the dynamic phase to vanish:

θD(t)=0tdtTr[ρ(t)H~(t)]=0.\displaystyle\theta_{\text{D}}(t)=\int_{0}^{t}\mathrm{d}t^{\prime}\text{Tr}\left[\rho(t^{\prime})\tilde{H}(t^{\prime})\right]=0. (31)

This may be realized by choosing a suitable evolution path in the parameter manifold [78]. Under parallel-transport, the density matrix evolves as

ρ(t)=neβEnZ|Ψn(t)Φn(t)|,\displaystyle\rho(t)=\sum_{n}\frac{\mathrm{e}^{-\beta E_{n}}}{Z}|\Psi_{n}(t)\rangle\langle\Phi_{n}(t)|, (32)

where |Ψn(t)|Ψn(𝐑(t))|\Psi_{n}(t)\rangle\equiv|\Psi_{n}(\mathbf{R}(t))\rangle and |Φn(t)|Φn(𝐑(t))|\Phi_{n}(t)\rangle\equiv|\Phi_{n}(\mathbf{R}(t))\rangle. The trace in Eq. (30) can be evaluated as nΦn(t)||Ψn(t)\sum_{n}\langle\Phi_{n}(t)|\cdot|\Psi_{n}(t)\rangle. Similar to Eq. (16), the parallel-transport condition are also reinforced as

Φn(t)|U˙(t)U1(t)|Ψn(t)=0,n=1,2,,N.\displaystyle\langle\Phi_{n}(t)|\dot{U}(t)U^{-1}(t)|\Psi_{n}(t)\rangle=0,\quad n=1,2,\cdots,N. (33)

Since the dynamic phase vanishes during parallel-transport, the system acquires the IGP according to Eq. (29):

θG(t)=θtot(t)=argTr[ρ(0)U(t)].\displaystyle\theta_{\text{G}}(t)=\theta_{\text{tot}}(t)=\arg\text{Tr}\left[\rho(0)U(t)\right]. (34)

A transformation satisfying the parallel-transport condition has the form

U(t)=\displaystyle U(t)= ne0tΦn(t)|ddt|Ψn(t)dt|Ψn(t)Φn(0)|\displaystyle\sum_{n}\mathrm{e}^{-\int^{t}_{0}\langle\Phi_{n}(t^{\prime})|\frac{\mathrm{d}}{\mathrm{d}t^{\prime}}|\Psi_{n}(t^{\prime})\rangle\mathrm{d}t^{\prime}}|\Psi_{n}(t)\rangle\langle\Phi_{n}(0)|
=\displaystyle= neiθn1(t)|Ψn(t)Φn(0)|.\displaystyle\sum_{n}\mathrm{e}^{\mathrm{i}\theta^{1}_{n}(t)}|\Psi_{n}(t)\rangle\langle\Phi_{n}(0)|. (35)

Similar to its pure-state counterpart, the dynamic phase θDn1(t)\theta^{1}_{\text{D}n}(t) for each level is not included to avoid violating the parallel-transport condition. Appendix B shows how U(t)U(t) indeed satisfies the condition (33). The IGP accumulated during the evolution is

θG(t)=arg[neβEnZe0tΦn(t)|ddt|Ψn(t)dtνn(t)],\displaystyle\theta_{\text{G}}(t)=\arg\left[\sum_{n}\frac{\mathrm{e}^{-\beta E_{n}}}{Z}\mathrm{e}^{-\int^{t}_{0}\langle\Phi_{n}(t^{\prime})|\frac{\mathrm{d}}{\mathrm{d}t^{\prime}}|\Psi_{n}(t^{\prime})\rangle\mathrm{d}t^{\prime}}\nu_{n}(t)\right], (36)

where νn(t)=Φn(0)|Ψn(t)\nu_{n}(t)=\langle\Phi_{n}(0)|\Psi_{n}(t)\rangle. If the system undergoes a cyclic process along a loop C(t)=𝐑(t)C(t)=\mathbf{R}(t) with 𝐑(τ)=𝐑(0)\mathbf{R}(\tau)=\mathbf{R}(0), then νn(τ)=1\nu_{n}(\tau)=1 and

θG(C)=arg[neβEnZeiθn1(C)].\displaystyle\theta_{\text{G}}(C)=\arg\left[\sum_{n}\frac{\mathrm{e}^{-\beta E_{n}}}{Z}\mathrm{e}^{\mathrm{i}\theta^{1}_{n}(C)}\right]. (37)

Here θn1(C)\theta^{1}_{n}(C) is the geometric phase factor associated with the nnth individual pure state in the process, given by Eq. (25). It can be shown that θG(C)\theta_{\text{G}}(C) reduces to θn1(C)\theta^{1}_{n}(C) in the zero temperature limit since limβeβE1Z=1\lim_{\beta\rightarrow\infty}\frac{\mathrm{e}^{-\beta E_{1}}}{Z}=1 and limβeβEn>1Z=0\lim_{\beta\rightarrow\infty}\frac{\mathrm{e}^{-\beta E_{n>1}}}{Z}=0. This is consistent with the reason that we choose θn1(C)\theta^{1}_{n}(C) as the geometric phase for pure states in PTQM. Since θn1(C)\theta^{1}_{n}(C) is complex in general, θG(C)\theta_{\text{G}}(C) may also be complex. Its effect will be clarified later.

IV Example: two-level system

To understand the IGP of PTQM more clearly, we study a 𝒫𝒯\mathcal{PT}-symmetric two-level system introduced in Refs. [84, 46] and calculate its IGP. The Hamiltonian is given by

H=ϵ𝟏2×2+(a𝐧r+ib𝐧θ)𝝈,\displaystyle H=\epsilon\mathbf{1}_{2\times 2}+\left(a\mathbf{n}^{r}+\mathrm{i}b\mathbf{n}^{\theta}\right)\cdot\bm{\sigma}, (38)

where 𝝈=(σx,σy,σz)T\bm{\sigma}=(\sigma_{x},\sigma_{y},\sigma_{z})^{T} is the collection of Pauli matrices and 𝐧r(sinθcosϕ,sinθsinϕ,cosθ)T\mathbf{n}^{r}\equiv(\sin\theta\cos\phi,\sin\theta\sin\phi,\cos\theta)^{T}, 𝐧θ(cosθcosϕ,cosθsinϕ,sinθ)T\mathbf{n}^{\theta}\equiv(\cos\theta\cos\phi,\cos\theta\sin\phi,-\sin\theta)^{T} are the unit vectors respectively along the radial and tangent directions of a meridian on a unit sphere. The eigenvalues are E±=ϵ±a2b2E_{\pm}=\epsilon\pm\sqrt{a^{2}-b^{2}}. We limit our discussion to the regime of a2>b2a^{2}>b^{2}, where the 𝒫𝒯\mathcal{PT}-symmetry is not broken and E±E_{\pm} is real. Without loss of generality, we let a>0a>0. The two eigen-vectors are

|Ψ+=n+((cosθ2iαsinθ2)eiϕiαcosθ2+sinθ2),\displaystyle\left|\Psi_{+}\right\rangle=n_{+}\left(\begin{array}[]{c}\left(\cos\frac{\theta}{2}-\mathrm{i}\alpha\sin\frac{\theta}{2}\right)\mathrm{e}^{-\mathrm{i}\phi}\\ \mathrm{i}\alpha\cos\frac{\theta}{2}+\sin\frac{\theta}{2}\end{array}\right), (41)
|Ψ=n((iαcosθ2+sinθ2)eiϕcosθ2iαsinθ2),\displaystyle\left|\Psi_{-}\right\rangle=n_{-}\left(\begin{array}[]{c}-\left(\mathrm{i}\alpha\cos\frac{\theta}{2}+\sin\frac{\theta}{2}\right)\mathrm{e}^{-\mathrm{i}\phi}\\ \cos\frac{\theta}{2}-\mathrm{i}\alpha\sin\frac{\theta}{2}\end{array}\right), (44)

where α=ba+a2b2\alpha=\frac{b}{a+\sqrt{a^{2}-b^{2}}} and n±=eiθ2a2+aa2b22(a2b2)n_{\pm}=\mathrm{e}^{-\mathrm{i}\frac{\theta}{2}}\sqrt{\frac{a^{2}+a\sqrt{a^{2}-b^{2}}}{2\left(a^{2}-b^{2}\right)}} are normalization coefficients. The metric operator WW of this case is

W=1ba𝐧ϕ𝝈,\displaystyle W=1-\frac{b}{a}\mathbf{n}^{\phi}\cdot\bm{\sigma}, (45)

where 𝐧ϕ=(sinϕ,cosϕ,0)T\mathbf{n}^{\phi}=(-\sin\phi,\cos\phi,0)^{T} is the unit tangent vector of a latitude. In what follows, we will fix aa and bb, thus the parameters (θ,ϕ)(\theta,\phi) form the parameter manifold S2S^{2}, a unit spherical surface. Using Eq. (18), θ±2\theta^{2}_{\pm} associated with a loop CC on S2S^{2} is given by [46]

θ±2(C)=\displaystyle\theta^{2}_{\pm}(C)= 12aa2b2Ω(C)+(1±aa2b2)π\displaystyle\mp\frac{1}{2}\frac{a}{\sqrt{a^{2}-b^{2}}}\Omega(C)+\left(1\pm\frac{a}{\sqrt{a^{2}-b^{2}}}\right)\pi
±\displaystyle\pm π4(1aa2b2),\displaystyle\frac{\pi}{4}\left(1-\frac{a}{\sqrt{a^{2}-b^{2}}}\right), (46)

if the north pole is enclosed by CC, or

θ±2(C)=12aa2b2Ω(C)±π4(1aa2b2)\displaystyle\theta^{2}_{\pm}(C)=\mp\frac{1}{2}\frac{a}{\sqrt{a^{2}-b^{2}}}\Omega(C)\pm\frac{\pi}{4}\left(1-\frac{a}{\sqrt{a^{2}-b^{2}}}\right) (47)

if the north pole is not enclosed by CC. Here Ω(C)=Cdϕ(1cosθ)\Omega(C)={\oint}_{C}\mathrm{d}\phi(1-\cos\theta) is the solid angle of the surface enclosed by CC with respect to the origin.

As a concrete example, we take a=3a=3 and b=5b=\sqrt{5}, so the eigenvalues become E±=ϵ±2E_{\pm}=\epsilon\pm 2. To calculate the second term of θ±1(C)\theta^{1}_{\pm}(C) in Eq. (26), we choose a proper SS, which can be constructed via the procedure of Ref. [46] summarized in Appendix C. Explicitly, it is given by

Sproper =(12152eiϕ412i32e5iϕ412i32e5iϕ412152eiϕ4).\displaystyle S_{\text{proper }}=\begin{pmatrix}\frac{1}{2}\sqrt{\frac{15}{2}}\mathrm{e}^{\frac{\mathrm{i}\phi}{4}}&-\frac{1}{2}\mathrm{i}\sqrt{\frac{3}{2}}\mathrm{e}^{-\frac{5\mathrm{i}\phi}{4}}\\ \frac{1}{2}\mathrm{i}\sqrt{\frac{3}{2}}\mathrm{e}^{\frac{5\mathrm{i}\phi}{4}}&\frac{1}{2}\sqrt{\frac{15}{2}}\mathrm{e}^{-\frac{\mathrm{i}\phi}{4}}\end{pmatrix}. (48)

Under this proper transformation, the original non-Hermitian Hamiltonian is converted into a Hermitian one:

H0=Sproper 1HSproper =(ϵ+2cosθ2e3iϕ2sinθ2e3iϕ2sinθϵ2cosθ).\displaystyle H_{0}=S^{-1}_{\text{proper }}HS_{\text{proper }}=\begin{pmatrix}\epsilon+2\cos\theta&2\mathrm{e}^{-\frac{3\mathrm{i}\phi}{2}}\sin\theta\\ 2\mathrm{e}^{\frac{3\mathrm{i}\phi}{2}}\sin\theta&\epsilon-2\cos\theta\end{pmatrix}. (49)

The eigenvector associated with ϵ\epsilon+2 is

|Ψ+0(θ,ϕ)=(e3iϕ2(cotθ+cscθ)(cotθ+cscθ)2+11(cotθ+cscθ)2+1).\displaystyle\left|\Psi^{0}_{+}(\theta,\phi)\right\rangle=\begin{pmatrix}\frac{\mathrm{e}^{-\frac{3\mathrm{i}\phi}{2}}(\cot\theta+\csc\theta)}{\sqrt{(\cot\theta+\csc\theta)^{2}+1}}\\ \frac{1}{\sqrt{(\cot\theta+\csc\theta)^{2}+1}}\end{pmatrix}. (50)

It can be shown that

Ψ+0|S1dS|Ψ+0\displaystyle\langle\Psi^{0}_{+}|S^{-1}\mathrm{d}S|\Psi^{0}_{+}\rangle =145sinθdϕ,\displaystyle=-\frac{1}{4}\sqrt{5}\sin\theta\mathrm{d}\phi,
iCΨ+0|S1S˙|Ψ+0dt\displaystyle\mathrm{i}\oint_{C}\langle\Psi^{0}_{+}|S^{-1}\dot{S}|\Psi^{0}_{+}\rangle\mathrm{d}t =iπ25sinθ,\displaystyle=-\mathrm{i}\frac{\pi}{2}\sqrt{5}\sin\theta, (51)

where the loop CC is chosen as a circle of latitude θ\theta. Similarly, the imaginary part of θ1\theta^{1}_{-} is

iCΨ0|S1S˙|Ψ0dt=iπ25sinθ.\displaystyle\mathrm{i}\oint_{C}\langle\Psi^{0}_{-}|S^{-1}\dot{S}|\Psi^{0}_{-}\rangle\mathrm{d}t=\mathrm{i}\frac{\pi}{2}\sqrt{5}\sin\theta. (52)

Since the north pole is enclosed by CC (a circle of latitude), θ±2(C)\theta^{2}_{\pm}(C) is evaluated by Eq. (51). Using Eqs. (28), (51), and (52), the geometric phases associated with the two eigenstates are

θ+1(C)\displaystyle\theta^{1}_{+}(C) =3π2(1cosθ)+3π8iπ25sinθ,\displaystyle=-\frac{3\pi}{2}(1-\cos\theta)+\frac{3\pi}{8}-\mathrm{i}\frac{\pi}{2}\sqrt{5}\sin\theta,
θ1(C)\displaystyle\theta^{1}_{-}(C) =3π2(1cosθ)3π8+iπ25sinθ,\displaystyle=\frac{3\pi}{2}(1-\cos\theta)-\frac{3\pi}{8}+\mathrm{i}\frac{\pi}{2}\sqrt{5}\sin\theta, (53)

respectively. Here an extra factor 2π2\pi is dropped from θ+1(C)\theta^{1}_{+}(C). Accordingly, the IGP is

θG(C)=arg[e2βeiθ+1(C)+e2βeiθ1(C)e2β+e2β]\displaystyle\theta_{\text{G}}(C)=\arg\left[\frac{\mathrm{e}^{-2\beta}\mathrm{e}^{\mathrm{i}\theta^{1}_{+}(C)}+\mathrm{e}^{2\beta}\mathrm{e}^{\mathrm{i}\theta^{1}_{-}(C)}}{\mathrm{e}^{2\beta}+\mathrm{e}^{-2\beta}}\right]
=arg[e2β+5π2sinθeiθ+2(C)+e2β5π2sinθeiθ2(C)],\displaystyle=\arg\left[\mathrm{e}^{-2\beta+\frac{\sqrt{5}\pi}{2}\sin\theta}\mathrm{e}^{\mathrm{i}\theta^{2}_{+}(C)}+\mathrm{e}^{2\beta-\frac{\sqrt{5}\pi}{2}\sin\theta}\mathrm{e}^{\mathrm{i}\theta^{2}_{-}(C)}\right], (54)

where θ±2\theta^{2}_{\pm} is the real part of θ±1\theta^{1}_{\pm}, as shown by Eq. (28). The imaginary part of θ±1\theta^{1}_{\pm} actually changes the thermal weight of each energy-level.

Refer to caption
Figure 1: Contour plot of θG(C)\theta_{\text{G}}(C) as a function of β\beta and θ[0,π]\theta\in[0,\pi], where the range of θG(C)\theta_{\text{G}}(C) is within [0,2π][0,2\pi]. The black curve shows the arc β=5πsinθ4\beta=\frac{\sqrt{5}\pi\sin\theta}{4}, and the value of θG(C)\theta_{\text{G}}(C) jumps at the singular points A, B and C.

Eq. (14) shows that the IGP is the argument of Tr[ρ(0)U(t)]\text{Tr}\left[\rho(0)U(t)\right], which is the “returning amplitude” between the initial state ρ(0)\rho(0) and the instantaneous state ρ(t)\rho(t) [48, 78]. It can also be thought of as a generalization of the Loschmidt amplitude in mixed quantum states. At its zeros, the IGP exhibits discontinuities and nonanalytical behavior, signaling a change of the geometric nature of the system reflected by the IGP. In this example, the second line of Eq. (IV) shows that θG(C)\theta_{\text{G}}(C) may become singular if β=5πsinθ4\beta=\frac{\sqrt{5}\pi\sin\theta}{4}. To examine the IGP of PTQM, we visualize our findings in Figs. 1, 2, and 3.

In Fig. 1, we present the contour plot of θG(C)\theta_{\text{G}}(C) as a function of β\beta and θ\theta. Indeed, there are three singular points A, B and C lying on the arc β=5πsinθ4\beta=\frac{\sqrt{5}\pi\sin\theta}{4}, which correspond to the latitudes θA,B,C=arccos(512)1.14\theta_{\text{A,B,C}}=\arccos\left(\frac{5}{12}\right)\approx 1.14, arccos(14)1.82\arccos\left(-\frac{1}{4}\right)\approx 1.82, and arccos(1112)2.73\arccos\left(-\frac{11}{12}\right)\approx 2.73, respectively. The IGP changes rapidly near A, B and C, indicating that the value of θG(C)\theta_{\text{G}}(C) jumps discretely when crossing these singular points. Notably, a jump of the IGP at finite temperature has been ruled out in any two-level model of Hermitian quantum systems [78].

Refer to caption
Refer to caption
Figure 2: (Top panel) θG(C)\theta_{\text{G}}(C) as a function of θ\theta at fixed T=1βcT=\frac{1}{\beta_{c}}. When crossing the singular point θA1.14\theta_{\text{A}}\approx 1.14, there is a π\pi-jump in θG(C)\theta_{\text{G}}(C). (Bottom panel) θG(C)\theta_{\text{G}}(C) as a function of β\beta for the evolution along the circle of latitude with θ=1.14\theta=1.14. As the system crosses the critical inverse temperature βc=1.6\beta_{c}=1.6, θG(C)\theta_{\text{G}}(C) exhibits a π\pi-jump.

To grasp the physical significance of the arc β=5πsinθ4\beta=\frac{\sqrt{5}\pi\sin\theta}{4}, we revisit the corresponding Hermitian quantum system, where the thermal weight of each level is proportional to e2β\mathrm{e}^{\mp 2\beta} at temperature T=1βT=\frac{1}{\beta}. As T0T\rightarrow 0, the relative weight between the excited and ground states becomes limβ+e2βe2β=0\lim_{\beta\rightarrow+\infty}\frac{\mathrm{e}^{-2\beta}}{\mathrm{e}^{2\beta}}=0, leading the IGP to converge to the geometric phase of the ground state. In the infinite temperature limit (β0\beta\rightarrow 0), the relative weight becomes limβ0e2βe2β=1\lim_{\beta\rightarrow 0}\frac{\mathrm{e}^{-2\beta}}{\mathrm{e}^{2\beta}}=1. In this case, the Hermitian density matrix corresponds to the maximally mixed state, where each level has equal thermal weight, and the IGP loses its resemblance to the ground-state geometric phase. Turning to 𝒫𝒯\mathcal{PT}-symmetric systems, the parallel-transport condition eliminates the dynamic phase from the total phase, leaving a complex IGP. The imaginary part of the IGP (or θ±1\theta^{1}_{\pm}) modifies the thermal weights of the two levels to exp[(2β5πsinθ2)]\left[\mp\left(2\beta-\frac{\sqrt{5}\pi\sin\theta}{2}\right)\right], which will be referred to as the “effective thermal weights”. Notably, in the low-temperature limit, the behavior of the IGP can still mirror that of the corresponding Hermitian system. In Fig. 1, the domain where β>5πsinθ4\beta>\frac{\sqrt{5}\pi\sin\theta}{4} corresponds to the phase at “effective” positive temperatures for the non-Hermitian quantum system. The arc β=5πsinθ4\beta=\frac{\sqrt{5}\pi\sin\theta}{4} signifies the “effective” infinite-temperature threshold. Conversely, the regime where β<5πsinθ4\beta<\frac{\sqrt{5}\pi\sin\theta}{4} corresponds to the phase at “effective” negative temperatures. In this scenario, the original temperature TT alongside with the imaginary part of θ±1\theta^{1}_{\pm} determines the relative thermal distribution between the excited and ground states.

Refer to caption
Figure 3: θG(C)\theta_{\text{G}}(C) as a function of lnβ\ln\beta when the system evolves along the equator (θ=π2\theta=\frac{\pi}{2}). In this case, the imaginary part of θ±1\theta^{1}_{\pm} has a maximal effect on the thermal weights.

At the singular points A, B and C on the curve β=5πsinθ4\beta=\frac{\sqrt{5}\pi\sin\theta}{4}, it can be verified that θ2(C)θ+2(C)=π\theta^{2}_{-}(C)-\theta^{2}_{+}(C)=\pi, 3π3\pi and 5π5\pi. Thus, the genuine geometric phase factor eiθ±2(C)\mathrm{e}^{\mathrm{i}\theta^{2}_{\pm}(C)} associated with each level is off by a factor of 1-1, making the IGP jump by π\pi when crossing these points. The physical meaning behind these discontinuities can be understood as follows. Take for example point A with critical inverse temperature βc=1.6\beta_{c}=1.6. When the system at the fixed temperature Tc=1βcT_{c}=\frac{1}{\beta_{c}} evolves along a circles of latitude θ=θA+0+\theta=\theta_{\text{A}}+0^{+} (or θ=θA0+\theta=\theta_{\text{A}}-0^{+}), the system ends up in the “effective” positive (or negative) temperature phase. When crossing θA\theta_{\text{A}}, the IGP experiences a π\pi-jump. To better visualize the phenomena, we show the jump of the IGP along βc=1.6\beta_{c}=1.6 in the top panel of Fig. 2. Similarly, the geometric nature of the evolution along a circle of latitude θ=θA\theta=\theta_{\text{A}} changes as the inverse temperature crosses βc\beta_{c}. This transition is clearly depicted in the bottom panel of Fig. 2. We refer to this non-analytical behavior of the IGP as signaling a geometric phase transition. Explicitly, the system at point A is in the “effective” positive-temperature phase when β>βc\beta>\beta_{c} and the IGP resembles θ2(C)=π2\theta^{2}_{-}(C)=\frac{\pi}{2}, the real-valued geometric phase of the ground state. After crossing βc\beta_{c}, the system enters the “effective” negative-temperature phase with β<βc\beta<\beta_{c}, and the IGP changes to resemble θ+2(C)=π23π2mod2π\theta^{2}_{+}(C)=-\frac{\pi}{2}\equiv\frac{3\pi}{2}\mod 2\pi, the real-valued geometric phase of the excited state.

When θθA,B,C\theta\neq\theta_{\text{A,B,C}}, the IGP represents an interpolation between the geometric phases of the excited and ground states as temperature varies. When the system evolves along the equator with θ=π2\theta=\frac{\pi}{2}, the magnitude of |Imθ±1(C)||\text{Im}\theta^{1}_{\pm}(C)| reaches its maximum, indicating a maximal contribution to the effective temperature in determining the thermal weights. Furthermore, θ±2(C)=Reθ±1(C)=9π8\theta^{2}_{\pm}(C)=\text{Re}\theta^{1}_{\pm}(C)=\mp\frac{9\pi}{8}, as derived from Eq. (IV). The behavior of θG(C)\theta_{\text{G}}(C) is illustrated in Fig. 3, where β\beta transitions from 0 (the infinite-temperature limit) to ++\infty (the low-temperature limit) displayed on a logarithmic scale. In the scenario where β+\beta\rightarrow+\infty, θG(C)9π8=θ2(C)\theta_{\text{G}}(C)\rightarrow\frac{9\pi}{8}=\theta^{2}_{-}(C). Conversely, when β\beta approaches 0, θG(C)\theta_{\text{G}}(C) approximates θ+2(C)\theta^{2}_{+}(C), which equals 7π89π8mod2π\frac{7\pi}{8}\equiv-\frac{9\pi}{8}\mod 2\pi.

IV.1 Implications

On the one hand, PTQM may be realized in driven systems. For example, Ref. [85] demonstrated a 𝒫𝒯\mathcal{PT}-symmetric quantum system with two coupled optical waveguides selectively pumped. By modulating the refractive index along the waveguides, the Hamiltonian may be engineered to the desired form. On the other hand, the IGP of mixed states in Hermitian systems have been measured by using a Mach-Zehnder interferometer setup demonstrated in Refs. [86, 87], where mixed states were generated through two methods: Decohering pure states with birefringent elements and creating a non-maximally entangled state of two photons followed by tracing out one photon.

As shown in this work, the IGP of PTQM is in general complex-valued, where the real part represents a phase factor while the imaginary part adjusts the distribution. By applying the phase measurement [86, 87] to extract the IGP of mixed states in 𝒫𝒯\mathcal{PT}-symmetric systems, it is likely to extract only the thermal average of the IGPs of individual states. Nevertheless, one may compare the population distribution of the evolved system with that of a corresponding system without the accumulation of the IGP. The difference in the distribution is due to the imaginary part of the IGP of the PTQM system. Therefore, the real- and imaginary- parts of the IGP of PTQM systems seem to be measurable albeit the procedure is more complicated due to the lack of Hermiticity.

V Conclusion

The concept of geometric phase has been generalized to PTQM via the introduction of parallel-transport. For pure-states, the parallel-transport conditions for the eigenstates of HH and H0H_{0} lead to distinct generalizations of the geometric phases, θ1\theta^{1} and θ2\theta^{2}, as obtained from the conventional methods. In general, θ1\theta^{1} is complex and θ2\theta^{2} is its real part. As θ1\theta^{1} arises from the non-Hermitian Hamiltonian, it is generalized to mixed states in PTQM. Moreover, the discussion of the IGP of mixed states is meaningful after the dynamic phase has been removed by the parallel-transport condition. The imaginary part of the IGP of PTQM affects the thermal weights and introduces effective temperatures. Consequently, even in a simple two-level system, the IGP of PTQM can display interesting behaviors unavailable in conventional QM, such as the geometric phase transition of a two-level system at finite temperature. For more complicated non-Hermitian quantum systems, the generalized IGP may serve as a probe to uncover intriguing characteristics due to geometry and topology.

VI Acknowledgments

H.G. was supported by the National Natural Science Foundation of China (Grant No. 12074064). X. Y. H. was supported by the Jiangsu Funding Program for Excellent Postdoctoral Talent (Grant No. 2023ZB611). C.C.C. was supported by the National Science Foundation under Grant No. PHY-2310656

Appendix A Details of the geometric phase of pure states

To derive the geometric phase shown in Eq. (22), the expansion (20) is plugged into Eq. (6), yielding

i|Ψ˙=m[(ic˙m+cmE~m)eiθDm1|Ψm+cmeiθDm1|Ψ˙m],\displaystyle\mathrm{i}|\dot{\Psi}\rangle=\sum_{m}\left[(\mathrm{i}\dot{c}_{m}+c_{m}\tilde{E}_{m})\mathrm{e}^{\mathrm{i}\theta^{1}_{\text{D}m}}|\Psi_{m}\rangle+c_{m}\mathrm{e}^{\mathrm{i}\theta^{1}_{\text{D}m}}|\dot{\Psi}_{m}\rangle\right], (55)

where E~m=Em+iΨm0|S1S˙|Ψm0\tilde{E}_{m}=E_{m}+\mathrm{i}\langle\Psi^{0}_{m}|S^{-1}\dot{S}|\Psi^{0}_{m}\rangle. Applying Eq. (6), the left-hand-side becomes

i|Ψ˙=mcmeiθDm1(EmiSS˙1)|Ψm.\displaystyle\mathrm{i}|\dot{\Psi}\rangle=\sum_{m}c_{m}\mathrm{e}^{\mathrm{i}\theta^{1}_{\text{D}m}}(E_{m}-\mathrm{i}S\dot{S}^{-1})|\Psi_{m}\rangle. (56)

Multiplying the above equations by Φn|\langle\Phi_{n}| from the left and applying the relation [46]

Φn|Ψ˙m=Φn|H˙|ΨmEnEm for mm,\displaystyle\langle\Phi_{n}|\dot{\Psi}_{m}\rangle=\frac{\langle\Phi_{n}|\dot{H}|\Psi_{m}\rangle}{E_{n}-E_{m}}\text{ for }m\neq m, (57)

we get

c˙n=icnΦn|Ψ˙n\displaystyle\dot{c}_{n}=\mathrm{i}c_{n}\langle\Phi_{n}|\dot{\Psi}_{n}\rangle
+\displaystyle+ imncmei(θDm1θDn1)Φn|(H˙EnEm+iSS˙1)|Ψm.\displaystyle\mathrm{i}\sum_{m\neq n}c_{m}\mathrm{e}^{\mathrm{i}(\theta^{1}_{\text{D}m}-\theta^{1}_{\text{D}n})}\langle\Phi_{n}|\left(\frac{\dot{H}}{E_{n}-E_{m}}+\mathrm{i}S\dot{S}^{-1}\right)|\Psi_{m}\rangle. (58)

As in the conventional quantum mechanics, the adiabatic approximation is employed, so level-crossing terms (i.e., terms with mnm\neq n) are dropped. We finally get

c˙n(t)icn(t)Φn|ddt|Ψn,\displaystyle\dot{c}_{n}(t)\doteq\mathrm{i}c_{n}(t)\langle\Phi_{n}|\frac{\mathrm{d}}{\mathrm{d}t}|\Psi_{n}\rangle, (59)

whose solution is

cn(t)cn(0)e0tdtΦn(t)|ddt|Ψn(t).\displaystyle c_{n}(t)\approx c_{n}(0)\mathrm{e}^{-\int_{0}^{t}\mathrm{d}t^{\prime}\langle\Phi_{n}(t^{\prime})|\frac{\mathrm{d}}{\mathrm{d}t^{\prime}}|\Psi_{n}(t^{\prime})\rangle}. (60)

Next, we verify that

θn2(τ)=\displaystyle\theta^{2}_{n}(\tau)= iCdtΨn0(t)|ddt|Ψn0(t)\displaystyle\mathrm{i}\oint_{C}\mathrm{d}t\langle\Psi^{0}_{n}(t)|\frac{\mathrm{d}}{\mathrm{d}t}|\Psi^{0}_{n}(t)\rangle
=\displaystyle= iCd𝐑[Ψn|W|Ψn+12Ψn|(W)|Ψn]\displaystyle\mathrm{i}\oint_{C}\mathrm{d}\mathbf{R}\cdot\left[\left\langle\Psi_{n}|W\nabla|\Psi_{n}\right\rangle+\frac{1}{2}\left\langle\Psi_{n}|(\nabla W)|\Psi_{n}\right\rangle\right]
=\displaystyle= θnB\displaystyle\theta^{\text{B}}_{n} (61)

subject to S˙1S=(S˙1S)\dot{S}^{-1}S=(\dot{S}^{-1}S)^{\dagger}. Using |Φn(t)=W(t)|Ψn(t)|\Phi_{n}(t)\rangle=W(t)|\Psi_{n}(t)\rangle and W=WW^{\dagger}=W, the first term on the right-hand-side of Eq. (18) is nothing but θn1\theta^{1}_{n}, which can be further expressed as

θn1=idtΦn(t)|ddt|Ψn(t)\displaystyle\theta^{1}_{n}=\mathrm{i}\oint\mathrm{d}t\langle\Phi_{n}(t)|\frac{\mathrm{d}}{\mathrm{d}t}|\Psi_{n}(t)\rangle
=\displaystyle= idtΨn0(t)|S1S˙|Ψn0(t)+idtΨn0(t)|ddt|Ψn0(t)\displaystyle\mathrm{i}\oint\mathrm{d}t\langle\Psi^{0}_{n}(t)|S^{-1}\dot{S}|\Psi^{0}_{n}(t)\rangle+\mathrm{i}\oint\mathrm{d}t\langle\Psi^{0}_{n}(t)|\frac{\mathrm{d}}{\mathrm{d}t}|\Psi^{0}_{n}(t)\rangle
=\displaystyle= idtΨn0(t)|S1S˙|Ψn0(t)+θn2.\displaystyle\mathrm{i}\oint\mathrm{d}t\langle\Psi^{0}_{n}(t)|S^{-1}\dot{S}|\Psi^{0}_{n}(t)\rangle+\theta^{2}_{n}. (62)

The second term on the right-hand-side of Eq. (18) is

i2CΨn(t)|W˙|Ψn(t)dt,\displaystyle\frac{\mathrm{i}}{2}\oint_{C}\langle\Psi_{n}(t)|\dot{W}|\Psi_{n}(t)\rangle\mathrm{d}t,
=\displaystyle= i2CΨn(t)|(S˙1)S1+(S1)S˙1|Ψn(t)dt,\displaystyle\frac{\mathrm{i}}{2}\oint_{C}\langle\Psi_{n}(t)|(\dot{S}^{-1})^{\dagger}S^{-1}+(S^{-1})^{\dagger}\dot{S}^{-1}|\Psi_{n}(t)\rangle\mathrm{d}t,
=\displaystyle= i2CΨn0(t)|[S(S˙1)+S˙1S]|Ψn0(t)dt,\displaystyle\frac{\mathrm{i}}{2}\oint_{C}\langle\Psi^{0}_{n}(t)|\left[S^{\dagger}(\dot{S}^{-1})^{\dagger}+\dot{S}^{-1}S\right]|\Psi^{0}_{n}(t)\rangle\mathrm{d}t,
=\displaystyle= iCΨn0(t)|S1S˙|Ψn0(t)dt,\displaystyle-\mathrm{i}\oint_{C}\langle\Psi^{0}_{n}(t)|S^{-1}\dot{S}|\Psi^{0}_{n}(t)\rangle\mathrm{d}t, (63)

where we have applied S(S˙1)=S˙1SS^{\dagger}(\dot{S}^{-1})^{\dagger}=\dot{S}^{-1}S from the proper mapping condition. Along with Eq. (A), we conclude that θnB=θn2\theta^{\text{B}}_{n}=\theta^{\text{2}}_{n}.

Appendix B Details of geometric phase of thermal states

To verify that U(t)U(t) in Eq. (III.2) satisfies the parallel-transport condition (33), we need the following identities:

U˙(t)=\displaystyle\dot{U}(t)= nΦn(t)|ddt|Ψn(t)U(t)\displaystyle-\sum_{n}\langle\Phi_{n}(t)|\frac{\mathrm{d}}{\mathrm{d}t}|\Psi_{n}(t)\rangle U(t)
+\displaystyle+ neΦn(t)|ddt|Ψn(t)dt(ddt|Ψn(t))Φn(0)|,\displaystyle\sum_{n}\mathrm{e}^{-\int\langle\Phi_{n}(t^{\prime})|\frac{\mathrm{d}}{\mathrm{d}t^{\prime}}|\Psi_{n}(t^{\prime})\rangle\mathrm{d}t^{\prime}}\left(\frac{\mathrm{d}}{\mathrm{d}t}|\Psi_{n}(t)\rangle\right)\langle\Phi_{n}(0)|,
U1(t)\displaystyle U^{-1}(t) =neΦn(t)|ddt|Ψn(t)dt|Ψn(0)Φn(t)|.\displaystyle=\sum_{n}\mathrm{e}^{\int\langle\Phi_{n}(t^{\prime})|\frac{\mathrm{d}}{\mathrm{d}t^{\prime}}|\Psi_{n}(t^{\prime})\rangle\mathrm{d}t^{\prime}}\left|\Psi_{n}(0)\right\rangle\left\langle\Phi_{n}(t)\right|.

They lead to Eq. (33):

Φn|U˙(t)U1(t)|Ψn\displaystyle\langle\Phi_{n}|\dot{U}(t)U^{-1}(t)|\Psi_{n}\rangle =Φn(t)|Ψn(t)Φn(t)|[Φn(t)|ddt|Ψn(t)|Ψn(t)Φn(t)|+(ddt|Ψn(t))Φn(t)|]|Ψn(t)\displaystyle=\langle\Phi_{n}(t)|\Psi_{n}(t)\rangle\langle\Phi_{n}(t)|\bigg{[}-\langle\Phi_{n}(t)|\frac{\mathrm{d}}{\mathrm{d}t}|\Psi_{n}(t)\rangle|\Psi_{n}(t)\rangle\langle\Phi_{n}(t)|+\left(\frac{\mathrm{d}}{\mathrm{d}t}|\Psi_{n}(t)\rangle\right)\langle\Phi_{n}(t)|\,\bigg{]}|\Psi_{n}(t)\rangle
=Φn(t)|ddt|Ψn(t)+Φn(t)|ddt|Ψn(t)\displaystyle=-\langle\Phi_{n}(t)|\frac{\mathrm{d}}{\mathrm{d}t}|\Psi_{n}(t)\rangle+\langle\Phi_{n}(t)|\frac{\mathrm{d}}{\mathrm{d}t}|\Psi_{n}(t)\rangle
=0.\displaystyle=0. (64)

Appendix C Proper mapping of the two-level system

To search for a proper mapping SS of our example in the main text, we first notice that W=(S1)S1W=(S^{-1})^{\dagger}S^{-1}, which is invariant under a U(N)U(N) transformation uu: S1=uS1W=(S1)S1S^{\prime-1}=uS^{-1}\rightarrow W=(S^{\prime-1})^{\dagger}S^{\prime-1}. We can use this degree of freedom to obtain a proper SS. For convenience, we initially take W=(S1)2W=(S^{-1})^{2} or conversely S1=WS^{-1}=\sqrt{W} since WW is already given by Eq. (45). Since WW is Hermitian, this kind of SS has at least two solutions:

S±1=(a2b2±aibeiπibeiπa2b2±a)2a(a2b2±a),\displaystyle S^{-1}_{\pm}=\frac{\begin{pmatrix}\sqrt{a^{2}-b^{2}}\pm a&\mathrm{i}b\mathrm{e}^{-\mathrm{i}\pi}\\ -\mathrm{i}b\mathrm{e}^{\mathrm{i}\pi}&\sqrt{a^{2}-b^{2}}\pm a\\ \end{pmatrix}}{\sqrt{2a\left(\sqrt{a^{2}-b^{2}}\pm a\right)}}, (65)

Take a=3a=3 and b=5b=\sqrt{5} and choose S=S+S=S_{+} without loss of generality, then

S=(152212i32eiϕ12i32eiϕ1522)\displaystyle S=\begin{pmatrix}\frac{\sqrt{\frac{15}{2}}}{2}&-\frac{1}{2}\mathrm{i}\sqrt{\frac{3}{2}}\mathrm{e}^{-\mathrm{i}\phi}\\ \frac{1}{2}\mathrm{i}\sqrt{\frac{3}{2}}\mathrm{e}^{\mathrm{i}\phi}&\frac{\sqrt{\frac{15}{2}}}{2}\end{pmatrix} (66)

and the original Hamiltonian is converted to

H0\displaystyle H_{0} =S1HS=(ϵ+2cosθ2eiϕsinθ2eiϕsinθϵ2cosθ).\displaystyle=S^{-1}HS=\begin{pmatrix}\epsilon+2\cos\theta&2\mathrm{e}^{-\mathrm{i}\phi}\sin\theta\\ 2\mathrm{e}^{\mathrm{i}\phi}\sin\theta&\epsilon-2\cos\theta\end{pmatrix}. (67)

The eigenvector of H0H_{0} associated with E+=ϵ+2E_{+}=\epsilon+2 is

|Ψ+0(θ,ϕ)=(eiϕ(cotθ+cscθ)(cotθ+cscθ)2+11(cotθ+cscθ)2+1),\displaystyle|\Psi^{0}_{+}(\theta,\phi)\rangle=\begin{pmatrix}\frac{\mathrm{e}^{-\mathrm{i}\phi}(\cot\theta+\csc\theta)}{\sqrt{(\cot\theta+\csc\theta)^{2}+1}}\\ \frac{1}{\sqrt{(\cot\theta+\csc\theta)^{2}+1}}\end{pmatrix}, (68)

which leads to

Ψ+0|S1dS|Ψ+0=14(5sinθ+icosθ)dϕ,\displaystyle\langle\Psi^{0}_{+}|S^{-1}\mathrm{d}S|\Psi^{0}_{+}\rangle=-\frac{1}{4}(\sqrt{5}\sin\theta+\mathrm{i}\cos\theta)\mathrm{d}\phi,
iCΨ+0|S1dS|Ψ+0dt=π2(cosθi5sinθ).\displaystyle\mathrm{i}\oint_{C}\langle\Psi^{0}_{+}|S^{-1}\mathrm{d}S|\Psi^{0}_{+}\rangle\mathrm{d}t=\frac{\pi}{2}(\cos\theta-\mathrm{i}\sqrt{5}\sin\theta). (69)

Apparently, the second term of θ+1\theta^{1}_{+} is complex in this case. To make it purely imaginary, we impose a unitary transformation S1=uSproper 1S^{-1}=uS^{-1}_{\text{proper }}, where uu can be fixed by the condition of a proper mapping S˙proper 1Sproper =(S˙proper 1Sproper )\dot{S}^{-1}_{\text{proper }}S_{\text{proper }}=(\dot{S}^{-1}_{\text{proper }}S_{\text{proper }})^{\dagger}. This is equivalent to solving the equation

u˙=12[S˙1S(S˙1S)]u\displaystyle\dot{u}=\frac{1}{2}\left[\dot{S}^{-1}S-\left(\dot{S}^{-1}S\right)^{\dagger}\right]u (70)

subject to the initial condition u(0)=𝟏2×2u(0)=\mathbf{1}_{2\times 2}. The general solution is quite involved. Fortunately, if the system evolves along a circle of latitude such that dθ=0\mathrm{d}\theta=0, an analytical expression of uu can be found as

u(ϕ)=(eiϕ400eiϕ4).\displaystyle u(\phi)=\begin{pmatrix}\mathrm{e}^{\frac{\mathrm{i}\phi}{4}}&0\\ 0&\mathrm{e}^{-\frac{\mathrm{i}\phi}{4}}\end{pmatrix}. (71)

Accordingly, the proper mapping SS is

Sproper =Su=(12152eiϕ412i32e5iϕ412i32e5iϕ412152eiϕ4).\displaystyle S_{\text{proper }}=Su=\begin{pmatrix}\frac{1}{2}\sqrt{\frac{15}{2}}\mathrm{e}^{\frac{\mathrm{i}\phi}{4}}&-\frac{1}{2}\mathrm{i}\sqrt{\frac{3}{2}}\mathrm{e}^{-\frac{5\mathrm{i}\phi}{4}}\\ \frac{1}{2}\mathrm{i}\sqrt{\frac{3}{2}}\mathrm{e}^{\frac{5\mathrm{i}\phi}{4}}&\frac{1}{2}\sqrt{\frac{15}{2}}\mathrm{e}^{-\frac{\mathrm{i}\phi}{4}}\\ \end{pmatrix}. (72)

References

  • Feshbach [1958] H. Feshbach, Annals of Physics 5, 357 (1958), ISSN 0003-4916, URL https://www.sciencedirect.com/science/article/pii/0003491658900071.
  • Moiseyev [2011] N. Moiseyev, Non-Hermitian Quantum Mechanics (Cambridge University Press, Cambridge, UK, 2011).
  • El-Ganainy et al. [2018] R. El-Ganainy, K. G. Makris, M. Khajavikhan, Z. H. Musslimani, S. Rotter, and D. N. Christodoulides, Nature Physics 14, 11–19 (2018), ISSN 1745-2481, URL http://dx.doi.org/10.1038/nphys4323.
  • Hatano and Nelson [1996] N. Hatano and D. R. Nelson, Phys. Rev. Lett. 77, 570 (1996), URL https://link.aps.org/doi/10.1103/PhysRevLett.77.570.
  • Matsumoto et al. [2020] N. Matsumoto, K. Kawabata, Y. Ashida, S. Furukawa, and M. Ueda, Phys. Rev. Lett. 125, 260601 (2020).
  • Gong et al. [2022] Z. Gong, M. Bello, D. Malz, and F. K. Kunst, Phys. Rev. Lett. 129, 223601 (2022).
  • Roccati et al. [2022] F. Roccati, S. Lorenzo, G. Calajò, G. M. Palma, A. Carollo, and F. Ciccarello, Optica 9, 565 (2022), ISSN 2334-2536.
  • Liegeois et al. [2022] B. Liegeois, C. Ramasubramanian, and N. Defenu (2022), eprint 2212.08110, URL https://arxiv.org/pdf/2212.08110.pdf.
  • Lamata et al. [2007] L. Lamata, J. León, T. Schätz, and E. Solano, Phys. Rev. Lett. 98, 253005 (2007).
  • Gong et al. [2018] Z. Gong, Y. Ashida, K. Kawabata, K. Takasan, S. Higashikawa, and M. Ueda, Phys. Rev. X 8, 031079 (2018).
  • Kunst et al. [2018] F. K. Kunst, E. Edvardsson, J. C. Budich, and E. J. Bergholtz, Phys. Rev. Lett. 121, 026808 (2018), URL https://link.aps.org/doi/10.1103/PhysRevLett.121.026808.
  • Roccati et al. [2023] F. Roccati, M. Bello, Z. Gong, and OTHERS (2023), eprint 2303.00762, URL https://arxiv.org/pdf/2303.00762.pdf.
  • Bender and Boettcher [1998] C. M. Bender and S. Boettcher, Phys. Rev. Lett. 80, 5243 (1998), URL https://link.aps.org/doi/10.1103/PhysRevLett.80.5243.
  • Giorgi [2010] G. L. Giorgi, Phys. Rev. B 82, 052404 (2010), URL https://link.aps.org/doi/10.1103/PhysRevB.82.052404.
  • Hang et al. [2013] C. Hang, G. Huang, and V. V. Konotop, Phys. Rev. Lett. 110, 083604 (2013), URL https://link.aps.org/doi/10.1103/PhysRevLett.110.083604.
  • Korff and Weston [2007] C. Korff and R. Weston, J. Phys. A: Math. Theor. 40, 8845 (2007), URL https://dx.doi.org/10.1088/1751-8113/40/30/016.
  • Korff [2008] C. Korff, J. Phys. A: Math. Theor. 41, 295206 (2008), URL https://dx.doi.org/10.1088/1751-8113/41/29/295206.
  • Konotop et al. [2016] V. V. Konotop, J. Yang, and D. A. Zezyulin, Rev. Mod. Phys. 88, 035002 (2016), URL https://link.aps.org/doi/10.1103/RevModPhys.88.035002.
  • Du et al. [2022] Q. Du, K. Cao, and S.-P. Kou, Phys. Rev. A 106, 032206 (2022), URL https://link.aps.org/doi/10.1103/PhysRevA.106.032206.
  • Bender and Hook [2023] C. M. Bender and D. W. Hook, Pt-symmetric quantum mechanics (2023), arXiv: 2312.17386.
  • Cham [2015] J. Cham, Nature Physics 11, 799–799 (2015), ISSN 1745-2481, URL http://dx.doi.org/10.1038/nphys3500.
  • Feng et al. [2017] L. Feng, R. El-Ganainy, and L. Ge, Nature Photonics 11, 752–762 (2017), ISSN 1749-4893, URL http://dx.doi.org/10.1038/s41566-017-0031-1.
  • Ashida et al. [2017] Y. Ashida, S. Furukawa, and M. Ueda, Nature Communications 8 (2017), ISSN 2041-1723, URL http://dx.doi.org/10.1038/ncomms15791.
  • Kawabata et al. [2017] K. Kawabata, Y. Ashida, and M. Ueda, Phys. Rev. Lett. 119, 190401 (2017), URL https://link.aps.org/doi/10.1103/PhysRevLett.119.190401.
  • Weimann et al. [2016] S. Weimann, M. Kremer, Y. Plotnik, Y. Lumer, S. Nolte, K. G. Makris, M. Segev, M. Rechtsman, and A. Szameit, Nature Materials 16, 433–438 (2016), ISSN 1476-4660, URL http://dx.doi.org/10.1038/nmat4811.
  • Menke and Hirschmann [2017] H. Menke and M. M. Hirschmann, Phys. Rev. B 95, 174506 (2017), URL https://link.aps.org/doi/10.1103/PhysRevB.95.174506.
  • Kawabata et al. [2018] K. Kawabata, Y. Ashida, H. Katsura, and M. Ueda, Phys. Rev. B 98, 085116 (2018), URL https://link.aps.org/doi/10.1103/PhysRevB.98.085116.
  • Lourenço et al. [2018] J. A. S. Lourenço, R. L. Eneias, and R. G. Pereira, Phys. Rev. B 98, 085126 (2018), URL https://link.aps.org/doi/10.1103/PhysRevB.98.085126.
  • Shen et al. [2018] H. Shen, B. Zhen, and L. Fu, Phys. Rev. Lett. 120, 146402 (2018), URL https://link.aps.org/doi/10.1103/PhysRevLett.120.146402.
  • Yao et al. [2018] S. Yao, F. Song, and Z. Wang, Phys. Rev. Lett. 121, 136802 (2018), URL https://link.aps.org/doi/10.1103/PhysRevLett.121.136802.
  • Fritzsche et al. [2024] A. Fritzsche, T. Biesenthal, L. J. Maczewsky, K. Becker, M. Ehrhardt, M. Heinrich, R. Thomale, Y. N. Joglekar, and A. Szameit, Nature Materials (2024), ISSN 1476-4660, URL https://doi.org/10.1038/s41563-023-01773-0.
  • Berry [1984] M. V. Berry, Proc. R. Soc. A 392, 45 (1984).
  • Aharonov and Anandan [1987] Y. Aharonov and J. Anandan, Phys. Rev. Lett. 58, 1593 (1987), URL https://link.aps.org/doi/10.1103/PhysRevLett.58.1593.
  • Thouless et al. [1982] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Phys. Rev. Lett. 49, 405 (1982).
  • Haldane [1988] F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988).
  • Hasan and Kane [2010] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
  • Qi and Zhang [2011] X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).
  • Moore [2010] J. E. Moore, Nature 464, 194 (2010).
  • Kane and Mele [2005a] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801 (2005a).
  • Kane and Mele [2005b] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802 (2005b).
  • Bernevig and Zhang [2006] B. A. Bernevig and S.-C. Zhang, Phys. Rev. Lett. 96, 106802 (2006).
  • Moore and Balents [2007] J. E. Moore and L. Balents, Phys. Rev. B 75, 121306(R) (2007).
  • Fu et al. [2007] L. Fu, C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 98, 106803 (2007).
  • Bernevig and Hughes [2013] B. A. Bernevig and T. L. Hughes, Topological Insulators and Topological Superconductors (Princeton, NJ, 2013).
  • Chiu et al. [2016] C. K. Chiu, J. C. Y. Teo, A. P. Schnyder, and S. Ryu, Rev. Mod. Phys. 88, 035005 (2016).
  • Gong and Wang [2013] J. Gong and Q.-h. Wang, J. Phys. A: Math. Theor. 46, 485302 (2013).
  • Zhang et al. [2019] D.-J. Zhang, Q.-h. Wang, and J. Gong, Phys. Rev. A 99, 042104 (2019), URL https://link.aps.org/doi/10.1103/PhysRevA.99.042104.
  • Sjo¨\ddot{\textrm{o}}qvist et al. [2000] E. Sjo¨\ddot{\textrm{o}}qvist, A. K. Pati, A. Ekert, J. S. Anandan, M. Ericsson, D. K. L. Oi, and V. Vedral, Phys. Rev. Lett. 85, 2845 (2000).
  • Bhandari [2002] R. Bhandari, Phys. Rev. Lett. 89, 268901 (2002).
  • Anandan et al. [2002] J. S. Anandan, E. Sjo¨\ddot{\textrm{o}}qvist, A. K. Pati, A. Ekert, M. Ericsson, D. K. L. Oi, and V. Vedral, Phys. Rev. Lett. 89, 268902 (2002).
  • Slater [2002] P. B. Slater, Lett. Math. Phys. 60, 123 (2002).
  • Singh et al. [2003] K. Singh, D. M. Tong, K. Basu, J. L. Chen, and J. F. Du, Phys. Rev. A 67, 032106 (2003).
  • Tong et al. [2005] D. M. Tong, E. Sjo¨\ddot{\textrm{o}}qvist, S. Filipp, L. C. Kwek, and C. H. Oh, Phys. Rev. A 71, 032106 (2005).
  • Andersson and Heydari [2013] O. Andersson and H. Heydari, New J. Phys. 15, 053006 (2013).
  • Bardyn et al. [2018] C. E. Bardyn, L. Wawer, A. Altland, M. Fleischhauer, and S. Diehl, Phys. Rev. X 8, 011035 (2018).
  • Wang [2019] Z. C. Wang, Sci. Rep. 9, 13258 (2019).
  • Sjöqvist et al. [2000] E. Sjöqvist, A. K. Pati, A. Ekert, J. S. Anandan, M. Ericsson, D. K. L. Oi, and V. Vedral, Phys. Rev. Lett. 85, 2845 (2000), URL https://link.aps.org/doi/10.1103/PhysRevLett.85.2845.
  • Ericsson et al. [2003] M. Ericsson, E. Sjöqvist, J. Brännlund, D. K. L. Oi, and A. K. Pati, Phys. Rev. A 67, 020101 (2003), URL https://link.aps.org/doi/10.1103/PhysRevA.67.020101.
  • Carollo et al. [2003] A. Carollo, I. Fuentes-Guridi, M. Franca Santos, and V. Vedral, Phys. Rev. Lett. 90, 160402 (2003), URL https://link.aps.org/doi/10.1103/PhysRevLett.90.160402.
  • Faria et al. [2003] J. G. P. d. Faria, A. F. R. d. T. Piza, and M. C. Nemes, Europhysics Letters (EPL) 62, 782–788 (2003), ISSN 1286-4854, URL http://dx.doi.org/10.1209/epl/i2003-00440-4.
  • Tong et al. [2004] D. M. Tong, E. Sjöqvist, L. C. Kwek, and C. H. Oh, Phys. Rev. Lett. 93, 080405 (2004), URL https://link.aps.org/doi/10.1103/PhysRevLett.93.080405.
  • Kwek et al. [2006] L. C. Kwek, D. M. Tong, J. L. Chen, J. F. Du, K. W. Choo, R. Ravishankar, D. Kaszlikowski, and C. H. Oh, Laser Physics 16, 398–401 (2006), ISSN 1555-6611, URL http://dx.doi.org/10.1134/S1054660X06020344.
  • Andersson et al. [2016] O. Andersson, I. Bengtsson, M. Ericsson, and E. Sjöqvist, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 374, 20150231 (2016), ISSN 1471-2962, URL http://dx.doi.org/10.1098/rsta.2015.0231.
  • Du et al. [2003a] J. Du, P. Zou, M. Shi, L. C. Kwek, J.-W. Pan, C. H. Oh, A. Ekert, D. K. L. Oi, and M. Ericsson, Phys. Rev. Lett. 91, 100403 (2003a), URL https://link.aps.org/doi/10.1103/PhysRevLett.91.100403.
  • Ghosh and Kumar [2006] A. Ghosh and A. Kumar, Physics Letters A 349, 27–36 (2006), ISSN 0375-9601, URL http://dx.doi.org/10.1016/j.physleta.2005.08.092.
  • Klepp et al. [2008] J. Klepp, S. Sponar, S. Filipp, M. Lettner, G. Badurek, and Y. Hasegawa, Phys. Rev. Lett. 101, 150404 (2008), URL https://link.aps.org/doi/10.1103/PhysRevLett.101.150404.
  • Ericsson et al. [2005a] M. Ericsson, D. Achilles, J. T. Barreiro, D. Branning, N. A. Peters, and P. G. Kwiat, Phys. Rev. Lett. 94, 050401 (2005a), URL https://link.aps.org/doi/10.1103/PhysRevLett.94.050401.
  • Uhlmann [1986] A. Uhlmann, Rep. Math. Phys. 24, 229 (1986).
  • Uhlmann [1989] A. Uhlmann, Ann. Phys. (Berlin) 501, 63 (1989).
  • Uhlmann [1992] A. Uhlmann, The Metric of Bures and the Geometric Phase (Springer Netherlands, Dordrecht, 1992), pp. 267–274, ISBN 978-94-011-2801-8, URL https://doi.org/10.1007/978-94-011-2801-8_23.
  • Viyuela et al. [2014a] O. Viyuela, A. Rivas, and M. A. Martin-Delgado, Phys. Rev. Lett. 112, 130401 (2014a), URL https://link.aps.org/doi/10.1103/PhysRevLett.112.130401.
  • Viyuela et al. [2014b] O. Viyuela, A. Rivas, and M. A. Martin-Delgado, Phys. Rev. Lett. 113, 076408 (2014b).
  • Guo et al. [2020] H. Guo, X.-Y. Hou, Y. He, and C.-C. Chien, Phys. Rev. B 101, 104310 (2020).
  • Hou et al. [2020] X.-Y. Hou, Q.-C. Gao, H. Guo, Y. He, T. Liu, and C. C. Chien, Phys. Rev. B 102, 104305 (2020).
  • Morachis Galindo et al. [2021] D. Morachis Galindo, F. Rojas, and J. A. Maytorena, Phys. Rev. A 103, 042221 (2021).
  • Zhang et al. [2021] Y. Zhang, A. Pi, Y. He, and C.-C. Chien, Phys. Rev. B 104, 165417 (2021).
  • Hou et al. [2021] X.-Y. Hou, H. Guo, and C. C. Chien, Phys. Rev. A 104, 023303 (2021).
  • Hou et al. [2023] X.-Y. Hou, X. Wang, Z. Zhou, H. Guo, and C.-C. Chien, Phys. Rev. B 107, 165415 (2023), URL https://link.aps.org/doi/10.1103/PhysRevB.107.165415.
  • Das [2011] A. Das, J. Phys. Conf. Ser. 287, 012002 (2011).
  • Zhang et al. [2020] R. Zhang, H. Qin, and J. Xiao, Journal of Mathematical Physics 61, 012101 (2020), ISSN 0022-2488, eprint https://pubs.aip.org/aip/jmp/article-pdf/doi/10.1063/1.5117211/15907618/012101_1_online.pdf, URL https://doi.org/10.1063/1.5117211.
  • Gardas et al. [2016] B. Gardas, S. Deffner, and A. Saxena, Sci. Rep. 6, 23408 (2016).
  • Du et al. [2023] Q. Du, K. Cao, and S.-P. Kou, Commun. Theor. Phys. 75, 045701 (2023).
  • Watrous [2018] J. Watrous, The theory of quantum information (Cambridge University Press, Cambridge, 2018).
  • hai Wang et al. [2010] Q. hai Wang, S. zhi Chia, and J. hong Zhang, Journal of Physics A: Mathematical and Theoretical 43, 295301 (2010), URL https://dx.doi.org/10.1088/1751-8113/43/29/295301.
  • Rüter et al. [2010] C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, Nature Physics 6, 192–195 (2010), ISSN 1745-2481, URL http://dx.doi.org/10.1038/nphys1515.
  • Du et al. [2003b] J. Du, P. Zou, M. Shi, L. C. Kwek, J.-W. Pan, C. H. Oh, A. Ekert, D. K. L. Oi, and M. Ericsson, Phys. Rev. Lett. 91, 100403 (2003b), URL https://link.aps.org/doi/10.1103/PhysRevLett.91.100403.
  • Ericsson et al. [2005b] M. Ericsson, D. Achilles, J. T. Barreiro, D. Branning, N. A. Peters, and P. G. Kwiat, Phys. Rev. Lett. 94, 050401 (2005b), URL https://link.aps.org/doi/10.1103/PhysRevLett.94.050401.