This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Interpolants and Explicit Definitions in Extensions of the Description Logic \mathcal{EL}

Marie Fortin    Boris Konev    Frank Wolter
\affiliationsUniversity of Liverpool
\emails{mfortin, konev, wolter}@liverpool.ac.uk
Abstract

We show that the vast majority of extensions of the description logic \mathcal{EL} do not enjoy the Craig interpolation nor the projective Beth definability property. This is the case, for example, for \mathcal{EL} with nominals, \mathcal{EL} with the universal role, \mathcal{EL} with a role inclusion of the form rssr\circ s\sqsubseteq s, and for \mathcal{ELI}. It follows in particular that the existence of an explicit definition of a concept or individual name cannot be reduced to subsumption checking via implicit definability. We show that nevertheless the existence of interpolants and explicit definitions can be decided in polynomial time for standard tractable extensions of \mathcal{EL} (such as ++\mathcal{EL}^{++}) and in ExpTime for \mathcal{ELI} and various extensions. It follows that these existence problems are not harder than subsumption which is in sharp contrast to the situation for expressive DLs. We also obtain tight bounds for the size of interpolants and explicit definitions and the complexity of computing them: single exponential for tractable standard extensions of \mathcal{EL} and double exponential for \mathcal{ELI} and extensions. We close with a discussion of Horn-DLs such as Horn-𝒜𝒞\mathcal{ALCI}.

1 Introduction

The projective Beth definability property (PBDP) of a description logic (DL) \mathcal{L} states that a concept or individual name is explicitly definable under an \mathcal{L}-ontology 𝒪\mathcal{O} by an \mathcal{L}-concept using symbols from a signature Σ\Sigma of concept, role, and individual names if, and only if, it is implicitly definable using Σ\Sigma under 𝒪\mathcal{O}. The importance of the PBDP for DL research stems from the fact that it provides a polynomial time reduction of the problem to decide the existence of an explicit definition to the well understood problem of subsumption checking. The existence of explicit definitions is important for numerous knowledge engineering tasks and applications of description logic ontologies, for example, the extraction of equivalent acyclic TBoxes from ontologies (??), the computation of referring expressions (or definite descriptions) for individuals (?), the equivalent rewriting of ontology-mediated queries into concepts (???), the construction of alignments between ontologies (?), and the decomposition of ontologies (?).

The PBDP is often investigated in tandem with the Craig interpolation property (CIP) which states that if an \mathcal{L}-concept is subsumed by another \mathcal{L}-concept under some \mathcal{L}-ontology then one finds an interpolating \mathcal{L}-concept using the shared symbols of the two input concepts only. In fact, the CIP implies the PBDP and the interpolants obtained using the CIP can serve as explicit definitions.

Many standard Boolean DLs such as 𝒜𝒞\mathcal{ALC}, 𝒜𝒞\mathcal{ALCI}, and 𝒜𝒞𝒬\mathcal{ALCQI} enjoy the CIP and PBDP and sophisticated algorithms for computing interpolants and explicit definitions have been developed (?). Important exceptions are the extensions of any of the above DLs with nominals and/or role hierarchies. In fact, it has recently been shown that the problem of deciding the existence of an interpolant/explicit definition becomes 2ExpTime-complete for 𝒜𝒞𝒪\mathcal{ALCO} (𝒜𝒞\mathcal{ALC} with nominals) and for 𝒜𝒞\mathcal{ALCH} (𝒜𝒞\mathcal{ALC} with role hierarchies). This result is in sharp contrast to the ExpTime-completeness of the same problem for 𝒜𝒞\mathcal{ALC} itself inherited from the ExpTime-completeness of subsumption under 𝒜𝒞\mathcal{ALC}-ontologies (?).

Our aim in this article is threefold: (1) determine which members of the \mathcal{EL}-family of DLs enjoy the CIP/PBDP; (2) investigate the complexity of deciding the existence of interpolants/explicit definitions for those that do not enjoy it; and (3) establish tight bounds on the size of interpolants/explicit definitions and the complexity of computing them.

In what follows we discuss our main results. It has been shown in (??) already that \mathcal{EL} and \mathcal{EL} with role hierarchies enjoy the CIP and PBDP. Rather surprisingly, it turns out that none of the remaining standard DLs in the \mathcal{EL}-family enjoy the CIP nor the PBDP.

Theorem 1.

The following DLs do not enjoy the CIP nor PBDP:

  1. 1.

    \mathcal{EL} with the universal role,

  2. 2.

    \mathcal{EL} with nominals,

  3. 3.

    \mathcal{EL} with a single role inclusion rssr\circ s\sqsubseteq s,

  4. 4.

    \mathcal{EL} with role hierarchies and a transitive role,

  5. 5.

    the extension \mathcal{ELI} of \mathcal{EL} with inverse roles.

In Points 2 to 5, the CIP/PBDP also fails if the universal role can occur in interpolants/explicit definitions.

Theorem 1 also has interesting consequences that are not explicitly stated. For instance, it follows that neither the DL ++\mathcal{EL}^{++} introduced in (?) nor the extension of \mathcal{ELI} with any combination of nominals, role hierarchies, or transitive roles enjoy the CIP/PBDP. With the exception of the failure of the CIP/PBDP for \mathcal{EL} with nominals (without the universal role in interpolants/explicit definitions) (?), our results are new.

It follows from Theorem 1 that the behaviour of extensions of \mathcal{EL} is fundamentally different from extensions of 𝒜𝒞\mathcal{ALC}: adding role hierarchies to 𝒜𝒞\mathcal{ALC} does not preserve the CIP/PBDP (?) but it does for \mathcal{EL}; on the other hand, adding the universal role or inverse roles to 𝒜𝒞\mathcal{ALC} preserves the CIP/PBDP (?) but it does not for \mathcal{EL}.

Theorem 1 leaves open the behaviour of a few natural DLs between \mathcal{EL} and its extension with arbitrary role inclusions. For instance, what happens if one only adds transitive roles or, more generally, role inclusions using a single role name only? To cover these cases we show a general result that implies that these DLs enjoy the CIP and PBDP. In particular, it follows that in Point 4 of Theorem 1 the combination of role hierarchies with a transitive role is necessary for failure of the CIP/PBDP.

We next discuss our main result about tractable extensions of \mathcal{EL}.

Theorem 2.

For \mathcal{EL} and any extension with any combination of nominals, role inclusions, the universal role, or \bot, the existence of interpolants and explicit definitions is in PTime. If an interpolant/explicit definition exists, then there exists one of at most exponential size that can be computed in exponential time. This bound is optimal.

It follows that for tractable extensions of \mathcal{EL} the complexity of deciding the existence of interpolants and explicit definitions does not depend on the CIP/PBDP, in sharp contrast to the behaviour of 𝒜𝒞𝒪\mathcal{ALCO} and 𝒜𝒞\mathcal{ALCH}. Moreover, the proof shows how interpolants and explicit definitions can be computed from the canonical models introduced in (?), if they exist. It applies derivation trees (first introduced in (?) for DLs without nominals and role hierarchies) to estimate the size of interpolants and provide an exponential time algorithm for computing them.

Theorem 3.

For \mathcal{ELI} and any extension with any combination of nominals, the universal role, or \bot, the existence of interpolants and explicit definitions is ExpTime-complete. If an interpolant/explicit definition exists, then there exists one of at most double exponential size that can be computed in double exponential time. This bound is optimal.

The proof of Theorem 3 shows how an interpolant or explicit definition can be extracted from a (potentially infinite) tree-shaped canonical model. The ExpTime complexity bound is proved using an encoding as an emptiness problem for tree automata that also uses derivation trees. It does not seem possible to obtain tight bounds on the size of interpolants using derivation trees; instead we generalize transfer sequences for this purpose (also first introduced in (?)).

In the final section, we consider expressive Horn-DLs such as Horn-𝒜𝒞\mathcal{ALCI}. We first observe that Theorem 3 also holds for Horn-𝒜𝒞\mathcal{ALCI} and extensions with nominals and the universal role, provided one asks for interpolants and explicit definitions in \mathcal{ELI} (and extensions with nominals and the universal role, respectively). If one admits expressive Horn-concepts as interpolants or explicit definitions, then sometimes interpolants and explicit definitions exist that previously did not exist. We show that nevertheless the CIP/PBDP also fail in this case for DLs including Horn-𝒜𝒞\mathcal{ALC}, \mathcal{ELI}, and Horn-𝒜𝒞\mathcal{ALCI}.

Detailed proofs are given in the arxiv version of this article.

2 Related Work

The CIP and PBDP have been investigated extensively in databases, with applications to query rewriting under views and query compilation (??). The computation of explicit definitions under Horn ontologies can be seen as an instance of query reformulation under constraints (?) which has been a major research topic for many years. The Chase and Backchase approach that is central to this research closely resembles our use of canonical models. We do not assume, however, that the chase terminates. In (??), it is shown that the reformulation of CQs into CQs under tgds can be reduced to entailment using Lyndon interpolation of first-order logic. By linking reformulation into CQs and definability using concepts, this approach can potentially be used to obtain alternative proofs of complexity upper bounds for the existence of interpolants and explicit definitions in our languages. Also relevant is the investigation of interpolation in basic modal logic (?) and hybrid modal logic (??).

The main aim of this article is to investigate explicit definability of concept and individual names under ontologies. We have therefore chosen a definition of the CIP and interpolants that generalizes the projective Beth definability property and explicit definability in a natural and useful way, following (?). There are, however, other notions of Craig interpolation that are of interest. Of particular importance for modularity and various other purposes is the following version: if 𝒪\mathcal{O} is an ontology and CDC\sqsubseteq D an inclusion such that 𝒪CD\mathcal{O}\models C\sqsubseteq D, then there exists an ontology 𝒪\mathcal{O}^{\prime} in the shared signature of 𝒪\mathcal{O} and CDC\sqsubseteq D such that 𝒪𝒪CD\mathcal{O}\models\mathcal{O}^{\prime}\models C\sqsubseteq D. This property has been considered for \mathcal{EL} and various extensions in (??). Currently, it is unknown whether there exists any interesting relationship between this version of the CIP and the version we investigate in this article.

Craig interpolants should not be confused with uniform interpolants (or forgetting) (????). Uniform interpolants generalize Craig interpolants in the sense that a uniform interpolant is an interpolant for a fixed antecedent and any formula implied by the antecedent and sharing with it a fixed set of symbols.

Interpolant and explicit definition existence have only recently been investigated for logics that do not enjoy the CIP or PBDP. Extending work on Boolean DLs we discussed already, it is shown that they become harder than validity also in the guarded and two-variable fragment (?). The interpolant existence problem for linear temporal logic LTL is considered in (?). In the context of referring expressions, explicit definition existence is investigated in (?), see also (?).

3 Preliminaries

Let 𝖭𝖢{\sf N_{C}}, 𝖭𝖱{\sf N_{R}}, and 𝖭𝖨{\sf N_{I}} be disjoint and countably infinite sets of concept, role, and individual names. A role is a role name rr or an inverse role rr^{-}, with rr a role name. Nominals take the form {a}\{a\}, where aa is an individual name. The universal role is denoted by uu. 𝒪u\mathcal{ELIO}_{u}-concepts CC are defined by the following syntax rule:

C,C::=A{a}CCr.CC,C^{\prime}\quad::=\quad\top\mid A\mid\{a\}\mid C\sqcap C^{\prime}\mid\exists r.C

where AA ranges over concept names, aa over individual names, and rr over roles (including the universal role). Fragments of 𝒪u\mathcal{ELIO}_{u} are defined as usual. For example, \mathcal{ELI}-concepts are 𝒪u\mathcal{ELIO}_{u}-concepts without nominals and the universal role, and \mathcal{EL}-concepts are \mathcal{ELI}-concepts without inverse roles. Given any of the DLs \mathcal{L} introduced above, an \mathcal{L}-concept inclusion (\mathcal{L}-CI) takes the form CDC\sqsubseteq D with C,DC,D \mathcal{L}-concepts. An \mathcal{L}-ontology 𝒪\mathcal{O} is a finite set of \mathcal{L}-CIs.

We also consider ontologies with role inclusions (RIs), expressions of the form r1rnrr_{1}\circ\cdots\circ r_{n}\sqsubseteq r with r1,,rn,rr_{1},\ldots,r_{n},r role names. An 𝒪u\mathcal{ELO}_{u}-ontology with RIs is called an 𝒪u\mathcal{ELRO}_{u}-ontology. A set of RIs is a role hierarchy if all its RIs are of the form rsr\sqsubseteq s with r,sr,s role names.

A signature Σ\Sigma is a set of concept, role, and individual names, uniformly referred to as (non-logical) symbols. We follow common practice and do not regard the universal role uu as a non-logical symbol as its interpretation is fixed. We use sig(X)\text{sig}(X) to denote the set of symbols used in any syntactic object XX such as a concept or an ontology. If \mathcal{L} is a DL and Σ\Sigma a signature, then an (Σ)\mathcal{L}(\Sigma)-concept CC is an \mathcal{L}-concept with sig(C)Σ\text{sig}(C)\subseteq\Sigma. The size X||X|| of a syntactic object XX is the number of symbols needed to write it down.

The semantics of DLs is given in terms of interpretations =(Δ,)\mathcal{I}=(\Delta^{\mathcal{I}},\cdot^{\mathcal{I}}), where Δ\Delta^{\mathcal{I}} is a non-empty set (the domain) and \cdot^{\mathcal{I}} is the interpretation function, assigning to each A𝖭𝖢A\in{\sf N_{C}} a set AΔA^{\mathcal{I}}\subseteq\Delta^{\mathcal{I}}, to each r𝖭𝖱r\in{\sf N_{R}} a relation rΔ×Δr^{\mathcal{I}}\subseteq\Delta^{\mathcal{I}}\times\Delta^{\mathcal{I}}, and to each a𝖭𝖨a\in{\sf N_{I}} an element aΔa^{\mathcal{I}}\in\Delta^{\mathcal{I}}. The interpretation CΔC^{\mathcal{I}}\subseteq\Delta^{\mathcal{I}} of a concept CC in \mathcal{I} is defined as usual, see (?). An interpretation \mathcal{I} satisfies a CI CDC\sqsubseteq D if CDC^{\mathcal{I}}\subseteq D^{\mathcal{I}} and an RI r1rnrr_{1}\circ\cdots\circ r_{n}\sqsubseteq r if r1rnrr_{1}^{\mathcal{I}}\circ\cdots\circ r_{n}^{\mathcal{I}}\subseteq r^{\mathcal{I}}. We say that \mathcal{I} is a model of an ontology 𝒪\mathcal{O} if it satisfies all inclusions in it. If α\alpha is a CI or RI, we write 𝒪α\mathcal{O}\models\alpha if all models of 𝒪\mathcal{O} satisfy α\alpha. We write 𝒪CD\mathcal{O}\models C\equiv D if 𝒪CD\mathcal{O}\models C\sqsubseteq D and 𝒪DC\mathcal{O}\models D\sqsubseteq C.

An ontology is in normal form if its CIs are of the form

A,A1A2B,A{a},{a}A,\top\sqsubseteq A,\quad A_{1}\sqcap A_{2}\sqsubseteq B,\quad A\sqsubseteq\{a\},\quad\{a\}\sqsubseteq A,

and

Ar.B,r.BAA\sqsubseteq\exists r.B,\quad\exists r.B\sqsubseteq A

where A,A1,A2,BA,A_{1},A_{2},B are concept names, rr is a role or the universal role, and aa is an individual name. It is well known that for any 𝒪u\mathcal{ELIO}_{u}-ontology 𝒪\mathcal{O} with or without RIs one can construct in polynomial time a conservative extension 𝒪\mathcal{O}^{\prime} using the same constructors as 𝒪\mathcal{O} that is in normal form.

(Σ)\mathcal{L}(\Sigma)-concepts can be characterized using (Σ)\mathcal{L}(\Sigma)-simulations which we define next. Let \mathcal{I} and 𝒥\mathcal{J} be interpretations. A relation SΔ×Δ𝒥S\subseteq\Delta^{\mathcal{I}}\times\Delta^{\mathcal{J}} is called an 𝒪(Σ)\mathcal{ELO}(\Sigma)-simulation between \mathcal{I} and 𝒥\mathcal{J} if the following conditions hold:

  1. 1.

    if dAd\in A^{\mathcal{I}} and (d,e)S(d,e)\in S, then eA𝒥e\in A^{\mathcal{J}}, for all A𝖭𝖢ΣA\in{\sf N_{C}}\cap\Sigma;

  2. 2.

    if d=ad=a^{\mathcal{I}} and (d,e)S(d,e)\in S, then e=a𝒥e=a^{\mathcal{J}}, for all a𝖭𝖨Σa\in{\sf N_{I}}\cap\Sigma;

  3. 3.

    if (d,d)r(d,d^{\prime})\in r^{\mathcal{I}} and (d,e)S(d,e)\in S, then there exists ee^{\prime} with (e,e)r𝒥(e,e^{\prime})\in r^{\mathcal{J}} and (d,e)S(d^{\prime},e^{\prime})\in S, for all r𝖭𝖱Σr\in{\sf N_{R}}\cap\Sigma.

SS is called an 𝒪u(Σ)\mathcal{ELO}_{u}(\Sigma)-simulation if Δ\Delta^{\mathcal{I}} is the domain of SS and an 𝒪(Σ)\mathcal{ELIO}(\Sigma)-simulation if Condition 3 also holds for inverse roles from Σ\Sigma. Condition 2 is dropped if \mathcal{L} does not use nominals. We write (,d),Σ(𝒥,e)(\mathcal{I},d)\preceq_{\mathcal{L},\Sigma}(\mathcal{J},e) if there exists an (Σ)\mathcal{L}(\Sigma)-simulation SS between \mathcal{I} and 𝒥\mathcal{J} with (d,e)S(d,e)\in S. We write (,d),Σ(𝒥,e)(\mathcal{I},d)\leq_{\mathcal{L},\Sigma}(\mathcal{J},e) if dCd\in C^{\mathcal{I}} implies eC𝒥e\in C^{\mathcal{J}} for all (Σ)\mathcal{L}(\Sigma)-concepts CC. The following characterization is well known (??).

Lemma 1.

Let {,u,𝒪,𝒪u,,u}\mathcal{L}\in\{\mathcal{EL},\mathcal{EL}_{u},{\cal E\!\!\>LO},{\cal E\!\!\>LO}_{u},\mathcal{ELI},\mathcal{ELI}_{u}\}. Then (,d),Σ(𝒥,e)(\mathcal{I},d)\preceq_{\mathcal{L},\Sigma}(\mathcal{J},e) implies (,d),Σ(𝒥,e)(\mathcal{I},d)\leq_{\mathcal{L},\Sigma}(\mathcal{J},e). The converse direction holds if 𝒥\mathcal{J} is finite.

4 Craig Interpolation Property and Projective Beth Definability Property

We introduce the Craig interpolation property (CIP) as defined in (?) and the projective Beth definability property (PBDP) and prove Theorem 1 from the introduction to this article. We observe that the CIP implies the PBDP, but lack a proof of the converse direction. Nevertheless, all DLs considered in this paper enjoying the PBDP also enjoy the CIP.

Set sig(𝒪,C)=sig(𝒪)sig(C)\text{sig}(\mathcal{O},C)=\text{sig}(\mathcal{O})\cup\text{sig}(C), for any ontology 𝒪\mathcal{O} and concept CC. Let 𝒪1,𝒪2\mathcal{O}_{1},\mathcal{O}_{2} be \mathcal{L}-ontologies and let C1,C2C_{1},C_{2} be \mathcal{L}-concepts. Then an \mathcal{L}-concept DD is called an \mathcal{L}-interpolant111Important variations of this definition are to drop 𝒪2\mathcal{O}_{2} in Point 2 and 𝒪1\mathcal{O}_{1} in Point 3, respectively, or to consider only one ontology 𝒪=𝒪1=𝒪2\mathcal{O}=\mathcal{O}_{1}=\mathcal{O}_{2} and regard the signature Σ\Sigma of the interpolant as an input given independently from 𝒪,C1,C2\mathcal{O},C_{1},C_{2}. This has an effect on the CIP, but our results on interpolant computation and existence are not affected. for C1C2C_{1}\sqsubseteq C_{2} under 𝒪1,𝒪2\mathcal{O}_{1},\mathcal{O}_{2} if

  • sig(D)sig(𝒪1,C1)sig(𝒪2,C2)\text{sig}(D)\subseteq\text{sig}(\mathcal{O}_{1},C_{1})\cap\text{sig}(\mathcal{O}_{2},C_{2});

  • 𝒪1𝒪2C1D\mathcal{O}_{1}\cup\mathcal{O}_{2}\models C_{1}\sqsubseteq D;

  • 𝒪1𝒪2DC2\mathcal{O}_{1}\cup\mathcal{O}_{2}\models D\sqsubseteq C_{2}.

Definition 1.

A DL \mathcal{L} has the Craig interpolation property (CIP) if for any \mathcal{L}-ontologies 𝒪1,𝒪2\mathcal{O}_{1},\mathcal{O}_{2} and \mathcal{L}-concepts C1,C2C_{1},C_{2} such that 𝒪1𝒪2C1C2\mathcal{O}_{1}\cup\mathcal{O}_{2}\models C_{1}\sqsubseteq C_{2} there exists an \mathcal{L}-interpolant for C1C2C_{1}\sqsubseteq C_{2} under 𝒪1,𝒪2\mathcal{O}_{1},\mathcal{O}_{2}.

We next define the relevant definability notions. Let 𝒪\mathcal{O} be an ontology and AA a concept name. Let Σsig(𝒪)\Sigma\subseteq\text{sig}(\mathcal{O}) be a signature. An (Σ)\mathcal{L}(\Sigma)-concept CC is an explicit (Σ)\mathcal{L}(\Sigma)-definition of AA under 𝒪\mathcal{O} if 𝒪AC\mathcal{O}\models A\equiv C. We call AA explicitly definable in (Σ)\mathcal{L}(\Sigma) under 𝒪\mathcal{O} if there is an explicit (Σ)\mathcal{L}(\Sigma)-definition of AA under 𝒪\mathcal{O}. The Σ\Sigma-reduct |Σ\mathcal{I}_{|\Sigma} of an interpretation \mathcal{I} coincides with \mathcal{I} except that no symbol that is not in Σ\Sigma is interpreted in |Σ\mathcal{I}_{|\Sigma}. A concept AA is called implicitly definable using Σ\Sigma under 𝒪\mathcal{O} if the Σ\Sigma-reduct of any model \mathcal{I} of 𝒪\mathcal{O} determines the set AA^{\mathcal{I}}; in other words, if \mathcal{I} and 𝒥\mathcal{J} are both models of 𝒪\mathcal{O} such that |Σ=𝒥|Σ\mathcal{I}_{|\Sigma}=\mathcal{J}_{|\Sigma}, then A=A𝒥A^{\mathcal{I}}=A^{\mathcal{J}}. It is easy to see that implicit definability can be reformulated as a standard reasoning problem as follows: a concept name AΣA\not\in\Sigma is implicitly definable using Σ\Sigma under 𝒪\mathcal{O} iff 𝒪𝒪ΣAA\mathcal{O}\cup\mathcal{O}_{\Sigma}\models A\equiv A^{\prime}, where 𝒪Σ\mathcal{O}_{\Sigma} is obtained from 𝒪\mathcal{O} by replacing every symbol XX not in Σ\Sigma (including AA) uniformly by a fresh symbol XX^{\prime}.

Definition 2.

A DL \mathcal{L} has the projective Beth definable property (PBDP) if for any \mathcal{L}-ontology 𝒪\mathcal{O}, concept name AA, and signature Σsig(𝒪)\Sigma\subseteq\text{sig}(\mathcal{O}) the following holds: if AA is implicitly definable using Σ\Sigma under 𝒪\mathcal{O}, then AA is explicitly (Σ)\mathcal{L}(\Sigma)-definable under 𝒪\mathcal{O}.

Remark 1.

The CIP implies the PBDP. To see this, assume that an \mathcal{L}-ontology 𝒪\mathcal{O}, concept name AA and a signature Σ\Sigma are given, and that AA is implicitly definable from Σ\Sigma under 𝒪\mathcal{O}. Then 𝒪𝒪ΣAA\mathcal{O}\cup\mathcal{O}_{\Sigma}\models A\equiv A^{\prime}, with 𝒪Σ\mathcal{O}_{\Sigma} defined above. Take an \mathcal{L}-interpolant CC for AAA\sqsubseteq A^{\prime} under 𝒪,𝒪Σ\mathcal{O},\mathcal{O}_{\Sigma}. Then CC is an explicit (Σ)\mathcal{L}(\Sigma)-definition of AA under 𝒪\mathcal{O}.

Remark 2.

The PBDP implies that implicitly definable nominals are explicitly definable and that, more generally, every implicitly definable concept CC is explicitly definable. This can be shown by adding ACA\equiv C to the ontology for a fresh concept name AA and asking for an explicit definition of AA in the extended ontology.

Remark 3.

The CIP and PBDP are invariant under adding \bot (interpreted as the empty set) to the languages introduced above. The straightforward proof is given in the appendix of the full version.

We next prove that the majority of tractable extensions of \mathcal{EL} does not enjoy the CIP nor PBDP.

Theorem 1. The following DLs do not enjoy the CIP nor PBDP:

  1. 1.

    \mathcal{EL} with the universal role,

  2. 2.

    \mathcal{EL} with nominals,

  3. 3.

    \mathcal{EL} with a single role inclusion rssr\circ s\sqsubseteq s,

  4. 4.

    \mathcal{EL} with role hierarchies and a transitive role,

  5. 5.

    \mathcal{EL} with inverse roles.

In Points 2 to 5, the CIP/PBDP also fails if the universal role can occur in interpolants/explicit definitions.

Proof.

We first show that u\mathcal{EL}_{u} does not enjoy the PBDP. Point 1 then follows using Remark 1. We define an u\mathcal{EL}_{u}-ontology 𝒪u\mathcal{O}_{u}, signature Σ\Sigma, and concept name AA such that AA is implicitly definable using Σ\Sigma under 𝒪u\mathcal{O}_{u} but not u(Σ)\mathcal{EL}_{u}(\Sigma)-explicitly definable under 𝒪u\mathcal{O}_{u}. Define 𝒪u\mathcal{O}_{u} as the following set of CIs:

AB,Du.AE,Br.CA\sqsubseteq B,\quad D\sqcap\exists u.A\sqsubseteq E,\quad B\sqsubseteq\exists r.C
CD,Br.(CE)A,C\sqsubseteq D,\quad B\sqcap\exists r.(C\sqcap E)\sqsubseteq A,

and let Σ={B,D,E,r}\Sigma=\{B,D,E,r\}. We have 𝒪uABr.(DE)\mathcal{O}_{u}\models A\equiv B\sqcap\forall r.(D\rightarrow E),222Here and in what follows we use standard 𝒜𝒞\mathcal{ALC} syntax and semantics and set CD:=¬CDC\rightarrow D:=\neg C\sqcup D (?). so AA is implicitly definable using Σ\Sigma under 𝒪u\mathcal{O}_{u}. The interpretations \mathcal{I} and \mathcal{I}^{\prime} given in Figure 1 show that AA is not explicitly u(Σ)\mathcal{EL}_{u}(\Sigma)-definable under 𝒪u\mathcal{O}_{u}.

aaA,B{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}A},BbbC,D,E{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}C},D,Eaa^{\prime}BBbb^{\prime}D,ED,Eb′′b^{\prime\prime}C,D{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}C},D
Figure 1: Interpretations \mathcal{I} (left) and \mathcal{I}^{\prime} (right) used for 𝒪u\mathcal{O}_{u}.

Indeed, \mathcal{I} and \mathcal{I}^{\prime} are both models of 𝒪u\mathcal{O}_{u}, aAa\in A^{\mathcal{I}}, aAa^{\prime}\not\in A^{\mathcal{I}^{\prime}}, and the relation {(a,a),(b,b)}\{(a,a^{\prime}),(b,b^{\prime})\} is a u(Σ)\mathcal{EL}_{u}(\Sigma)-simulation between \mathcal{I} and \mathcal{I}^{\prime}. As u(Σ)\mathcal{EL}_{u}(\Sigma)-concepts are preserved under u(Σ)\mathcal{EL}_{u}(\Sigma)-simulations (Lemma 1), if 𝒪uAF\mathcal{O}_{u}\models A\equiv F for some u(Σ)\mathcal{EL}_{u}(\Sigma)-concept FF, then from aAa\in A^{\mathcal{I}} we obtain aFa\in F^{\mathcal{I}}. This implies aFa^{\prime}\in F^{\mathcal{I}^{\prime}}, and so aAa^{\prime}\in A^{\mathcal{I}^{\prime}}. As aAa^{\prime}\not\in A^{\mathcal{I}^{\prime}}, we obtain a contradiction.

We next prove Point 2. An example from (?) shows that 𝒪\mathcal{ELO} does not enjoy the CIP/PBDP. Here we show that 𝒪\mathcal{ELO} does not enjoy the CIP/PBDP, even if interpolants/explicit defintions are from 𝒪u\mathcal{ELO}_{u}. Let 𝒪n\mathcal{O}_{n} contain the following CIs:

Ar.(E{c}),s.(Q2s.{c})A\sqsubseteq\exists r.(E\sqcap\{c\}),\quad\top\sqsubseteq\exists s.(Q_{2}\sqcap\exists s.\{c\})
s.(Q1Q2s.{c})A,s.EQ1\exists s.(Q_{1}\sqcap Q_{2}\sqcap\exists s.\{c\})\sqsubseteq A,\quad\exists s.E\sqsubseteq Q_{1}

and let Σ={c,s,Q1}\Sigma=\{c,s,Q_{1}\}. Observe that AA is implicitly definable using Σ\Sigma under 𝒪n\mathcal{O}_{n} as 𝒪nAs.(s.{c}Q1)\mathcal{O}_{n}\models A\equiv\forall s.(\exists s.\{c\}\rightarrow Q_{1}). The relation {(a,a),(b,b),(c,c)}\{(a,a^{\prime}),(b,b^{\prime}),(c,c^{\prime})\} is an 𝒪u(Σ)\mathcal{ELO}_{u}(\Sigma)-simulation between the interpretations \mathcal{I} and \mathcal{I}^{\prime} defined in Figure 2. Now we can apply the same argument as in Point 1 to show that AA is not explicitly 𝒪u(Σ)\mathcal{ELO}_{u}(\Sigma)-definable under 𝒪n\mathcal{O}_{n}.

aaA{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}A}ccE,A,{c}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}E,A},\{c\}bbA,Q2,Q1{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}A,Q_{2}},Q_{1}aa^{\prime}cc^{\prime}{c}\{c\}bb^{\prime}Q1Q_{1}b′′b^{\prime\prime}Q2{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}Q_{2}}ssrrssssssssssssssssss
Figure 2: Interpretations \mathcal{I} (left) and \mathcal{I}^{\prime} (right) used for 𝒪n\mathcal{O}_{n}.

For Point 3, let 𝒪r\mathcal{O}_{r} contain

Ar.E,Es.B,s.BA,rss,A\sqsubseteq\exists r.E,\quad E\sqsubseteq\exists s.B,\quad\exists s.B\sqsubseteq A,\quad r\circ s\sqsubseteq s,

and let Σ={s,E}\Sigma=\{s,E\}. Then AA is implicitly definable using Σ\Sigma under 𝒪r\mathcal{O}_{r} since

𝒪rx(A(x)y(E(y)z(s(y,z)s(x,z))).\mathcal{O}_{r}\models\forall x(A(x)\leftrightarrow\exists y(E(y)\wedge\forall z(s(y,z)\rightarrow s(x,z))).

We show that there does not exist any u(Σ)\mathcal{EL}_{u}(\Sigma)-explicit definition of AA under 𝒪r\mathcal{O}_{r}.

aaA{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}A}ccE,AE,{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}A}bbB{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}B}aa^{\prime}cc^{\prime}E,AE,{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}A}bb^{\prime}c′′c^{\prime\prime}E,AE,{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}A}b′′b^{\prime\prime}B{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}B}ssrrssrrssssssrrssrr
Figure 3: Interpretations \mathcal{I} (left) and \mathcal{I}^{\prime} (right) used for 𝒪r\mathcal{O}_{r}.

The interpretations \mathcal{I} and \mathcal{I}^{\prime} given in Figure 3 are both models of 𝒪r\mathcal{O}_{r}, aAa\in A^{\mathcal{I}}, aAa^{\prime}\not\in A^{\mathcal{I}^{\prime}}, and the relation {(a,a),(b,b),(c,c)}\{(a,a^{\prime}),(b,b^{\prime}),(c,c^{\prime})\} is an u(Σ)\mathcal{EL}_{u}(\Sigma)-simulation between \mathcal{I} and \mathcal{I}^{\prime}. One can now show in the same way as in Point 1 that no u(Σ)\mathcal{EL}_{u}(\Sigma)-definition of AA under 𝒪r\mathcal{O}_{r} exists.

Point 4 is shown in the appendix of the full version using a modification of the ontology used for Point 3.

To prove Point 5, obtain an \mathcal{ELI}-ontology 𝒪i\mathcal{O}_{i} from 𝒪u\mathcal{O}_{u} defined above by replacing the second CI of 𝒪u\mathcal{O}_{u} by Dr.AED\sqcap\exists r^{-}.A\sqsubseteq E. Let, as before, Σ={B,D,E,r}\Sigma=\{B,D,E,r\}. Then AA is implicitly definable from Σ\Sigma under 𝒪i\mathcal{O}_{i} (the same explicit definition works), but AA is not explicitly u(Σ)\mathcal{ELI}_{u}(\Sigma)-definable under 𝒪i\mathcal{O}_{i} (the same interpretations \mathcal{I} and \mathcal{I}^{\prime} work). ∎

We next discuss a general positive result on interpolation and explicit definition existence that shows that Theorem 1 is essentially optimal. A set \mathcal{R} of RIs is safe for a signature Σ\Sigma if for each RI r1rnrr_{1}\circ\dots\circ r_{n}\sqsubseteq r\in\mathcal{R}, n1n\geq 1, if {r1,,rn,r}Σ\{r_{1},\dots,r_{n},r\}\cap\Sigma\neq\emptyset then {r1,,rn,r}Σ\{r_{1},\dots,r_{n},r\}\subseteq\Sigma.

Theorem 4.

Let 𝒪1,𝒪2\mathcal{O}_{1},\mathcal{O}_{2} be \mathcal{EL}-ontologies with RIs, C1,C2C_{1},C_{2} be \mathcal{EL}-concepts, and set Σ=sig(𝒪1,C1)sig(𝒪2,C2)\Sigma=\text{sig}(\mathcal{O}_{1},C_{1})\cap\text{sig}(\mathcal{O}_{2},C_{2}). Assume that the set of RIs in 𝒪1𝒪2\mathcal{O}_{1}\cup\mathcal{O}_{2} is safe for Σ\Sigma and 𝒪1𝒪2C1C2\mathcal{O}_{1}\cup\mathcal{O}_{2}\models C_{1}\sqsubseteq C_{2}. Then an \mathcal{EL}-interpolant for C1C2C_{1}\sqsubseteq C_{2} under 𝒪1\mathcal{O}_{1}, 𝒪2\mathcal{O}_{2} exists.

The proof technique is based on simulations and similar to (??). Theorem 4 has a few interesting consequences. For instance, \mathcal{EL} with transitive roles enjoys both the CIP and PBDP since transitivity is expressed by the role inclusion rrrr\circ r\sqsubseteq r which is safe for any signature (as it only uses a single role name).

5 Interpolant and Explicit Definition Existence

We introduce interpolant and explicit definition existence as decision problems and establish a polynomial time reduction of the latter to the former. We then show that it suffices to consider ontologies in normal form and that the addition of \bot does not affect the complexity of the decision problems.

Definition 3.

Let \mathcal{L} be a DL. Then \mathcal{L}-interpolant existence is the problem to decide for any \mathcal{L}-ontologies 𝒪1,𝒪2\mathcal{O}_{1},\mathcal{O}_{2} and \mathcal{L}-concepts C1,C2C_{1},C_{2} whether there exists an \mathcal{L}-interpolant for C1C2C_{1}\sqsubseteq C_{2} under 𝒪1,𝒪2\mathcal{O}_{1},\mathcal{O}_{2}.

Observe that interpolant existence reduces to checking 𝒪1𝒪2C1C2\mathcal{O}_{1}\cup\mathcal{O}_{2}\models C_{1}\sqsubseteq C_{2} for logics with the CIP but that this is not the case for logics without the CIP.

Definition 4.

Let \mathcal{L} be a DL. Then \mathcal{L}-explicit definition existence is the problem to decide for any \mathcal{L}-ontology 𝒪\mathcal{O}, signature Σ\Sigma, and concept name AA whether AA is explicitly definable in (Σ)\mathcal{L}(\Sigma) under 𝒪\mathcal{O}.

Remark 4.

There is a polynomial time reduction of \mathcal{L}-explicit definition existence to \mathcal{L}-interpolant existence. Moreover, any algorithm computing \mathcal{L}-interpolants also computes \mathcal{L}-explicit definitions and any bound on the size of \mathcal{L}-interpolants provides a bound on the size of \mathcal{L}-explicit definitions. The proof is similar to the proof of Remark 1.

We next observe that replacing the original ontologies by a conservative extension preserves interpolants and explicit definitions. Thus, it suffices to consider ontologies in normal form and interpolants for inclusions between concept names.

Lemma 2.

Let 𝒪1,𝒪2\mathcal{O}_{1},\mathcal{O}_{2} be ontologies and C1,C2C_{1},C_{2} concepts in any DL \mathcal{L} considered in this paper. Then one can compute in polynomial time \mathcal{L}-ontologies 𝒪1,𝒪2\mathcal{O}_{1}^{\prime},\mathcal{O}_{2}^{\prime} in normal form and with fresh concept names A,BA,B such that an \mathcal{L}-concept CC is an interpolant for C1C2C_{1}\sqsubseteq C_{2} under 𝒪1,𝒪2\mathcal{O}_{1},\mathcal{O}_{2} iff it is an interpolant for ABA\sqsubseteq B under 𝒪1,𝒪2\mathcal{O}_{1}^{\prime},\mathcal{O}_{2}^{\prime}.

Proof.

Let 𝒪1\mathcal{O}_{1}^{\prime} and 𝒪2\mathcal{O}_{2}^{\prime} be normal form conservative extensions of 𝒪1{AC}\mathcal{O}_{1}\cup\{A\equiv C\} and, respectively, 𝒪2{BD}\mathcal{O}_{2}\cup\{B\equiv D\}, computed in polynomial time. One can show that 𝒪1\mathcal{O}_{1}^{\prime} and 𝒪2\mathcal{O}_{2}^{\prime} are as required. ∎

Remark 5.

Assume that \mathcal{L} is any of the DLs introduced above and let \mathcal{L}_{\bot} denote its extension with \bot. Then \mathcal{L}-interpolant existence and \mathcal{L}-explicit definition existence can be reduced in polynomial time to \mathcal{L}_{\bot}-interpolant existence and \mathcal{L}_{\bot}-explicit definition existence, respectively. The converse direction also holds modulo an oracle deciding whether 𝒪C\mathcal{O}\models C\sqsubseteq\bot.

6 Interpolant and Explicit Definition Existence in Tractable {\cal E\!\!\>L} Extensions

The aim of this section is to analyse interpolants and explicit definitions for extensions of \mathcal{EL} with any combination of nominals, role inclusions, or the universal role. We show the following result from the introduction.

Theorem 2. For \mathcal{EL} and any extension with any combination of nominals, role inclusions, the universal role, or \bot, the existence of interpolants and explicit definitions is in PTime. If an interpolant/explicit definition exists, then there exists one of at most exponential size that can be computed in exponential time. This bound is optimal.

Before we start with a sketch of the proof we give instructive examples showing that the exponential bound on the size of explicit definitions is optimal.

Example 1.

Variants of the following example have already been used for various succinctness arguments in DL. Let

𝒪b\displaystyle\mathcal{O}_{b} =\displaystyle= {AMr1.B1r2.B1}\displaystyle\{A\sqsubseteq M\sqcap\exists r_{1}.B_{1}\sqcap\exists r_{2}.B_{1}\}\cup
{Bir1.Bi+1r2.Bi+11i<n}\displaystyle\{B_{i}\sqsubseteq\exists r_{1}.B_{i+1}\sqcap\exists r_{2}.B_{i+1}\mid 1\leq i<n\}\cup
{BnB,r1.Br2.BB,BMA}\displaystyle\{B_{n}\sqsubseteq B,\exists r_{1}.B\sqcap\exists r_{2}.B\sqsubseteq B,B\sqcap M\sqsubseteq A\}

and Σ0={r1,r2,Bn,M}\Sigma_{0}=\{r_{1},r_{2},B_{n},M\}. AA triggers a marker MM and a binary tree of depth nn whose leafs are decorated with BnB_{n}. Conversely, if BnB_{n} is true at all leafs of a binary tree of depth nn, then BB is true at all nodes of the tree and BB together with MM entail AA at its root. Let, inductively, C0:=BnC_{0}:=B_{n} and Ci+1=r1.Cir2.CiC_{i+1}=\exists r_{1}.C_{i}\sqcap\exists r_{2}.C_{i}, for 0<i<n0<i<n, and C=MCnC=M\sqcap C_{n}. Then CC is the smallest explicit (Σ0)\mathcal{EL}(\Sigma_{0})-definition of AA under 𝒪b\mathcal{O}_{b}. Next let

𝒪p\displaystyle\mathcal{O}_{p} =\displaystyle= {ririri+10i<n}\displaystyle\{r_{i}\circ r_{i}\sqsubseteq r_{i+1}\mid 0\leq i<n\}\cup
{Ar0.B,Br0.B,rn.BA}\displaystyle\{A\sqsubseteq\exists r_{0}.B,B\sqsubseteq\exists r_{0}.B,\exists r_{n}.B\sqsubseteq A\}

and Σ1={r0,B}\Sigma_{1}=\{r_{0},B\}. Then r02n.B\exists r_{0}^{2^{n}}.B is the smallest explicit (Σ1)\mathcal{EL}(\Sigma_{1})-definition of AA under 𝒪p\mathcal{O}_{p}.

Observe that using 𝒪b\mathcal{O}_{b} one enforces explicit definitions of exponential size by generating a binary tree of linear depth whereas using 𝒪p\mathcal{O}_{p} this is achieved by generating a path of exponential length. The latter can only happen if role inclusions are used in the ontology. One insight provided by the exponential upper bound on the size of explicit definitions in Theorem 2 is that the two examples cannot be combined to enforce a binary tree of exponential depth.

To continue with the proof we introduce ABoxes as a technical tool that allows us to move from interpretations to (potentially incomplete) sets of facts and concepts. An ABox 𝒜\mathcal{A} is a (possibly infinite) set of assertions of the form A(x)A(x), r(x,y)r(x,y), {a}(x)\{a\}(x), and (x)\top(x) with A𝖭𝖢A\in{\sf N_{C}}, r𝖭𝖱r\in{\sf N_{R}}, a𝖭𝖨a\in{\sf N_{I}}, and x,yx,y individual variables (we call individuals used in ABoxes variables to distinguish them from individual names used in nominals). We denote by ind(𝒜)\text{ind}(\mathcal{A}) the set of individual variables in 𝒜\mathcal{A}. A Σ\Sigma-ABox is an ABox using symbols from Σ\Sigma only. Models of ABoxes are defined as usual. We do not make the unique name assumption.

Every interpretation \mathcal{I} defines an ABox 𝒜\mathcal{A}_{\mathcal{I}} by identifying every dΔd\in\Delta^{\mathcal{I}} with a variable xdx_{d} and taking A(xd)A(x_{d}) if dAd\in A^{\mathcal{I}}, r(xc,xd)r(x_{c},x_{d}) if (c,d)r(c,d)\in r^{\mathcal{I}}, {a}(xd)\{a\}(x_{d}) if a=da^{\mathcal{I}}=d. Conversely, ABoxes 𝒜\mathcal{A} define interpretations in the obvious way (by identifying variables x,yx,y if {a}(x),{a}(y)𝒜\{a\}(x),\{a\}(y)\in\mathcal{A}). We associate with every ABox 𝒜\mathcal{A} a directed graph G𝒜=(ind(𝒜),r𝖭𝖱{(x,y)r(x,y)𝒜})G_{\mathcal{A}}=(\text{ind}(\mathcal{A}),\bigcup_{r\in{\sf N_{R}}}\{(x,y)\mid r(x,y)\in\mathcal{A}\}). Let Γ\Gamma be a set of individual names. Then 𝒜\mathcal{A} is ditree-shaped modulo Γ\Gamma if after dropping some facts of the form r(x,y)r(x,y) with {a}(y)𝒜\{a\}(y)\in\mathcal{A} for some aΓa\in\Gamma, it is ditree-shaped in the sense that G𝒜G_{\mathcal{A}} is acyclic and r(x,y)𝒜r(x,y)\in\mathcal{A} and s(x,y)𝒜s(x,y)\in\mathcal{A} imply r=sr=s. A pointed ABox is a pair 𝒜,x\mathcal{A},x with xind(𝒜)x\in\text{ind}(\mathcal{A}). Then 𝒪u(Σ){\cal E\!\!\>LO}_{u}(\Sigma)-concepts correspond to pointed Σ\Sigma-ABoxes 𝒜,x\mathcal{A},x such that 𝒜\mathcal{A} is ditree-shaped modulo 𝖭𝖨Σ{\sf N_{I}}\cap\Sigma and 𝒪(Σ)\mathcal{ELO}(\Sigma)-concepts correspond to rooted pointed Σ\Sigma-ABoxes 𝒜,x\mathcal{A},x such that 𝒜\mathcal{A} is ditree-shaped modulo 𝖭𝖨Σ{\sf N_{I}}\cap\Sigma, where 𝒜,x\mathcal{A},x is called rooted if for every yind(𝒜)y\in\text{ind}(\mathcal{A}) there is a path from xx to yy in G𝒜G_{\mathcal{A}}. We write 𝒪,𝒜C(x)\mathcal{O},\mathcal{A}\models C(x) if xCx^{\mathcal{I}}\in C^{\mathcal{I}} for every model \mathcal{I} of 𝒪\mathcal{O} and 𝒜\mathcal{A}.

Given an 𝒪u\mathcal{ELRO}_{u}-ontology 𝒪\mathcal{O} in normal form and a concept name AA, one can construct in polynomial time the canonical model 𝒪,A\mathcal{I}_{\mathcal{O},A} of 𝒪\mathcal{O} and AA using the approach introduced in (?). More generally, the canonical model 𝒪,𝒜\mathcal{I}_{\mathcal{O},\mathcal{A}} for an ABox 𝒜\mathcal{A} and ontology 𝒪\mathcal{O} can be constructed in polynomial time and is a model of both 𝒪\mathcal{O} and 𝒜\mathcal{A} such that for any 𝒪u\mathcal{ELO}_{u}-concept CC using symbols from 𝒪\mathcal{O} only and any xind(𝒜)x\in\text{ind}(\mathcal{A}),

  • (\dagger)

    𝒪,𝒜C(x)\mathcal{O},\mathcal{A}\models C(x) iff xC𝒪,𝒜x\in C^{\mathcal{I}_{\mathcal{O},\mathcal{A}}},

details are given in the appendix of the full version. We let 𝒪,A=𝒪,𝒜\mathcal{I}_{\mathcal{O},A}=\mathcal{I}_{\mathcal{O},\mathcal{A}} with 𝒜={A(ρA)}\mathcal{A}=\{A(\rho_{A})\}. Note that in (?) the condition (\dagger) is only stated for subconcepts CC of the ontology 𝒪\mathcal{O}, thus (\dagger) requires a proof.

Example 2.

The interpretations \mathcal{I} defined in the proof of Theorem 1 define canonical models 𝒪,A\mathcal{I}_{\mathcal{O},A} with ρA=a\rho_{A}=a for the ontologies 𝒪{𝒪u,𝒪n,𝒪r,𝒪i}\mathcal{O}\in\{\mathcal{O}_{u},\mathcal{O}_{n},\mathcal{O}_{r},\mathcal{O}_{i}\}. The interpretations \mathcal{I}^{\prime} define canonical models 𝒪,𝒜𝒪Σ\mathcal{I}_{\mathcal{O},\mathcal{A}_{\mathcal{O}}^{\Sigma}} with 𝒜𝒪Σ\mathcal{A}_{\mathcal{O}}^{\Sigma} the Σ\Sigma-reduct of 𝒪,A\mathcal{I}_{\mathcal{O},A} regarded as an ABox and ρA=a\rho_{A}=a^{\prime}.

The directed unfolding of a pointed Σ\Sigma-ABox 𝒜,x\mathcal{A},x into a pointed Σ\Sigma-ABox 𝒜u,x\mathcal{A}^{u},x that is ditree-shaped modulo Σ𝖭𝖨\Sigma\cap{\sf N_{I}} is defined in the standard way. In the rooted directed unfolding, nodes that cannot be reached from xx via role names are dropped.

Assume now that 𝒪\mathcal{O} is in normal form and AA a concept name. Let 𝒜𝒪,AΣ\mathcal{A}_{\mathcal{O},A}^{\Sigma} be the Σ\Sigma-reduct of the canonical model 𝒪,A\mathcal{I}_{\mathcal{O},A}, regarded as an ABox. Denote by 𝒜𝒪,AΣ,u,ρA\mathcal{A}_{\mathcal{O},A}^{\Sigma,u},\rho_{A} the directed unfolding of 𝒜𝒪,AΣ,ρA\mathcal{A}_{\mathcal{O},A}^{\Sigma},\rho_{A}, by 𝒜𝒪,AΣ,ρA\mathcal{A}_{\mathcal{O},A}^{\downarrow\Sigma},\rho_{A} the sub-ABox of 𝒜𝒪,AΣ\mathcal{A}_{\mathcal{O},A}^{\Sigma} rooted in ρA\rho_{A}, and by 𝒜𝒪,AΣ,u,ρA\mathcal{A}_{\mathcal{O},A}^{\downarrow\Sigma,u},\rho_{A} its rooted directed unfolding. Theorem 2 is a direct consequence of the following characterization of interpolants.

Theorem 5.

There exists a polynomial pp such that the following conditions are equivalent for all 𝒪u\mathcal{ELRO}_{u}-ontologies 𝒪1,𝒪2\mathcal{O}_{1},\mathcal{O}_{2} in normal form, concept names A,BA,B, and Σ=sig(𝒪1,A)sig(𝒪2,B)\Sigma=\text{sig}(\mathcal{O}_{1},A)\cap\text{sig}(\mathcal{O}_{2},B):

  1. 1.

    An 𝒪u\mathcal{ELO}_{u}-interpolant for ABA\sqsubseteq B under 𝒪1,𝒪2\mathcal{O}_{1},\mathcal{O}_{2} exists;

  2. 2.

    𝒪1𝒪2,𝒜𝒪1𝒪2,AΣB(ρA)\mathcal{O}_{1}\cup\mathcal{O}_{2},\mathcal{A}_{\mathcal{O}_{1}\cup\mathcal{O}_{2},A}^{\Sigma}\models B(\rho_{A});

  3. 3.

    there exists a finite subset 𝒜\mathcal{A} of 𝒜𝒪1𝒪2,AΣ,u\mathcal{A}_{\mathcal{O}_{1}\cup\mathcal{O}_{2},A}^{\Sigma,u} with |ind(𝒜)|2p(𝒪1𝒪2)|\text{ind}(\mathcal{A})|\leq 2^{p(||\mathcal{O}_{1}\cup\mathcal{O}_{2}||)} such that the 𝒪u\mathcal{ELO}_{u}-concept corresponding to 𝒜,ρA\mathcal{A},\rho_{A} is an 𝒪u\mathcal{ELO}_{u}-interpolant for ABA\sqsubseteq B under 𝒪1,𝒪2\mathcal{O}_{1},\mathcal{O}_{2}.

The same equivalences hold if in Points 1 to 3, 𝒪u\mathcal{ELO}_{u} is replaced by 𝒪\mathcal{ELO}, 𝒜𝒪1𝒪2,AΣ\mathcal{A}_{\mathcal{O}_{1}\cup\mathcal{O}_{2},A}^{\Sigma} by 𝒜𝒪1𝒪2,AΣ\mathcal{A}_{\mathcal{O}_{1}\cup\mathcal{O}_{2},A}^{\downarrow\Sigma}, and 𝒜𝒪1𝒪2,AΣ,u\mathcal{A}_{\mathcal{O}_{1}\cup\mathcal{O}_{2},A}^{\Sigma,u} by 𝒜𝒪1𝒪2,AΣ,u\mathcal{A}_{\mathcal{O}_{1}\cup\mathcal{O}_{2},A}^{\downarrow\Sigma,u}.

In Point 3, 𝒜\mathcal{A} can be computed in exponential time, if it exists.

Note that the polynomial time decidability of interpolant existence follows from Point 2 of Theorem 5 (and the tractability of 𝒪u\mathcal{ELRO}_{u} (?)).

Example 3.

Our proof of Theorem 2 can be regarded as an application of Theorem 5: by Example 2, the interpretations \mathcal{I} and \mathcal{I}^{\prime} coincide with the canonical models 𝒪,A\mathcal{I}_{\mathcal{O},A} and 𝒪,𝒜𝒪,AΣ\mathcal{I}_{\mathcal{O},\mathcal{A}^{\Sigma}_{\mathcal{O},A}} and so ρA=aA𝒪,𝒜𝒪,AΣ\rho_{A}=a^{\prime}\not\in A^{\mathcal{I}_{\mathcal{O},\mathcal{A}^{\Sigma}_{\mathcal{O},A}}} is equivalent to 𝒪,𝒜𝒪,AΣ⊧̸A(ρA)\mathcal{O},\mathcal{A}_{\mathcal{O},A}^{\Sigma}\not\models A(\rho_{A}) (Point 2 in Theorem 5).

The following example illustrates the difference between the existence of explicit definitions in 𝒪\mathcal{ELO} and 𝒪u\mathcal{ELO}_{u} and thus the need for moving to the ABoxes 𝒜𝒪,AΣ\mathcal{A}_{\mathcal{O},A}^{\downarrow\Sigma}, and 𝒜𝒪,AΣ,u\mathcal{A}_{\mathcal{O},A}^{\downarrow\Sigma,u} if one does not admit the universal role in explicit definitions.

Example 4.

Let 𝒪={A{b},Ar.B,Bs.A}\mathcal{O}=\{A\sqsubseteq\{b\},A\sqsubseteq\exists r.B,B\sqsubseteq\exists s.A\} and let Σ={b,B}\Sigma=\{b,B\}. Then AA is explicitly 𝒪u(Σ)\mathcal{ELO}_{u}(\Sigma)-definable under 𝒪\mathcal{O} since 𝒪A{b}u.B\mathcal{O}\models A\equiv\{b\}\sqcap\exists u.B but AA is not explicitly 𝒪(Σ)\mathcal{ELO}(\Sigma)-definable. Note that in this case 𝒜𝒪,AΣ={{b}(ρA),B(y)}\mathcal{A}^{\Sigma}_{\mathcal{O},A}=\{\{b\}(\rho_{A}),B(y)\} but 𝒜𝒪,AΣ={{b}(ρA)}\mathcal{A}^{\downarrow\Sigma}_{\mathcal{O},A}=\{\{b\}(\rho_{A})\}.

We next sketch the proof idea for Theorem 5 for the case with universal role in interpolants. We show “1. \Rightarrow 2.”, observe that “3. \Rightarrow 1.” is trivial, and then sketch the proof of “2. \Rightarrow 3.” and the exponential time algorithm computing interpolants, details are provided in the appendix of the full version. For “1. \Rightarrow 2.” assume that CC is an 𝒪u(Σ)\mathcal{ELO}_{u}(\Sigma)-concept with (i) 𝒪1𝒪2AC\mathcal{O}_{1}\cup\mathcal{O}_{2}\models A\sqsubseteq C and (ii) 𝒪1𝒪2CB\mathcal{O}_{1}\cup\mathcal{O}_{2}\models C\sqsubseteq B. By (\dagger) and (i), 𝒜𝒪1𝒪2,AΣC(ρA)\mathcal{A}^{\Sigma}_{\mathcal{O}_{1}\cup\mathcal{O}_{2},A}\models C(\rho_{A}). But then by (ii) 𝒪1𝒪2,𝒜𝒪1𝒪2,AΣB(ρA)\mathcal{O}_{1}\cup\mathcal{O}_{2},\mathcal{A}^{\Sigma}_{\mathcal{O}_{1}\cup\mathcal{O}_{2},A}\models B(\rho_{A}), as required.

If one does not impose a bound on the size of 𝒜\mathcal{A} in Point 3, then one can prove “2. \Rightarrow 3.” using compactness and a generalization of unraveling tolerance according to which 𝒪1𝒪2,𝒜𝒪1𝒪2,AΣ\mathcal{O}_{1}\cup\mathcal{O}_{2},\mathcal{A}_{\mathcal{O}_{1}\cup\mathcal{O}_{2},A}^{\Sigma} and 𝒪1𝒪2,𝒜𝒪1𝒪2,AΣ,u\mathcal{O}_{1}\cup\mathcal{O}_{2},\mathcal{A}_{\mathcal{O}_{1}\cup\mathcal{O}_{2},A}^{\Sigma,u} entail the same C(ρA)C(\rho_{A}) (??). As we are interested in an exponential bound on the size of 𝒜\mathcal{A} (and a deterministic exponential time algorithm computing it) we require a more syntactic approach. Our proof of “2. \Rightarrow 3.” is based on derivation trees which represent a derivation of a fact C(a)C(a) from an ontology 𝒪\mathcal{O} and ABox 𝒜\mathcal{A} using a labeled tree. Our derivation trees generalize those introduced in (??) to languages with nominals and role inclusions. Reflecting the use of individual names and concept names in the construction of the domain of the canonical model (?), we assume aΔ:=ind(𝒜)((𝖭𝖢𝖭𝖨)sig(𝒪))a\in\Delta:=\text{ind}(\mathcal{A})\cup(({\sf N_{C}}\cup{\sf N_{I}})\cap\textup{sig}(\mathcal{O})) and CΘ:={}(𝖭𝖢sig(𝒪)){{a}a𝖭𝖨sig(𝒪)}C\in\Theta:=\{\top\}\cup({\sf N_{C}}\cap\text{sig}(\mathcal{O}))\cup\{\{a\}\mid a\in{\sf N_{I}}\cap\textup{sig}(\mathcal{O})\}. Then a derivation tree (T,V)(T,V) for (a,C)Δ×Θ(a,C)\in\Delta\times\Theta is a tree TT with a labeling function V:TΔ×ΘV:T\rightarrow\Delta\times\Theta such that V(ε)=(a,C)V(\varepsilon)=(a,C) and (V,T)(V,T) satisfies rules stating under which conditions the label of nn is derived in one step from the labels of the successors of nn. To illustrate, the existence of successors n1,n2n_{1},n_{2} of nn with V(n1)=(a,C1)V(n_{1})=(a,C_{1}) and V(n2)=(a,C2)V(n_{2})=(a,C_{2}) justifies V(n)=(a,C)V(n)=(a,C) if 𝒪C1C2C\mathcal{O}\models C_{1}\sqcap C_{2}\sqsubseteq C. The rules are given in the appendix of the full version, we only discuss the rule used to capture derivations using RIs: V(n)=(a1,C)V(n)=(a_{1},C) is justified if there are role names r2,,r2k2,rr_{2},\ldots,r_{2k-2},r such that (a2k,C)(a_{2k},C^{\prime}) is a label of a successor of nn, 𝒪r.CC\mathcal{O}\models\exists r.C^{\prime}\sqsubseteq C, 𝒪r2r2k2r\mathcal{O}\models r_{2}\circ\cdots\circ r_{2k-2}\sqsubseteq r, and the situation depicted in Figure 4 holds, where the “dotted lines” stand for ‘either ai=ai+1a_{i}=a_{i+1} or some (ai,{c}),(ai+1,{c})(a_{i},\{c\}),(a_{i+1},\{c\}) with c𝖭𝖨c\in{\sf N_{I}} are labels of successors of nn’, and r^i\hat{r}_{i} stands for ‘either r(ai,ai+1)𝒜r(a_{i},a_{i+1})\in\mathcal{A} or some (ai,Ci)(a_{i},C_{i}) is a label of a successor of nn and 𝒪Ciri.{ai+1}\mathcal{O}\models C_{i}\sqsubseteq\exists r_{i}.\{a_{i+1}\} if ai+1𝖭𝖨a_{i+1}\in{\sf N_{I}} and 𝒪Ciri.ai+1\mathcal{O}\models C_{i}\sqsubseteq\exists r_{i}.a_{i+1} if ai+1𝖭𝖢a_{i+1}\in{\sf N_{C}}’. Moreover, for all aia1a_{i}\not=a_{1}, 1i2k1\leq i\leq 2k, there exists a successor of nn with label (ai,D)(a_{i},D) for some DD. The soundness of this rule should be clear, completeness can be shown similarly to the analysis of canonical models.

a1a_{1}a2a_{2}a4a_{4}a3a_{3}a5a_{5}a6a_{6}\cdots\cdotsa2k3a_{2k-3}a2k2a_{2k-2}a2ka_{2k}CC^{\prime}a2k1a_{2k-1}r^2\hat{r}_{2}r^4\hat{r}_{4}r^6\hat{r}_{6}r^2k4\hat{r}_{2k-4}r^2k2\hat{r}_{2k-2}
Figure 4: Rule for Role Inclusions.

The length of the sequence a1,,a2ka_{1},\ldots,a_{2k} can be exponential (for instance, in Example 1 for the fact (ρA,A)(\rho_{A},A) in 𝒪p,𝒜𝒪p,AΣ1\mathcal{O}_{p},\mathcal{A}_{\mathcal{O}_{p},A}^{\Sigma_{1}}). One can show, however, that its length can be bounded without affecting completeness by 2q(𝒪+𝒜)2^{q(||\mathcal{O}||+||\mathcal{A}||)} with qq a polynomial. The following lemma summarizes the main properties of derivation trees.

Lemma 3.

Let 𝒪\mathcal{O} be an 𝒪u\mathcal{ELRO}_{u}-ontology in normal form and 𝒜\mathcal{A} a finite sig(𝒪)\text{sig}(\mathcal{O})-ABox. Then

  1. 1.

    𝒪,𝒜A(x)\mathcal{O},\mathcal{A}\models A(x) if and only if there is a derivation tree for A(x)A(x) in 𝒪,𝒜\mathcal{O},\mathcal{A}. Moreover, if a derivation tree exists, then there exists one of depth and outdegree bounded by (𝒜+𝒪)×𝒪(||\mathcal{A}||+||\mathcal{O}||)\times||\mathcal{O}|| which can be constructed in exponential time in 𝒪+𝒜||\mathcal{O}||+||\mathcal{A}||.

  2. 2.

    If (T,V)(T,V) is a derivation tree for A(x)A(x) in 𝒪,𝒜\mathcal{O},\mathcal{A} of at most exponential size, then one can construct in exponential time (in 𝒜+𝒪||\mathcal{A}||+||\mathcal{O}||) a derivation tree (T,V)(T^{\prime},V^{\prime}) for A(x)A(x) in 𝒪,𝒜u\mathcal{O},\mathcal{A}^{u} with 𝒜u\mathcal{A}^{u} the directed unfolding of 𝒜\mathcal{A} modulo Σ=sig(𝒜)𝖭𝖨\Sigma=\text{sig}(\mathcal{A})\cap{\sf N_{I}} and TT^{\prime} of the same depth as TT and such that the outdegree of TT^{\prime} does not exceed max{3,3n}\max{\{3,3n\}} with nn the length of the longest chain a1ana_{1}\cdots a_{n} used in the rule for RIs in the derivation tree (T,V)(T,V).

Proof.

We sketch the idea. For Point 1, the bound on the depth of derivation trees can be proved by observing that one can assume (using a standard pumping argument) that the labels of distinct nodes on a single path are distinct and the bound on the outdegree can be proved by observing that one can trivially assume that all successor nodes of a node have distinct labels. For the construction of derivation trees, let FnF_{n} denote the set of facts in Δ×Θ\Delta\times\Theta for which there is a derivation tree of depth at most nn. Then one can construct in exponential time derivation trees for all facts in any FnF_{n}, n(𝒜+𝒪)×𝒪n\leq(||\mathcal{A}||+||\mathcal{O}||)\times||\mathcal{O}|| by starting with derivation trees of depth 0 for members of F0F_{0}, and then constructing derivation trees of depth i+1i+1 for members of Fi+1F_{i+1} using the trees for members of F0,,FiF_{0},\ldots,F_{i}. For Point 2, the transformation of (T,V)(T,V) into (T,V)(T^{\prime},V^{\prime}) is by induction over rule application, the only interesting step being the rule for RIs. Using the ontology 𝒪p\mathcal{O}_{p} of Example 1 one can see that the exponential blow-up of the outdegree is unavoidable. ∎

We are now in the position to complete the sketch of the proof of “2. \Rightarrow 3.” Assume that Point 2 holds. Then 𝒪1𝒪2,𝒜𝒪1𝒪2,AΣB(ρA)\mathcal{O}_{1}\cup\mathcal{O}_{2},\mathcal{A}_{\mathcal{O}_{1}\cup\mathcal{O}_{2},A}^{\Sigma}\models B(\rho_{A}). By Point 1 of Lemma 3 we can construct a derivation tree (T,V)(T,V) for (ρA,B)(\rho_{A},B) in 𝒪1𝒪2,𝒜𝒪1𝒪2,AΣ\mathcal{O}_{1}\cup\mathcal{O}_{2},\mathcal{A}_{\mathcal{O}_{1}\cup\mathcal{O}_{2},A}^{\Sigma} of polynomial depth and outdegree in exponential time. By Point 2 of Lemma 3 we can transform (T,V)(T,V) into a derivation tree (T,V)(T^{\prime},V^{\prime}) for (ρA,B)(\rho_{A},B) in 𝒪1𝒪2,𝒜𝒪1𝒪2,AΣ,u\mathcal{O}_{1}\cup\mathcal{O}_{2},\mathcal{A}_{\mathcal{O}_{1}\cup\mathcal{O}_{2},A}^{\Sigma,u} in exponential time. Now let 𝒜\mathcal{A} be the restriction of 𝒜𝒪1𝒪2,AΣ,u\mathcal{A}_{\mathcal{O}_{1}\cup\mathcal{O}_{2},A}^{\Sigma,u} to all xind(𝒜𝒪1𝒪2,AΣ,u)x\in\text{ind}(\mathcal{A}_{\mathcal{O}_{1}\cup\mathcal{O}_{2},A}^{\Sigma,u}) which occur in a label of VV^{\prime}. Then (T,V)(T^{\prime},V^{\prime}) is also a derivation tree for (ρA,B)(\rho_{A},B) in 𝒪1𝒪2,𝒜\mathcal{O}_{1}\cup\mathcal{O}_{2},\mathcal{A} and so 𝒪1𝒪2,𝒜B(ρA)\mathcal{O}_{1}\cup\mathcal{O}_{2},\mathcal{A}\models B(\rho_{A}). It follows that the 𝒪u(Σ)\mathcal{ELO}_{u}(\Sigma)-concept corresponding to 𝒜\mathcal{A} is an interpolant for ABA\sqsubseteq B under 𝒪1𝒪2\mathcal{O}_{1}\cup\mathcal{O}_{2}. Its size is at most exponential in 𝒪1𝒪2||\mathcal{O}_{1}\cup\mathcal{O}_{2}|| since (T,V)(T^{\prime},V^{\prime}) is at most exponential in 𝒪1𝒪2+𝒜𝒪1𝒪2,AΣ||\mathcal{O}_{1}\cup\mathcal{O}_{2}||+||\mathcal{A}_{\mathcal{O}_{1}\cup\mathcal{O}_{2},A}^{\Sigma}||, and so also in 𝒪1𝒪2||\mathcal{O}_{1}\cup\mathcal{O}_{2}||.

7 Interpolant and Explicit Definition Existence in {\cal E\!\!\>LI} and Extensions

We analyze interpolants and explicit definitions for \mathcal{ELI} and its extensions with nominals and universal roles, and show the following result from the introduction.

Theorem 3. For \mathcal{ELI} and any extension with any combination of nominals, the universal role, or \bot, the existence of interpolants and explicit definitions is ExpTime-complete. If an interpolant/explicit definition exists, then there exists one of at most double exponential size that can be computed in double exponential time. This bound is optimal.

The double exponential lower bound on the size of explicit definitions and interpolants is shown in the appendix of the full version. The proof is inspired by similar lower bounds for the size of FO-rewritings and uniform interpolants (??). To prove the remaining claims of Theorem 3, we lift Theorem 5 to \mathcal{ELI}. The main differences are that (1) we now associate undirected graphs with ABoxes and also unfold along inverse roles; (2) that canonical models become potentially infinite but tree-shaped; (3) that therefore deciding the new variant of Point 2 of Theorem 5 is not an instance of standard entailment checking in \mathcal{ELI}, instead we give a reduction to emptiness checking for tree automata; and (4) that to bound the size of 𝒜\mathcal{A} in Point 3, we employ transfer sequences (and not derivation trees) to represent how facts are derived.

In more detail, associate with every ABox 𝒜\mathcal{A} the undirected graph G𝒜u=(ind(𝒜),r𝖭𝖱{{x,y}r(x,y)𝒜}).G^{u}_{\mathcal{A}}=(\text{ind}(\mathcal{A}),\bigcup_{r\in{\sf N_{R}}}\{\{x,y\}\mid r(x,y)\in\mathcal{A}\}). We say that 𝒜\mathcal{A} is tree-shaped if G𝒜uG_{\mathcal{A}}^{u} is acyclic, r(x,y)𝒜r(x,y)\in\mathcal{A} and s(x,y)𝒜s(x,y)\in\mathcal{A} imply r=sr=s, and r(x,y)𝒜r(x,y)\in\mathcal{A} implies s(y,x)𝒜s(y,x)\not\in\mathcal{A} for any ss. 𝒜\mathcal{A} is tree-shaped modulo a set Γ\Gamma of individual names if after dropping some facts r(x,y)r(x,y) with {a}(x)\{a\}(x) or {a}(y)𝒜\{a\}(y)\in\mathcal{A} for some aΓa\in\Gamma it is tree-shaped. We observe that 𝒪u(Σ)\mathcal{ELIO}_{u}(\Sigma)-concepts correspond to pointed Σ\Sigma-ABoxes 𝒜,x\mathcal{A},x such that 𝒜\mathcal{A} is tree-shaped modulo 𝖭𝖨Σ{\sf N_{I}}\cap\Sigma. 𝒪(Σ)\mathcal{ELIO}(\Sigma)-concepts correspond to weakly rooted pointed Σ\Sigma-ABoxes 𝒜,x\mathcal{A},x such that 𝒜\mathcal{A} is tree-shaped modulo 𝖭𝖨Σ{\sf N_{I}}\cap\Sigma, where 𝒜,x\mathcal{A},x is called weakly rooted if for every yind(𝒜)y\in\text{ind}(\mathcal{A}) there is a path from xx to yy in G𝒜uG^{u}_{\mathcal{A}}.

For every 𝒪u\mathcal{ELIO}_{u}-ontology 𝒪\mathcal{O} and concept AA there exists a (potentially infinite) pointed canonical model 𝒪,A,ρA\mathcal{I}_{\mathcal{O},A},\rho_{A} such that the ABox 𝒜𝒪,A\mathcal{A}_{\mathcal{O},A} corresponding to 𝒪,A\mathcal{I}_{\mathcal{O},A} is tree-shaped modulo 𝖭𝖨sig(𝒪){\sf N_{I}}\cap\text{sig}(\mathcal{O}). The property (\dagger) used in the context of canonical models for tractable extensions of \mathcal{EL} holds here as well. We also require the undirected unfolding of a pointed Σ\Sigma-ABox 𝒜,x\mathcal{A},x into a pointed Σ\Sigma-ABox 𝒜,x\mathcal{A}^{\ast},x which is tree-shaped modulo Σ𝖭𝖨\Sigma\cap{\sf N_{I}}. In the rooted undirected unfolding, nodes that cannot be reached from xx via roles are dropped.

Assume now that 𝒪\mathcal{O} is in normal form and AA a concept name. Let 𝒜𝒪,AΣ\mathcal{A}_{\mathcal{O},A}^{\Sigma} be the Σ\Sigma-reduct of the canonical model 𝒪,A\mathcal{I}_{\mathcal{O},A}, regarded as an ABox. Denote by 𝒜𝒪,AΣ,,ρA\mathcal{A}_{\mathcal{O},A}^{\Sigma,\ast},\rho_{A} the undirected unfolding of 𝒜𝒪,AΣ,ρA\mathcal{A}_{\mathcal{O},A}^{\Sigma},\rho_{A}, by 𝒜𝒪,AwΣ,ρA\mathcal{A}_{\mathcal{O},A}^{\downarrow_{w}\Sigma},\rho_{A} the sub-ABox of 𝒜𝒪,AΣ\mathcal{A}_{\mathcal{O},A}^{\Sigma} weakly rooted in ρA\rho_{A}, and by 𝒜𝒪,AwΣ,,ρA\mathcal{A}_{\mathcal{O},A}^{\downarrow_{w}\Sigma,\ast},\rho_{A} its rooted undirected unfolding. Then we lift Theorem 5 as follows.

Theorem 6.

There exists a polynomial pp such that the following conditions are equivalent for all 𝒪u\mathcal{ELIO}_{u}-ontologies 𝒪1,𝒪2\mathcal{O}_{1},\mathcal{O}_{2} in normal form, concept names A,BA,B, and Σ=sig(𝒪1,A)sig(𝒪2,B)\Sigma=\text{sig}(\mathcal{O}_{1},A)\cap\text{sig}(\mathcal{O}_{2},B):

  1. 1.

    An 𝒪u\mathcal{ELIO}_{u}-interpolant for ABA\sqsubseteq B under 𝒪1,𝒪2\mathcal{O}_{1},\mathcal{O}_{2} exists;

  2. 2.

    𝒪1𝒪2,𝒜𝒪1𝒪2,AΣB(ρA)\mathcal{O}_{1}\cup\mathcal{O}_{2},\mathcal{A}_{\mathcal{O}_{1}\cup\mathcal{O}_{2},A}^{\Sigma}\models B(\rho_{A});

  3. 3.

    there exists a finite subset 𝒜\mathcal{A} of 𝒜𝒪1𝒪2,AΣ,\mathcal{A}_{\mathcal{O}_{1}\cup\mathcal{O}_{2},A}^{\Sigma,\ast} with |ind(𝒜)|22p(𝒪1𝒪2)|\text{ind}(\mathcal{A})|\leq 2^{2^{p(||\mathcal{O}_{1}\cup\mathcal{O}_{2}||)}} such that the 𝒪u\mathcal{ELIO}_{u}-concept corresponding to 𝒜,ρA\mathcal{A},\rho_{A} is an 𝒪u\mathcal{ELIO}_{u}-interpolant for ABA\sqsubseteq B under 𝒪1,𝒪2\mathcal{O}_{1},\mathcal{O}_{2}.

The same equivalences hold if in Points 1 to 3, 𝒪u\mathcal{ELIO}_{u} is replaced by 𝒪\mathcal{ELIO}, 𝒜𝒪1𝒪2,AΣ\mathcal{A}_{\mathcal{O}_{1}\cup\mathcal{O}_{2},A}^{\Sigma} by 𝒜𝒪1𝒪2,AwΣ\mathcal{A}_{\mathcal{O}_{1}\cup\mathcal{O}_{2},A}^{\downarrow_{w}\Sigma}, and 𝒜𝒪1𝒪2,AΣ,\mathcal{A}_{\mathcal{O}_{1}\cup\mathcal{O}_{2},A}^{\Sigma,\ast} by 𝒜𝒪1𝒪2,AwΣ,\mathcal{A}_{\mathcal{O}_{1}\cup\mathcal{O}_{2},A}^{\downarrow_{w}\Sigma,\ast}.

In Point 3, 𝒜\mathcal{A} can be computed in double exponential time, if it exists.

We first sketch how tree automata are used to show that Point 2 entails an exponential time upper bound for deciding the existence of an interpolant. To this end we represent finite prefix-closed subsets 𝒜\mathcal{A} of 𝒜𝒪1𝒪2,AΣ\mathcal{A}_{\mathcal{O}_{1}\cup\mathcal{O}_{2},A}^{\Sigma} as trees and design

  • a non-determistic tree automaton over finite trees (NTA), 𝔄1\mathfrak{A}_{1}, that accepts exactly those trees that represent prefix-closed finite subsets of 𝒜𝒪1𝒪2,AΣ\mathcal{A}_{\mathcal{O}_{1}\cup\mathcal{O}_{2},A}^{\Sigma};

  • a two-way alternating tree automaton over finite trees (2ATA), 𝔄2\mathfrak{A}_{2}, that accepts exactly those trees that represent a pointed ABox 𝒜,ρ\mathcal{A},\rho with 𝒪1𝒪2,𝒜B(ρ)\mathcal{O}_{1}\cup\mathcal{O}_{2},\mathcal{A}\models B(\rho).

Similar tree automata techniques have been used e.g. in (?). 𝔄1\mathfrak{A}_{1} is constructed using the definition of canonical models; its states are essentially types occuring in the canonical model and it can be constructed in exponential time. The 2ATA 𝔄2\mathfrak{A}_{2} tries to construct a derivation tree for B(ρ)B(\rho) in 𝒪1𝒪2,𝒜\mathcal{O}_{1}\cup\mathcal{O}_{2},\mathcal{A}, given as input a tree representing 𝒜,ρ\mathcal{A},\rho. It has polynomially many states, and can thus be turned into an equivalent NTA with exponentially many states (?). By taking the intersection with 𝔄1\mathfrak{A}_{1}, one can then check in exponential time whether L(𝔄1)L(𝔄2)L(\mathfrak{A}_{1})\cap L(\mathfrak{A}_{2})\neq\emptyset, that is, whether 𝒪1𝒪2,𝒜𝒪1𝒪2,AΣB(ρA)\mathcal{O}_{1}\cup\mathcal{O}_{2},\mathcal{A}_{\mathcal{O}_{1}\cup\mathcal{O}_{2},A}^{\Sigma}\models B(\rho_{A}).

We return to the proof of Theorem 6. The interesting implication is “2. \Rightarrow 3.” and the double exponential computation of interpolants. In this case we use transfer sequences to obtain a bound on the size of the subset 𝒜\mathcal{A} of 𝒜𝒪1𝒪2,AΣ,\mathcal{A}_{\mathcal{O}_{1}\cup\mathcal{O}_{2},A}^{\Sigma,\ast} needed to derive B(ρA)B(\rho_{A}) (we note that for \mathcal{ELI} without nominals one can also use the automata encoding above). Transfer sequences describe how facts are derived in a tree-shaped ABox and allow to determine when individuals aa and bb behave sufficiently similar so that the subtree rooted at aa can be replaced by the subtree rooted at bb (?) without affecting a derivation. This technique can be used to show that one can always choose a prefix closed subset 𝒜\mathcal{A} of 𝒜𝒪1𝒪2,AΣ,\mathcal{A}_{\mathcal{O}_{1}\cup\mathcal{O}_{2},A}^{\Sigma,\ast} of at most exponential depth. This also implies that 𝒜\mathcal{A} can be obtained in double exponential time by constructing the canonical model up to depth 2q(𝒪1𝒪2)2^{q(||\mathcal{O}_{1}\cup\mathcal{O}_{2}||)} with qq a polynomial.

8 Expressive Horn Description Logics

We address two questions regarding expressive Horn-DLs. (1) Can our results for \mathcal{ELI} and extensions be lifted to more expressive Horn-DLs? (2) In the examples provided in the proof of Theorem 1 we sometimes (for example, for u\mathcal{EL}_{u} and \mathcal{ELI}) construct explicit Horn-DL definitions to show implicit definability of concept names. Are Horn-DL concepts always sufficient to obtain an explicit definition if an implicit definition exists? We provide a positive answer to (1) if one only admits 𝒪u\mathcal{ELIO}_{u}-concepts (or fragments) as interpolants/explicit definitions and a negative answer to (2) in the sense that \mathcal{ELI} and various other Horn-DLs do not enjoy the CIP/PBDP even if one admits Horn-DL concepts as interpolants/explicit definitions.

We introduce expressive Horn DLs (?), presented here in the form proposed in (?). Horn-𝒜𝒞𝒪u\mathcal{ALCIO}_{u}-concepts RR and Horn-𝒜𝒞𝒪u\mathcal{ALCIO}_{u}-CIs LRL\sqsubseteq R are defined by the syntax rules

R,R\displaystyle R,R^{\prime} ::=A¬A{a}¬{a}RRLR\displaystyle::=\top\mid\bot\mid A\mid\neg A\mid\{a\}\mid\neg\{a\}\mid R\sqcap R^{\prime}\mid L\rightarrow R\mid
r.Rr.R\displaystyle\hskip 28.45274pt\exists r.R\mid\forall r.R
L,L\displaystyle L,L^{\prime} ::=ALLLLr.L\displaystyle::=\top\mid\bot\mid A\mid L\sqcap L^{\prime}\mid L\sqcup L^{\prime}\mid\exists r.L

with AA ranging over concept names, aa over individual names, and rr over roles (including the universal role). As usual, the fragment of Horn-𝒜𝒞𝒪u\mathcal{ALCIO}_{u} without nominals and the universal role is denoted by Horn-𝒜𝒞\mathcal{ALCI} and Horn-𝒜𝒞\mathcal{ALC} denotes the fragment of Horn-𝒜𝒞\mathcal{ALCI} without inverse roles.

Theorem 7.

Let (,)(\mathcal{L},\mathcal{L}^{\prime}) be the pair ((Horn-𝒜𝒞,)\mathcal{ALCI},\mathcal{ELI}) or the pair ((Horn-𝒜𝒞𝒪u\mathcal{ALCIO}_{u}, 𝒪u)\mathcal{ELIO}_{u}). Then

  • deciding the existence of an \mathcal{L}^{\prime}-interpolant for an \mathcal{L}^{\prime}-CI CDC\sqsubseteq D under \mathcal{L}-ontologies 𝒪1,𝒪2\mathcal{O}_{1},\mathcal{O}_{2} is ExpTime-complete;

  • deciding the existence of an explicit (Σ)\mathcal{L}^{\prime}(\Sigma)-definition of a concept name AA under an \mathcal{L}-ontology 𝒪\mathcal{O} is ExpTime-complete.

Moreover, if an \mathcal{L}-interpolant/explicit definition exists, then there exists one of at most double exponential size that can be computed in double exponential time.

Theorem 7 follows from Theorem 3 and the fact that for any \mathcal{L}-ontology one can construct in polynomial time an \mathcal{L}^{\prime}-ontology in normal form that is a conservative extension of \mathcal{L} (see (?) for a similar result). We next show that despite the fact that Horn-𝒜𝒞\mathcal{ALCI}-concepts sometimes provide explicit definitions if none exist in \mathcal{ELI} (proof of Theorem 1), they are not sufficient to prove the CIP/PBDP.

Theorem 8.

There exists an ontology 𝒪\mathcal{O} in Horn-𝒜𝒞\mathcal{ALC} (and in \mathcal{ELI}), a signature Σ\Sigma, and a concept name AA such that AA is implicitly definable using Σ\Sigma under 𝒪\mathcal{O} but does not have an explicit Horn-𝒜𝒞u(Σ)\mathcal{ALCI}_{u}(\Sigma)-definition.

Proof.

We modify the ontology used in the proof of Point 1 of Theorem 1. Let Σ={B,D1,E,r,r1}\Sigma=\{B,D_{1},E,r,r_{1}\} and let 𝒪\mathcal{O} contain Br.(CE)AB\sqcap\exists r.(C\sqcap E)\sqsubseteq A and the following CIs:

AB,Br.F,Br.C,CFr1.D1,A\sqsubseteq B,\quad B\sqsubseteq\forall r.F,\quad B\sqsubseteq\exists r.C,\quad C\sqsubseteq F\sqcap\forall r_{1}.D_{1},
F\displaystyle F r1.D1r1.M,\displaystyle\sqsubseteq\exists r_{1}.D_{1}\sqcap\exists r_{1}.M,
A\displaystyle A r.((Fr1.(D1M))E).\displaystyle\sqsubseteq\forall r.((F\sqcap\exists r_{1}.(D_{1}\sqcap M))\rightarrow E)\,.

Intuitively, the final two CIs should be read as

F\displaystyle F r1.D1\displaystyle\sqsubseteq\exists r_{1}.D_{1}
A\displaystyle A r.((Fr1.D1)E)\displaystyle\sqsubseteq\forall r.((F\sqcap\forall r_{1}.D_{1})\rightarrow E)

and the concept name MM is introduced to achieve this in a projective way as the latter CI is not in Horn-𝒜𝒞\mathcal{ALCI}.

AA is implicitly definable using Σ\Sigma under 𝒪\mathcal{O} since

𝒪ABr.(r1.D1E).\mathcal{O}\models A\equiv B\sqcap\forall r.(\forall r_{1}.D_{1}\rightarrow E).

To show that AA is not explicitly Horn-𝒜𝒞u(Σ)\mathcal{ALCI}_{u}(\Sigma)-definable under 𝒪\mathcal{O} consider the interpretations \mathcal{I} and \mathcal{I}^{\prime} in Figure 5. The claim follows from the facts that \mathcal{I} and \mathcal{I}^{\prime} are models of 𝒪\mathcal{O}, aAa\in A^{\mathcal{I}}, aAa^{\prime}\not\in A^{\mathcal{I}^{\prime}}, but aFa\in F^{\mathcal{I}} implies aFa^{\prime}\in F^{\mathcal{I}^{\prime}} holds for every Horn-𝒜𝒞u(Σ)\mathcal{ALCI}_{u}(\Sigma)-concept FF. The latter can be proved by observing that there exists a Horn-𝒜𝒞u(Σ)\mathcal{ALCI}_{u}(\Sigma)-simulation between \mathcal{I} and \mathcal{I}^{\prime} (?) containing ({a},a)(\{a\},a), we refer the reader to the appendix of the full version. To obtain an example in \mathcal{ELI}, it suffices to take a conservative extension of 𝒪\mathcal{O} in \mathcal{ELI}. ∎

aaA,BA,BbbC,E,FC,E,FrrccFFrrddD1,MD_{1},Mr1r_{1}eeD1D_{1}r1r_{1}ffMMr1r_{1}aa^{\prime}BBbb^{\prime}E,FE,Frrb′′b^{\prime\prime}C,FC,Frrcc^{\prime}FFrrdd^{\prime}D1,MD_{1},Mr1r_{1}d′′d^{\prime\prime}D1,MD_{1},Mr1r_{1}ee^{\prime}D1D_{1}r1r_{1}ff^{\prime}MMr1r_{1}
Figure 5: Interpretations \mathcal{I} (left) and \mathcal{I}^{\prime} (right).

9 Discussion

For a few important extensions of /\mathcal{EL}/\mathcal{ELI} the complexity of interpolant and explicit definition existence remains to be investigated. Examples include extensions of \mathcal{ELI} with role inclusions, and extensions of \mathcal{EL} or \mathcal{ELI} with functional roles or more general number restrictions. It would also be of interest to investigate interpolant existence if Horn-concepts are admitted as interpolants (using, for example, the games introduced in (?)). Finally, the question arises whether there exists at all a decidable Horn language extending, say, Horn-𝒜𝒞\mathcal{ALCI}, with the CIP/PBDP. We note that Horn-FO enjoys the CIP (Exercise 6.2.6 in (?)) but is undecidable and that we show in the appendix of the full version that the Horn fragment of the guarded fragment does not enjoy the CIP/PBDP.

Acknowledgments

This research was supported by the EPSRC UK grant EP/S032207/1.

References

  • Areces, Blackburn, and Marx 2001 Areces, C.; Blackburn, P.; and Marx, M. 2001. Hybrid logics: Characterization, interpolation and complexity. J. Symb. Log. 66(3):977–1010.
  • Artale et al. 2021a Artale, A.; Jung, J. C.; Mazzullo, A.; Ozaki, A.; and Wolter, F. 2021a. Living without Beth and Craig: Explicit definitions and interpolants in description logics with nominals and role hierarchies. In Proc. of AAAI.
  • Artale et al. 2021b Artale, A.; Mazzullo, A.; Ozaki, A.; and Wolter, F. 2021b. On free description logics with definite descriptions. In Proc.  of KR.
  • Baader et al. 2016 Baader, F.; Bienvenu, M.; Lutz, C.; and Wolter, F. 2016. Query and predicate emptiness in ontology-based data access. J. Artif. Intell. Res. 56:1–59.
  • Baader et al. 2017 Baader, F.; Horrocks, I.; Lutz, C.; and Sattler, U. 2017. An Introduction to Description Logic. Cambridge University Press.
  • Baader, Brandt, and Lutz 2005 Baader, F.; Brandt, S.; and Lutz, C. 2005. Pushing the \mathcal{EL} envelope. In Proc. of IJCAI, 364–369.
  • Benedikt et al. 2016 Benedikt, M.; Leblay, J.; ten Cate, B.; and Tsamoura, E. 2016. Generating Plans from Proofs: The Interpolation-based Approach to Query Reformulation. Synthesis Lectures on Data Management. Morgan & Claypool Publishers.
  • Benedikt et al. 2017 Benedikt, M.; Kostylev, E. V.; Mogavero, F.; and Tsamoura, E. 2017. Reformulating queries: Theory and practice. In IJCAI, 837–843.
  • Bienvenu et al. 2016 Bienvenu, M.; Hansen, P.; Lutz, C.; and Wolter, F. 2016. First order-rewritability and containment of conjunctive queries in horn description logics. In IJCAI, 965–971.
  • Bienvenu, Lutz, and Wolter 2013 Bienvenu, M.; Lutz, C.; and Wolter, F. 2013. First-order rewritability of atomic queries in Horn description logics. In Proc. of IJCAI.
  • Borgida, Toman, and Weddell 2016 Borgida, A.; Toman, D.; and Weddell, G. E. 2016. On referring expressions in query answering over first order knowledge bases. In Proc. of KR, 319–328.
  • Chang and Keisler 1998 Chang, C., and Keisler, H. J. 1998. Model Theory. Elsevier.
  • Deutsch, Popa, and Tannen 2006 Deutsch, A.; Popa, L.; and Tannen, V. 2006. Query reformulation with constraints. SIGMOD Rec. 35(1):65–73.
  • Geleta, Payne, and Tamma 2016 Geleta, D.; Payne, T. R.; and Tamma, V. A. M. 2016. An investigation of definability in ontology alignment. In Blomqvist, E.; Ciancarini, P.; Poggi, F.; and Vitali, F., eds., Proc.  of EKAW, 255–271.
  • Hernich et al. 2020 Hernich, A.; Lutz, C.; Papacchini, F.; and Wolter, F. 2020. Dichotomies in ontology-mediated querying with the guarded fragment. ACM Trans. Comput. Log. 21(3):20:1–20:47.
  • Hustadt, Motik, and Sattler 2005 Hustadt, U.; Motik, B.; and Sattler, U. 2005. Data complexity of reasoning in very expressive description logics. In IJCAI, 466–471.
  • Jung and Wolter 2021 Jung, J. C., and Wolter, F. 2021. Living without Beth and Craig: Definitions and interpolants in the guarded and two-variable fragments. In Proc. of LICS.
  • Jung et al. 2019 Jung, J. C.; Papacchini, F.; Wolter, F.; and Zakharyaschev, M. 2019. Model comparison games for horn description logics. In Proc. of LICS, 1–14. IEEE.
  • Jung et al. 2020 Jung, J. C.; Lutz, C.; Martel, M.; and Schneider, T. 2020. Conservative extensions in horn description logics with inverse roles. J. Artif. Intell. Res. 68:365–411.
  • Konev et al. 2009 Konev, B.; Lutz, C.; Walther, D.; and Wolter, F. 2009. Formal properties of modularisation. In Modular Ontologies, volume 5445 of Lecture Notes in Computer Science. Springer. 25–66.
  • Konev et al. 2010 Konev, B.; Lutz, C.; Ponomaryov, D. K.; and Wolter, F. 2010. Decomposing description logic ontologies. In Proc. of KR. AAAI Press.
  • Koopmann and Schmidt 2015 Koopmann, P., and Schmidt, R. A. 2015. Uniform interpolation and forgetting for ALC ontologies with aboxes. In Proc. of AAAI, 175–181. AAAI Press.
  • Lutz and Wolter 2010 Lutz, C., and Wolter, F. 2010. Deciding inseparability and conservative extensions in the description logic EL. J. Symb. Comput. 45(2):194–228.
  • Lutz and Wolter 2011 Lutz, C., and Wolter, F. 2011. Foundations for uniform interpolation and forgetting in expressive description logics. In Proc. of IJCAI, 989–995. IJCAI/AAAI.
  • Lutz and Wolter 2012 Lutz, C., and Wolter, F. 2012. Non-uniform data complexity of query answering in description logics. In Brewka, G.; Eiter, T.; and McIlraith, S. A., eds., Proc. of KR.
  • Lutz and Wolter 2017 Lutz, C., and Wolter, F. 2017. The data complexity of description logic ontologies. Logical Methods in Computer Science 13(4).
  • Lutz, Piro, and Wolter 2011 Lutz, C.; Piro, R.; and Wolter, F. 2011. Description logic tboxes: Model-theoretic characterizations and rewritability. In Walsh, T., ed., Proc. of IJCAI, 983–988. IJCAI/AAAI.
  • Lutz, Seylan, and Wolter 2012 Lutz, C.; Seylan, I.; and Wolter, F. 2012. An automata-theoretic approach to uniform interpolation and approximation in the description logic EL. In Proc. of KR. AAAI Press.
  • Lutz, Seylan, and Wolter 2019 Lutz, C.; Seylan, I.; and Wolter, F. 2019. The data complexity of ontology-mediated queries with closed predicates. Logical Methods in Computer Science 15(3).
  • Maksimova and Gabbay 2005 Maksimova, L., and Gabbay, D. 2005. Interpolation and Definability in Modal and Intuitionistic Logics. Clarendon Press.
  • Nikitina and Rudolph 2014 Nikitina, N., and Rudolph, S. 2014. (Non-)succinctness of uniform interpolants of general terminologies in the description logic EL. Artif. Intell. 215:120–140.
  • Place and Zeitoun 2016 Place, T., and Zeitoun, M. 2016. Separating regular languages with first-order logic. Log. Methods Comput. Sci. 12(1).
  • Seylan, Franconi, and de Bruijn 2009 Seylan, I.; Franconi, E.; and de Bruijn, J. 2009. Effective query rewriting with ontologies over dboxes. In Proc. of IJCAI, 923–925.
  • Sofronie-Stokkermans 2008 Sofronie-Stokkermans, V. 2008. Interpolation in local theory extensions. Log. Methods Comput. Sci. 4(4).
  • ten Cate et al. 2006 ten Cate, B.; Conradie, W.; Marx, M.; and Venema, Y. 2006. Definitorially complete description logics. In Proc. of KR, 79–89. AAAI Press.
  • ten Cate, Franconi, and Seylan 2013 ten Cate, B.; Franconi, E.; and Seylan, İ. 2013. Beth definability in expressive description logics. J. Artif. Intell. Res. 48:347–414.
  • ten Cate 2005 ten Cate, B. 2005. Interpolation for extended modal languages. J. Symb. Log. 70(1):223–234.
  • Toman and Weddell 2011 Toman, D., and Weddell, G. E. 2011. Fundamentals of Physical Design and Query Compilation. Synthesis Lectures on Data Management. Morgan & Claypool Publishers.
  • Toman and Weddell 2021 Toman, D., and Weddell, G. E. 2021. FO rewritability for OMQ using beth definability and interpolation. In Homola, M.; Ryzhikov, V.; and Schmidt, R. A., eds., Proc.  of DL. CEUR-WS.org.
  • Vardi 1998 Vardi, M. Y. 1998. Reasoning about the past with two-way automata. In Proc. of ICALP’98, 628–641.

Appendix A Further Prelimaries

We call an ontology 𝒪\mathcal{O}^{\prime} a conservative extension of an ontology 𝒪\mathcal{O} if 𝒪α\mathcal{O}^{\prime}\models\alpha for all α𝒪\alpha\in\mathcal{O} and every model \mathcal{I} of 𝒪\mathcal{O} can be expanded to a model 𝒥\mathcal{J} of 𝒪\mathcal{O}^{\prime} by modifying the interpretation of symbols in sig(𝒪)sig(𝒪)\text{sig}(\mathcal{O}^{\prime})\setminus\text{sig}(\mathcal{O}). In other words, the sig(𝒪)\text{sig}(\mathcal{O})-reducts of \mathcal{I} and 𝒥\mathcal{J} coincide. The following result is folklore (?).

Lemma 4.

Let \mathcal{L} be any DL from ,,𝒪,𝒪,𝒪{\cal E\!\!\>L},{\cal E\!\!\>LI},{\cal E\!\!\>LO},\mathcal{ELRO},\mathcal{ELIO} or an extension with the universal role, and let 𝒪\mathcal{O} be an \mathcal{L}-ontology. Then one can construct in polynomial time an \mathcal{L}-ontology 𝒪\mathcal{O}^{\prime} in normal form such that 𝒪\mathcal{O}^{\prime} is a conservative extension of 𝒪\mathcal{O}.

We next give a more detailed introduction to ABoxes and how they relate to concepts. Recall that an ABox 𝒜\mathcal{A} is a (possibly infinite) set of assertions of the form A(x)A(x), r(x,y)r(x,y), {a}(x)\{a\}(x), and (x)\top(x) with A𝖭𝖢A\in{\sf N_{C}}, r𝖭𝖱r\in{\sf N_{R}}, a𝖭𝖨a\in{\sf N_{I}}, and x,yx,y individual variables. An ABox is factorized if {a}(x),{a}(y)𝒜\{a\}(x),\{a\}(y)\in\mathcal{A} imply x=yx=y.

ABox assertions are interpreted in an interpretation \mathcal{I} using a variable assignment vv that maps individual variables to elements of Δ\Delta^{\mathcal{I}}. Then ,v\mathcal{I},v satisfies an assertion A(x)A(x) if v(x)Av(x)\in A^{\mathcal{I}}, r(x,y)r(x,y) if (v(x),v(y))r(v(x),v(y))\in r^{\mathcal{I}}, {a}(x)\{a\}(x) if a=v(x)a^{\mathcal{I}}=v(x), and (x)\top(x) is always satisfied. ,v\mathcal{I},v satisfies an ABox if it satisfies all assertions in it. We write 𝒜[xd]\mathcal{I}\models\mathcal{A}[x\mapsto d] if there exists an assignment vv with v(x)=dv(x)=d such that ,v\mathcal{I},v satisfies 𝒜\mathcal{A}. We say that an assertion A0(x0)A_{0}(x_{0}) is entailed by an ontology 𝒪\mathcal{O} and ABox 𝒜\mathcal{A}, in symbols 𝒪,𝒜A0(x0)\mathcal{O},\mathcal{A}\models A_{0}(x_{0}), if v(x)A0v(x)\in A_{0}^{\mathcal{I}} for all models \mathcal{I} of 𝒪\mathcal{O} and assignments vv such that ,v\mathcal{I},v satisfy 𝒜\mathcal{A}. This is the standard notion of entailment from a knowledge base consisting of an ontology and an ABox. Deciding entailment is in PTime for the DLs between \mathcal{EL} and u++\mathcal{EL}^{++}_{u} (?) and ExpTime-complete for the DLs between \mathcal{ELI} and 𝒪u\mathcal{ELIO}_{u} (?).

Every interpretation \mathcal{I} defines a factorized ABox 𝒜\mathcal{A}_{\mathcal{I}} by identifying every dΔd\in\Delta^{\mathcal{I}} with a variable xdx_{d} and taking A(xd)A(x_{d}) if dAd\in A^{\mathcal{I}}, r(xc,xd)r(x_{c},x_{d}) if (c,d)r(c,d)\in r^{\mathcal{I}}, {a}(xd)\{a\}(x_{d}) if a=da^{\mathcal{I}}=d. Conversely, factorized ABoxes define interpretations in the obvious way.

The following lemma provides a formal description of the relationship between ABoxes that are ditree-shaped modulo some set of individual names and 𝒪\mathcal{ELO}-concepts.

Lemma 5.

For any 𝒪u(Σ){\cal E\!\!\>LO}_{u}(\Sigma)-concept CC one can construct in polynomial time a pointed Σ\Sigma-ABox 𝒜,x\mathcal{A},x such that 𝒜\mathcal{A} is ditree-shaped modulo 𝖭𝖨Σ{\sf N_{I}}\cap\Sigma and dCd\in C^{\mathcal{I}} iff 𝒜[xd]\mathcal{I}\models\mathcal{A}[x\mapsto d], for all interpretations \mathcal{I} and dΔd\in\Delta^{\mathcal{I}}.

Conversely, for any pointed Σ\Sigma-ABox 𝒜,x\mathcal{A},x such that 𝒜\mathcal{A} is a ditree-shaped ABox modulo Γ\Gamma, one can construct in polynomial time an 𝒪u(Σ){\cal E\!\!\>LO}_{u}(\Sigma)-concept CC such that Γ=𝖭𝖨Σ\Gamma={\sf N_{I}}\cap\Sigma and dCd\in C^{\mathcal{I}} iff 𝒜C[xd]\mathcal{I}\models\mathcal{A}_{C}[x\mapsto d], for all interpretations \mathcal{I} and dΔd\in\Delta^{\mathcal{I}}.

The above also holds if one replaces 𝒪u(Σ){\cal E\!\!\>LO}_{u}(\Sigma)-concepts by 𝒪(Σ)\mathcal{ELO}(\Sigma)-concepts and requires the pointed ABoxes to be rooted.

We define a canonical model 𝒪,A0\mathcal{I}_{\mathcal{O},A_{0}} for an 𝒪u\mathcal{ELRO}_{u}-ontology 𝒪\mathcal{O} in normal form and a concept name A0A_{0}. This has been done in (?), but as we do not use canonical models for subsumption or instance checking we give a succinct model-theoretic construction.

Assume 𝒪\mathcal{O} and A0A_{0} are given and 𝒪\mathcal{O} is in normal form. Define an equivalence relation \sim on the set of individual names aa in sig(𝒪)\text{sig}(\mathcal{O}) by setting aba\sim b if 𝒪u.A0{a}{b}\mathcal{O}\models\exists u.A_{0}\sqcap\{a\}\sqsubseteq\{b\}. Let [a]={bsig(𝒪)ab}[a]=\{b\in\text{sig}(\mathcal{O})\mid a\sim b\} and set ΔI={[a]asig(𝒪)}\Delta_{I}=\{[a]\mid a\in\text{sig}(\mathcal{O})\}. Say that a concept name AA is absorbed by an individual name aa if 𝒪u.A0A{a}\mathcal{O}\models\exists u.A_{0}\sqcap A\sqsubseteq\{a\} and let ΔC\Delta_{C} denote the set of concept names AA in 𝒪\mathcal{O} such that 𝒪A0u.A\mathcal{O}\models A_{0}\sqsubseteq\exists u.A and AA is not absorbed by any individual name.

Now let Δ𝒪,A0=ΔIΔC\Delta^{\mathcal{I}_{\mathcal{O},A_{0}}}=\Delta_{I}\cup\Delta_{C} and let

A𝒪,A0\displaystyle A^{\mathcal{I}_{\mathcal{O},A_{0}}} =\displaystyle= {[a]Δ𝒪,A0𝒪u.A0{a}A}\displaystyle\{[a]\in\Delta^{\mathcal{I}_{\mathcal{O},A_{0}}}\mid\mathcal{O}\models\exists u.A_{0}\sqcap\{a\}\sqsubseteq A\}\cup
{BΔ𝒪,A0𝒪u.A0BA}\displaystyle\{B\in\Delta^{\mathcal{I}_{\mathcal{O},A_{0}}}\mid\mathcal{O}\models\exists u.A_{0}\sqcap B\sqsubseteq A\}
a𝒪,A0\displaystyle a^{\mathcal{I}_{\mathcal{O},A_{0}}} =\displaystyle= [a]\displaystyle[a]
r𝒪,A0\displaystyle r^{\mathcal{I}_{\mathcal{O},A_{0}}} =\displaystyle= {([a],[b])Δ𝒪,A0×Δ𝒪,A0\displaystyle\{([a],[b])\in\Delta^{\mathcal{I}_{\mathcal{O},A_{0}}}\times\Delta^{\mathcal{I}_{\mathcal{O},A_{0}}}\mid
𝒪u.A0{a}r.{b}}\displaystyle\hskip 28.45274pt\mathcal{O}\models\exists u.A_{0}\sqcap\{a\}\sqsubseteq\exists r.\{b\}\}\cup
{([a],B)Δ𝒪,A0×Δ𝒪,A0\displaystyle\{([a],B)\in\Delta^{\mathcal{I}_{\mathcal{O},A_{0}}}\times\Delta^{\mathcal{I}_{\mathcal{O},A_{0}}}\mid
𝒪u.A0{a}r.B}\displaystyle\hskip 28.45274pt\mathcal{O}\models\exists u.A_{0}\sqcap\{a\}\sqsubseteq\exists r.B\}\cup
{(B,[a])Δ𝒪,A0×Δ𝒪,A0\displaystyle\{(B,[a])\in\Delta^{\mathcal{I}_{\mathcal{O},A_{0}}}\times\Delta^{\mathcal{I}_{\mathcal{O},A_{0}}}\mid
𝒪u.A0Br.{a}}\displaystyle\hskip 28.45274pt\mathcal{O}\models\exists u.A_{0}\sqcap B\sqsubseteq\exists r.\{a\}\}\cup
{(A,B)Δ𝒪,A0×Δ𝒪,A0\displaystyle\{(A,B)\in\Delta^{\mathcal{I}_{\mathcal{O},A_{0}}}\times\Delta^{\mathcal{I}_{\mathcal{O},A_{0}}}\mid
𝒪u.A0Ar.B}\displaystyle\hskip 28.45274pt\mathcal{O}\models\exists u.A_{0}\sqcap A\sqsubseteq\exists r.B\}

for every concept name A𝖭𝖢A\in{\sf N_{C}}, asig(𝒪)𝖭𝖨a\in\text{sig}(\mathcal{O})\cap{\sf N_{I}}, and r𝖭𝖱r\in{\sf N_{R}}. We often denote the nodes [a][a] and AA by ρ[a]\rho_{[a]} or, for simplicity, ρa\rho_{a} and, respectively, ρA\rho_{A}. If A0A_{0} is absorbed by an individual aa we still often denote ρ[a]\rho_{[a]} by ρA0\rho_{A_{0}}.

Lemma 6.

The canonical model 𝒪,A0\mathcal{I}_{\mathcal{O},A_{0}} is a model of 𝒪\mathcal{O} and for every model 𝒥\mathcal{J} of 𝒪\mathcal{O} and any dΔ𝒥d\in\Delta^{\mathcal{J}} with dA0𝒥d\in A_{0}^{\mathcal{J}}, (𝒪,A0,ρA0)𝒪u,Σ(𝒥,d)(\mathcal{I}_{\mathcal{O},A_{0}},\rho_{A_{0}})\preceq_{\mathcal{ELO}_{u},\Sigma}(\mathcal{J},d), where Σ\Sigma is any signature.

Proof.

We first show that 𝒪,A0\mathcal{I}_{\mathcal{O},A_{0}} is a model of 𝒪\mathcal{O}. It is straightforward to show that 𝒪,A0\mathcal{I}_{\mathcal{O},A_{0}} satisfies the CIs of the form A,A1A2A\top\sqsubseteq A,A_{1}\sqcap A_{2}\sqsubseteq A, A{a}A\sqsubseteq\{a\}, {a}A\{a\}\sqsubseteq A.

Assume now that Ar.B𝒪A\sqsubseteq\exists r.B\in\mathcal{O} and ρCA𝒪,A0\rho_{C}\in A^{\mathcal{I}_{\mathcal{O},A_{0}}} with CC of the form aa or AA. We have 𝒪u.A0u.C\mathcal{O}\models\exists u.A_{0}\sqsubseteq\exists u.C, 𝒪u.A0CA\mathcal{O}\models\exists u.A_{0}\sqcap C\sqsubseteq A. Thus 𝒪u.A0Cr.B\mathcal{O}\models\exists u.A_{0}\sqcap C\sqsubseteq\exists r.B. But then (ρC,ρB)r𝒪,A0(\rho_{C},\rho_{B})\in r^{\mathcal{I}_{\mathcal{O},A_{0}}} and ρBB𝒪,A0\rho_{B}\in B^{\mathcal{I}_{\mathcal{O},A_{0}}}. Thus ρC(r,B)𝒪,A0\rho_{C}\in(\exists r,B)^{\mathcal{I}_{\mathcal{O},A_{0}}}, as required.

Assume now that r.AB𝒪\exists r.A\sqsubseteq B\in\mathcal{O} and ρC(r.A)𝒪,A0\rho_{C}\in(\exists r.A)^{\mathcal{I}_{\mathcal{O},A_{0}}}. Then there exists ρD\rho_{D} such that (ρC,ρD)r𝒪,A0(\rho_{C},\rho_{D})\in r^{\mathcal{I}_{\mathcal{O},A_{0}}} and ρDA𝒪,A0\rho_{D}\in A^{\mathcal{I}_{\mathcal{O},A_{0}}}. Hence 𝒪u.A0Cr.D\mathcal{O}\models\exists u.A_{0}\sqcap C\sqsubseteq\exists r.D and 𝒪u.A0DA\mathcal{O}\models\exists u.A_{0}\sqcap D\sqsubseteq A. Thus, 𝒪u.A0Cr.A\mathcal{O}\models\exists u.A_{0}\sqcap C\sqsubseteq\exists r.A. Hence since r.AB𝒪\exists r.A\sqsubseteq B\in\mathcal{O}, 𝒪u.A0CB\mathcal{O}\models\exists u.A_{0}\sqcap C\sqsubseteq B. But then ρCB𝒪,A0\rho_{C}\in B^{\mathcal{I}_{\mathcal{O},A_{0}}}, as required.

Finally, assume that r1rnr𝒪r_{1}\circ\cdots\circ r_{n}\sqsubseteq r\in\mathcal{O} and (ρC,ρD)r1𝒪,A0rn𝒪,A0(\rho_{C},\rho_{D})\in r_{1}^{\mathcal{I}_{\mathcal{O},A_{0}}}\circ\cdots\circ r_{n}^{\mathcal{I}_{\mathcal{O},A_{0}}}. Then there are ρC0,,ρCn\rho_{C_{0}},\ldots,\rho_{C_{n}} with (ρCi,ρCi+1)ri+1𝒪,A0(\rho_{C_{i}},\rho_{C_{i+1}})\in r_{i+1}^{\mathcal{I}_{\mathcal{O},A_{0}}} for all i<ni<n, where C0=CC_{0}=C and Cn=DC_{n}=D. We obtain 𝒪u.A0Ciri+1.Ci+1\mathcal{O}\models\exists u.A_{0}\sqcap C_{i}\sqsubseteq\exists r_{i+1}.C_{i+1} for all i<ni<n. Thus 𝒪u.A0Cr1rn.D\mathcal{O}\models\exists u.A_{0}\sqcap C\sqsubseteq\exists r_{1}\cdots\exists r_{n}.D. Hence 𝒪u.A0Cr.D\mathcal{O}\models\exists u.A_{0}\sqcap C\sqsubseteq\exists r.D. Hence (ρC,ρD)r𝒪,A0(\rho_{C},\rho_{D})\in r^{\mathcal{I}_{\mathcal{O},A_{0}}}, as required.

Let 𝒥\mathcal{J} be a model of 𝒪\mathcal{O} with A0𝒥A_{0}^{\mathcal{J}}\not=\emptyset. Define a relation between Δ𝒪,A0\Delta^{\mathcal{I}_{\mathcal{O},A_{0}}} and Δ𝒥\Delta^{\mathcal{J}} as follows: for any ρCΔ𝒪,A0\rho_{C}\in\Delta^{\mathcal{I}_{\mathcal{O},A_{0}}} and dΔ𝒥d\in\Delta^{\mathcal{J}}, let (ρC,d)S(\rho_{C},d)\in S if dC𝒥d\in C^{\mathcal{J}}. One can now show that this is well-defined and that for any ρC\rho_{C} there exists a dΔ𝒥d\in\Delta^{\mathcal{J}} with (ρC,d)S(\rho_{C},d)\in S. It is straightforward to show that SS is a 𝒪u(Σ){\cal E\!\!\>LO}_{u}(\Sigma)-simulation, as required. ∎

The following observation is a consequence of Lemma 1 and Lemma 6.

Lemma 7.

Let 𝒪\mathcal{O} be an 𝒪u\mathcal{ELRO}_{u}-ontology in normal form, A0A_{0} a concept name, and CC an 𝒪u{\cal E\!\!\>LO}_{u}-concept. Then the following conditions are equivalent:

  1. 1.

    ρA0C𝒪,A0\rho_{A_{0}}\in C^{\mathcal{I}_{\mathcal{O},A_{0}}};

  2. 2.

    𝒪A0C\mathcal{O}\models A_{0}\sqsubseteq C.

Next assume that 𝒪\mathcal{O} and an ABox 𝒜\mathcal{A} are given. Assume 𝒪\mathcal{O} is in normal form. Then one can construct in polynomial time a canonical model 𝒪,𝒜\mathcal{I}_{\mathcal{O},\mathcal{A}} of 𝒪\mathcal{O} that satisfies 𝒜\mathcal{A} via an assignment v𝒪,𝒜v_{\mathcal{O},\mathcal{A}}. The details are straightforward, and we only give the main properties of 𝒪,𝒜\mathcal{I}_{\mathcal{O},\mathcal{A}}.

Lemma 8.

Given an 𝒪u\mathcal{ELRO}_{u}-ontology 𝒪\mathcal{O} in normal form and an ABox 𝒜\mathcal{A} one can construct in polynomial time a model 𝒪,𝒜\mathcal{I}_{\mathcal{O},\mathcal{A}} of 𝒪\mathcal{O} and an assignment v𝒪,𝒜v_{\mathcal{O},\mathcal{A}} such that for all xind(𝒜)x\in\text{ind}(\mathcal{A}) and all 𝒪u{\cal E\!\!\>LO}_{u}-concepts CC the following conditions are equivalent:

  1. 1.

    v𝒪,𝒜(x)C𝒪,𝒜v_{\mathcal{O},\mathcal{A}}(x)\in C^{\mathcal{I}_{\mathcal{O},\mathcal{A}}};

  2. 2.

    𝒪,𝒜C(x)\mathcal{O},\mathcal{A}\models C(x).

The following lemma provides a formal description of the relationship between ABoxes that are tree-shaped modulo some set of individual names and 𝒪\mathcal{ELIO}-concepts.

Lemma 9.

For any 𝒪u(Σ)\mathcal{ELIO}_{u}(\Sigma)-concept CC one can construct in polynomial time a pointed Σ\Sigma-ABox 𝒜,x\mathcal{A},x such that 𝒜\mathcal{A} is tree-shaped modulo 𝖭𝖨Σ{\sf N_{I}}\cap\Sigma and dCd\in C^{\mathcal{I}} iff 𝒜[xd]\mathcal{I}\models\mathcal{A}[x\mapsto d], for all interpretations \mathcal{I} and dΔd\in\Delta^{\mathcal{I}}.

Conversely, for any pointed Σ\Sigma-ABox 𝒜,x\mathcal{A},x such that 𝒜\mathcal{A} is a tree-shaped ABox modulo Γ\Gamma, one can construct in polynomial time an 𝒪u(Σ)\mathcal{ELIO}_{u}(\Sigma)-concept CC such that Γ=𝖭𝖨Σ\Gamma={\sf N_{I}}\cap\Sigma and dCd\in C^{\mathcal{I}} iff 𝒜C[xd]\mathcal{I}\models\mathcal{A}_{C}[x\mapsto d], for all interpretations \mathcal{I} and dΔd\in\Delta^{\mathcal{I}}.

The above also holds if one replaces 𝒪u(Σ)\mathcal{ELIO}_{u}(\Sigma)-concepts by 𝒪(Σ)\mathcal{ELIO}(\Sigma)-concepts and requires the pointed ABoxes to be weakly rooted.

Appendix B Proof for Section 4

We start by proving Remark 3.

Proof of Remark 3. We have to show that the CIP and PBDP are invariant under adding \bot (interpreted as the empty set) to the languages introduced in this paper. Assume that \mathcal{L} is any such language and let \mathcal{L}_{\bot} denote its extension with \bot. We claim that \mathcal{L} enjoys the CIP/PBDP iff \mathcal{L}_{\bot} does. We show this for the CIP, the proof for the PBDP is similar. Assume first that CDC\sqsubseteq D and 𝒪1,𝒪2\mathcal{O}_{1},\mathcal{O}_{2} are a counterexample to the CIP of \mathcal{L}. Then they are also a counterexample to the CIP of \mathcal{L}_{\bot}. Conversely, assume that CDC\sqsubseteq D and 𝒪1,𝒪2\mathcal{O}_{1},\mathcal{O}_{2} are a counterexample to the CIP of \mathcal{L}_{\bot}. We may assume that no CI in 𝒪1𝒪2\mathcal{O}_{1}\cup\mathcal{O}_{2} uses \bot in the concept on its left hand side (if it does, the CI is redundant). Let BB be a fresh concept name and replace \bot by BB in 𝒪1\mathcal{O}_{1} and 𝒪2\mathcal{O}_{2}. Also add to 𝒪i\mathcal{O}_{i} the CIs

r.BB,BAr.B\exists r.B\sqsubseteq B,\quad B\sqsubseteq A\sqcap\exists r.B

for all role names rr in sig(𝒪i\text{sig}(\mathcal{O}_{i}) and Asig(𝒪i)A\in\text{sig}(\mathcal{O}_{i}). We also let rr range over inverse roles in sig(𝒪i\text{sig}(\mathcal{O}_{i}) if \mathcal{L} admits inverse roles, the universal role if \mathcal{L} admits the universal role, and AA over nominals in sig(𝒪i\text{sig}(\mathcal{O}_{i}) if \mathcal{L} admits nominals. Let 𝒪i\mathcal{O}_{i}^{\prime} denote the resulting ontology. Then it is easy to see that CDC\sqsubseteq D and 𝒪1,𝒪2\mathcal{O}_{1}^{\prime},\mathcal{O}_{2}^{\prime} are a counterexample to the CIP of \mathcal{L}.

We continue with a few comments and missing proofs for Theorem 1.

Theorem 1. The following DLs do not enjoy the CIP nor PBDP:

  1. 1.

    \mathcal{EL} with the universal role,

  2. 2.

    \mathcal{EL} with nominals,

  3. 3.

    \mathcal{EL} with a single role inclusion rssr\circ s\sqsubseteq s,

  4. 4.

    \mathcal{EL} with role hierarchies and a transitive role,

  5. 5.

    \mathcal{EL} with inverse roles.

In Points 2 to 5, the CIP/PBDP also fails if the universal role can occur in interpolants/explicit definitions.

Proof.

We first supply a proof for Point 4. Let 𝒪rs\mathcal{O}_{rs} contain

As.E,Es1.B,s2.BA,A\sqsubseteq\exists s.E,\quad E\sqsubseteq\exists s_{1}.B,\quad\exists s_{2}.B\sqsubseteq A,
s1s,ss2,sss,s_{1}\sqsubseteq s,\quad s\sqsubseteq s_{2},\quad s\circ s\sqsubseteq s,

and let Σ={s1,s2,E}\Sigma=\{s_{1},s_{2},E\}. Then AA is implicitly definable using Σ\Sigma under 𝒪rs\mathcal{O}_{rs} since

𝒪rsx(A(x)y(E(y)z(s1(y,z)s2(x,z))).\mathcal{O}_{rs}\models\forall x(A(x)\leftrightarrow\exists y(E(y)\wedge\forall z(s_{1}(y,z)\rightarrow s_{2}(x,z))).

In the same way as above, the interpretations \mathcal{I} and \mathcal{I}^{\prime} given in Figure 6 show that AA has no u(Σ)\mathcal{EL}_{u}(\Sigma)-definition under 𝒪rs\mathcal{O}_{rs}.

aaA{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}A}ccE,AE,{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}A}bbB{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}B}aa^{\prime}cc^{\prime}E,AE,{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}A}bb^{\prime}c′′c^{\prime\prime}E,AE,{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}A}b′′b^{\prime\prime}B{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}B}s,s2{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}s},s_{2}s,s2{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}s},s_{2}s1,s,s2s_{1},{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}s},s_{2}s,s2{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}s},s_{2}s2s_{2}s2s_{2}s1,s,s2s_{1},{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}s},s_{2}s,s2{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}s},s_{2}s,s2{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}s},s_{2}s2s_{2}s1,s,s2s_{1},{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}s},s_{2}s,s2{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}s},s_{2}\mathcal{I}:\mathcal{I}^{\prime}:
Figure 6: Interpretations \mathcal{I} and \mathcal{I}^{\prime} used for 𝒪rs\mathcal{O}_{rs}.

We next observe that Point 5 can easily be strengthened. The concept name AA does not only have no explicit u(Σ)\mathcal{ELI}_{u}(\Sigma)-definition, but no such definition exists in the positive fragment of 𝒜𝒞u\mathcal{ALCI}_{u}. To see this, consider the interpretations given in Figure 7.

aaA,B{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}A},BbbC,D,E{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}C},D,Eccaa^{\prime}BBbb^{\prime}D,ED,Ecc^{\prime}c′′c^{\prime\prime}C,D{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}C},D
Figure 7: Interpretations \mathcal{I} (left) and \mathcal{I}^{\prime} (right) for 𝒪i\mathcal{O}_{i}.

Observe that the interpretations ,\mathcal{I},\mathcal{I}^{\prime} show that AA is not definable under 𝒪i\mathcal{O}_{i} using any concept constructed from Σ\Sigma using ,,,\sqcap,\sqcup,\exists,\forall since for any such concept FF we have for (x,x){(a,a),(b,b),(c,c),(c,c′′)}(x,x^{\prime})\in\{(a,a^{\prime}),(b,b^{\prime}),(c,c^{\prime}),(c,c^{\prime\prime})\} that xFx\in F^{\mathcal{I}} implies xFx^{\prime}\in F^{\mathcal{I}}. Of course, the interpretations \mathcal{I} and \mathcal{I}^{\prime} given in Figure 7. also demonstrate that concepts with implicit definitions in u{\cal E\!\!\>L}_{u} may not have explicit definitions in positive 𝒜𝒞u{\cal ALC}_{u}. The interpretations depicted in Figure 7 differ from the interpretations constructed previously in that they are not the canonical models. The nodes cc and cc^{\prime} are not enforced by the ontology but are needed to ensure r.E\forall r.E does not distinguish aa and aa^{\prime}. ∎

We defer the proof of Theorem 4 to the end of Section D as we need the canonical model and ABox unfolding machinery developed in that section.

Appendix C Proofs for Section 5

We give a proof for Remark 5.

Proof of Remark 5. Assume that \mathcal{L} is any DL introduced in this paper and let \mathcal{L}_{\bot} denote its extension with \bot. The polynomial time reductions of \mathcal{L}-interpolant existence and \mathcal{L}-explicit definition existence to \mathcal{L}_{\bot}-interpolant existence and \mathcal{L}_{\bot}-explicit definition existence, respectively, are trivial. For the converse direction, we consider the CIP, the reduction for the PBDP is similar. The idea is the same as in Remark 3. Assume that CDC\sqsubseteq D and 𝒪1,𝒪2\mathcal{O}_{1},\mathcal{O}_{2} are in \mathcal{L}_{\bot}. If 𝒪1𝒪2C\mathcal{O}_{1}\cup\mathcal{O}_{2}\models C\sqsubseteq\bot, then an interpolant exists and we are done. Assume 𝒪1𝒪2⊧̸C\mathcal{O}_{1}\cup\mathcal{O}_{2}\not\models C\sqsubseteq\bot. We may assume that no CI in 𝒪1𝒪2\mathcal{O}_{1}\cup\mathcal{O}_{2} uses \bot in the concept on its left hand side (if it does, the CI is redundant). Now let BB be a fresh concept name and replace \bot by BB in CC, DD, 𝒪1\mathcal{O}_{1}, and 𝒪2\mathcal{O}_{2}. Also add to 𝒪i\mathcal{O}_{i} the CIs

r.BB,BAr.B\exists r.B\sqsubseteq B,\quad B\sqsubseteq A\sqcap\exists r.B

for all role names rr in sig(𝒪i\text{sig}(\mathcal{O}_{i}) and Asig(𝒪i)A\in\text{sig}(\mathcal{O}_{i}). We also let rr range over inverse roles in sig(𝒪i\text{sig}(\mathcal{O}_{i}) if \mathcal{L} admits inverse roles, the universal role if \mathcal{L} admits the universal role, and AA over nominals in sig(𝒪i\text{sig}(\mathcal{O}_{i}) if \mathcal{L} admits nominals. Let 𝒪i\mathcal{O}_{i}^{\prime} denote the resulting ontology. Then there exists an \mathcal{L}_{\bot}-interpolant for CDC\sqsubseteq D under 𝒪1,𝒪2\mathcal{O}_{1},\mathcal{O}_{2} iff there exists an \mathcal{L}-interpolant for CDC\sqsubseteq D under 𝒪1,𝒪2\mathcal{O}_{1}^{\prime},\mathcal{O}_{2}^{\prime}.

Appendix D Proofs for Section 6

We first give a proof of the polynomial time decidability of interpolant existence that has not been discussed in the main paper. Then we provide the missing proofs from the main paper.

The following complexity upper bound proof does not provide an upper bound on the size of interpolants/explicit definitions, but is more elementary than the one we sketched in the main paper.

We start by proving a characterization for the existence of interpolants using canonical models and simulations.

Lemma 10.

Let 𝒪1,𝒪2\mathcal{O}_{1},\mathcal{O}_{2} be 𝒪u\mathcal{ELRO}_{u}-ontologies in normal form, A,BA,B concept names, and {𝒪,𝒪u}\mathcal{L}\in\{\mathcal{ELO},\mathcal{ELO}_{u}\}. Let Σ=sig(𝒪1,A)sig(𝒪2,B)\Sigma=\text{sig}(\mathcal{O}_{1},A)\cap\text{sig}(\mathcal{O}_{2},B). Then there does not exist an \mathcal{L}-interpolant for ABA\sqsubseteq B under 𝒪1,𝒪2\mathcal{O}_{1},\mathcal{O}_{2} iff there exists a model 𝒥\mathcal{J} of 𝒪1𝒪2\mathcal{O}_{1}\cup\mathcal{O}_{2} and dΔ𝒥d\in\Delta^{\mathcal{J}} such that

  1. 1.

    dB𝒥d\not\in B^{\mathcal{J}};

  2. 2.

    (𝒪1𝒪2,A,ρA),Σ(𝒥,d)(\mathcal{I}_{\mathcal{O}_{1}\cup\mathcal{O}_{2},A},\rho_{A})\preceq_{\mathcal{L},\Sigma}(\mathcal{J},d).

Proof.

Assume an \mathcal{L}-interpolant FF exists, but there exists a model 𝒥\mathcal{J} of 𝒪1𝒪2\mathcal{O}_{1}\cup\mathcal{O}_{2} and dΔ𝒥d\in\Delta^{\mathcal{J}} satisfying the conditions of the lemma. As 𝒪1𝒪2AF\mathcal{O}_{1}\cup\mathcal{O}_{2}\models A\sqsubseteq F, by Lemma 6, we obtain ρAF𝒪1𝒪2,A\rho_{A}\in F^{\mathcal{I}_{\mathcal{O}_{1}\cup\mathcal{O}_{2},A}}. By Lemma 1, dF𝒥d\in F^{\mathcal{J}}. We have derived a contradiction to the condition that dB𝒥d\not\in B^{\mathcal{J}}, 𝒥\mathcal{J} is a model of 𝒪1𝒪2\mathcal{O}_{1}\cup\mathcal{O}_{2}, and 𝒪1𝒪2FB\mathcal{O}_{1}\cup\mathcal{O}_{2}\models F\sqsubseteq B.

Assume no \mathcal{L}-interpolant exists. Let

Γ={C(Σ)ρAC𝒪1𝒪2,A}\Gamma=\{C\in\mathcal{L}(\Sigma)\mid\rho_{A}\in C^{\mathcal{I}_{\mathcal{O}_{1}\cup\mathcal{O}_{2},A}}\}

By Lemma 7 and compactness, there exists a model 𝒥\mathcal{J} of 𝒪1𝒪2\mathcal{O}_{1}\cup\mathcal{O}_{2} and dΔ𝒥d\in\Delta^{\mathcal{J}} such that dC𝒥d\in C^{\mathcal{J}} for all CΓC\in\Gamma but dB𝒥d\not\in B^{\mathcal{J}}. We may assume that 𝒥\mathcal{J} is ω\omega-saturated.333See (?) for an introduction to ω\omega-saturated interpretations and their properties. Thus, by a straightforward gneralization of Lemma 1 from finite to ω\omega-saturated interpretations, (𝒪1𝒪2,A,ρA),Σ(𝒥,d)(\mathcal{I}_{\mathcal{O}_{1}\cup\mathcal{O}_{2},A},\rho_{A})\preceq_{\mathcal{L},\Sigma}(\mathcal{J},d), and 𝒥\mathcal{J} satisfies the conditions of the lemma. ∎

The characterization provided in Lemma 10 can be checked in polynomial time. Consider a fresh concept name XdX_{d} for each dΔd\in\Delta^{\mathcal{I}} for =𝒪1𝒪2,A\mathcal{I}=\mathcal{I}_{\mathcal{O}_{1}\cup\mathcal{O}_{2},A}. We define the 𝒪u(Σ){\cal E\!\!\>LO}_{u}(\Sigma) diagram 𝒟()\mathcal{D}(\mathcal{I}) of \mathcal{I} as the ontology consisting of the following CIs:

  • XdAX_{d}\sqsubseteq A, for every AΣA\in\Sigma and dAd\in A^{\mathcal{I}};

  • Xb{b}X_{b^{\mathcal{I}}}\sqsubseteq\{b\}, for every bΣb\in\Sigma;

  • Xdr.XdX_{d}\sqsubseteq\exists r.X_{d^{\prime}}, for every rΣr\in\Sigma and (d,d)r(d,d^{\prime})\in r^{\mathcal{I}};

  • Xdu.XdX_{d}\sqsubseteq\exists u.X_{d^{\prime}}, for every d,dΔd,d^{\prime}\in\Delta^{\mathcal{I}}.

Denote by |Σ\mathcal{I}_{|\Sigma} the Σ\Sigma-reduct of the interpretation \mathcal{I}. Now it is straightforward to show that there exists a model 𝒥\mathcal{J} of 𝒪1𝒪2\mathcal{O}_{1}\cup\mathcal{O}_{2} and dΔ𝒥d\in\Delta^{\mathcal{J}} such that the conditions of Lemma 10 hold for =𝒪u\mathcal{L}={\cal E\!\!\>LO}_{u} iff 𝒪1𝒪2𝒟((𝒪1𝒪2,A)|Σ)⊧̸XρAB\mathcal{O}_{1}\cup\mathcal{O}_{2}\cup\mathcal{D}((\mathcal{I}_{\mathcal{O}_{1}\cup\mathcal{O}_{2},A})_{|\Sigma})\not\models X_{\rho_{A}}\sqsubseteq B. The latter condition can be checked in polynomial time. If we aim at interpolants without the universal role we simply remove the CIs of the final item from the definition of 𝒟()\mathcal{D}(\mathcal{I}), denote the resulting set of inclusions by 𝒟()\mathcal{D}^{\prime}(\mathcal{I}) and have that there exists a model 𝒥\mathcal{J} of 𝒪1𝒪2\mathcal{O}_{1}\cup\mathcal{O}_{2} and dΔ𝒥d\in\Delta^{\mathcal{J}} such that the conditions of Lemma 10 hold for =𝒪\mathcal{L}=\mathcal{ELO} iff 𝒪1𝒪2𝒟((𝒪1𝒪2,A)|Σ)⊧̸XρAB\mathcal{O}_{1}\cup\mathcal{O}_{2}\cup\mathcal{D}^{\prime}((\mathcal{I}_{\mathcal{O}_{1}\cup\mathcal{O}_{2},A})_{|\Sigma})\not\models X_{\rho_{A}}\sqsubseteq B.


Directed Unfolding of ABox.

We give a precise definition of the directed unfolding of an ABox. Let 𝒜\mathcal{A} be a factorized Σ\Sigma-ABox and Γ=𝖭𝖨Σ\Gamma={\sf N_{I}}\cap\Sigma. The directed unfolding of 𝒜\mathcal{A} into a ditree-shaped ABox 𝒜u\mathcal{A}^{u} modulo Γ\Gamma is defined as follows. The individuals of 𝒜u\mathcal{A}^{u} are the words w=x0r1rnxnw=x_{0}r_{1}\cdots r_{n}x_{n} with r1,,rnr_{1},\ldots,r_{n} role names and x0,xnind(𝒜)x_{0},\ldots x_{n}\in\text{ind}(\mathcal{A}) such that {a}(xi)𝒜\{a\}(x_{i})\not\in\mathcal{A} for any i0i\not=0 and aΓa\in\Gamma and ri+1(xi,xi+1)𝒜r_{i+1}(x_{i},x_{i+1})\in\mathcal{A} for all i<ni<n. We set tail(w)=xn\text{tail}(w)=x_{n} and define

  • A(w)𝒜uA(w)\in\mathcal{A}^{u} if A(tail(w))𝒜A(\text{tail}(w))\in\mathcal{A}, for A𝖭𝖢A\in{\sf N_{C}};

  • r(w,wrx)𝒜ur(w,wrx)\in\mathcal{A}^{u} if r(tail(w),x)𝒜r(\text{tail}(w),x)\in\mathcal{A} and r(w,x)𝒜ur(w,x)\in\mathcal{A}^{u} if {a}(x)𝒜\{a\}(x)\in\mathcal{A} for some aΓa\in\Gamma and r(tail(w),x)𝒜r(\text{tail}(w),x)\in\mathcal{A}, for r𝖭𝖱r\in{\sf N_{R}};

  • {a}(x)𝒜u\{a\}(x)\in\mathcal{A}^{u} if {a}(x)𝒜\{a\}(x)\in\mathcal{A}, for aΓa\in\Gamma and xind(𝒜)x\in\text{ind}(\mathcal{A}).

Derivation Trees.

Fix an 𝒪u\mathcal{ELRO}_{u}-ontology 𝒪\mathcal{O} in normal form, a sig(𝒪)\text{sig}(\mathcal{O})-ABox 𝒜\mathcal{A}, and recall the definition of Δ\Delta and Θ\Theta. Let (a,C)Δ×Θ(a,C)\in\Delta\times\Theta. A derivation tree for the assertion (a,C)(a,C) in 𝒪,𝒜\mathcal{O},\mathcal{A} is a finite Δ×Θ\Delta\times\Theta-labeled tree (T,V)(T,V), where TT is a set of nodes and V:TΔ×ΘV:T\to\Delta\times\Theta the labeling function, such that

  • V(ε)=(a,C)V(\varepsilon)=(a,C);

  • if V(n)=(a,C)V(n)=(a,C), then (i) aind(𝒜)a\in\text{ind}(\mathcal{A}) and C=C=\top or (ii) C(a)𝒜C(a)\in\mathcal{A} or (iii) a𝖭𝖨a\in{\sf N_{I}} and C={a}C=\{a\} or

    1. 1.

      a=C=Aa=C=A for a concept name AA and nn has a successor nn^{\prime} with V(n)=(b,A)V(n^{\prime})=(b,A); or

    2. 2.

      a=C=Aa=C=A for a concept name AA and nn has a successor nn^{\prime} such that V(n)=(b,C)V(n^{\prime})=(b,C^{\prime}) and 𝒪Cu.A\mathcal{O}\models C^{\prime}\sqsubseteq\exists u.A; or

    3. 3.

      nn has successors n1,n2n_{1},n_{2} with V(ni)=(a,Ci)V(n_{i})=(a,C_{i}) for i=1,2i=1,2 and and 𝒪C1C2C\mathcal{O}\models C_{1}\sqcap C_{2}\sqsubseteq C; or

    4. 4.

      nn has successors n1,n2,n3n_{1},n_{2},n_{3} with V(n1)=(b,C)V(n_{1})=(b,C), V(n2)=(a,{c})V(n_{2})=(a,\{c\}), and V(n3)=(b,{c})V(n_{3})=(b,\{c\}); or

    5. 5.

      the conditions of the rule for RIs discussed in the main paper hold: there are role names r2,,r2k2,rr_{2},\ldots,r_{2k-2},r and members a=a1,,a2ka=a_{1},\ldots,a_{2k} of Δ\Delta such that (a2k,C)(a_{2k},C^{\prime}) is a label of a successor of nn, 𝒪r.CC\mathcal{O}\models\exists r.C^{\prime}\sqsubseteq C, 𝒪r2r2k2r\mathcal{O}\models r_{2}\circ\cdots\circ r_{2k-2}\sqsubseteq r, and the situation depicted in Figure 4 holds, where the “dotted lines” stand for ‘either ai=ai+1a_{i}=a_{i+1} or some (ai,{c}),(ai+1,{c})(a_{i},\{c\}),(a_{i+1},\{c\}) with c𝖭𝖨c\in{\sf N_{I}} are labels of successors of nn’, and r^i\hat{r}_{i} stands for ‘either r(ai,ai+1)𝒜r(a_{i},a_{i+1})\in\mathcal{A} or some (ai,Ci)(a_{i},C_{i}) is a label of a successor of nn and 𝒪Ciri.{ai+1}\mathcal{O}\models C_{i}\sqsubseteq\exists r_{i}.\{a_{i+1}\} if ai+1𝖭𝖨a_{i+1}\in{\sf N_{I}} and 𝒪Ciri.ai+1\mathcal{O}\models C_{i}\sqsubseteq\exists r_{i}.a_{i+1} if ai+1𝖭𝖢a_{i+1}\in{\sf N_{C}}’. Moreover, for all aiaa_{i}\not=a, 1<i2k1<i\leq 2k, there exists a successor of nn with label (ai,D)(a_{i},D) for some DD; or

    6. 6.

      nn has a successor nn^{\prime} with V(n)=(b,C)V(n^{\prime})=(b,C^{\prime}) and 𝒪u.CC\mathcal{O}\models\exists u.C^{\prime}\sqsubseteq C.

The purpose of Conditions 1 and 2 is to establish that it follows from 𝒪\mathcal{O} and 𝒜\mathcal{A} that AA is not empty. In this case (A,A)(A,A) is derived. The purpose of the remaining rules should be clear.

Example 5.

We use the ontology from Example 1. Recall that

𝒪p\displaystyle\mathcal{O}_{p} =\displaystyle= {ririri+10i<n}\displaystyle\{r_{i}\circ r_{i}\sqsubseteq r_{i+1}\mid 0\leq i<n\}\cup
{Ar0.B,Br0.B,rn.BA}\displaystyle\{A\sqsubseteq\exists r_{0}.B,B\sqsubseteq\exists r_{0}.B,\exists r_{n}.B\sqsubseteq A\}

Then 𝒪p,A\mathcal{I}_{\mathcal{O}_{p},A} is defined by setting

Δ𝒪p,A\displaystyle\Delta^{\mathcal{I}_{\mathcal{O}_{p},A}} =\displaystyle= {ρA,y}\displaystyle\{\rho_{A},y\}
A𝒪p,A\displaystyle A^{\mathcal{I}_{\mathcal{O}_{p},A}} =\displaystyle= {ρA}\displaystyle\{\rho_{A}\}
B𝒪p,A\displaystyle B^{\mathcal{I}_{\mathcal{O}_{p},A}} =\displaystyle= {y}\displaystyle\{y\}
ri𝒪p,A\displaystyle r_{i}^{\mathcal{I}_{\mathcal{O}_{p},A}} =\displaystyle= {(ρA,y),(y,y)}, for 0in.\displaystyle\{(\rho_{A},y),(y,y)\},\text{ for $0\leq i\leq n$.}

Recall that Σ={r0,B}\Sigma=\{r_{0},B\} and that r02n.B\exists r_{0}^{2^{n}}.B is an explicit definition of AA using Σ\Sigma under 𝒪p\mathcal{O}_{p}. Consider the ABox 𝒜|Σ\mathcal{A}_{|\Sigma} corresponding to the Σ\Sigma-reduct of 𝒪p,A\mathcal{I}_{\mathcal{O}_{p},A}. Then a derivation tree (T,V)(T,V) for (ρA,A)(\rho_{A},A) in 𝒪p,𝒜|Σ\mathcal{O}_{p},\mathcal{A}_{|\Sigma} is defined by setting V(ε)=(ρA,A)V(\varepsilon)=(\rho_{A},A) and taking a single successor nn of ε\varepsilon with V(n)=(y,B)V(n)=(y,B). In the notation of Rule 5, we have a1=a2=ρAa_{1}=a_{2}=\rho_{A} and a3==a2n=ya_{3}=\cdots=a_{2^{n}}=y. We use that 𝒪pr02nrn\mathcal{O}_{p}\models r_{0}^{2^{n}}\sqsubseteq r_{n} and 𝒪prn.BA\mathcal{O}_{p}\models\exists r_{n}.B\sqsubseteq A.

We next show Part 1 of Lemma 3.

Proof of Part 1 of Lemma 3. Let 𝒪\mathcal{O} be an 𝒪u\mathcal{ELRO}_{u}-ontology in normal form and 𝒜\mathcal{A} a finite sig(𝒪)\text{sig}(\mathcal{O})-ABox. Assume (x,A)(x,A) with xind(𝒜)x\in\text{ind}(\mathcal{A}) and AΘA\in\Theta is given. It is straightforward to show by induction that if there is a derivation tree for (x,A)(x,A) in 𝒪,𝒜\mathcal{O},\mathcal{A}, then 𝒪,𝒜A(x)\mathcal{O},\mathcal{A}\models A(x). We construct a sequence of ABoxes 𝒜0,𝒜1,\mathcal{A}_{0},\mathcal{A}_{1},\ldots as follows. Define 𝒜0\mathcal{A}_{0} as the union of 𝒜\mathcal{A} and all assertions {a}(a)\{a\}(a) with aa an individual name in 𝒪\mathcal{O} and (x)\top(x) with xind(𝒜)x\in\text{ind}(\mathcal{A}). Let 𝒜i+1\mathcal{A}_{i+1} be obtained from 𝒜i\mathcal{A}_{i} by applying one of the following rules:

  1. 1.

    if A(b)𝒜iA(b)\in\mathcal{A}_{i}, then add A(A)A(A) to 𝒜i\mathcal{A}_{i};

  2. 2.

    if C(b)𝒜iC^{\prime}(b)\in\mathcal{A}_{i} and 𝒪Cu.A\mathcal{O}\models C^{\prime}\sqsubseteq\exists u.A, then add A(A)A(A) to 𝒜i\mathcal{A}_{i};

  3. 3.

    if C1(a),C2(a)𝒜iC_{1}(a),C_{2}(a)\in\mathcal{A}_{i} and 𝒪C1C2C\mathcal{O}\models C_{1}\sqcap C_{2}\sqsubseteq C, then add C(a)C(a) to 𝒜i\mathcal{A}_{i};

  4. 4.

    if C(b),{c}(a),{c}(b)𝒜iC(b),\{c\}(a),\{c\}(b)\in\mathcal{A}_{i}, then add C(a)C(a) to 𝒜i\mathcal{A}_{i};

  5. 5.

    if there is a sequence a1,,a2ka_{1},\ldots,a_{2k} of elements of Δ\Delta and a sequence r2,r4,,r2k2r_{2},r_{4},\ldots,r_{2k-2} of role names such that a=a1a=a_{1} and for every a2j+1a_{2j+1} either a2j+1=a2j+2a_{2j+1}=a_{2j+2} or there is cc with {c}(a2j+1),{c}(a2j+2)𝒜i\{c\}(a_{2j+1}),\{c\}(a_{2j+2})\in\mathcal{A}_{i} such that for every a2ja_{2j}:

    • r2j(a2j,a2j+1)𝒜r_{2j}(a_{2j},a_{2j+1})\in\mathcal{A}; or

    • a2j+1𝖭𝖨sig(𝒪)a_{2j+1}\in{\sf N_{I}}\cap\text{sig}(\mathcal{O}) and there exists C2j(𝖭𝖢𝖭𝖨)sig(𝒪)C_{2j}\in({\sf N_{C}}\cup{\sf N_{I}})\cap\text{sig}(\mathcal{O}) such that C2j(a2j)𝒜iC_{2j}(a_{2j})\in\mathcal{A}_{i} and 𝒪C2jr2j.{a2j+1}\mathcal{O}\models C_{2j}\sqsubseteq\exists r_{2j}.\{a_{2j+1}\}; or

    • a2j+1𝖭𝖢sig(𝒪)a_{2j+1}\in{\sf N_{C}}\cap\text{sig}(\mathcal{O}) and there exists C2j(𝖭𝖢𝖭𝖨)sig(𝒪)C_{2j}\in({\sf N_{C}}\cup{\sf N_{I}})\cap\text{sig}(\mathcal{O}) such that C2j(a2j)𝒜iC_{2j}(a_{2j})\in\mathcal{A}_{i} and 𝒪C2jr2j.a2j+1\mathcal{O}\models C_{2j}\sqsubseteq\exists r_{2j}.a_{2j+1}

    and there exist C(𝖭𝖢𝖭𝖨)sig(𝒪)C^{\prime}\in({\sf N_{C}}\cup{\sf N_{I}})\cap\text{sig}(\mathcal{O}) and a role name rr such that C(a2k)𝒜iC^{\prime}(a_{2k})\in\mathcal{A}_{i}, 𝒪r.CA\mathcal{O}\models\exists r.C^{\prime}\sqsubseteq A, and 𝒪r2r4r2k2r\mathcal{O}\models r_{2}\circ r_{4}\circ\ldots\circ r_{2k-2}\sqsubseteq r, then add A(a)A(a) to 𝒜i\mathcal{A}_{i}.

  6. 6.

    if C(b)𝒜iC^{\prime}(b)\in\mathcal{A}_{i} and 𝒪u.CC\mathcal{O}\models\exists u.C^{\prime}\sqsubseteq C, then add C(a)C(a) to 𝒜i\mathcal{A}_{i}.

Note that the sequence is finite, and denote by 𝒜\mathcal{A}^{*} the final ABox.

Claim. There is a model ,v\mathcal{I},v of 𝒜\mathcal{A}^{*} and 𝒪\mathcal{O} such that for all xind(𝒜)x\in\text{ind}(\mathcal{A}) and A𝖭𝖢A\in{\sf N_{C}}, v(x)Av(x)^{\mathcal{I}}\in A^{\mathcal{I}} implies A(x)𝒜A(x)\in\mathcal{A}^{*}.

Proof of the Claim. For all a,b𝗂𝗇𝖽(𝒜)a,b\in\mathsf{ind}(\mathcal{A}^{*}), we write aba\sim b if a=ba=b or {c}(a),{c}(b)𝒜\{c\}(a),\{c\}(b)\in\mathcal{A}^{*} for some cc. Notice that due to Rule 4, aba\sim b implies C(a)𝒜C(a)\in\mathcal{A}^{*} if and only if C(b)𝒜C(b)\in\mathcal{A}^{*}. It follows that \sim is an equivalence relation. We let [a][a] denote the equivalence class of aa. Start with an interpretation 0\mathcal{I}_{0} defined by:

Δ0\displaystyle\Delta^{\mathcal{I}_{0}} =𝗂𝗇𝖽(𝒜)/\displaystyle=\mathsf{ind}(\mathcal{A}^{*})/{\sim}
A0\displaystyle A^{\mathcal{I}_{0}} ={[a]A(a)𝒜}\displaystyle=\{[a]\mid A(a)\in\mathcal{A}^{*}\}
a0\displaystyle a^{\mathcal{I}_{0}} ={[a]}\displaystyle=\{[a]\}
r0\displaystyle r^{\mathcal{I}_{0}} ={([a],[b])a[a],b[b].r(a,b)𝒜}.\displaystyle=\{([a],[b])\mid\exists a^{\prime}\in[a],b^{\prime}\in[b].\ r(a^{\prime},b^{\prime})\in\mathcal{A}^{*}\}\,.

By definition, 0\mathcal{I}_{0} satisfies all CIs in 𝒪\mathcal{O} that do not involve role names or the universal role. We next extend 0\mathcal{I}_{0} by adding pairs of the form ([a],[b])([a],[b]) with b𝖭𝖢𝖭𝖨b\in{\sf N_{C}}\cup{\sf N_{I}} to the interpretation of role names. In detail, if [a]Δ0[a]\in\Delta^{\mathcal{I}_{0}} and there exist C𝖭𝖢𝖭𝖨C\in{\sf N_{C}}\cup{\sf N_{I}} with aC0a\in C^{\mathcal{I}_{0}} and c𝖭𝖨c\in{\sf N_{I}} with c[b]c\in[b] such that 𝒪Cr.{c}\mathcal{O}\models C\sqsubseteq\exists r.\{c\}, then add ([a],[b])([a],[b]) to r0r^{\mathcal{I}_{0}}. Also, if [a]Δ0[a]\in\Delta^{\mathcal{I}_{0}} and there exist C𝖭𝖢𝖭𝖨C\in{\sf N_{C}}\cup{\sf N_{I}} with aC0a\in C^{\mathcal{I}_{0}} and A𝖭𝖢A\in{\sf N_{C}} with A[b]A\in[b] such that 𝒪Cr.A\mathcal{O}\models C\sqsubseteq\exists r.A, then add ([a],[b])([a],[b]) to r0r^{\mathcal{I}_{0}}. Finally, add any pair ([a],[b])([a],[b]) to r0r^{\mathcal{I}_{0}} if there exists an RI r1rnrr_{1}\circ\cdots\circ r_{n}\sqsubseteq r that follows from 𝒪\mathcal{O} such that ([a],[b])([a],[b]) is in relation r1rnr_{1}\circ\cdots\circ r_{n} under the updated interpretations of r1,,rnr_{1},\ldots,r_{n}. This defines an interpretation \mathcal{I}. By Rule 2 all CIs of the form Ar.BA\sqsubseteq\exists r.B are satisfied in \mathcal{I}. By definition, all RIs in 𝒪\mathcal{O} are satisfied in \mathcal{I}. By Rules 5 and 6, all CIs of the form r.BA\exists r.B\sqsubseteq A are satisfied as well. This finishes the proof of the claim.

Now suppose 𝒪,𝒜A0(x0)\mathcal{O},\mathcal{A}\models A_{0}(x_{0}). By the Claim, we have A0(x0)𝒜A_{0}(x_{0})\in\mathcal{A}^{*}. Since the six rules to construct 𝒜0,𝒜1,\mathcal{A}_{0},\mathcal{A}_{1},\ldots are in one-to-one correspondence with Conditions (1)–(6) from the definition of derivation trees, we can inductively construct a derivation tree for A0(x0)A_{0}(x_{0}) in 𝒜\mathcal{A} w.r.t. 𝒪\mathcal{O}.

The remaining claims made in Part 1 of Lemma 3 have been shown in the main paper already. ∎

We next come to Part 2 of Lemma 3. The following example illustrates how one can construct from a derivation tree of A(x)A(x) in 𝒪,𝒜\mathcal{O},\mathcal{A} a derivation tree in 𝒪,𝒜u\mathcal{O},\mathcal{A}^{u} with 𝒜u\mathcal{A}^{u} the directed unfolding of 𝒜\mathcal{A}. The derivation tree has the same depth but the outdegree might be exponential.

Example 6.

Recall the ontology 𝒪p\mathcal{O}_{p} and concept name AA from Example 5. We consider the Σ\Sigma-reduct 𝒜|Σ\mathcal{A}_{|\Sigma} of the ABox 𝒜\mathcal{A} corresponding to the canonical model 𝒪p,A\mathcal{I}_{\mathcal{O}_{p},A}. It is defined by 𝒜|Σ={r0(ρA,y),r0(y,y),B(y)}\mathcal{A}_{|\Sigma}=\{r_{0}(\rho_{A},y),r_{0}(y,y),B(y)\}. The directed unfolding 𝒜|Σu\mathcal{A}_{|\Sigma}^{u} has individuals

ρA,ρAr0y,ρAr0yr0y,\rho_{A},\quad\rho_{A}r_{0}y,\quad\rho_{A}r_{0}yr_{0}y,\quad\ldots

and the assertions

B(ρAr0y),B(ρAxr0yr0y),B(\rho_{A}r_{0}y),\quad B(\rho_{A}xr_{0}yr_{0}y),\quad\ldots
r0(ρA,ρAr0y),r0(ρAr0y,ρAr0yr0y),r_{0}(\rho_{A},\rho_{A}r_{0}y),\quad r_{0}(\rho_{A}r_{0}y,\rho_{A}r_{0}yr_{0}y),\quad\ldots

In a derivation tree (T,V)(T^{\prime},V^{\prime}) for A(ρ0)A(\rho_{0}) in 𝒪p,𝒜|Σ\mathcal{O}_{p},\mathcal{A}_{|\Sigma} we require that ε\varepsilon has 2n2^{n} successors labeled with:

(ρAr0y,B),(ρAr0yr0y,B),,(ρA(r0y)2n,B).(\rho_{A}r_{0}y,B),\quad(\rho_{A}r_{0}yr_{0}y,B),\ldots,\quad(\rho_{A}(r_{0}y)^{2n},B).

We now give the general construction of the derivation tree in the directed unfolding from a derivation tree in the original ABox.

Proof of Part 2 of Lemma 3. Assume that (T,V)(T,V) is a derivation tree for A(x)A(x) in 𝒪,𝒜\mathcal{O},\mathcal{A} of at most exponential size. We obtain a very similar derivation tree (T,V)(T^{\prime},V^{\prime}) for A(x)A(x) in 𝒪,𝒜u\mathcal{O},\mathcal{A}^{u} with 𝒜u\mathcal{A}^{u} the directed unfolding of 𝒜\mathcal{A} modulo Σ=sig(𝒜)𝖭𝖨\Sigma=\text{sig}(\mathcal{A})\cap{\sf N_{I}}. In fact, with the exception of Condition 5, the construction is identical. For Condition 5, one potentially has to introduce ”copies” of the nodes in TT which correspond to the fresh individuals introduced in the unfolded ABox.

In the following construction of (T,V)(T^{\prime},V^{\prime}) the following holds: if the label of nn in (T,V)(T,V) is (a,C)(a,C), then the label of copies nn^{\prime} of nn in (T,V)(T^{\prime},V^{\prime}) takes the form (w,C)(w,C) with tail(w)=a\text{tail}(w)=a. Moreover, if {b}(a)𝒜\{b\}(a)\in\mathcal{A} for some bΣ𝖭𝖨b\in\Sigma\cap{\sf N_{I}} or a𝖭𝖨𝖭𝖢a\in{\sf N_{I}}\cup{\sf N_{C}}, then the label of nn^{\prime} is identical to the label of nn. Note VV^{\prime} is a mapping form TT^{\prime} to Δ×Θ\Delta^{\prime}\times\Theta with

Δ=ind(𝒜u)((𝖭𝖢𝖭𝖨)sig(𝒪))\Delta^{\prime}=\text{ind}(\mathcal{A}^{u})\cup(({\sf N_{C}}\cup{\sf N_{I}})\cap\text{sig}(\mathcal{O}))

In detail, we define (T,V)(T^{\prime},V^{\prime}) as follows from (T,V)(T,V), starting with the root by setting V(ε):=V(ε)=(x,A)V^{\prime}(\varepsilon):=V(\varepsilon)=(x,A).

Assume inductively that mm is a copy of nn, V(n)=(a,C)V(n)=(a,C), and V(m)=(w,C)V^{\prime}(m)=(w,C). To define the successors of mm and their labelings we consider the possible derivation steps for (a,C)(a,C) in 𝒪,𝒜\mathcal{O},\mathcal{A}: (i) if aind(𝒜)a\in\text{ind}(\mathcal{A}) and C=C=\top, then wind(𝒜u)w\in\text{ind}(\mathcal{A}^{u}) and C=C=\top; (ii) if C(a)𝒜C(a)\in\mathcal{A}, then C(w)𝒜uC(w)\in\mathcal{A}^{u}; (iii) if a𝖭𝖨a\in{\sf N_{I}} and C={a}C=\{a\}, then V(m)=(a,{a})V^{\prime}(m)=(a,\{a\}). We next consider the cases 1 to 6:

  1. 1.

    a=C=Aa=C=A for a concept name AA and nn has a successor nn^{\prime} with V(n)=(b,A)V(n^{\prime})=(b,A): take a copy mm^{\prime} of nn^{\prime} as the only successor of mm and set V(m)=(b,A)V^{\prime}(m^{\prime})=(b,A).

  2. 2.

    a=C=Aa=C=A for a concept name AA and nn has a successor nn^{\prime} such that V(n)=(b,C)V(n^{\prime})=(b,C^{\prime}) and 𝒪Cu.A\mathcal{O}\models C^{\prime}\sqsubseteq\exists u.A: take a copy mm^{\prime} of nn^{\prime} as the only successor of mm and set V(m)=(b,C)V^{\prime}(m^{\prime})=(b,C).

  3. 3.

    nn has successors n1,n2n_{1},n_{2} with V(ni)=(a,Ci)V(n_{i})=(a,C_{i}) and and 𝒪C1C2C\mathcal{O}\models C_{1}\sqcap C_{2}\sqsubseteq C: take copies m1,m2m_{1},m_{2} of n1,n2n_{1},n_{2} as the successors of mm and set V(mi)=(w,Ci)V^{\prime}(m_{i})=(w,C_{i}).

  4. 4.

    nn has successors n1,n2,n3n_{1},n_{2},n_{3} with V(n1)=(b,C)V(n_{1})=(b,C), V(n2)=(a,{c})V(n_{2})=(a,\{c\}), and V(n3)=(b,{c})V(n_{3})=(b,\{c\}): take copies m1,m2,m3m_{1},m_{2},m_{3} of n1,n2,n3n_{1},n_{2},n_{3} as successors of mm and set V(m1)=(b,C)V(m_{1})=(b,C), V(m2)=(w,{c})V(m_{2})=(w,\{c\}), and V(m3)=(b,{c})V(m_{3})=(b,\{c\}).

  5. 5.

    Suppose that nn has successors such that the conditions of Point 5 for derivation trees hold for r2,,r2k2,rr_{2},\ldots,r_{2k-2},r and members a=a1,,a2ka=a_{1},\ldots,a_{2k} of Δ\Delta. We define the new members b1,,b2kb_{1},\ldots,b_{2k} of Δ\Delta^{\prime} and relevant successors of mm with labeling by induction. We set b1=wb_{1}=w. Assume that b2i+1b_{2i+1} has been defined and (b2i+1,D)(b_{2i+1},D) is the label of a copy of a successor of nn with label (a2i+1,D)(a_{2i+1},D).

    Case 1. a2i+1=a2i+2a_{2i+1}=a_{2i+2}. Then we set b2i+2:=b2i+1b_{2i+2}:=b_{2i+1}.

    Case 2. There exists c𝖭𝖨c\in{\sf N_{I}} and successors n1,n2n_{1},n_{2} of nn with V(n1)=(a2i+1,{c})V(n_{1})=(a_{2i+1},\{c\}) and V(n2)=(a2i+2,{c})V(n_{2})=(a_{2i+2},\{c\}). Then we let b2i+2:=a2i+2b_{2i+2}:=a_{2i+2} and we introduce copies m1,m2m_{1},m_{2} of n1,n2n_{1},n_{2} with V(m1)=(b2i+1,{c})V^{\prime}(m_{1})=(b_{2i+1},\{c\}) and V(m2)=(a2i+2,{c})V^{\prime}(m_{2})=(a_{2i+2},\{c\}).

    Now assume that b2ib_{2i} has been defined and (b2i,D)(b_{2i},D) is the label of a copy of a successor of nn with label (a2i,D)(a_{2i},D).

    Case 1. r2i(a2i,a2i+1)𝒜r_{2i}(a_{2i},a_{2i+1})\in\mathcal{A} and V(n)=(a2i+1,D)V(n^{\prime})=(a_{2i+1},D^{\prime}) for some successor nn^{\prime} of nn. If {b}(a2i+1)𝒜\{b\}(a_{2i+1})\in\mathcal{A} for some b𝖭𝖨b\in{\sf N_{I}}, then we set b2i+1=a2i+1b_{2i+1}=a_{2i+1} and introduce a copy mm^{\prime} of nn and set V(m)=(a2i+1,D)V^{\prime}(m^{\prime})=(a_{2i+1},D^{\prime}). Observe that r2i(b2i,a2i+1)𝒜ur_{2i}(b_{2i},a_{2i+1})\in\mathcal{A}^{u}. Otherwise (if no bb with {b}(a2i+1)𝒜\{b\}(a_{2i+1})\in\mathcal{A} exists), we set b2i+1=b2ir2ia2i+1b_{2i+1}=b_{2i}r_{2i}a_{2i+1} and introduce a copy mm^{\prime} of nn^{\prime} and set V(m)=(b2i+1,D)V^{\prime}(m^{\prime})=(b_{2i+1},D^{\prime}).

    Case 2. a2i+1(𝖭𝖨𝖭𝖢)sig(𝒪)a_{2i+1}\in({\sf N_{I}}\cup{\sf N_{C}})\cap\text{sig}(\mathcal{O}), V(n1)=(a2i+1,D)V(n_{1})=(a_{2i+1},D^{\prime}) for some successor n1n_{1} of nn, and V(n2)=(a2i,F)V(n_{2})=(a_{2i},F) for a successor n2n_{2} of nn and 𝒪Fr2i.a2i+1\mathcal{O}\models F\sqsubseteq\exists r_{2i}.a_{2i+1} (if a2i+1𝖭𝖢a_{2i+1}\in{\sf N_{C}}) or 𝒪Fr2i.{a2i+1}\mathcal{O}\models F\sqsubseteq\exists r_{2i}.\{a_{2i+1}\} (if a2i+1𝖭𝖨a_{2i+1}\in{\sf N_{I}}), respectively. Then we introduce copies m1,m2m_{1},m_{2} of n1,n2n_{1},n_{2} and set b2i+1=a2i+1b_{2i+1}=a_{2i+1}, V(m1)=(b2i+1,D)V^{\prime}(m_{1})=(b_{2i+1},D^{\prime}), and V(m2)=(b2i,F)V^{\prime}(m_{2})=(b_{2i},F).

  6. 6.

    nn has a successor nn^{\prime} with V(n)=(b,C)V(n^{\prime})=(b,C^{\prime}) and 𝒪u.CC\mathcal{O}\models\exists u.C^{\prime}\sqsubseteq C: then introduce a copy mm^{\prime} of nn^{\prime} and set V(m)=(b,C)V^{\prime}(m^{\prime})=(b,C).

Then (T,V)(T^{\prime},V^{\prime}) is a derivation tree for A(x)A(x) in 𝒪,𝒜u\mathcal{O},\mathcal{A}^{u} satisfying the conditions of the lemma. ∎

The proof of “2. \Rightarrow 3.” of Theorem 5 is now as sketched in the main paper. Note also that we can construct 𝒜\mathcal{A} in exponential time since we can construct the derivation tree for BB in 𝒜𝒪1𝒪2,AΣ\mathcal{A}_{\mathcal{O}_{1}\cup\mathcal{O}_{2},A}^{\Sigma} in exponential time, then lift it to a derivation tree in its unfolding in exponential time, and from that derivation tree obtain the individuals in the ABox 𝒜\mathcal{A} in exponential time.

A proof of the statement of Theorem 5 for interpolants without the universal role is obtained from the proof above in a straightforward way.


We conclude this section with a deferred proof of Theorem 4.

Δ𝒥i+1\displaystyle\Delta^{\mathcal{J}_{i+1}} =\displaystyle= Δ𝒥i,\displaystyle\Delta^{\mathcal{J}_{i}},
A𝒥i+1\displaystyle A^{\mathcal{J}_{i+1}} =\displaystyle= A𝒥i,for all A𝖭𝖢,\displaystyle A^{\mathcal{J}_{i}},\textrm{for all $A\in{\sf N_{C}}$},
r𝒥i+1\displaystyle r^{\mathcal{J}_{i+1}} =\displaystyle= r𝒥i{(d1,dn+1)|r1rnr𝒪1𝒪2{d1,,dn+1}Δ𝒥i,(d1,dn+1)r𝒥i(dk,dk+1)rk𝒥i for all 1kn}\displaystyle r^{\mathcal{J}_{i}}\cup\left\{(d_{1},d_{n+1})\left|\begin{array}[]{l}r_{1}\circ\dots\circ r_{n}\sqsubseteq r\in\mathcal{O}_{1}\cup\mathcal{O}_{2}\\ \{d_{1},\dots,d_{n+1}\}\subseteq\Delta^{\mathcal{J}_{i}},(d_{1},d_{n+1})\notin r^{\mathcal{J}_{i}}\\ (d_{k},d_{k+1})\in r_{k}^{\mathcal{J}_{i}}\textrm{ for all $1\leq k\leq n$}\end{array}\right.\right\}
Figure 8: Definition of 𝒥i+1\mathcal{J}_{i+1}.

Theorem 4. Let 𝒪1,𝒪2\mathcal{O}_{1},\mathcal{O}_{2} be \mathcal{EL}-ontologies with RIs, C1,C2C_{1},C_{2} be \mathcal{EL}-concepts, and set Σ=sig(𝒪1,C1)sig(𝒪2,C2)\Sigma=\text{sig}(\mathcal{O}_{1},C_{1})\cap\text{sig}(\mathcal{O}_{2},C_{2}). Assume that the set of RIs in 𝒪1𝒪2\mathcal{O}_{1}\cup\mathcal{O}_{2} is safe for Σ\Sigma and 𝒪1𝒪2C1C2\mathcal{O}_{1}\cup\mathcal{O}_{2}\models C_{1}\sqsubseteq C_{2}. Then an \mathcal{EL}-interpolant for C1C2C_{1}\sqsubseteq C_{2} under 𝒪1\mathcal{O}_{1}, 𝒪2\mathcal{O}_{2} exists.

Proof.

For convenience of notation, we assume w.l.o.g., by Lemma 2, that 𝒪1\mathcal{O}_{1} and 𝒪2\mathcal{O}_{2} are in normal form, Asig(𝒪1)A\in\textup{sig}(\mathcal{O}_{1}), Bsig(𝒪2)B\in\textup{sig}(\mathcal{O}_{2}) and {A,B}Σ=\{A,B\}\cap\Sigma=\emptyset. Suppose for a proof by contradiction that 𝒪1𝒪2AB\mathcal{O}_{1}\cup\mathcal{O}_{2}\models A\sqsubseteq B but there exists no \mathcal{EL}-interpolant for ABA\sqsubseteq B. Then 𝒪1𝒪2,𝒜𝒪1𝒪2,AΣ⊧̸B(ρA)\mathcal{O}_{1}\cup\mathcal{O}_{2},\mathcal{A}_{\mathcal{O}_{1}\cup\mathcal{O}_{2},A}^{\downarrow\Sigma}\not\models B(\rho_{A}). Moreover, since the language under consideration contains neither nominals nor the universal role, this strengthens to 𝒪1𝒪2,𝒜𝒪1𝒪2,AΣ⊧̸B(ρA)\mathcal{O}_{1}\cup\mathcal{O}_{2},\mathcal{A}_{\mathcal{O}_{1}\cup\mathcal{O}_{2},A}^{\Sigma}\not\models B(\rho_{A}).

Let 𝒥0{\mathcal{J}_{0}} be the canonical model of 𝒪1𝒪2\mathcal{O}_{1}\cup\mathcal{O}_{2} and 𝒜𝒪1𝒪2,AΣ\mathcal{A}_{\mathcal{O}_{1}\cup\mathcal{O}_{2},A}^{\Sigma}. In what follows, we identify the domain of 𝒪1𝒪2,AΣ\mathcal{I}_{\mathcal{O}_{1}\cup\mathcal{O}_{2},A}^{\Sigma} and individuals of 𝒜𝒪1𝒪2,AΣ\mathcal{A}_{\mathcal{O}_{1}\cup\mathcal{O}_{2},A}^{\Sigma}, and consider both to be subsets of the domain of 𝒥0{\mathcal{J}_{0}}. By the properties of the canonical model, we then have ρAB𝒥0\rho_{A}\notin B^{\mathcal{J}_{0}}. Furthermore, as 𝒪1𝒪2,A\mathcal{I}_{\mathcal{O}_{1}\cup\mathcal{O}_{2},A} is a model for both 𝒪1𝒪2\mathcal{O}_{1}\cup\mathcal{O}_{2} and 𝒜𝒪1𝒪2,AΣ\mathcal{A}^{\Sigma}_{\mathcal{O}_{1}\cup\mathcal{O}_{2},A}, there exists a sig(𝒪1𝒪2)\textup{sig}(\mathcal{O}_{1}\cup\mathcal{O}_{2})-simulation SS between 𝒥0\mathcal{J}_{0} and 𝒪1𝒪2,A\mathcal{I}_{\mathcal{O}_{1}\cup\mathcal{O}_{2},A} such that (x,x)S(x,x)\in S for all xΔ𝒪1𝒪2,Ax\in\Delta^{\mathcal{I}_{\mathcal{O}_{1}\cup\mathcal{O}_{2},A}}.

Consider an interpretation 𝒥1\mathcal{J}_{1} defined as follows:

Δ𝒥1\displaystyle\Delta^{\mathcal{J}_{1}} =\displaystyle= Δ𝒥0,\displaystyle\Delta^{\mathcal{J}_{0}},
P𝒥1\displaystyle P^{\mathcal{J}_{1}} =\displaystyle= P𝒥0P𝒪1𝒪2,A,for all P(sig(O1)Σ),\displaystyle P^{\mathcal{J}_{0}}\cup P^{\mathcal{I}_{\mathcal{O}_{1}\cup\mathcal{O}_{2},A}},\textrm{for all $P\in(\textup{sig}(O_{1})\setminus{\Sigma})$},
P𝒥1\displaystyle P^{\mathcal{J}_{1}} =\displaystyle= P𝒥0,for all P(sig(O1)Σ),\displaystyle P^{\mathcal{J}_{0}},\textrm{for all $P\notin(\textup{sig}(O_{1})\setminus{\Sigma})$},

where PP is a concept or role name. If 𝒥1𝒪1𝒪2\mathcal{J}_{1}\models\mathcal{O}_{1}\cup\mathcal{O}_{2} we immediately derive a contradiction as we then have ρA𝒜𝒥1\rho_{A}\in\mathcal{A}^{\mathcal{J}_{1}} and ρAB𝒥1\rho_{A}\notin B^{\mathcal{J}_{1}}, contradicting 𝒪1𝒪2AB\mathcal{O}_{1}\cup\mathcal{O}_{2}\models A\sqsubseteq B.

  • If 𝒪1𝒪2\mathcal{O}_{1}\cup\mathcal{O}_{2} does not contain RIs, as 𝒥0{\mathcal{J}_{0}} and 𝒥1\mathcal{J}_{1} are identical on all elements except Δ𝒪1𝒪2,A\Delta^{\mathcal{I}_{\mathcal{O}_{1}\cup\mathcal{O}_{2},A}}, for all xΔ𝒪1𝒪2,Ax\in\Delta^{\mathcal{I}_{\mathcal{O}_{1}\cup\mathcal{O}_{2},A}} the relation SS is a sig(𝒪1𝒪2)\textup{sig}(\mathcal{O}_{1}\cup\mathcal{O}_{2})-simulation between 𝒥1\mathcal{J}_{1} and 𝒪1𝒪2,A\mathcal{I}_{\mathcal{O}_{1}\cup\mathcal{O}_{2},A}. Conversely, the embedding of 𝒪1𝒪2,A\mathcal{I}_{\mathcal{O}_{1}\cup\mathcal{O}_{2},A} into 𝒥1\mathcal{J}_{1} generates a simulation, that is (𝒪1𝒪2,A,x),sig(𝒪1)(𝒥1,x)(\mathcal{I}_{\mathcal{O}_{1}\cup\mathcal{O}_{2},A},x)\preceq_{\mathcal{EL},\textup{sig}(\mathcal{O}_{1})}(\mathcal{J}_{1},x) for all xΔ𝒪1𝒪2,Ax\in\Delta^{\mathcal{I}_{\mathcal{O}_{1}\cup\mathcal{O}_{2},A}}. By Lemma 1, for any sig(O1)\textup{sig}(O_{1})-\mathcal{EL}-concept CC and for all xΔ𝒪1𝒪2,Ax\in\Delta^{\mathcal{I}_{\mathcal{O}_{1}\cup\mathcal{O}_{2},A}} we have xC𝒥1x\in C^{\mathcal{J}_{1}} if, and only if xC𝒪1𝒪2,Ax\in C^{\mathcal{I}_{\mathcal{O}_{1}\cup\mathcal{O}_{2},A}}. Thus, 𝒥1\mathcal{J}_{1} is a model of CIs in 𝒪1\mathcal{O}_{1}. By construction 𝒥1𝒪2\mathcal{J}_{1}\models\mathcal{O}_{2}.

  • Suppose that 𝒪1𝒪2\mathcal{O}_{1}\cup\mathcal{O}_{2} contains RIs. Since the interpretation 𝒥1\mathcal{J}_{1} may not satisfy some RIs, we consider a sequence of interpretations 𝒥i\mathcal{J}_{i} obtained by extending the interpretations of roles in 𝒥1\mathcal{J}_{1} to satisfy RIs. We give the construction of 𝒥i+1\mathcal{J}_{i+1}, for i1i\geq 1, in Figure 8.

    A simple inductive argument shows that by the safety condition and the fact that (d1,dn+1)r𝒥i(d_{1},d_{n+1})\notin r^{\mathcal{J}_{i}} we have that {r1,,rn,r}sig(𝒪1)\{r_{1},\dots,r_{n},r\}\subseteq\textup{sig}(\mathcal{O}_{1}).

    Furthermore, we prove by induction that the relation SS is a sig(𝒪1𝒪2)\textup{sig}(\mathcal{O}_{1}\cup\mathcal{O}_{2})-simulation between 𝒥i+1\mathcal{J}_{i+1} and 𝒪1𝒪2,A\mathcal{I}_{\mathcal{O}_{1}\cup\mathcal{O}_{2},A}. For i=1i=1 this has been established above. For the induction stop it suffices to consider rr-successors of d1d_{1} in 𝒥i+1\mathcal{J}_{i+1}, where rr is from the definition of 𝒥i+1\mathcal{J}_{i+1} above. By the induction hypothesis, SS is a a sig(𝒪1𝒪2)\textup{sig}(\mathcal{O}_{1}\cup\mathcal{O}_{2})-simulation between 𝒥i\mathcal{J}_{i} and 𝒪1𝒪2,A\mathcal{I}_{\mathcal{O}_{1}\cup\mathcal{O}_{2},A}. Then there exist {v2,,vn+1}Δ𝒪1𝒪2,A\{v_{2},\dots,v_{n+1}\}\subseteq\Delta^{\mathcal{I}_{\mathcal{O}_{1}\cup\mathcal{O}_{2},A}} with (dj+1,vj+1)S(d_{j+1},v_{j+1})\in S and (v1,vn+1)ri𝒪1𝒪2,A(v_{1},v_{n+1})\in{r_{i}}^{\mathcal{I}_{\mathcal{O}_{1}\cup\mathcal{O}_{2},A}} for j{1,,n}j\in\{1,\dots,n\}. As 𝒪1𝒪2,A{\mathcal{I}_{\mathcal{O}_{1}\cup\mathcal{O}_{2},A}} is a model of 𝒪1\mathcal{O}_{1}, we have (v1,vn+1)r𝒪1𝒪2,A(v_{1},v_{n+1})\in r^{\mathcal{I}_{\mathcal{O}_{1}\cup\mathcal{O}_{2},A}} and (dn+1,vn+1)S(d_{n+1},v_{n+1})\in S as required.

    As \mathcal{EL} canonical models defined in this paper are finite, there exists N>0N>0 such that for all i>Ni>N, 𝒥i=𝒥N\mathcal{J}_{i}=\mathcal{J}_{N}. It can be seen that 𝒥N\mathcal{J}_{N} satisfies all RIs in 𝒪1𝒪2\mathcal{O}_{1}\cup\mathcal{O}_{2} and the satisfaction of CIs is proved similarly to the case above. Then 𝒥N\mathcal{J}_{N} is a model of 𝒪1𝒪2\mathcal{O}_{1}\cup\mathcal{O}_{2} with ρA𝒜𝒥N\rho_{A}\in\mathcal{A}^{\mathcal{J}_{N}} and ρAB𝒥N\rho_{A}\notin B^{\mathcal{J}_{N}}, contradicting 𝒪1𝒪2AB\mathcal{O}_{1}\cup\mathcal{O}_{2}\models A\sqsubseteq B.

Appendix E Proofs for Section 7

The section is organized as follows. We first introduce canonical models and derivation trees for 𝒪u\mathcal{ELIO}_{u}. We then give the automata based proof of the ExpTime upper bound for interpolant existence. We then show the double exponential lower bound on the size of explicit definitions, the implication “2. \Rightarrow 3.” of Theorem 6, and that interpolants can be computed in double exponential time.

Canonical Models.

Assume 𝒪\mathcal{O} is an 𝒪u\mathcal{ELIO}_{u} ontology in normal form and AA a concept name with Asig(𝒪)A\in\text{sig}(\mathcal{O}). We introduce the canonical model 𝒪,A\mathcal{I}_{\mathcal{O},A}. Let sub(𝒪)\text{sub}(\mathcal{O}) denote the set of subconcepts of concepts in 𝒪\mathcal{O}, and denote by sub(𝒪)\text{sub}^{\exists}(\mathcal{O}) the set of r.{a}\exists r.\{a\} with rr or rr^{-} a role name in sig(𝒪)\text{sig}(\mathcal{O}) and asig(𝒪)a\in\text{sig}(\mathcal{O}). We may assume that u.Asub(𝒪)\exists u.A\in\text{sub}(\mathcal{O}). An 𝒪\mathcal{O}-type is a subset τ\tau of sub(𝒪)sub(𝒪)\text{sub}(\mathcal{O})\cup\text{sub}^{\exists}(\mathcal{O}) such that 𝒪CτCC\mathcal{O}\models\bigsqcap_{C\in\tau}C\sqsubseteq C^{\prime} implies CτC^{\prime}\in\tau for all concepts Csub(𝒪)sub(𝒪)C^{\prime}\in\text{sub}(\mathcal{O})\cup\text{sub}^{\exists}(\mathcal{O}). We sometimes identify τ\tau and CτC\bigsqcap_{C\in\tau}C. For a role rr, we write τ1rτ2\tau_{1}\rightsquigarrow_{r}\tau_{2} if τ2\tau_{2} is a maximal (w.r.t. inclusion) 𝒪\mathcal{O}-type such that 𝒪τ1r.τ2\mathcal{O}\models\tau_{1}\sqsubseteq\exists r.\tau_{2}. Note that the set of all 𝒪\mathcal{O}-types and relation r\rightsquigarrow_{r} can be computed in exponential time.

For any concept name BB, τB\tau_{B} denotes the minimal 𝒪\mathcal{O}-type containing BB and u.A\exists u.A. Similarly, for any individual aa, τa\tau_{a} denotes the minimal 𝒪\mathcal{O}-type containing {a}\{a\} and u.A\exists u.A. Let S=SCSNS=S_{C}\cup S_{N} with SC={τB𝒪Au.B}S_{C}=\{\tau_{B}\mid\mathcal{O}\models A\sqsubseteq\exists u.B\} and SN={τaa𝖭𝖨sig(𝒪)}S_{N}=\{\tau_{a}\mid a\in{\sf N_{I}}\cap\textup{sig}(\mathcal{O})\}. The canonical model 𝒪,A\mathcal{I}_{\mathcal{O},A} of 𝒪\mathcal{O} and AA is defined as follows:

Δ𝒪,A\displaystyle\Delta^{\mathcal{I}_{\mathcal{O},A}} =\displaystyle= {τ0r1τ1rnτnτ0S,τ1,,τnSN,\displaystyle\{\tau_{0}r_{1}\tau_{1}\cdots r_{n}\tau_{n}\mid\tau_{0}\in S,\tau_{1},\ldots,\tau_{n}\not\in S_{N},
r1,,rn𝖭𝖱𝖭𝖱,τiri+1τi+1}\displaystyle r_{1},\ldots,r_{n}\in{\sf N_{R}}\cup{\sf N_{R}}^{-},\tau_{i}\rightsquigarrow_{r_{i+1}}\tau_{i+1}\}
a𝒪,A\displaystyle a^{\mathcal{I}_{\mathcal{O},A}} =\displaystyle= τa\displaystyle\tau_{a}
B𝒪,A\displaystyle B^{\mathcal{I}_{\mathcal{O},A}} =\displaystyle= {wwΔ𝒪,A,Btail(w)}\displaystyle\{w\mid w\in\Delta^{\mathcal{I}_{\mathcal{O},A}},B\in\text{tail}(w)\}
r𝒪,A\displaystyle r^{\mathcal{I}_{\mathcal{O},A}} =\displaystyle= {(w,wrτ)w,wrτΔ𝒪,A1}\displaystyle\{(w,wr\tau)\mid w,wr\tau\in\Delta^{\mathcal{I}_{\mathcal{O},A_{1}}}\}\cup
{(wrτ,w)w,wrτΔ𝒪,A1}\displaystyle\{(w{r^{-}}\tau,w)\mid w,wr^{-}\tau\in\Delta^{\mathcal{I}_{\mathcal{O},A_{1}}}\}\cup
{r(w,τa)r.{a}tail(w)}\displaystyle\{r(w,\tau_{a})\mid\exists r.\{a\}\in\text{tail}(w)\}\cup
{r(τa,w)r.{a}tail(w)}\displaystyle\{r(\tau_{a},w)\mid\exists r^{-}.\{a\}\in\text{tail}(w)\}

We also use ρA\rho_{A} to denote τA\tau_{A}. The following properties of canonical models can be proved in a standard way.

Lemma 11.

For all 𝒪u\mathcal{ELIO}_{u}-ontologies 𝒪\mathcal{O} in normal form and concept names Asig(𝒪)A\in\text{sig}(\mathcal{O}):

  1. 1.

    𝒪,A\mathcal{I}_{\mathcal{O},A} is a model of 𝒪\mathcal{O};

  2. 2.

    for every model 𝒥\mathcal{J} of 𝒪\mathcal{O} and any dΔ𝒥d\in\Delta^{\mathcal{J}} with dA𝒥d\in A^{\mathcal{J}}, (𝒪,A,ρA)𝒪u,Σ(𝒥,d)(\mathcal{I}_{\mathcal{O},A},\rho_{A})\preceq_{\mathcal{ELIO}_{u},\Sigma}(\mathcal{J},d);

  3. 3.

    for every 𝒪u(sig(𝒪))\mathcal{ELIO}_{u}(\textup{sig}(\mathcal{O}))-concept CC, 𝒪AC\mathcal{O}\models A\sqsubseteq C if and only if ρAC𝒪,A\rho_{A}\in C^{\mathcal{I}_{\mathcal{O},A}}.

We use 𝒜𝒪,A\mathcal{A}_{\mathcal{O},A} to denote the ABox associated with the canonical model 𝒪,A\mathcal{I}_{\mathcal{O},A}, and 𝒜𝒪,AΣ\mathcal{A}_{\mathcal{O},A}^{\Sigma} its Σ\Sigma-reduct. We denote the individuals xτax_{\tau_{a}} and xτBx_{\tau_{B}} by xax_{a} and xBx_{B}, respectively and observe that xa=xbx_{a}=x_{b} iff 𝒪{a}u.A{b}\mathcal{O}\models\{a\}\sqcap\exists u.A\sqsubseteq\{b\} and xB=xax_{B}=x_{a} iff 𝒪Bu.A{a}\mathcal{O}\models B\sqcap\exists u.A\sqsubseteq\{a\}.

Undirected Unfolding of an ABox.

We give a precise definition of the undirected unfolding of an ABox. Let 𝒜\mathcal{A} be a Σ\Sigma-ABox and Γ=𝖭𝖨Σ\Gamma={\sf N_{I}}\cap\Sigma. The undirected unfolding of 𝒜\mathcal{A} into a tree-shaped ABox 𝒜\mathcal{A}^{\ast} modulo Γ\Gamma is defined as follows. The individuals of 𝒜\mathcal{A}^{\ast} are the set of words w=x0r1rnxnw=x_{0}r_{1}\cdots r_{n}x_{n} with r1,,rnr_{1},\ldots,r_{n} roles and x0,xnind(𝒜)x_{0},\ldots x_{n}\in\text{ind}(\mathcal{A}) such that {a}(xi)𝒜\{a\}(x_{i})\not\in\mathcal{A} for any i0i\not=0 and aΓa\in\Gamma, and ri+1(xi,xi+1)𝒜r_{i+1}(x_{i},x_{i+1})\in\mathcal{A} if ri+1r_{i+1} is a role name and ri+1(xi+1,xi)𝒜r_{i+1}^{-}(x_{i+1},x_{i})\in\mathcal{A} if ri+1r_{i+1} is an inverse role, for all i<ni<n. We set tail(w)=xn\text{tail}(w)=x_{n} and let

  • A(w)𝒜A(w)\in\mathcal{A}^{\ast} if A(tail(w))𝒜A(\text{tail}(w))\in\mathcal{A}, for A𝖭𝖢A\in{\sf N_{C}};

  • r(w,wrx)𝒜r(w,wrx)\in\mathcal{A}^{\ast} if r(tail(w),x)𝒜r(\text{tail}(w),x)\in\mathcal{A} and r(w,x)𝒜r(w,x)\in\mathcal{A}^{\ast} if {a}(x)𝒜\{a\}(x)\in\mathcal{A} for some aΓa\in\Gamma and r(tail(w),x)𝒜r(\text{tail}(w),x)\in\mathcal{A}, for r𝖭𝖱r\in{\sf N_{R}};

  • r(wrx,w)𝒜r(wr^{-}x,w)\in\mathcal{A}^{\ast} if r(x,tail(w))𝒜r(x,\text{tail}(w))\in\mathcal{A} and r(x,w)𝒜r(x,w)\in\mathcal{A}^{\ast} if {a}(x)𝒜\{a\}(x)\in\mathcal{A} for some aΓa\in\Gamma and r(x,tail(w))𝒜r(x,\text{tail}(w))\in\mathcal{A}, for r𝖭𝖱r\in{\sf N_{R}};

  • {a}(x)𝒜\{a\}(x)\in\mathcal{A}^{\ast} if {a}(x)𝒜\{a\}(x)\in\mathcal{A}, for aΓa\in\Gamma and xind(𝒜)x\in\text{ind}(\mathcal{A}).

Derivation Trees.

Fix an 𝒪u\mathcal{ELIO}_{u}-ontology 𝒪\mathcal{O} in normal form and an ABox 𝒜\mathcal{A}, x0𝗂𝗇𝖽(𝒜)x_{0}\in\mathsf{ind}(\mathcal{A}) and A0𝖭𝖢A_{0}\in{\sf N_{C}}. Let Θ1=𝗂𝗇𝖽(𝒜)(𝖭𝖨sig(𝒪))\Theta_{1}=\mathsf{ind}(\mathcal{A})\cup({\sf N_{I}}\cap\textup{sig}(\mathcal{O})), and Θ2=𝖭𝖢sig(𝒪){{a}a𝖭𝖨sig(𝒪)}{u.AA𝖭𝖢sig(𝒪)}\Theta_{2}={\sf N_{C}}\cap\textup{sig}(\mathcal{O})\cup\{\{a\}\mid a\in{\sf N_{I}}\cap\textup{sig}(\mathcal{O})\}\cup\{\exists u.A\mid A\in{\sf N_{C}}\cap\textup{sig}(\mathcal{O})\}. A derivation tree for the assertion A0(x0)A_{0}(x_{0}) in 𝒪,𝒜\mathcal{O},\mathcal{A} is a finite Θ1×Θ2\Theta_{1}\times\Theta_{2}-labeled tree (T,V)(T,V), where TT is a set of nodes and V:TΘ1×Θ2V:T\to\Theta_{1}\times\Theta_{2} the labeling function, such that:

  • V(ε)=(x0,A0)V(\varepsilon)=(x_{0},A_{0});

  • If V(n)=(x,C)V(n)=(x,C) with x𝗂𝗇𝖽(𝒜)x\in\mathsf{ind}(\mathcal{A}), then C(x)𝒜C(x)\in\mathcal{A} or 𝒪C\mathcal{O}\models\top\sqsubseteq C or

    1. 1.

      nn has successors n1,,nkn_{1},\ldots,n_{k}, k1k\geq 1 with V(ni)=(ai,Ci)V(n_{i})=(a_{i},C_{i}), such that ai=xa_{i}=x or ai𝖭𝖨sig(𝒪)a_{i}\in{\sf N_{I}}\cap\textup{sig}(\mathcal{O}) for all ii, and defining Ci=CiC^{\prime}_{i}=C_{i} if ai=xa_{i}=x, and Ci=u.({ai}Ci)C^{\prime}_{i}=\exists u.(\{a_{i}\}\sqcap C_{i}) otherwise, we have 𝒪C1CkC\mathcal{O}\models C^{\prime}_{1}\sqcap\ldots\sqcap C^{\prime}_{k}\sqsubseteq C; or

    2. 2.

      C=u.AC=\exists u.A and nn has a single successor nn^{\prime} with V(n)=(y,u.A)V(n^{\prime})=(y,\exists u.A); or

    3. 3.

      nn has a single successor nn^{\prime} with V(n)=(y,A)V(n^{\prime})=(y,A) such that r(x,y)𝒜r(x,y)\in\mathcal{A} and 𝒪r.AC\mathcal{O}\models\exists r.A\sqsubseteq C (where rr is a role name or an inverse role).

  • If V(n)=(a,C)V(n)=(a,C) with a𝖭𝖨sig(𝒪)a\in{\sf N_{I}}\cap\textup{sig}(\mathcal{O}), then C={a}C=\{a\} or:

    1. 4.

      There exists x𝗂𝗇𝖽(𝒜)x\in\mathsf{ind}(\mathcal{A}) such that nn has successors n1,,nkn_{1},\ldots,n_{k}, k1k\geq 1 with V(ni)=(ai,Ci)V(n_{i})=(a_{i},C_{i}) and ai=xa_{i}=x or ai𝖭𝖨sig(𝒪)a_{i}\in{\sf N_{I}}\cap\textup{sig}(\mathcal{O}) for all ii, and, defining Ci=CiC^{\prime}_{i}=C_{i} if ai=xa_{i}=x, and Ci=u.({ai}Ci)C^{\prime}_{i}=\exists u.(\{a_{i}\}\sqcap C_{i}) otherwise, we have 𝒪C1Cku.({a}C)\mathcal{O}\models C^{\prime}_{1}\sqcap\ldots\sqcap C^{\prime}_{k}\sqsubseteq\exists u.(\{a\}\sqcap C).

Note that a special case of rule 1 is when nn has two successors labeled (x,{a})(x,\{a\}) and (a,C)(a,C), and a special case of rule 4 is when nn has two successors labeled (x,{a})(x,\{a\}) and (x,C)(x,C).

We now prove the analogue of Lemma 3 for 𝒪u\mathcal{ELIO}_{u}, except not considering the size of derivation trees.

Lemma 12.

Let 𝒪\mathcal{O} be an 𝒪u\mathcal{ELIO}_{u}-ontology in normal form and 𝒜\mathcal{A} a finite sig(𝒪)\text{sig}(\mathcal{O})-ABox. Then

  1. 1.

    𝒪,𝒜A0(x0)\mathcal{O},\mathcal{A}\models A_{0}(x_{0}) if and only if there is a derivation tree for A0(x0)A_{0}(x_{0}) in 𝒪,𝒜\mathcal{O},\mathcal{A}.

  2. 2.

    If (T,V)(T,V) is a derivation tree for A0(x0)A_{0}(x_{0}) in 𝒪,𝒜\mathcal{O},\mathcal{A}, then one can construct a derivation tree (T,V)(T^{\prime},V^{\prime}) for A0(x0)A_{0}(x_{0}) in 𝒪,𝒜\mathcal{O},\mathcal{A}^{*}, with 𝒜\mathcal{A}^{*} the undirected unfolding of 𝒜\mathcal{A}, and such that T=TT=T^{\prime}.

Proof.

We start with the proof of Part 1. ()(\Leftarrow) is straightforward. For ()(\Rightarrow), we construct a sequence of ABoxes 𝒜0,𝒜1,\mathcal{A}_{0},\mathcal{A}_{1},\ldots generalized with assertions of the form (u.A)(x)(\exists u.A)(x). Take 𝒜0=𝒜{{a}(xa)a𝖭𝖨sig(𝒪)}\mathcal{A}_{0}=\mathcal{A}\cup\{\{a\}(x_{a})\mid a\in{\sf N_{I}}\cap\textup{sig}(\mathcal{O})\} where the xax_{a}’s are fresh individual variables. Let 𝒜i+1\mathcal{A}_{i+1} be obtained from 𝒜i\mathcal{A}_{i} by applying one of the following rule, where CC is a concept of the form C𝖭𝖢C\in{\sf N_{C}} or C={a}C=\{a\} or C=u.AC=\exists u.A, and x,y𝗂𝗇𝖽(𝒜i)x,y\in\mathsf{ind}{(\mathcal{A}_{i})}:

  1. 1.

    if C1(x1),,Ck(xk)𝒜iC_{1}(x_{1}),\ldots,C_{k}(x_{k})\in\mathcal{A}_{i}, with xi=xx_{i}=x or xi=xaix_{i}=x_{a_{i}} for some ai𝖭𝖨sig(𝒪)a_{i}\in{\sf N_{I}}\cap\textup{sig}(\mathcal{O}), and 𝒪C1CkC\mathcal{O}\models C^{\prime}_{1}\sqcap\ldots\sqcap C^{\prime}_{k}\sqsubseteq C, where Ci=CiC^{\prime}_{i}=C_{i} if xi=xx_{i}=x and Ci=u.({ai}Ci)C^{\prime}_{i}=\exists u.(\{a_{i}\}\sqcap C_{i}) if x=xaix=x_{a_{i}}, then add C(x)C(x);

  2. 2.

    if (u.A)(y)𝒜i(\exists u.A)(y)\in\mathcal{A}_{i} then add (u.A)(x)(\exists u.A)(x);

  3. 3.

    if r(x,y),A(y)𝒜ir(x,y),A(y)\in\mathcal{A}_{i} and 𝒪r.AC\mathcal{O}\models\exists r.A\sqsubseteq C, then add C(x)C(x);

  4. 4.

    if C1(x1),,Ck(xk)𝒜iC_{1}(x_{1}),\ldots,C_{k}(x_{k})\in\mathcal{A}_{i}, with xi=xx_{i}=x or xi=xaix_{i}=x_{a_{i}} for some ai𝖭𝖨sig(𝒪)a_{i}\in{\sf N_{I}}\cap\textup{sig}(\mathcal{O}), and 𝒪C1Cku.({a}C)\mathcal{O}\models C^{\prime}_{1}\sqcap\ldots\sqcap C^{\prime}_{k}\sqsubseteq{\exists u.(\{a\}\sqcap C)}, where Ci=CiC^{\prime}_{i}=C_{i} if xi=xx_{i}=x and Ci=u.({ai}Ci)C^{\prime}_{i}=\exists u.(\{a_{i}\}\sqcap C_{i}) if x=xaix=x_{a_{i}}, then add C(xa)C(x_{a}).

Note that the sequence is finite, and denote by 𝒜\mathcal{A}^{*} the final ABox.

Claim. There is a model ,v\mathcal{I},v of 𝒜\mathcal{A}^{*} and 𝒪\mathcal{O} such that for all x𝗂𝗇𝖽(𝒜)x\in\mathsf{ind}(\mathcal{A}) and A𝖭𝖢A\in{\sf N_{C}}, v(x)Av(x)^{\mathcal{I}}\in A^{\mathcal{I}} implies A(x)𝒜A(x)\in\mathcal{A}^{*}.

Proof of the Claim. For all x,y𝗂𝗇𝖽(𝒜)x,y\in\mathsf{ind}(\mathcal{A}^{*}), we write xyx\sim y if {a}(x),{a}(y)𝒜\{a\}(x),\{a\}(y)\in\mathcal{A}^{*} for some a𝖭𝖨sig(𝒪)a\in{\sf N_{I}}\cap\textup{sig}(\mathcal{O}). Notice that if {a}(x),{a}(y),C(x)𝒜\{a\}(x),\{a\}(y),C(x)\in\mathcal{A}^{*}, then C(xa)𝒜C(x_{a})\in\mathcal{A}^{*} by rule 4, and C(y)𝒜C(y)\in\mathcal{A}^{*} by rule 1. Therefore, xyx\sim y implies C(x)𝒜C(x)\in\mathcal{A}^{*} if and only if C(y)𝒜C(y)\in\mathcal{A}^{*}. In particular, \sim is an equivalence relation. We let [x][x] denote the equivalence class of xx. Start with an interpretation 0\mathcal{I}_{0} defined by:

Δ0\displaystyle\Delta^{\mathcal{I}_{0}} =𝗂𝗇𝖽(𝒜)/\displaystyle=\mathsf{ind}(\mathcal{A}^{*})/{\sim}
A0\displaystyle A^{\mathcal{I}_{0}} ={[x]A(x)𝒜}\displaystyle=\{[x]\mid A(x)\in\mathcal{A}^{*}\}
a0\displaystyle a^{\mathcal{I}_{0}} =[xa]\displaystyle=[x_{a}]
r0\displaystyle r^{\mathcal{I}_{0}} ={([x],[y])r(x,y)𝒜}.\displaystyle=\{([x],[y])\mid r(x,y)\in\mathcal{A}^{*}\}\,.

Let CxC_{x} denote the conjunction of all concepts of the form C𝖭𝖢C\in{\sf N_{C}}, C={a}C=\{a\}, C=u.AC=\exists u.A, or C=u.({a}A)C=\exists u.(\{a\}\sqcap A) such that 𝒜C(x)\mathcal{A}^{*}\models C(x). Let x\mathcal{I}_{x} denote the canonical model for 𝒪\mathcal{O} and CxC_{x} rooted at [x][x]. Due to rule 1 and the universality of x\mathcal{I}_{x}, for every concept name or nominal CC, we have [x]C0[x]\in C^{\mathcal{I}_{0}} if and only if [x]Cx[x]\in C^{\mathcal{I}_{x}}. Similarly, because of rule 4, for every a𝖭𝖨sig(𝒪)a\in{\sf N_{I}}\cap\textup{sig}(\mathcal{O}), axCxa^{\mathcal{I}_{x}}\in C^{\mathcal{I}_{x}} if and only if a0C0a^{\mathcal{I}_{0}}\in C^{\mathcal{I}_{0}}.

We can now define \mathcal{I} as follows: Δ\Delta^{\mathcal{I}} is the disjoint union of Δ0\Delta^{\mathcal{I}_{0}} and all elements in domains Δx({[x]}{axa𝖭𝖨sig(𝒪)})\Delta^{\mathcal{I}_{x}}\setminus(\{[x]\}\cup\{a^{\mathcal{I}_{x}}\mid a\in{\sf N_{I}}\cap\textup{sig}(\mathcal{O})\}). Interpretations of concept names and nominals are inherited from the 0\mathcal{I}_{0} or x\mathcal{I}_{x} each element comes from. Finally, rr^{\mathcal{I}} is obtained by taking the union of r0r^{\mathcal{I}_{0}} and all rxr^{\mathcal{I}_{x}} after replacing edges to/from axa^{\mathcal{I}_{x}} with edges to/from a0a^{\mathcal{I}_{0}}. It is clear that for the variable assignment v(x)=[x]v(x)=[x], 0,v\mathcal{I}_{0},v satisfies 𝒜\mathcal{A}^{*}, and thus so does ,v\mathcal{I},v.

By rule 1, all concept inclusions of 𝒪\mathcal{O} of the form A\top\sqsubseteq A, A1A2BA_{1}\sqcap A_{2}\sqsubseteq B, A{a}A\sqsubseteq\{a\} and {a}A\{a\}\sqsubseteq A are satisfied by 0\mathcal{I}_{0}. They are also satisfied by every x\mathcal{I}_{x} (since x\mathcal{I}_{x} is a model of 𝒪\mathcal{O}), and thus by \mathcal{I}. Now consider a concept inclusion Ar.B𝒪A\sqsubseteq\exists r.B\in\mathcal{O}, where rr is a role name or an inverse role. Recall that for every aa and xx, aBa^{\mathcal{I}}\in B^{\mathcal{I}} if and only if axBxa^{\mathcal{I}_{x}}\in B^{\mathcal{I}_{x}}. Therefore, for all dΔxd\in\Delta^{\mathcal{I}_{x}}, d(r.B)xd\in(\exists r.B)^{\mathcal{I}_{x}} implies d(r.B)d\in(\exists r.B)^{\mathcal{I}}. The case Au.BA\sqsubseteq\exists u.B is similar. Since every x\mathcal{I}_{x} satisfies Ar.BA\sqsubseteq\exists r.B, so does \mathcal{I}. Similarly, every concept inclusion r.BA𝒪\exists r.B\sqsubseteq A\in\mathcal{O} is satisfied in \mathcal{I}: if the witness pair for r.B\exists r.B is part of 0\mathcal{I}_{0}, this follows from rule 3, and if not, then it is part of some x\mathcal{I}_{x}, which is by definition a model of 𝒪\mathcal{O}. For concept inclusions of the form u.BA𝒪\exists u.B\sqsubseteq A\in\mathcal{O}, we can observe that if there exists some dΔd^{\prime}\in\Delta^{\mathcal{I}} such that dBd^{\prime}\in B^{\mathcal{I}}, then (u.B)(\exists u.B) is in CxC_{x} for some xx, i.e., by rule 2, for all xx.

Finally, for all x𝗂𝗇𝖽(𝒜)x\in\mathsf{ind}(\mathcal{A}) and A𝖭𝖢A\in{\sf N_{C}}, [x]A[x]^{\mathcal{I}}\in A^{\mathcal{I}} implies [x]0A0[x]^{\mathcal{I}_{0}}\in A^{\mathcal{I}_{0}}, i.e., A(x)𝒜A(x)\in\mathcal{A}^{*}. This concludes the proof of the claim.

Now suppose 𝒪,𝒜A0(x0)\mathcal{O},\mathcal{A}\models A_{0}(x_{0}). By the Claim, we have A0(x0)𝒜A_{0}(x_{0})\in\mathcal{A}^{*}. Since the four rules to construct 𝒜0,𝒜1,\mathcal{A}_{0},\mathcal{A}_{1},\ldots are in one-to-one correspondence with Conditions (1)–(4) from the definition of derivation trees, we can inductively construct a derivation tree for A0(x0)A_{0}(x_{0}) in 𝒜\mathcal{A} w.r.t. 𝒪\mathcal{O}. This concludes the proof of Part 1.


The proof of Part 2 is similar to that of Lemma 3. We define (T,V)(T,V^{\prime}) as follows from (T,V)(T,V), starting with the root by setting V(ε)=V(ε)=(x0,A0)V^{\prime}(\varepsilon)=V(\varepsilon)=(x_{0},A_{0}). At each step, if V(n)=(a,C)V(n)=(a,C) then V(n)=(w,C)V^{\prime}(n)=(w,C) for some ww such that tail(w)=a\text{tail}(w)=a. To define the labelings of the successors of nn, we consider the possible derivation steps for (a,C)(a,C) in 𝒜\mathcal{A}.

  1. 1.

    a=x𝗂𝗇𝖽(𝒜)a=x\in\mathsf{ind}(\mathcal{A}), and nn has successors n1,,nkn_{1},\ldots,n_{k}, k1k\geq 1 with V(ni)=(ai,Ci)V(n_{i})=(a_{i},C_{i}), such that ai=xa_{i}=x or ai𝖭𝖨sig(𝒪)a_{i}\in{\sf N_{I}}\cap\textup{sig}(\mathcal{O}) for all ii, and defining Ci=CiC^{\prime}_{i}=C_{i} if ai=xa_{i}=x, and Ci=u.({ai}Ci)C^{\prime}_{i}=\exists u.(\{a_{i}\}\sqcap C_{i}) otherwise, we have 𝒪C1CkC\mathcal{O}\models C^{\prime}_{1}\sqcap\ldots\sqcap C^{\prime}_{k}\sqsubseteq C. Take V(ni)=(w,Ci)V^{\prime}(n_{i})=(w,C_{i}) if xi=xx_{i}=x, and V(ni)=(ai,Ci)V^{\prime}(n_{i})=(a_{i},C_{i}) if ai𝖭𝖨sig(𝒪)a_{i}\in{\sf N_{I}}\cap\textup{sig}(\mathcal{O}).

  2. 2.

    C=u.AC=\exists u.A and nn has a single successor nn^{\prime} with V(n)=(y,u.A)V(n^{\prime})=(y,\exists u.A). Take V(n)=(y,u.A)V^{\prime}(n^{\prime})=(y,\exists u.A).

  3. 3.

    nn has a single successor nn^{\prime} with V(n)=(y,A)V(n^{\prime})=(y,A) such that r(a,y)𝒜r(a,y)\in\mathcal{A} and 𝒪r.AC\mathcal{O}\models\exists r.A\sqsubseteq C (where rr is a role name or an inverse role). Take V(n)=(wry,A)V^{\prime}(n^{\prime})=(wry,A).

  4. 4.

    a𝖭𝖨sig(𝒪)a\in{\sf N_{I}}\cap\textup{sig}(\mathcal{O}) and there exists x𝗂𝗇𝖽(𝒜)x\in\mathsf{ind}(\mathcal{A}) such that nn has successors n1,,nkn_{1},\ldots,n_{k}, k1k\geq 1 with V(ni)=(ai,Ci)V(n_{i})=(a_{i},C_{i}) and ai=xa_{i}=x or ai𝖭𝖨sig(𝒪)a_{i}\in{\sf N_{I}}\cap\textup{sig}(\mathcal{O}) for all ii, and, defining Ci=CiC^{\prime}_{i}=C_{i} if ai=xa_{i}=x, and Ci=u.({ai}Ci)C^{\prime}_{i}=\exists u.(\{a_{i}\}\sqcap C_{i}) otherwise, we have 𝒪C1Cku.({a}C)\mathcal{O}\models C^{\prime}_{1}\sqcap\ldots\sqcap C^{\prime}_{k}\sqsubseteq\exists u.(\{a\}\sqcap C). Take V(ni)=(x,Ci)V^{\prime}(n_{i})=(x,C_{i}) if xi=xx_{i}=x, and V(ni)=(ai,Ci)V^{\prime}(n_{i})=(a_{i},C_{i}) if ai𝖭𝖨sig(𝒪)a_{i}\in{\sf N_{I}}\cap\textup{sig}(\mathcal{O}).

Then (T,V)(T,V^{\prime}) is a derivation tree for A0(x0)A_{0}(x_{0}) in 𝒜\mathcal{A}^{*} w.r.t. 𝒪\mathcal{O}. ∎

Tree Automata.

A tree is a non-empty set T({0})T\subseteq(\mathbb{N}\setminus\{0\})^{\ast} closed under prefixes and such that n(i+1)Tn\cdot(i+1)\in T implies niTn\cdot i\in T. It is kk-ary if T{1,,k}T\subseteq\{1,\ldots,k\}^{\ast}. The node ε\varepsilon is the root of TT. As a convention, we take n0=nn\cdot 0=n and (ni)1=n(n\cdot i)\cdot-1=n. Note that ε1\varepsilon\cdot-1 is undefined. Given an alphabet Θ\Theta, a Θ\Theta-labeled tree is a pair (T,L)(T,L) consisting of a tree TT and a node-labeling function L:TΘL:T\to\Theta.

A non-deterministic tree automaton (NTA) over finite kk-ary trees is a tuple 𝔄=(Q,Θ,I,Δ)\mathfrak{A}=(Q,\Theta,I,\Delta), where QQ is a set of states, Θ\Theta is the input alphabet, IQI\subseteq Q is the set of initial states, and ΔQ×Θ×0kQ\Delta\subseteq Q\times\Theta\times\bigcup_{0\leq\ell\leq k}Q^{\ell} is the transition relation. A run of an NTA 𝔄=(Q,Θ,I,Δ)\mathfrak{A}=(Q,\Theta,I,\Delta) over a kk-ary input (T,L)(T,L) is a QQ-labeled tree (T,r)(T,r) such that for all xTx\in T with children y1,,yy_{1},\ldots,y_{\ell}, (r(w),L(w),r(y1),,r(y))Δ(r(w),L(w),r(y_{1}),\ldots,r(y_{\ell}))\in\Delta. It is accepting if r(ε)Ir(\varepsilon)\in I. The language accepted by 𝔄\mathfrak{A}, denoted L(𝔄)L(\mathfrak{A}), is the set of all finite kk-ary Θ\Theta-labeled trees over which 𝔄\mathfrak{A} has an accepting run.

A two-way alternating tree automaton over finite kk-ary trees (2ATA) is a tuple 𝔄=(Q,Θ,q0,δ)\mathfrak{A}=(Q,\Theta,q_{0},\delta) where QQ is a finite set of states, Θ\Theta is the input alphabet, q0Qq_{0}\in Q is the initial state, and δ\delta is a transition function. The transition function δ\delta maps every state qq and input letter θΘ\theta\in\Theta to a positive Boolean formula δ(q,θ)\delta(q,\theta) over the truth constants 𝗍𝗋𝗎𝖾\mathsf{true} and 𝖿𝖺𝗅𝗌𝖾\mathsf{false} and transition atoms of the form (i,q)[k]×Q(i,q)\in[k]\times Q, where [k]={1,0,1,,k}[k]=\{-1,0,1,\ldots,k\}. The semantics is given in terms of runs. More precisely, let (T,L)(T,L) be a finite kk-ary Θ\Theta-labeled tree and 𝔄=(Q,Θ,q0,δ)\mathfrak{A}=(Q,\Theta,q_{0},\delta) a 2ATA. An accepting run of 𝔄\mathfrak{A} over (T,L)(T,L) is a (T×Q)(T\times Q)-labeled tree (Tr,r)(T_{r},r) such that:

  1. 1.

    r(ε)=(ε,q0)r(\varepsilon)=(\varepsilon,q_{0}), and

  2. 2.

    for all yTry\in T_{r} with r(y)=(x,q)r(y)=(x,q), there is a subset S[k]×QS\subseteq[k]\times Q such that Sδ(q,L(x))S\models\delta(q,L(x)) and for every (i,q)S(i,q^{\prime})\in S, there is some successor yy^{\prime} of yy in TrT_{r} with r(y)=(xi,q)r(y)=(x\cdot i,q^{\prime}).

The language accepted by 𝔄\mathfrak{A}, denoted L(𝔄)L(\mathfrak{A}), is the set of all finite kk-ary Θ\Theta-labeled trees (T,L)(T,L) for which there is an accepting run.

From a 2ATA 𝔄\mathfrak{A}, one can compute in exponential time an NTA 𝔄\mathfrak{A}^{\prime} whose number of states is exponential in the number of states of 𝔄\mathfrak{A} and such that L(𝔄)=L(𝔄)L(\mathfrak{A})=L(\mathfrak{A}^{\prime}) (?).

Interpolant Existence.

We now give the proof that Point 2 in Theorem 6 entails an exponential time upper bound for deciding the existence of an interpolant. We focus on the case of 𝒪u\mathcal{ELIO}_{u}. Let 𝒪1,𝒪2\mathcal{O}_{1},\mathcal{O}_{2} be 𝒪u\mathcal{ELIO}_{u}-ontologies in normal form, A,B𝖭𝖢A,B\in{\sf N_{C}}, and Σ=sig(𝒪1,A)sig(𝒪2,B)\Sigma=\textup{sig}(\mathcal{O}_{1},A)\cap\textup{sig}(\mathcal{O}_{2},B). We can assume that Asig(𝒪1)A\in\textup{sig}(\mathcal{O}_{1}) and Bsig(𝒪2)B\in\textup{sig}(\mathcal{O}_{2}).

As our proof relies on tree automata, let us first explain how we represent ABoxes that are tree-shaped modulo 𝖭𝖨Σ{\sf N_{I}}\cap\Sigma as trees over the alphabet 2Λ2^{{\Lambda}}, where

Λ=\displaystyle{\Lambda}={} 𝖭𝖢Σ\displaystyle{\sf N_{C}}\cap\Sigma\cup{}
{{a}a𝖭𝖨Σ}\displaystyle\{\{a\}\mid a\in{\sf N_{I}}\cap\Sigma\}\cup{}
{r,rr𝖭𝖱Σ}\displaystyle\{r,r^{-}\mid r\in{\sf N_{R}}\cap\Sigma\}\cup{}
{r.{a}r𝖭𝖱Σa𝖭𝖨Σ}\displaystyle\{\exists r.\{a\}\mid r\in{\sf N_{R}}\cap\Sigma\land a\in{\sf N_{I}}\cap\Sigma\}\,\cup{}
{r.{a}r𝖭𝖱Σa𝖭𝖨Σ}.\displaystyle\{\exists r^{-}.\{a\}\mid r\in{\sf N_{R}}\cap\Sigma\land a\in{\sf N_{I}}\cap\Sigma\}\,.

Intuitively, the nodes of the tree correspond to the individual variables of the ABox; labels C𝖭𝖢,{a},r.{a},r.{a}C\in{\sf N_{C}},\{a\},\exists r.\{a\},\exists r^{-}.\{a\} indicate concepts that hold at the current node, while labels rr or rr^{-} are used to indicate which roles (if any) connect a node to its parent. Note that there need not be such a label rr or rr^{-}, so connected nodes in the tree representation are not necessarily connected in the ABox.

More precisely, we associate with every 2Λ2^{\Lambda}-labeled tree (T,L)(T,L) the following ABox, where xax_{a} are fresh individual variables:

𝒜(T,L)=\displaystyle\mathcal{A}_{(T,L)}={} {(x)xT}\displaystyle\{\top(x)\mid x\in T\}\cup{}
{{a}(xa)xT:{a}L(x)}\displaystyle\{\{a\}(x_{a})\mid\exists x\in T:\{a\}\in L(x)\}\cup{}
{{a}(x)xT{a}L(x)}\displaystyle\{\{a\}(x)\mid x\in T\land\{a\}\in L(x)\}\cup{}
{B(x)xTBL(x)}\displaystyle\{B(x)\mid x\in T\land B\in L(x)\}\cup{}
{r(x,xi)xiTr𝖭𝖱rL(xi)}\displaystyle\{r(x,x\cdot i)\mid x\cdot i\in T\land r\in{\sf N_{R}}\land r\in L(x\cdot i)\}\cup{}
{r(xi,x)xiTr𝖭𝖱rL(xi)}\displaystyle\{r(x\cdot i,x)\mid x\cdot i\in T\land r\in{\sf N_{R}}\land r^{-}\in L(x\cdot i)\}\cup{}
{r(x,xa)xTr.{a}L(x)}\displaystyle\{r(x,x_{a})\mid x\in T\land\exists r.\{a\}\in L(x)\}\cup{}
{r(xa,x)xTr.{a}L(x)}.\displaystyle\{r(x_{a},x)\mid x\in T\land\exists r^{-}.\{a\}\in L(x)\}\,.

Notice that 𝒜(T,L)\mathcal{A}_{(T,L)} is tree-shaped modulo 𝖭𝖨Σ{\sf N_{I}}\cap\Sigma. Conversely, for every ABox 𝒜\mathcal{A} that is tree-shaped modulo 𝖭𝖨Σ{\sf N_{I}}\cap\Sigma, there exists a (not necessarily unique) tree (T,L)(T,L) such that 𝒜=𝒜(T,L)\mathcal{A}=\mathcal{A}_{(T,L)}. In addition, if the degree of G𝒜uG_{\mathcal{A}}^{u} is less than kk, then there exists a kk-ary tree (T,L)(T,L) such that 𝒜=𝒜(T,L)\mathcal{A}=\mathcal{A}_{(T,L)}. For instance, 𝒜𝒪1𝒪2,AΣ\mathcal{A}_{\mathcal{O}_{1}\cup\mathcal{O}_{2},A}^{\Sigma} can be represented by a kk-ary tree for any kk larger than the number of concept inclusions in 𝒪1𝒪2\mathcal{O}_{1}\cup\mathcal{O}_{2}.

We also denote by 𝒜(T,L)Σ\mathcal{A}_{(T,L)}^{\Sigma} the Σ\Sigma-reduct of 𝒜(T,L)\mathcal{A}_{(T,L)}.

We describe below an NTA 𝔄1\mathfrak{A}_{1} with exponentially many states accepting trees that represent prefix-closed finite subsets of 𝒜𝒪1𝒪2,AΣ\mathcal{A}_{\mathcal{O}_{1}\cup\mathcal{O}_{2},A}^{\Sigma}, and a 2-ATA 𝔄2\mathfrak{A}_{2} with polynomially many states accepting trees (T,L)(T,L) such that 𝒜(T,L)B(ε)\mathcal{A}_{(T,L)}\models B(\varepsilon). The existence of an interpolant then reduces to the non-emptiness of L(𝔄1)L(𝔄2)L(\mathfrak{A}_{1})\cap L(\mathfrak{A}_{2}).

Definition of 𝔄1\mathfrak{A}_{1}.

We represent the canonical model for 𝒪1𝒪2\mathcal{O}_{1}\cup\mathcal{O}_{2} and AA by a tree with τA\tau_{A} at the root of the tree, other τS\tau\in S inserted at arbitrary positions in the tree, and τ0r1τ1rnτn\tau_{0}r_{1}\tau_{1}\cdots r_{n}\tau_{n} below τ0r1τ1rn1τn1\tau_{0}r_{1}\tau_{1}\cdots r_{n-1}\tau_{n-1} if n>0n>0. We want 𝔄1\mathfrak{A}_{1} to accept finite subsets of 𝒜𝒪1𝒪2,AΣ\mathcal{A}_{\mathcal{O}_{1}\cup\mathcal{O}_{2},A}^{\Sigma} obtained by keeping a prefix-closed finite subset of nodes, and possibly removing some concepts and relations from the labels (including all concepts and relations not in Σ\Sigma). To do so, the automaton will simply guess in its state the type of each node, and check that all guesses are locally consistent by allowing only transitions that match the definition of canonical models. Concretely, the states of the automaton consist of a pair of 𝒪\mathcal{O}-types, where state (τ,τ)(\tau,\tau^{\prime}) should be interpreted as the parent node having type τ\tau and the current node type τ\tau^{\prime}.

To keep the definition simple, the automaton also accepts trees where, compared to the canonical model, some nodes are duplicated (that is, we do not require that the node corresponding to some τΔ𝒪,AS\tau\in\Delta^{\mathcal{I}_{\mathcal{O},A}}\cap S is unique). This does not change the set of concepts entailed at the root.

We take 𝔄1=(Q1,2Λ,I1,Δ1)\mathfrak{A}_{1}=(Q_{1},2^{\Lambda},I_{1},\Delta_{1}), where

  • Q1=(S{})×SQ_{1}=(S\cup\{\bot\})\times S, where SS is the set of 𝒪\mathcal{O}-types introduced in the definition of 𝒪,A\mathcal{I}_{\mathcal{O},A};

  • I1={(,τA)}I_{1}=\{(\bot,\tau_{A})\};

  • For states q=(τ,τ),q1=(τ1,τ1),,q=(τ,τ)Q1q=(\tau,\tau^{\prime}),q_{1}=(\tau_{1},\tau_{1}^{\prime}),\ldots,q_{\ell}=(\tau_{\ell},\tau_{\ell}^{\prime})\in Q_{1} and input letter αΛ\alpha\subseteq{\Lambda}, (q,α,q1,,q)Δ1(q,\alpha,q_{1},\ldots,q_{\ell})\in\Delta_{1} if the following conditions are satisfied, for all 1i1\leq i\leq\ell:

    • the current state and label are consistent with the definition of the canonical model: for all rαr\in\alpha, τrτ\tau\rightsquigarrow_{r}\tau^{\prime};

    • the set of concepts associated with α\alpha is a subset of the 𝒪\mathcal{O}-type τ\tau^{\prime}: α(𝗌𝗎𝖻(𝒪)𝗌𝗎𝖻(𝒪))τ\alpha\cap({\sf sub}(\mathcal{O})\cup{\sf sub}^{\exists}(\mathcal{O}))\subseteq\tau^{\prime};

    • the current type τ\tau^{\prime} is stored in the state of all child nodes: for all 1i1\leq i\leq\ell, τi=τ\tau_{i}=\tau^{\prime}.

Note that 𝔄1\mathfrak{A}_{1} can be computed in exponential time.

Lemma 13.

𝒪1𝒪2,𝒜𝒪1𝒪2,AΣB(ρA)\mathcal{O}_{1}\cup\mathcal{O}_{2},\mathcal{A}_{\mathcal{O}_{1}\cup\mathcal{O}_{2},A}^{\Sigma}\models B(\rho_{A}) if and only if there exists (T,L)L(𝔄1)(T,L)\in L(\mathfrak{A}_{1}) such that 𝒪1𝒪2,𝒜(T,L)B(ε)\mathcal{O}_{1}\cup\mathcal{O}_{2},\mathcal{A}_{(T,L)}\models B(\varepsilon), where ε\varepsilon is the root of (T,L)(T,L).

Proof.

The run of 𝔄1\mathfrak{A}_{1} on some (T,L)L(𝔄1)(T,L)\in L(\mathfrak{A}_{1}) can be used to define a homomorphism from 𝒜(T,L),ε\mathcal{A}_{(T,L)},\varepsilon to 𝒜𝒪1𝒪2,AΣ,ρA\mathcal{A}_{\mathcal{O}_{1}\cup\mathcal{O}_{2},A}^{\Sigma},\rho_{A}. Therefore, if 𝒪1𝒪2,𝒜(T,L)B(ε)\mathcal{O}_{1}\cup\mathcal{O}_{2},\mathcal{A}_{(T,L)}\models B(\varepsilon) then 𝒪1𝒪2,𝒜𝒪1𝒪2,AΣB(ρA)\mathcal{O}_{1}\cup\mathcal{O}_{2},\mathcal{A}_{\mathcal{O}_{1}\cup\mathcal{O}_{2},A}^{\Sigma}\models B(\rho_{A}). Conversely, if 𝒪1𝒪2,𝒜𝒪1𝒪2,AΣB(ρA)\mathcal{O}_{1}\cup\mathcal{O}_{2},\mathcal{A}_{\mathcal{O}_{1}\cup\mathcal{O}_{2},A}^{\Sigma}\models B(\rho_{A}) then there exists a finite subset 𝒜\mathcal{A} of 𝒜𝒪1𝒪2,AΣ\mathcal{A}_{\mathcal{O}_{1}\cup\mathcal{O}_{2},A}^{\Sigma} such that 𝒪1𝒪2,𝒜B(ρA)\mathcal{O}_{1}\cup\mathcal{O}_{2},\mathcal{A}\models B(\rho_{A}). Take as (T,L)(T,L) any finite prefix of an encoding of 𝒜𝒪1𝒪2,AΣ\mathcal{A}_{\mathcal{O}_{1}\cup\mathcal{O}_{2},A}^{\Sigma} that contains all nodes corresponding to individuals in 𝒜\mathcal{A}. Then the labeling of (T,L)(T,L) with the full types from the canonical model defines an accepting run of 𝔄1\mathfrak{A}_{1} on (T,L)(T,L), and 𝒪1𝒪2,𝒜(T,L)B(ε)\mathcal{O}_{1}\cup\mathcal{O}_{2},\mathcal{A}_{(T,L)}\models B(\varepsilon). ∎

Definition of 𝔄2\mathfrak{A}_{2}.

The construction of 𝔄2=(Q2,2Λ,qB,δ2)\mathfrak{A}_{2}=(Q_{2},2^{\Lambda},q_{B},\delta_{2}) relies on derivation trees. Intuitively, runs of 𝔄2\mathfrak{A}_{2} on some (T,L)(T,L) correspond to derivation trees for B(ε)B(\varepsilon) in 𝒪1𝒪2,𝒜(T,L)\mathcal{O}_{1}\cup\mathcal{O}_{2},\mathcal{A}_{(T,L)}. The states of 𝔄2\mathfrak{A}_{2} are

Q2=\displaystyle Q_{2}={} {qAA𝖭𝖢sig(𝒪1,𝒪2)}\displaystyle\{q_{A^{\prime}}\mid A^{\prime}\in{\sf N_{C}}\cap\textup{sig}(\mathcal{O}_{1},\mathcal{O}_{2})\}\cup{}
{q{a}a𝖭𝖨sig(𝒪1,𝒪2)}\displaystyle\{q_{\{a\}}\mid a\in{\sf N_{I}}\cap\textup{sig}(\mathcal{O}_{1},\mathcal{O}_{2})\}\cup{}
{qr.A,qr.Ar𝖭𝖱sig(𝒪1,𝒪2),\displaystyle\{q_{\exists r.A^{\prime}},q_{\exists r^{-}.A^{\prime}}\mid r\in{\sf N_{R}}\cap\textup{sig}(\mathcal{O}_{1},\mathcal{O}_{2}),
A𝖭𝖢sig(𝒪1,𝒪2)}\displaystyle\hphantom{\{q_{\exists r.A^{\prime}},q_{\exists r^{-}.A^{\prime}}\mid{}}A^{\prime}\in{\sf N_{C}}\cap\textup{sig}(\mathcal{O}_{1},\mathcal{O}_{2})\}\cup{}
{qu.AA𝖭𝖢sig(𝒪1,𝒪2)}\displaystyle\{q_{\exists u.A^{\prime}}\mid A^{\prime}\in{\sf N_{C}}\cap\textup{sig}(\mathcal{O}_{1},\mathcal{O}_{2})\}\cup{}
{qu.({a}A)a𝖭𝖨sig(𝒪1,𝒪2),\displaystyle\{q_{\exists u.(\{a\}\sqcap A^{\prime})}\mid a\in{\sf N_{I}}\cap\textup{sig}(\mathcal{O}_{1},\mathcal{O}_{2}),
A𝖭𝖢sig(𝒪1,𝒪2)}\displaystyle\hphantom{\{q_{\exists u.(\{a\}\sqcap A^{\prime})}\mid{}}A^{\prime}\in{\sf N_{C}}\cap\textup{sig}(\mathcal{O}_{1},\mathcal{O}_{2})\}\cup{}
{qu.({a}{b})a,b𝖭𝖨sig(𝒪1,𝒪2)}\displaystyle\{q_{\exists u.(\{a\}\sqcap\{b\})}\mid a,b\in{\sf N_{I}}\cap\textup{sig}(\mathcal{O}_{1},\mathcal{O}_{2})\}\cup{}
{qr,qrr𝖭𝖱Σ}\displaystyle\{q_{r},q_{r^{-}}\mid r\in{\sf N_{R}}\cap\Sigma\}\cup{}
{qr.{a},qr.{a}a𝖭𝖨sig(𝒪1,𝒪2),\displaystyle\{q_{\exists r.\{a\}},q_{\exists r^{-}.\{a\}}\mid a\in{\sf N_{I}}\cap\textup{sig}(\mathcal{O}_{1},\mathcal{O}_{2}),
r𝖭𝖱sig(𝒪1,𝒪2)}.\displaystyle\hphantom{\{q_{\exists r.\{a\}},q_{\exists r^{-}.\{a\}}\mid{}}r\in{\sf N_{R}}\cap\textup{sig}(\mathcal{O}_{1},\mathcal{O}_{2})\}\,.

Intuitively, state qCq_{C} is used to check that CC is entailed at the current node. States qrq_{r} and qr.{a}q_{\exists r.\{a\}} are used to check the label of the current node. The initial state is qBq_{B}, as we are trying to construct a derivation tree for BB at the root.

Let us now define the transition relation. From a state qrq_{r} or qr.{a}q_{\exists r.\{a\}}, where r𝖭𝖱𝖭𝖱r\in{\sf N_{R}}\cup{\sf N_{R}}^{-} and a𝖭𝖨a\in{\sf N_{I}}, the automaton simply checks the current label:

δ2(qr,α)\displaystyle\delta_{2}(q_{r},\alpha) ={𝗍𝗋𝗎𝖾if rα𝖿𝖺𝗅𝗌𝖾if rα\displaystyle=\begin{cases}\mathsf{true}&\text{if }r\in\alpha\\ \mathsf{false}&\text{if }r\notin\alpha\end{cases}
δ2(qr.{a},α)\displaystyle\delta_{2}(q_{\exists r.\{a\}},\alpha) ={𝗍𝗋𝗎𝖾if r.{a}α𝖿𝖺𝗅𝗌𝖾if r.{a}α.\displaystyle=\begin{cases}\mathsf{true}&\text{if }\exists r.\{a\}\in\alpha\\ \mathsf{false}&\text{if }\exists r.\{a\}\notin\alpha\,.\end{cases}

From a state qr.Aq_{\exists r.A^{\prime}}, with r𝖭𝖱𝖭𝖱r\in{\sf N_{R}}\cup{\sf N_{R}}^{-} and A𝖭𝖢A^{\prime}\in{\sf N_{C}}, the automaton checks that the current node has an rr-successor from which there exists a run starting in qAq_{A^{\prime}}. This rr-successor can be (i) the parent of the current node, i.e. there is a run from qrq_{r^{-}} from the current node and a run from qAq_{A^{\prime}} from the parent node, (ii) some ii-th child of the current node, i.e. there is a run from qrq_{r} and one from qAq_{A^{\prime}} from the ii-th child, or (iii) an individual aa, i.e. there is a run from qr.{a}q_{\exists r.\{a\}} and from qu.({a}A)q_{\exists u.(\{a\}\sqcap A^{\prime})} from the current node:

δ2(qr.A,α)=\displaystyle\delta_{2}(q_{\exists r.A^{\prime}},\alpha)={} (0,qr)(1,qA)\displaystyle(0,q_{r^{-}})\land(-1,q_{A^{\prime}})\lor{}
1ik(i,qA)(i,qr)\displaystyle\bigvee_{1\leq i\leq k}(i,q_{A^{\prime}})\land(i,q_{r})\lor{}
a𝖭𝖨Γ(0,qr.{a})(0,qu.({a}A)).\displaystyle\bigvee_{a\in{\sf N_{I}}\cap\Gamma}(0,q_{\exists r.\{a\}})\land(0,q_{\exists u.(\{a\}\sqcap{A^{\prime}})})\,.

From a state qu.Aq_{\exists u.A^{\prime}}, the automaton checks if (i) condition 1 from derivation trees can be applied, that is, there exist concepts C1,,CnC_{1},\ldots,C_{n} of the form BB^{\prime}, {a}\{a\}, u.({a}B)\exists u.(\{a\}\sqcap B^{\prime}) or u.({a}{b})\exists u.(\{a\}\sqcap\{b\}) such that 𝒪1𝒪2C1Cnu.A\mathcal{O}_{1}\cup\mathcal{O}_{2}\models C_{1}\sqcap\cdots\sqcap C_{n}\models\exists u.A^{\prime} and there exists a run from each qCiq_{C_{i}} from the current node, or (ii) condition 2 from derivation trees can be applied, which can be checked by propagating the search for a run from qu.Aq_{\exists u.A^{\prime}} to all neighbouring nodes, or (iii) condition 3 from derivation trees can be applied, that is, there exists r,Br,B^{\prime} such that 𝒪1𝒪2r.Bu.A\mathcal{O}_{1}\cup\mathcal{O}_{2}\models\exists r.B^{\prime}\sqsubseteq\exists u.A^{\prime} and the automaton has a run from qr.Bq_{\exists r.B^{\prime}} starting from the current node:

δ2(qu.A,α)=\displaystyle\delta_{2}(q_{\exists u.A^{\prime}},\alpha)={} 𝒪1𝒪2C1Cnu.A1in(0,qCi)\displaystyle\bigvee_{\mathcal{O}_{1}\cup\mathcal{O}_{2}\models C_{1}\sqcap\cdots\sqcap C_{n}\models\exists u.A^{\prime}}\bigwedge_{1\leq i\leq n}(0,q_{C_{i}})\lor{}
i{1,1,,k}(i,qu.A)\displaystyle\bigvee_{i\in\{-1,1,\ldots,k\}}(i,q_{\exists u.A^{\prime}})\lor{}
𝒪1𝒪2r.Bu.A(0,qr.B).\displaystyle\bigvee_{\mathcal{O}_{1}\cup\mathcal{O}_{2}\models\exists r.B^{\prime}\sqsubseteq\exists u.A^{\prime}}(0,q_{\exists r.B^{\prime}})\,.

From a state qu.Cq_{\exists u.C} where C={a}AC=\{a\}\sqcap A^{\prime} or C={a}{b}C=\{a\}\sqcap\{b\} with bab\neq a, the automaton checks if condition 4 from derivation trees can be applied either (i) taking the current node as xx, that is, there exist concepts C1,,CnC_{1},\ldots,C_{n} of the form BB^{\prime}, {b}\{b\}, u.({b}B)\exists u.(\{b\}\sqcap B^{\prime}) or u.({b}{c})\exists u.(\{b\}\sqcap\{c\}) such that 𝒪1𝒪2C1Cnu.C\mathcal{O}_{1}\cup\mathcal{O}_{2}\models C_{1}\sqcap\cdots\sqcap C_{n}\models\exists u.C and there exists a run from each qCiq_{C_{i}} from the current node, or (ii) taking some other node as xx, which can be checked by propagating the search for a run from qu.Cq_{\exists u.C} to all neighbouring nodes:

δ2(qu.C,α)\displaystyle\delta_{2}(q_{\exists u.C},\alpha) =𝒪1𝒪2C1Cnu.C1in(0,qCi)\displaystyle=\bigvee_{\mathcal{O}_{1}\cup\mathcal{O}_{2}\models C_{1}\sqcap\cdots\sqcap C_{n}\models\exists u.C}\bigwedge_{1\leq i\leq n}(0,q_{C_{i}})\lor{}
i{1,1,,k}(i,qu.C).\displaystyle\hskip 100.00015pt\bigvee_{i\in\{-1,1,\ldots,k\}}(i,q_{\exists u.C})\,.

We also set

δ2(qu.({a}{a}),α)=𝗍𝗋𝗎𝖾.\delta_{2}(q_{\exists u.(\{a\}\sqcap\{a\})},\alpha)=\mathsf{true}\,.

For C={a}C=\{a\} or C𝖭𝖢C\in{\sf N_{C}}, δ(qC,α)=𝗍𝗋𝗎𝖾\delta(q_{C},\alpha)=\mathsf{true} if CαC\in\alpha or 𝒪1𝒪2C\mathcal{O}_{1}\cup\mathcal{O}_{2}\models\top\sqsubseteq C, and otherwise, the automaton checks if conditions 1 or 3 from derivation trees can be applied:

δ2(qC,α)=𝒪1𝒪2C1CnC1in(0,qCi)𝒪1𝒪2r.BC(0,qr.B).\delta_{2}(q_{C},\alpha)=\bigvee_{\mathcal{O}_{1}\cup\mathcal{O}_{2}\models C_{1}\sqcap\cdots\sqcap C_{n}\models C}\bigwedge_{1\leq i\leq n}(0,q_{C_{i}})\lor{}\\ \bigvee_{\mathcal{O}_{1}\cup\mathcal{O}_{2}\models\exists r.B^{\prime}\sqsubseteq C}(0,q_{\exists r.B^{\prime}})\,.
Lemma 14.

For all finite kk-ary 2Λ2^{\Lambda}-labeled trees (T,L)(T,L), we have (T,L)L(𝔄2)(T,L)\in L(\mathfrak{A}_{2}) if and only if 𝒪1𝒪2,𝒜(T,L)B(ε)\mathcal{O}_{1}\cup\mathcal{O}_{2},\mathcal{A}_{(T,L)}\models B(\varepsilon).

Proof.

We observe that for all (T,L)(T,L),

  • For all sig(𝒪1,𝒪2)\textup{sig}(\mathcal{O}_{1},\mathcal{O}_{2})-concept CC of the form C=AC=A^{\prime}, C={a}C=\{a\} or C=u.AC=\exists u.A^{\prime} with A𝖭𝖢A^{\prime}\in{\sf N_{C}} and a𝖭𝖨a\in{\sf N_{I}}, 𝔄\mathfrak{A} has a run starting from state qCq_{C} on (T,L)(T,L) if and only if there exists a derivation tree for (ε,C)(\varepsilon,C) in 𝒪1𝒪2,𝒜(T,L)\mathcal{O}_{1}\cup\mathcal{O}_{2},\mathcal{A}_{(T,L)}.

  • For all a𝖭𝖨sig(𝒪1,𝒪2)a\in{\sf N_{I}}\cap\textup{sig}(\mathcal{O}_{1},\mathcal{O}_{2}), for all sig(𝒪1,𝒪2)\textup{sig}(\mathcal{O}_{1},\mathcal{O}_{2})-concept C={b}C=\{b\} or C=A𝖭𝖢C=A^{\prime}\in{\sf N_{C}}, 𝔄\mathfrak{A} has a run starting from state qu.({a}C)q_{\exists u.(\{a\}\sqcap C)} if and only if there exists a derivation tree for (a,C)(a,C) in 𝒪1𝒪2,𝒜(T,L)\mathcal{O}_{1}\cup\mathcal{O}_{2},\mathcal{A}_{(T,L)}. ∎

From 𝔄2\mathfrak{A}_{2}, one can construct an equivalent NTA 𝔄2\mathfrak{A}^{\prime}_{2} with exponentially many states (?). By Lemmas 13 and 14, we have 𝒪1𝒪2,𝒜𝒪1𝒪2ΣB(ρA)\mathcal{O}_{1}\cup\mathcal{O}_{2},\mathcal{A}_{\mathcal{O}_{1}\cup\mathcal{O}_{2}}^{\Sigma}\models B(\rho_{A}) if and only if L(𝔄1)L(𝔄2)=L(\mathfrak{A}_{1})\cap L(\mathfrak{A}_{2}^{\prime})=\emptyset, which can be checked in exponential time.

Lower Bound for Explicit Definitions.

We construct an \mathcal{ELI}-ontology 𝒪\mathcal{O}, signature Σ\Sigma, and concept name AA such that the smallest explicit (Σ)\mathcal{ELI}(\Sigma)-definition of AA under 𝒪\mathcal{O} is of double exponential size in 𝒪||\mathcal{O}||. 𝒪\mathcal{O} is a variant of ontologies constructed in (??) and defined as follows. It contains r.s.\top\sqsubseteq\exists r.\top\sqcap\exists s.\top,

AMX0¯Xn¯\displaystyle A\sqsubseteq M\sqcap\overline{X_{0}}\sqcap\ldots\sqcap\overline{X_{n}}
σ.(Xi¯X0Xi1)Xi\displaystyle\exists\sigma^{-}.(\overline{X_{i}}\sqcap X_{0}\sqcap\ldots\sqcap X_{i-1})\sqsubseteq X_{i} σ{r,s},in\displaystyle\qquad\sigma\in\{r,s\},i\leq n
σ.(XiX0Xi1)Xi¯\displaystyle\exists\sigma^{-}.(X_{i}\sqcap X_{0}\sqcap\ldots\sqcap X_{i-1})\sqsubseteq\overline{X_{i}} σ{r,s},in\displaystyle\qquad\sigma\in\{r,s\},i\leq n
σ.(Xi¯Xj¯)Xi¯\displaystyle\exists\sigma^{-}.(\overline{X_{i}}\sqcap\overline{X_{j}})\sqsubseteq\overline{X_{i}} σ{r,s},j<in\displaystyle\qquad\sigma\in\{r,s\},j<i\leq n
σ.(XiXj¯)Xi\displaystyle\exists\sigma^{-}.(X_{i}\sqcap\overline{X_{j}})\sqsubseteq X_{i} σ{r,s},j<in\displaystyle\qquad\sigma\in\{r,s\},j<i\leq n
X0XnL\displaystyle X_{0}\sqcap\ldots\sqcap X_{n}\sqsubseteq L

and

LB,r.Bs.BB,BMA.L\sqsubseteq B,\quad\exists r.B\sqcap\exists s.B\sqsubseteq B,\quad B\sqcap M\sqsubseteq A.

Let Σ={M,r,s,L}\Sigma=\{M,r,s,L\}. Note that AA triggers a marker MM and a binary tree of depth 2n2^{n} using counter concept names X0,,XnX_{0},\ldots,X_{n} and X0¯,,Xn¯\overline{X_{0}},\ldots,\overline{X_{n}}. A concept name LL is made true at the leafs. Conversely, if LL is true at the leafs of a binary tree of depth 2n2^{n} then BB is true at all nodes of the tree and AA is entailed by MM and BB at its root. Define inductively

C0=L,Ck+1=r.Cks.Ck,C=C2nM.C_{0}=L,\quad C_{k+1}=\exists r.C_{k}\sqcap\exists s.C_{k},\quad C=C_{2^{n}}\sqcap M.

Then CC is the smallest explicit (Σ)\mathcal{ELI}(\Sigma)-definition of AA under 𝒪\mathcal{O}.

Transfer Sequences.

For the proof of “2. \Rightarrow 3.” of Theorem 6 and the proof that interpolants can be computed in double exponential time we require an extension of the notion of transfer sequences first introduced in (?) to logics with nominals.

Assume that Condition 2 of Theorem 6 holds. So we have 𝒪u\mathcal{ELIO}_{u}-ontologies 𝒪1,𝒪2\mathcal{O}_{1},\mathcal{O}_{2} in normal form, concept names A,BA,B, and Σ=sig(𝒪1,A)sig(𝒪2,B)\Sigma=\text{sig}(\mathcal{O}_{1},A)\cap\text{sig}(\mathcal{O}_{2},B) such that 𝒪1𝒪2,𝒜𝒪1𝒪2,AΣB(ρA)\mathcal{O}_{1}\cup\mathcal{O}_{2},\mathcal{A}^{\Sigma}_{\mathcal{O}_{1}\cup\mathcal{O}_{2},A}\models B(\rho_{A}). Set 𝒪=𝒪1𝒪2\mathcal{O}=\mathcal{O}_{1}\cup\mathcal{O}_{2}. We use 𝒜𝒪,A\mathcal{A}_{\mathcal{O},A} to denote the ABox associated with the canonical model 𝒪,A\mathcal{I}_{\mathcal{O},A}. We require some notation for the individuals that occur in 𝒜𝒪,A\mathcal{A}_{\mathcal{O},A}. We set aba\sim b if 𝒪{a}u.A{b}\mathcal{O}\models\{a\}\sqcap\exists u.A\sqsubseteq\{b\} and set [a]={bsig(𝒪)ab}[a]=\{b\in\text{sig}(\mathcal{O})\mid a\sim b\}. We say that concept name EE is absorbed by aa if 𝒪Eu.A{a}\mathcal{O}\models E\sqcap\exists u.A\sqsubseteq\{a\}. We denote the individual xτax_{\tau_{a}} of 𝒜𝒪,A\mathcal{A}_{\mathcal{O},A} by xax_{a} and the individuals xτEx_{\tau_{E}} of 𝒜𝒪,A\mathcal{A}_{\mathcal{O},A} by xEx_{E}. Note that xa=xbx_{a}=x_{b} if aba\sim b and xa=xAx_{a}=x_{A} if AA is absorbed by aa.

Given wind(𝒜𝒪,A)w\in\text{ind}(\mathcal{A}_{\mathcal{O},A}), we call the individuals of the form wwind(𝒜𝒪,A)ww^{\prime}\in\text{ind}(\mathcal{A}_{\mathcal{O},A}) the subtree of 𝒜𝒪,A1\mathcal{A}_{\mathcal{O},A_{1}} rooted at ww.

By compactness we have a finite subset 𝒜\mathcal{A} of 𝒜𝒪,A\mathcal{A}_{\mathcal{O},A} containing xAx_{A} such that 𝒪,𝒜|ΣB(xA)\mathcal{O},\mathcal{A}_{|\Sigma}\models B(x_{A}). We may assume that 𝒜\mathcal{A} is prefix closed and that 𝒜|Σ\mathcal{A}_{|\Sigma} contains

  • {a}(xa)\{a\}(x_{a}) and A(xA)A(x_{A}) for all a,AΣa,A\in\Sigma;

  • (xA)\top(x_{A}) and (xa)\top(x_{a}) for all a,Asig(𝒪)Σa,A\in\text{sig}(\mathcal{O})\setminus\Sigma;

We obtain the ABox 𝒜Σ\mathcal{A}_{\Sigma} from 𝒜|Σ\mathcal{A}_{|\Sigma} by adding the assertions

  • {a}(xa,new)\{a\}(x_{a,\text{new}}) and (xA,new)\top(x_{A,\text{new}}), for all a,Asig(𝒪)Σa,A\in\text{sig}(\mathcal{O})\setminus\Sigma, where xa,newx_{a,\text{new}} and xA,newx_{A,\text{new}} are fresh individuals.

Let II denote the set of individuals xa,xAx_{a},x_{A} with a,Asig(𝒪)a,A\in\text{sig}(\mathcal{O}) and let InewI_{\text{new}} denote the set of individuals xa,new,xA,newx_{a,\text{new}},x_{A,\text{new}} with a,Asig(𝒪)Σa,A\in\text{sig}(\mathcal{O})\setminus\Sigma. Observe that 𝒪,𝒜Σ\mathcal{O},\mathcal{A}_{\Sigma} and 𝒪,𝒜|Σ\mathcal{O},\mathcal{A}_{|\Sigma} entail the same assertions C(a)C(a) for aind(𝒜|Σa\in\text{ind}(\mathcal{A}_{|\Sigma}), so the additional individuals do not influence what is entailed. In fact, we introduce the individuals InewI_{\text{new}} only to enable explicit bookkeeping about when in a transfer sequence (defined below) an assertion of the form C(a)C(a) or u.A\exists u.A is derived.

We aim to define a small subset 𝒜\mathcal{A}^{\prime} of 𝒜Σ\mathcal{A}_{\Sigma} such that 𝒪AC\mathcal{O}\models A\sqsubseteq C for the concept CC corresponding to 𝒜\mathcal{A}^{\prime} and such that still 𝒪,𝒜B(xA)\mathcal{O},\mathcal{A}^{\prime}\models B(x_{A}). If 𝒜\mathcal{A}^{\prime} has at most exponential depth in the size of 𝒪\mathcal{O} then we are done, as then 𝒜\mathcal{A}^{\prime} is of at most double exponential size in the size of 𝒪\mathcal{O}. We obtain 𝒜\mathcal{A}^{\prime} from 𝒜Σ\mathcal{A}_{\Sigma} by determining ww and wwind(𝒜)(IInew)ww^{\prime}\in\text{ind}(\mathcal{A})\setminus(I\cup I_{\text{new}}) which behave ‘sufficiently similar’ such that if we obtain 𝒜\mathcal{A}^{\prime} from 𝒜\mathcal{A} by replacing the subtree rooted at ww in 𝒜Σ\mathcal{A}_{\Sigma} by the subtree rooted at wwww^{\prime}, then we still have 𝒪,𝒜B(xA)\mathcal{O},\mathcal{A}^{\prime}\models B(x_{A}) and 𝒪AC\mathcal{O}\models A\sqsubseteq C for the concept CC defined by 𝒜\mathcal{A}^{\prime}. The replacement of subtrees is then performed exhaustively.

For ww and wwww^{\prime} to be sufficiently similar, we firstly require that tail(w)=tail(ww)\text{tail}(w)=\text{tail}(ww^{\prime}) (with tail(w)\text{tail}(w) the final type in ww for any ww). This ensures that 𝒪AC\mathcal{O}\models A\sqsubseteq C for the concept CC corresponding to 𝒜\mathcal{A}^{\prime}. This also has the consequence that 𝒜\mathcal{A}^{\prime} is (isomorphic) to a prefix closed subABox of 𝒜Σ\mathcal{A}_{\Sigma}. For the second condition for being sufficiently similar, we apply the notion of transfer sequences (?). To define transfer sequences, we consider derivations using 𝒪\mathcal{O} and intermediate ABoxes \mathcal{B} such that

IInewind()ind(𝒜Σ)I\cup I_{\text{new}}\subseteq\text{ind}(\mathcal{B})\subseteq\text{ind}(\mathcal{A}_{\Sigma})

We admit \mathcal{B} to contain equations xe=xex_{e}=x_{e^{\prime}} for xe,xeIInewx_{e},x_{e^{\prime}}\in I\cup I_{\text{new}}, with the obvious semantics. Consider such an intermediate \mathcal{B} and wind()(IInew)w\in\text{ind}(\mathcal{B})\setminus(I\cup I_{\text{new}}). Then the set D(w)D_{\mathcal{B}}(w) is defined as the set of assertions α\alpha with 𝒪,α\mathcal{O},\mathcal{B}^{\prime}\models\alpha and α\alpha of the form

  • A(c)A(c) or {a}(c)\{a\}(c) with A,asig(𝒪)A,a\in\text{sig}(\mathcal{O}) and c{w}IInewc\in\{w\}\cup I\cup I_{\text{new}}; or

  • r(w,c)r(w,c) with r𝖭𝖱𝖭𝖱r\in{\sf N_{R}}\cup{\sf N_{R}}^{-} and cIInewc\in I\cup I_{\text{new}};

  • r(c,d)r(c,d) with r𝖭𝖱𝖭𝖱r\in{\sf N_{R}}\cup{\sf N_{R}}^{-} and c,dIInewc,d\in I\cup I_{\text{new}};

  • c=dc=d with c,dIInewc,d\in I\cup I_{\text{new}}.

and ={A(xA,new)𝒪,u.A}\mathcal{B}^{\prime}=\mathcal{B}\cup\{A(x_{A,\text{new}})\mid\mathcal{O},\mathcal{B}\models\exists u.A\}. For wind()(IInew)w\in\text{ind}(\mathcal{B})\setminus(I\cup I_{\text{new}}), let

  • w\mathcal{B}_{w}^{\downarrow} denote the restriction of \mathcal{B} to the individuals in the subtree of \mathcal{B} rooted at ww and IInewI\cup I_{\text{new}}; and let

  • w\mathcal{B}_{w}^{\uparrow} be the ABox obtained from \mathcal{B} by dropping w\mathcal{B}_{w}^{\downarrow} from \mathcal{B} except for ww itself and IInewI\cup I_{\text{new}}.

Define the transfer sequence 𝒳0,𝒳1,\mathcal{X}_{0},\mathcal{X}_{1},\ldots of (𝒜Σ,w)(\mathcal{A}_{\Sigma},w) w.r.t. 𝒪\mathcal{O} as follows:

𝒳0\displaystyle\mathcal{X}_{0} =\displaystyle= D(𝒜Σ)w(w)\displaystyle D_{(\mathcal{A}_{\Sigma})_{w}^{\downarrow}}(w)
𝒳1\displaystyle\mathcal{X}_{1} =\displaystyle= D(𝒜Σ)w𝒳0(w)\displaystyle D_{(\mathcal{A}_{\Sigma})_{w}^{\uparrow}\cup\mathcal{X}_{0}}(w)
𝒳2\displaystyle\mathcal{X}_{2} =\displaystyle= D(𝒜Σ)w𝒳1(w)\displaystyle D_{(\mathcal{A}_{\Sigma})_{w}^{\downarrow}\cup\mathcal{X}_{1}}(w)
𝒳3\displaystyle\mathcal{X}_{3} =\displaystyle= \displaystyle...

Intuitively, we first consider the set 𝒳0\mathcal{X}_{0} of assertions that are entailed by 𝒪\mathcal{O} and 𝒜Σ\mathcal{A}_{\Sigma} at {w}IInew\{w\}\cup I\cup I_{\text{new}} if we only use assertions in 𝒜Σw{\mathcal{A}_{\Sigma}}_{w}^{\downarrow}. We update 𝒜Σ\mathcal{A}_{\Sigma} by those assertions. Next we consider the set 𝒳1\mathcal{X}_{1} of assertions that are entailed by 𝒪\mathcal{O} and the updated 𝒜Σ\mathcal{A}_{\Sigma} at {w}IInew\{w\}\cup I\cup I_{\text{new}} if we only use assertions in the updated 𝒜Σw{\mathcal{A}_{\Sigma}}_{w}^{\uparrow}. We update 𝒜Σ\mathcal{A}_{\Sigma} again, and so on. It is not difficult to see that if w,wwind(𝒜Σ)(IInew)w,ww^{\prime}\in\text{ind}(\mathcal{A}_{\Sigma})\setminus(I\cup I_{\text{new}}) and

  • the restrictions of 𝒜Σ\mathcal{A}_{\Sigma} to {w}(IInew)\{w\}\cup(I\cup I_{\text{new}}) and {ww}(IInew)\{ww^{\prime}\}\cup(I\cup I_{\text{new}}) coincide (modulo renaming ww to wwww^{\prime}) and

  • the transfer sequences of (𝒜Σ,w)(\mathcal{A}_{\Sigma},w) w.r.t. 𝒪\mathcal{O} coincides with the transfer sequence of (𝒜Σ,ww)(\mathcal{A}_{\Sigma},ww^{\prime}) w.r.t. 𝒪\mathcal{O} (modulo renaming ww to wwww^{\prime})

then one can replace 𝒜Σw{\mathcal{A}_{\Sigma}}_{w}^{\downarrow} by 𝒜Σww{\mathcal{A}_{\Sigma}}_{ww^{\prime}}^{\downarrow} in 𝒜Σ\mathcal{A}_{\Sigma} and it still holds that 𝒪,𝒜B(xA)\mathcal{O},\mathcal{A}^{\prime}\models B(x_{A}) for the resulting ABox 𝒜\mathcal{A}^{\prime}. If in addition we require that tail(w)=tail(ww)\text{tail}(w)=\text{tail}(ww^{\prime}), then the resulting ABox is (isomorphic to) a prefix closed sub ABox of 𝒜Σ\mathcal{A}_{\Sigma} and so the concept corresponding to the ABox 𝒜\mathcal{A}^{\prime} is still entailed by AA w.r.t. 𝒪\mathcal{O}.

By performing the above replacement exhaustively, we obtain a prefix closed subset 𝒜\mathcal{A} of 𝒜Σ\mathcal{A}_{\Sigma} that is of depth 2q(𝒪)\leq 2^{q(||\mathcal{O}||)} with qq a polynomial and therefore has the properties required for Point 3 of Theorem 6. Such an 𝒜\mathcal{A} can be constructed in at most double exponential time since one can construct the canonical model 𝒪,A\mathcal{I}_{\mathcal{O},A} up to nodes of depth 2q(𝒪)\leq 2^{q(||\mathcal{O}||)} in double exponential time.

The claims stated in Theorem 6 for interpolants without the universal role are shown by modifying the proof above in a straightforward way.

Appendix F Proofs for Sections 8 and 9

We first complete the proof of Theorem 8 by showing that there is a Horn-𝒜𝒞\mathcal{ALCI}-simulation between the interpretations \mathcal{I} and \mathcal{I}^{\prime} defined in Figure 5. The definition of Horn-simulations is as follows. For any two sets XX and YY and a binary relation RR, we set

  • XRYXR^{\uparrow}Y if for all xXx\in X there exists yYy\in Y with (x,y)R(x,y)\in R;

  • XRYXR^{\downarrow}Y if for all yYy\in Y there exists xXx\in X with (x,y)R(x,y)\in R.

A relation Z𝒫(Δ)×ΔZ\subseteq\mathcal{P}(\Delta^{\mathcal{I}})\times\Delta^{\mathcal{I}^{\prime}} is a Horn-𝒜𝒞(Σ)\mathcal{ALCI}(\Sigma)-simulation between \mathcal{I} and \mathcal{I}^{\prime} if (X,b)Z(X,b)\in Z implies XX\not=\emptyset and the following hold:

  • for any AΣA\in\Sigma, if (X,b)Z(X,b)\in Z and XAX\subseteq A^{\mathcal{I}}, then bAb\in A^{\mathcal{I}^{\prime}};

  • for any role rr in Σ\Sigma, if (X,b)Z(X,b)\in Z and XrYXr^{\mathcal{I}\uparrow}Y, then there exist YYY^{\prime}\subseteq Y and bΔb^{\prime}\in\Delta^{\mathcal{I}^{\prime}} with (b,b)r(b,b^{\prime})\in r^{\mathcal{I}^{\prime}} and (Y,b)Z(Y^{\prime},b^{\prime})\in Z;

  • for any role rr in Σ\Sigma, if (X,b)Z(X,b)\in Z and (b,b)r(b,b^{\prime})\in r^{\mathcal{I}^{\prime}}, then there is YΔY\subseteq\Delta^{\mathcal{I}} with XrYXr^{\mathcal{I}\downarrow}Y and (Y,b)Z(Y,b^{\prime})\in Z;

  • if (X,b)Z(X,b)\in Z, then ,b,Σ,a\mathcal{I}^{\prime},b\preceq_{{\cal E\!\!\>LI},\Sigma}\mathcal{I},a for every aXa\in X (where ,Σ\preceq_{{\cal E\!\!\>LI},\Sigma} indicates that we have a simulation that does not only respect role names in Σ\Sigma but also the inverse of role names in Σ\Sigma).

We write ,Xhorn,Σ,b\mathcal{I},X\preceq_{\textit{horn},\Sigma}\mathcal{I}^{\prime},b if there exists a Horn-𝒜𝒞(Σ)\mathcal{ALCI}(\Sigma)-simulation ZZ between \mathcal{I} and \mathcal{I}^{\prime} such that (X,b)Z(X,b)\in Z. It is shown in (?) that if ,Xhorn,Σ,b\mathcal{I},X\preceq_{\textit{horn},\Sigma}\mathcal{I}^{\prime},b, then all Horn-𝒜𝒞(Σ)\mathcal{ALCI}(\Sigma)-concepts true in all nodes in XX are also true in bb.

Now observe that the relation ZZ between 2Δ2^{\Delta^{\mathcal{I}}} and Δ\Delta^{\mathcal{I}^{\prime}} containing all pairs ({x},x)(\{x\},x^{\prime}), ({b,c},b′′)(\{b,c\},b^{\prime\prime}), and ({d,e},d′′)(\{d,e\},d^{\prime\prime}) is a Horn-𝒜𝒞(Σ)\mathcal{ALCI}(\Sigma)-simulation between the interpretations \mathcal{I} and \mathcal{I}^{\prime} defined in Figure 5, as required.

We next observe that moving to the Horn fragment Horn-GF of the guarded fragment is not sufficient to obtain a logic in which interpolants/explicit definitions always exist. To this end we modify the ontology given in the proof of Theorem 8. In detail, let 𝒪\mathcal{O}^{\prime} contain the following CIs:

A\displaystyle A B\displaystyle\sqsubseteq B
B\displaystyle B r.F\displaystyle\sqsubseteq\forall r.F
F\displaystyle F r1.D1r2.D2r1.Mr2.M\displaystyle\sqsubseteq\exists r_{1}.D_{1}\sqcap\exists r_{2}.D_{2}\sqcap\exists r_{1}.M\sqcap\exists r_{2}.M
A\displaystyle A r.((Fr1.(D1M)r2.(D2M))E)\displaystyle\sqsubseteq\forall r.((F\sqcap\exists r_{1}.(D_{1}\sqcap M)\sqcap\exists r_{2}.(D_{2}\sqcap M))\rightarrow E)
B\displaystyle B r.C\displaystyle\sqsubseteq\exists r.C
C\displaystyle C Fr1.D1r2.D2\displaystyle\sqsubseteq F\sqcap\forall r_{1}.D_{1}\sqcap\forall r_{2}.D_{2}\

and also Br.(CE)AB\sqcap\exists r.(C\sqcap E)\sqsubseteq A. Define the signature Σ\Sigma by setting Σ={B,D1,D2,E,r,r1,r2}\Sigma=\{B,D_{1},D_{2},E,r,r_{1},r_{2}\}. We note that, intuitively, the third and fourth CI should be read as

F\displaystyle F r1.D1r2.D2\displaystyle\sqsubseteq\exists r_{1}.D_{1}\sqcap\exists r_{2}.D_{2}
A\displaystyle A r.((Fr1.D1r2.D2)E)\displaystyle\sqsubseteq\forall r.((F\sqcap\forall r_{1}.D_{1}\sqcap\forall r_{2}.D_{2})\rightarrow E)

and the concept name MM is introduced to achieve this in a projective way as the latter CI is not in Horn-𝒜𝒞\mathcal{ALCI}.

We first observe that AA is implicitly definable from Σ\Sigma under 𝒪\mathcal{O}^{\prime} since

𝒪ABr.(r1.D1r2.D2E).\mathcal{O}^{\prime}\models A\equiv B\sqcap\forall r.(\forall r_{1}.D_{1}\sqcap\forall r_{2}.D_{2}\rightarrow E).

We next sketch the proof that AA is not explicitly Horn-GF(Σ)(\Sigma)-definable under 𝒪\mathcal{O}^{\prime}. For a definition of Horn-GF and Horn-GF simulations we refer the reader to (?). Now consider the interpretations \mathcal{I} and \mathcal{I}^{\prime} defined in Figure 9. Both \mathcal{I} and \mathcal{I}^{\prime} are models of 𝒪\mathcal{O}^{\prime}, aAa\in A^{\mathcal{I}}, aAa^{\prime}\not\in A^{\mathcal{I}^{\prime}}, but aFa\in F^{\mathcal{I}} implies aFa^{\prime}\in F^{\mathcal{I}^{\prime}} holds for every Horn-GF(Σ)(\Sigma)-formula FF, and the claim follows. The latter can be proved by observing that there exists a Horn-GF(Σ)(\Sigma)-simulation between \mathcal{I} and \mathcal{I}^{\prime} (?) containing ({a},a)(\{a\},a). In fact, one can show that the relation ZZ containing all pairs ({x},x)(\{x\},x^{\prime}), ({b,c},b′′)(\{b,c\},b^{\prime\prime}), and ({d,e},d′′)(\{d,e\},d^{\prime\prime}) is a Horn-GF(Σ)(\Sigma)-simulation.

aaA,BA,BbbC,E,FC,E,FrrccFFrrddD1,MD_{1},Mr1r_{1}eeD1D_{1}r1r_{1}ffMMr1r_{1}ggD2,MD_{2},Mr2r_{2}r2r_{2}aa^{\prime}BBbb^{\prime}E,FE,Frrb′′b^{\prime\prime}C,FC,Frrcc^{\prime}FFrrdd^{\prime}D1,MD_{1},Mr1r_{1}d′′d^{\prime\prime}D1,MD_{1},Mr1r_{1}ee^{\prime}D1D_{1}r1r_{1}ff^{\prime}MMr1r_{1}gg^{\prime}D2,MD_{2},Mr2r_{2}r2r_{2}r2r_{2}
Figure 9: Interpretations \mathcal{I} (left) and \mathcal{I}^{\prime} (right) used for 𝒪\mathcal{O}^{\prime}.

We finally make a few observations regarding the Horn fragment of first-order logic. Recall that Horn-FO is defined as the closure of formulas of the form R(t)R(\vec{t}),

R1(t1)Rn(tn)R(t),R1(t1)Rn(tn)R_{1}(\vec{t}_{1})\wedge\cdots\wedge R_{n}(\vec{t}_{n})\rightarrow R(\vec{t}),\quad R_{1}(\vec{t}_{1})\wedge\cdots\wedge R_{n}(\vec{t}_{n})\rightarrow\bot

under conjunction, universal quantification, and existential quantification, where t1,,tn,t\vec{t}_{1},\ldots,\vec{t}_{n},\vec{t} are sequences of individual variables and individual names (?). According to Exercise 6.2.6 in (?) Horn-FO has the following property.

Theorem 9.

Let φ,ψ\varphi,\psi be sentences in Horn-FO such that φψ\varphi\wedge\psi is not satisfiable. Then there exists a sentence χ\chi in Horn-FO such that sig(χ)sig(φ)sig(ψ)\text{sig}(\chi)\subseteq\text{sig}(\varphi)\cap\text{sig}(\psi), φχ\varphi\models\chi, and χψ\chi\wedge\psi is not satisfiable.

We directly obtain the following interpolation result.

Theorem 10.

Let 𝒪1,𝒪2\mathcal{O}_{1},\mathcal{O}_{2} be Horn-𝒜𝒞𝒪u\mathcal{ALCIO}_{u}-ontologies and let C1,C2C_{1},C_{2} be Horn-𝒜𝒞𝒪u\mathcal{ALCIO}_{u}-concepts such that 𝒪1𝒪2C1C2\mathcal{O}_{1}\cup\mathcal{O}_{2}\models C_{1}\sqsubseteq C_{2}. Then there exists a formula χ(x)\chi(x) in Horn-FO such that

  • sig(χ)sig(𝒪1,C1)sig(𝒪2,C2)\text{sig}(\chi)\subseteq\text{sig}(\mathcal{O}_{1},C_{1})\cap\text{sig}(\mathcal{O}_{2},C_{2});

  • 𝒪1x(C1(x)χ(x))\mathcal{O}_{1}\models\forall x(C_{1}(x)\rightarrow\chi(x));

  • 𝒪2x(χ(x)C2(x))\mathcal{O}_{2}\models\forall x(\chi(x)\rightarrow C_{2}(x)).

Proof.

Take a fresh unary relation symbol A(x)A(x) and a fresh individual name cc. Let φ\varphi be the conjunction of all sentences in 𝒪1{C1(c)}\mathcal{O}_{1}\cup\{C_{1}(c)\} and let ψ\psi be the conjunction of all sentences in 𝒪2{x(C2(x)A(x)),¬A(c)}\mathcal{O}_{2}\cup\{\forall x(C_{2}(x)\leftrightarrow A(x)),\neg A(c)\}. Then φ\varphi and ψ\psi are both equivalent to sentences in Horn-FO. By definition φψ\varphi\wedge\psi is not satisfiable. Thus there exists a Horn-FO sentence χ\chi using only cc and symbols in sig(𝒪1,C1)sig(𝒪2,C2)\text{sig}(\mathcal{O}_{1},C_{1})\cap\text{sig}(\mathcal{O}_{2},C_{2}) such that φχ\varphi\models\chi and χψ\chi\wedge\psi is not satisfiable. Thus:

  • 𝒪1C1(c)χ\mathcal{O}_{1}\models C_{1}(c)\rightarrow\chi;

  • 𝒪2{x(C2(x)A(x))}χA(c)\mathcal{O}_{2}\cup\{\forall x(C_{2}(x)\leftrightarrow A(x))\}\models\chi\rightarrow A(c).

Replace cc by xx in χ,C1(c)\chi,C_{1}(c), and A(c)A(c). Then

  • 𝒪1x(C1(x)χ(x))\mathcal{O}_{1}\models\forall x(C_{1}(x)\rightarrow\chi(x));

  • 𝒪2x(χ(x)C2(x))\mathcal{O}_{2}\models\forall x(\chi(x)\rightarrow C_{2}(x)),

as required. ∎

Applied to Horn-𝒜𝒞\mathcal{ALCI} ontologies and concepts we thus always obtain an interpolant in Horn-FO and an interpolant in 𝒜𝒞\mathcal{ALCI} (since 𝒜𝒞\mathcal{ALCI} enjoys the CIP (?)).

It would be interesting to find out whether there exists an interpolant in the intersection of Horn-FO and 𝒜𝒞\mathcal{ALCI} and whether it is possible to give an informative syntactic description of that intersection.