This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Intersections of Hecke correspondences on the modular varieties of 𝒟\mathcal{D}-elliptic sheaves

Özge Ülkem 111 Institute of Mathematics, Academia Sinica, Astronomy Mathematics Building, No. 1, Roosevelt Rd. Sec. 4, Taipei, Taiwan, 10617    Fu-Tsun Wei 222Department of Mathematics, National Tsing Hua University and National Center for Theoretical Sciences, Hsinchu City 30042, Taiwan R.O.C
Abstract

This paper studies the intersections of Hecke correspondences on the modular varieties of 𝒟{\mathcal{D}}-elliptic sheaves in the higher-rank setting, where 𝒟{\mathcal{D}} is a “maximal order” in a central division algebra DD over a global function field kk. Assuming that dimk(D)=r2\dim_{k}(D)=r^{2}, where rr is a prime distinct from the characteristic of kk, we express the intersection numbers of Hecke correspondences as suitable combinations of modified Hurwitz class numbers of “imaginary orders”. This result establishes a higher-rank analogue of the classical class number relation.

1 Introduction

Let XX denote the modular curve of full level. For each non-square nn\in\mathbb{N}, the Hecke correspondence TnT_{n} on XX corresponds to a 11-cycle 𝒵n\mathcal{Z}_{n} on X×XX\times X. The geometric version of the celebrated class number relation (initiated by Kronecker [22] and extended by Hurwitz [21]) expresses the “finite part” of the intersection number i(𝒵1𝒵n)i(\mathcal{Z}_{1}\cdot\mathcal{Z}_{n}) (i.e. excluding the “cuspidal intersection”) as

i(𝒵1𝒵n)fin=tt2<4nH(t24n)(=mmnmax(m,n/m)).i(\mathcal{Z}_{1}\cdot\mathcal{Z}_{n})_{\rm fin}=\sum_{\genfrac{}{}{0.0pt}{}{t\in\mathbb{Z}}{t^{2}<4n}}H(t^{2}-4n)\quad\big{(}=\sum_{\genfrac{}{}{0.0pt}{}{m\in\mathbb{N}}{m\mid n}}\max(m,n/m)\big{)}.

Here, H(N)H(N) denotes the “Hurwitz class number” for NN\in\mathbb{N}. The fact that these intersection points are actually “CM” provides a conceptual foundation for the proof of this relation, as it connects the intersection in question to Eichler’s theory of optimal embeddings of imaginary quadratic orders into matrix rings. This phenomenon is also evident in the context of Hilbert modular surfaces associated with real quadratic fields, as demonstrated in the celebrated work of Hirzebruch and Zagier [19]. Since then, the arithmetic significance of intersection numbers between special cycles on modular varieties has been extensively studied (see [23] and [24]), leading to the so-called “geometric Siegel-Weil formula” with profound applications (see [27], [7] [25], [26], [14]).

The primary aim of this paper is to explore this phenomenon within the function field setting and to describe the intersection numbers of “Hecke correspondences” on the modular varieties of 𝒟{\mathcal{D}}-elliptic sheaves in higher rank, expressed in terms of class numbers. For the case where the base field is a rational function field with a finite constant field, an analogue of the Hurwitz–Kronecker class number relation (for Drinfeld modular curves) has been derived in [40] and [37] through a detailed study of Drinfeld modular polynomials in [1], [2], and [20]. Additionally, a Hirzebruch–Zagier-type formula was established in [16], which relates the intersection numbers of Hirzebruch–Zagier-type divisors on Drinfeld–Stuhler modular surfaces to modified Hurwitz class numbers through a bridge established from a particular theta integral, which is a “Drinfeld-type” automorphic form. This paper represents our initial effort to extend these ideas to the “higher rank” setting. To streamline the discussion, we focus on the case of modular varieties of 𝒟{\mathcal{D}}-elliptic sheaves where 𝒟{\mathcal{D}} is a “maximal order” of a central division algebra DD of dimension r2r^{2} over a global function field kk, with rr being a prime number distinct from the characteristic of kk.

Fix a place \infty of the global function field kk, which we regard as the place at infinity. Let kk_{\infty} denote the completion of kk at \infty, and let {\mathbb{C}}_{\infty} be the completion of an algebraic closure of kk_{\infty}. Let XX be the (coarse) moduli scheme of 𝒟{\mathcal{D}}-elliptic sheaves defined over {\mathbb{C}}_{\infty}. For each nonzero ideal 𝔞{\mathfrak{a}} of AA, where AA is the ring of elements in kk that are regular away from \infty, we define an (r1)(r-1)-cycle 𝒵𝔞{\mathcal{Z}}_{{\mathfrak{a}}} on X×XX\times X in (4.4) arising from the Hecke correspondences on XX (analogous to the classical case). In particular, the cycle 𝒵:=𝒵1{\mathcal{Z}}:={\mathcal{Z}}_{1} represents the diagonal cycle of XX on X×XX\times X. The main theorem of this paper is stated as follows:

Theorem 1.1.

(Theorem 9.1) Keep the above notation and the assumption that rr is a prime number distinct from the characteristic of kk. Then for each nonzero ideal 𝔞{\mathfrak{a}} of AA, the intersection number of 𝒵{\mathcal{Z}} and 𝒵𝔞{\mathcal{Z}}_{{\mathfrak{a}}} is equal to

i(𝒵𝒵𝔞)=rq1(cHD(c)+cHD(0)),i({\mathcal{Z}}\cdot{\mathcal{Z}}_{{\mathfrak{a}}})=\frac{r}{q-1}\cdot\left(\sum_{\vec{c}}H^{D}(\vec{c})+\sum_{c}H^{D}(0)\right),

where:

  • qq is the cardinality of the constant field of kk;

  • the first sum runs through all c=(c1,,cr)Ar\vec{c}=(c_{1},...,c_{r})\in A^{r} with crA=𝔞c_{r}\cdot A={\mathfrak{a}} so that fc(x):=xr+c1xr1++crA[x]f_{\vec{c}}(x):=x^{r}+c_{1}x^{r-1}+\cdots+c_{r}\in A[x] is irreducible over kk and the field Kc:=k[x]/(fc(x))K_{\vec{c}}:=k[x]/(f_{\vec{c}}(x)) is imaginary over kk (i.e. \infty does not split in KcK_{\vec{c}});

  • the second sum runs through all cAc\in A with crA=𝔞c^{r}\cdot A={\mathfrak{a}};

  • HD(c)H^{D}(\vec{c}) is the modified Hurwitz class number of Rc:=A[x]/fc(x)R_{\vec{c}}:=A[x]/f_{\vec{c}}(x) with respect to DD in Definition A.8;

  • HD(0)H^{D}(0) is a “volume quantity” introduced in (9.3).

Remark 1.2.

As DD is a division algebra, there is no “cuspidal intersection” in our situation. Also, the assumption that rr is a prime ensures that the components in the intersection 𝒵𝒵𝔞{\mathcal{Z}}\cdot{\mathcal{Z}}_{{\mathfrak{a}}} have dimensions either 0 or r1r-1. For composite rr, the intersection behavior may involve components associated with moduli schemes of 𝒟{\mathcal{D}}^{\prime}-elliptic sheaves, where 𝒟{\mathcal{D}}^{\prime} is a non-maximal order in DD^{\prime}, and DD^{\prime} is a central simple algebra over a finite extension kk^{\prime} of kk, which may not be a division algebra. Furthermore, the condition that rr is distinct from the characteristic of kk ensures that the imaginary fields corresponding to the intersection points are separable over kk. This separability guarantees the transversality of the intersection behavior of the pullback of these cycles in suitable finite coverings, enabling the intersection number to be determined simply by counting the intersection points of the pullback cycles. Without these assumptions, the overall structure of the intersections becomes significantly more complex and technical, which is why we impose these conditions in our first attempt to study higher rank cases in this paper.

1.1 Outline of the proof of Theorem 1.1

As the (coarse) modular variety XX, which parametrizes 𝒟{\mathcal{D}}-elliptic sheaves, may not be smooth over {\mathbb{C}}_{\infty}, we use Briney’s theory to study the intersections in question. To address this, we consider a finite Galois covering X(𝔫)X({\mathfrak{n}}) of XX, where X(𝔫)X({\mathfrak{n}}) is the modular variety of 𝒟{\mathcal{D}}-elliptic sheaves equipped with a level 𝔫{\mathfrak{n}}-structure for a suitable nonzero ideal 𝔫{\mathfrak{n}} of AA. This covering ensures that X(𝔫)X({\mathfrak{n}}) is smooth over {\mathbb{C}}_{\infty}. Using the projection formula, we can reformulate the intersection number of interest in terms of the corresponding pullback cycles on X(𝔫)×X(𝔫)X({\mathfrak{n}})\times X({\mathfrak{n}}) as follows (see Theorem 6.1):

i(𝒵𝒵𝔞)=1(q1)[X(𝔫):X]g~i(𝒵(𝔫)𝒵(𝔫,g)),i({\mathcal{Z}}\cdot{\mathcal{Z}}_{{\mathfrak{a}}})=\frac{1}{(q-1)\cdot[X({\mathfrak{n}}):X]}\sum_{\tilde{g}}i({\mathcal{Z}}({\mathfrak{n}})\cdot{\mathcal{Z}}({\mathfrak{n}},g)), (1.1)

where [X(𝔫):X][X({\mathfrak{n}}):X] is the degree of the “Galois covering” X(𝔫)X({\mathfrak{n}}) over XX; 𝒵(𝔫){\mathcal{Z}}({\mathfrak{n}}) is the diagonal cycle of X(𝔫)X({\mathfrak{n}}) on X(𝔫)×X(𝔫)X({\mathfrak{n}})\times X({\mathfrak{n}}); 𝒵(𝔫,g){\mathcal{Z}}({\mathfrak{n}},g) is introduced in (4.3); and the sum runs through a double coset space corresponding to the Hecke correspondence associated with 𝔞{\mathfrak{a}} on X(𝔫)X({\mathfrak{n}}).

Next, the rigid-analytic structure of these varieties allows us to establish the transversality of the intersection 𝒵(𝔫)𝒵(𝔫,g){\mathcal{Z}}({\mathfrak{n}})\cdot{\mathcal{Z}}({\mathfrak{n}},g) when 𝒵(𝔫){\mathcal{Z}}({\mathfrak{n}}) and 𝒵(𝔫,g){\mathcal{Z}}({\mathfrak{n}},g) are distinct. This transversality ensures that i(𝒵(𝔫)𝒵(𝔫,g))i({\mathcal{Z}}({\mathfrak{n}})\cdot{\mathcal{Z}}({\mathfrak{n}},g)) can be computed simply by counting the number of their intersection points.

Furthermore, through a sequence of double-coset comparisons, we relate these intersection numbers to the number of optimal embeddings of the corresponding imaginary orders into 𝒟{\mathcal{D}}^{\infty} (see Corollary 8.5). Additionally, the self-intersection number of 𝒵(𝔫){\mathcal{Z}}({\mathfrak{n}}) is shown to equal the Euler–Poincaré characteristic of X(𝔫)X({\mathfrak{n}}), which can be interpreted as a volume quantity via an analogue of the Gauss–Bonnet formula established by Kurihara in [28] (see Proposition 8.9).

Finally, by applying Eichler’s theory, we express these intersection numbers in terms of modified Hurwitz class numbers, and complete the proof of Theorem 1.1.

Remark 1.3.

The recent groundbreaking works of Feng, Yun and Zhang in [11] and [12] establish a “higher” Siegel–Weil formula in the function field setting, showing a function field analogue of the Kudla–Rapoport conjecture. They express the non-singular Fourier coefficients of all central derivatives of Siegel–Eisenstein series on unitary groups in terms of the degrees of corresponding special cycles on the moduli stack of unitary shtukas. In contrast, our result takes a complementary perspective in the case where the group is DD^{*} (an inner form of GLr\operatorname{GL}_{r}): we write the intersection numbers of specific cycles on the modular varieties of 𝒟{\mathcal{D}}-elliptic sheaves as combinations of the class numbers of imaginary orders, which are natural arithmetic invariants.

Notably, when r=2r=2, we would be able to adapt the method in [16] and [17], utilizing the Weil representation, to explicitly construct an automorphic form whose Fourier coefficients correspond to the intersection numbers in question. Although this method does not appear to generalize to r>2r>2, we believe that a deeper connection with automorphic forms on DD^{*} persists and remains to be fully understood. This intriguing connection will be investigated in future work.

1.2 Content

This paper is organized as follows. Section 2 introduces the basic notation and preliminaries. In Section 3, we recall the definition of 𝒟{\mathcal{D}}-elliptic sheaves and discuss level structures. The moduli spaces of 𝒟{\mathcal{D}}-elliptic sheaves and the Hecke correspondences are presented in Section 4. Section 5 reviews Briney’s extension of intersection theory, leading to the derivation of equality (1.1) in Section 6.

The transversality of the non-self-intersection 𝒵(𝔫)𝒵(𝔫,g){\mathcal{Z}}({\mathfrak{n}})\cdot{\mathcal{Z}}({\mathfrak{n}},g) is verified in Section 7 from a rigid-analytic perspective. In Section 8, we perform several technical double-coset comparisons to connect the intersection points to optimal embeddings of imaginary orders and to express the self-intersection of 𝒵(𝔫){\mathcal{Z}}({\mathfrak{n}}) in terms of a volume quantity. Finally, Section 9 connects the intersections in question with the modified Hurwitz class numbers and completes the proof of Theorem 1.1. For completeness, a brief review of Eichler’s theory of optimal embeddings is included in Appendix A.

Acknowledgments

Part of this work was carried out during the first author’s visit to the National Center for Theoretical Sciences (NCTS). The authors sincerely thank the NCTS for its generous support of this collaboration. The first author is supported by Academia Sinica Investigator Grant AS-IA-112-M01 and NSTC grant 113-2115-M-001-001. The second author is supported by the NSTC grant 109-2115-M-007-017-MY5, 113-2628-M-007-003, and the NCTS.

2 Notation

Let 𝔽q{\mathbb{F}}_{q} denote the finite field with qq elements. Let CC be a geometrically connected smooth projective curve over a finite field 𝔽q{\mathbb{F}}_{q} with function field kk. We denote the set of closed points of CC by |C||C|, identifying with the set of places of kk. Fix one closed point \infty of CC, referred to the place at infinity. Let A:=Γ(C{},𝒪C)A:=\Gamma(C\setminus\{\infty\},{\mathcal{O}}_{C}) denote the ring of regular functions outside of \infty where 𝒪C{\mathcal{O}}_{C} is the structure sheaf of CC.

Given v|C|v\in|C|, the completion of kk at vv is denoted by kvk_{v}, and let 𝒪v{\mathcal{O}}_{v} be the maximal compact subring of kvk_{v}. We define the adele ring of kk to be the restricted product of the completions kvk_{v} at the places of kk:

𝔸:=v|C|kv{\mathbb{A}}:=\prod_{v\in|C|}\!\!{}^{{{}^{\prime}}}\,\,k_{v}

and the ring of finite adeles as the restricted product of the completions kvk_{v} at the finite places:

𝔸f:=v|C|{}kv.{\mathbb{A}}_{f}:=\prod_{v\in|C|\setminus\{\infty\}}{}^{{{}^{\prime}}}\,\,k_{v}.

The maximal compact subring of 𝔸f{\mathbb{A}}_{f} is 𝒪:=v|C|{}𝒪v{\mathcal{O}}^{\infty}:=\prod_{v\in|C|\setminus\{\infty\}}{\mathcal{O}}_{v}.

Let DD be a central division algebra over kk of dimension r2r^{2}. We say that DD is ramified at a place vv if Dv:=DkkvD_{v}:=D\otimes_{k}k_{v} is not isomorphic to the matrix algebra 𝕄r(kv){\mathbb{M}}_{r}(k_{v}). Let 𝐑𝐚𝐦\bf{Ram} denote the set of ramified places of DD. Here we assume that 𝐑𝐚𝐦\infty\notin\bf{Ram}. Let 𝒟{\mathcal{D}} be a locally free sheaf of 𝒪C{\mathcal{O}}_{C}-algebras such that the stalk of 𝒟{\mathcal{D}} at the generic point η\eta of CC is the division algebra DD, i.e, 𝒟(η)=D{\mathcal{D}}_{(\eta)}=D. Throughout this paper, we always assume that 𝒟{\mathcal{D}} is a maximal 𝒪C{\mathcal{O}}_{C}-order in DD. For a place vv of kk, we define

𝒟v:=𝒟(v)𝒪C,v𝒪v,{\mathcal{D}}_{v}:={\mathcal{D}}_{(v)}\otimes_{{\mathcal{O}}_{C,v}}{\mathcal{O}}_{v},

where 𝒟(v){\mathcal{D}}_{(v)} (resp. 𝒪C,v{\mathcal{O}}_{C,v}) is the stalk of 𝒟{\mathcal{D}} (resp. 𝒪C{\mathcal{O}}_{C}) at vv. We put

𝒟=v|C|{}𝒟v.{\mathcal{D}}^{\infty}=\prod_{v\in|C|\setminus\{\infty\}}{\mathcal{D}}_{v}.

In particular, our assumption implies that 𝒟𝕄r(𝒪){\mathcal{D}}_{\infty}\cong{\mathbb{M}}_{r}({\mathcal{O}}_{\infty}), the matrix ring with entries in 𝒪{\mathcal{O}}_{\infty}. Finally, let 𝒪D:=Γ(C{},𝒟){\mathcal{O}}_{D}:=\Gamma(C\setminus\{\infty\},{\mathcal{D}}) be the global sections of 𝒟{\mathcal{D}} away from \infty. Then

𝒟=𝒪DA𝒪.{\mathcal{D}}^{\infty}={\mathcal{O}}_{D}\otimes_{A}{\mathcal{O}}^{\infty}.

3 𝒟{\mathcal{D}}-elliptic sheaves

In this section, we recall the definition and some basic facts about 𝒟{\mathcal{D}}-elliptic sheaves. For more details on 𝒟{\mathcal{D}}-elliptic sheaves, please refer to [29].

3.1 Defintion of 𝒟{\mathcal{D}}-elliptic sheaves

First, we introduce some notations. For an 𝔽q{\mathbb{F}}_{q}-scheme SS, we denote the Frobenius endomorphism on SS by

σS:SS,\sigma_{S}:S\longrightarrow S,

which is defined as the identity on points and as the qq-power map on the structure sheaf. Note that for an 𝔽q{\mathbb{F}}_{q}-scheme SS, one can form the fiber product C×𝔽qSC\times_{{\mathbb{F}}_{q}}S over 𝔽q{\mathbb{F}}_{q}. We will assume this is understood over 𝔽q{\mathbb{F}}_{q} and denote the fiber product simply by C×SC\times S. Let

σ:=idC×σS:C×SC×S,\sigma:=\operatorname{id}_{C}\times\sigma_{S}:C\times S\longrightarrow C\times S,

i.e., σ\sigma acts on CC as the identity and on SS as the Frobenius endomorphism σS\sigma_{S}.

Definition 3.1.

Let SS be a scheme over 𝔽q{\mathbb{F}}_{q}. A 𝒟{\mathcal{D}}-elliptic sheaf over SS is a pair (¯,ψ)({\underline{{\mathcal{E}}}},\psi) where ψ:S(C𝐑𝐚𝐦)\psi:S\longrightarrow(C\setminus{\bf Ram}) is a morphism and ¯{\underline{{\mathcal{E}}}} is a sequence (i,ji,ti),i({\mathcal{E}}_{i},j_{i},t_{i}),i\in{\mathbb{Z}}. Here each i{\mathcal{E}}_{i} is a locally free 𝒪C×S{\mathcal{O}}_{C\times S}-modules of rank r2r^{2} with a right 𝒟{\mathcal{D}}-action which is 𝒪C×S{\mathcal{O}}_{C\times S}-linear and the restriction of 𝒟{\mathcal{D}} to the scalars is same as the 𝒪C{\mathcal{O}}_{C}-action. And the morphisms

ji:ii+1j_{i}:{\mathcal{E}}_{i}\longrightarrow{\mathcal{E}}_{i+1}
ti:σii+1t_{i}:\sigma^{*}{\mathcal{E}}_{i}\longrightarrow{\mathcal{E}}_{i+1}

are injective 𝒪C×S{\mathcal{O}}_{C\times S}-linear morphisms which are compatible with the 𝒟{\mathcal{D}}-action such that the following diagram commutes

i\textstyle{{\mathcal{E}}_{i}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ji\scriptstyle{j_{i}}i+1\textstyle{{\mathcal{E}}_{i+1}}σi1\textstyle{\sigma^{*}{\mathcal{E}}_{i-1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}σji1\scriptstyle{\sigma^{*}j_{i-1}}ti1\scriptstyle{t_{i-1}}σi\textstyle{\sigma^{*}{\mathcal{E}}_{i}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ti\scriptstyle{t_{i}}

Moreover, for each ii\in{\mathbb{Z}} the following conditions hold:

  1. 1.

    (periodicity) Put =rdeg\ell=r\cdot\deg\infty We have

    i+=i(){\mathcal{E}}_{i+\ell}={\mathcal{E}}_{i}(\infty)

    where i()=i𝒪C×S(𝒪C()𝒪S){\mathcal{E}}_{i}(\infty)={\mathcal{E}}_{i}\otimes_{{\mathcal{O}}_{C\times S}}({\mathcal{O}}_{C}(\infty)\boxtimes{\mathcal{O}}_{S})

  2. 2.

    The cokerji\operatorname{coker}j_{i} is supported on {}×S\{\infty\}\times S and it is locally free 𝒪S{\mathcal{O}}_{S}-module of rank rr.

  3. 3.

    The cokerti\operatorname{coker}t_{i} has support on the graph of ψ\psi and is locally free of rank rr over SS.

The morphism ψ\psi in the definition of a 𝒟{\mathcal{D}}-elliptic sheaf is called the characteristic of the 𝒟{\mathcal{D}}-elliptic sheaf. For simplicity, we denote the 𝒟{\mathcal{D}}-elliptic sheaf by ¯{\underline{{\mathcal{E}}}} if no confusion arises.

A morphism f:¯¯f:{\underline{{\mathcal{E}}}}\longrightarrow{\underline{{\mathcal{E}}}}^{\prime} between two 𝒟{\mathcal{D}}-elliptic sheaves ¯=(i,ji,ti){\underline{{\mathcal{E}}}}=({\mathcal{E}}_{i},j_{i},t_{i}) and ¯=(i,ji,ti){\underline{{\mathcal{E}}}}^{\prime}=({\mathcal{E}}^{\prime}_{i},j^{\prime}_{i},t^{\prime}_{i}) over SS is a sequence of morphisms of locally free 𝒪C×S{\mathcal{O}}_{C\times S}-modules fi:iif_{i}:{\mathcal{E}}_{i}\longrightarrow{\mathcal{E}}^{\prime}_{i} which are compatible with 𝒟{\mathcal{D}}-action and with the morphisms jij_{i}’s and tit_{i}’s.

Remark 3.2.

Let ¯=(i,ji,ti){\underline{{\mathcal{E}}}}=({\mathcal{E}}_{i},j_{i},t_{i}) be a 𝒟{\mathcal{D}}-elliptic sheaf over SS. By the condition (2) in Definition 3.1, H0((C)×S,i)H^{0}((C\setminus\infty)\times S,{\mathcal{E}}_{i}) is independent of ii. Moreover, if S=SpecRS=\operatorname{Spec}R for a ring RR, it becomes an R[τ]R[\tau]-module where the τ\tau-action comes from the morphism ti:σii+1t_{i}:\sigma^{*}{\mathcal{E}}_{i}\longrightarrow{\mathcal{E}}_{i+1}. This module is referred to as a Drinfeld-Stuhler 𝒪D{\mathcal{O}}_{D}-module. The concept was first implicitly introduced in [29, Section 3], with further studies available in [30].

Let C,𝒟(S)\mathcal{E}\ell\ell_{C,{\mathcal{D}}}(S) denote the category whose objects are the 𝒟{\mathcal{D}}-elliptic sheaves over SS and whose morphisms are isomorphisms of 𝒟{\mathcal{D}}-elliptic sheaves. If SSS^{\prime}\longrightarrow S is a morphism of 𝔽q{\mathbb{F}}_{q}-schemes, then taking pullback of a 𝒟{\mathcal{D}}-elliptic sheaf over SS gives us a 𝒟{\mathcal{D}}-elliptic sheaf over SS^{\prime}. This defines a fibered category

SC,𝒟(S)S\longrightarrow\mathcal{E}\ell\ell_{C,{\mathcal{D}}}(S)

over the category of 𝔽q{\mathbb{F}}_{q}-schemes Sch𝔽qSch_{{\mathbb{F}}_{q}}. Moreover this gives us a stack, denoted by C,𝒟\mathcal{E}\ell\ell_{C,{\mathcal{D}}}, with respect to fppf-topology. The proof follows as a special case of [36, Proposition 2.12].

3.2 𝒟{\mathcal{D}}-elliptic sheaves with level structures

Now we will define level structures on 𝒟{\mathcal{D}}-elliptic sheaves. First, we want to recall the following definition:

Definition 3.3.

Let XX and YY be two schemes, and let pr1:X×YXpr_{1}:X\times Y\longrightarrow X, pr2:X×YYpr_{2}:X\times Y\longrightarrow Y be the natural projections. Given a locally free 𝒪X{\mathcal{O}}_{X}-module {\mathcal{F}} and a locally free 𝒪Y{\mathcal{O}}_{Y}-module 𝒢{\mathcal{G}}, we define the external tensor product of {\mathcal{F}} and 𝒢{\mathcal{G}} as follows:

𝒢:=pr1()𝒪X×Ypr2(𝒢),{\mathcal{F}}\boxtimes{\mathcal{G}}:=pr_{1}^{*}({\mathcal{F}})\otimes_{{\mathcal{O}}_{X\times Y}}pr_{2}^{*}({\mathcal{G}}),

which is naturally a locally free 𝒪X×Y{\mathcal{O}}_{X\times Y}-module.

Let II be a finite closed subscheme of C(𝐑𝐚𝐦{}Imψ)C\setminus({\bf Ram}\cup\{\infty\}\cup\operatorname{Im}\psi). Then, the restrictions i|I×S{\mathcal{E}}_{i}|_{I\times S} are all isomorphic by the morphisms jij_{i}’s (cf. Remark 3.2). Therefore it is independent of the chosen ii, and we will denote this restriction simply by |I×S{\mathcal{E}}|_{I\times S}. We write 𝒟I{\mathcal{D}}_{I} for 𝒟𝒪C𝒪I{\mathcal{D}}\otimes_{{\mathcal{O}}_{C}}{\mathcal{O}}_{I} where 𝒪I{\mathcal{O}}_{I} is the structure sheaf of II , and let H0(I,𝒟I)H^{0}(I,{\mathcal{D}}_{I}) be the ring of global sections of 𝒟I{\mathcal{D}}_{I}.

Definition 3.4.

Let SS be an 𝔽q{\mathbb{F}}_{q}-scheme and ¯=(i,ji,ti){\underline{{\mathcal{E}}}}=({\mathcal{E}}_{i},j_{i},t_{i}) be a 𝒟{\mathcal{D}}-elliptic sheaf over SS. Let II be a finite closed subscheme of C(𝐑𝐚𝐦{}Imψ)C\setminus({\bf Ram}\cup\{\infty\}\cup\operatorname{Im}\psi). A level II-structure on ¯{\underline{{\mathcal{E}}}} is an isomorphism of 𝒪I×S{\mathcal{O}}_{I\times S}-modules

ι:𝒟I𝒪S|I×S\iota:{\mathcal{D}}_{I}\boxtimes{\mathcal{O}}_{S}\xrightarrow{\sim}{\mathcal{E}}|_{I\times S}

which is compatible with 𝒟{\mathcal{D}}-action and the Frobenius endeomorphism σS\sigma_{S} on SS.

Remark 3.5.

Throughout the paper, when we talk about level II-structures, II is always a finite closed subscheme of C(𝐑𝐚𝐦{}Imψ)C\setminus({\bf Ram}\cup\{\infty\}\cup\operatorname{Im}\psi).

Let C,𝒟,I(S)\mathcal{E}\ell\ell_{C,{\mathcal{D}},I}(S) denote the category whose objects are 𝒟{\mathcal{D}}-elliptic sheaves over SS with level II-structure and whose morphisms are morphisms of 𝒟{\mathcal{D}}-elliptic sheaves that respect the level II-structure. As before, by using pullbacks one can define a fibered category C,𝒟,I\mathcal{E}\ell\ell_{C,{\mathcal{D}},I} over Sch𝔽qSch_{{\mathbb{F}}_{q}}, which is a stack with respect to fppf-topology. For a detailed proof we refer to [36, Proposition 2.19].

Now, let ¯=(i,ji,ti){\underline{{\mathcal{E}}}}=({\mathcal{E}}_{i},j_{i},t_{i}) be a 𝒟{\mathcal{D}}-elliptic sheaf over SS with level II-structure and let SchSSch_{S} denote the category of schemes over SS. One can define tt-invariant elements functor

EI:SchSH0(I,𝒟I)-modulesE_{I}:Sch_{S}\longrightarrow H^{0}(I,{\mathcal{D}}_{I})\mbox{-modules}

by T(H0(I×T,|I×S))t=idT\mapsto(H^{0}(I\times T,{\mathcal{E}}|_{I\times S}))^{t=id}. We then have the following:

Theorem 3.6.

([29, Lemma 2.6], also see [36, Theorem 2.22]) The functor EIE_{I} is represented by a finite étale scheme over SS which is free of rank one over H0(I,𝒟I)H^{0}(I,{\mathcal{D}}_{I}).

Remark 3.7.

([29, (4.8), page 240]) For connected SS, the set of II-level structures is a torsor over the unit group DID_{I}^{*}. More precisely, Let SS be an 𝔽q{\mathbb{F}}_{q}-scheme, IICI\subset I^{\prime}\subset C be two finite closed subschemes with deg(I)>0\deg(I^{\prime})>0. Then, the morphism

rI,I(S):X,𝒟,I(S)X,𝒟,I(S)r_{I^{\prime},I}(S):\mathcal{E}\ell\ell_{X,{\mathcal{D}},I^{\prime}}(S)\longrightarrow\mathcal{E}\ell\ell_{X,{\mathcal{D}},I}(S)

which associates a level II^{\prime}-structure to its restriction gives us a GI,IG_{I^{\prime},I}-torsor over CIC\setminus I^{\prime}, i.e, the finite group GI,I:=Ker(H0(I,𝒟I)H0(I,𝒟I))G_{I^{\prime},I}:=\operatorname{Ker}(H^{0}(I^{\prime},{\mathcal{D}}_{I^{\prime}})*\longrightarrow H^{0}(I,{\mathcal{D}}_{I})^{*}) acts on the set of level II^{\prime}-structures transitively and freely.

4 Moduli schemes of 𝒟{\mathcal{D}}-elliptic sheaves and Hecke correspondences

We shall introduce the moduli schemes of 𝒟{\mathcal{D}}-elliptic sheaves and the cycles associated with the Hecke correspondences.

4.1 Moduli schemes of 𝒟{\mathcal{D}}-elliptic sheaves

In the previous section, we defined the stack C,𝒟,I\mathcal{E}\ell\ell_{C,{\mathcal{D}},I} of 𝒟{\mathcal{D}}-elliptic sheaves with level II-structures. In fact, C,𝒟,I\mathcal{E}\ell\ell_{C,{\mathcal{D}},I} is an algebraic stack in the sense of Deligne-Mumford (cf. [9]).

Theorem 4.1.

([29, Theorem 4.1 and Theorem 5.1])

The stack C,𝒟,I\mathcal{E}\ell\ell_{C,{\mathcal{D}},I} is an algebraic stack in the sense of Deligne-Mumford which is smooth of relative dimension (r1)(r-1) over C(I{})C\setminus(I\cup\{\infty\}). Moreover, if II\neq\emptyset, it is actually a quasi-projective scheme.

Remark 4.2.

Let I\emptyset\neq I be a finite closed subscheme of CC such that I{}=I\cap\{\infty\}=\emptyset. There exists a nonzero ideal 𝔫I{\mathfrak{n}}_{I} of AA associated with this closed subscheme. Conversely, if we are given a nonzero ideal 𝔫{\mathfrak{n}} of AA, we get a corresponding finite closed subscheme I𝔫I_{{\mathfrak{n}}} of CC away from \infty.

Definition 4.3.

Let 𝔫{\mathfrak{n}} be a nonzero ideal of AA with v𝔫v\nmid{\mathfrak{n}} for every v𝐑𝐚𝐦v\in{\bf Ram} and I𝔫I_{\mathfrak{n}} be the finite closed subscheme of CC associated with 𝔫{\mathfrak{n}}. We denote the representing scheme of C,𝒟,I𝔫/\mathcal{E}\ell\ell_{C,{\mathcal{D}},I_{\mathfrak{n}}}/{\mathbb{Z}} by X(𝔫)X({\mathfrak{n}}).

Moreover, different from Drinfeld modular varieties, we have the following theorem:

Theorem 4.4.

([3, Theorem 4.4.9], see also [29, Theorem 6.1])

The morphism

X(𝔫)C(I𝔫𝐑𝐚𝐦)X({\mathfrak{n}})\longrightarrow C\setminus(I_{\mathfrak{n}}\cup{\bf Ram})

is proper.

Remark 4.5.

We want to note that in [29], it is assumed that the characteristic of 𝒟{\mathcal{D}}-elliptic sheaf is away from \infty. However, both theorems above hold in general. We refer to [36, Section 5 and Section 6] for the proof in general case. Moreover, the base change of X(𝔫)X({\mathfrak{n}}) to {\mathbb{C}}_{\infty} is actually a projective scheme (see [29, p. 218]).

We denote by X^(𝔫)\widehat{X}({\mathfrak{n}}) the formal completion of the scheme X(𝔫)X({\mathfrak{n}}) along the fiber over \infty, which is a formal scheme over Spf(𝒪)Spf({\mathcal{O}}_{\infty}).

Let Ωr\Omega_{r} denote the Drinfeld symmetric space:

Ωr:=r1()(k-rational hyperplanes).\Omega_{r}:={\mathbb{P}}^{r-1}({\mathbb{C}}_{\infty})\setminus\cup(k_{\infty}\mbox{-rational hyperplanes}).

It has a rigid analytic stucture, and thus becomes a rigid space in the sense of Raynaud. By taking a formal completion over the fiber over \infty, we obtain a formal scheme Ω^r\widehat{\Omega}_{r} ([3, Remark 4.3.1]). For more on the Drinfeld symmetric space, we refer to [10], [8] and [33].

Recall that 𝒟=𝒪DA𝒪=v𝒪DA𝒪v{\mathcal{D}}^{\infty}={\mathcal{O}}_{D}\otimes_{A}{\mathcal{O}}^{\infty}=\prod_{v\neq\infty}{\mathcal{O}}_{D}\otimes_{A}{\mathcal{O}}_{v}. Set D(𝔸f):=(Dk𝔸f)D^{*}({\mathbb{A}}_{f}):=\big{(}D\otimes_{k}{\mathbb{A}}_{f}\big{)}^{*} and

𝒦(𝔫):={a(𝒟)a1mod𝔫}.{\mathcal{K}}({\mathfrak{n}}):=\{a\in({\mathcal{D}}^{\infty})^{*}\mid a\equiv 1\bmod{\mathfrak{n}}\}.

Then the following theorem holds:

Theorem 4.6.

One has an isomorphism of formal schemes

X^(𝔫)D\Ω^r×D(𝔸f)/𝒦(𝔫).\widehat{X}({\mathfrak{n}})\simeq D^{*}\backslash\widehat{\Omega}_{r}\times D^{*}({\mathbb{A}}_{f})/{\mathcal{K}}({\mathfrak{n}}).
Proof.

[3, Remark 4.4.11], [36, Remark 16.11]

Let 𝒦{\mathcal{K}}^{\infty} be an open compact subgroup of D(𝔸f)D^{*}({\mathbb{A}}_{f}). We want to look at the quotient D\Ω^r×D(𝔸f)/𝒦D^{*}\backslash\widehat{\Omega}_{r}\times D^{*}({\mathbb{A}}_{f})/{\mathcal{K}}^{\infty} closer. Let di𝒦d_{i}{\mathcal{K}}^{\infty}, i=1,,si=1,...,s denote the representatives of the double coset space D\D(𝔸f)/𝒦D^{*}\backslash D^{*}({\mathbb{A}}_{f})/{\mathcal{K}}^{\infty} and let

stabD(di𝒦)={dDddi𝒦=di𝒦}\operatorname{stab}_{D^{*}}(d_{i}{\mathcal{K}}^{\infty})=\{d\in D^{*}\mid dd_{i}{\mathcal{K}}^{\infty}=d_{i}{\mathcal{K}}^{\infty}\}

be the stabilizer of di𝒦d_{i}{\mathcal{K}}^{\infty} with respect to DD^{*}-action. In other words,

dstabD(di𝒦)ddi𝒦=di𝒦ddi𝒦di1d\in\operatorname{stab}_{D^{*}}(d_{i}{\mathcal{K}}^{\infty})\iff dd_{i}{\mathcal{K}}^{\infty}=d_{i}{\mathcal{K}}^{\infty}\iff d\in d_{i}{\mathcal{K}}^{\infty}d_{i}^{-1}

so ddi𝒦di1Dd\in d_{i}{\mathcal{K}}^{\infty}d_{i}^{-1}\cap D^{*}. Put Γi:=di𝒦di1D\Gamma_{i}:=d_{i}{\mathcal{K}}^{\infty}d_{i}^{-1}\cap D^{*}, which is a discrete subgroup of DGLr(k)D_{\infty}^{*}\cong\operatorname{GL}_{r}(k_{\infty}).

Proposition 4.7.

Keep notations as above. We have

D\Ω^r×D(𝔸f)/𝒦i=1sΓi\Ω^r.D^{*}\backslash\widehat{\Omega}_{r}\times D^{*}({\mathbb{A}}_{f})/{\mathcal{K}}^{\infty}\simeq\coprod_{i=1}^{s}\Gamma_{i}\backslash\widehat{\Omega}_{r}.
Proof.

Write D(𝔸f)D^{*}({\mathbb{A}}_{f}) as the finite disjoint union i=1sDdi𝒦\coprod_{i=1}^{s}D^{*}d_{i}{\mathcal{K}}^{\infty}. Then

Ω^r×D(𝔸f)=i=1sΩ^r×Ddi𝒦.\widehat{\Omega}_{r}\times D^{*}({\mathbb{A}}_{f})=\coprod_{i=1}^{s}\widehat{\Omega}_{r}\times D^{*}d_{i}{\mathcal{K}}^{\infty}.

Hence we can identify D\Ω^r×D(𝔸f)/𝒦D^{*}\backslash\widehat{\Omega}_{r}\times D^{*}({\mathbb{A}}_{f})/{\mathcal{K}}^{\infty} with i=1dΓi\Ω^r\coprod_{i=1}^{d}\Gamma_{i}\backslash\widehat{\Omega}_{r}.

By construction, the generic fibre over kk_{\infty} of Ω^r\widehat{\Omega}_{r} is the rigid space Ωr\Omega_{r}. Therefore, together with the Proposition 4.7, we have the following proposition:

Proposition 4.8.

Let 𝔫{\mathfrak{n}} be a nonzero ideal of AA and take 𝒦=𝒦(𝔫){\mathcal{K}}^{\infty}={\mathcal{K}}({\mathfrak{n}}). We have

X(𝔫)()X^(𝔫)aniΓi\ΩrD\Ωr×D(𝔸f)/𝒦(𝔫).X({\mathfrak{n}})({\mathbb{C}}_{\infty})\simeq\widehat{X}({\mathfrak{n}})^{an}\simeq\coprod_{i}\Gamma_{i}\backslash\Omega_{r}\simeq D^{*}\backslash\Omega_{r}\times D^{*}({\mathbb{A}}_{f})/{\mathcal{K}}({\mathfrak{n}}).

4.2 Hecke correspondences and associated cycles

In this section we will give a brief summary of Hecke correspondences on the modular variety of 𝒟{\mathcal{D}}-elliptic sheaves. For details we refer to [29, Section 7].

Let II be a finite closed subscheme of CC such that I({}𝐑𝐚𝐦)=I\cap(\{\infty\}\cup{\bf Ram})=\emptyset. Define

C,𝒟=limIC,𝒟,I.\mathcal{E}\ell\ell_{C,{\mathcal{D}}}^{\infty}=\varprojlim_{I}\mathcal{E}\ell\ell_{C,{\mathcal{D}},I}.

For an 𝔽q{\mathbb{F}}_{q}-scheme SS, a section of C,𝒟\mathcal{E}\ell\ell_{C,{\mathcal{D}}}^{\infty} over SS consists of triples (i,ji,ti)({\mathcal{E}}_{i},j_{i},t_{i}) as in the Definition 3.1 with the following ‘level structure’, i.e, a 𝒟{\mathcal{D}}-linear isomorphism

(𝒟𝒪X𝒪)𝒪Si𝒪C×S(𝒪𝒪S)({\mathcal{D}}\otimes_{{\mathcal{O}}_{X}}{\mathcal{O}}^{\infty})\boxtimes{\mathcal{O}}_{S}\xrightarrow{\sim}{\mathcal{E}}_{i}\otimes_{{\mathcal{O}}_{C\times S}}({\mathcal{O}}^{\infty}\boxtimes{\mathcal{O}}_{S})

where 𝒪=v𝒪v{\mathcal{O}}^{\infty}=\prod_{v\neq\infty}{\mathcal{O}}_{v}.

There is a right action of D(𝔸f)𝒟D^{*}({\mathbb{A}}_{f})\cap{\mathcal{D}}^{\infty} on C,𝒟\mathcal{E}\ell\ell_{C,{\mathcal{D}}}^{\infty}, extending the action of (𝒟)({\mathcal{D}}^{\infty})^{*} (cf. [29, (7.4)]). Let 𝒦D(𝔸f){\mathcal{K}}^{\infty}\subseteq D^{*}({\mathbb{A}}_{f}) be an open compact subgroup and fix gD(𝔸f)g\in D^{*}({\mathbb{A}}_{f}). Then, we get a correspondence over Speck\operatorname{Spec}k:

C,𝒟/𝒦g1𝒦g\textstyle{\mathcal{E}\ell\ell_{C,{\mathcal{D}}}^{\infty}/{\mathcal{K}}^{\infty}\cap g^{-1}{\mathcal{K}}^{\infty}g\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}πg,2\scriptstyle{\pi_{g,2}}πg,1\scriptstyle{\pi_{g,1}}C,𝒟/𝒦\textstyle{\mathcal{E}\ell\ell_{C,{\mathcal{D}}}^{\infty}/{\mathcal{K}}^{\infty}}C,𝒟/𝒦\textstyle{\mathcal{E}\ell\ell_{C,{\mathcal{D}}}^{\infty}/{\mathcal{K}}^{\infty}} (4.1)

where the morphisms πg,1\pi_{g,1} and πg,2\pi_{g,2} are induced, respectively, by the inclusions

𝒦g1𝒦g𝒦 and 𝒦g1𝒦gAd(g)𝒦.{\mathcal{K}}^{\infty}\cap g^{-1}{\mathcal{K}}^{\infty}g\subseteq{\mathcal{K}}^{\infty}\quad\text{ and }\quad{\mathcal{K}}^{\infty}\cap g^{-1}{\mathcal{K}}^{\infty}g\xrightarrow{Ad(g)}{\mathcal{K}}^{\infty}.

Given a nonzero ideal 𝔫{\mathfrak{n}} of AA with v𝔫v\nmid{\mathfrak{n}} for every v𝐑𝐚𝐦v\in{\bf Ram}, recall that we let

𝒦(𝔫)={a(𝒟)a1 mod 𝔫}.{\mathcal{K}}({\mathfrak{n}})=\{a\in({\mathcal{D}}^{\infty})^{*}\mid a\equiv 1\mbox{ mod }{\mathfrak{n}}\}.

For every gD(𝔸f)g\in D^{*}({\mathbb{A}}_{f}), define

𝒦(𝔫,g)=𝒦(𝔫)g1𝒦(𝔫)g.{\mathcal{K}}({\mathfrak{n}},g)={\mathcal{K}}({\mathfrak{n}})\cap g^{-1}{\mathcal{K}}({\mathfrak{n}})g.

We also put

𝒦:=𝒦(1)(=(𝒟)) and 𝒦g:=𝒦(1,g)=𝒦g1𝒦g.{\mathcal{K}}:={\mathcal{K}}(1)(=({\mathcal{D}}^{\infty})^{*})\quad\text{ and }\quad{\mathcal{K}}_{g}:={\mathcal{K}}(1,g)={\mathcal{K}}\cap g^{-1}{\mathcal{K}}g.

Let X(𝔫,g)X({\mathfrak{n}},g) be the scheme corresponding to \C,𝒟/𝒦(𝔫,g){\mathbb{Z}}\backslash\mathcal{E}\ell\ell_{C,{\mathcal{D}}}^{\infty}/{\mathcal{K}}({\mathfrak{n}},g). Then the correspondence (4.1) gives us the following:

X(𝔫,g)\textstyle{X({\mathfrak{n}},g)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}π𝔫,g,2\scriptstyle{\pi_{{\mathfrak{n}},g,2}}π𝔫,g,1\scriptstyle{\pi_{{\mathfrak{n}},g,1}}X(𝔫)\textstyle{X({\mathfrak{n}})}X(𝔫)\textstyle{X({\mathfrak{n}})}

In particular, similar to Proposition 4.8, we may identify

X(𝔫,g)()D\Ωr×D(𝔸f)/𝒦(𝔫,g).X({\mathfrak{n}},g)({\mathbb{C}}_{\infty})\cong D^{*}\backslash\Omega_{r}\times D^{*}({\mathbb{A}}_{f})/{\mathcal{K}}({\mathfrak{n}},g).

Then the two morphisms π𝔫,g,1,π𝔫,g,2:X(𝔫,g)X(𝔫)\pi_{{\mathfrak{n}},g,1},\pi_{{\mathfrak{n}},g,2}:X({\mathfrak{n}},g)\rightarrow X({\mathfrak{n}}) can be realized as follows: for every zΩrz\in\Omega_{r} and bD(𝔸f)b\in D^{*}({\mathbb{A}}_{f}), let [z,b]𝔫,g[z,b]_{{\mathfrak{n}},g} and [z,b]𝔫[z,b]_{{\mathfrak{n}}}be the representing double coset in D\Ωr×D(𝔸f)/𝒦(𝔫,g)D^{*}\backslash\Omega_{r}\times D^{*}({\mathbb{A}}_{f})/{\mathcal{K}}({\mathfrak{n}},g) and in D\Ωr×D(𝔸f)/𝒦(𝔫)D^{*}\backslash\Omega_{r}\times D^{*}({\mathbb{A}}_{f})/{\mathcal{K}}({\mathfrak{n}}), respectively. Then

π𝔫,g,1([z,b]𝔫,g)=[z,b]𝔫 and π𝔫,g,2([z,b]𝔫,g)=[z,bg1]𝔫.\pi_{{\mathfrak{n}},g,1}([z,b]_{{\mathfrak{n}},g})=[z,b]_{{\mathfrak{n}}}\quad\text{ and }\quad\pi_{{\mathfrak{n}},g,2}([z,b]_{{\mathfrak{n}},g})=[z,bg^{-1}]_{{\mathfrak{n}}}.

Therefore we have a morphism

π𝔫,g:X(𝔫,g)X(𝔫)×X(𝔫)\pi_{{\mathfrak{n}},g}:X({\mathfrak{n}},g)\longrightarrow X({\mathfrak{n}})\times X({\mathfrak{n}})

which is realized by

[z,b]𝔫,g(π𝔫,g,1([z,b]𝔫),π𝔫,g,2([z,b]𝔫))=([z,b]𝔫,[z,bg1]𝔫)[z,b]_{{\mathfrak{n}},g}\mapsto\Big{(}\pi_{{\mathfrak{n}},g,1}([z,b]_{{\mathfrak{n}}}),\pi_{{\mathfrak{n}},g,2}([z,b]_{{\mathfrak{n}}})\Big{)}=\big{(}[z,b]_{{\mathfrak{n}}},[z,bg^{-1}]_{{\mathfrak{n}}}\big{)} (4.2)

for every zΩr,bD(𝔸f)z\in\Omega_{r},b\in D^{*}({\mathbb{A}}_{f}).

By abuse of notations, we still denote by X(𝔫,g)X({\mathfrak{n}},g) its base change to {\mathbb{C}}_{\infty}. Recall that it is known that X(𝔫,g)X({\mathfrak{n}},g) has constant dimension r1r-1 over {\mathbb{C}}_{\infty} (cf. Theorem 4.1). Let 𝒳(𝔫,g){\mathcal{X}}({\mathfrak{n}},g) be the (r1)(r-1)-cycle of X(𝔫,g)X({\mathfrak{n}},g) associated with itself. We define

𝒵(𝔫,g)=π𝔫,g,(𝒳(𝔫,g)){\mathcal{Z}}({\mathfrak{n}},g)=\pi_{{\mathfrak{n}},g,*}({\mathcal{X}}({\mathfrak{n}},g)) (4.3)

which is an (r1)(r-1)-cycle of X(𝔫)×X(𝔫)X({\mathfrak{n}})\times X({\mathfrak{n}}). In particular, we denote

𝒵(𝔫)=𝒵(𝔫,1),𝒵g=𝒵(1,g),and𝒵=𝒵1.{\mathcal{Z}}({\mathfrak{n}})={\mathcal{Z}}({\mathfrak{n}},1),\quad{\mathcal{Z}}_{g}={\mathcal{Z}}(1,g),\quad\text{and}\quad{\mathcal{Z}}={\mathcal{Z}}_{1}.

Moreover, let 𝔞{\mathfrak{a}} be a nonzero ideal of AA. We define the following associated cycle on X(1)×X(1)X(1)\times X(1):

𝒵𝔞=[g]𝒵g{\mathcal{Z}}_{{\mathfrak{a}}}=\sum_{[g]}{\mathcal{Z}}_{g} (4.4)

where the sum is taken over double cosets [g]𝒦\(𝒟D(𝔸f))/𝒦[g]\in{\mathcal{K}}\backslash({\mathcal{D}}^{\infty}\cap D^{*}({\mathbb{A}}_{f}))/{\mathcal{K}} with the condition Nr(g)𝒪k=𝔞\hbox{Nr}(g){\mathcal{O}}^{\infty}\cap k={\mathfrak{a}}. Here Nr denotes the natural extension of the reduced norm of DD to D(𝔸f)D^{*}({\mathbb{A}}_{f}).

The main goal of this paper is to study the intersection cycle 𝒵𝒵𝔞{\mathcal{Z}}\cdot{\mathcal{Z}}_{{\mathfrak{a}}}, and to connect the intersection number i(𝒵𝒵𝔞)i({\mathcal{Z}}\cdot{\mathcal{Z}}_{{\mathfrak{a}}}) with the class numbers of “imaginary orders”.

5 Briney’s Theory

In this section we briefly recall Briney’s theory of intersections of quotients of algebraic varieties in [4]. Here we assume all varieties are (absolutely) irreducible and abstract as in [4].

5.1 Quotient varieties by finite groups

Fix an algebraically closed field LL. We will focus on quotients of an algebraic variety XX. Let 𝔤{\mathfrak{g}} be a finite subgroup of the group of all automorphisms of XX. Then one can look at the quotient X/𝔤X/{\mathfrak{g}} of XX by 𝔤{\mathfrak{g}}. We assume that X/𝔤X/{\mathfrak{g}} is an algebraic variety, i.e, every 𝔤{\mathfrak{g}}-orbit is contained in an affine open set in XX ([34, Section 1.4]). Then the natural projection map λ:XX/𝔤\lambda:X\longrightarrow X/{\mathfrak{g}} is a proper morphism. Moreover it is a covering map. If all σ𝔤\sigma\in{\mathfrak{g}} are defined over LL and LL is a field of definition of XX, we say that (X,𝔤)(X,{\mathfrak{g}}) is defined over LL.

Let (X,𝔤)(X,{\mathfrak{g}}) and (X,𝔤)(X^{\prime},{\mathfrak{g}}^{\prime}) be as in the previous paragraph. We say they are equivalent if there are surjective isomorphisms α:XX\alpha:X\longrightarrow X^{\prime} and β:𝔤𝔤\beta:{\mathfrak{g}}\longrightarrow{\mathfrak{g}}^{\prime} such that α(xσ)=α(x)β(σ)\alpha(x^{\sigma})=\alpha(x)^{\beta(\sigma)} for all xXx\in X and for all σ𝔤\sigma\in{\mathfrak{g}}. In this case, α\alpha gives us isomorphism of quotients α:X/𝔤X/𝔤\alpha^{\prime}:X/{\mathfrak{g}}\longrightarrow X^{\prime}/{\mathfrak{g}}^{\prime} such that λα=αλ\lambda^{\prime}\circ\alpha=\alpha^{\prime}\circ\lambda.

Now, let X,XX,X^{\prime} and YY be varieties such that there are morphisms θ:XY\theta:X\longrightarrow Y and θ:XY\theta^{\prime}:X^{\prime}\longrightarrow Y. Let 𝔤{\mathfrak{g}} and 𝔤{\mathfrak{g}}^{\prime} be finite subgroups of the automorphism groups of XX and XX^{\prime}, respectively. Then, each morphism splits through the associated quotient:

X\textstyle{X\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}λ\scriptstyle{\lambda}θ\scriptstyle{\theta}Y\textstyle{Y}X\textstyle{X^{\prime}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}λ\scriptstyle{\lambda^{\prime}}θ\scriptstyle{\theta^{\prime}}Y\textstyle{Y}X/𝔤\textstyle{X/{\mathfrak{g}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}τ\scriptstyle{\tau}X/𝔤\textstyle{X^{\prime}/{\mathfrak{g}}^{\prime}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}τ\scriptstyle{\tau^{\prime}}

We say (X,𝔤,θ)(X,{\mathfrak{g}},\theta) and (X,𝔤,θ)(X^{\prime},{\mathfrak{g}}^{\prime},\theta^{\prime}) are equivalent if (X,𝔤)(X,{\mathfrak{g}}) and (X,𝔤)(X^{\prime},{\mathfrak{g}}^{\prime}) are equivalent and if τ=τα\tau=\tau^{\prime}\circ\alpha^{\prime}. In other words every triangle in the following diagram commutes:

X\textstyle{X\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}λ\scriptstyle{\lambda}θ\scriptstyle{\theta}α\scriptstyle{\alpha}Y\textstyle{Y}X\textstyle{X^{\prime}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}λ\scriptstyle{\lambda^{\prime}}θ\scriptstyle{\theta^{\prime}}X/𝔤\textstyle{X/{\mathfrak{g}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}τ\scriptstyle{\tau}α\scriptstyle{\alpha^{\prime}}X/𝔤\textstyle{X^{\prime}/{\mathfrak{g}}^{\prime}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}τ\scriptstyle{\tau^{\prime}}

Now, we can define a quotient structure.

Definition 5.1.

A quotient structure on the variety YY is the equivalence classes of the ‘real’ quotients. More precisely, a quotient structure is the equivalence classes of the triples (X,𝔤,θ)(X,{\mathfrak{g}},\theta) such that τ:X/𝔤Y\tau:X/{\mathfrak{g}}\longrightarrow Y is an isomorphism ([4, Definition 2.1]). In this case we say YY is a quotient variety of XX by 𝔤{\mathfrak{g}} and is denoted by Y[X,𝔤,θ]Y\longleftarrow[X,{\mathfrak{g}},\theta].

Let XX be an algebraic variety and Y[X,𝔤,θ]Y\longleftarrow[X,{\mathfrak{g}},\theta] be a quotient variety of XX by 𝔤{\mathfrak{g}} as above. For a subvariety AYA\subseteq Y, a typical component of θ1(A)\theta^{-1}(A) will be denoted by AA^{\prime}. In this case we say AA^{\prime} lies over AA. For each AXA^{\prime}\subseteq X, we define the following two groups:

  1. 1.

    The splitting group of AA^{\prime} is defined as

    𝔤s(A)={σ𝔤(A)σ=A}.{\mathfrak{g}}^{s}(A^{\prime})=\{\sigma\in{\mathfrak{g}}\mid(A^{\prime})^{\sigma}=A^{\prime}\}.
  2. 2.

    The inertia group of AA^{\prime} is the group

    𝔤i(A)={σ𝔤xσ=x for all xA}.{\mathfrak{g}}^{i}(A^{\prime})=\{\sigma\in{\mathfrak{g}}\mid x^{\sigma}=x\hbox{ for all }x\in A^{\prime}\}.

For any subvariety AA of the quotient YY we associate certain numerical characters where AA^{\prime} denotes a typical component of θ1(A)\theta^{-1}(A):

  1. 1.

    The degree of AA^{\prime} over AA is defined as

    d(A)=[A:A].d(A)=[A^{\prime}:A].
  2. 2.

    The degree

    ds(A)=[A:A]sd_{s}(A)=[A^{\prime}:A]_{s}

    is called separable degree of AA^{\prime} over AA.

  3. 3.

    We define the inseparable degree of AA^{\prime} over AA as

    di(A)=[A:A]i.d_{i}(A)=[A^{\prime}:A]_{i}.
  4. 4.

    Define

    (A)=[𝔤i(A):1]/di(A),\ell(A)=[{\mathfrak{g}}^{i}(A^{\prime}):1]/d_{i}(A),

    which is analogous to the ramification index for a valuation ring.

Remark 5.2.

Let n(A)n(A) denote the number of components of θ1(A)\theta^{-1}(A) and g:=[𝔤:1]g:=[{\mathfrak{g}}:1]. We have the relation

n(A)d(A)(A)=g=n(A)ds(A)[𝔤i(A):1]n(A)d(A)\ell(A)=g=n(A)d_{s}(A)[{\mathfrak{g}}^{i}(A^{\prime}):1]

for any AYA\subseteq Y and any AXA^{\prime}\subseteq X lying over AA.

Note that the components of θ1(A)\theta^{-1}(A) are permuted transitively by the elements of 𝔤{\mathfrak{g}} ([5, Ch. V, Proposition 3 on p. 189]), so that the above characters depend only on AA and not on the choice of AA^{\prime}.

5.2 Intersection multiplicity and Projection formula

We recall the following theorem:

Theorem 5.3.

([18, Appendix A, Theorem 1.1]) There is a unique intersection theory for cycles modulo rational equivalence on the varieties which satisfies conditions A1-A7 in [18, Appendix A].

By this theorem we can talk about the intersection of smooth (quasi-) projective varieties. Briney’s theory enables us to extend the intersection theory of finite quotients of smooth (quasi-) projective varieties to not necessarily smooth ones by allowing rational multiplicities. First we define covering cycles.

Let X,YX,Y be (quasi-)projective (not necessarily smooth) varieties over LL. And, let θ:XY\theta:X\longrightarrow Y be the projection map as defined in the Definition 5.1. For any subvariety AYA\subset Y, let A1,,AnA^{\prime}_{1},\cdots,A^{\prime}_{n} be distinct irreducible components of θ1(A)\theta^{-1}(A). Set

A=j=1nAj.A^{*}=\sum_{j=1}^{n}A^{\prime}_{j}.

We call AA^{*} the covering cycle of AA.

By the projection map θ:XY\theta:X\longrightarrow Y, we get the following mappings on subvarieties

θz(A):=d(A)A\theta_{z}(A^{\prime}):=d(A)A

and

θz(A):=(A)A.\theta^{z}(A):=\ell(A)A^{*}.

One can extend the mappings θz\theta_{z} and θz\theta^{z} linearly to the cycles.

Remark 5.4.

For every cycle ZZ on YY we have θz(θz(Z))=gZ\theta_{z}(\theta^{z}(Z))=gZ, where g=[𝔤:1]g=[{\mathfrak{g}}:1]. This relation is a special case of projection formula (cf. Proposition 5.7).

Let A,BYA,B\subseteq Y and A,BA^{*},B^{*} be the corresponding covering cycles. Let PP be a proper component of ABA\cap B on YY.

We can compute the intersection multiplicity (P;AB)Y(P;A\cdot B)_{Y} by carrying over the multiplicities given on XX via the quotient map θ:XY\theta:X\longrightarrow Y.

Definition 5.5.

([4, Definition 3.2])

The intersection multiplicity of AA and BB at PP on YY is

(P;AB)Y=(A)(B)(P)(P;AB)X(P;A\cdot B)_{Y}=\frac{\ell(A)\ell(B)}{\ell(P)}(P^{\prime};A^{*}\cdot B^{*})_{X}

where PP^{\prime} is any component of PP^{*} and the multiplicity (P;AB)X(P^{\prime};A^{*}\cdot B^{*})_{X} is on XX.

Lemma 5.6.

([4, Lemma 2.6])

If ABA^{\prime}\cdot B^{*} is defined on XX, so is AσBA^{\prime\sigma}\cdot B^{*} for all σ𝔤\sigma\in{\mathfrak{g}}, and θz(AσB)=θz(AB)\theta_{z}^{\prime}(A^{\prime\sigma}\cdot B^{*})=\theta_{z}(A^{\prime}\cdot B^{*}). As a result,

θz(AB)=n(A)θz(AB).\theta_{z}(A^{*}\cdot B^{*})=n(A)\theta_{z}(A^{\prime}\cdot B^{*}).
Proposition 5.7.

([4, Proposition 3.3])

Let Z,TZ,T be cycles on YY and ZZ^{\prime} be cycle on XX.

  1. 1.

    If ZTZ\cdot T is defined on YY then θz(Z)θz(T)\theta^{z}(Z)\cdot\theta^{z}(T) is defined on XX. And in this case, we have

    θz(ZT)=θz(Z)θz(T).\theta^{z}(Z\cdot T)=\theta^{z}(Z)\cdot\theta^{z}(T).
  2. 2.

    (Projection formula) Zθz(T)Z^{\prime}\cdot\theta^{z}(T) is defined on XX iff θz(Z)T\theta_{z}(Z^{\prime})\cdot T is defined on YY. And in this case, we have

    θz(Zθz(T))=θz(Z)T.\theta_{z}(Z^{\prime}\cdot\theta^{z}(T))=\theta_{z}(Z^{\prime})\cdot T.
Remark 5.8.

Suppose that XX is projective and smooth over {\mathbb{C}}_{\infty}. Given two cycles Z1,Z2Z_{1}^{\prime},Z_{2}^{\prime} on XX with middle dimension which have transversal intersection, the intersection number i(Z1Z2)i(Z_{1}^{\prime}\cdot Z_{2}^{\prime}) is the counting number of their intersection points. By the moving lemma, this intersection number can be extended to every two cycles Z1,Z2Z_{1}^{\prime},Z_{2}^{\prime} on XX with middle dimension. Therefore for every two cycle T1,T2T_{1},T_{2} on YY with middle dimension, take a cycle Z1Z_{1}^{\prime} on XX so that θz(Z1)=dT1\theta_{z}(Z_{1}^{\prime})=d\cdot T_{1} for some dd\in{\mathbb{N}}. We may define the intersection number i(T1T2)i(T_{1}\cdot T_{2}) via the above projection formula:

i(T1T2)=1di(θz(Z1)T2):=1di(Z1θz(T2)).i(T_{1}\cdot T_{2})=\frac{1}{d}\cdot i(\theta_{z}(Z_{1}^{\prime})\cdot T_{2}):=\frac{1}{d}\cdot i(Z_{1}^{\prime}\cdot\theta^{z}(T_{2})).

6 Projection Formula for Hecke cycles

Let 𝔫{\mathfrak{n}} be a nonzero proper ideal of AA such that v𝔫v\nmid{\mathfrak{n}} for every v𝐑𝐚𝐦v\in{\bf Ram} and ordv(𝔞)ordv(𝔫){\rm ord}_{v}({\mathfrak{a}})\leq{\rm ord}_{v}({\mathfrak{n}}) for every v𝐑𝐚𝐦{}v\notin{\bf Ram}\cup\{\infty\}. The main result of this section is the following theorem:

Theorem 6.1.
i(𝒵𝒵𝔞)=1[𝒦:𝒦(𝔫)]g~i(𝒵(𝔫)𝒵(𝔫,g))i({\mathcal{Z}}\cdot{\mathcal{Z}}_{{\mathfrak{a}}})=\frac{1}{[{\mathcal{K}}:{\mathcal{K}}({\mathfrak{n}})]}\sum_{\tilde{g}}i({\mathcal{Z}}({\mathfrak{n}})\cdot{\mathcal{Z}}({\mathfrak{n}},g))

where the sum is taken over g~𝒦(𝔫)\(𝒟)D(𝔸f)/𝒦(𝔫)\tilde{g}\in{\mathcal{K}}({\mathfrak{n}})\backslash({\mathcal{D}}^{\infty})^{*}\cap D^{*}({\mathbb{A}}_{f})/{\mathcal{K}}({\mathfrak{n}}) with Nr(g)𝒪k=𝔞\text{\rm Nr}(g){\mathcal{O}}^{\infty}\cap k={\mathfrak{a}}.

The rest of the section is devoted to the proof this theorem.

6.1 Projection Formula

Let X(1),Xg,X(𝔫)X(1),X_{g},X({\mathfrak{n}}) and X(𝔫,g)X({\mathfrak{n}},g) be defined as before. As discussed in Proposition 4.8, we may write

X(1)=iX(1)iX(1)=\coprod_{i}X(1)_{i}
Xg=iXg,iX_{g}=\coprod_{i}X_{g,i}
X(𝔫)=ijX(𝔫)ijX({\mathfrak{n}})=\coprod_{i}\coprod_{j}X({\mathfrak{n}})_{ij}
X(𝔫,g)=ijX(𝔫,g)ijX({\mathfrak{n}},g)=\coprod_{i}\coprod_{j}X({\mathfrak{n}},g)_{ij}

In order to study the intersection 𝒵(𝔫)𝒵(𝔫,g){\mathcal{Z}}({\mathfrak{n}})\cdot{\mathcal{Z}}({\mathfrak{n}},g), we will be working over product of these varieties. More precisely we have

X(1)×X(1)=iX(1)i×iX(1)i,X(1)\times X(1)=\coprod_{i}X(1)_{i}\times\coprod_{i}X(1)_{i},

which can be written as follows: we define i¯=(i1,i2){\underline{i}}=(i_{1},i_{2}) as the tuple where i1i_{1} correspond to first component of X(1)×X(1)X(1)\times X(1) and i2i_{2} correspond to the second component, i.e., we can write

X(1)×X(1)=iX(1)i×iX(1)i=i¯(X(1)i1×X(1)i2).X(1)\times X(1)=\coprod_{i}X(1)_{i}\times\coprod_{i}X(1)_{i}=\coprod_{{\underline{i}}}(X(1)_{i_{1}}\times X(1)_{i_{2}}).

Similarly for i¯=(i1,i2){\underline{i}}=(i_{1},i_{2}) and j¯=(j1,j2){\underline{j}}=(j_{1},j_{2}) we can write

X(𝔫)×X(𝔫)=ijX(𝔫)ij×ijX(𝔫)ij=i¯j¯(X(𝔫)i1j1×X(𝔫)i2j2)X({\mathfrak{n}})\times X({\mathfrak{n}})=\coprod_{i}\coprod_{j}X({\mathfrak{n}})_{ij}\times\coprod_{i}\coprod_{j}X({\mathfrak{n}})_{ij}=\coprod_{{\underline{i}}}\coprod_{{\underline{j}}}(X({\mathfrak{n}})_{i_{1}j_{1}}\times X({\mathfrak{n}})_{i_{2}j_{2}})

Recall the definition of π𝔫,g\pi_{{\mathfrak{n}},g}:

π𝔫,g:X(𝔫,g)X(𝔫)×X(𝔫)\pi_{{\mathfrak{n}},g}:X({\mathfrak{n}},g)\longrightarrow X({\mathfrak{n}})\times X({\mathfrak{n}})

sending an element [z,b]𝔫,g[z,b]_{{\mathfrak{n}},g} to ([z,b]𝔫,[z,bg1]𝔫)([z,b]_{{\mathfrak{n}}},[z,bg^{-1}]_{{\mathfrak{n}}}), i.e, we have a morphism

ijX(𝔫,g)iji¯j¯(X(𝔫)i1j1×X(𝔫)i2j2).\coprod_{i}\coprod_{j}X({\mathfrak{n}},g)_{ij}\longrightarrow\coprod_{{\underline{i}}}\coprod_{{\underline{j}}}(X({\mathfrak{n}})_{i_{1}j_{1}}\times X({\mathfrak{n}})_{i_{2}j_{2}}).

In particular, π𝔫,g\pi_{{\mathfrak{n}},g} gives a morphism

X(𝔫,g)i0j0X(𝔫)i0j0×X(𝔫)i2j2,X({\mathfrak{n}},g)_{i_{0}j_{0}}\longrightarrow X({\mathfrak{n}})_{i_{0}j_{0}}\times X({\mathfrak{n}})_{i_{2}j_{2}},

where i2j2i_{2}j_{2} is determined by i0j0i_{0}j_{0} and gg. Moreover, let pr1:X(𝔫)×X(𝔫)X(𝔫)pr_{1}:X({\mathfrak{n}})\times X({\mathfrak{n}})\longrightarrow X({\mathfrak{n}}) be the projection to the first component (which projects X(𝔫)i0j0×X(𝔫)i2j2X({\mathfrak{n}})_{i_{0}j_{0}}\times X({\mathfrak{n}})_{i_{2}j_{2}} to X(𝔫)i0j0X({\mathfrak{n}})_{i_{0}j_{0}}). Then pr1π𝔫,g:X(𝔫,g)X(𝔫)pr_{1}\circ\pi_{{\mathfrak{n}},g}:X({\mathfrak{n}},g)\longrightarrow X({\mathfrak{n}}) coincides with the original covering map. So, we have the following relations between these objects:

X(𝔫,g)=ijX(𝔫,g)ij\textstyle{X({\mathfrak{n}},g)=\coprod_{i}\coprod_{j}X({\mathfrak{n}},g)_{ij}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Xg=iXg,i\textstyle{X_{g}=\coprod_{i}X_{g,i}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}X(𝔫)=ijX(𝔫)ij\textstyle{X({\mathfrak{n}})=\coprod_{i}\coprod_{j}X({\mathfrak{n}})_{ij}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}X(1)=iX(1)i\textstyle{X(1)=\coprod_{i}X(1)_{i}}

For i¯=(i1,i2){\underline{i}}=(i_{1},i_{2}) we define 𝒵1,i¯{\mathcal{Z}}_{1,{\underline{i}}} as the intersection of the cycle 𝒵1{\mathcal{Z}}_{1} on X(1)×X(1)X(1)\times X(1) and the i¯{\underline{i}}-th component of X(1)×X(1)X(1)\times X(1):

𝒵1,i¯:=𝒵1(X(1)i1×X(1)i2).{\mathcal{Z}}_{1,{\underline{i}}}:={\mathcal{Z}}_{1}\cap(X(1)_{i_{1}}\times X(1)_{i_{2}}).

Similarly, define

𝒵g,i¯:=𝒵g(X(1)i1×X(1)i2).{\mathcal{Z}}_{g,{\underline{i}}}:={\mathcal{Z}}_{g}\cap(X(1)_{i_{1}}\times X(1)_{i_{2}}).

For i¯=(i1,i2){\underline{i}}=(i_{1},i_{2}) and j¯=(j1,j2){\underline{j}}=(j_{1},j_{2}) define

𝒵(𝔫)i¯j¯=𝒵(𝔫)(X(𝔫)i1j1×X(𝔫)i2j2),{\mathcal{Z}}({\mathfrak{n}})_{{\underline{i}}{\underline{j}}}={\mathcal{Z}}({\mathfrak{n}})\cap(X({\mathfrak{n}})_{i_{1}j_{1}}\times X({\mathfrak{n}})_{i_{2}j_{2}}),
𝒵(𝔫,g)i¯j¯=𝒵(𝔫,g)(X(𝔫)i1j1×X(𝔫)i2j2).{\mathcal{Z}}({\mathfrak{n}},g)_{{\underline{i}}{\underline{j}}}={\mathcal{Z}}({\mathfrak{n}},g)\cap(X({\mathfrak{n}})_{i_{1}j_{1}}\times X({\mathfrak{n}})_{i_{2}j_{2}}).

Let X:=X(𝔫)×X(𝔫)X:=X({\mathfrak{n}})\times X({\mathfrak{n}}) and Y:=X(1)×X(1)Y:=X(1)\times X(1). One can see by definition that X(1)=X(𝔫)/(𝒦/𝔽q𝒦(𝔫))X(1)=X({\mathfrak{n}})/({\mathcal{K}}/{\mathbb{F}}_{q}^{*}{\mathcal{K}}({\mathfrak{n}})). By the map

X(𝔫)X(𝔫)/(𝒦/𝔽q𝒦(𝔫))X({\mathfrak{n}})\longrightarrow X({\mathfrak{n}})/({\mathcal{K}}/{\mathbb{F}}_{q}^{*}{\mathcal{K}}({\mathfrak{n}}))

one can define the map θ:XY\theta:X\longrightarrow Y. We denote by θi¯j¯\theta_{{\underline{i}}{\underline{j}}} for i¯=(i1,i2){\underline{i}}=(i_{1},i_{2}) and j¯=(j1,j2){\underline{j}}=(j_{1},j_{2}) the morphism θ\theta on the irreducible components (X(𝔫)×X(𝔫))i¯j¯(X(1)×X(1))i¯(X({\mathfrak{n}})\times X({\mathfrak{n}}))_{{\underline{i}}{\underline{j}}}\longrightarrow(X(1)\times X(1))_{{\underline{i}}}, i.e,

θi¯j¯:X(𝔫)i1j1×X(𝔫)i2j2X(1)i1×X(1)i2.\theta_{{\underline{i}}{\underline{j}}}:X({\mathfrak{n}})_{i_{1}j_{1}}\times X({\mathfrak{n}})_{i_{2}j_{2}}\longrightarrow X(1)_{i_{1}}\times X(1)_{i_{2}}.

We want to remark that in Section 5, the numerical components are defined for irreducible varieties. Let 𝒵{\mathcal{Z}} be a cycle of X(1)×X(1)X(1)\times X(1). Write 𝒵=i¯𝒵i¯{\mathcal{Z}}=\sum_{{\underline{i}}}{\mathcal{Z}}_{{\underline{i}}}. Let 𝒵i¯j¯{\mathcal{Z}}_{{\underline{i}}{\underline{j}}} be a component of θi¯j¯1(𝒵i¯)\theta_{{\underline{i}}{\underline{j}}}^{-1}({\mathcal{Z}}_{{\underline{i}}}). We define

di¯j¯(𝒵i¯):=[𝒵i¯j¯:𝒵i¯]:the degree of 𝒵i¯j¯ over 𝒵i¯,d_{{\underline{i}}{\underline{j}}}({\mathcal{Z}}_{{\underline{i}}}):=[{\mathcal{Z}}_{{\underline{i}}{\underline{j}}}:{\mathcal{Z}}_{{\underline{i}}}]:\mbox{the degree of }{\mathcal{Z}}_{{\underline{i}}{\underline{j}}}\mbox{ over }{\mathcal{Z}}_{{\underline{i}}},
di¯j¯s(𝒵i¯):=[𝒵i¯j¯:𝒵i¯]s:the separable degree of 𝒵i¯j¯ over 𝒵i¯d_{{\underline{i}}{\underline{j}}}^{s}({\mathcal{Z}}_{{\underline{i}}}):=[{\mathcal{Z}}_{{\underline{i}}{\underline{j}}}:{\mathcal{Z}}_{{\underline{i}}}]_{s}:\mbox{the separable degree of }{\mathcal{Z}}_{{\underline{i}}{\underline{j}}}\mbox{ over }{\mathcal{Z}}_{{\underline{i}}}

and

di¯j¯i(𝒵i¯):=[𝒵i¯j¯:𝒵i¯]i:the inseparable degree of 𝒵i¯j¯ over 𝒵i¯.d_{{\underline{i}}{\underline{j}}}^{i}({\mathcal{Z}}_{{\underline{i}}}):=[{\mathcal{Z}}_{{\underline{i}}{\underline{j}}}:{\mathcal{Z}}_{{\underline{i}}}]_{i}:\mbox{the inseparable degree of }{\mathcal{Z}}_{{\underline{i}}{\underline{j}}}\mbox{ over }{\mathcal{Z}}_{{\underline{i}}}.

In particular, one has

j¯di¯j¯(𝒵i¯)=[X(𝔫):X(1)]=[𝒦:𝔽q𝒦(𝔫)] for every i¯.\sum_{{\underline{j}}}d_{{\underline{i}}{\underline{j}}}({\mathcal{Z}}_{{\underline{i}}})=[X({\mathfrak{n}}):X(1)]=[{\mathcal{K}}:{\mathbb{F}}_{q}^{*}{\mathcal{K}}({\mathfrak{n}})]\quad\text{ for every ${{\underline{i}}}$.}

Unlike Briney, we used the upper script ss and ii to point out the separable and inseparable degrees to avoid confusion with the irreducible component indices i¯j¯{\underline{i}}{\underline{j}}.

Note that in our case, we have the “Galois group” 𝔤=𝒦/𝔽q𝒦(𝔫)×𝒦/𝔽q𝒦(𝔫){\mathfrak{g}}={\mathcal{K}}/{\mathbb{F}}_{q}^{*}{\mathcal{K}}({\mathfrak{n}})\times{\mathcal{K}}/{\mathbb{F}}_{q}^{*}{\mathcal{K}}({\mathfrak{n}}) and so

[X(𝔫)×X(𝔫):X(1)×X(1)]=[𝒦:𝔽q𝒦(𝔫)]2.[X({\mathfrak{n}})\times X({\mathfrak{n}}):X(1)\times X(1)]=[{\mathcal{K}}:{\mathbb{F}}_{q}^{*}{\mathcal{K}}({\mathfrak{n}})]^{2}.

In particular:

let 𝔤i¯j¯{\mathfrak{g}}_{{\underline{i}}{\underline{j}}} be the Galois group associated with the irreducible component (X(𝔫)×X(𝔫))i¯j¯(X(1)×X(1))i¯(X({\mathfrak{n}})\times X({\mathfrak{n}}))_{{\underline{i}}{\underline{j}}}\rightarrow(X(1)\times X(1))_{{\underline{i}}}, of the covering X(𝔫)×X(𝔫)X(1)×X(1)X({\mathfrak{n}})\times X({\mathfrak{n}})\rightarrow X(1)\times X(1). Then 𝔤i¯j¯{\mathfrak{g}}_{{\underline{i}}{\underline{j}}} is a subgroup of 𝔤{\mathfrak{g}}. Also:

Lemma 6.2.

We have i¯j¯(𝒵g,i)=1\ell_{{\underline{i}}{\underline{j}}}({\mathcal{Z}}_{g,i})=1.

Proof.

Given σ𝔤i¯j¯i(𝒵(𝔫,g)i¯j¯)\sigma\in{\mathfrak{g}}_{{\underline{i}}{\underline{j}}}^{i}({\mathcal{Z}}({\mathfrak{n}},g)_{{\underline{i}}{\underline{j}}}) represented by (κ1,κ2)(\kappa_{1},\kappa_{2}) for κ1,κ2𝒦\kappa_{1},\kappa_{2}\in{\mathcal{K}}, one has that for every x=([z,b],[z,bg1])x=([z,b],[z,bg^{-1}]) in 𝒵(𝔫,g)i¯j¯{\mathcal{Z}}({\mathfrak{n}},g)_{{\underline{i}}{\underline{j}}},

([z,bκ1]𝔫,[z,bg1κ2]𝔫)=xσ=x=([z,b]𝔫,[z,bg1]𝔫).([z,b\kappa_{1}]_{{\mathfrak{n}}},[z,bg^{-1}\kappa_{2}]_{{\mathfrak{n}}})=x^{\sigma}=x=([z,b]_{{\mathfrak{n}}},[z,bg^{-1}]_{{\mathfrak{n}}}).

As this equality holds for every zΩrz\in\Omega_{r}, we must get κ1,κ2𝔽q𝒦(𝔫)\kappa_{1},\kappa_{2}\in{\mathbb{F}}_{q}^{*}{\mathcal{K}}({\mathfrak{n}}), which means that σ=1\sigma=1. Hence we get [𝔤i¯j¯i(𝒵(𝔫,g)i¯j¯):1]=1[{\mathfrak{g}}_{{\underline{i}}{\underline{j}}}^{i}({\mathcal{Z}}({\mathfrak{n}},g)_{{\underline{i}}{\underline{j}}}):1]=1.

Moreover, the fact that di¯j¯i(𝒵g,i¯)=1d_{{\underline{i}}{\underline{j}}}^{i}({\mathcal{Z}}_{g,{\underline{i}}})=1 follows from the fact that X(𝔫,g)ijXg,iX({\mathfrak{n}},g)_{ij}\rightarrow X_{g,i} is a Galois covering. Therefore,

i¯j¯(𝒵g,i)=[𝔤i¯j¯i(𝒵(𝔫,g)i¯j¯):1]di¯j¯i(𝒵g,i¯)=1.\ell_{{\underline{i}}{\underline{j}}}({\mathcal{Z}}_{g,i})=\frac{[{\mathfrak{g}}_{{\underline{i}}{\underline{j}}}^{i}({\mathcal{Z}}({\mathfrak{n}},g)_{{\underline{i}}{\underline{j}}}):1]}{d_{{\underline{i}}{\underline{j}}}^{i}({\mathcal{Z}}_{g,{\underline{i}}})}=1.

Now, assume that ordv(𝔞)ordv(𝔫){\rm ord}_{v}({\mathfrak{a}})\leq{\rm ord}_{v}({\mathfrak{n}}) for every v𝐑𝐚𝐦{}v\notin{\bf Ram}\cup\{\infty\}, which implies that g𝒦(𝔫)g1,g1𝒦(𝔫)g𝒦g{\mathcal{K}}({\mathfrak{n}})g^{-1},g^{-1}{\mathcal{K}}({\mathfrak{n}})g\subset{\mathcal{K}} as Nr(g)𝒪k=𝔞{\rm Nr}(g){\mathcal{O}}^{\infty}\cap k={\mathfrak{a}}. Put

𝔞:={gD(𝔸f)𝒟Nr(g)𝒪k=𝔞}.{\mathcal{H}}_{{\mathfrak{a}}}:=\{g\in D^{*}({\mathbb{A}}_{f})\cap{\mathcal{D}}^{\infty}\mid{\rm Nr}(g){\mathcal{O}}^{\infty}\cap k={\mathfrak{a}}\}.

We can rewrite g~𝒦(𝔫)\𝔞/𝒦(𝔫)𝒵(𝔫,g)𝒵(𝔫)\sum_{\tilde{g}\in{\mathcal{K}}({\mathfrak{n}})\backslash{\mathcal{H}}_{{\mathfrak{a}}}/{\mathcal{K}}({\mathfrak{n}})}{\mathcal{Z}}({\mathfrak{n}},g)\cdot{\mathcal{Z}}({\mathfrak{n}}) as

g~𝒦(𝔫)\𝔞/𝒦(𝔫)𝒵(𝔫,g)𝒵(𝔫)\displaystyle\sum_{\tilde{g}\in{\mathcal{K}}({\mathfrak{n}})\backslash{\mathcal{H}}_{{\mathfrak{a}}}/{\mathcal{K}}({\mathfrak{n}})}{\mathcal{Z}}({\mathfrak{n}},g)\cdot{\mathcal{Z}}({\mathfrak{n}}) =g~𝒦(𝔫)\𝔞/𝒦(𝔫)i¯,j¯𝒵(𝔫,g)i¯j¯𝒵(𝔫)i¯j¯\displaystyle=\sum_{\tilde{g}\in{\mathcal{K}}({\mathfrak{n}})\backslash{\mathcal{H}}_{{\mathfrak{a}}}/{\mathcal{K}}({\mathfrak{n}})}\sum_{{\underline{i}},{\underline{j}}}{\mathcal{Z}}({\mathfrak{n}},g)_{{\underline{i}}{\underline{j}}}\cdot{\mathcal{Z}}({\mathfrak{n}})_{{\underline{i}}{\underline{j}}}
=g¯𝒦\𝔞/𝒦(κ1,κ2)(𝒦/𝒦(n))2/Hgi¯,j¯𝒵(𝔫,κ11gκ2)i¯j¯𝒵(𝔫)i¯j¯,\displaystyle=\sum_{\bar{g}\in{\mathcal{K}}\backslash{\mathcal{E}}_{{\mathfrak{a}}}/{\mathcal{K}}}\sum_{(\kappa_{1},\kappa_{2})\in({\mathcal{K}}/{\mathcal{K}}(n))^{2}/H_{g}}\sum_{{\underline{i}},{\underline{j}}}{\mathcal{Z}}({\mathfrak{n}},\kappa_{1}^{-1}g\kappa_{2})_{{\underline{i}}{\underline{j}}}\cdot{\mathcal{Z}}({\mathfrak{n}})_{{\underline{i}}{\underline{j}}},

where Hg={(κ,g1κg)κ𝒦g/𝒦(𝔫,g)}H_{g}=\{(\kappa,g^{-1}\kappa g)\mid\kappa\in{\mathcal{K}}_{g}/{\mathcal{K}}({\mathfrak{n}},g)\}. Note that 𝒵(𝔫)i¯j¯{\mathcal{Z}}({\mathfrak{n}})_{{\underline{i}}{\underline{j}}} is nonempty if and only if i¯=(i,i){\underline{i}}=(i,i) and j¯=(j,j){\underline{j}}=(j,j). Thus we do not need to take all pairs (κ1,κ2)(\kappa_{1},\kappa_{2}) into account. More precisely, for every open compact subgroup UU of D(𝔸f)D^{*}({\mathbb{A}}_{f}), let U:={gUNr(g)𝔽q}U^{\flat}:=\{g\in U\mid{\rm Nr}(g)\in{\mathbb{F}}_{q}^{*}\}. Then

(κ1,κ2)(𝒦/𝒦(n))2/Hgi¯,j¯𝒵(𝔫,κ11gκ2)i¯j¯𝒵(𝔫)i¯j¯\displaystyle\sum_{(\kappa_{1},\kappa_{2})\in({\mathcal{K}}/{\mathcal{K}}(n))^{2}/H_{g}}\sum_{{\underline{i}},{\underline{j}}}{\mathcal{Z}}({\mathfrak{n}},\kappa_{1}^{-1}g\kappa_{2})_{{\underline{i}}{\underline{j}}}\cdot{\mathcal{Z}}({\mathfrak{n}})_{{\underline{i}}{\underline{j}}}
=\displaystyle= (q1)(κ1,κ2)(𝒦/𝔽q𝒦(n))2/Hgi¯,j¯𝒵(𝔫,κ11gκ2)i¯j¯𝒵(𝔫)i¯j¯,\displaystyle(q-1)\cdot\sum_{(\kappa_{1},\kappa_{2})\in({\mathcal{K}}^{\flat}/{\mathbb{F}}_{q}^{*}{\mathcal{K}}(n)^{\flat})^{2}/H_{g}^{\flat}}\sum_{{\underline{i}},{\underline{j}}}{\mathcal{Z}}({\mathfrak{n}},\kappa_{1}^{-1}g\kappa_{2})_{{\underline{i}}{\underline{j}}}\cdot{\mathcal{Z}}({\mathfrak{n}})_{{\underline{i}}{\underline{j}}},

where Hg:={(κ,g1κg)κ𝒦g/𝔽q𝒦(𝔫,g)}H_{g}^{\flat}:=\{(\kappa,g^{-1}\kappa g)\mid\kappa\in{\mathcal{K}}_{g}^{\flat}/{\mathbb{F}}_{q}^{*}{\mathcal{K}}({\mathfrak{n}},g)^{\flat}\}. Moreover:

Lemma 6.3.

We have

θi¯j¯z(𝒵g,i¯)=(κ1,κ2)(𝒦/𝔽q𝒦(𝔫))2/Hg𝒵(𝔫,κ11gκ2)i¯j¯.\theta_{{\underline{i}}{\underline{j}}}^{z}({\mathcal{Z}}_{g,{\underline{i}}})=\sum_{(\kappa_{1},\kappa_{2})\in({\mathcal{K}}^{\flat}/{\mathbb{F}}_{q}^{*}{\mathcal{K}}({\mathfrak{n}})^{\flat})^{2}/H^{\flat}_{g}}{\mathcal{Z}}({\mathfrak{n}},\kappa_{1}^{-1}g\kappa_{2})_{{\underline{i}}{\underline{j}}}.
Proof.

By definition one has

θi¯j¯z(𝒵g,i¯)=i¯j¯(𝒵g,i¯)𝒵g,i¯\theta_{{\underline{i}}{\underline{j}}}^{z}({\mathcal{Z}}_{g,{\underline{i}}})=\ell_{{\underline{i}}{\underline{j}}}({\mathcal{Z}}_{g,{\underline{i}}}){\mathcal{Z}}_{g,{\underline{i}}}^{*}

where 𝒵g,i¯{\mathcal{Z}}_{g,{\underline{i}}}^{*} is the sum of the irreducible components of θi¯j¯1(𝒵g,i¯)\theta_{{\underline{i}}{\underline{j}}}^{-1}({\mathcal{Z}}_{g,{\underline{i}}}). Note that the Galois group of the covering map (X(𝔫)×X(𝔫))i¯j¯(X(1)×X(1))i¯(X({\mathfrak{n}})\times X({\mathfrak{n}}))_{{\underline{i}}{\underline{j}}}\rightarrow(X(1)\times X(1))_{{\underline{i}}} can be identified with (𝒦/𝔽q𝒦(𝔫))2({\mathcal{K}}^{\flat}/{\mathbb{F}}_{q}^{*}{\mathcal{K}}({\mathfrak{n}})^{\flat})^{2}, and one checks that

𝒵(𝔫,g)i¯j¯(κ1,κ2)=𝒵(𝔫,g)i¯j¯if and only if (κ1,κ2)Hg.{\mathcal{Z}}({\mathfrak{n}},g)_{{\underline{i}}{\underline{j}}}^{(\kappa_{1},\kappa_{2})}={\mathcal{Z}}({\mathfrak{n}},g)_{{\underline{i}}{\underline{j}}}\quad\text{if and only if }\quad(\kappa_{1},\kappa_{2})\in H_{g}^{\flat}.

Since i¯j¯(𝒵g,i¯)=1\ell_{{\underline{i}}{\underline{j}}}({\mathcal{Z}}_{g,{\underline{i}}})=1 by Lemma 6.2, we get

θi¯j¯z(𝒵g,i¯)=(κ1,κ2)(𝒦/𝔽q𝒦(𝔫))2/Hg𝒵(𝔫,g)i¯j¯(κ1,κ2).\theta_{{\underline{i}}{\underline{j}}}^{z}({\mathcal{Z}}_{g,{\underline{i}}})=\sum_{(\kappa_{1},\kappa_{2})\in({\mathcal{K}}^{\flat}/{\mathbb{F}}_{q}^{*}{\mathcal{K}}({\mathfrak{n}})^{\flat})^{2}/H^{\flat}_{g}}{\mathcal{Z}}({\mathfrak{n}},g)_{{\underline{i}}{\underline{j}}}^{(\kappa_{1},\kappa_{2})}.

Therefore, it remains to show 𝒵(𝔫,g)i¯j¯(κ1,κ2)=𝒵(𝔫,κ11gκ2)i¯j¯{\mathcal{Z}}({\mathfrak{n}},g)_{{\underline{i}}{\underline{j}}}^{(\kappa_{1},\kappa_{2})}={\mathcal{Z}}({\mathfrak{n}},\kappa_{1}^{-1}g\kappa_{2})_{{\underline{i}}{\underline{j}}}, which follows from the identity

𝒵(𝔫,g)(κ1,κ2)=𝒵(𝔫,κ11gκ2),κ1,κ2𝒦.{\mathcal{Z}}({\mathfrak{n}},g)^{(\kappa_{1},\kappa_{2})}={\mathcal{Z}}({\mathfrak{n}},\kappa_{1}^{-1}g\kappa_{2}),\quad\forall\kappa_{1},\kappa_{2}\in{\mathcal{K}}.

Remark 6.4.

It is known that the self-intersection number i(𝒵(𝔫)𝒵(𝔫))=i¯j¯i(𝒵(𝔫)i¯j¯𝒵(𝔫)i¯j¯)i({\mathcal{Z}}({\mathfrak{n}})\cdot{\mathcal{Z}}({\mathfrak{n}}))=\sum_{{\underline{i}}{\underline{j}}}i({\mathcal{Z}}({\mathfrak{n}})_{{\underline{i}}{\underline{j}}}\cdot{\mathcal{Z}}({\mathfrak{n}})_{{\underline{i}}{\underline{j}}}) is equal to χ(X(𝔫))\chi\big{(}X({\mathfrak{n}})\big{)}, the “Euler–Poincaré characteristic of 𝒵(𝔫){\mathcal{Z}}({\mathfrak{n}})”. We refer the reader to Section 8.2 for further discussion and the precise formula for χ(X(𝔫))\chi\big{(}X({\mathfrak{n}})\big{)}.

Proof of Theorem 6.1. From the previous discussion with the projection formula, we then get that

g~𝒦(𝔫)\𝔞/𝒦(𝔫)i(𝒵(𝔫,g)𝒵(𝔫))\displaystyle\sum_{\tilde{g}\in{\mathcal{K}}({\mathfrak{n}})\backslash{\mathcal{H}}_{{\mathfrak{a}}}/{\mathcal{K}}({\mathfrak{n}})}i({\mathcal{Z}}({\mathfrak{n}},g)\cdot{\mathcal{Z}}({\mathfrak{n}})) =\displaystyle= (q1)g¯𝒦\𝔞/𝒦i¯,j¯i(θi¯j¯z(𝒵g,i¯)𝒵(𝔫)i¯j¯)\displaystyle(q-1)\cdot\sum_{\bar{g}\in{\mathcal{K}}\backslash{\mathcal{H}}_{{\mathfrak{a}}}/{\mathcal{K}}}\sum_{{\underline{i}},{\underline{j}}}i\big{(}\theta^{z}_{{\underline{i}}{\underline{j}}}({\mathcal{Z}}_{g,{\underline{i}}})\cdot{\mathcal{Z}}({\mathfrak{n}})_{{\underline{i}}{\underline{j}}}\big{)}
=\displaystyle= (q1)[𝒦:𝔽q𝒦(𝔫)]g¯𝒦\𝔞/𝒦i¯i(𝒵g,i¯𝒵1,i¯)\displaystyle(q-1)\cdot[{\mathcal{K}}:{\mathbb{F}}_{q}^{*}{\mathcal{K}}({\mathfrak{n}})]\cdot\sum_{\bar{g}\in{\mathcal{K}}\backslash{\mathcal{H}}_{{\mathfrak{a}}}/{\mathcal{K}}}\sum_{{\underline{i}}}i({\mathcal{Z}}_{g,{\underline{i}}}\cdot{\mathcal{Z}}_{1,{\underline{i}}})
=\displaystyle= [𝒦:𝒦(𝔫)]i(𝒵𝒵𝔞).\displaystyle[{\mathcal{K}}:{\mathcal{K}}({\mathfrak{n}})]\cdot i({\mathcal{Z}}\cdot{\mathcal{Z}}_{{\mathfrak{a}}}).

Therefore the result holds. \Box

In the next section, we will determine the transversality of the intersection 𝒵(𝔫,g)𝒵(𝔫){\mathcal{Z}}({\mathfrak{n}},g)\cdot{\mathcal{Z}}({\mathfrak{n}}) when 𝒵(𝔫,g)𝒵(𝔫){\mathcal{Z}}({\mathfrak{n}},g)\neq{\mathcal{Z}}({\mathfrak{n}}).

7 Transversal intersection

We start with recalling the following lemma:

Lemma 7.1.

([15, Chapter 3, Exercise 6.7])

Let FF be a field, let XX be a kk-scheme, and let Y1Y_{1} and Y2Y_{2} be closed subschemes of XX and let Y1Y2Y_{1}\cap Y_{2} be their schematic intersection. Let x(Y1Y2)(F)x\in(Y_{1}\cap Y_{2})(F) be an FF-valued point and assume that XX, Y1Y_{1}, and Y2Y_{2} are smooth at xx over FF of relative dimension d,dc1d,d-c_{1} and dc2d-c_{2}, respectively. The following assertions are equivalent.

  1. 1.

    Y1Y2Y_{1}\cap Y_{2} is smooth of relative dimension d(c1+c2)d-(c_{1}+c_{2}).

  2. 2.

    TxY1+TxY2=TxXT_{x}Y_{1}+T_{x}Y_{2}=T_{x}X.

Here TxYiT_{x}Y_{i} is the tangent space of YiY_{i} at xx for i=1,2i=1,2, regarding as subspaces of TxXT_{x}X, the tangent space of XX at xx.

If these equivalent conditions are satisfied, we say that Y1Y_{1} and Y2Y_{2} intersect transversally.

Recall that we defined a morphism

π𝔫,g:X(𝔫,g)X(𝔫)×X(𝔫)\pi_{{\mathfrak{n}},g}:X({\mathfrak{n}},g)\longrightarrow X({\mathfrak{n}})\times X({\mathfrak{n}})

for every gD(𝔸f)g\in D^{*}({\mathbb{A}}_{f}) in Section 4.2. Put

𝕏(𝔫,g):=π𝔫,g(X(𝔫,g)) and 𝕏(𝔫):=𝕏(𝔫,1).{\mathbb{X}}({\mathfrak{n}},g):=\pi_{{\mathfrak{n}},g}(X({\mathfrak{n}},g))\quad\text{ and }\quad{\mathbb{X}}({\mathfrak{n}}):={\mathbb{X}}({\mathfrak{n}},1).

As 𝕏(𝔫,g){\mathbb{X}}({\mathfrak{n}},g) and 𝕏(𝔫){\mathbb{X}}({\mathfrak{n}}) are both smooth of dimension r1r-1 in X(𝔫)×X(𝔫)X({\mathfrak{n}})\times X({\mathfrak{n}}) (which has dimension 2r22r-2), showing the transversality of the intersection 𝕏(𝔫)𝕏(𝔫,g){\mathbb{X}}({\mathfrak{n}})\cap{\mathbb{X}}({\mathfrak{n}},g) reduces to verify that the intersection of the corresponding “tangent spaces” at each intersection point is trivial. To proceed, we will now consider our objects as rigid analytic spaces, and study the corresponding tangent spaces via their rigid analytic uniformization.

Recall the following identification in Proposition 4.8:

X(𝔫)×X(𝔫)=(iX(𝔫)i)×(jX(𝔫)j)(iΓi\Ωr)×(jΓj\Ωr).X({\mathfrak{n}})\times X({\mathfrak{n}})=\Big{(}\coprod_{i}X({\mathfrak{n}})_{i}\Big{)}\times\Big{(}\coprod_{j}X({\mathfrak{n}})_{j}\Big{)}\simeq\Big{(}\coprod_{i}\Gamma_{i}\backslash\Omega_{r}\Big{)}\times\Big{(}\coprod_{j}\Gamma_{j}\backslash\Omega_{r}\Big{)}.

Put γ:={(z,γz)zΩr}{\mathbb{H}}_{\gamma}:=\{(z,\gamma z)\mid z\in\Omega_{r}\} for every γDGLr(k)\gamma\in D_{\infty}^{*}\cong\operatorname{GL}_{r}(k_{\infty}). Then

𝕏(𝔫)iΓi\1, where Γi acts diagonally on 1.{\mathbb{X}}({\mathfrak{n}})\simeq\coprod_{i}\Gamma_{i}\backslash{\mathbb{H}}_{1},\quad\text{ where $\Gamma_{i}$ acts diagonally on ${\mathbb{H}}_{1}$}.

Similarly, there exist elements γijD\gamma_{ij}\in D^{*} and arithmetic subgroups Γ𝔫,γijD\Gamma_{{\mathfrak{n}},\gamma_{ij}}\subset D_{\infty}^{*} such that

𝕏(𝔫,g)=i,j𝕏(𝔫,g)ij,{\mathbb{X}}({\mathfrak{n}},g)=\coprod_{i,j}{\mathbb{X}}({\mathfrak{n}},g)_{ij},

where

𝕏(𝔫,g)ij:=𝕏(𝔫,g)(X(𝔫)i×X(𝔫)j)Γ𝔫,γij\γij(Γi×Γj)\(Ωr×Ωr).{\mathbb{X}}({\mathfrak{n}},g)_{ij}:={\mathbb{X}}({\mathfrak{n}},g)\cap\big{(}X({\mathfrak{n}})_{i}\times X({\mathfrak{n}})_{j}\big{)}\simeq\Gamma_{{\mathfrak{n}},\gamma_{ij}}\backslash{\mathbb{H}}_{\gamma_{ij}}\subset(\Gamma_{i}\times\Gamma_{j})\backslash(\Omega_{r}\times\Omega_{r}).

Here Γ𝔫,γij\Gamma_{{\mathfrak{n}},\gamma_{ij}} acts diagonally on γij{\mathbb{H}}_{\gamma_{ij}} as well. Let α𝕏(𝔫,g)𝕏(𝔫)\alpha\in{\mathbb{X}}({\mathfrak{n}},g)\cap{\mathbb{X}}({\mathfrak{n}}). Since the covering ΩrΓi\Ωr\Omega_{r}\longrightarrow\Gamma_{i}\backslash\Omega_{r} is étale and the intersection behavior is a local property, it is sufficient to lift α\alpha to a point (still denoted by α\alpha by abuse of notation) in γ1Ωr×Ωr{\mathbb{H}}_{\gamma}\cap{\mathbb{H}}_{1}\subset\Omega_{r}\times\Omega_{r} for some nonconstant γD\gamma\in D^{*}.

Lemma 7.2.

Suppose rr is a prime number distinct from the characteristic of kk. Given γDDGLr(k)\gamma\in D^{*}\subset D_{\infty}^{*}\cong\operatorname{GL}_{r}(k_{\infty}) such that γ1{\mathbb{H}}_{\gamma}\neq{\mathbb{H}}_{1}, suppose there exists αγ1Ωr×Ωr\alpha\in{\mathbb{H}}_{\gamma}\cap{\mathbb{H}}_{1}\subset\Omega_{r}\times\Omega_{r}. Let TαΩr2r1×r1T_{\alpha}\Omega_{r}^{2}\cong{\mathbb{C}}_{\infty}^{r-1}\times{\mathbb{C}}_{\infty}^{r-1} be the tangent space of Ωr×Ωr\Omega_{r}\times\Omega_{r} at α\alpha, and TαγT_{\alpha}{\mathbb{H}}_{\gamma} be the tangent space of γ{\mathbb{H}}_{\gamma} at α\alpha (regarded as a subspace of TαΩr2T_{\alpha}\Omega_{r}^{2} via the inclusion γΩr×Ωr{\mathbb{H}}_{\gamma}\subset\Omega_{r}\times\Omega_{r}). Then TαγTα1={0}T_{\alpha}{\mathbb{H}}_{\gamma}\cap T_{\alpha}{\mathbb{H}}_{1}=\{0\}.

Proof.

For simplicity, we may identify Ωr\Omega_{r} with

{(z1zr1)r1|c1z1++cr1zr1+cr0,0(c1,,cr)kr}.\left\{\begin{pmatrix}z_{1}\\ \vdots\\ z_{r-1}\end{pmatrix}\in{\mathbb{C}}_{\infty}^{r-1}\ \Bigg{|}\ c_{1}z_{1}+\cdots+c_{r-1}z_{r-1}+c_{r}\neq 0,\ \forall 0\neq(c_{1},...,c_{r})\in k_{\infty}^{r}\right\}.

Given

z=(z1zr1)Ωr and γ=(a11a1rar1arr)GLr(k),z=\begin{pmatrix}z_{1}\\ \vdots\\ z_{r-1}\end{pmatrix}\in\Omega_{r}\quad\mbox{ and }\quad\gamma=\begin{pmatrix}a_{11}&\cdots&a_{1r}\\ \vdots&\ddots&\vdots\\ a_{r1}&\cdots&a_{rr}\end{pmatrix}\in\operatorname{GL}_{r}(k_{\infty}),

write

(w1wr1wr):=(a11a1rar1arr)(z1zr11),which saysw:=γz=(w1/wrwr1/wr)Ωr.\begin{pmatrix}w_{1}\\ \vdots\\ w_{r-1}\\ w_{r}\end{pmatrix}:=\begin{pmatrix}a_{11}&\cdots&a_{1r}\\ \vdots&\ddots&\vdots\\ a_{r1}&\cdots&a_{rr}\end{pmatrix}\begin{pmatrix}z_{1}\\ \vdots\\ z_{r-1}\\ 1\end{pmatrix},\quad\text{which says}\quad w:=\gamma z=\begin{pmatrix}w_{1}/w_{r}\\ \vdots\\ w_{r-1}/w_{r}\end{pmatrix}\in\Omega_{r}.

Regarding w1,,wrw_{1},...,w_{r} as functions in z1,,zr1z_{1},...,z_{r-1}, let jw\partial_{j}w be the partial derivative of ww with respect to zjz_{j}, i.e,

jw=(zjw1wrzjwr1wr) and zjwiwr=wr1(aijarjwiwr),1i,jr1.\partial_{j}w=\begin{pmatrix}\frac{\partial}{\partial z_{j}}\frac{w_{1}}{w_{r}}\\ \vdots\\ \frac{\partial}{\partial z_{j}}\frac{w_{r-1}}{w_{r}}\end{pmatrix}\quad\text{ and }\quad\frac{\partial}{\partial z_{j}}\frac{w_{i}}{w_{r}}=w_{r}^{-1}(a_{ij}-a_{rj}\frac{w_{i}}{w_{r}}),\quad 1\leq i,j\leq r-1. (7.1)

Then for every α=(zo,γzo)γ\alpha=(z^{o},\gamma z^{o})\in{\mathbb{H}}_{\gamma}, the tangent space TαγT_{\alpha}{\mathbb{H}}_{\gamma} is spanned by the vectors

((10),(1w)(zo)),,((01),(r1w)(zo))r1×r1TΩr2,α.\big{(}\begin{pmatrix}1\\ \vdots\\ 0\end{pmatrix},(\partial_{1}w)(z^{o})\big{)},...,\big{(}\begin{pmatrix}0\\ \vdots\\ 1\end{pmatrix},(\partial_{r-1}w)(z^{o})\big{)}\quad\in{\mathbb{C}}_{\infty}^{r-1}\times{\mathbb{C}}_{\infty}^{r-1}\cong T_{\Omega_{r}^{2},\alpha}.

In particular, the tangent space T(zo,zo)1T_{(z^{o},z^{o})}{\mathbb{H}}_{1} is spanned by the vectors

((10),(10),,((01),(01))r1×r1TΩr2,(zo,zo).\big{(}\begin{pmatrix}1\\ \vdots\\ 0\end{pmatrix},\begin{pmatrix}1\\ \vdots\\ 0\end{pmatrix},...,\big{(}\begin{pmatrix}0\\ \vdots\\ 1\end{pmatrix},\begin{pmatrix}0\\ \vdots\\ 1\end{pmatrix}\big{)}\quad\in{\mathbb{C}}_{\infty}^{r-1}\times{\mathbb{C}}_{\infty}^{r-1}\cong T_{\Omega_{r}^{2},(z^{o},z^{o})}.

Suppose that αγ1\alpha\in{\mathbb{H}}_{\gamma}\cap{\mathbb{H}}_{1}, i.e. γzo=zo\gamma z^{o}=z^{o}. Write

zo=(z1ozr1o)andwio:=wi(zo), 1ir1.z^{o}=\begin{pmatrix}z^{o}_{1}\\ \vdots\\ z^{o}_{r-1}\end{pmatrix}\quad\text{and}\quad w_{i}^{o}:=w_{i}(z^{o}),\ 1\leq i\leq r-1.

Then γzo=zo\gamma z^{o}=z^{o} implies that wio/wro=ziow_{i}^{o}/w_{r}^{o}=z_{i}^{o} for 1ir11\leq i\leq r-1, and

A(z1ozr1o1)=0, where A:=(a11wroa12a1ra21a22wroa2rar1ar2arrwro).A\begin{pmatrix}z_{1}^{o}\\ \vdots\\ z_{r-1}^{o}\\ 1\end{pmatrix}=0,\quad\text{ where }A:=\begin{pmatrix}a_{11}-w_{r}^{o}&a_{12}&\cdots&a_{1r}\\ a_{21}&a_{22}-w_{r}^{o}&\cdots&a_{2r}\\ \vdots&\vdots&\ddots&\vdots\\ a_{r1}&a_{r2}&\cdots&a_{rr}-w_{r}^{o}\end{pmatrix}. (7.2)

On the other hand, given yTαγTα1y\in T_{\alpha}{\mathbb{H}}_{\gamma}\cap T_{\alpha}{\mathbb{H}}_{1}, we may write y=(x,x)y=(x,x) with xr1x\in{\mathbb{C}}_{\infty}^{r-1}, and the condition y=(x,x)Tαγy=(x,x)\in T_{\alpha}{\mathbb{H}}_{\gamma} implies that

x=(x1xr1)=x1(1w)(zo)++xr1(r1w)(zo).x=\begin{pmatrix}x_{1}\\ \vdots\\ x_{r-1}\end{pmatrix}=x_{1}(\partial_{1}w)(z^{o})+\cdots+x_{r-1}(\partial_{r-1}w)(z^{o}).

By (7.1) we get

(x1xr1)=(wro)1(a11ar1z1oar1,1ar1zr1oa1,r1ar,r1z1oar1,r1ar,r1zr1o)(x1xr1)\begin{pmatrix}x_{1}\\ \vdots\\ x_{r-1}\end{pmatrix}=(w_{r}^{o})^{-1}\begin{pmatrix}a_{11}-a_{r1}z_{1}^{o}&\cdots&a_{r-1,1}-a_{r1}z_{r-1}^{o}\\ &\vdots&\\ a_{1,r-1}-a_{r,r-1}z_{1}^{o}&\cdots&a_{r-1,r-1}-a_{r,r-1}z_{r-1}^{o}\end{pmatrix}\begin{pmatrix}x_{1}\\ \vdots\\ x_{r-1}\end{pmatrix}

which is equivalent to

B(x1xr1)=0, where B:=(a11ar1z1owroar1,1ar1zr1oa1,r1ar,r1z1oar1,r1ar,r1zr1owro).B\begin{pmatrix}x_{1}\\ \vdots\\ x_{r-1}\end{pmatrix}=0,\quad\text{ where }B:=\begin{pmatrix}a_{11}-a_{r1}z_{1}^{o}-w_{r}^{o}&\cdots&a_{r-1,1}-a_{r1}z_{r-1}^{o}\\ \vdots&\ddots&\vdots\\ a_{1,r-1}-a_{r,r-1}z_{1}^{o}&\cdots&a_{r-1,r-1}-a_{r,r-1}z_{r-1}^{o}-w_{r}^{o}\end{pmatrix}. (7.3)

By suitable row operations on the following matrix

B:=(a11wroa21ar1a12a22wroar2a1,r1a2,r1ar1,r1wroar,r1z1oz2ozr1o1),B^{\prime}:=\begin{pmatrix}a_{11}-w_{r}^{o}&a_{21}&&\cdots&a_{r1}\\ a_{12}&a_{22}-w_{r}^{o}&&\cdots&a_{r2}\\ \vdots&\vdots&\ddots&&\vdots\\ a_{1,r-1}&a_{2,r-1}&\cdots&a_{r-1,r-1}-w_{r}^{o}&a_{r,r-1}\\ z_{1}^{o}&z_{2}^{o}&\cdots&z_{r-1}^{o}&1\end{pmatrix},

we can see that det(B)=det(B)\det(B^{\prime})=\det(B).

Now, if y=(x,x)0y=(x,x)\neq 0, i.e. x0x\neq 0, then det(B)=det(B)=0\det(B^{\prime})=\det(B)=0. As the field k(γ)k(\gamma) is separable of degree rr over kk under our assumption, the eigenspace of AA corresponding to the eigenvalue 0 (with multiplicity one) is spanned by (z1o,,zr1o,1)tr(z_{1}^{o},...,z_{r-1}^{o},1)^{t}\in{\mathbb{C}}_{\infty}^{r}. Hence det(B)=0\det(B^{\prime})=0 implies that the nonzero column vector (z1o,,zr1o,1)tr(z_{1}^{o},...,z_{r-1}^{o},1)^{t}\in{\mathbb{C}}_{\infty}^{r} lies in the range of AA, and also in the null space of AA by (7.2). However, the diagonalizability of AA in Mr()M_{r}({\mathbb{C}}_{\infty}) assures that the intersection of the range of AA and the null space of AA must be trivial, which is a contradiction. Therefore y=0y=0, i.e. the intersection of TαγT_{\alpha}{\mathbb{H}}_{\gamma} and Tα1T_{\alpha}{\mathbb{H}}_{1} is trivial. ∎

Consequently, we have that:

Corollary 7.3.

Suppose rr is a prime number distinct from the characteristic of kk. When 𝕏(𝔫,g)𝕏(𝔫){\mathbb{X}}({\mathfrak{n}},g)\neq{\mathbb{X}}({\mathfrak{n}}), the intersection 𝕏(𝔫,g)𝕏(𝔫){\mathbb{X}}({\mathfrak{n}},g)\cap{\mathbb{X}}({\mathfrak{n}}) is transversal.

8 Counting the intersection numbers of Hecke correspondences

From the previous section, we know that when rr is a prime number distinct from the characteristic of kk, the intersection of 𝕏(𝔫){\mathbb{X}}({\mathfrak{n}}) and 𝕏(𝔫,g){\mathbb{X}}({\mathfrak{n}},g) is always transversal when they are distinct. In this case, the intersection number i(𝒵(𝔫)𝒵(𝔫,g))i({\mathcal{Z}}({\mathfrak{n}})\cdot{\mathcal{Z}}({\mathfrak{n}},g)) is simply equal to the cardinality of their intersection points. In what follows, we shall count the intersection points in question by using “optimal embeddings.”

We first release our condition on rr, (i.e. rr is just a positive integer). Recall the following uniformization of X(𝔫,g)X(\mathfrak{n},g):

X(𝔫,g)()D\Ωr×D(𝔸f)/𝒦(𝔫,g).X(\mathfrak{n},g)(\mathbb{C}_{\infty})\cong D^{*}\backslash\Omega_{r}\times D^{*}({\mathbb{A}}_{f})/{\mathcal{K}}({\mathfrak{n}},g).

Every {\mathbb{C}}_{\infty}-valued point of X(𝔫,g)X(\mathfrak{n},g) corresponds to a class in D\Ωr×D(𝔸f)/K(𝔫,g)D^{*}\backslash\Omega_{r}\times D^{*}({\mathbb{A}}_{f})/K({\mathfrak{n}},g). Note that the morphism π𝔫,g:X(𝔫,g)X(𝔫)×X(𝔫)\pi_{{\mathfrak{n}},g}:X({\mathfrak{n}},g)\rightarrow X({\mathfrak{n}})\times X({\mathfrak{n}}) gives an isomorphism between X(𝔫,g)X({\mathfrak{n}},g) and 𝕏(𝔫,g){\mathbb{X}}({\mathfrak{n}},g). Then:

Lemma 8.1.

The set π𝔫,g1(𝕏(𝔫)𝕏(𝔫,g))()\pi_{{\mathfrak{n}},g}^{-1}\big{(}\mathbb{X}(\mathfrak{n})\cap\mathbb{X}(\mathfrak{n},g)\big{)}({\mathbb{C}}_{\infty}) can be identified with

{[z,b]𝔫,gD\Ωr×D(𝔸f)/𝒦(𝔫,g)|there exists γD so thatγz=z and b1γb𝒦(𝔫)g}.\left\{[z,b]_{{\mathfrak{n}},g}\in D^{*}\backslash\Omega_{r}\times D^{*}({\mathbb{A}}_{f})/{\mathcal{K}}({\mathfrak{n}},g)\ \Bigg{|}\ \begin{tabular}[]{l}\text{there exists $\gamma\in D^{*}$ so that}\\ \text{$\gamma\cdot z=z$ and $b^{-1}\gamma b\in{\mathcal{K}}(\mathfrak{n})g$}\end{tabular}\right\}.
Proof.

Let xX(𝔫,g)()x\in X({\mathfrak{n}},g)({\mathbb{C}}_{\infty}). From the unifomization of X(𝔫,g)X({\mathfrak{n}},g), we may identify xx with a class [z,b]𝔫,gD\Ωr×D(𝔸f)/𝒦(𝔫,g)[z,b]_{{\mathfrak{n}},g}\in D^{*}\backslash\Omega_{r}\times D^{*}({\mathbb{A}}_{f})/{\mathcal{K}}({\mathfrak{n}},g). Then [z,b]𝔫[z,b]_{\mathfrak{n}} (resp. [z,bg1]𝔫[z,bg^{-1}]_{\mathfrak{n}}) is the class in D\Ωr×D(𝔸)/K(𝔫)D^{*}\backslash\Omega_{r}\times D^{*}({\mathbb{A}}^{\infty})/K({\mathfrak{n}}) corresponding to π𝔫,g,1(x)\pi_{{\mathfrak{n}},g,1}(x) (resp. π𝔫,g,2(x)\pi_{{\mathfrak{n}},g,2}(x)). Suppose π𝔫,g(x)𝕏(𝔫)\pi_{{\mathfrak{n}},g}(x)\in{\mathbb{X}}({\mathfrak{n}}), which is equivalent to

[z,b]𝔫=[z,bg1]𝔫D\Ωr×D(𝔸f)/𝒦(𝔫).[z,b]_{{\mathfrak{n}}}=[z,bg^{-1}]_{{\mathfrak{n}}}\in D^{*}\backslash\Omega_{r}\times D^{*}({\mathbb{A}}_{f})/{\mathcal{K}}({\mathfrak{n}}).

This means that there exists γD\gamma\in D^{*} and κ𝒦(𝔫)\kappa\in{\mathcal{K}}({\mathfrak{n}}) so that γz=z\gamma z=z and γbg1=bκ\gamma bg^{-1}=b\kappa, which says that

b1γb=κg𝒦(𝔫)g.b^{-1}\gamma b=\kappa g\in{\mathcal{K}}({\mathfrak{n}})g.

Conversely, suppose there exists γD\gamma\in D^{*} so that γz=z\gamma\cdot z=z and b1γb𝒦(𝔫)gb^{-1}\gamma b\in{\mathcal{K}}({\mathfrak{n}})g. Write b1γb=κgb^{-1}\gamma b=\kappa g where κ𝒦(𝔫)\kappa\in{\mathcal{K}}({\mathfrak{n}}). Then

[z,b]=[γ1z,γ1bκ]=[z,bg1]D\Ωr×D(𝔸f)/𝒦(𝔫),[z,b]=[\gamma^{-1}z,\gamma^{-1}b\kappa]=[z,bg^{-1}]\in D^{*}\backslash\Omega_{r}\times D^{*}({\mathbb{A}}_{f})/{\mathcal{K}}({\mathfrak{n}}),

which implies that π𝔫,g(x)𝕏(𝔫)\pi_{{\mathfrak{n}},g}(x)\in{\mathbb{X}}({\mathfrak{n}}). This completes the proof. ∎

Set

𝒮(𝔫,g):={(γ,z,b)D×Ωr×D(𝔸f)γz=z,b1γb𝒦(𝔫)g},\mathcal{S}({\mathfrak{n}},g):=\big{\{}(\gamma,z,b)\in D^{*}\times\Omega_{r}\times D^{*}({\mathbb{A}}_{f})\mid\gamma\cdot z=z,\ b^{-1}\gamma b\in{\mathcal{K}}({\mathfrak{n}})g\big{\}},

which is equipped with a left action of DD^{*} and a right action of K(𝔫,g)K({\mathfrak{n}},g) defined below: for every (γ,z,b)𝒮(𝔫,g)(\gamma,z,b)\in\mathcal{S}({\mathfrak{n}},g), γ0D\gamma_{0}\in D^{*}, and κK(𝔫,g)\kappa\in K({\mathfrak{n}},g),

γ0(γ,z,b)κ:=(γ0γγ01,γ0z,γ0bκ).\gamma_{0}\cdot(\gamma,z,b)\cdot\kappa:=(\gamma_{0}\gamma\gamma_{0}^{-1},\gamma_{0}\cdot z,\gamma_{0}b\kappa).

By Lemma 8.1, we have a natural surjective map from 𝒮(𝔫,g)\mathcal{S}({\mathfrak{n}},g) to π𝔫,g1(𝕏(𝔫)𝕏(𝔫,g))()\pi_{{\mathfrak{n}},g}^{-1}\big{(}{\mathbb{X}}({\mathfrak{n}})\cap{\mathbb{X}}({\mathfrak{n}},g)\big{)}({\mathbb{C}}_{\infty}) sending (γ,z,b)(\gamma,z,b) to (the point corresponding to) [z,b]𝔫,g[z,b]_{{\mathfrak{n}},g}. Moreover:

Lemma 8.2.

The above map induces a bijection between D\𝒮(𝔫,g)/𝒦(𝔫,g)D^{*}\backslash\mathcal{S}({\mathfrak{n}},g)/{\mathcal{K}}({\mathfrak{n}},g) and π𝔫,g1(𝕏(𝔫)𝕏(𝔫,g))()\pi_{{\mathfrak{n}},g}^{-1}\big{(}{\mathbb{X}}({\mathfrak{n}})\cap{\mathbb{X}}({\mathfrak{n}},g)\big{)}({\mathbb{C}}_{\infty}).

Proof.

Given (γ,z,b),(γ,z,b)𝒮(𝔫,g)(\gamma,z,b),(\gamma^{\prime},z^{\prime},b^{\prime})\in\mathcal{S}({\mathfrak{n}},g), suppose

[z,b]𝔫,g=[z,b]𝔫,gX(𝔫,g),[z,b]_{{\mathfrak{n}},g}=[z^{\prime},b^{\prime}]_{{\mathfrak{n}},g}\quad\in X({\mathfrak{n}},g),

which implies that there exists γ0D\gamma_{0}\in D^{*} and κ0𝒦(𝔫,g)\kappa_{0}\in{\mathcal{K}}({\mathfrak{n}},g) so that z=γ0zz^{\prime}=\gamma_{0}z and b=γ0bκ0b^{\prime}=\gamma_{0}b\kappa_{0}. Thus

γ01(γ,z,b)κ01=(γ01γγ0,z,b)𝒮(𝔫,g).\gamma_{0}^{-1}\cdot(\gamma^{\prime},z^{\prime},b^{\prime})\cdot\kappa_{0}^{-1}=(\gamma_{0}^{-1}\gamma^{\prime}\gamma_{0},z,b)\quad\in{\mathcal{S}}({\mathfrak{n}},g).

Put γ1=γ01γγ0D\gamma_{1}=\gamma_{0}^{-1}\gamma^{\prime}\gamma_{0}\in D^{*}, which satisfies that γ1z=z\gamma_{1}\cdot z=z and b1γ1bK(𝔫)gb^{-1}\gamma_{1}b\in K({\mathfrak{n}})g.

Note that by [30, Lemma 4.6], one has that Kz:={γDγz=z}{0}K_{z}:=\{\gamma\in D^{*}\mid\gamma\cdot z=z\}\cup\{0\} is a subfield of DD which is imaginary with respect to \infty (i.e. \infty is non-split in KzK_{z}). Hence

γ2:=γ1γ1Kzwithb1γ2b𝒦(𝔫).\gamma_{2}:=\gamma_{1}\gamma^{-1}\in K_{z}^{*}\quad\text{with}\quad b^{-1}\gamma_{2}b\in{\mathcal{K}}({\mathfrak{n}}).

This says in particular that γ2\gamma_{2} is a unit in OKzO_{K_{z}}, the integral closure of AA in KzK_{z}, and b1γ2b1mod𝔫b^{-1}\gamma_{2}b\equiv 1\bmod{\mathfrak{n}}. Since KzK_{z} is imaginary and the degree [Kz:k][K_{z}:k] divides rr, the units of OKzO_{K_{z}} must be contained in a finite field with qrq^{r} elements. The condition b1γ2b1mod𝔭b^{-1}\gamma_{2}b\equiv 1\bmod{\mathfrak{p}} then implies that γ2=1\gamma_{2}=1, whence

γ01(γ,z,b)κ01=(γ,z,b).\gamma_{0}^{-1}\cdot(\gamma^{\prime},z^{\prime},b^{\prime})\kappa_{0}^{-1}=(\gamma,z,b).

Therefore (γ,z,b)(\gamma,z,b) and (γ,z,b)(\gamma^{\prime},z^{\prime},b^{\prime}) represent the same class in D\𝒮(𝔫,g)/𝒦(𝔫,g)D^{*}\backslash\mathcal{S}({\mathfrak{n}},g)/{\mathcal{K}}({\mathfrak{n}},g), and the proof is complete. ∎

Corollary 8.3.

Given gD(𝔸f)g\in D^{*}({\mathbb{A}}_{f}), one has that 𝕏(𝔫)=𝕏(𝔫,g){\mathbb{X}}({\mathfrak{n}})={\mathbb{X}}({\mathfrak{n}},g) if and only if gk𝒦(𝔫)g\in k^{*}\cdot{\mathcal{K}}({\mathfrak{n}}).

Proof.

It is clear that 𝕏(𝔫)=𝕏(𝔫,g){\mathbb{X}}({\mathfrak{n}})={\mathbb{X}}({\mathfrak{n}},g) when gk𝒦(𝔫)g\in k^{*}\cdot{\mathcal{K}}({\mathfrak{n}}). Conversely, suppose 𝕏(𝔫)=𝕏(𝔫,g){\mathbb{X}}({\mathfrak{n}})={\mathbb{X}}({\mathfrak{n}},g). By Lemma 8.2, we have that for every zΩrz\in\Omega_{r}, there exists γD\gamma\in D^{*} such that γz=z\gamma\cdot z=z and b1γb𝒦(𝔫)gb^{-1}\gamma b\in{\mathcal{K}}({\mathfrak{n}})g. When taking zz with algebraically independent coordinates over kk, we must have that γk\gamma\in k^{*}, whence g=γκk𝒦(𝔫)g=\gamma\kappa\in k^{*}{\mathcal{K}}({\mathfrak{n}}) as desired. ∎

8.1 The case when 𝕏(𝔫)𝕏(𝔫,g){\mathbb{X}}({\mathfrak{n}})\neq{\mathbb{X}}({\mathfrak{n}},g)

Let

(𝔫,g):={(γ,b)D×D(𝔸f)|k(γ) is imaginary over kb1γb𝒦(𝔫)g}.{\mathcal{E}}({\mathfrak{n}},g):=\big{\{}(\gamma,b)\in D^{*}\times D^{*}({\mathbb{A}}_{f})\ \big{|}\ k(\gamma)\text{ is imaginary over $k$, }b^{-1}\gamma b\in{\mathcal{K}}({\mathfrak{n}})g\big{\}}.

Then we have a natural map from ϕ:𝒮(𝔫,g)(𝔫,g)\phi:{\mathcal{S}}({\mathfrak{n}},g)\rightarrow{\mathcal{E}}({\mathfrak{n}},g) defined by ϕ(γ,z,b)=(γ,b)\phi(\gamma,z,b)=(\gamma,b) for every triple (γ,z,b)𝒮(𝔫,g)(\gamma,z,b)\in{\mathcal{S}}({\mathfrak{n}},g). On the other hand, the fiber of each (γ,b)(\gamma,b) in (𝔫,g){\mathcal{E}}({\mathfrak{n}},g) under ϕ\phi can be identified with the set of fix points of γ\gamma on Ωr\Omega_{r}, which is always non-empty. Therefore ϕ\phi is surjective. Moreover, the following lemma holds:

Lemma 8.4.

The map

ϕ¯:D\𝒮(𝔫,g)/𝒦(𝔫,g)D\(𝔫,g)/𝒦(𝔫,g)\bar{\phi}:D^{*}\backslash{\mathcal{S}}({\mathfrak{n}},g)/{\mathcal{K}}({\mathfrak{n}},g)\longrightarrow D^{*}\backslash{\mathcal{E}}({\mathfrak{n}},g)/{\mathcal{K}}({\mathfrak{n}},g)

induced by ϕ\phi is surjective. Moreover, suppose 𝕏(𝔫)𝕏(𝔫,g){\mathbb{X}}({\mathfrak{n}})\neq{\mathbb{X}}({\mathfrak{n}},g) and rr is a prime number. For each class [γ,b]D\(𝔫,g)/K(𝔫,g)[\gamma,b]\in D^{*}\backslash{\mathcal{E}}({\mathfrak{n}},g)/K({\mathfrak{n}},g), the cardinality of ϕ¯1([γ,b])\bar{\phi}^{-1}([\gamma,b]) is rr ((resp. 1)1) if k(γ)k(\gamma) is separable ((resp. purely inseparable)) over kk.

Proof.

The surjectivity is clear. Suppose 𝕏(𝔫)𝕏(𝔫,g){\mathbb{X}}({\mathfrak{n}})\neq{\mathbb{X}}({\mathfrak{n}},g) and rr is a prime number. Let (γ,b)(𝔫,g)(\gamma,b)\in{\mathcal{E}}({\mathfrak{n}},g). By assumption one has that kk(γ)Dk\neq k(\gamma)\subset D is a maximal subfield of DD which is imaginary. Thus there are rr (resp. 11) fixed point(s) of γ\gamma on Ωr\Omega_{r}, say z1,,zrz_{1},...,z_{r} (resp. z0z_{0}), corresponding to distinct eigenvalues (resp. the unique eigenvalue) of γ\gamma. Hence

ϕ1(γ,b)={{(γ,z1,b),(γ,zr,b)}, if k(γ)/k is separable,{(γ,z0,b)}, if k(γ)/k is purely inseparable.\phi^{-1}(\gamma,b)=\begin{cases}\{(\gamma,z_{1},b),\cdots(\gamma,z_{r},b)\},&\text{ if $k(\gamma)/k$ is separable},\\ \{(\gamma,z_{0},b)\},&\text{ if $k(\gamma)/k$ is purely inseparable.}\end{cases}

It suffices to verify that (γ,z1,b),,(γ,zr,b)(\gamma,z_{1},b),...,(\gamma,z_{r},b) represents distinct classes in the space D\𝒮(𝔫,g)/𝒦(𝔫,g)D^{*}\backslash{\mathcal{S}}({\mathfrak{n}},g)/{\mathcal{K}}({\mathfrak{n}},g) when k(γ)/kk(\gamma)/k is separable. To show this, suppose there exists γ0D\gamma_{0}\in D^{*} and κ0𝒦(𝔫,g)\kappa_{0}\in{\mathcal{K}}({\mathfrak{n}},g) such that

(γ,zi,b)=γ0(γ,zj,b)κ0=(γ0γγ01,γ0zj,γ0bκ0).(\gamma,z_{i},b)=\gamma_{0}\cdot(\gamma,z_{j},b)\cdot\kappa_{0}=(\gamma_{0}\gamma\gamma_{0}^{-1},\gamma_{0}\cdot z_{j},\gamma_{0}b\kappa_{0}).

Since k(γ)k(\gamma) is a maximal subfield of DD, the centralizer of k(γ)k(\gamma) is itself. Hence γ0k(γ)\gamma_{0}\in k(\gamma)^{*} and

b1γ0b=κ01𝒦(𝔫,g).b^{-1}\gamma_{0}b=\kappa_{0}^{-1}\in{\mathcal{K}}({\mathfrak{n}},g).

By our assumption on 𝔫{\mathfrak{n}}, we can apply the same argument in the proof of Lemma 8.2 to get γ0=1\gamma_{0}=1, which implies zi=zjz_{i}=z_{j} and κ0=1\kappa_{0}=1. ∎

Corollary 8.5.

Suppose X(𝔫)X(𝔫,g)X({\mathfrak{n}})\neq X({\mathfrak{n}},g) and rr is a prime number distinct from the characteristic of kk. The cardinality of Δ𝔫1(𝕏(𝔫)𝕏(𝔫,g))()\Delta_{\mathfrak{n}}^{-1}\big{(}{\mathbb{X}}({\mathfrak{n}})\cap{\mathbb{X}}({\mathfrak{n}},g)\big{)}({\mathbb{C}}_{\infty}) is equal to

r#(D\(𝔫,g)/𝒦(𝔫,g)).r\cdot\#\left(D^{*}\backslash{\mathcal{E}}({\mathfrak{n}},g)/{\mathcal{K}}({\mathfrak{n}},g)\right).
Remark 8.6.

Given κ𝒦(𝔫)\kappa\in{\mathcal{K}}({\mathfrak{n}}), the map from (𝔫,g){\mathcal{E}}({\mathfrak{n}},g) to (𝔫,gκ){\mathcal{E}}({\mathfrak{n}},g\kappa) sending (γ,b)(\gamma,b) to (γ,bκ)(\gamma,b\kappa) for every (γ,b)(𝔫,g)(\gamma,b)\in{\mathcal{E}}({\mathfrak{n}},g) is bijective. Thus we have the following induced bijection

D\(𝔫,g)/𝒦(𝔫,g)D\(𝔫,gκ)/𝒦(𝔫,gκ).D^{*}\backslash{\mathcal{E}}({\mathfrak{n}},g)/{\mathcal{K}}({\mathfrak{n}},g)\stackrel{{\scriptstyle\sim}}{{\longrightarrow}}D^{*}\backslash{\mathcal{E}}({\mathfrak{n}},g\kappa)/{\mathcal{K}}({\mathfrak{n}},g\kappa).

8.2 Self-intersection of 𝕏(𝔫){\mathbb{X}}({\mathfrak{n}})

When 𝕏(𝔫)=𝕏(𝔫,g){\mathbb{X}}({\mathfrak{n}})={\mathbb{X}}({\mathfrak{n}},g) (i.e. gk𝒦(𝔫)g\in k^{*}\cdot{\mathcal{K}}({\mathfrak{n}}) by Corollary 8.3), the self-intersection number of 𝕏(𝔫){\mathbb{X}}({\mathfrak{n}}) in X(𝔫)×X(𝔫)X({\mathfrak{n}})\times X({\mathfrak{n}}) is equal to the Euler–Poincaré characteristic of X(𝔫)X({\mathfrak{n}}), denoted by χ(X(𝔫))\chi(X({\mathfrak{n}})), which is the degree of the top Chern class of the tangent bundle of X(𝔫)X({\mathfrak{n}}) (see [13, Example 8.1.12]). Recall the following identification

X(𝔫)()D\Ωr×D(𝔸f)/𝒦(𝔫)[b]D\D(𝔸f)/𝒦(𝔫)Γb(𝔫)\Ωr,X({\mathfrak{n}})({\mathbb{C}}_{\infty})\cong D^{*}\backslash\Omega_{r}\times D^{*}({\mathbb{A}}_{f})/{\mathcal{K}}({\mathfrak{n}})\cong\coprod_{[b]\in D^{*}\backslash D^{*}({\mathbb{A}}_{f})/{\mathcal{K}}({\mathfrak{n}})}\Gamma_{b}({\mathfrak{n}})\backslash\Omega_{r},

where Γb(𝔫):=Db𝒦(𝔫)b1\Gamma_{b}({\mathfrak{n}}):=D^{*}\cap b{\mathcal{K}}({\mathfrak{n}})b^{-1} for every bD(𝔸f)b\in D^{*}({\mathbb{A}}_{f}). Identifying D=DkkD_{\infty}=D\otimes_{k}k_{\infty} with 𝕄r(k){\mathbb{M}}_{r}(k_{\infty}), we may regard Γb\Gamma_{b} as a discrete and co-compact torsion free subgroup of GLr(k)\text{GL}_{r}(k_{\infty}). Therefore by Kurihara’s analogue of Hirzebruch proportionality (see [28, Theorem 2.2.8]), we obtain:

χ(X(𝔫))\displaystyle\chi\big{(}X({\mathfrak{n}})\big{)} =[b]D\D(𝔸f)/𝒦(𝔫)μ(Γb(𝔫)\GLr(k)/k).\displaystyle=\sum_{[b]\in D^{*}\backslash D^{*}({\mathbb{A}}_{f})/{\mathcal{K}}({\mathfrak{n}})}\mu_{\infty}\big{(}\Gamma_{b}({\mathfrak{n}})\backslash\text{GL}_{r}(k_{\infty})/k_{\infty}^{*}\big{)}. (8.1)

Here μ\mu_{\infty} is the Euler–Poincaré measure on PGLr(k)\text{PGL}_{r}(k_{\infty}) introduced by Serre (see [34]), i.e.

μ(PGLr(O))=i=1r1(1qi),\mu_{\infty}\big{(}\text{PGL}_{r}(O_{\infty})\big{)}=\prod_{i=1}^{r-1}(1-q_{\infty}^{i}),

and qq_{\infty} is the cardinality of the residue field at \infty. Extending μ\mu_{\infty} to the Haar measure μ𝔸\mu_{\mathbb{A}} on D(𝔸)/kD(𝔸f)×PGLr(k)D^{*}({\mathbb{A}})/k_{\infty}^{*}\cong D^{*}({\mathbb{A}}_{f})\times\text{PGL}_{r}(k_{\infty}) satisfying that

μ𝔸(𝒦×PGLr(O))=μ(PGLr(O))=i=1r1(1qi),\mu_{\mathbb{A}}\big{(}{\mathcal{K}}\times\text{PGL}_{r}(O_{\infty})\big{)}=\mu_{\infty}\big{(}\text{PGL}_{r}(O_{\infty})\big{)}=\prod_{i=1}^{r-1}(1-q_{\infty}^{i}),

the equation (8.1) leads to the following Gauss–Bonnet-type formula:

Proposition 8.7.
χ(X(𝔫))=[𝒦:𝒦(𝔫)]μ𝔸(D\D(𝔸)/k).\chi\big{(}X({\mathfrak{n}})\big{)}=[{\mathcal{K}}:{\mathcal{K}}({\mathfrak{n}})]\cdot\mu_{\mathbb{A}}\big{(}D^{*}\backslash D^{*}({\mathbb{A}})/k_{\infty}^{*}\big{)}.
Remark 8.8.

(1) We may rewrite the above formula as the following form:

χ(X(𝔫))=[𝒦:𝒦(𝔫)][b]D\D(𝔸f)/𝒦μ(Γb\GLr(k)/k),\chi\big{(}X({\mathfrak{n}})\big{)}=[{\mathcal{K}}:{\mathcal{K}}({\mathfrak{n}})]\cdot\sum_{[b]\in D^{*}\backslash D^{*}({\mathbb{A}}_{f})/{\mathcal{K}}}\mu_{\infty}\big{(}\Gamma_{b}\backslash\text{GL}_{r}(k_{\infty})/k_{\infty}^{*}\big{)},

where Γb:=Db𝒦b1\Gamma_{b}:=D^{*}\cap b{\mathcal{K}}b^{-1} for every bD(𝔸f)b\in D^{*}({\mathbb{A}}_{f}).

(2) Let μ𝔸,t\mu_{{\mathbb{A}},t} be the Tamagawa measure on D(𝔸)/𝔸D^{*}({\mathbb{A}})/{\mathbb{A}}^{*} introduced in [39, §3.2]. It is known that (see [39, Theorem 3.2.1])

μ𝔸,t(D\D(𝔸)/𝔸)=r,\mu_{{\mathbb{A}},t}\big{(}D^{*}\backslash D^{*}({\mathbb{A}})/{\mathbb{A}}^{*}\big{)}=r,

and (cf. [39, §3.1, p. 32] and [38, §5])

μ𝔸,t(𝒦/(𝒪)×PGLr(𝒪))=i=1r1ζk(i)1v𝐑𝐚𝐦i=1r111qvi,\mu_{{\mathbb{A}},t}\big{(}{\mathcal{K}}/({\mathcal{O}}^{\infty})^{*}\times\text{PGL}_{r}({\mathcal{O}}_{\infty})\big{)}=\prod_{i=1}^{r-1}\zeta_{k}(-i)^{-1}\cdot\prod_{v\in{\bf Ram}}\prod_{i=1}^{r-1}\frac{1}{1-q_{v}^{i}},

where qvq_{v} is the cardinality of the residue field of vv for each v|C|v\in|C|, and ζk(s)\zeta_{k}(s) is the zeta function of kk, i.e.

ζk(s)=v|C|(1qvs)1,Re(s)>1.\zeta_{k}(s)=\prod_{v\in|C|}(1-q_{v}^{-s})^{-1},\quad{\rm Re}(s)>1.

Therefore we get

μ𝔸(D\D(𝔸)/k)\displaystyle\mu_{\mathbb{A}}\big{(}D^{*}\backslash D^{*}({\mathbb{A}})/k_{\infty}^{*}\big{)} (8.2)
=\displaystyle= #Pic(A)q1μ𝔸(D\D(𝔸)/𝔸)\displaystyle\frac{\#\text{Pic}(A)}{q-1}\cdot\mu_{\mathbb{A}}\big{(}D^{*}\backslash D^{*}({\mathbb{A}})/{\mathbb{A}}^{*}\big{)}
=\displaystyle= #Pic(A)q1μ𝔸,t(D\D(𝔸)/𝔸)μ𝔸(𝒦/(𝒪)×PGLr(𝒪))μ𝔸,t(𝒦/(𝒪)×PGLr(𝒪))\displaystyle\frac{\#\text{Pic}(A)}{q-1}\cdot\mu_{{\mathbb{A}},t}\big{(}D^{*}\backslash D^{*}({\mathbb{A}})/{\mathbb{A}}^{*}\big{)}\cdot\frac{\mu_{\mathbb{A}}\big{(}{\mathcal{K}}/({\mathcal{O}}^{\infty})^{*}\times\text{PGL}_{r}({\mathcal{O}}_{\infty})\big{)}}{\mu_{{\mathbb{A}},t}\big{(}{\mathcal{K}}/({\mathcal{O}}^{\infty})^{*}\times\text{PGL}_{r}({\mathcal{O}}_{\infty})\big{)}}
=\displaystyle= #Pic(A)q1ri=1r1ζk(i)v𝐑𝐚𝐦{}i=1r1(1qvi).\displaystyle\frac{\#\text{Pic}(A)}{q-1}\cdot r\cdot\prod_{i=1}^{r-1}\zeta_{k}(-i)\cdot\prod_{v\in{\bf Ram}\cup\{\infty\}}\,\prod_{i=1}^{r-1}(1-q_{v}^{i}).

Consequently, Proposition 8.7 implies the following formula.

Proposition 8.9.

The self-intersection number of 𝕏(𝔫){\mathbb{X}}({\mathfrak{n}}) in X(𝔫)×X(𝔫)X({\mathfrak{n}})\times X({\mathfrak{n}}) is equal to

χ(X(𝔫))=[𝒦:𝒦(𝔫)]r#Pic(A)q1i=1r1ζk(i)v𝐑𝐚𝐦{}i=1r1(1qvi).\chi\big{(}X({\mathfrak{n}})\big{)}=[{\mathcal{K}}:{\mathcal{K}}({\mathfrak{n}})]\cdot r\cdot\frac{\#\text{\rm Pic}(A)}{q-1}\cdot\prod_{i=1}^{r-1}\zeta_{k}(-i)\cdot\prod_{v\in{\bf Ram}\cup\{\infty\}}\prod_{i=1}^{r-1}(1-q_{v}^{i}).
Remark 8.10.

When AA is a polynomial ring over 𝔽q{\mathbb{F}}_{q}, the formula for χ(X(𝔫))\chi\big{(}X({\mathfrak{n}})\big{)} appears in [31, equation (6.10)].

8.3 Projection to the full-level case

Now, we assume rr to be a prime number distinct from the characteristic of kk. Let 𝔞{\mathfrak{a}} be a non-zero ideal of AA. Set

𝔞:={(γ,b)D×D(𝔸f)|k(γ) is imaginary over k,b1γb𝒟 and Nr(γ)A=𝔞}=𝔞×𝔞{\mathcal{E}}_{\mathfrak{a}}:=\left\{(\gamma,b)\in D^{*}\times D^{*}({\mathbb{A}}_{f})\ \bigg{|}\ \begin{tabular}[]{cc}\text{$k(\gamma)$ is imaginary over $k$,}\\ \text{$b^{-1}\gamma b\in{\mathcal{D}}^{\infty}$ and $\text{Nr}(\gamma)\cdot A={\mathfrak{a}}$}\end{tabular}\right\}={\mathcal{E}}_{\mathfrak{a}}^{\times}\stackrel{{\scriptstyle\cdot}}{{\cup}}{\mathcal{E}}_{\mathfrak{a}}^{\circ}

where

𝔞×\displaystyle{\mathcal{E}}_{\mathfrak{a}}^{\times} :=\displaystyle:= {(γ,b)D×D(𝔸f)|k(γ)/k is imaginary of degree r,b1γb𝒟 and Nr(γ)A=𝔞}\displaystyle\left\{(\gamma,b)\in D^{*}\times D^{*}({\mathbb{A}}_{f})\ \bigg{|}\ \begin{tabular}[]{cc}\text{$k(\gamma)/k$ is imaginary of degree $r$,}\\ \text{$b^{-1}\gamma b\in{\mathcal{D}}^{\infty}$ and $\text{Nr}(\gamma)\cdot A={\mathfrak{a}}$}\end{tabular}\right\}
and𝔞\displaystyle\text{and}\quad\quad{\mathcal{E}}_{\mathfrak{a}}^{\circ} :=\displaystyle:= {(γ,b)D×D(𝔸f)|γA and γrA=𝔞}.\displaystyle\big{\{}(\gamma,b)\in D^{*}\times D^{*}({\mathbb{A}}_{f})\ \big{|}\ \gamma\in A\text{ and }\gamma^{r}\cdot A={\mathfrak{a}}\big{\}}.

Then 𝔞{\mathcal{E}}_{\mathfrak{a}} (as well as 𝔞×{\mathcal{E}}_{\mathfrak{a}}^{\times} and 𝔞{\mathcal{E}}_{\mathfrak{a}}^{\circ}) is equipped with a left action of DD^{*} and a right action of 𝒦{\mathcal{K}} defined by

γ0(γ,b)κ:=(γ0γγ01,γ0bκ),γ0D,(γ,b)𝔞,κ𝒦.\gamma_{0}\cdot(\gamma,b)\cdot\kappa:=(\gamma_{0}\gamma\gamma_{0}^{-1},\gamma_{0}b\kappa),\quad\forall\gamma_{0}\in D^{*},(\gamma,b)\in{\mathcal{E}}_{\mathfrak{a}},\kappa\in{\mathcal{K}}.

Choose a nonzero ideal 𝔫{\mathfrak{n}} of AA so that v𝔫v\nmid{\mathfrak{n}} for every v𝐑𝐚𝐦v\in{\bf Ram} and ordv(𝔞)ordv(𝔫){\rm ord}_{v}({\mathfrak{a}})\leq{\rm ord}_{v}({\mathfrak{n}}) for every v𝐑𝐚𝐦{}v\notin{\bf Ram}\cup\{\infty\}. For each g𝒟D(𝔸f)g\in{\mathcal{D}}^{\infty}\cap D^{*}({\mathbb{A}}_{f}) with Nr(g)𝒪k=𝔞\text{Nr}(g)\cdot{\mathcal{O}}^{\infty}\cap k={\mathfrak{a}}, one has (𝔫,g)𝔞{\mathcal{E}}({\mathfrak{n}},g)\subset{\mathcal{E}}_{\mathfrak{a}}. Put

×(𝔫,g):=(𝔫,g)𝔞× and (𝔫,g):=(𝔫,g)𝔞.{\mathcal{E}}^{\times}({\mathfrak{n}},g):={\mathcal{E}}({\mathfrak{n}},g)\cap{\mathcal{E}}_{\mathfrak{a}}^{\times}\quad\text{ and }\quad{\mathcal{E}}^{\circ}({\mathfrak{n}},g):={\mathcal{E}}({\mathfrak{n}},g)\cap{\mathcal{E}}_{\mathfrak{a}}^{\circ}.

We point out that either ×(𝔫,g){\mathcal{E}}^{\times}({\mathfrak{n}},g) or (𝔫,g){\mathcal{E}}^{\circ}({\mathfrak{n}},g) is empty, and (𝔫,g){\mathcal{E}}^{\circ}({\mathfrak{n}},g) is non-empty if and only if gk𝒦(𝔫)g\in k^{*}\cdot{\mathcal{K}}({\mathfrak{n}}). Moreover, let 𝔞{\mathfrak{a}}^{\prime} be the “prime-to-Ram” part of 𝔞{\mathfrak{a}}, i.e. 𝔞{\mathfrak{a}}^{\prime} is the ideal of AA so that

ordv(𝔞)={ordv(𝔞), if v𝐑𝐚𝐦{};0, otherwise.{\rm ord}_{v}({\mathfrak{a}}^{\prime})=\begin{cases}{\rm ord_{v}}({\mathfrak{a}}),&\text{ if $v\notin{\bf Ram}\cup\{\infty\}$;}\\ 0,&\text{ otherwise.}\end{cases}

the following lemma holds.

Lemma 8.11.

Taking {×,}\star\in\{\times,\circ\}, we may decompose 𝔞{\mathcal{E}}_{\mathfrak{a}}^{\star} into

𝔞=g¯𝒦(𝔫)\(𝒟D(𝔸f))/𝒦(𝔫)Nr(g)𝒪k=𝔞κ¯𝒦(𝔫,g)\𝒦(𝔫)(𝔫,gκ).{\mathcal{E}}_{\mathfrak{a}}^{\star}=\coprod_{\genfrac{}{}{0.0pt}{}{\bar{g}\in{\mathcal{K}}({\mathfrak{n}})\backslash({\mathcal{D}}^{\infty}\cap D^{*}({\mathbb{A}}_{f}))/{\mathcal{K}}({\mathfrak{n}})}{\text{\rm Nr}(g)\cdot{\mathcal{O}}^{\infty}\cap k={\mathfrak{a}}}}\ \ \coprod_{\bar{\kappa}\in{\mathcal{K}}({\mathfrak{n}},g)\backslash{\mathcal{K}}({\mathfrak{n}})}{\mathcal{E}}^{\star}({\mathfrak{n}},g\kappa). (8.4)

Consequently, we have the bijection:

g¯𝒦(𝔫)\(𝒟D(𝔸f))/𝒦(𝔫)Nr(g)𝒪k=𝔞κ¯𝒦(𝔫,g)\𝒦(𝔫)D\(𝔫,gκ)/𝒦(𝔫𝔞)D\𝔞/𝒦(𝔫𝔞).\coprod_{\genfrac{}{}{0.0pt}{}{\bar{g}\in{\mathcal{K}}({\mathfrak{n}})\backslash({\mathcal{D}}^{\infty}\cap D^{*}({\mathbb{A}}_{f}))/{\mathcal{K}}({\mathfrak{n}})}{\text{\rm Nr}(g)\cdot{\mathcal{O}}^{\infty}\cap k={\mathfrak{a}}}}\ \ \coprod_{\bar{\kappa}\in{\mathcal{K}}({\mathfrak{n}},g)\backslash{\mathcal{K}}({\mathfrak{n}})}D^{*}\backslash{\mathcal{E}}^{\star}({\mathfrak{n}},g\kappa)/{\mathcal{K}}({\mathfrak{n}}{\mathfrak{a}}^{\prime})\stackrel{{\scriptstyle\sim}}{{\longrightarrow}}D^{*}\backslash{\mathcal{E}}_{\mathfrak{a}}^{\star}/{\mathcal{K}}({\mathfrak{n}}{\mathfrak{a}}^{\prime}).
Proof.

Given (γ,b)𝔞(\gamma,b)\in{\mathcal{E}}_{\mathfrak{a}}^{\star}, we may take g=b1γb𝒟D(𝔸f)g=b^{-1}\gamma b\in{\mathcal{D}}^{\infty}\cap D^{*}({\mathbb{A}}_{f}) and get (γ,b)(𝔫,g)(\gamma,b)\in{\mathcal{E}}^{\star}({\mathfrak{n}},g). Thus it remains to show that the right hand side of the equality (8.4) is indeed a disjoint union.

Given g,g𝒟D(𝔸f)g,g^{\prime}\in{\mathcal{D}}^{\infty}\cap D^{*}({\mathbb{A}}_{f}) with Nr(g)𝒪k=Nr(g)𝒪k=𝔞\text{Nr}(g)\cdot{\mathcal{O}}^{\infty}\cap k=\text{Nr}(g^{\prime})\cdot{\mathcal{O}}^{\infty}\cap k={\mathfrak{a}}, suppose (𝔫,g)(𝔫,g){\mathcal{E}}^{\star}({\mathfrak{n}},g)\cap{\mathcal{E}}^{\star}({\mathfrak{n}},g^{\prime}) is non-empty, i.e. there exists (γ,b)(𝔫,g)(𝔫,g)(\gamma,b)\in{\mathcal{E}}^{\star}({\mathfrak{n}},g)\cap{\mathcal{E}}^{\star}({\mathfrak{n}},g^{\prime}). Then b1γb𝒦(𝔫)g𝒦(𝔫)gb^{-1}\gamma b\in{\mathcal{K}}({\mathfrak{n}})g\cap{\mathcal{K}}({\mathfrak{n}})g^{\prime}, which implies that 𝒦(𝔫)g=𝒦(𝔫)g{\mathcal{K}}({\mathfrak{n}})g={\mathcal{K}}({\mathfrak{n}})g^{\prime}. Hence

𝔞=g¯𝒦(𝔫)\𝒟D(𝔸f)Nr(g)𝒪k=𝔞(𝔫,g),{\mathcal{E}}_{\mathfrak{a}}^{\star}=\coprod_{\genfrac{}{}{0.0pt}{}{\bar{g}\in{\mathcal{K}}({\mathfrak{n}})\backslash{\mathcal{D}}^{\infty}\cap D^{*}({\mathbb{A}}_{f})}{\text{Nr}(g)\cdot{\mathcal{O}}^{\infty}\cap k={\mathfrak{a}}}}{\mathcal{E}}^{\star}({\mathfrak{n}},g),

and the desired decomposition in (8.4) follows from:

𝒦(𝔫)g𝒦(𝔫)=κ¯𝒦(𝔫,g)\𝒦(𝔫)𝒦(𝔫)gκ,g𝒟D(𝔸f).{\mathcal{K}}({\mathfrak{n}})g{\mathcal{K}}({\mathfrak{n}})=\coprod_{\bar{\kappa}\in{\mathcal{K}}({\mathfrak{n}},g)\backslash{\mathcal{K}}({\mathfrak{n}})}{\mathcal{K}}({\mathfrak{n}})g\kappa,\quad\forall g\in{\mathcal{D}}^{\infty}\cap D^{*}({\mathbb{A}}_{f}).

Next, we look closely into D\𝔞/𝒦(𝔫𝔞)D^{*}\backslash{\mathcal{E}}_{\mathfrak{a}}^{\star}/{\mathcal{K}}({\mathfrak{n}}{\mathfrak{a}}^{\prime}) for =×\star=\times or \circ. We may decompose D\𝔞×/𝒦(𝔫𝔞)D^{*}\backslash{\mathcal{E}}_{\mathfrak{a}}^{\times}/{\mathcal{K}}({\mathfrak{n}}{\mathfrak{a}}^{\prime}) into

D\𝔞×/𝒦(𝔫𝔞)=[γ,b]D\𝔞/𝒦{D(γ,bκ)𝒦(𝔫𝔞)|κ¯(b1CD(k(γ))b𝒦)\𝒦/𝒦(𝔫𝔞)},D^{*}\backslash{\mathcal{E}}_{\mathfrak{a}}^{\times}/{\mathcal{K}}({\mathfrak{n}}{\mathfrak{a}}^{\prime})=\coprod_{[\gamma,b]\in D^{*}\backslash{\mathcal{E}}_{\mathfrak{a}}^{\star}/{\mathcal{K}}}\big{\{}D^{*}(\gamma,b\kappa){\mathcal{K}}({\mathfrak{n}}{\mathfrak{a}}^{\prime})\ \big{|}\ \bar{\kappa}\in(b^{-1}C_{D}(k(\gamma))b\cap{\mathcal{K}})\backslash{\mathcal{K}}/{\mathcal{K}}({\mathfrak{n}}{\mathfrak{a}}^{\prime})\big{\}},

where CD(k(γ))C_{D}(k(\gamma)) is the centralizer of k(γ)k(\gamma) in DD. Applying Eichler’s theory of optimal embeddings of imaginary AA-orders into DD in Appendix A, we know that D\𝔞×/𝒦D^{*}\backslash{\mathcal{E}}_{\mathfrak{a}}^{\times}/{\mathcal{K}} is finite (see Remark A.7). Hence

#(D\𝔞×/𝒦(𝔫𝔞))=[γ,b]D\𝔞×/𝒦[𝒦:𝒦(𝔫𝔞)]#(b1k(γ)b𝒦).\#\big{(}D^{*}\backslash{\mathcal{E}}_{\mathfrak{a}}^{\times}/{\mathcal{K}}({\mathfrak{n}}{\mathfrak{a}}^{\prime})\big{)}=\sum_{[\gamma,b]\in D^{*}\backslash{\mathcal{E}}_{\mathfrak{a}}^{\times}/{\mathcal{K}}}\frac{[{\mathcal{K}}:{\mathcal{K}}({\mathfrak{n}}{\mathfrak{a}}^{\prime})]}{\#(b^{-1}k(\gamma)^{*}b\cap{\mathcal{K}})}.

Finally, by Lemma 8.11, we obtain that

#(D\𝔞×/𝒦(𝔫𝔞))\displaystyle\#\big{(}D^{*}\backslash{\mathcal{E}}_{\mathfrak{a}}^{\times}/{\mathcal{K}}({\mathfrak{n}}{\mathfrak{a}}^{\prime})\big{)}
=\displaystyle= g¯κ¯K(𝔫,g)\K(𝔫)#(D\×(𝔫,gκ)/𝒦(𝔫𝔞))\displaystyle\sum_{\bar{g}}\sum_{\bar{\kappa}\in K({\mathfrak{n}},g)\backslash K({\mathfrak{n}})}\#\big{(}D^{*}\backslash{\mathcal{E}}^{\times}({\mathfrak{n}},g\kappa)/{\mathcal{K}}({\mathfrak{n}}{\mathfrak{a}}^{\prime})\big{)}
=\displaystyle= g¯κ¯𝒦(𝔫,g)\K(𝔫)[𝒦(𝔫,gκ):𝒦(𝔫𝔞)]#(D\×(𝔫,gκ)/𝒦(𝔫,gκ))\displaystyle\sum_{\bar{g}}\sum_{\bar{\kappa}\in{\mathcal{K}}({\mathfrak{n}},g)\backslash K({\mathfrak{n}})}[{\mathcal{K}}({\mathfrak{n}},g\kappa):{\mathcal{K}}({\mathfrak{n}}{\mathfrak{a}}^{\prime})]\cdot\#\big{(}D^{*}\backslash{\mathcal{E}}^{\times}({\mathfrak{n}},g\kappa)/{\mathcal{K}}({\mathfrak{n}},g\kappa)\big{)}
=\displaystyle= [𝒦(𝔫):𝒦(𝔫𝔞)]g¯#(D\×(𝔫,g)/𝒦(𝔫,g))(by Remark 8.6),\displaystyle[{\mathcal{K}}({\mathfrak{n}}):{\mathcal{K}}({\mathfrak{n}}{\mathfrak{a}}^{\prime})]\cdot\sum_{\bar{g}}\#\big{(}D^{*}\backslash{\mathcal{E}}^{\times}({\mathfrak{n}},g)/{\mathcal{K}}({\mathfrak{n}},g)\big{)}\quad(\text{by Remark~{}\ref{rem: ind-k}}),

where g¯\bar{g} runs through the double cosets in 𝒦(𝔫)\(𝒟D(𝔸f))/𝒦(𝔫){\mathcal{K}}({\mathfrak{n}})\backslash({\mathcal{D}}^{\infty}\cap D^{*}({\mathbb{A}}_{f}))/{\mathcal{K}}({\mathfrak{n}}) with Nr(g)𝒪k=𝔞\text{Nr}(g)\cdot{\mathcal{O}}^{\infty}\cap k={\mathfrak{a}}. Therefore

1[𝒦:𝒦(𝔫)]g¯#(D\×(𝔫,g)/𝒦(𝔫,g))\displaystyle\frac{1}{[{\mathcal{K}}:{\mathcal{K}}({\mathfrak{n}})]}\cdot\sum_{\bar{g}}\#\big{(}D^{*}\backslash{\mathcal{E}}^{\times}({\mathfrak{n}},g)/{\mathcal{K}}({\mathfrak{n}},g)\big{)} (8.5)
=\displaystyle= 1[𝒦:𝒦(𝔫𝔞)]#(D\𝔞×/𝒦(𝔫𝔞))\displaystyle\frac{1}{[{\mathcal{K}}:{\mathcal{K}}({\mathfrak{n}}{\mathfrak{a}}^{\prime})]}\cdot\#\big{(}D^{*}\backslash{\mathcal{E}}_{\mathfrak{a}}^{\times}/{\mathcal{K}}({\mathfrak{n}}{\mathfrak{a}}^{\prime})\big{)}
=\displaystyle= 1q1[γ,b]D\𝔞×/𝒦q1#(b1k(γ)b𝒦)\displaystyle\frac{1}{q-1}\cdot\sum_{[\gamma,b]\in D^{*}\backslash{\mathcal{E}}_{\mathfrak{a}}^{\times}/{\mathcal{K}}}\frac{q-1}{\#(b^{-1}k(\gamma)^{*}b\cap{\mathcal{K}})}
=\displaystyle= 1q1[γ,b]D\𝔞×/𝒦q1#(k(γ)b𝒦b1).\displaystyle\frac{1}{q-1}\cdot\sum_{[\gamma,b]\in D^{*}\backslash{\mathcal{E}}_{\mathfrak{a}}^{\times}/{\mathcal{K}}}\frac{q-1}{\#(k(\gamma)^{*}\cap b{\mathcal{K}}b^{-1})}.

Recall that (𝔫,g){\mathcal{E}}^{\circ}({\mathfrak{n}},g) is non-empty if and only if gk𝒦(𝔫)g\in k^{*}\cdot{\mathcal{K}}({\mathfrak{n}}), which is equivalent to X(𝔫)=X(𝔫,g)X({\mathfrak{n}})=X({\mathfrak{n}},g) by Corollary 8.3. For {×,}\star\in\{\times,\circ\} and (γ,b)𝔞(\gamma,b)\in{\mathcal{E}}^{\star}_{\mathfrak{a}}, we put

i(γ,b):={q1#(k(γ)b𝒦b1), if =×,q1rμ(Γb\GLr(k)/k), if =.i(\gamma,b):=\begin{cases}\displaystyle\frac{q-1}{\#(k(\gamma)^{*}\cap b{\mathcal{K}}b^{-1})},&\text{ if $\star=\times$},\vspace{5pt}\\ \displaystyle{\frac{q-1}{r}}\cdot\mu_{\infty}(\Gamma_{b}\backslash\operatorname{GL}_{r}(k_{\infty})/k_{\infty}^{*}),&\text{ if $\star=\circ$}.\end{cases}

By Corollary 8.5, the equation (8.1), and the projection formula in Example 6.1, we obtain the following.

Proposition 8.12.

Suppose rr is a prime number different from the characteristic of kk. Let 𝔞{\mathfrak{a}} be a nonzero ideal of AA. We have that

i(𝒵𝒵𝔞)=rq1[γ,b]D\𝔞/𝒦i(γ,b).i({\mathcal{Z}}\cdot{\mathcal{Z}}_{\mathfrak{a}})=\frac{r}{q-1}\cdot\sum_{[\gamma,b]\in D^{*}\backslash{\mathcal{E}}_{\mathfrak{a}}/{\mathcal{K}}}i(\gamma,b).
Proof.

By Theorem 6.1, we have that

i(𝒵𝒵𝔞)\displaystyle i({\mathcal{Z}}\cdot{\mathcal{Z}}_{\mathfrak{a}}) =\displaystyle= 1[𝒦:𝒦(𝔫)]g𝒦(𝔫)\𝒟D(𝔸f)/𝒦(𝔫)Nr(g)𝒪k=𝔞i(𝒵(𝔫)𝒵(𝔫,g))\displaystyle\frac{1}{[{\mathcal{K}}:{\mathcal{K}}({\mathfrak{n}})]}\cdot\sum_{\genfrac{}{}{0.0pt}{}{g\in{\mathcal{K}}({\mathfrak{n}})\backslash{\mathcal{D}}^{\infty}\cap D^{*}({\mathbb{A}}_{f})/{\mathcal{K}}({\mathfrak{n}})}{\text{Nr}(g){\mathcal{O}}^{\infty}\cap k={\mathfrak{a}}}}i({\mathcal{Z}}({\mathfrak{n}})\cdot{\mathcal{Z}}({\mathfrak{n}},g))
=\displaystyle= 1[𝒦:𝒦(𝔫)]g𝒦(𝔫)\𝒟D(𝔸f)/𝒦(𝔫)gk𝒦(𝔫),Nr(g)𝒪k=𝔞i(𝒵(𝔫)𝒵(𝔫,g))\displaystyle\frac{1}{[{\mathcal{K}}:{\mathcal{K}}({\mathfrak{n}})]}\cdot\sum_{\genfrac{}{}{0.0pt}{}{g\in{\mathcal{K}}({\mathfrak{n}})\backslash{\mathcal{D}}^{\infty}\cap D^{*}({\mathbb{A}}_{f})/{\mathcal{K}}({\mathfrak{n}})}{g\notin k^{*}{\mathcal{K}}({\mathfrak{n}}),\ \text{Nr}(g){\mathcal{O}}^{\infty}\cap k={\mathfrak{a}}}}i({\mathcal{Z}}({\mathfrak{n}})\cdot{\mathcal{Z}}({\mathfrak{n}},g))
+1[𝒦:𝒦(𝔫)]γAγrA=𝔞χ(X(𝔫)).\displaystyle+\frac{1}{[{\mathcal{K}}:{\mathcal{K}}({\mathfrak{n}})]}\cdot\sum_{\genfrac{}{}{0.0pt}{}{\gamma\in A}{\gamma^{r}A={\mathfrak{a}}}}\chi\big{(}X({\mathfrak{n}})\big{)}.

By Corollary 8.5 and Remark 8.8 (1), the right-hand-side of the above equality can be written as

r[𝒦:𝒦(𝔫)]g𝒦(𝔫)\𝒟D(𝔸f)/𝒦(𝔫)gk𝒦(𝔫),Nr(g)𝒪k=𝔞#(D\×(𝔫,g)/𝒦(𝔫,g))\displaystyle\frac{r}{[{\mathcal{K}}:{\mathcal{K}}({\mathfrak{n}})]}\cdot\sum_{\genfrac{}{}{0.0pt}{}{g\in{\mathcal{K}}({\mathfrak{n}})\backslash{\mathcal{D}}^{\infty}\cap D^{*}({\mathbb{A}}_{f})/{\mathcal{K}}({\mathfrak{n}})}{g\notin k^{*}{\mathcal{K}}({\mathfrak{n}}),\ \text{Nr}(g){\mathcal{O}}^{\infty}\cap k={\mathfrak{a}}}}\#\big{(}D^{*}\backslash{\mathcal{E}}^{\times}({\mathfrak{n}},g)/{\mathcal{K}}({\mathfrak{n}},g)\big{)}
+\displaystyle+ γAγrA=𝔞bD\D(𝔸f)/𝒦μ(Γb\GLr(k)/k).\displaystyle\sum_{\genfrac{}{}{0.0pt}{}{\gamma\in A}{\gamma^{r}A={\mathfrak{a}}}}\sum_{b\in D^{*}\backslash D^{*}({\mathbb{A}}_{f})/{\mathcal{K}}}\mu_{\infty}\big{(}\Gamma_{b}\backslash\text{GL}_{r}(k_{\infty})/k_{\infty}^{*}\big{)}.

Note that D\𝔞/𝒦D^{*}\backslash{\mathcal{E}}_{\mathfrak{a}}^{\circ}/{\mathcal{K}} is in bijection with {γAγrA=𝔞}×D\D(𝔸f)/𝒦\{\gamma\in A\mid\gamma^{r}A={\mathfrak{a}}\}\times D^{*}\backslash D^{*}({\mathbb{A}}_{f})/{\mathcal{K}}. Therefore by the equation (8.5), we obtain that

i(𝒵𝒵𝔞)\displaystyle i({\mathcal{Z}}\cdot{\mathcal{Z}}_{\mathfrak{a}}) =\displaystyle= rq1(γ,b)D\𝔞×/𝒦i(γ,b)+rq1(γ,b)D\𝔞/𝒦i(γ,b)\displaystyle\frac{r}{q-1}\cdot\sum_{(\gamma,b)\in D^{*}\backslash{\mathcal{E}}_{\mathfrak{a}}^{\times}/{\mathcal{K}}}i(\gamma,b)+\frac{r}{q-1}\cdot\sum_{(\gamma,b)\in D^{*}\backslash{\mathcal{E}}_{\mathfrak{a}}^{\circ}/{\mathcal{K}}}i(\gamma,b)
=\displaystyle= rq1(γ,b)D\𝔞/𝒦i(γ,b).\displaystyle\frac{r}{q-1}\cdot\sum_{(\gamma,b)\in D^{*}\backslash{\mathcal{E}}_{\mathfrak{a}}/{\mathcal{K}}}i(\gamma,b).

In the next section, we shall express the right hand side of the above equality in terms of class numbers of imaginary fields, and derive an Kronecker-Hurwitz-type class number relation.

9 Class number relation

Keep the notation as in the last section. Suppose 𝔞{\mathcal{E}}_{\mathfrak{a}} is non-empty, which implies that 𝔞{\mathfrak{a}} is a principal ideal of AA. In this case, for each (γ,b)𝔞(\gamma,b)\in{\mathcal{E}}_{\mathfrak{a}}, the condition b1γb𝒟b^{-1}\gamma b\in{\mathcal{D}}^{\infty} is equivalent to

γb𝒟b1D=:OD,b,\gamma\in b{\mathcal{D}}^{\infty}b^{-1}\cap D=:O_{D,b},

where OD,bO_{D,b} is a maximal AA-order of DD. This implies that γ\gamma is integral over AA. Suppose (γ,b)𝔞×(\gamma,b)\in{\mathcal{E}}_{\mathfrak{a}}^{\times}. Let

fγ(x)=xrc1xr1++(1)r1cr1x+(1)rcrA[x]f_{\gamma}(x)=x^{r}-c_{1}x^{r-1}+\cdots+(-1)^{r-1}c_{r-1}x+(-1)^{r}c_{r}\in A[x]

be the minimal polynomial of γ\gamma over kk. Since k(γ)k(\gamma) is imaginary over kk of degree rr, the polynomial fγ(x)f_{\gamma}(x) remains irreducible over kk_{\infty}. Hence every root of fγ(x)f_{\gamma}(x) in {\mathbb{C}}_{\infty} has the same absolute value. Notice that crA=Nr(γ)A=𝔞c_{r}\cdot A=\text{Nr}(\gamma)\cdot A={\mathfrak{a}}, which gives us that |ci|qdeg𝔞|c_{i}|_{\infty}\leq q^{\deg{\mathfrak{a}}} for i=1,,ri=1,...,r. Therefore the possibility of the minimal polynomial fγA[x]f_{\gamma}\in A[x] is finite for (γ,b)(\gamma,b) running through all pairs in 𝔞×{\mathcal{E}}_{\mathfrak{a}}^{\times}.

On the other hand, given c:=(c1,,cr)Ar\vec{c}:=(c_{1},...,c_{r})\in A^{r}, let

fc(x):=xrc1xr1++(1)r1cr1x+(1)rcrA[x].f_{\vec{c}}(x):=x^{r}-c_{1}x^{r-1}+\cdots+(-1)^{r-1}c_{r-1}x+(-1)^{r}c_{r}\quad\in A[x].

Suppose that:

  • (i)

    crA=𝔞c_{r}\cdot A={\mathfrak{a}};

  • (ii)

    Kc:=k[x]/(fc(x))K_{\vec{c}}:=k[x]/(f_{\vec{c}}(x)) is an imaginary field extension over kk;

  • (iii)

    there exists a kk-algebra embedding ϕ:KcD\phi:K_{\vec{c}}\hookrightarrow D.

Put Rc:=A[x]/(fc(x))R_{\vec{c}}:=A[x]/(f_{\vec{c}}(x)), which is an AA-order in KcK_{\vec{c}}, and x¯\bar{x} is the coset in RcR_{\vec{c}} represented by xx. For each bD(𝔸f)b\in D^{*}({\mathbb{A}}_{f}) satisfying that

Rcϕ1(OD,b),R_{\vec{c}}\subset\phi^{-1}(O_{D,b}),

set γϕ:=ϕ(x¯)OD,b\gamma_{\phi}:=\phi(\bar{x})\in O_{D,b}. Then (γϕ,b)(\gamma_{\phi},b) lies in 𝔞×{\mathcal{E}}_{\mathfrak{a}}^{\times}.

Let

(c):={bD(𝔸f)Rcϕ1(OD,b)},{\mathcal{E}}(\vec{c}):=\{b\in D^{*}({\mathbb{A}}_{f})\mid R_{\vec{c}}\subset\phi^{-1}(O_{D,b})\},

which is invariant by left multiplication of ϕ(Kc)\phi(K_{\vec{c}}^{*}) and right multiplication of 𝒦{\mathcal{K}}. For each (γ,b)𝔞(\gamma,b)\in{\mathcal{E}}_{\mathfrak{a}} with fγ=fcf_{\gamma}=f_{\vec{c}}, by the Noether-Skolem theorem, there exists γ0D\gamma_{0}\in D^{*}, which is unique up to left mulltiplication of ϕ(Kc)\phi(K_{\vec{c}}^{*}), such that γϕ=γ0γγ01\gamma_{\phi}=\gamma_{0}\gamma\gamma_{0}^{-1}. Then the condition b1γb𝒟b^{-1}\gamma b\in{\mathcal{D}}^{\infty} is equivalent to γϕOD,γ0b\gamma_{\phi}\in O_{D,\gamma_{0}b}. Hence we have a well-defined bijective map

D\𝔞×/𝒦cAr:crA=𝔞,Kc/k is imaginaryϕ(Kc)\(c)/𝒦D^{*}\backslash{\mathcal{E}}_{\mathfrak{a}}^{\times}/{\mathcal{K}}\longrightarrow\coprod_{\genfrac{}{}{0.0pt}{}{\vec{c}\in A^{r}:\ c_{r}A={\mathfrak{a}},}{K_{\vec{c}}/k\text{ is imaginary}}}\phi(K_{\vec{c}}^{*})\backslash{\mathcal{E}}(\vec{c})/{\mathcal{K}} (9.1)

which sends [γ,b][\gamma,b] to [b]cϕ(Kc)\(c)/𝒦[b]_{\vec{c}}\in\phi(K_{\vec{c}}^{*})\backslash{\mathcal{E}}(\vec{c})/{\mathcal{K}} when fγ=fcf_{\gamma}=f_{\vec{c}}.

Now, for an AA-order RR of KcK_{\vec{c}} with RcRR_{\vec{c}}\subset R, put

ϕo(R):={bD(𝔸f)ϕ1(OD,b)=R}.{\mathcal{E}}^{o}_{\phi}(R):=\{b\in D^{*}({\mathbb{A}}_{f})\mid\phi^{-1}(O_{D,b})=R\}.

Then

ϕ(Kc)\(c)/𝒦=R:RcRϕ(Kc)\ϕo(R)/𝒦.\phi(K_{\vec{c}}^{*})\backslash{\mathcal{E}}(\vec{c})/{\mathcal{K}}=\coprod_{R:R_{\vec{c}}\subset R}\phi(K_{\vec{c}}^{*})\backslash{\mathcal{E}}^{o}_{\phi}(R)/{\mathcal{K}}. (9.2)

Note that for bϕo(R)b\in{\mathcal{E}}^{o}_{\phi}(R), one has that

k(γϕ)b𝒦b1=ϕ(Kc)OD,b=ϕ(R).k(\gamma_{\phi})^{*}\cap b{\mathcal{K}}b^{-1}=\phi(K_{\vec{c}})^{*}\cap O_{D,b}^{*}=\phi(R^{*}).

Therefore by the equation (8.5) and Proposition A.9, we obtain that

[γ,b]D\𝔞×/𝒦#(𝔽q×)#(k(γ)b𝒦b1)\displaystyle\sum_{[\gamma,b]\in D^{*}\backslash{\mathcal{E}}_{\mathfrak{a}}^{\times}/{\mathcal{K}}}\frac{\#({\mathbb{F}}_{q}^{\times})}{\#(k(\gamma)^{*}\cap b{\mathcal{K}}b^{-1})} =\displaystyle= cAr:crA=𝔞,Kc is imag.R:RcR#(ϕ(Kc)\ϕo(R)/𝒦)#(R/𝔽q)\displaystyle\sum_{\genfrac{}{}{0.0pt}{}{\vec{c}\in A^{r}:\ c_{r}A={\mathfrak{a}},}{K_{\vec{c}}\text{ is imag.}}}\sum_{R:R_{\vec{c}}\subset R}\frac{\#\big{(}\phi(K_{\vec{c}}^{*})\backslash{\mathcal{E}}^{o}_{\phi}(R)/{\mathcal{K}}\big{)}}{\#(R^{*}/{\mathbb{F}}_{q}^{*})}
=\displaystyle= cAr:crA=𝔞,Kc is imagHD(c),\displaystyle\sum_{\genfrac{}{}{0.0pt}{}{\vec{c}\in A^{r}:\ c_{r}A={\mathfrak{a}},}{K_{\vec{c}}\text{ is imag}}}H^{D}(\vec{c}),

where HD(c)H^{D}(\vec{c}) is the modified Hurwitz class number with respect to DD introduced in Definition A.8.

Finally, set

HD(0):=#Pic(A)i=1r1ζk(i)v𝐑𝐚𝐦{}i=1r1(1qvi).H^{D}(0):=\#\text{Pic}(A)\cdot\prod_{i=1}^{r-1}\zeta_{k}(-i)\cdot\prod_{v\in{\bf Ram}\cup\{\infty\}}\,\prod_{i=1}^{r-1}(1-q_{v}^{i}). (9.3)

As D\𝔞/𝒦D^{*}\backslash{\mathcal{E}}_{\mathfrak{a}}^{\circ}/{\mathcal{K}} is in bijection with {cAcrA=𝔞}×D\D(𝔸f)/𝒦\{c\in A\mid c^{r}\cdot A={\mathfrak{a}}\}\times D^{*}\backslash D^{*}({\mathbb{A}}_{f})/{\mathcal{K}}, which is finite, by Proposition 8.9 and Remark 8.8 (1) one gets

(γ,b)D\𝔞/𝒦i(γ,b)=cAcrA=𝔞HD(0).\sum_{(\gamma,b)\in D^{*}\backslash{\mathcal{E}}_{\mathfrak{a}}^{\circ}/{\mathcal{K}}}i(\gamma,b)=\sum_{\genfrac{}{}{0.0pt}{}{c\in A}{c^{r}A={\mathfrak{a}}}}H^{D}(0).

Therefore Proposition 8.12 leads to the following class number relation:

Theorem 9.1.

Let rr be a prime number distinct from the characteristic of kk. For each nonzero ideal 𝔞{\mathfrak{a}} of AA, we have

i(𝒵𝒵𝔞)=rq1(cAr:crA=𝔞,Kc is imag.HD(c)+cAcrA=𝔞HD(0)).i({\mathcal{Z}}\cdot{\mathcal{Z}}_{\mathfrak{a}})=\frac{r}{q-1}\cdot\left(\sum_{\genfrac{}{}{0.0pt}{}{\vec{c}\in A^{r}:\ c_{r}A={\mathfrak{a}},}{K_{\vec{c}}\text{\rm\ is imag.}}}H^{D}(\vec{c})+\sum_{\genfrac{}{}{0.0pt}{}{c\in A}{c^{r}\cdot A={\mathfrak{a}}}}H^{D}(0)\right).
Remark 9.2.

Suppose r=2r=2 and the characteristic of kk is odd. Given aAa\in A, we may denote by a0a\prec 0 if k(a)k(\sqrt{a}) is an imaginary quadratic field extension over kk. For such aa, we let

HD(a):=HD((0,a)).H^{D}(a):=H^{D}((0,-a)).

Then Theorem 9.1 can be reformulate as the following: for each nonzero ideal 𝔞{\mathfrak{a}} of AA, we have

i(𝒵𝒵𝔞)=2q1t,aAaA=𝔞,t24a0HD(t24a).i({\mathcal{Z}}\cdot{\mathcal{Z}}_{{\mathfrak{a}}})=\frac{2}{q-1}\cdot\sum_{\genfrac{}{}{0.0pt}{}{t,a\in A}{aA={\mathfrak{a}},\ t^{2}-4a\preceq 0}}H^{D}(t^{2}-4a).

Furthermore, set

vol(𝒵):=2#Pic(A)(q1)ζk(1)v𝐑𝐚𝐦(1qv).\text{vol}({\mathcal{Z}}):=2\cdot\#{\rm Pic}(A)\cdot(q_{\infty}-1)\cdot\zeta_{k}(-1)\cdot\prod_{v\in{\bf Ram}}(1-q_{v}).

By employing the “Weil representation” as illustrated in [16, Sec. 3] (or alternatively, by combining the work of [6] with the relations among Hurwitz class numbers established in [17, Sec. 2]), we are able to construct a “harmonic” theta series on GL2(𝔸)\operatorname{GL}_{2}({\mathbb{A}}) whose nonzero (resp. constant) Fourier coefficients come from the intersection numbers i(𝒵𝒵𝔞)i({\mathcal{Z}}\cdot{\mathcal{Z}}_{\mathfrak{a}}) for nonzero ideal 𝔞{\mathfrak{a}} of AA (resp. vol(𝒵)\text{vol}({\mathcal{Z}})). Although the approach in [16] seems not applicable for r>2r>2, we believe that, after further work, this phenomenon remains valid.

Appendix A Eichler’s theory of optimal embeddings

Recall that DD is a division algebra over kk with [D:k]=r2[D:k]=r^{2}. Here we review Eichler’s theory of optimal embeddings from an AA-order RR of an imaginary extension KK over kk into the division algebra DD. For simpliciy, we always assume that rr is a prime number in this section, which is sufficient for our purpose.

A.1 Local theory

Fix a place vv of kk with vv\neq\infty, let

Kv:=Kkkv,Dv:=Dkkv,OD,v:=ODA𝒪v.K_{v}:=K\otimes_{k}k_{v},\quad D_{v}:=D\otimes_{k}k_{v},\quad O_{D,v}:=O_{D}\otimes_{A}{\mathcal{O}}_{v}.

As rr is a prime number, either DvD_{v} is division or Dv𝕄r(kv)D_{v}\cong{\mathbb{M}}_{r}(k_{v}). Thus there always exists an embedding from KvK_{v} into DvD_{v} when either Dv𝕄r(kv)D_{v}\cong{\mathbb{M}}_{r}(k_{v}) or KvK_{v} is a field (see [35, Theorem 1.1 (1)]). Fix an embedding ϕv:KvDv\phi_{v}:K_{v}\hookrightarrow D_{v}. For each 𝒪v{\mathcal{O}}_{v}-order RvR_{v} in KvK_{v}, let

ϕvo(Rv):={bvDvϕv1(bOD,vb1)=Rv}.{\mathcal{E}}_{\phi_{v}}^{o}(R_{v}):=\{b_{v}\in D_{v}^{*}\mid\phi_{v}^{-1}(bO_{D,v}b^{-1})=R_{v}\}.

We shall determine the finiteness of the double coset space

ϕv(Kv)\ϕvo(Rv)/𝒦v,\phi_{v}(K_{v}^{*})\backslash{\mathcal{E}}_{\phi_{v}}^{o}(R_{v})/{\mathcal{K}}_{v},

where 𝒦v=OD,v{\mathcal{K}}_{v}=O_{D,v}^{*}, the vv-component of 𝒦{\mathcal{K}}.

Lemma A.1.

Suppose DvD_{v} is division and KvK_{v} is a field. Then

#(ϕv(Kv)\ϕvo(Rv)/𝒦v)\displaystyle\#\big{(}\phi_{v}(K_{v}^{*})\backslash{\mathcal{E}}_{\phi_{v}}^{o}(R_{v})/{\mathcal{K}}_{v}\big{)}
=μvD(Rv):={r, if v is unramified in Kv and Rv is maximal in Kv,1, if v is ramified in Kv and Rv is maximal in Kv,0, if Rv is not maximal in Kv.\displaystyle=\mu_{v}^{D}(R_{v}):=\begin{cases}r,&\text{ if $v$ is unramified in $K_{v}$ and $R_{v}$ is maximal in $K_{v}$,}\\ 1,&\text{ if $v$ is ramified in $K_{v}$ and $R_{v}$ is maximal in $K_{v}$,}\\ 0,&\text{ if $R_{v}$ is not maximal in $K_{v}$.}\end{cases}
Proof.

When DvD_{v} is division and KvK_{v} is a field, one knows that OD,vO_{D,v} is the unique maximal 𝒪v{\mathcal{O}}_{v}-order in DvD_{v}, for which bvOD,vbv1=OD,vb_{v}O_{D,v}b_{v}^{-1}=O_{D,v}. Moreover, every element in DvD_{v} which is integral over 𝒪v{\mathcal{O}}_{v} is contained in OD,vO_{D,v}. Therefore for every bvDvb_{v}\in D_{v}^{*},

ϕv1(bvOD,vbv1)=ϕv1(OD,v)=RK,v,the maximal 𝒪v-order in Kv.\phi_{v}^{-1}(b_{v}O_{D,v}b_{v}^{-1})=\phi_{v}^{-1}(O_{D,v})=R_{K,v},\quad\text{the maximal ${\mathcal{O}}_{v}$-order in $K_{v}$}.

Thus #(ϕv(Kv)\ϕvo(Rv)/𝒦v)=0\#\big{(}\phi_{v}(K_{v}^{*})\backslash{\mathcal{E}}_{\phi_{v}}^{o}(R_{v})/{\mathcal{K}}_{v}\big{)}=0 if RvR_{v} is not maximal in KvK_{v}.

When Rv=RK,vR_{v}=R_{K,v}, we get that ϕvo(Rv)=Dv{\mathcal{E}}_{\phi_{v}}^{o}(R_{v})=D_{v}^{*}. Hence

#(ϕv(Kv)\ϕvo(Rv)/𝒦v)\displaystyle\#\big{(}\phi_{v}(K_{v}^{*})\backslash{\mathcal{E}}_{\phi_{v}}^{o}(R_{v})/{\mathcal{K}}_{v}\big{)} =#(ϕv(Kv)\Dv/𝒦v)\displaystyle=\#\big{(}\phi_{v}(K_{v}^{*})\backslash D_{v}^{*}/{\mathcal{K}}_{v}\big{)}
={r,if v is unramified in Kv1,if v is (totally) ramified in Kv.\displaystyle=\begin{cases}r,&\text{if $v$ is unramified in $K_{v}$}\\ 1,&\text{if $v$ is (totally) ramified in $K_{v}$.}\end{cases}

This completes the proof. ∎

Lemma A.2.

Suppose Dv𝕄r(kv)D_{v}\cong{\mathbb{M}}_{r}(k_{v}). Then the cardinality of ϕv(Kv)\ϕvo(Rv)/𝒦v\phi_{v}(K_{v}^{*})\backslash{\mathcal{E}}_{\phi_{v}}^{o}(R_{v})/{\mathcal{K}}_{v} is finite and positive. In particular, if RvR_{v} is maximal in KvK_{v}, then

#(ϕv(Kv)\ϕvo(Rv)/𝒦v)=1.\#\big{(}\phi_{v}(K_{v}^{*})\backslash{\mathcal{E}}_{\phi_{v}}^{o}(R_{v})/{\mathcal{K}}_{v}\big{)}=1.
Proof.

Under the isomorphism Dv𝕄r(kv)D_{v}\cong{\mathbb{M}}_{r}(k_{v}), we may identify OD,vO_{D,v} with Matr(𝒪v)\text{Mat}_{r}({\mathcal{O}}_{v}) without loss of generality. Let V=kvrV=k_{v}^{r}, which is equipped with a left module structure over 𝕄r(kv)=Endkv(V){\mathbb{M}}_{r}(k_{v})=\text{End}_{k_{v}}(V). An RvR_{v}-lattice LL is a free 𝒪v{\mathcal{O}}_{v}-submodule of VV which is invariant under the multiplication by ϕv(Rv)\phi_{v}(R_{v}), and LL is optimal if ϕv(Rv)=ϕv(Kv)End𝒪v(L)\phi_{v}(R_{v})=\phi_{v}(K_{v})\cap\text{End}_{{\mathcal{O}}_{v}}(L). Two RvR_{v}-lattices L1L_{1} and L2L_{2} are isomorphic if there exists bAutkv(V)b\in\text{Aut}_{k_{v}}(V) so that bL1=L2bL_{1}=L_{2}, and

b(ϕv(α)λ)=ϕv(α)b(λ),αKv,λL1.b\big{(}\phi_{v}(\alpha)\lambda\big{)}=\phi_{v}(\alpha)\cdot b(\lambda),\quad\forall\alpha\in K_{v},\ \lambda\in L_{1}.

Then bϕv(Kv)b\in\phi_{v}(K_{v}^{*}), and we have a bijection

ϕv(Kv)\ϕvo(Rv)/𝒦v{isomorphism classes of optimal 𝒪v-lattices in V}\phi_{v}(K_{v}^{*})\backslash{\mathcal{E}}_{\phi_{v}}^{o}(R_{v})/{\mathcal{K}}_{v}\stackrel{{\scriptstyle\sim}}{{\longrightarrow}}\{\text{isomorphism classes of optimal ${\mathcal{O}}_{v}$-lattices in $V$}\}

which is induced by sending bb to the optimal RvR_{v}-lattice b𝒪vrb\cdot{\mathcal{O}}_{v}^{r} for every bϕvo(Rv)b\in{\mathcal{E}}_{\phi_{v}}^{o}(R_{v}). Thus it suffices to count the isomorphism classes of optimal RvR_{v}-lattices in VV.

Notice that when RvR_{v} is maximal in KvK_{v}, every RvR_{v}-lattice in LL must be free of rank one over RvR_{v}. Hence there is only one isomorhism class. In general, for each optimal RvR_{v}-lattice LL in KvK_{v}, consider L~:=ϕv(RK,v)LV\tilde{L}:=\phi_{v}(R_{K,v})\cdot L\subset V, which is an RK,vR_{K,v}-lattice. On the other hand, there exists cv0c_{v}\in{\mathbb{Z}}_{\geq 0} such that 𝔭vcvRK,vRv{\mathfrak{p}}_{v}^{c_{v}}\cdot R_{K,v}\subset R_{v} (the smallest choice of ‘cvc_{v}’ refers to the “conductor” of RvR_{v}), whence 𝔭vcvL~L{\mathfrak{p}}_{v}^{c_{v}}\cdot\tilde{L}\subset L. Since L~/𝔭vcvL~\tilde{L}/{\mathfrak{p}}_{v}^{c_{v}}\tilde{L} has finite cardinality, we obtain that the isomorphism classes of RvR_{v}-lattices in VV is finite (and bounded by #(RK,v/𝔭vcvRK,v)\#(R_{K,v}/{\mathfrak{p}}_{v}^{c_{v}}R_{K,v})). ∎

Remark A.3.

Suppose Dv𝕄r(kv)D_{v}\cong{\mathbb{M}}_{r}(k_{v}). Let μvD(Rv)\mu_{v}^{D}(R_{v}) be the cardinality of the isomorphism classes of optimal RvR_{v}-lattices in VV. Then the above proof shows that μvD(Rv)\mu_{v}^{D}(R_{v}) is finite positive, and μvD(Rv)=1\mu_{v}^{D}(R_{v})=1 for almost all vv. In particular,

#(ϕv(Kv)\ϕvo(Rv)/𝒦v)=μvD(Rv).\#\big{(}\phi_{v}(K_{v}^{*})\backslash{\mathcal{E}}_{\phi_{v}}^{o}(R_{v})/{\mathcal{K}}_{v}\big{)}=\mu_{v}^{D}(R_{v}).

A.2 Global theory and modified Hurwitz class numbers

First, the condition for the existence of a kk-algebra embedding from KK into DD is determined by the following.

Theorem A.4.

(See [32, Proposition A.1]) Let DD be a central simple algebra of degree rr over kk and KK is a field extension of degree rr over kk. Then the local-global principle holds, i.e. KK can be embedded into DD if and only if KvK_{v} can be embedded into DvD_{v} for every place vv of KK.

Now, let DD be a division algebra over kk and rr is a prime number. Suppose an embedding ϕ:KD\phi:K\hookrightarrow D exists, which corresponds to embeddings ϕv:KvDv\phi_{v}:K_{v}\hookrightarrow D_{v} for all finite places vv of kk. Let RR be an AA-order of KK. Put

ϕo(R):={bD(𝔸f)ϕ1(OD,b)=R}.{\mathcal{E}}^{o}_{\phi}(R):=\{b\in D^{*}({\mathbb{A}}_{f})\mid\phi^{-1}(O_{D,b})=R\}.

Here OD,bO_{D,b} is defined in the beginning of Section 9. We shall express the cardinality of the double coset space ϕ(K)\ϕo(R)/𝒦\phi(K^{*})\backslash{\mathcal{E}}_{\phi}^{o}(R)/{\mathcal{K}} as “modified class number” of RR.

For each finite place vv of kk, let Rv:=RA𝒪vR_{v}:=R\otimes_{A}{\mathcal{O}}_{v}. For b=(bv)vD(𝔸f)b=(b_{v})_{v\neq\infty}\in D^{*}({\mathbb{A}}_{f}), one has that bϕo(R)b\in{\mathcal{E}}_{\phi}^{o}(R) if and only if bvϕvo(Rv)b_{v}\in{\mathcal{E}}_{\phi_{v}}^{o}(R_{v}) for every vv\neq\infty. Define K(𝔸f):=(Kk𝔸f)K^{*}({\mathbb{A}}_{f}):=(K\otimes_{k}{\mathbb{A}}_{f})^{*}. Then Lemma A.2 ensures that

ϕ(K(𝔸f))\ϕo(R)/𝒦=vϕv(Kv)\ϕ,vo(Rv)/𝒦v.\phi(K^{*}({\mathbb{A}}_{f}))\backslash{\mathcal{E}}^{o}_{\phi}(R)/{\mathcal{K}}=\prod_{v}\phi_{v}(K_{v}^{*})\backslash{\mathcal{E}}^{o}_{\phi,v}(R_{v})/{\mathcal{K}}_{v}.

On the other hand, let h(R)h(R) be the class number of RR, i.e.

h(R):=#(K\K(𝔸f)/R^), where R^:=vRv.h(R):=\#(K^{*}\backslash K^{*}({\mathbb{A}}_{f})/\widehat{R}^{*}),\quad\text{ where $\widehat{R}:=\prod_{v\neq\infty}R_{v}$}.

We have the following.

Lemma A.5.

Under the canonical surjective map

ϕ(K)\ϕo(R)/𝒦ϕ(K(𝔸f))\ϕo(R)/𝒦,\phi(K^{*})\backslash{\mathcal{E}}_{\phi}^{o}(R)/{\mathcal{K}}\longrightarrow\phi(K^{*}({\mathbb{A}}_{f}))\backslash{\mathcal{E}}_{\phi}^{o}(R)/{\mathcal{K}},

the cardinality of each fiber is equal to h(R)h(R).

Proof.

Given bϕo(R)b\in{\mathcal{E}}_{\phi}^{o}(R), the fiber of bb can be identified with the double coset space

ϕ(K)\ϕ(K(𝔸f))/(ϕ(K(𝔸f))b𝒦b1),\phi(K^{*})\Big{\backslash}\phi(K^{*}({\mathbb{A}}_{f}))\Big{/}\big{(}\phi(K^{*}({\mathbb{A}}_{f}))\cap b{\mathcal{K}}b^{-1}\big{)},

and the condition of bb lying in ϕo(R){\mathcal{E}}_{\phi}^{o}(R) implies that

ϕ(K(𝔸f))b𝒦b1=ϕ(R^).\phi(K^{*}({\mathbb{A}}_{f}))\cap b{\mathcal{K}}b^{-1}=\phi(\widehat{R}^{*}).

Therefore the result follows. ∎

Consequently, let hD(R)h^{D}(R) be the following modified class number (with respect to DD):

hD(R):=h(R)vμvD(Rv),h^{D}(R):=h(R)\cdot\prod_{v\neq\infty}\mu_{v}^{D}(R_{v}),

where μvD(Rv)\mu_{v}^{D}(R_{v}) is the introduced in Lemma A.1 when DvD_{v} is division and Remark A.3 when Dv𝕄r(kv)D_{v}\cong{\mathbb{M}}_{r}(k_{v}). We then conclude that:

Proposition A.6.

The double coset space ϕ(K)\ϕo(R)/𝒦\phi(K^{*})\backslash{\mathcal{E}}_{\phi}^{o}(R)/{\mathcal{K}} is a finite set, and its cardinality is equal to hD(R)h^{D}(R).

Proof.

By Lemma A.2 and Remark A.3, we get

#(ϕ(K(𝔸f))\ϕo(R)/𝒦)=v(ϕ(Kv)\ϕ,vo(Rv)/𝒦v)=vμvD(Rv)<.\#\big{(}\phi(K^{*}({\mathbb{A}}_{f}))\backslash{\mathcal{E}}_{\phi}^{o}(R)/{\mathcal{K}}\big{)}=\prod_{v}\big{(}\phi(K_{v}^{*})\backslash{\mathcal{E}}^{o}_{\phi,v}(R_{v})/{\mathcal{K}}_{v}\big{)}=\prod_{v}\mu_{v}^{D}(R_{v})\quad<\infty.

Therefore Lemma A.5 ensures the finiteness of ϕ(K)\ϕo(R)/𝒦\phi(K^{*})\backslash{\mathcal{E}}_{\phi}^{o}(R)/{\mathcal{K}}, and

#(ϕ(K)\ϕo(R)/𝒦)=h(R)#(ϕ(K(𝔸f))\ϕo(R)/𝒦)=hD(R)\#\big{(}\phi(K^{*})\backslash{\mathcal{E}}_{\phi}^{o}(R)/{\mathcal{K}}\big{)}=h(R)\cdot\#\big{(}\phi(K^{*}({\mathbb{A}}_{f}))\backslash{\mathcal{E}}_{\phi}^{o}(R)/{\mathcal{K}}\big{)}=h^{D}(R)

as desired. ∎

Remark A.7.

Given a non-zero ideal 𝔞{\mathfrak{a}} of AA so that 𝒵{\mathcal{Z}} is not a component of 𝒵𝔞{\mathcal{Z}}_{\mathfrak{a}}, Then Proposition A.6, the equations (9.1) and (9.2) guarantee the finiteness of D\𝔞×/𝒦D^{*}\backslash{\mathcal{E}}_{\mathfrak{a}}^{\times}/{\mathcal{K}}.

Definition A.8.

Given cAr\vec{c}\in A^{r} satisfying that KcK_{\vec{c}} is imaginary, the modified Hurwitz class number of RcR_{\vec{c}} (with respect to DD) is given by

HD(c):=R:RcRhD(R)#(R/𝔽q).H^{D}(\vec{c}):=\sum_{R:R_{\vec{c}}\subset R}\frac{h^{D}(R)}{\#(R^{*}/{\mathbb{F}}_{q}^{*})}.

We finally arrive at:

Proposition A.9.
R:RcR#(ϕ(Kc)\ϕo(R)/𝒦)#(R/𝔽q)=HD(c).\sum_{R:R_{\vec{c}}\subset R}\frac{\#\big{(}\phi(K_{\vec{c}}^{*})\backslash{\mathcal{E}}^{o}_{\phi}(R)/{\mathcal{K}}\big{)}}{\#(R^{*}/{\mathbb{F}}_{q}^{*})}=H^{D}(\vec{c}).

References

  • [1] S. Bae “On the modular equation for Drinfeld modules of rank 2” In J. Number Theory 42, 1992, pp. 123–133
  • [2] S. Bae “On the coefficients of the Drinfeld modular equation” In J. Number Theory 66, 1997, pp. 85–101
  • [3] Stuhler U. Blum A. “Drinfeld modules and elliptic sheaves” In Vector Bundles on Curves — New Directions: Lectures given at the 3rd Session of the Centro Internazionale Matematico Estivo (C.I.M.E.) held in Cetraro (Cosenza), Italy, June 19–27, 1995 Springer Berlin Heidelberg, 1997, pp. 110–188
  • [4] R.. Briney “Intersection theory on quotients of algebraic varieties” In Amer. J. of Math 84, 1962, pp. 217–238
  • [5] Claude Chevalley “Les classes d’équivalence rationnelle, I” talk:2 In Séminaire Claude Chevalley 3 Secrétariat mathématique, 1958
  • [6] C.-Y. Chuang, T.-F. Lee, F.-T. Wei and J. Yu “Brandt matrices and theta series over global function fields” In Mem. Amer. Math. Soc. 237.1117, 2015
  • [7] J.. Cogdell “Arithmetic cycles on Picard modular surfaces and modular forms of nebentypus” In J. Reine Angew. Math. 357, 1985, pp. 115–137
  • [8] Husemöller D. Deligne P. “Survey of Drinfeld modules” In Contemporary Math. 67, 1987, pp. 25–91
  • [9] Mumford D. Deligne P. “The Irreducibility of the Space of Curves of Given Genus” In Publ. Math. IHES 36, 1969, pp. 75–109
  • [10] V.G. Drinfeld “Elliptic modules” In Math. USSR Sbornik23, 561–592, 1974
  • [11] T. Feng, Z. Yun and W. Zhang “Higher Siegel–Weil formula for unitary groups: the non-singular terms” In preprint arXiv:2103.11514
  • [12] T. Feng, Z. Yun and W. Zhang “Higher theta series for unitary groups over function fields” In preprint arXiv:2110.07001
  • [13] W. Fulton “Intersection Theory, Second edition” Springer New York, 1998, pp. VIII\bibrangessep470
  • [14] J. Funke “Heegner divisors and nonholomorphic modular forms” In Compositio math. 133, 2002, pp. 289–321
  • [15] Wedhorn T. Görtz U. “Algebraic Geometry”, Advanced Lectures in Mathematics Vieweg+Teubner Verlag Wiesbaden, 2010, pp. IV\bibrangessep615
  • [16] J.-W. Guo and F.-T. Wei “On class number relations and intersections over function fields” In Doc. math. 27, 2022, pp. 1321–1368
  • [17] J.-W. Guo and F.-T. Wei “On CM masses over global function fields” In Math. Z. 303.29, 2023
  • [18] R. Hartshorne “Algebraic Geometry”, Graduate Texts in Mathematics Springer New York, 1977, pp. XVI\bibrangessep496
  • [19] D. Hirzebruch “Intersection numbers of curves on Hilbert modular surfaces and modular forms of nebentypus” In Invent. math. 36, 1976, pp. 57–113
  • [20] L.-C. Hsia “On the coefficients of modular polynomials for Drinfeld modules” In J. Number Theory 72, 1998, pp. 236–256
  • [21] A. Hurwitz “Über Relationen zwischen Klassenzahlen binärer quadratischer Formen von negativer Determinante” In Math. Ann. 25, 1885, pp. 157–196
  • [22] L. Kronecker “Über die Anzahl der verschiedenen Klassen quadratischer Formen von negativer Determinante” In J. Reine Angew. Math. 57, 1860, pp. 248–255
  • [23] J.. Kudla “Intersection numbers of cycles on locally symmetric spaces and Fourier coefficients of holomorphic modular forms in several complex variables” In Publications mathématiques de l’I.H.É.S. 71, 1990, pp. 121–172
  • [24] J.. Kudla “The theta correspondence and harmonic forms. I” In Math. Ann. 274, 1986, pp. 353–378
  • [25] J.. Kudla “The theta correspondence and harmonic forms. II” In Math. Ann. 277, 1987, pp. 267–317
  • [26] S.. Kudla “Algebraic cycles on Shimura varieties of orthogonal type” In Duke math. 86.1, 1997, pp. 39–78
  • [27] S.. Kudla “Intersection numbers for quotients of the complex 22-ball and Hilbert modular forms” In Invent. math. 47.2, 1978, pp. 189–208
  • [28] A. Kurihara “Construction of p-adic unit balls and the Hirtzbruch proportionality” In Amer. J. math 102.3, 1980, pp. 565–648
  • [29] Stuhler U. Laumon G. 𝒟\mathcal{D}-elliptic sheaves and the Langlands correspondence” In Invent. Math. 113, 1993, pp. 217–338
  • [30] M. Papikian “Drinfeld–Stuhler modules” In Res Math Sci 5, 2018
  • [31] M. Papikian “Modular varieties of 𝒟{\mathcal{D}}-elliptic sheaves and the Weil–Deligne bound” In J. Reine Angew. Math. 626, 2009, pp. 115–134
  • [32] G. Prasad and A.. Rapinchuk “Computation of the metaplectic kernel” In Publ. Math. IHES 84, 1996, pp. 91–187
  • [33] Stuhler U. Schneider P. “The cohomology of p-adic symmetric spaces” In Invent. Math. 105, 1991, pp. 47–122
  • [34] J.-P. Serre “Groupes algébriques et corps de classes”, Actualités Scientifiques et Industrielles 1264 Hermann (Paris), 1959
  • [35] S.-C. Shih, T.-C. Yang and C.-F. Yu “Embeddings of fields into simple algebras over global fields” In Asian J. Math 18.2, 2014, pp. 365–386
  • [36] Ö. Ülkem “Uniformization of generalized 𝒟{\mathcal{D}}-elliptic sheaves, PhD thesis” Heidelberg University, 2020 URL: http://www.ub.uni-heidelberg.de/archiv/29531
  • [37] J. Wang “On class number relations over function fields” In J. Number Theory 69, 1998, pp. 181–196
  • [38] F.-T. Wei and C.-F. Yu “Mass formula of division algebras over global function fields” In J. Number Theory 132.3, 2012, pp. 1170–1184
  • [39] A. Weil “Adeles and algebraic groups (with appendices by M. Demazure and T. Ono)” 23, Progress in Mathematics Birkhäuser, Boston, Mass., 1982
  • [40] J.-K. Yu “A class number relation over function fields” In J. Number Theory 54, 1995, pp. 318–340