This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

thanks: wjingphys@fudan.edu.cn

Intrinsic antiferromagnetic topological insulator and axion state in V2WS4

Yadong Jiang State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China Shanghai Research Center for Quantum Sciences, Shanghai 201315, China    Huan Wang State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China Shanghai Research Center for Quantum Sciences, Shanghai 201315, China    Kejie Bao State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China Shanghai Research Center for Quantum Sciences, Shanghai 201315, China    Jing Wang State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China Shanghai Research Center for Quantum Sciences, Shanghai 201315, China Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai 200433, China Hefei National Laboratory, Hefei 230088, China
Abstract

Intrinsic magnetic topological insulators offers an ideal platform to explore exotic topological phenomena, such as axion electrodynamics, quantum anomalous Hall (QAH) effect and Majorana edge modes. However, these emerging new physical effects have rarely been experimentally observed due to the limited choice of suitable materials. Here, we predict the van der Waals layered V2WS4 and its related materials show intralayer ferromagnetic and interlayer antiferromagnetic exchange interactions. We find extremely rich magnetic topological states in V2WS4, including an antiferromagnetic topological insulator, the axion state with the long-sought quantized topological magnetoelectric effect, three-dimensional QAH state, as well as a collection of QAH insulators and intrinsic axion insulators in odd- and even-layer films, respectively. Remarkably, the Néel temperature of V2WS4 is predicted to be much higher than that of MnBi2Te4. These interesting predictions, if realized experimentally, could greatly promote the topological quantum physics research and application.

The discovery of intrinsic magnetic topological insulators (TIs) [1, 2, 3, 4, 5, 6] has opened new avenues for realizing a wide range of exotic topological phenomena through the time-reversal-breaking topological surface states [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34]. A paradigm example is the realization of the quantum anomalous Hall (QAH) effect and axion insulator in few layer MnBi2Te4 [35, 36, 37, 38, 39, 40, 41]. Despite progress, experimental studies of magnetic topological states lag significantly behind their non-magnetic counterparts due to the limited availability of magnetic TI materials. While hundreds of intrinsic magnetic topological materials have been identified by symmetry-based analysis [42, 43, 44, 45, 46, 47], ab initio calculations [48] and machine learning approaches [49], the vast majority are semimetals. To date, MnBi2Te4 remains the only experimentally confirmed intrinsic antiferromagnetic (AFM) TI [38, 39]. However, MnBi2Te4 has a relatively low Néel temperature, and its complex magnetic structure, coupled with imperfect sample quality, has hindered direct observation of the exchange gap in Dirac surface states using spectroscopy measurements [39, 50, 51, 52]. Thus, the search for realistic intrinsic magnetic TIs, preferably with higher magnetic ordering temperatures and large gaps, has become an important goal in topological material research. In this context, the class of V2WS4 materials predicted in this paper offer a promising solution. These materials feature high Néel temperatures and provide an ideal platform for exploring emergent magnetic topological phenomena, such as AFM TIs, the topological axion state with topological magnetoelectric effect (TME), and the QAH effect in both two- and three-dimensional (3D) systems, and so on.

Structure and magnetic properties.— The ternary transition metal chalcogenide V2MX4, with M=M= W or Mo, X=X= S or Se, crystallize in an orthorhombic crystal structure with the space group I4¯2mI\bar{4}2m (No. 121) with seven atoms in one primitive cell. Taking V2WS4 as an example, it has a layered structure with a tetragonal lattice V2WS4 as the building block shown in Fig. 1. The key symmetry operation is S4zC4zS_{4z}\equiv\mathcal{I}C_{4z}, where \mathcal{I} is inversion symmetry. Each layer contains three atomic sub-layers (i.e. one V2W and two S2), where each V or W atom is surrounded by four S atoms forming a distorted edge-sharing tetrahedron. The layers of bulk V2WS4 are connected by van der Waals interactions and stack along zz axis, forming an AB stacking pattern, which is energetically favorable than AA stacking [53]. The B layer can be regarded as A layer translating along τ1/2=(a,a,c)/2\tau_{1/2}=(a,a,c)/2, where (a,c)=(5.79,9.55)(a,c)=(5.79,9.55) Å are the in-plane and out-of plane lattice constant, respectively. The dynamical stability of V2WS4 is confirmed by first-principles phonon calculations [53]. Moreover, CuMX42{}_{2}\textit{MX}_{4} and AgMX42{}_{2}\textit{MX}_{4} with the same structure have been successfully synthesized [54, 55, 56, 57], implying that these materials could potentially be fabricated experimentally.

Refer to caption
Figure 1: Crystal and magnetic structures. (a) The unit cell of AFM V2WS4 consists of two layers with AB stacking. The cyan arrow denotes for the half translation operator τ1/2\tau_{1/2}. (b) The top view along the zz axis. (c) The monolayer atomic structure from top view. (d) The magnetic AFM-zz ground state. JiJ_{i} denote the leading magnetic couplings between V-V pairs, and negative JiJ_{i} means FM exchange coupling. J1=13.0J_{1}=-13.0 meV, J2=7.5J_{2}=-7.5 meV only represents intralayer next-nearest-neighbor V-V pairs through W atoms, J3=1.7J_{3}=1.7 meV and J4=1.4J_{4}=1.4 meV represent the two strongest interlayer couplings. (e) The calculated total energy for different magnetic ordered states.
Refer to caption
Figure 2: Electronic structure and surfaces states of AFM-zz V2WS4. (a) The dd-orbitals projected band structure without SOC, only those bands which are related to band inversion are highlighted. (b) Band structure with SOC. (c) Brillouin zone. (110)(110), (001)(001), and (001)(001) surfaces are labeled as blue, orange, and green, respectively. (d) Fermi surface with spin texture on the (110) surface at Fermi level presents an ellipse shape. Blue and orange arrow of spin texture denote sy<0s_{y}<0 and sy>0s_{y}>0, respectively. (e)-(g) Surface states of the semi-infinite (001), (110) and (010) surfaces, respectively, which is gapless on the 𝒮\mathcal{S}-preserving (110) surface, but gapped on the 𝒮\mathcal{S}-broken (001) and (010) surfaces. (h) The Wannier charge centers (WCC) is calculated in the plane including TRI momenta (000)(000), (ππ¯0)(\pi\bar{\pi}0), (π0π¯)(\pi 0\bar{\pi}), and (0ππ¯)(0\pi\bar{\pi}) with 𝐤τ1/2=0\mathbf{k}\cdot\tau_{1/2}=0, confirming 𝒵2=1\mathcal{Z}_{2}=1.

First-principles density functional theory (DFT) calculations are employed to investigate the electronic structure of V2WS4, with detailed methods provided in Supplemental Material [53]. Our analysis reveals that each V atom has a valence of +2+2 by losing its two 4s4s electrons. Total energy calculations for various magnetic structures of 3D V2WS4 were performed, as summarized in Fig. 1(e). The results show that the AA-type AFM state with an out-of-plane easy axis (denoted as AFM-zz) is the magnetic ground state. In this configuration, the material is ferromagnetic (FM) within the xyxy plane of each layer and AFM between adjacent layers along the zz direction [Fig 1(d)]. The total energy of AA-type AFM state with in-plane easy axis (AFM-xx) is slightly higher than that of AFM-zz, but significantly lower than FM-zz state with an out-of-plane easy axis. This indicates that the magnetic anisotropy energy is weaker than the effective magnetic exchange interaction between neighboring layers. The calculated magnetic moments are primarily contributed by V (2.6μB\approx 2.6\mu_{B}), with a smaller contribution from W (0.4μB\approx 0.4\mu_{B}), confirming that the magnetism originates from the V atoms. This fractional magnetic moment arises from the band inversion between V dxz,yzd_{xz,yz} orbitals and W dz2d_{z^{2}} orbital [Fig. 2(a)]. The tetrahedral crystal field splits V 3d3d orbitals into lower-energy eg(dz2,dx2y2)e_{g}(d_{z^{2}},d_{x^{2}-y^{2}}) and higher-energy triplet t2g(dxz/yz,dxy)t_{2g}(d_{xz/yz},d_{xy}). The three remaining 3d3d electrons occupy the spin-up V-dd levels, forming an eg2t2g1e_{g}^{2}t_{2g}^{1} configuration with a magnetic moment of approximately 3μB3\mu_{B} according to the Hund’s rule, which is close to the DFT calculation. The FM exchange coupling between neighboring V atoms within each layer is strongly enhanced by Hund’s rule interaction due to empty t2gt_{2g} orbitals [58]. The t2gt_{2g}-t2gt_{2g} superexchange of V atoms between adjacent layers via pp orbitals of ligand is AFM due to the Goodenough-Kanamori-Anderson rule [58]. Futhermore, the Néel temperature for AFM-zz V2WS4 is estimated as 490490 K by Monte Carlo simulations [53].

AFM TI and topological invariant.— First we investigate the AFM-zz ground state, which belongs to the type IV magnetic space group No. 114.282 in Belov-Neronova-Smirnova (BNS) notation [59]. The symmetry generators of this group include S4zS_{4z}, Θτ1/2\Theta\tau_{1/2}, C2zC_{2z} and C2xτ1/2C_{2x}\tau_{1/2}. While the time-reversal symmetry Θ\Theta is broken, a combined symmetry 𝒮Θτ1/2\mathcal{S}\equiv\Theta\tau_{1/2} is preserved, where τ1/2\tau_{1/2} is the half translation operator connecting neighboring W atomic layers, as marked in Fig. 1(a). This combined symmetry 𝒮\mathcal{S} is antiunitary and satisfies 𝒮2=e2i𝐤τ1/2\mathcal{S}^{2}=-e^{-2i\mathbf{k}\cdot\tau_{1/2}}. On Brillouin-zone (BZ) plane where 𝐤τ1/2=0\mathbf{k}\cdot\tau_{1/2}=0, 𝒮2=1\mathcal{S}^{2}=-1 . Therefore, similar to Θ\Theta in time-reversal-invariant (TRI) TI, 𝒮\mathcal{S} enables a 𝒵2\mathcal{Z}_{2} classification [19], where the 𝒵2\mathcal{Z}_{2} topological invariant is well defined on the BZ plane with 𝐤τ1/2=0\mathbf{k}\cdot\tau_{1/2}=0. The electronic structure without and with spin-orbital coupling (SOC) are shown in Fig. 2(a) and Fig. 2(b), respectively. One can see an anticrossing feature around Γ\Gamma point from the band inversion between V dxz,yzd_{xz,yz} orbitals and W dz2d_{z^{2}} orbital, suggesting that V2WS4 might be topologically nontrivial. Since \mathcal{I} is broken but S4zS_{4z} is preserved, the 𝒵2\mathcal{Z}_{2} invariant is simply determined by the S4zS_{4z} eigenvalues of the wavefunctions at S4zS_{4z}-invariant momenta in the BZ [44], with the explicit form

𝒵2=K=Γ,M,Z,A12(nK12nK32)mod2,\mathcal{Z}_{2}=\sum_{K=\Gamma,M,Z,A}\frac{1}{2}\left(n_{K}^{\frac{1}{2}}-n_{K}^{-\frac{3}{2}}\right)\mathrm{mod}~{}2, (1)

where nK1/2n_{K}^{1/2} and nK3/2n_{K}^{-3/2} are the number of occupied states with S4zS_{4z} eigenvalues eiπ/4e^{-i\pi/4} and ei3π/4e^{i3\pi/4}, respectively. K=Γ,M,Z,AK=\Gamma,M,Z,A are S4zS_{4z} invariant in BZ. nK1/2n_{K}^{1/2} and nK3/2n_{K}^{-3/2} of high symmetry points are listed in Table 1, so 𝒵2=1\mathcal{Z}_{2}=1. There are two additional symmetry indicators 𝒵4\mathcal{Z}_{4} and δ2\delta_{2}, which are used to characterize higher-order topology and Weyl semimetal [60, 61]. In the case of V2WS4, both 𝒵4=δ2=0\mathcal{Z}_{4}=\delta_{2}=0, as the Chern number for all kzk_{z} planes in the BZ is consistently zero. The monolayer is a FM QAH insulator [62], thus 3D AFM-zz V2WS4 can be viewed as successive stacking of layered QAH with alternating Chern number 𝒞=±1\mathcal{C}=\pm 1, which are related by 𝒮\mathcal{S} symmetry. We further employ the Willson loop method [63] to confirm the 𝒵2\mathcal{Z}_{2} topological invariant in Fig. 2(h), concluding that AFM-zz V2WS4 is indeed an AFM TI. Notably, we notice that a large energy gap of about 0.10.1 eV is obtained in Fig. 2(b).

Table 1: The number of occupied bands with S4zS_{4z} eigenvalue eiπ/4e^{-i\pi/4} and ei3π/4e^{i3\pi/4} at four high symmetry points in BZ.
KK Γ(000)\Gamma(000) M(ππ0)M(\pi\pi 0) Z(00π)Z(00\pi) A(πππ)A(\pi\pi\pi)
nK1/2,nK3/2n_{K}^{1/2},n_{K}^{-3/2} 20,2020,20 20,2020,20 20,2020,20 19,2119,21

One prominent feature of AFM TI is the existence of gapless surface states that depends on the crystallographic orientation of the surface plane, which is confirmed by the surface-state calculations. As shown in Fig. 2(f), the gapless surface states can be seen at Γ\Gamma point forming a single Dirac cone in bulk gap on 𝒮\mathcal{S}-preserving (110) surface. While the surface states are gapped on 𝒮\mathcal{S}-broken (001) and (010) surfaces, as shown in Fig. 2(e) and Fig. 2(g), respectively.

Axion state and TME.— The 𝒵2=1\mathcal{Z}_{2}=1 topological invariant of AFM-zz V2WS4 with a full band gap signifies the axion state with a quantized value θ=π\theta=\pi (mod 2π2\pi), where the electromagnetic response is described by the axion electrodynamics, Sθ=(θ/2π)(α/2π)d3x𝑑t𝐄𝐁S_{\theta}=(\theta/2\pi)(\alpha/2\pi)\int d^{3}xdt\mathbf{E}\cdot\mathbf{B}. Here, 𝐄\mathbf{E} and 𝐁\mathbf{B} are the conventional electromagnetic fields inside the insulator, α=e2/c\alpha=e^{2}/\hbar c is the fine-structure constant, ee is electron charge, and θ\theta is dimensionless pseudoscalar parameter [7]. This axion state gives rise to the TME, a phenomenon yet to be observed experimentally [3]. Interestingly, the gapped surface states from time-reversal symmetry breaking are naturally and intrinsically provided by even-layer V2WS4 films with AA-type AFM structure, which make it an ideal platform for the long-sought quantized TME. Furthermore, to observe TME, all surface states must be gapped [23], which could be fulfilled by synthesizing realistic materials without any SS-preserving surfaces. Compared to the previous proposals on TME in FM-TI heterostructure [7, 23, 24], the intrinsic magnetic TI material V2WS4 offer a more practical and promising avenue for exploring axion electrodynamics.

Refer to caption
Figure 3: Electronic structure and surfaces states of FM-zz V2WS4. (a) The dd-orbital projected band structure without SOC. (b) Band structure with SOC. Here the conventional unit cell with FM-zz state is chosen. (c) The evolution of WCC along the kxk_{x} direction in the kz=0k_{z}=0 and kz=πk_{z}=\pi plane. (d) Two chiral surface states on the semi-infinite (010) surface at kz=0k_{z}=0. Consistent with WCC in (c), the Chern number is 𝒞=2\mathcal{C}=-2 from kz=0k_{z}=0 to kz=πk_{z}=\pi. (e) Fermi surface on the (010) termination at the isoenergy 1515 meV above Fermi level. The chiral surface states extend over the entire surface BZ from kz=πk_{z}=-\pi to kz=πk_{z}=\pi, indicating the 3D QAH state.

3D QAH state.— The AFM ground state of V2WS4 could be tuned to a FM configuration by applying an external magnetic field, leading to distinct topological phases. Here we study FM-zz state, which belongs to magnetic space group No. 121.331 in BNS notation with symmetry generators S4zS_{4z}, C2zC_{2z} and ΘC2y\Theta C_{2y}. For simplicity, we adopted the conventional unit cell here as in AFM-zz state. Then 3D FM-zz V2WS4 can be interpreted as layer stacking of FM QAH insulator with the same Chern number 𝒞=1\mathcal{C}=-1, leading to 3D QAH state or Weyl semimetal [64, 12]. The electronic structures without and with SOC are calculated in Fig. 3(a) and Fig. 3(b), respectively. There is spin polarized band inversion near the Fermi energy between spin up dxz,dyzd_{xz},d_{yz} bands of V and spin down dz2d_{z^{2}} band of W, which is further gapped by SOC. Interestingly, along Γ\Gamma-ZZ line, the band inversion always remains and there is no level crossing. Meanwhile, the FM-zz state remains insulating, with a gap of approximately 20 meV. The Willson loop calculations shown in Fig. 3(c) reveal the Chern number 𝒞=2\mathcal{C}=-2 at both kz=0k_{z}=0 and kz=πk_{z}=\pi planes, confirming that the system is a 3D QAH state. Moreover, our surface state calculations demonstrated the existence of chiral surface state on the (010) termination, which is the fingerprint of 3D QAH state. As shown in Fig. 3(d), two chiral edge states disperse within the bulk gap at kz=0k_{z}=0 plane. Such chiral edge states extend over the entire surface BZ from kz=πk_{z}=-\pi to kz=πk_{z}=\pi plane without any Weyl points [Fig. 3(e)]. Thin films of 3D QAH insulator lead to the QAH effect in two dimensions (2D), the Chern number of which is equal to the layer number as will be discussed later. The high Chern number QAH effect with multiple dissipationless edge channels could lead to novel design of low energy cost electronic devices.

Tight-binding model and multilayer.— The layered van der Waals materials are featured by tunable quantum size effects. Here the band inversion in 3D suggests nontrivial topology may also exist in 2D multilayers. For AFM V2WS4 films, even and odd layers have distinct symmetry and topological properties. Even layers have S4zS_{4z} and C2xτ1/2C_{2x}\tau^{\prime}_{1/2} symmetries, where τ1/2(a,a,0)/2\tau^{\prime}_{1/2}\equiv(a,a,0)/2, and all of the bands have Chern number 𝒞=0\mathcal{C}=0 because of the Hall conductance σxy\sigma_{xy} is odd under C2xτ1/2C_{2x}\tau^{\prime}_{1/2}. Differently, odd layers have S4zS_{4z} and C2xΘC_{2x}\Theta symmetries, 𝒞0\mathcal{C}\neq 0 is allowed for σxy\sigma_{xy} is invariant under C2xΘC_{2x}\Theta. We construct a tight-binding model to recover the essential topological physics for AFM ground state, and investigate the crossover between bulk and multilayers.

From DFT calculations in Fig. 2, we construct the minimal tight-binding model including dxz,dyzd_{xz},d_{yz} of V and dz2,dx2y2d_{z^{2}},d_{x^{2}-y^{2}} of W, where the band gap is mainly provided by the intralayer SOC effect with the opposite spin and interlayer orbital hopping with the same spin. The Hamiltonian is written as =(1𝒯𝒯2)\mathcal{H}=\begin{pmatrix}\mathcal{H}_{1}&\mathcal{T}\\ \mathcal{T}^{{\dagger}}&\mathcal{H}_{2}\\ \end{pmatrix}, where 1,2\mathcal{H}_{1,2} are the intralayer Hamiltonian for two layers in the unit cell, 𝒯\mathcal{T} is the interlayer hopping. For the intralayer, there are two V atoms, and dxz,dyzd_{xz},d_{yz} orbitals of each V are non-degenerate. However, dxzd_{xz} of one V and dyzd_{yz} of the other V are degenerate, which are related to each other by S4zS_{4z}. Therefore, for the low-energy physics of intralayer, for instance 1\mathcal{H}_{1}, we only need to consider d1,xz,d1,yzd^{\uparrow}_{1,xz},d^{\uparrow}_{1,yz} from two V, respectively and d1,z2,d1,x2y2d_{1,z^{2}}^{\downarrow},d_{1,x^{2}-y^{2}}^{\downarrow} of W, namely a four orbitals model. 1\mathcal{H}_{1} is obtained by considering the nearest-neighbor and next-nearest-neighbor hopping with SOC included. Then 2\mathcal{H}_{2} of other layer is related to 1\mathcal{H}_{1} by 𝒮\mathcal{S} symmetry, where the spins are flipped with the basis of d2d_{2}\equiv (d2,xzd^{\downarrow}_{2,xz},d2,yzd^{\downarrow}_{2,yz},d2,z2d^{\uparrow}_{2,z^{2}},d2,x2y2d^{\uparrow}_{2,x^{2}-y^{2}})T. The interlayer hopping 𝒯\mathcal{T} includes the orbital overlapping with the same spin, with the strength of about 5050 meV which is smaller than the intralayer SOC. The explicit forms and fitted parameters are listed in Supplemental Material, where similar electronic structure and surface states of our model are obtained as DFT calculations [53].

By utilizing the tight-binding model, we can study the dimensional crossover from bulk to multilayer. As shown in Fig. 4, in AFM-zz ground state, the band gap of multilayer shows oscillatory decay behavior and gradually converges to bulk value when the film exceed twenty layers, while the Chern number exhibit pronounced even-odd oscillations. The Chern number of band in a S4zS_{4z} invariant system is i𝒞=joccupied(1)Fξj(Γ)ξj(M)ζj(X)i^{\mathcal{C}}=\prod_{j\in\text{occupied}}(-1)^{F}\xi_{j}(\Gamma)\xi_{j}(M)\zeta_{j}(X), with F=1F=1 for spinful case here, ξj(k)\xi_{j}(k) is the S4zS_{4z} eigenvalue at Γ\Gamma and M points of the jj-th band, ζj(X)\zeta_{j}(X) is the C2zC_{2z} eigenvalue at X point on the jj-th band [62]. Explicitly, odd layers have 𝒞=1\mathcal{C}=-1, while even layers have 𝒞=0\mathcal{C}=0. Our DFT calculations up to seven layers are consistent with effective model [53]. These results suggest that multilayer V2WS4 can be viewed as layered stacking of alternating 𝒞=±1\mathcal{C}=\pm 1 QAH insulators for AFM-zz state, or stacking of same 𝒞=1\mathcal{C}=-1 QAH insulators for FM-zz state, as illustrated in Fig. 4(a). The interlayer coupling is weaker than band inversion and SOC, thus the Chern number of multilayer is simply the summation of Chern number from each layer, namely

𝒞multilayer=j𝒞j.\mathcal{C}_{\text{multilayer}}=\sum\limits_{j}\mathcal{C}_{j}. (2)

Here 𝒞j=±1\mathcal{C}_{j}=\pm 1 for each layer is only determined by the direction of magnetic moment, and does not affected by interlayer coupling.

Refer to caption
Figure 4: (a) Schematic diagram shows layered stacking of QAH insulators with alternating Chern number 𝒞=±1\mathcal{C}=\pm 1. In AFM-zz state, it gives 𝒞=1\mathcal{C}=-1 QAH insulator in odd layers and C=0C=0 axion insulator in even layers. In FM-zz state viewed as stacking of same Chern number 𝒞=1\mathcal{C}=-1 QAH insulators, NN layers is a 𝒞=N\mathcal{C}=-N high Chern number QAH insulator. (b) The evolution of band gap as a function of layer number in AFM-zz state. Blue (brown) circle denotes even (odd) layers calculated from tight-binding model. Green box represents the gaps of one to seven layers by DFT calculations [53].

It is insightful to compare V2WS4 with MnBi2Te4, as both materials are layered van der Waals intrinsic magnetic TI with similar topological properties. In their AFM-zz ground state, both are classified as AFM TIs and axion insulators in 3D, displaying an oscillation between zero and odd Chern numbers in AFM multilayers. However, their phases diverge significantly in the FM-zz state. While V2WS4 is a 3D QAH state, MnBi2Te4 tends to be a Weyl semimetal or a trivial FM insulator [36, 37]. The primary distinctions arise from differences in interlayer coupling and band inversion. First, the low-energy physics in V2WS4 is from the dd-orbitals of V and W, which are located in the middle atomic layer. This contrasts with MnBi2Te4, where the low-energy physics is dominated by the pzp_{z} orbitals of the outermost Bi/Te atomic layers. Consequently, the interlayer coupling is indirect and much weaker in V2WS4 compared to MnBi2Te4 (about 0.10.1 eV). Second, V2WS4 possesses much deeper band inversion. The band inversion point lie approximately at 35% along Γ\Gamma-XX line from Γ\Gamma (|𝐤|=0.19|\mathbf{k}|=0.19 Å-1) as shown in Fig. 2(a), which is further opened by a strong SOC. The weak interlayer coupling could not change the band inversion along Γ\Gamma-ZZ in V2WS4. In contrast, the SOC induced band inversion is at Γ\Gamma in MnBi2Te4, then a relatively stronger interlayer coupling could modify the band inversion and lead to trivial insulators in few layers and Weyl semimetal in 3D. These distinctions highlight a key insight that such characteristics do not arise from fortuitousness in parameters, but rather from the universality inherent in V2WS4 family.

Discussion.— Other ternary transition metal chalcogenide, such as V2WSe4, V2MoX4 and Ti2WX4 (X=X= S or Se), which share the same orthorhombic crystal structure, are also promising candidates for hosting magnetic topological states similar to V2WS4. In fact, most of them are found to be AFM TI in the ground state, as calculated in the Supplemental Material [53]. The synergy between intrinsic magnetism and topologically nontrivial bands, along with the variety of candidate materials, provides a rich platform for exploring emergent phenomena in magnetic topological states across different spatial dimensions. For instance, the magnetic fluctuations in these systems also give dynamic axion field.

The field of topological quantum matter in recent years developed explosively in materials science and condensed matter physics. One of main reasons is the precise theoretical predictions and experimental discovery of intrinsic topological materials. Tracing back the research history in magnetic topological physics, most of the previous experimental works are based on magnetically doped TIs and heterostructures [14, 15, 16, 17, 18, 25, 26, 27, 28], which are quite complex and challenge to study [65, 66]. The research progress have been greatly prompted by discovering intrinsic magnetic TI material MnBi2Te4 [35, 40]. However, the co-antisite defects in Mn and Bi layers drastically suppress the exchange gap by several order of magnitude [67, 68, 69], which fundamentally deteriorates magnetic topological states. Meanwhile, few layers MnBi2Te4 with topologically nontrivial bands are too thick to tune efficiently. Finally, layered MnBi2Te4 usually contain Bi2Te3 layers, which further complicates the electronic structure with undesired topology. The V2WS4-family materials satisfy all these material characteristics of simple, magnetic and topological. For example, monolayer V2WS4 is QAH insulator, in contrast to trivial FM insulator of monolayer MnBi2Te4. Therefore, the techniques developed for 2D materials with versatile tunability can be readily applied to V2WS4 family. We anticipate that van der Waals heterostructures integrating V2WS4 family with other magnetic or superconducting 2D materials will provide fertile ground for exploring exotic topological quantum phenomena.

In summary, our work uncovers a large class of intrinsic magnetic TI materials with extremely rich topological quantum states of exceptional characteristics in different spatial dimensions. The broad range of candidate materials suggests that the underlying physics is quite general. We anticipate this will further enrich the magnetic TI family and provide a new material platform for exotic topological phenomena.

Acknowledgements.
This work is supported by the Natural Science Foundation of China through Grants No. 12350404 and No. 12174066, the Innovation Program for Quantum Science and Technology through Grant No. 2021ZD0302600, the Science and Technology Commission of Shanghai Municipality under Grants No. 23JC1400600, No. 24LZ1400100 and No. 2019SHZDZX01. Y.J. acknowledges the support from China Postdoctoral Science Foundation under Grants No. GZC20240302 and No. 2024M760488.

References

  • Hasan and Kane [2010] M. Z. Hasan and C. L. Kane, Colloquium: Topological insulators, Rev. Mod. Phys. 82, 3045 (2010).
  • Qi and Zhang [2011] X.-L. Qi and S.-C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83, 1057 (2011).
  • Tokura et al. [2019] Y. Tokura, K. Yasuda, and A. Tsukazaki, Magnetic topological insulators, Nature Rev. Phys. 1, 126 (2019).
  • Wang and Zhang [2017] J. Wang and S.-C. Zhang, Topological states of condensed matter, Nature Mat. 16, 1062 (2017).
  • Bernevig et al. [2022] B. A. Bernevig, C. Felser, and H. Beidenkopf, Progress and prospects in magnetic topological materials, Nature 603, 41 (2022).
  • Chang et al. [2023] C.-Z. Chang, C.-X. Liu, and A. H. MacDonald, Colloquium: Quantum anomalous hall effect, Rev. Mod. Phys. 95, 011002 (2023).
  • Qi et al. [2008] X.-L. Qi, T. L. Hughes, and S.-C. Zhang, Topological field theory of time-reversal invariant insulators, Phys. Rev. B 78, 195424 (2008).
  • Essin et al. [2009] A. M. Essin, J. E. Moore, and D. Vanderbilt, Magnetoelectric polarizability and axion electrodynamics in crystalline insulators, Phys. Rev. Lett. 102, 146805 (2009).
  • Qi et al. [2009] X.-L. Qi, R. Li, J. Zang, and S.-C. Zhang, Seeing the magnetic monopole through the mirror of topological surface states, Science 323, 1184 (2009).
  • Chen et al. [2010] Y. L. Chen, J.-H. Chu, J. G. Analytis, Z. K. Liu, K. Igarashi, H.-H. Kuo, X. L. Qi, S. K. Mo, R. G. Moore, D. H. Lu, M. Hashimoto, T. Sasagawa, S. C. Zhang, I. R. Fisher, Z. Hussain, and Z. X. Shen, Massive dirac fermion on the surface of a magnetically doped topological insulator, Science 329, 659 (2010).
  • Li et al. [2010] R. Li, J. Wang, X. L. Qi, and S. C. Zhang, Dynamical axion field in topological magnetic insulators, Nature Phys. 6, 284 (2010).
  • Wang et al. [2016] J. Wang, B. Lian, and S.-C. Zhang, Dynamical axion field in a magnetic topological insulator superlattice, Phys. Rev. B 93, 045115 (2016).
  • Yu et al. [2010] R. Yu, W. Zhang, H.-J. Zhang, S.-C. Zhang, X. Dai, and Z. Fang, Quantized Anomalous Hall Effect in Magnetic Topological Insulators, Science 329, 61 (2010).
  • Chang et al. [2013] C.-Z. Chang, J. Zhang, X. Feng, J. Shen, Z. Zhang, M. Guo, K. Li, Y. Ou, P. Wei, L.-L. Wang, Z.-Q. Ji, Y. Feng, S. Ji, X. Chen, J. Jia, X. Dai, Z. Fang, S.-C. Zhang, K. He, Y. Wang, L. Lu, X.-C. Ma, and Q.-K. Xue, Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator, Science 340, 167 (2013).
  • Checkelsky et al. [2014] J. G. Checkelsky, R. Yoshimi, A. Tsukazaki, K. S. Takahashi, Y. Kozuka, J. Falson, M. Kawasaki, and Y. Tokura, Trajectory of the anomalous hall effect towards the quantized state in a ferromagnetic topological insulator, Nature Phys. 10, 731 (2014).
  • Kou et al. [2014] X. Kou, S.-T. Guo, Y. Fan, L. Pan, M. Lang, Y. Jiang, Q. Shao, T. Nie, K. Murata, J. Tang, Y. Wang, L. He, T.-K. Lee, W.-L. Lee, and K. L. Wang, Scale-invariant quantum anomalous hall effect in magnetic topological insulators beyond the two-dimensional limit, Phys. Rev. Lett. 113, 137201 (2014).
  • Bestwick et al. [2015] A. J. Bestwick, E. J. Fox, X. Kou, L. Pan, K. L. Wang, and D. Goldhaber-Gordon, Precise quantization of the anomalous hall effect near zero magnetic field, Phys. Rev. Lett. 114, 187201 (2015).
  • Chang et al. [2015] C.-Z. Chang, W. Zhao, D. Y. Kim, H. Zhang, B. A. Assaf, D. Heiman, S.-C. Zhang, C. Liu, M. H. W. Chan, and J. S. Moodera, High-precision realization of robust quantum anomalous hall state in a hard ferromagnetic topological insulator, Nature Mater. 14, 473 (2015).
  • Mong et al. [2010] R. S. K. Mong, A. M. Essin, and J. E. Moore, Antiferromagnetic topological insulators, Phys. Rev. B 81, 245209 (2010).
  • Wan et al. [2011] X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Topological semimetal and fermi-arc surface states in the electronic structure of pyrochlore iridates, Phys. Rev. B 83, 205101 (2011).
  • Xu et al. [2011] G. Xu, H. Weng, Z. Wang, X. Dai, and Z. Fang, Chern Semimetal and the Quantized Anomalous Hall Effect in HgCr2Se4{\mathrm{HgCr}}_{2}{\mathrm{Se}}_{4}Phys. Rev. Lett. 107, 186806 (2011).
  • Nomura and Nagaosa [2011] K. Nomura and N. Nagaosa, Surface-quantized anomalous hall current and the magnetoelectric effect in magnetically disordered topological insulators, Phys. Rev. Lett. 106, 166802 (2011).
  • Wang et al. [2015a] J. Wang, B. Lian, X.-L. Qi, and S.-C. Zhang, Quantized topological magnetoelectric effect of the zero-plateau quantum anomalous Hall state, Phys. Rev. B 92, 081107 (2015a).
  • Morimoto et al. [2015] T. Morimoto, A. Furusaki, and N. Nagaosa, Topological magnetoelectric effects in thin films of topological insulators, Phys. Rev. B 92, 085113 (2015).
  • Mogi et al. [2017a] M. Mogi, M. Kawamura, R. Yoshimi, A. Tsukazaki, Y. Kozuka, N. Shirakawa, K. S. Takahashi, M. Kawasaki, and Y. Tokura, A magnetic heterostructure of topological insulators as a candidate for an axion insulator, Nature Mater. 16, 516 (2017a).
  • Mogi et al. [2017b] M. Mogi, M. Kawamura, A. Tsukazaki, R. Yoshimi, K. S. Takahashi, M. Kawasaki, and Y. Tokura, Tailoring tricolor structure of magnetic topological insulator for robust axion insulator, Sci. Adv. 3, eaao1669 (2017b).
  • Grauer et al. [2017] S. Grauer, K. M. Fijalkowski, S. Schreyeck, M. Winnerlein, K. Brunner, R. Thomale, C. Gould, and L. W. Molenkamp, Scaling of the quantum anomalous hall effect as an indicator of axion electrodynamics, Phys. Rev. Lett. 118, 246801 (2017).
  • Xiao et al. [2018] D. Xiao, J. Jiang, J.-H. Shin, W. Wang, F. Wang, Y.-F. Zhao, C. Liu, W. Wu, M. H. W. Chan, N. Samarth, and C.-Z. Chang, Realization of the Axion Insulator State in Quantum Anomalous Hall Sandwich Heterostructures, Phys. Rev. Lett. 120, 056801 (2018).
  • Fu and Kane [2008] L. Fu and C. L. Kane, Superconducting proximity effect and majorana fermions at the surface of a topological insulator, Phys. Rev. Lett. 100, 096407 (2008).
  • Fu and Kane [2009] L. Fu and C. L. Kane, Probing neutral majorana fermion edge modes with charge transport, Phys. Rev. Lett. 102, 216403 (2009).
  • Qi et al. [2010] X.-L. Qi, T. L. Hughes, and S.-C. Zhang, Chiral topological superconductor from the quantum hall state, Phys. Rev. B 82, 184516 (2010).
  • Wang et al. [2015b] J. Wang, Q. Zhou, B. Lian, and S.-C. Zhang, Chiral topological superconductor and half-integer conductance plateau from quantum anomalous hall plateau transition, Phys. Rev. B 92, 064520 (2015b).
  • Lian et al. [2018] B. Lian, X.-Q. Sun, A. Vaezi, X.-L. Qi, and S.-C. Zhang, Topological quantum computation based on chiral majorana fermions, Proc. Natl. Acad. Sci. USA 115, 10938 (2018).
  • Wang and Lian [2018] J. Wang and B. Lian, Multiple chiral majorana fermion modes and quantum transport, Phys. Rev. Lett. 121, 256801 (2018).
  • Deng et al. [2020] Y. Deng, Y. Yu, M. Z. Shi, Z. Guo, Z. Xu, J. Wang, X. H. Chen, and Y. Zhang, Quantum anomalous hall effect in intrinsic magnetic topological insulator mnbi2te4, Science 367, 895 (2020).
  • Zhang et al. [2019] D. Zhang, M. Shi, T. Zhu, D. Xing, H. Zhang, and J. Wang, Topological axion states in the magnetic insulator mnbi2te4{\mathrm{mnbi}}_{2}{\mathrm{te}}_{4} with the quantized magnetoelectric effect, Phys. Rev. Lett. 122, 206401 (2019).
  • Li et al. [2019a] J. Li, Y. Li, S. Du, Z. Wang, B.-L. Gu, S.-C. Zhang, K. He, W. Duan, and Y. Xu, Intrinsic magnetic topological insulators in van der waals layered mnbi2te4-family materials, Sci. Adv. 5, eaaw5685 (2019a).
  • Otrokov et al. [2019] M. M. Otrokov, I. I. Klimovskikh, H. Bentmann, A. Zeugner, Z. S. Aliev, S. Gass, A. U. B. Wolter, A. r. V. Koroleva, D. Estyunin, A. M. Shikin, M. Blanco-Rey, M. Hoffmann, A. r. Y. Vyazovskaya, S. V. Eremeev, Y. M. Koroteev, I. R. Amiraslanov, M. B. Babanly, N. T. Mamedov, N. A. Abdullayev, V. N. Zverev, B. Büchner, E. F. Schwier, S. Kumar, A. Kimura, L. Petaccia, G. Di Santo, R. C. Vidal, S. Schatz, K. Kißner, C.-H. Min, S. K. Moser, T. R. F. Peixoto, F. Reinert, A. Ernst, P. M. Echenique, A. Isaeva, and E. V. Chulkov, Prediction and observation of an antiferromagnetic topological insulator, Nature 576, 416 (2019).
  • Gong et al. [2019] Y. Gong, J. Guo, J. Li, K. Zhu, M. Liao, X. Liu, Q. Zhang, L. Gu, L. Tang, X. Feng, D. Zhang, W. Li, C. Song, L. Wang, P. Yu, X. Chen, Y. Wang, H. Yao, W. Duan, Y. Xu, S.-C. Zhang, X. Ma, Q.-K. Xue, and K. He, Experimental realization of an intrinsic magnetic topological insulator, Chin. Phys. Lett. 36, 076801 (2019).
  • Liu et al. [2020] C. Liu, Y. Wang, H. Li, Y. Wu, Y. Li, J. Li, K. He, Y. Xu, J. Zhang, and Y. Wang, Robust axion insulator and chern insulator phases in a two-dimensional antiferromagnetic topological insulator, Nature Mater. 19, 522 (2020).
  • Deng et al. [2021] H. Deng, Z. Chen, A. Wołoś, M. Konczykowski, K. Sobczak, J. Sitnicka, I. V. Fedorchenko, J. Borysiuk, T. Heider, Łukasz Pluciński, K. Park, A. B. Georgescu, J. Cano, and L. Krusin-Elbaum, High-temperature quantum anomalous hall regime in a mnbi2te4/bi2te3 superlattice, Nature Phys. 17, 36 (2021).
  • Bradlyn et al. [2017] B. Bradlyn, L. Elcoro, J. Cano, M. Vergniory, Z. Wang, C. Felser, M. Aroyo, and B. A. Bernevig, Topological quantum chemistry, Nature 547, 298 (2017).
  • Kruthoff et al. [2017] J. Kruthoff, J. de Boer, J. van Wezel, C. L. Kane, and R.-J. Slager, Topological classification of crystalline insulators through band structure combinatorics, Phys. Rev. X 7, 041069 (2017).
  • Elcoro et al. [2021] L. Elcoro, B. J. Wieder, Z. Song, Y. Xu, B. Bradlyn, and B. A. Bernevig, Magnetic topological quantum chemistry, Nature Commun. 12, 5965 (2021).
  • Po et al. [2017] H. C. Po, A. Vishwanath, and H. Watanabe, Symmetry-based indicators of band topology in the 230 space groups, Nature Commun. 8, 50 (2017).
  • Watanabe et al. [2018] H. Watanabe, H. C. Po, and A. Vishwanath, Structure and topology of band structures in the 1651 magnetic space groups, Sci. Adv. 4, eaat8685 (2018).
  • Po [2020] H. C. Po, Symmetry indicators of band topology, J. Phys.: Condens. Matter 32, 263001 (2020).
  • Xu et al. [2020] Y. Xu, L. Elcoro, Z.-D. Song, B. J. Wieder, M. G. Vergniory, N. Regnault, Y. Chen, C. Felser, and B. A. Bernevig, High-throughput calculations of magnetic topological materials, Nature 586, 702 (2020).
  • Xu et al. [2024] H. Xu, Y. Jiang, H. Wang, and J. Wang, Discovering two-dimensional magnetic topological insulators by machine learning, Phys. Rev. B 109, 035122 (2024).
  • Hao et al. [2019] Y.-J. Hao, P. Liu, Y. Feng, X.-M. Ma, E. F. Schwier, M. Arita, S. Kumar, C. Hu, R. Lu, M. Zeng, Y. Wang, Z. Hao, H.-Y. Sun, K. Zhang, J. Mei, N. Ni, L. Wu, K. Shimada, C. Chen, Q. Liu, and C. Liu, Gapless surface dirac cone in antiferromagnetic topological insulator mnbi2te4{\mathrm{mnbi}}_{2}{\mathrm{te}}_{4}Phys. Rev. X 9, 041038 (2019).
  • Li et al. [2019b] H. Li, S.-Y. Gao, S.-F. Duan, Y.-F. Xu, K.-J. Zhu, S.-J. Tian, J.-C. Gao, W.-H. Fan, Z.-C. Rao, J.-R. Huang, J.-J. Li, D.-Y. Yan, Z.-T. Liu, W.-L. Liu, Y.-B. Huang, Y.-L. Li, Y. Liu, G.-B. Zhang, P. Zhang, T. Kondo, S. Shin, H.-C. Lei, Y.-G. Shi, W.-T. Zhang, H.-M. Weng, T. Qian, and H. Ding, Dirac surface states in intrinsic magnetic topological insulators eusn2as2{\mathrm{eusn}}_{2}{\mathrm{as}}_{2} and mnbi2nte3n+1{\mathrm{mnbi}}_{2n}{\mathrm{te}}_{3n+1}Phys. Rev. X 9, 041039 (2019b).
  • Chen et al. [2019] Y. J. Chen, L. X. Xu, J. H. Li, Y. W. Li, H. Y. Wang, C. F. Zhang, H. Li, Y. Wu, A. J. Liang, C. Chen, S. W. Jung, C. Cacho, Y. H. Mao, S. Liu, M. X. Wang, Y. F. Guo, Y. Xu, Z. K. Liu, L. X. Yang, and Y. L. Chen, Topological electronic structure and its temperature evolution in antiferromagnetic topological insulator mnbi2te4{\mathrm{mnbi}}_{2}{\mathrm{te}}_{4}Phys. Rev. X 9, 041040 (2019).
  • [53] See Supplemental Material for technical details, which includes Refs. [70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82].
  • Crossland et al. [2005] C. J. Crossland, P. J. Hickey, and J. S. O. Evans, The synthesis and characterisation of cu2mx4 (m = w or mo; x = s, se or s/se) materials prepared by a solvothermal method, J. Mater. Chem. 15, 3452 (2005).
  • Hu et al. [2016] X. Hu, W. Shao, X. Hang, X. Zhang, W. Zhu, and Y. Xie, Superior electrical conductivity in hydrogenated layered ternary chalcogenide nanosheets for flexible all-solid-state supercapacitors, Angew. Chem. Int. Ed. 55, 5733 (2016).
  • Zhan et al. [2018] F. Zhan, Q. Wang, Y. Li, X. Bo, Q. Wang, F. Gao, and C. Zhao, Low-temperature synthesis of cuboid silver tetrathiotungstate (ag2ws4) as electrocatalyst for hydrogen evolution reaction, Inorg. Chem. 57, 5791 (2018).
  • Lin et al. [2019] Y. Lin, S. Chen, K. Zhang, and L. Song, Recent advance of ternary layered cu2mx4 (m=mo, w; x=s, se) nanomaterials for photocatalysis, Solar RRL 3, 1800320 (2019).
  • Khomskii [2004] D. I. Khomskii, Transition Metal Compounds (Cambridge University Press, 2004).
  • Bradley and Cracknell [1972] C. J. Bradley and A. P. Cracknell, The Mathematical Theory of Symmetry in Solids (Clarendon Press, Oxford, 1972).
  • Song et al. [2018] Z. Song, T. Zhang, Z. Fang, and C. Fang, Quantitative mappings between symmetry and topology in solids, Nature Commun. 9, 3530 (2018).
  • Khalaf et al. [2018] E. Khalaf, H. C. Po, A. Vishwanath, and H. Watanabe, Symmetry indicators and anomalous surface states of topological crystalline insulators, Phys. Rev. X 8, 031070 (2018).
  • Jiang et al. [2024] Y. Jiang, H. Wang, K. Bao, Z. Liu, and J. Wang, Monolayer VM2X4{}_{2}{MX}_{4}: A new family of quantum anomalous hall insulators, Phys. Rev. Lett. 132, 106602 (2024).
  • Yu et al. [2011] R. Yu, X. L. Qi, A. Bernevig, Z. Fang, and X. Dai, Equivalent expression of 𝒵2\mathcal{Z}_{2} topological invariant for band insulators using the non-Abelian Berry connection, Phys. Rev. B 84, 075119 (2011).
  • Burkov and Balents [2011] A. A. Burkov and L. Balents, Weyl semimetal in a topological insulator multilayer, Phys. Rev. Lett. 107, 127205 (2011).
  • Chong et al. [2020] Y. X. Chong, X. Liu, R. Sharma, A. Kostin, G. Gu, K. Fujita, J. C. S. Davis, and P. O. Sprau, Severe dirac mass gap suppression in sb2te3-based quantum anomalous hall materials, Nano Lett. 20, 8001 (2020).
  • Lachman et al. [2017] E. O. Lachman, M. Mogi, J. Sarkar, A. Uri, K. Bagani, Y. Anahory, Y. Myasoedov, M. E. Huber, A. Tsukazaki, M. Kawasaki, Y. Tokura, and E. Zeldov, Observation of superparamagnetism in coexistence with quantum anomalous hall c=±1c=\pm 1 and c=0c=0 chern states, npj Quantum Materials 2, 70 (2017).
  • Garnica et al. [2022] M. Garnica, M. M. Otrokov, P. C. Aguilar, I. I. Klimovskikh, D. Estyunin, Z. S. Aliev, I. R. Amiraslanov, N. A. Abdullayev, V. N. Zverev, M. B. Babanly, N. T. Mamedov, A. M. Shikin, A. Arnau, A. L. V. de Parga, E. V. Chulkov, and R. Miranda, Native point defects and their implications for the dirac point gap at mnbi2te4(0001), npj Quantum Mater. 7, 7 (2022).
  • Tan and Yan [2023] H. Tan and B. Yan, Distinct magnetic gaps between antiferromagnetic and ferromagnetic orders driven by surface defects in the topological magnet mnbi2te4{\mathrm{mnbi}}_{2}{\mathrm{te}}_{4}Phys. Rev. Lett. 130, 126702 (2023).
  • Wu et al. [2023] X. Wu, C. Ruan, P. Tang, F. Kang, W. Duan, and J. Li, Irremovable mn-bi site mixing in mnbi2te4, Nano Lett. 23, 5048 (2023).
  • Kresse and Furthmüller [1996] G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54, 11169 (1996).
  • Blöchl [1994] P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50, 17953 (1994).
  • Perdew et al. [1996] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77, 3865 (1996).
  • Grimme et al. [2010] S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (dft-d) for the 94 elements h-pu, J. Chem. Phys. 132, 154104 (2010).
  • Dudarev et al. [1998] S. Dudarev, G. Botton, S. Savrasov, C. Humphreys, and A. Sutton, Electron-energy-loss spectra and the structural stability of nickel oxide: An lsda+ u study, Phys. Rev. B 57, 1505 (1998).
  • Mostofi et al. [2008] A. A. Mostofi, J. R. Yates, Y.-S. Lee, I. Souza, D. Vanderbilt, and N. Marzari, wannier90: A tool for obtaining maximally-localised wannier functions, Comput. Phys. Commun. 178, 685 (2008).
  • Wu et al. [2018] Q. Wu, S. Zhang, H.-F. Song, M. Troyer, and A. A. Soluyanov, Wanniertools : An open-source software package for novel topological materials, Comput. Phys. Commun. 224, 405 (2018).
  • Gao et al. [2021] J. Gao, Q. Wu, C. Persson, and Z. Wang, Irvsp: To obtain irreducible representations of electronic states in the vasp, Comput. Phys. Commun. 261, 107760 (2021).
  • Togo and Tanaka [2015] A. Togo and I. Tanaka, First principles phonon calculations in materials science, Scr. Mater. 108, 1 (2015).
  • He et al. [2021] X. He, N. Helbig, M. J. Verstraete, and E. Bousquet, Tb2j: A python package for computing magnetic interaction parameters, Comput. Phys. Commun. 264, 107938 (2021).
  • Ozaki [2003] T. Ozaki, Variationally optimized atomic orbitals for large-scale electronic structures, Phys. Rev. B 67, 155108 (2003).
  • Ozaki and Kino [2004] T. Ozaki and H. Kino, Numerical atomic basis orbitals from h to kr, Phys. Rev. B 69, 195113 (2004).
  • Ozaki and Kino [2005] T. Ozaki and H. Kino, Efficient projector expansion for the ab initio lcao method, Phys. Rev. B 72, 045121 (2005).