This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Inverse Clustering of Gibbs Partitions via independent fragmentation and dual dependent coagulation operators

Man-Wai Holabel=e1]imjasonho@ust.hk [    Lancelot F. Jameslabel=e2]lancelot@ust.hk [    John W. Laulabel=e3]john.w.lau@googlemail.com [ Department of Information Systems, Business Statistics and Operations Management, The Hong Kong University of Science and Technologypresep=, ]e1,e2 Department of Mathematics and Statistics, University of Western Australiapresep=, ]e3
Abstract

Gibbs partitions of the integers generated by stable subordinators of index α(0,1)\alpha\in(0,1) form remarkable classes of random partitions where in principle much is known about their properties, including practically effortless obtainment of otherwise complex asymptotic results potentially relevant to applications in general combinatorial stochastic processes, random tree/graph growth models and Bayesian statistics. This class includes the well-known models based on the two-parameter Poisson-Dirichlet distribution which forms the bulk of explicit applications. This work continues efforts to provide interpretations for a larger classes of Gibbs partitions by embedding important operations within this framework. Here we address the formidable problem of extending the dual, infinite-block, coagulation/fragmentation results of Pitman [41], where in terms of coagulation they are based on independent two-parameter Poisson-Dirichlet distributions, to all such Gibbs (stable Poisson-Kingman) models. Our results create nested families of Gibbs partitions, and corresponding mass partitions, over any 0<β<α<1.0<\beta<\alpha<1. We primarily focus on the fragmentation operations, which remain independent in this setting, and corresponding remarkable calculations for Gibbs partitions derived from that operation. We also present definitive results for the dual coagulation operations, now based on our construction of dependent processes, and demonstrate its relatively simple application in terms of Mittag-Leffler and generalized gamma models. The latter demonstrates another approach to recover the duality results in [41].

60C05, 60G09,
60G57,60E99,
Brownian and Bessel processes, coagulation/fragmentation duality, Gibbs partitions, Poisson Dirichlet distributions, stable Poisson-Kingman distributions,
keywords:
[class=AMS]
keywords:
\startlocaldefs\endlocaldefs

, and

1 Introduction

Gibbs (random) partitions, as developed in [42, Theorem 8] and subsequently [17, 43], say, {A1,,AKn}\{A_{1},\ldots,A_{K_{n}}\} of the integers [n]={1,2,,n},[n]=\{1,2,\ldots,n\}, where Knn,K_{n}\leq n, form remarkable classes of infinitely exchangeable random partitions [43, Section 2.2], whose distribution is defined consistently for each n={1,2,}n\in\mathbb{N}=\{1,2,\ldots\} as the restriction of an exchangeable partition probability function (EPPF) on \mathbb{N} that has the distinguishing feature of having Gibbs (product) form for each n.n. In principle, the Gibbs form is attractive in terms of practical implementation, and much is known about the properties of this class, including practically effortless obtainment of otherwise complex asymptotic results potentially relevant to applications in combinatorial stochastic processes, random tree/graph growth models and Bayesian statistics. See, for example, [4, 6, 10, 13, 15, 19, 22, 23, 25, 33, 34, 38, 44, 47, 48].

The class is defined for each α(,1),\alpha\in(-\infty,1), here we shall focus on the case where α(0,1),\alpha\in(0,1), which may be generated by an α\alpha-stable subordinator in relation to the work [39, 46, 42, 43] on excursion lengths of Bessel processes. In particular, let :=(Bt,t>0)\mathcal{B}:=(B_{t},t>0) denote a strong Markov process on \mathbb{R} whose normalized ranked lengths of excursions, (Pi)𝒫={𝐬=(s1,s2,):s1s20 and k=1sk=1},(P_{i})\in\mathcal{P}_{\infty}=\{\mathbf{s}=(s_{1},s_{2},\ldots):s_{1}\geq s_{2}\geq\cdots\geq 0{\mbox{ and }}\sum_{k=1}^{\infty}s_{k}=1\}, follow a Poisson Dirichlet law with parameters (α,0)(\alpha,0), for 0<α<1,0<\alpha<1, as discussed in Pitman and Yor [46]. Denote this law as PD(α,0)\mathrm{PD}(\alpha,0) on the space of mass partitions summing to one, 𝒫.\mathcal{P}_{\infty}. Let (Lt;t>0)(L_{t};t>0) denote its local time starting at 0,0, and let Tα()=inf{t:Lt>},0T_{\alpha}(\ell)=\inf\{t:L_{t}>\ell\},\ell\geq 0, denote its inverse local time. In this case, 𝐓α:=(Tα(t),t0)\mathbf{T}_{\alpha}:=(T_{\alpha}(t),t\geq 0) is an α\alpha-stable subordinator. For each s,s, Tα(s)=𝑑s1/αTα(1),T_{\alpha}(s)\overset{d}{=}s^{{1}/{\alpha}}T_{\alpha}(1), where Tα(1):=TαT_{\alpha}(1):=T_{\alpha} is the inverse local time at 11 with density fα(t)f_{\alpha}(t) and Laplace transform 𝔼[eλTα]=eλα.\mathbb{E}[{\mbox{e}}^{-\lambda T_{\alpha}}]={\mbox{e}}^{-\lambda^{\alpha}}. Due to the scaling identity (see [45]),

L1=𝑑Lttα=𝑑s[Tα(s)]α=𝑑Tαα,L_{1}\overset{d}{=}\frac{L_{t}}{t^{\alpha}}\overset{d}{=}\frac{s}{[{{T_{\alpha}(s)]}^{\alpha}}}\overset{d}{=}T^{-\alpha}_{\alpha}, (1.1)

the local time up to time 1,1, L1=𝑑Tαα,L_{1}\overset{d}{=}T^{-\alpha}_{\alpha}, follows a Mittag-Leffler distribution with density gα(z):=fα(z1/α)z1/α1/α,g_{\alpha}(z):=f_{\alpha}(z^{-1/\alpha})z^{-{1}/\alpha-1}/\alpha, satisfying

L1:=Γ(1α)1limϵ0ϵα|{i:Piϵ}|a.s.L_{1}:=\Gamma(1-\alpha)^{-1}\lim_{\epsilon\rightarrow 0}\epsilon^{\alpha}|\{i:P_{i}\geq\epsilon\}|~{}\mathrm{a.s.} (1.2)

The process Fα,0(y):=k=1Pk𝕀{Uky},F_{\alpha,0}(y):=\sum_{k=1}^{\infty}P_{k}\mathbb{I}_{\{U_{k}\leq y\}}, for (Uk)iidUniform[0,1](U_{k})\overset{iid}{\sim}\mathrm{Uniform}[0,1] independent of (Pi)PD(α,0)(P_{i})\sim\mathrm{PD}(\alpha,0), is called a PD(α,0)\mathrm{PD}(\alpha,0) exchangeable bridge, see [6] for this terminology, with the equivalence

Fα,0(y)=𝑑Tα(y)Tα(1).F_{\alpha,0}(y)\overset{d}{=}\frac{T_{\alpha}(y)}{T_{\alpha}(1)}.

In turn, sampling X1,,Xn|Fα,0iidFα,0,X_{1},\ldots,X_{n}|F_{\alpha,0}\overset{iid}{\sim}F_{\alpha,0}, that is, (Xi=𝑑Fα,01(Ui);(X_{i}\overset{d}{=}F_{\alpha,0}^{-1}(U^{\prime}_{i}); UiiidUniform[0,1],i[n])U^{\prime}_{i}\overset{iid}{\sim}\mathrm{Uniform}[0,1],i\in[n]), produces Kn=kK_{n}=k unique values (Y1,,Yk)iidUniform[0,1](Y_{1},\ldots,Y_{k})\overset{iid}{\sim}\mathrm{Uniform}[0,1] and a PD(α,0)\mathrm{PD}(\alpha,0)-partition of [n],[n], {A1,,Ak},\{A_{1},\ldots,A_{k}\}, where Aj={i:Xi=Yj},A_{j}=\{i:X_{i}=Y_{j}\}, with size |Aj|=nj,|A_{j}|=n_{j}, for j=1,,k,j=1,\ldots,k, with an EPPF denoted by the PD(α,0)EPPF\mathrm{PD}(\alpha,0)-\mathrm{EPPF},

pα(n1,,nk)=αk1Γ(k)Γ(n)j=1k(1α)nj1,p_{\alpha}(n_{1},\ldots,n_{k})=\frac{\alpha^{k-1}\Gamma(k)}{\Gamma(n)}\prod_{j=1}^{k}(1-\alpha)_{n_{j}-1}, (1.3)

where, for any non-negative integer xx, (x)n=x(x+1)(x+n1)=Γ(x+n)/Γ(x)(x)_{n}=x(x+1)\cdots(x+n-1)={\Gamma(x+n)}/{\Gamma(x)} denotes the Pochhammer symbol. From this, the probability of the number of blocks Kn=kK_{n}=k can be expressed as α,0(n)(k):=α,0(Kn=k)=αk1Γ(k)Sα(n,k)/Γ(n)\mathbb{P}_{\alpha,0}^{(n)}(k):=\mathbb{P}_{\alpha,0}(K_{n}=k)={\alpha^{k-1}\Gamma(k)}S_{\alpha}(n,k)/{\Gamma(n)}, where Sα(n,k)=[αkk!]1j=1k(1)j(kj)(jα)nS_{\alpha}(n,k)=[{\alpha^{k}k!}]^{-1}\sum_{j=1}^{k}(-1)^{j}\binom{k}{j}(-j\alpha)_{n} denotes the generalized Stirling number of the second kind.

1.1 α\alpha-stable Poisson-Kingman distributions and Gibbs partitions

Now conditioning (Pi)(P_{i}) on Tα=tT_{\alpha}=t (or L1=tαL_{1}=t^{-\alpha}) leads to the distribution of (Pi)|Tα=tPD(α|t)(P_{i})|T_{\alpha}=t\sim\mathrm{PD}(\alpha|t), and for h(t)h(t) a non-negative function with 𝔼[h(Tα)]=1,\mathbb{E}[h(T_{\alpha})]=1, one may, as in [42], define the α\alpha-stable Poisson-Kingman distribution with mixing distribution ν(dt)/dt=h(t)fα(t),\nu(dt)/dt=h(t)f_{\alpha}(t), and write (P)PKα(hfα)(P_{\ell})\sim\mathrm{PK}_{\alpha}(h\cdot f_{\alpha}) defined as

PKα(hfα):=0PD(α|t)h(t)fα(t)𝑑t=0PD(α|s1α)h(s1α)gα(s)𝑑s.\mathrm{PK}_{\alpha}(h\cdot f_{\alpha}):=\int_{0}^{\infty}\mathrm{PD}(\alpha|t)h(t)f_{\alpha}(t)dt=\int_{0}^{\infty}\mathrm{PD}(\alpha|s^{-\frac{1}{\alpha}})h(s^{-\frac{1}{\alpha}})g_{\alpha}(s)ds.

Setting h(t)=tθ/𝔼[Tαθ]h(t)=t^{-\theta}/\mathbb{E}[T^{-\theta}_{\alpha}], for θ>α\theta>-\alpha, leads to (P)PD(α,θ),(P_{\ell})\sim\mathrm{PD}(\alpha,\theta), corresponding to the important two-parameter Poisson-Dirichlet distribution as described in [39, 40, 42, 43, 46], whose size biased re-arrangement, say, (P~)GEM(α,θ),(\tilde{P}_{\ell})\sim\mathrm{GEM}(\alpha,\theta), where GEM(α,θ)\mathrm{GEM}(\alpha,\theta) is the two-parameter Griffiths-Engen-McCloskey distribution, and is widely used in applications [6, 26, 39, 40, 43]. The inverse local time at 11 of a process with lengths (P)PD(α,θ),(P_{\ell})\sim\mathrm{PD}(\alpha,\theta), say, Tα,θ,T_{\alpha,\theta}, has density fα,θ(t)=tθfα(t)/𝔼[Tαθ]f_{\alpha,\theta}(t)=t^{-\theta}f_{\alpha}(t)/\mathbb{E}[T^{-\theta}_{\alpha}], and the corresponding local time at 11 or its α\alpha-diversity, Tα,θαML(α,θ),T^{-\alpha}_{\alpha,\theta}\sim\mathrm{ML}(\alpha,\theta), denoting that it has a (α,θ)(\alpha,\theta) generalized Mittag-Leffler distribution with density gα,θ(s)=sθ/αgα(s)/𝔼[Tαθ]g_{\alpha,\theta}(s)=s^{\theta/\alpha}g_{\alpha}(s)/\mathbb{E}[T^{-\theta}_{\alpha}]. When (P)PKα(hfα)(P_{\ell})\sim\mathrm{PK}_{\alpha}(h\cdot f_{\alpha}), F(y)=k=1Pk𝕀{Uky}F(y)=\sum_{k=1}^{\infty}P_{k}\mathbb{I}_{\{U_{k}\leq y\}} is its corresponding bridge defined similarly as Fα,0F_{\alpha,0}, and sampling nn variables from FF, as in the PD(α,0)\mathrm{PD}(\alpha,0) case, leads to the general class of α(0,1)\alpha\in(0,1) Gibbs partitions of [n][n], with an EPPF , denoted by PKα(hfα)EPPF,\mathrm{PK}_{\alpha}(h\cdot f_{\alpha})-\mathrm{EPPF}, as in  [17, 42],

pα[ν](n1,,nk)=Ψn,k[α]×pα(n1,,nk),p^{[\nu]}_{\alpha}(n_{1},\ldots,n_{k})={\Psi}^{[\alpha]}_{n,k}\times p_{\alpha}(n_{1},\ldots,n_{k}), (1.4)

where, using the interpretation of the expressions derived by [17, 42] in [25],

Ψn,k[α]=𝔼[h(Tα)|Kn=k]=𝔼[h(Yα,kα(nkα))].{\Psi}^{[\alpha]}_{n,k}=\mathbb{E}[h(T_{\alpha})|K_{n}=k]=\mathbb{E}\bigg{[}h\big{(}Y^{(n-k\alpha)}_{\alpha,k\alpha}\big{)}\bigg{]}.

In the first expectation, Tα|Kn=kT_{\alpha}|K_{n}=k is evaluated for the PD(α,0)\mathrm{PD}(\alpha,0) case with Knα,0(n)(k).K_{n}\sim\mathbb{P}_{\alpha,0}^{(n)}(k). The second equality follows from the fact that such a conditional random variable equates in distribution to a variable Yα,kα(nkα),Y^{(n-k\alpha)}_{\alpha,k\alpha}, with density fα,kα(nkα)(t),f^{(n-k\alpha)}_{\alpha,k\alpha}(t), such that (pointwise), as in [25, eq. (2.13), p. 323],

Yα,kα(nkα)=𝑑Tα,kαBkα,nkα=Tα,nBk,nαk1α,Y^{(n-k\alpha)}_{\alpha,k\alpha}\overset{d}{=}\frac{T_{\alpha,k\alpha}}{B_{k\alpha,n-k\alpha}}=\frac{T_{\alpha,n}}{B^{\frac{1}{\alpha}}_{k,\frac{n}{\alpha}-k}}, (1.5)

where variables in each ratio are independent, and throughout, Ba,bB_{a,b} denotes a Beta(a,b)\mathrm{Beta}(a,b) random variable. It is noteworthy that (1.5) indicates that Mittag-Leffler variables play a role in the general α\alpha class of Gibbs partitions.

1.2 Interpreting Gibbs partitions via infinite block fragmentation and coagulation operations

While the general class of PKα(hfα)\mathrm{PK}_{\alpha}(h\cdot f_{\alpha}) distributions and the corresponding Gibbs partitions exhibit many desirable properties, most choices of h(t)h(t) do not have any particular interpretation. The most notable exceptions are the important PD(α,θ)\mathrm{PD}(\alpha,\theta) distributions which dominate the broad literature. There are some additional examples, such as the generalized gamma and Mittag-Leffler classes. Of particular interest to us are classes that correspond to nested families of mass partitions, whose marginal distributions follow some explicit collection of PKα\mathrm{PK}_{\alpha} distributions, and whose Markovian dynamics (dependence structure) may be described by some operations on 𝒫,\mathcal{P}_{\infty}, and hence equivalently on spaces of integer partitions. The two most notable examples of such families are the nested families of the form ((P(j)),j=0,1,2)((P^{(j)}_{\ell}),j=0,1,2\ldots) represented by the Poisson-Dirichlet laws (PD(α,θ+jα),j=0,1,),(\mathrm{PD}(\alpha,\theta+j\alpha),j=0,1,\ldots), and the laws (PD(α,θ+j),j=0,1,).(\mathrm{PD}(\alpha,\theta+j),j=0,1,\ldots). The first such collection is related to (dual) operations of size-biased deletion and insertion, as described in [46, Propositions 34 and 35], and the latter may be constructed by a single block PD(α,1α)\mathrm{PD}(\alpha,1-\alpha) fragmentation operation, fragmenting successively the size-biased pick of the indicated families, leading to, in the initial case of PD(α,θ),\mathrm{PD}(\alpha,\theta), an increase of θ\theta to θ+1,\theta+1, and inversely by a dual coagulation operation as described in [14]. It is notable that the operations of size-biased deletion, as described in [39, 42, 43], and single-block fragmentation can be applied in principle to general families taking values on 𝒫,\mathcal{P}_{\infty}, whereas the latter (dual) operations involve the usage of independent beta distributed variables, which are particular to the PD(α,θ)\mathrm{PD}(\alpha,\theta) distribution. Common descriptions, for extensions of size-biased deletion involving general PKα(hfα),\mathrm{PK}_{\alpha}(h\cdot f_{\alpha}), can be deduced from [39, 42], whereas fragmentation by PD(α,1α)\mathrm{PD}(\alpha,1-\alpha) has been treated in [25, 31]. Results for specific examples of h(t),h(t), requiring more detailed analysis, are also discussed in those and related works.

This work continues efforts to provide interpretations for larger classes of Gibbs partitions by embedding important operations within this framework. Here we address the formidable problem of extending the dual, infinite block, coagulation/fragmentation results of Pitman [41], that is, for 0<β<α<1,0<\beta<\alpha<1, a dual relationship between Vβ,θPD(β,θ)V_{\beta,\theta}\sim\mathrm{PD}(\beta,\theta) and Vα,θPD(α,θ),V_{\alpha,\theta}\sim\mathrm{PD}(\alpha,\theta), with appropriate coagulation and fragmentation operations indicated, as in [43, Section 5.5], by the following diagram

PD(α,θ)PD(β/α,θ/α)COAGPD(α,β)FRAGPD(β,θ)\mathrm{PD}(\alpha,\theta)\qquad\begin{array}[]{c}\mathrm{PD}(\beta/\alpha,\theta/\alpha)-\mathrm{COAG}\\ \xrightarrow{\hskip 72.26999pt}\\ \xleftarrow{\hskip 72.26999pt}\\ \mathrm{PD}(\alpha,-\beta)-\mathrm{FRAG}\end{array}\qquad\mathrm{PD}(\beta,\theta) (1.6)

This creates nested families of mass/integer partitions having laws (PD(α,θ),0<α<1).(\mathrm{PD}(\alpha,\theta),0<\alpha<1). Setting θ=0,\theta=0, α=et\alpha={\mbox{e}}^{-t} and β=e(t+s),\beta={\mbox{e}}^{-(t+s)}, the (homogeneous) continuous-time Markov operator (PD(es,0)COAG,s0)(\mathrm{PD}(e^{-s},0)-\mathrm{COAG},s\geq 0) coincides with the semi-group of the Bolthausen-Sznitman coalescent [9], as discussed in [6, 41, 43]. Briefly, following [6, 43], we describe the PD(α,β)FRAG\mathrm{PD}(\alpha,-\beta)-\mathrm{FRAG} fragmentation operator, hereafter denoted as FRAGα,β,\mathrm{FRAG}_{\alpha,-\beta}, and corresponding PD(β/α,θ/α)COAG\mathrm{PD}(\beta/\alpha,\theta/\alpha)-\mathrm{COAG} coagulation operator. For (Pi)𝒫,(P_{i})\in\mathcal{P}_{\infty}, the FRAGα,β\mathrm{FRAG}_{\alpha,-\beta} operator is defined as, for Rank\mathrm{Rank} denoting the ranked re-arrangement of masses,

FRAGα,β((Pi)):=Rank(Pi(Q^(i)),i1)𝒫,\mathrm{FRAG}_{\alpha,-\beta}((P_{i})):=\mathrm{Rank}(P_{i}(\hat{Q}^{(i)}_{\ell}),i\geq 1)\in\mathcal{P}_{\infty}, (1.7)

where, for each i,i, Q^(i):=(Q^(i))𝒫,\hat{Q}^{(i)}:=(\hat{Q}^{(i)}_{\ell})\in\mathcal{P}_{\infty}, the collection (Q^(i),i1)(\hat{Q}^{(i)},i\geq 1) are iid PD(α,β)\mathrm{PD}(\alpha,-\beta) mass partitions, taken independent of the input (Pi).(P_{i}). There is also the property FRAGα,σFRAGσ,β=FRAGα,β\mathrm{FRAG}_{\alpha,-\sigma}\circ\mathrm{FRAG}_{\sigma,-\beta}=\mathrm{FRAG}_{\alpha,-\beta} for all 0<β<σ<α<1.0<\beta<\sigma<\alpha<1. In terms of partitions {A1,,Ak}\{A_{1},\ldots,A_{k}\}, one is shattering each block of the partition, say, AjA_{j} with size |Aj|,|A_{j}|, by an independent PD(α,β)\mathrm{PD}(\alpha,-\beta) partition of |Aj||A_{j}| elements. We now proceed to first describe the coagulation for more general independent laws on 𝒫,\mathcal{P}_{\infty}, by using the equivalence in terms of compositions of exchangeable bridges as in [43, Lemma 5.18] or [6]. Suppose that FVF_{V} and GQG_{Q} are independent exchangeable bridges defined for VV and QQ in 𝒫,\mathcal{P}_{\infty}, with respective distributions V\mathbb{P}_{V} and Q.\mathbb{P}_{Q}. Then, for the input V~,\tilde{V}, V:=QCOAG(V~)𝒫V:=\mathbb{P}_{Q}-\mathrm{COAG}(\tilde{V})\in\mathcal{P}_{\infty} is equivalent to the ranked re-arrangement of masses formed by the composition FV(y)=FV~(GQ(y)),F_{V}(y)=F_{\tilde{V}}(G_{Q}(y)), for each y[0,1],y\in[0,1], or simply FV=FV~GQ,F_{V}=F_{\tilde{V}}\circ G_{Q}, where VV has distribution V.\mathbb{P}_{V}. Letting Fα,θF_{\alpha,\theta} denote a PD(α,θ)\mathrm{PD}(\alpha,\theta) bridge, the PD(β/α,θ/α)COAG\mathrm{PD}({\beta}/{\alpha},{\theta}/{\alpha})-\mathrm{COAG} result in [41], as indicated from left to right in (1.6), corresponds to Fβ,θ=Fα,θGβ/α,θ/α.F_{\beta,\theta}=F_{\alpha,\theta}\circ G_{{\beta}/{\alpha},{\theta}/{\alpha}}.

Remark 1.1.

Note Fβ:=Fβ,0F_{\beta}:=F_{\beta,0} and the same is true for other variables with θ=0.\theta=0.

In this work, for 0<β<α<10<\beta<\alpha<1 and general VPKβ(hfβ),V\sim\mathrm{PK}_{\beta}(h\cdot f_{\beta}), where 𝔼[h(Tβ)]=1,\mathbb{E}[h(T_{\beta})]=1, we shall apply the same independent FRAGα,β\mathrm{FRAG}_{\alpha,-\beta} operator leading to explicit identification of laws, and calculations for nested families of mass partitions and corresponding Gibbs partitions over α(0,1).\alpha\in(0,1). This represents the primary focus of our work, however we also describe in detail how to construct a natural dual coagulation operation via dependent compositions of bridges and corresponding mass partitions, and demonstrate how easy it can be applied. We note that, in the literature, coagulation operations of this sort are generally defined for independent processes as in [43, Lemma 5.18]. While, in general, fragmentation and coagulation operations are clearly defined and hence straightforward to apply, the formidable challenge is to identify the resulting relevant distributions, and find ones with tractability. The duality result of [41], as described in (1.6), is achieved by working with the EPPF’s of the corresponding random partitions of [n].[n]. In principle one may try such an approach to identify the various laws associated with VPKβ(hfα),V\sim\mathrm{PK}_{\beta}(h\cdot f_{\alpha}), or attempt via the explicit constructions of exchangeable bridges. However, neither approach seems feasible. Here working on the space of mass partitions, we show, in Sections 2 and 3, that the classes of (marginal) distributions V~PKα(h~β/αfα)\tilde{V}\sim\mathrm{PK}_{\alpha}(\tilde{h}_{{\beta}/{\alpha}}\cdot f_{\alpha}) and QPKβ/α(h^αfβ/α),Q\sim\mathrm{PK}_{\beta/\alpha}(\hat{h}_{\alpha}\cdot f_{{\beta}/{\alpha}}), with

h~βα(v):=𝔼βα[h(vTβα1α)] and h^α(y):=𝔼α[h(Tαy1α)],\tilde{h}_{\frac{\beta}{\alpha}}(v):=\mathbb{E}_{\frac{\beta}{\alpha}}\left[h\bigg{(}vT^{\frac{1}{\alpha}}_{\frac{\beta}{\alpha}}\bigg{)}\right]\qquad{\mbox{ and }}\qquad\hat{h}_{\alpha}(y):=\mathbb{E}_{\alpha}\left[h\big{(}T_{\alpha}y^{\frac{1}{\alpha}}\big{)}\right], (1.8)

may be interpreted as being equivalent in distribution to those arising from V~=FRAGα,β(V),\tilde{V}=\mathrm{FRAG}_{\alpha,-\beta}(V), and the marginal distribution of the corresponding coagulator which leads to FV=FV~GQ,F_{V}=F_{\tilde{V}}\circ G_{Q}, respectively. In Sections 4.1-4.3, we obtain remarkable calculations for Gibbs partitions, and related identities, derived from the FRAGα,β\mathrm{FRAG}_{\alpha,-\beta} operation. Sections 4.4 and 4.5, provide interesting identities, fixed point equations, and asymptotic results, which has interpretations in relation to DD- and TpartitionT-\mathrm{partition} intervals as discussed in [3, 43]. Sections 4.6 and 5 provide developments in relation to the Mittag-Leffler class [25]. Section 6 demonstrates how to use our dual coagulation and fragmentation operations to easily identify all the relevant laws, and constructs duality results for generalized gamma models, and size biased extensions. This presents another approach to recover the duality results in [41] for all θ>β.\theta>-\beta.

For nested models primarily related to the fragmentation operator see [5, 12]. In addition, [48], see also [16], applies the coag/frag duality on the space of partitions of [n][n] to \infty-gram natural language models. This represents an application in Bayesian statistical machine learning involving the usage of inverse clustering (via FRAGα,β\mathrm{FRAG}_{\alpha,-\beta} fragmentation) and merging (via PD(α,θ)\mathrm{PD}(\alpha,\theta) coagulation) on the space of partitions of [n].[n]. Related to this, [32] constructs (nested) hierarchical network/graph models using the coagulation fragmentation operations in [41] and also [14]. For some other references on Gibbs-partitions and α\alpha-stable Poisson-Kingman models, see [4, 10, 13, 21, 24, 25, 36, 44]. See [22, 23] for other occurrences of the coag/frag operators in the PD(α,θ)\mathrm{PD}(\alpha,\theta) setting.

2 PDα,β\mathrm{PD}_{\alpha,-\beta} fragmentation of PKβ(hfβ)\mathrm{PK}_{\beta}(h\cdot f_{\beta}) mass partitions

In order to achieve our results, we work with independent stable subordinators 𝐓α\mathbf{T}_{\alpha} and 𝐓β/α,\mathbf{T}_{{\beta}/{\alpha}}, and representations of their relevant quantities under the independent PD(α,0)\mathrm{PD}(\alpha,0) and PD(β/α,0)\mathrm{PD}({\beta}/{\alpha},0) distributions. The corresponding independent local time processes are (Lα(t),t>0)(L_{\alpha}(t),t>0) and (Lβ/α(t),t0)(L_{{\beta}/{\alpha}}(t),t\geq 0), satisfying (1.1) and (1.2), with local times at 1,1, denoted respectively as L1,α=𝑑TααL_{1,\alpha}\overset{d}{=}T^{-\alpha}_{\alpha} and L1,β/α=𝑑Tβ/αβ/αL_{1,{\beta}/{\alpha}}\overset{d}{=}T^{-{\beta}/{\alpha}}_{{\beta}/{\alpha}}, playing the role of L1L_{1}, as we have described, and otherwise following the more detailed description in [8], as it relates to the special case of the duality [41, Theorem 14 and Corollary 15]. In particular, VβPD(β,0)V_{\beta}\sim\mathrm{PD}(\beta,0) is formed by the independent coagulation, Vβ=PD(βα,0)COAG((Vα))\mathrm{V}_{\beta}=\mathrm{PD}(\frac{\beta}{\alpha},0)-\mathrm{COAG}((V_{\alpha})), equivalent to, as in [6, 7, 8, 43],

(Fβ(u)=Fα(Fβα(u)),u[0,1])=𝑑(Tα(Tβα(u))Tα(Tβα(1)),u[0,1])\left(F_{\beta}(u)=F_{\alpha}\big{(}F_{\frac{\beta}{\alpha}}(u)\big{)},u\in[0,1]\right)\overset{d}{=}\left(\frac{T_{\alpha}\big{(}T_{\frac{\beta}{\alpha}}(u)\big{)}}{T_{\alpha}\big{(}T_{\frac{\beta}{\alpha}}(1)\big{)}},u\in[0,1]\right) (2.1)

and has local time at 1,1, L1,β=Lβ/α(L1,α)L_{1,\beta}=L_{{\beta}/{\alpha}}(L_{1,\alpha}) and inverse local time at 1,1, Tβ:=Tβ(1)=Tα(Tβ/α(1)).T_{\beta}:=T_{\beta}(1)=T_{\alpha}(T_{{\beta}/{\alpha}}(1)). Conversely, Vα=FRAGα,β(Vβ)PD(α,0).V_{\alpha}=\mathrm{FRAG}_{\alpha,-\beta}(V_{\beta})\sim\mathrm{PD}(\alpha,0).

Remark 2.1.

Note there is the well known distributional equivalence Tβ=𝑑Tα×Tβ/α1/α=𝑑Tβ/α×Tαα/β.T_{\beta}\overset{d}{=}T_{\alpha}\times T^{{1}/{\alpha}}_{{\beta}/{\alpha}}\overset{d}{=}T_{{\beta}/{\alpha}}\times T^{{\alpha}/{\beta}}_{\alpha}. However, in the case of interpretation of the PD(β/α,0)\mathrm{PD}({\beta}/{\alpha},0) coagulation, as in (2.1), the order matters and thus we will only use Tβ=𝑑Tα×Tβ/α1/αT_{\beta}\overset{d}{=}T_{\alpha}\times T^{{1}/{\alpha}}_{{\beta}/{\alpha}}.

Define

ωβα,β(y)(s)=([Lβα(L1,α)]1βdy|L1,α1α=s)(L1,β1βdy)=αyα1fβα((y/s)α)sαfβ(y)\omega^{(y)}_{\frac{\beta}{\alpha},\beta}(s)=\frac{\mathbb{P}\left({\big{[}L_{\frac{\beta}{\alpha}}(L_{1,\alpha})\big{]}}^{-\frac{1}{\beta}}\in dy\left|L^{-\frac{1}{\alpha}}_{1,\alpha}=s\right.\right)}{\mathbb{P}\big{(}L^{-\frac{1}{\beta}}_{1,\beta}\in dy\big{)}}=\frac{\alpha y^{\alpha-1}f_{\frac{\beta}{\alpha}}\big{(}{(y/s)}^{\alpha}\big{)}}{s^{\alpha}f_{\beta}(y)} (2.2)

such that the conditional distribution of L1,α|L1,βL_{1,\alpha}|L_{1,\beta} may be expressed in terms of that of the transformed variable L1,α1/α|L1,β1/βL^{-{1}/{\alpha}}_{1,\alpha}|L^{-{1}/{\beta}}_{1,\beta} as,

(L1,α1αds|[Lβα(L1,α)]1β=y)/ds=ωβα,β(y)(s)fα(s),\mathbb{P}\left(L^{-\frac{1}{\alpha}}_{1,\alpha}\in ds\left|\big{[}L_{\frac{\beta}{\alpha}}(L_{1,\alpha})\big{]}^{-\frac{1}{\beta}}=y\right.\right)/ds=\omega^{(y)}_{\frac{\beta}{\alpha},\beta}(s)f_{\alpha}(s), (2.3)

which is equivalent to the conditional density of TαT_{\alpha} given Tα×Tβ/α1/α=yT_{\alpha}\times T^{{1}/{\alpha}}_{{\beta}/{\alpha}}=y.

Theorem 2.1.

Let VPKβ(hfβ)V\sim\mathrm{PK}_{\beta}(h\cdot f_{\beta}) with local time at 1,1, say L1,V,L_{1,V}, having density h(1/β)gβ().h(\ell^{-{1}/{\beta}})g_{\beta}(\ell). For any choice of 0<β<α<1,0<\beta<\alpha<1, let FRAGα,β()\mathrm{FRAG}_{\alpha,-\beta}(\cdot) denote an PD(α,β)\mathrm{PD}(\alpha,-\beta) fragmentation operator independent of V.V. Then,

  1. (i)

    V~=FRAGα,β(V)PKα(h~βαfα)\tilde{V}=\mathrm{FRAG}_{\alpha,-\beta}(V)\sim\mathrm{PK}_{\alpha}\bigg{(}\tilde{h}_{\frac{\beta}{\alpha}}\cdot f_{\alpha}\bigg{)} where

    h~βα(v):=𝔼βα[h(vTβα1α)].\tilde{h}_{\frac{\beta}{\alpha}}(v):=\mathbb{E}_{\frac{\beta}{\alpha}}\left[h\bigg{(}vT^{\frac{1}{\alpha}}_{\frac{\beta}{\alpha}}\bigg{)}\right].

    That is, it has a local time at time 1,1, say, L~1,V~\tilde{L}_{1,\tilde{V}}, with density h~βα(s1α)gα(s)\tilde{h}_{\frac{\beta}{\alpha}}(s^{-\frac{1}{\alpha}})g_{\alpha}(s).

  2. (ii)

    V~|L1,V=yβ\tilde{V}|L_{1,V}=y^{-\beta} has the α\alpha-stable Poisson-Kingman distribution with, for each y,y, and any h(y),h(y), mixing density

    (L~1,V~1αds|L1,V1β=y)/ds=(L1,α1αds|[Lβα(L1,α)]1β=y)/ds,\mathbb{P}\left(\tilde{L}^{-\frac{1}{\alpha}}_{1,\tilde{V}}\in ds\left|L^{-\frac{1}{\beta}}_{1,V}=y\right.\right)/ds=\mathbb{P}\left(L^{-\frac{1}{\alpha}}_{1,\alpha}\in ds\left|\big{[}L_{\frac{\beta}{\alpha}}(L_{1,\alpha})\big{]}^{-\frac{1}{\beta}}=y\right.\right)/ds,

    as in (2.3).

  3. (iii)

    The conditional distribution of V~|L1,V1/β=y\tilde{V}|L^{-{1}/{\beta}}_{1,V}=y is equivalent to the distribution of Vα|L1,β1/β=y,V_{\alpha}|L^{-{1}/{\beta}}_{1,\beta}=y, which is

    PDα|β(α|y):=0PD(α|s)ωβα,β(y)(s)fα(s)𝑑s=PKα(ωβα,β(y)fα),\mathrm{PD}_{\alpha|\beta}(\alpha|y):=\int_{0}^{\infty}\mathrm{PD}(\alpha|s)\omega^{(y)}_{\frac{\beta}{\alpha},\beta}(s)f_{\alpha}(s)ds=\mathrm{PK}_{\alpha}\left(\omega^{(y)}_{\frac{\beta}{\alpha},\beta}\cdot f_{\alpha}\right), (2.4)

    for ωβα,β(y)(s)\omega^{(y)}_{\frac{\beta}{\alpha},\beta}(s) defined in (2.2).

Proof.

Let 𝔼^(α,β)(β,0)\mathbb{\hat{E}}^{(\beta,0)}_{(\alpha,-\beta)} denote the expectation with respect to the joint law of (V,(Q^(k),k1))\big{(}V,(\hat{Q}^{(k)},k\geq 1)\big{)} where V=𝑑VβPD(β,0)V\overset{d}{=}V_{\beta}\sim\mathrm{PD}(\beta,0) with local time at 1,1, L1,βL_{1,\beta}, with density gβ()g_{\beta}(\ell), and independent of this, (Q^(k),k1)\big{(}\hat{Q}^{(k)},k\geq 1\big{)} are iid PD(α,β)\mathrm{PD}(\alpha,-\beta) mass partitions. Consider VPKα(hfβ).V\sim\mathrm{PK}_{\alpha}(h\cdot f_{\beta}). The distribution of V~=FRAGα,β(V)\tilde{V}=\mathrm{FRAG}_{\alpha,-\beta}(V) is characterized, for a measurable function Ω,\Omega, by

𝔼[Ω(FRAGα,β(V))]=𝔼^(α,β)(β,0)[Ω(FRAGα,β(Vβ))h(L1,β1β)].\mathbb{E}\left[\Omega\big{(}\mathrm{FRAG}_{\alpha,-\beta}(V)\big{)}\right]=\mathbb{\hat{E}}^{(\beta,0)}_{(\alpha,-\beta)}\left[\Omega\big{(}\mathrm{FRAG}_{\alpha,-\beta}(V_{\beta})\big{)}h\big{(}L^{-\frac{1}{\beta}}_{1,\beta}\big{)}\right]. (2.5)

But, from [8, 41], as described in (1.6), this is equivalent to, for VαPD(α,0),V_{\alpha}\sim\mathrm{PD}(\alpha,0),

𝔼[Ω(Vα)h([Lβα(L1,α)]1β)].\mathbb{E}\left[\Omega(V_{\alpha})h\bigg{(}{\big{[}L_{\frac{\beta}{\alpha}}(L_{1,\alpha})\big{]}}^{-\frac{1}{\beta}}\bigg{)}\right]. (2.6)

It follows that Vα|L1,α1/α=s,[Lβ/α(L1,α)]1/β=yV_{\alpha}|L^{-{1}/{\alpha}}_{1,\alpha}=s,{[L_{{\beta}/{\alpha}}(L_{1,\alpha})]}^{-{1}/{\beta}}=y has distribution PD(α|s),\mathrm{PD}(\alpha|s), not depending on y.y. Using this, the scaling property Lβ/α(sα)=𝑑L1,β/α×sβ,L_{{\beta}/{\alpha}}(s^{-\alpha})\overset{d}{=}L_{1,{\beta}/{\alpha}}\times s^{-\beta}, and elementary arguments to describe the joint density, it follows that the expectation (2.6) can be expressed as

0[0𝔼[Ω(Vα)|Tα=s]ωβα,β(y)(s)fα(s)𝑑s]h(y)fβ(y)𝑑y,\int_{0}^{\infty}\left[\int_{0}^{\infty}\mathbb{E}[\Omega(V_{\alpha})|T_{\alpha}=s]\omega^{(y)}_{\frac{\beta}{\alpha},\beta}(s)f_{\alpha}(s)ds\right]h(y)f_{\beta}(y)dy,

which can also be expressed as,

0𝔼[Ω(Vα)|Tα=s]h~βα(s)fα(s)𝑑s\int_{0}^{\infty}\mathbb{E}[\Omega(V_{\alpha})|T_{\alpha}=s]\tilde{h}_{\frac{\beta}{\alpha}}(s)f_{\alpha}(s)ds

for h~βα(s):=𝔼βα[h(sTβα1α)]=0ωβα,β(y)(s)h(y)fβ(y)𝑑y,\tilde{h}_{\frac{\beta}{\alpha}}(s):=\mathbb{E}_{\frac{\beta}{\alpha}}\left[h\bigg{(}sT^{\frac{1}{\alpha}}_{\frac{\beta}{\alpha}}\bigg{)}\right]=\int_{0}^{\infty}\omega^{(y)}_{\frac{\beta}{\alpha},\beta}(s)h(y)f_{\beta}(y)dy, yielding the results. ∎

Recall that for any 0<β<σ<α<1,0<\beta<\sigma<\alpha<1, FRAGα,β=FRAGα,σFRAGσ,β.\mathrm{FRAG}_{\alpha,-\beta}=\mathrm{FRAG}_{\alpha,-\sigma}\circ\mathrm{FRAG}_{\sigma,-\beta}.

Corollary 2.1.

Suppose that 0<β<σ<α<1,0<\beta<\sigma<\alpha<1, VPKβ(hfβ)V\sim\mathrm{PK}_{\beta}(h\cdot f_{\beta}) with 𝔼[h(Tβ)]=1.\mathbb{E}[h(T_{\beta})]=1. Then, V=FRAGσ,β(V)PKσ(h~βσfσ)V^{\prime}=\mathrm{FRAG}_{\sigma,-\beta}(V)\sim\mathrm{PK}_{\sigma}\bigg{(}\tilde{h}_{\frac{\beta}{\sigma}}\cdot f_{\sigma}\bigg{)} where h~βσ(s):=𝔼βσ[h(sTβσ1σ)].\tilde{h}_{\frac{\beta}{\sigma}}(s):=\mathbb{E}_{\frac{\beta}{\sigma}}\left[h\bigg{(}sT^{\frac{1}{\sigma}}_{\frac{\beta}{\sigma}}\bigg{)}\right]. Hence, V~=FRAGα,σ(V)PKα(h~βαfα)\tilde{V}=\mathrm{FRAG}_{\alpha,-\sigma}(V^{\prime})\sim\mathrm{PK}_{\alpha}\bigg{(}\tilde{h}_{\frac{\beta}{\alpha}}\cdot f_{\alpha}\bigg{)} where

h~βα(v):=𝔼σα[h~βσ(vTσα1α)]=𝔼βα[h(vTβα1α)].\tilde{h}_{\frac{\beta}{\alpha}}(v):=\mathbb{E}_{\frac{\sigma}{\alpha}}\left[\tilde{h}_{\frac{\beta}{\sigma}}\bigg{(}vT^{\frac{1}{\alpha}}_{\frac{\sigma}{\alpha}}\bigg{)}\right]=\mathbb{E}_{\frac{\beta}{\alpha}}\left[h\bigg{(}vT^{\frac{1}{\alpha}}_{\frac{\beta}{\alpha}}\bigg{)}\right].

3 Duality via dependent coagulation

We now describe how to construct dependent coagulations to complete the dual process of recovering VPKβ(hfβ)V\sim\mathrm{PK}_{\beta}(h\cdot f_{\beta}) from the coagulation of V~=FRAGα,β(V)PKα(h~βαfα).\tilde{V}=\mathrm{FRAG}_{\alpha,-\beta}(V)\sim\mathrm{PK}_{\alpha}(\tilde{h}_{\frac{\beta}{\alpha}}\cdot f_{\alpha}). Our results show how specification of h(t)h(t) leads to a prescription to identify the laws of V,V~,QV,\tilde{V},Q without guess-work.

Recall that for the independent mass partitions (Vα,Qβα)(V_{\alpha},Q_{\frac{\beta}{\alpha}}) described in (2.1), the process of coagulation yields an inverse local time at 11 for VβV_{\beta} to be Tβ(1)=Tα(Tβ/α(1))=𝑑Tα×Tβ/α1/α.T_{\beta}(1)=T_{\alpha}(T_{{\beta}/{\alpha}}(1))\overset{d}{=}T_{\alpha}\times T^{{1}/{\alpha}}_{{\beta}/{\alpha}}. For V~\tilde{V} as described above, we consider the dependent pair (V~,Q)(\tilde{V},Q) with joint law, say, Pαβα(h),\mathrm{P}^{\frac{\beta}{\alpha}}_{\alpha}(h), characterized by

𝔼[Ω(V~,Q)]=𝔼(α,0)(βα,0)[Ω(Vα,Qβα)h(Tα(Tβα(1)))],\mathbb{E}[\Omega(\tilde{V},Q)]=\mathbb{E}^{(\frac{\beta}{\alpha},0)}_{(\alpha,0)}\left[\Omega\big{(}V_{\alpha},Q_{\frac{\beta}{\alpha}}\big{)}h\bigg{(}T_{\alpha}\big{(}T_{\frac{\beta}{\alpha}}(1)\big{)}\bigg{)}\right], (3.1)

with 𝔼[h(Tβ(1))]=𝔼[h(Tα(Tβα(1)))]=1\mathbb{E}\big{[}h(T_{\beta}(1))\big{]}=\mathbb{E}\left[h\bigg{(}T_{\alpha}\big{(}T_{\frac{\beta}{\alpha}}(1)\big{)}\bigg{)}\right]=1, and the notation 𝔼(α,0)(βα,0)\mathbb{E}^{(\frac{\beta}{\alpha},0)}_{(\alpha,0)} referring to an expectation evaluated under the joint law of the independent PD(α,0)\mathrm{PD}(\alpha,0) and PD(β/α,0)\mathrm{PD}(\beta/\alpha,0) distributions. We use this for clarity, but will suppress it when it is clear we are referring to such variables. Equivalently, by conditioning and scaling properties, the joint law of (V~,Q)(\tilde{V},Q) is given by

Pαβα(h):=00PD(α|s)PD(β/α|y)h(sy1α)fβα(y)fα(s)𝑑y𝑑s.\mathrm{P}^{\frac{\beta}{\alpha}}_{\alpha}(h):=\int_{0}^{\infty}\int_{0}^{\infty}\mathrm{PD}(\alpha|s)\mathrm{PD}({\beta}/{\alpha}|y)h\big{(}sy^{\frac{1}{\alpha}}\big{)}f_{\frac{\beta}{\alpha}}(y)f_{\alpha}(s)dyds. (3.2)
Remark 3.1.

For further clarity, we may use the notation Pαβα(h)=Pαβα(h(fα,fβα))\mathrm{P}^{\frac{\beta}{\alpha}}_{\alpha}(h)=\mathrm{P}^{\frac{\beta}{\alpha}}_{\alpha}\left(h\cdot(f_{\alpha},f_{\frac{\beta}{\alpha}})\right)

In addition, for collections of iid Uniform[0,1]\mathrm{Uniform}[0,1] variables ((U~k),(U))((\tilde{U}_{k}),(U_{\ell})) independent of (V~,Q)(\tilde{V},Q) define random distribution functions (exchangeable bridges), for y[0,1]y\in[0,1],

FV~(y)=k=1V~k𝕀{U~ky} and GQ(y)==1Q𝕀{Uy}.F_{\tilde{V}}(y)=\sum_{k=1}^{\infty}\tilde{V}_{k}\mathbb{I}_{\left\{\tilde{U}_{k}\leq y\right\}}\qquad{\mbox{ and }}\qquad G_{Q}(y)=\sum_{\ell=1}^{\infty}Q_{\ell}\mathbb{I}_{\left\{U_{\ell}\leq y\right\}}. (3.3)
Remark 3.2.

It follows that when h(t)=tθ/𝔼[Tβθ]h(t)=t^{-\theta}/\mathbb{E}\big{[}T^{-\theta}_{\beta}\big{]} for θ>β,\theta>-\beta, V~PD(α,θ)\tilde{V}\sim\mathrm{PD}(\alpha,\theta) is independent of QPD(β/α,θ/α).Q\sim\mathrm{PD}({\beta}/{\alpha},{\theta}/{\alpha}). Hence, FV~=𝑑Fα,θF_{\tilde{V}}\overset{d}{=}F_{\alpha,\theta} and GQ=𝑑Gβ/α,θ/αG_{Q}\overset{d}{=}G_{{\beta}/{\alpha},{\theta}/{\alpha}}.

Proposition 3.1.

For 0<β<α<1,0<\beta<\alpha<1, let (V~,Q)(\tilde{V},Q) have a joint distribution, Pαβα(h),\mathrm{P}^{\frac{\beta}{\alpha}}_{\alpha}(h), specified by (3.1) or equivalently (3.2), such that V~PKα(h~βαfα),\tilde{V}\sim\mathrm{PK}_{\alpha}\bigg{(}\tilde{h}_{\frac{\beta}{\alpha}}\cdot f_{\alpha}\bigg{)}, and (FV~,GQ)(F_{\tilde{V}},G_{Q}) are bridges defined in (3.3). Let V𝒫V\in\mathcal{P}_{\infty} be the ranked masses of the bridge defined by the composition FV:=FV~GQ.F_{V}:=F_{\tilde{V}}\circ G_{Q}. Then, VV is equivalent to the coagulation of V~\tilde{V} by QQ and there are the following properties.

  1. (i)

    VPKβ(hfβ).V\sim\mathrm{PK}_{\beta}(h\cdot f_{\beta}).

  2. (ii)

    The marginal distribution of QPKβ/α(h^αfβα),Q~{}\sim\mathrm{PK}_{\beta/\alpha}(\hat{h}_{\alpha}\cdot f_{\frac{\beta}{\alpha}}), where

    h^α(y)=𝔼α[h(Tαy1α)].\hat{h}_{\alpha}(y)=\mathbb{E}_{\alpha}[h(T_{\alpha}y^{\frac{1}{\alpha}})]. (3.4)

    and the corresponding inverse local time T^1\hat{T}_{1} has density h^α(y)fβα(y)\hat{h}_{{\alpha}}(y)f_{\frac{\beta}{\alpha}}(y).

  3. (iii)

    The distribution of V~|T^1=y\tilde{V}|\hat{T}_{1}=y is PKα(hα(y)fα),\mathrm{PK}_{\alpha}(h^{(y)}_{\alpha}\cdot f_{\alpha}), where

    hα(y)(s)=h(sy1α)𝔼α[h(Tαy1α)].h^{(y)}_{\alpha}(s)=\frac{h(sy^{\frac{1}{\alpha}})}{\mathbb{E}_{\alpha}[h(T_{\alpha}y^{\frac{1}{\alpha}})]}.
Proof.

We first recall from (2.1) that under independent PD(α,0)\mathrm{PD}(\alpha,0) and PD(β/α,0)\mathrm{PD}({\beta}/{\alpha},0) laws, the bridge Fβ:=FαGβαF_{\beta}:=F_{\alpha}\circ G_{\frac{\beta}{\alpha}} follows the law of a PD(β,0)\mathrm{PD}(\beta,0) bridge with inverse local time at 1,1, Tβ:=Tβ(1)=Tα(Tβ/α(1)).T_{\beta}:=T_{\beta}(1)=T_{\alpha}(T_{{\beta}/{\alpha}}(1)). Hence, under the joint law of (V~,Q)(\tilde{V},Q) specified by (3.1), it follows that, for FV:=FV~GQ,F_{V}:=F_{\tilde{V}}\circ G_{Q},

𝔼[Ω(FV~GQ)]=𝔼[Ω(FαGβα)h(Tα(Tβα(1)))]\mathbb{E}\big{[}\Omega(F_{\tilde{V}}\circ G_{Q})\big{]}=\mathbb{E}\left[\Omega\big{(}F_{\alpha}\circ G_{\frac{\beta}{\alpha}}\big{)}h\big{(}T_{\alpha}\big{(}T_{\frac{\beta}{\alpha}}(1)\big{)}\big{)}\right]

showing that FVF_{V} is a PKβ(hfβ)\mathrm{PK}_{\beta}(h\cdot f_{\beta}) bridge and thus VPKβ(hfβ)V\sim\mathrm{PK}_{\beta}(h\cdot f_{\beta}) in statement (i). Statements (ii) and (iii) follow from straightforward usage of (3.2). ∎

The next result shows that (V~,Q)|TV=r(\tilde{V},Q)|T_{V}=r is equivalent to (Vα,Qβα)|Tα(Tβα(1))=r.(V_{\alpha},Q_{\frac{\beta}{\alpha}})|T_{\alpha}(T_{\frac{\beta}{\alpha}}(1))=r.

Proposition 3.2.

For 0<β<α<1,0<\beta<\alpha<1, let (V~,Q)(\tilde{V},Q) have a joint distribution, Pαβα(h),\mathrm{P}^{\frac{\beta}{\alpha}}_{\alpha}(h), specified by (3.1) or equivalently (3.2), such that V~PKα(h~βαfα),\tilde{V}\sim\mathrm{PK}_{\alpha}(\tilde{h}_{\frac{\beta}{\alpha}}\cdot f_{\alpha}), and (FV~,GQ)(F_{\tilde{V}},G_{Q}) are bridges defined in (3.3). Let V𝒫V\in\mathcal{P}_{\infty} be the ranked masses of the bridge defined by the composition FV:=FV~GQF_{V}:=F_{\tilde{V}}\circ G_{Q}, with inverse local time at 11 denoted as TVT_{V} with density h(t)fβ(t).h(t)f_{\beta}(t). Then, by a change of variable, the joint distribution Pαβα(h)\mathrm{P}^{\frac{\beta}{\alpha}}_{\alpha}(h) can be expressed as

0[0PD(α|ry1/α)PD(β/α|y)fα(ry1α)y1αfβ(r)fβα(y)𝑑y]h(r)fβ(r)𝑑r.\int_{0}^{\infty}\left[\int_{0}^{\infty}\mathrm{PD}(\alpha|ry^{-1/\alpha})\mathrm{PD}({\beta}/{\alpha}|y)\frac{f_{\alpha}(ry^{-\frac{1}{\alpha}})}{y^{\frac{1}{\alpha}}f_{\beta}(r)}f_{\frac{\beta}{\alpha}}(y)dy\right]h(r)f_{\beta}(r)dr. (3.5)

That is, the joint distribution of (V~,Q)|TV=r(\tilde{V},Q)|T_{V}=r is equivalent to (Vα,Qβα)|Tα(Tβα(1))=r(V_{\alpha},Q_{\frac{\beta}{\alpha}})|T_{\alpha}(T_{\frac{\beta}{\alpha}}(1))=r, for all hh, and it is given by

0PD(α|ry1/α)PD(β/α|y)fα(ry1α)y1αfβ(r)fβα(y)𝑑y.\int_{0}^{\infty}\mathrm{PD}(\alpha|ry^{-1/\alpha})\mathrm{PD}\left(\left.{\beta}/{\alpha}\right|y\right)\frac{f_{\alpha}(ry^{-\frac{1}{\alpha}})}{y^{\frac{1}{\alpha}}f_{\beta}(r)}f_{\frac{\beta}{\alpha}}(y)dy.

The next Corollary provides an answer to when or under which situation the pair (Q,V)(Q,V) specified by the coagulation FV=FV~GQF_{{V}}=F_{\tilde{V}}\circ G_{Q} are in the same family of distributions, specifically, distributions of the form (PKβδ(h^δfβδ),0<β<δ<1),(\mathrm{PK}_{\frac{\beta}{\delta}}(\hat{h}_{\delta}\cdot f_{\frac{\beta}{\delta}}),0<\beta<\delta<1), where h^δ(y)=𝔼δ[h(Tδy1δ)]\hat{h}_{\delta}(y)=\mathbb{E}_{\delta}[h(T_{\delta}y^{\frac{1}{\delta}})] as in (3.4).

Corollary 3.1.

For 0<β<σ<α<1,0<\beta<\sigma<\alpha<1, consider the settings in Proposition 3.1 where now (V~,Q)Pσαβσ(h^α),(\tilde{V},Q)\sim\mathrm{P}^{\frac{\beta}{\sigma}}_{\frac{\sigma}{\alpha}}(\hat{h}_{\alpha}), and V𝒫V\in\mathcal{P}_{\infty} is obtained by the coagulation equivalent to ranked masses of FV=FV~GQ.F_{{V}}=F_{\tilde{V}}\circ G_{Q}. Then, the variables (V,V~,Q)(V,\tilde{V},Q) have the following marginal (or conditional) distributions

  1. (i)

    VPKβα(h^αfβα)V\sim\mathrm{PK}_{\frac{\beta}{\alpha}}\bigg{(}\hat{h}_{\alpha}\cdot f_{\frac{\beta}{\alpha}}\bigg{)}, for h^α(v)=𝔼α[h(Tαv1α)]\hat{h}_{\alpha}(v)=\mathbb{E}_{\alpha}\bigg{[}h(T_{\alpha}v^{\frac{1}{\alpha}})\bigg{]}.

  2. (ii)

    QPKβσ(h^σfβσ),Q~{}\sim\mathrm{PK}_{\frac{\beta}{\sigma}}\bigg{(}\hat{h}_{\sigma}\cdot f_{\frac{\beta}{\sigma}}\bigg{)}, where T^1\hat{T}_{1} has density h^σfβσ,\hat{h}_{\sigma}\cdot f_{\frac{\beta}{\sigma}}, for

    h^σ(y)=𝔼σα[h^α(Tσαyασ)]=𝔼σ[h(Tσy1σ)].\hat{h}_{\sigma}(y)=\mathbb{E}_{\frac{\sigma}{\alpha}}\bigg{[}\hat{h}_{\alpha}(T_{\frac{\sigma}{\alpha}}y^{\frac{\alpha}{\sigma}})\bigg{]}=\mathbb{E}_{\sigma}[h(T_{\sigma}y^{\frac{1}{\sigma}})]. (3.6)
  3. (iii)

    The distribution of V~|T^1=y\tilde{V}|\hat{T}_{1}=y is PKσα((h^α)σα(y)fσα),\mathrm{PK}_{\frac{\sigma}{\alpha}}\bigg{(}\big{(}\hat{h}_{\alpha}\big{)}^{(y)}_{\frac{\sigma}{\alpha}}\cdot f_{\frac{\sigma}{\alpha}}\bigg{)}, where

    (h^α)σα(y)(s)=𝔼α[h(Tαs1αy1σ)]/𝔼σ[h(Tσy1σ)].\big{(}\hat{h}_{\alpha}\big{)}^{(y)}_{\frac{\sigma}{\alpha}}(s)=\mathbb{E}_{\alpha}\bigg{[}h\big{(}T_{\alpha}s^{\frac{1}{\alpha}}y^{\frac{1}{\sigma}}\big{)}\bigg{]}/\mathbb{E}_{\sigma}[h(T_{\sigma}y^{\frac{1}{\sigma}})].
Proof.

The results follow from Proposition 3.1 and manipulating the distributional properties of

Tα×[Tσα(Tβσ(1))]1α=𝑑Tβ.T_{\alpha}\times{\bigg{[}T_{\frac{\sigma}{\alpha}}\big{(}T_{\frac{\beta}{\sigma}}(1)\big{)}\bigg{]}}^{\frac{1}{\alpha}}\overset{d}{=}T_{\beta}.

Remark 3.3.

In Corollary 3.1, V~=FRAGσα,βα(V)\tilde{V}=\mathrm{FRAG}_{\frac{\sigma}{\alpha},-\frac{\beta}{\alpha}}(V) has distribution PKσα((h^α)~σαfσα),\mathrm{PK}_{\frac{\sigma}{\alpha}}\bigg{(}\widetilde{\big{(}\hat{h}_{\alpha}\big{)}}_{\frac{\sigma}{\alpha}}\cdot f_{\frac{\sigma}{\alpha}}), where (h^α)~σα(s)=𝔼[h(Tαs1αTβσ1σ)]\widetilde{\big{(}\hat{h}_{\alpha}\big{)}}_{\frac{\sigma}{\alpha}}(s)=\mathbb{E}\bigg{[}h(T_{\alpha}s^{\frac{1}{\alpha}}T_{\frac{\beta}{\sigma}}^{\frac{1}{\sigma}})\bigg{]}.

4 Gibbs partitions of [n][n] derived from FRAGα,β\mathrm{FRAG}_{\alpha,-\beta}

Recall from [42, 43] that when VβPD(β,0)V_{\beta}\sim\mathrm{PD}(\beta,0), Vβ|L1,β1/β=yV_{\beta}|L^{-{1}/{\beta}}_{1,\beta}=y is equivalent in distribution to Vβ|Tβ=y,V_{\beta}|T_{\beta}=y, and has the associated Gibbs partition of [n][n] described by the PD(β|y)EPPF,\mathrm{PD}(\beta|y)-\mathrm{EPPF},

pβ(n1,,nk|y):=fβ,kβ(nkβ)(y)fβ(y)pβ(n1,,nk),p_{\beta}(n_{1},\ldots,n_{k}|y):=\frac{f^{(n-k\beta)}_{\beta,k\beta}(y)}{f_{\beta}(y)}p_{\beta}(n_{1},\ldots,n_{k}), (4.1)

where, as in[24, 25],

fβ,kβ(nkβ)(y)fβ(y)=𝔾β(n,k)(y)β1kΓ(n)Γ(k),\frac{f^{(n-k\beta)}_{\beta,k\beta}(y)}{f_{\beta}(y)}=\mathbb{G}^{(n,k)}_{\beta}(y)\frac{{\beta}^{1-k}\Gamma(n)}{\Gamma(k)},

with, from [17, 42, 43],

𝔾β(n,k)(t)=βktnΓ(nkβ)fβ(t)[0tfβ(v)(tv)nkβ1𝑑v],\mathbb{G}_{\beta}^{(n,k)}(t)=\frac{\beta^{k}t^{-n}}{\Gamma(n-k\beta)f_{\beta}(t)}\left[\int_{0}^{t}f_{\beta}(v)(t-v)^{n-k\beta-1}dv\right], (4.2)

and fβ,kβ(nkβ)(y)f^{(n-k\beta)}_{\beta,k\beta}(y) being the conditional density of Tβ|Kn[β]=kT_{\beta}|K^{[\beta]}_{n}=k corresponding to a random variable denoted as Yβ,kβnkβ,Y^{n-k\beta}_{\beta,k\beta}, as otherwise described in (1.5) with β\beta in place of α.\alpha. Note, furthermore, as in [25], this means Tβ:=Tα(Tβα(1))=𝑑Yβ,Kn[β]β(nKn[β]β),T_{\beta}:=T_{\alpha}(T_{\frac{\beta}{\alpha}}(1))\overset{d}{=}Y^{(n-K^{[\beta]}_{n}\beta)}_{\beta,K^{[\beta]}_{n}\beta}, for Kn[β]β,0(n)(k).K^{[\beta]}_{n}\sim\mathbb{P}^{(n)}_{\beta,0}(k). We use these facts to obtain interesting expressions for α\alpha-Gibbs partitions equivalent to those arising from the FRAGα,β\mathrm{FRAG}_{\alpha,-\beta} operator.

4.1 Gibbs partitions of [n][n] of Vα|L1,β,V_{\alpha}|L_{1,\beta}, equivalently of FRAGα,β(V)|L1,V\mathrm{FRAG}_{\alpha,-\beta}(V)|L_{1,V}

Recall from Theorem 2.1 that the distribution of Vα|L1,β=yβV_{\alpha}|L_{1,\beta}=y^{-\beta} is equivalent to that of V~=FRAGα,β(V)|L1,V=yβ\tilde{V}=\mathrm{FRAG}_{\alpha,-\beta}(V)|L_{1,V}=y^{-\beta}, with distribution denoted PDα|β(α|y):=PKα(ωβα,β(y)fα)\mathrm{PD}_{\alpha|\beta}(\alpha|y):=\mathrm{PK}_{\alpha}\bigg{(}\omega^{(y)}_{\frac{\beta}{\alpha},\beta}\cdot f_{\alpha}\bigg{)} as in (2.4), where ωβα,β(y)(s)\omega^{(y)}_{\frac{\beta}{\alpha},\beta}(s) is a ratio of stable densities and hence does not have an explicit form for general 0<β<α<1.0<\beta<\alpha<1. We now present results for the EPPF of the PDα|β(α|y)\mathrm{PD}_{\alpha|\beta}(\alpha|y) Gibbs partition of [n].[n]. We first note that since Tα|Kn[α]=kT_{\alpha}|K^{[\alpha]}_{n}=k is equivalent in distribution to Yα,kαnkαY^{n-k\alpha}_{\alpha,k\alpha} with density fα,kα(nkα),f^{(n-k\alpha)}_{\alpha,k\alpha}, the EPPF\mathrm{EPPF} can be expressed as

[0ωβα,β(y)(s)fα,kαnkα(s)𝑑s]pα(n1,,nk),\left[\int_{0}^{\infty}\omega^{(y)}_{\frac{\beta}{\alpha},\beta}(s)f^{n-k\alpha}_{\alpha,k\alpha}(s)ds\right]p_{\alpha}(n_{1},\ldots,n_{k}),

where the first integral term is the density of Yα,kα(nkα)×Tβ/α1/α,Y^{(n-k\alpha)}_{\alpha,k\alpha}\times T^{{1}/{\alpha}}_{{\beta}/{\alpha}}, divided by fβ(y),f_{\beta}(y), and does not have an obvious recognizable form. However, we can use the approach in [24] to express ωβα,β(y)\omega^{(y)}_{\frac{\beta}{\alpha},\beta} in terms of Fox-HH functions [37], leading to an expression for the EPPF in terms of Fox-HH functions in the Appendix.

The next result provides a more revealing expression which is not obvious.

Theorem 4.1.

The EPPF\mathrm{EPPF} of the PDα|β(α|y)\mathrm{PD}_{\alpha|\beta}(\alpha|y) Gibbs partition of [n][n] can be expressed as

pα|β(n1,,nk|y):=[j=1kβα,0(k)(j)fβ,jβ(njβ)(y)fβ(y)]pα(n1,,nk),p_{\alpha|\beta}(n_{1},\ldots,n_{k}|y):=\left[\sum_{j=1}^{k}\mathbb{P}^{(k)}_{\frac{\beta}{\alpha},0}(j)\frac{f^{(n-j\beta)}_{\beta,j\beta}(y)}{f_{\beta}(y)}\right]p_{\alpha}(n_{1},\ldots,n_{k}), (4.3)

where βα,0(k)(j)=βα,0(Kk=j)\mathbb{P}^{(k)}_{\frac{\beta}{\alpha},0}(j)=\mathbb{P}_{\frac{\beta}{\alpha},0}(K_{k}=j) is the distribution of the number of blocks in a PD(βα,0)\mathrm{PD}(\frac{\beta}{\alpha},0) partition of [k][k], and j=1kβα,0(k)(j)fβ,jβ(njβ)(y)\sum_{j=1}^{k}\mathbb{P}^{(k)}_{\frac{\beta}{\alpha},0}(j){f^{(n-j\beta)}_{\beta,j\beta}(y)} is the conditional density of Tβ|Kn[α]=kT_{\beta}|K^{[\alpha]}_{n}=k, for the number of blocks Kn[α]K^{[\alpha]}_{n} in a PD(α,0)\mathrm{PD}(\alpha,0) partition of [n],[n], with Tβ:=Tα(Tβα(1))=𝑑Tα×Tβα1αT_{\beta}:=T_{\alpha}(T_{\frac{\beta}{\alpha}}(1))\overset{d}{=}T_{\alpha}\times T^{\frac{1}{\alpha}}_{\frac{\beta}{\alpha}} being equivalent to the inverse local time at 11 of VβPD(β,0)V_{\beta}\sim\mathrm{PD}(\beta,0).

Proof.

The expression for the EPPF\mathrm{EPPF} is the conditional distribution of a PD(α,0)\mathrm{PD}(\alpha,0) partition of [n][n] given Tβ=y.T_{\beta}=y. The joint distribution may be expressed as in (4.3) in terms of the marginal EPPF pα(n1,,nk)p_{\alpha}(n_{1},\ldots,n_{k}) and the conditional density of Tβ|Kn[α]=k.T_{\beta}|K^{[\alpha]}_{n}=k. It remains to show that Tβ|Kn[α]=kT_{\beta}|K^{[\alpha]}_{n}=k agrees with the expression in (4.3) as indicated. Recall that L1,β=Lβα(L1,α)L_{1,\beta}=L_{\frac{\beta}{\alpha}}(L_{1,\alpha}) and hence the corresponding inverse local time at 11 is Tβ:=Tβ(1)=Tα(Tβα(1))T_{\beta}:=T_{\beta}(1)=T_{\alpha}(T_{\frac{\beta}{\alpha}}(1)) corresponding to the coagulation operation dictated by Fβ=FαGβα,F_{\beta}=F_{\alpha}\circ G_{\frac{\beta}{\alpha}}, as expressed in (2.1). Sampling from FαGβα,F_{\alpha}\circ G_{\frac{\beta}{\alpha}}, that is, according to variables (Gβα1(Fα1(Ui)),i[n]),\bigg{(}G^{-1}_{\frac{\beta}{\alpha}}(F^{-1}_{\alpha}(U^{\prime}_{i})),i\in[n]\bigg{)}, it follows that this procedure produces a PD(β,0)\mathrm{PD}(\beta,0) partition of [n],[n], with Kn[β]=𝑑KKn[α][β/α]K^{[\beta]}_{n}\overset{d}{=}K^{[{\beta}/{\alpha}]}_{K^{[\alpha]}_{n}} blocks, where the two components are independent. Furthermore, the order matters, giving Kn[α]K^{[\alpha]}_{n} the interpretation as the number of blocks to be merged, according to a PD(βα,0)\mathrm{PD}(\frac{\beta}{\alpha},0) partition of [k],[k], for Kn[α]=knK^{[\alpha]}_{n}=k\leq n. Now from [25], Tβ=𝑑Yβ,Kn[β]βnKn[β]β.T_{\beta}\overset{d}{=}Y^{n-K^{[\beta]}_{n}\beta}_{\beta,K^{[\beta]}_{n}\beta}. Hence Tβ|Kn[α]=kT_{\beta}|K^{[\alpha]}_{n}=k is equivalent to Yβ,Kk[β/α]β(nKk[β/α]β),Y^{(n-K^{[{\beta}/{\alpha}]}_{k}\beta)}_{\beta,K^{[{\beta}/{\alpha}]}_{k}\beta}, which, using  (4.1), leads to the description of the density of Tβ|Kn[α]=kT_{\beta}|K^{[\alpha]}_{n}=k appearing in  (4.3). ∎

Remark 4.1.

The result above is equivalent to showing that Yβ,Kk[β/α]β(nKk[β/α]β)=𝑑Yα,kα)(nkα)×Tβα1α,Y^{(n-K^{[{\beta}/{\alpha}]}_{k}\beta)}_{\beta,K^{[{\beta}/{\alpha}]}_{k}\beta}\overset{d}{=}Y^{(n-k\alpha)}_{\alpha,k\alpha)}\times T^{\frac{1}{\alpha}}_{\frac{\beta}{\alpha}}, which can be deduced directly using the subordinator representation [25, Theorem 2.1 and Proposition 2.1] and decompositions of beta variables.

We now describe the distribution of the number of blocks and its limiting behavior.

Corollary 4.1.

Consider the EPPF\mathrm{EPPF} of a PDα|β(α|y)\mathrm{PD}_{\alpha|\beta}(\alpha|y) partition of [n][n] as in (4.3), for each y>0.y>0. Let K^n(y)\hat{K}_{n}(y) denote the corresponding random number of unique blocks. Then, for k=1,,n,k=1,\ldots,n,

(Kn[α]=k|L1,β=yβ)=(K^n(y)=k)=[j=1kβα,0(k)(j)fβ,jβ(njβ)(y)fβ(y)]α,0(n)(k),\mathbb{P}\bigg{(}K^{[\alpha]}_{n}=k\left|L_{1,\beta}=y^{-\beta}\right.\bigg{)}=\mathbb{P}(\hat{K}_{n}(y)=k)=\left[\sum_{j=1}^{k}\mathbb{P}^{(k)}_{\frac{\beta}{\alpha},0}(j)\frac{f^{(n-j\beta)}_{\beta,j\beta}(y)}{f_{\beta}(y)}\right]\mathbb{P}^{(n)}_{\alpha,0}(k),

and, as n,n\rightarrow\infty, nαK^n(y)a.s.Z^α|β(y),n^{-\alpha}\hat{K}_{n}(y)\overset{a.s.}{\rightarrow}\hat{Z}_{\alpha|\beta}(y), where Z^α|β(y)\hat{Z}_{\alpha|\beta}(y) is equivalent in distribution to that of L1,α|L1,β1/β=y,L_{1,\alpha}|L^{-{1}/{\beta}}_{1,\beta}=y, for L1,β=Lβα(L1,α).L_{1,\beta}=L_{\frac{\beta}{\alpha}}(L_{1,\alpha}).

Proof.

The distribution follows as a special case of known properties of the distribution of the number of blocks of Gibbs partitions, and is otherwise easy to verify directly from the EPPF. The limiting distribution follows as a special case of [42, Proposition 13]. ∎

4.2 EPPF of FRAGα,β(V)PKα(h~βαfα)\mathrm{FRAG}_{\alpha,-\beta}(V)\sim\mathrm{PK}_{\alpha}(\tilde{h}_{\frac{\beta}{\alpha}}\cdot f_{\alpha})

Recall from [17, 42], see also [25], that if VPKβ(hfβ)V\sim\mathrm{PK}_{\beta}(h\cdot f_{\beta}) with 𝔼[h(Tβ)]=1\mathbb{E}[h(T_{\beta})]=1, then the EPPF\mathrm{EPPF} of its associated Gibbs partition of [n][n] is described as

pβ[ν](n1,,nk)=Ψn,k[β]×pβ(n1,,nk),p^{[\nu]}_{\beta}(n_{1},\ldots,n_{k})={\Psi}^{[\beta]}_{n,k}\times p_{\beta}(n_{1},\ldots,n_{k}), (4.4)

where Ψn,k[β]=𝔼β[h(Tβ)|Kn[β]=k]\Psi^{[\beta]}_{n,k}=\mathbb{E}_{\beta}[h(T_{\beta})|K^{[\beta]}_{n}=k] and, for clarity, Kn[β]K^{[\beta]}_{n} is the number of blocks of a PD(β,0)\mathrm{PD}(\beta,0) partition of [n].[n].

Theorem 4.1 leads to the EPPF corresponding to V~=FRAGα,β(V)PKα(h~βαfα),\tilde{V}=\mathrm{FRAG}_{\alpha,-\beta}(V)\sim\mathrm{PK}_{\alpha}\left(\tilde{h}_{\frac{\beta}{\alpha}}\cdot f_{\alpha}\right), or any variable in 𝒫\mathcal{P}_{\infty} having the same distribution.

Proposition 4.1.

Suppose that for 0<β<α<1,0<\beta<\alpha<1, V~PKα(h~βαfα),\tilde{V}\sim\mathrm{PK}_{\alpha}(\tilde{h}_{\frac{\beta}{\alpha}}\cdot f_{\alpha}), where h~βα(v):=𝔼βα[h(vTβα1α)].\tilde{h}_{\frac{\beta}{\alpha}}(v):=\mathbb{E}_{\frac{\beta}{\alpha}}\left[h\big{(}vT^{\frac{1}{\alpha}}_{\frac{\beta}{\alpha}}\big{)}\right]. Then, the PKα(h~βαfα)\mathrm{PK}_{\alpha}\left(\tilde{h}_{\frac{\beta}{\alpha}}\cdot f_{\alpha}\right) EPPF\mathrm{EPPF} of the associated Gibbs partition of [n][n] can be expressed as

[j=1kβα,0(k)(j)Ψn,j[β]]pα(n1,,nk),\left[\sum_{j=1}^{k}\mathbb{P}^{(k)}_{\frac{\beta}{\alpha},0}(j)\Psi^{[\beta]}_{n,j}\right]p_{\alpha}(n_{1},\ldots,n_{k}), (4.5)

and there is the identity, for Tβ:=Tβ(1)=Tα(Tβα(1)),T_{\beta}:=T_{\beta}(1)=T_{\alpha}(T_{\frac{\beta}{\alpha}}(1)),

𝔼α[h~βα(Tα)|Kn[α]=k]=𝔼[h(Tβ)|Kn[α]=k]=j=1kβα,0(k)(j)Ψn,j[β].\mathbb{E}_{\alpha}\left[\tilde{h}_{\frac{\beta}{\alpha}}(T_{\alpha})\left|K^{[\alpha]}_{n}=k\right.\right]=\mathbb{E}\left[h(T_{\beta})\left|K^{[\alpha]}_{n}=k\right.\right]=\sum_{j=1}^{k}\mathbb{P}^{(k)}_{\frac{\beta}{\alpha},0}(j)\Psi^{[\beta]}_{n,j}.
Proof.

The EPPF\mathrm{EPPF} is equivalent to 0pα|β(n1,,nk|y)h(y)fβ(y)𝑑y\int_{0}^{\infty}p_{\alpha|\beta}(n_{1},\ldots,n_{k}|y)h(y)f_{\beta}(y)dy, and hence the result follows from (4.3) in Theorem 4.1. ∎

Remark 4.2.

The expression in (4.5) provides a description of any mass partition with distribution PKα(h~βαfα)\mathrm{PK}_{\alpha}\left(\tilde{h}_{\frac{\beta}{\alpha}}\cdot f_{\alpha}\right) where h~βα(v):=𝔼βα[h(vTβα1α)],\tilde{h}_{\frac{\beta}{\alpha}}(v):=\mathbb{E}_{\frac{\beta}{\alpha}}\left[h\big{(}vT^{\frac{1}{\alpha}}_{\frac{\beta}{\alpha}}\big{)}\right], regardless of whether or not it actually arises from a fragmentation operation.

As a check, in the case where (P,0)PD(β,θ),(P_{\ell,0})\sim\mathrm{PD}(\beta,\theta), (4.5) must satisfy

j=1kβα,0(k)(j)Γ(θβ+j)Γ(θβ+1)Γ(j)=Γ(θα+k)Γ(θα+1)Γ(k).\sum_{j=1}^{k}\mathbb{P}^{(k)}_{\frac{\beta}{\alpha},0}(j)\frac{\Gamma\big{(}\frac{\theta}{\beta}+j\big{)}}{\Gamma\big{(}\frac{\theta}{\beta}+1\big{)}\Gamma(j)}=\frac{\Gamma\big{(}\frac{\theta}{\alpha}+k\big{)}}{\Gamma\big{(}\frac{\theta}{\alpha}+1\big{)}\Gamma(k)}. (4.6)

However, (4.6) is verified since it agrees with [43, exercise 3.2.9, p.66], with kk in place of n.n. There is the following Corollary in the case of β/α=12\beta/\alpha=\frac{1}{2}.

Corollary 4.2.

Specializing Theorem 4.1 to the case of β/α=12,\beta/\alpha=\frac{1}{2}, where VPKα2(hfα2),V\sim\mathrm{PK}_{\frac{\alpha}{2}}\left(h\cdot f_{\frac{\alpha}{2}}\right), and Ψn,j[α/2]=𝔼α/2[h(Tα2)|Kn[α/2]=j],\Psi^{[{\alpha}/{2}]}_{n,j}=\mathbb{E}_{\alpha/2}\left[h(T_{\frac{\alpha}{2}})\left|K^{[{\alpha}/{2}]}_{n}=j\right.\right], the PKα(h~12fα)\mathrm{PK}_{\alpha}\left(\tilde{h}_{\frac{1}{2}}\cdot f_{\alpha}\right) EPPF\mathrm{EPPF} in (4.5) becomes

[j=1k(2kj1k1)2j+12kΨn,j[α/2]]pα(n1,,nk).\left[\sum_{j=1}^{k}{{2k-j-1}\choose{k-1}}2^{j+1-2k}\Psi^{[{\alpha}/{2}]}_{n,j}\right]p_{\alpha}(n_{1},\ldots,n_{k}). (4.7)

4.3 Generating PDα|β(α|y),\mathrm{PD}_{\alpha|\beta}(\alpha|y), partitions via PD(α,β)\mathrm{PD}(\alpha,-\beta) fragmentation of partitions

While the EPPF’s (4.3) and (4.5) are quite interesting from various perspectives, it is not entirely necessary to employ them directly to obtain random partitions from PDα|β(α|y)\mathrm{PD}_{\alpha|\beta}(\alpha|y) and PKα(h~βαfα).\mathrm{PK}_{\alpha}(\tilde{h}_{\frac{\beta}{\alpha}}\cdot f_{\alpha}). A two-stage sampling scheme may be employed utilizing the dual partition-based interpretation of the Fragα,β\mathrm{Frag}_{\alpha,-\beta} operator. The following scheme can be deduced from Bertoin [6], see also [41, 43].

  • 1.

    Generate nn iid PD(α,β)\mathrm{PD}(\alpha,-\beta) partitions of [n],[n], say, 𝒜1,,𝒜n,\mathcal{A}_{1},\ldots,\mathcal{A}_{n}, where, for each i,i, 𝒜i:={A1(i),,AMn(i)(i)}\mathcal{A}_{i}:=\{A^{(i)}_{1},\ldots,A^{(i)}_{M^{(i)}_{n}}\} with Mn(i)M^{(i)}_{n} blocks.

  • 2.

    Independent of this, for each fixed y,y, generate a PD(β|y)\mathrm{PD}(\beta|y) partition of [n][n], say, {C1,,CKn(y)}\{C_{1},\ldots,C_{K_{n}(y)}\}, where Kn(y)K_{n}(y) denotes the number of blocks.

  • 3.

    For i=1,,Kn(y)i=1,\ldots,K_{n}(y), Consider the pairs (Ci,𝒜i)(C_{i},\mathcal{A}_{i}) and fragment CiC_{i} by 𝒜i\mathcal{A}_{i} according to

    𝒞i={Ci,j:=CiAj(i):CiAj(i),j{1,,Mn(i)}}.\mathcal{C}_{i}=\left\{C_{i,j}:=C_{i}\cap A^{(i)}_{j}:C_{i}\cap A^{(i)}_{j}\neq\emptyset,j\in\big{\{}1,\ldots,M^{(i)}_{n}\big{\}}\right\}.
  • 4.

    The collection {Ci,j𝒞i:i[Kn(y)]}\{C_{i,j}\in\mathcal{C}_{i}:i\in[K_{n}(y)]\} (arranged according to the least element) constitutes a PDα|β(α|y)\mathrm{PD}_{\alpha|\beta}(\alpha|y) partition of [n],[n], with

    K^n(y)=𝑑i=1Kn(y)K|Ci|(i),\hat{K}_{n}(y)\overset{d}{=}\sum_{i=1}^{K_{n}(y)}K^{(i)}_{|C_{i}|}, (4.8)

    where K|Ci|(i)=𝑑|𝒞i|,K^{(i)}_{|C_{i}|}\overset{d}{=}|\mathcal{C}_{i}|, and given Ci,C_{i}, is equivalent to the number of blocks in a PD(α,β)\mathrm{PD}(\alpha,-\beta) partition of Ci,C_{i}, conditionally independent for i=1,,K^n(y).i=1,\ldots,\hat{K}_{n}(y).

  • 5.

    Replace Step 2 with a PKβ(hfβ)\mathrm{PK}_{\beta}(h\cdot f_{\beta}) partition of [n][n] to obtain a PKα(h~βαfα)\mathrm{PK}_{\alpha}\left(\tilde{h}_{\frac{\beta}{\alpha}}\cdot f_{\alpha}\right) partition of [n].[n].

Remark 4.3.

The scheme above requires sampling of a PD(β|y)\mathrm{PD}(\beta|y) partition of [n].[n]. The relevant results of [24] show that this is the easiest when β\beta is a rational number. In that case, 𝔾β(n,k)(y)\mathbb{G}^{(n,k)}_{\beta}(y) has a tractable representation in terms of Meijer GG functions. So, this applies to, in particular, (Pk,1)PDα|mr(α|y)(P_{k,1})\sim\mathrm{PD}_{\alpha|\frac{m}{r}}(\alpha|y) for every α>mr,\alpha>{m}r, where m<rm<r are co-prime positive integers. We look at perhaps the most remarkable case, PDα|12(α|y),\mathrm{PD}_{\alpha|\frac{1}{2}}(\alpha|y), in the forthcoming section 4.5.

4.4 Representations of the PKα(h~βαfα)\mathrm{PK}_{\alpha}(\tilde{h}_{\frac{\beta}{\alpha}}\cdot f_{\alpha}) α\alpha-diversity, DD and TT interval partitions, and fixed point equations

The sampling scheme above shows that the number of blocks of a PKα(h~βαfα)\mathrm{PK}_{\alpha}\left(\tilde{h}_{\frac{\beta}{\alpha}}\cdot f_{\alpha}\right), say, K^n,\hat{K}_{n}, of partition of [n][n] satisfies

K^n=𝑑i=1KnK|Ci|(i),\hat{K}_{n}\overset{d}{=}\sum_{i=1}^{K_{n}}K^{(i)}_{|C_{i}|}, (4.9)

where KnK_{n} is the number of blocks in a PKβ(hfβ)\mathrm{PK}_{\beta}(h\cdot f_{\beta}) partition of [n][n]. Hence, by standard results for exchangeable partitions, see for instance [43], as nn\rightarrow\infty, (|Ci|/n,i[Kn])𝑑((P~k,β))(|{C_{i}|/n,i\in[K_{n}]})\overset{d}{\rightarrow}((\tilde{P}_{k,\beta})) for ((P~k,β))((\tilde{P}_{k,\beta})) the size-biased re-arrangement of Pβ=((Pk,β))PKβ(hfβ),P_{\beta}=((P_{k,\beta}))\sim\mathrm{PK}_{\beta}({h}\cdot f_{\beta}), and from [42], |Ci|αK|Ci|(i)a.s.Zα,β(i)ML(α,β).|C_{i}|^{-\alpha}K^{(i)}_{|C_{i}|}\overset{a.s.}{\rightarrow}Z^{(i)}_{\alpha,-\beta}\sim\mathrm{ML}(\alpha,-\beta). Expressed in other terms, as n,n\rightarrow\infty,

(|Cj|n,K|Cj|(j)nα)𝑑(P~j,β,P~j,βαZα,β(j))\left(\frac{|C_{j}|}{n},\frac{K^{(j)}_{|C_{j}|}}{n^{\alpha}}\right)\overset{d}{\rightarrow}\left(\tilde{P}_{j,\beta},\tilde{P}^{\alpha}_{j,\beta}Z^{(j)}_{\alpha,-\beta}\right) (4.10)

as jj varies. The result (4.10), and its ranked version involving Pβ=((Pj,β))PKβ(hfβ),P_{\beta}=((P_{j,\beta}))\sim\mathrm{PK}_{\beta}({h}\cdot f_{\beta}), can be interpreted as extensions of descriptions in [3, Theorems 6,7, Propositions 10,11], see also [43, Chapter 9], to the present setting with general β,\beta, in place of β=0,\beta=0, for the sequence of paired lengths and local times of DD- and TpartitionT-\mathrm{partition} intervals. Hence the next results may be thought of in those terms.

Proposition 4.2.

Let K^n,\hat{K}_{n}, with probability mass function, for k=1,2,n,k=1,2,\ldots n,

(K^n=k)=𝔼α[h~βα(Tα)|Kn[α]=k]α(n)(k)=[j=1kβα,0(k)(j)Ψn,j[β]]α(n)(k),\mathbb{P}(\hat{K}_{n}=k)=\mathbb{E}_{\alpha}\left[\left.\tilde{h}_{\frac{\beta}{\alpha}}(T_{\alpha})\right|K^{[\alpha]}_{n}=k\right]\mathbb{P}_{\alpha}^{(n)}(k)=\left[\sum_{j=1}^{k}\mathbb{P}^{(k)}_{\frac{\beta}{\alpha},0}(j)\Psi^{[\beta]}_{n,j}\right]\mathbb{P}_{\alpha}^{(n)}(k),

denote the number of blocks in a PKα(h~βαfα)\mathrm{PK}_{\alpha}\left(\tilde{h}_{\frac{\beta}{\alpha}}\cdot f_{\alpha}\right) partition of [n],[n], as otherwise specified in (4.5) of Proposition 4.1. Then, nαK^na.s.Z^,n^{-\alpha}\hat{K}_{n}\overset{a.s.}{\rightarrow}\hat{Z}, where Z^\hat{Z} is the α\alpha-diversity and has density 𝔼βα[h(s1αTβα1α)]gα(s).\mathbb{E}_{\frac{\beta}{\alpha}}\left[h(s^{-\frac{1}{\alpha}}T^{\frac{1}{\alpha}}_{\frac{\beta}{\alpha}})\right]g_{\alpha}(s). Furthermore, there is the distributional identity

Z^=𝑑k=1Pk,βαZα,β(k)=𝑑k=1P~k,βαZα,β(k),\hat{Z}\overset{d}{=}\sum_{k=1}^{\infty}P^{\alpha}_{k,\beta}Z^{(k)}_{\alpha,-\beta}\overset{d}{=}\sum_{k=1}^{\infty}\tilde{P}^{\alpha}_{k,\beta}Z^{(k)}_{\alpha,-\beta},

where Pβ=((Pk,β))PKβ(hfβ),P_{\beta}=((P_{k,\beta}))\sim\mathrm{PK}_{\beta}({h}\cdot f_{\beta}), and (P~k,β)(\tilde{P}_{k,\beta}) is its size-biased re-arrangement, independent of ((Zα,β(k)))iidML(α,β).((Z^{(k)}_{\alpha,-\beta}))\overset{iid}{\sim}\mathrm{ML}(\alpha,-\beta).

Recall the (pointwise) identity from size-biased sampling Vα,θPD(α,θ),V_{\alpha,\theta}\sim\mathrm{PD}(\alpha,\theta), for θ>α,\theta>-\alpha, with, for each =1,2,,\ell=1,2,\ldots,

Zα,θ=Zα,θ+αi=1Wiα=Zα,θ+i=1Bi,Z_{\alpha,\theta}=Z_{\alpha,\theta+\ell\alpha}\prod_{i=1}^{\ell}W^{\alpha}_{i}=Z_{\alpha,\theta+\ell}\prod_{i=1}^{\ell}B_{i}, (4.11)

where Zα,θ+α:=Tα,θ+ααML(α,θ+α)Z_{\alpha,\theta+\ell\alpha}:=T^{-\alpha}_{\alpha,\theta+\ell\alpha}\sim\mathrm{ML}(\alpha,\theta+\ell\alpha) is independent of the independent collection (W1,,W),(W_{1},\ldots,W_{\ell}), with each WjBeta(θ+jα,1α)W_{j}\sim\mathrm{Beta}(\theta+j\alpha,1-\alpha), and Zα,θ+ML(α,θ+)Z_{\alpha,\theta+\ell}\sim\mathrm{ML}(\alpha,\theta+\ell) is independent of the independent collection (B1,,B),(B_{1},\ldots,B_{\ell}), with each BjBeta(θ+jαα,1αα).B_{j}\sim\mathrm{Beta}(\frac{\theta+j\alpha}{\alpha},\frac{1-\alpha}{\alpha}). See [14, 25, 46].

Applying the FRAGα,β\mathrm{FRAG}_{\alpha,-\beta} operator, in the case of the PD\mathrm{PD} setting established in [41], to Vβ,αβPD(β,αβ),V_{\beta,\ell\alpha-\beta}\sim\mathrm{PD}(\beta,{\ell\alpha-\beta}), and Vβ,βPD(β,β),V_{\beta,\ell-\beta}\sim\mathrm{PD}(\beta,{\ell-\beta}), for =1,2,,\ell=1,2,\ldots, yields mass partitions Vα,αβPD(α,αβ),V_{\alpha,\ell\alpha-\beta}\sim\mathrm{PD}(\alpha,{\ell\alpha-\beta}), and Vα,βPD(α,β),V_{\alpha,\ell-\beta}\sim\mathrm{PD}(\alpha,{\ell-\beta}), Proposition 4.2 and special cases of (4.11), with θ=β,\theta=-\beta, leads to the following fixed point equations in the sense of [1, 18, 27], for certain generalized Mittag-Leffler variables, which we believe are new,

Proposition 4.3.

For 0β<α<1,0\leq\beta<\alpha<1, consider the identity in (4.11) for the case where θ=β,\theta=-\beta, let (i=1Wi,kα,k1)\left(\prod_{i=1}^{\ell}W_{i,k}^{\alpha},k\geq 1\right) and (i=1Bi,k,k1)\left(\prod_{i=1}^{\ell}B_{i,k},k\geq 1\right) denote iid collections of variables having distribution equivalent to i=1Wiα\prod_{i=1}^{\ell}W^{\alpha}_{i} and i=1Bi,\prod_{i=1}^{\ell}B_{i}, respectively, and, independent of other variables, let (Zα,αβ(k),k1)\left(Z^{(k)}_{\alpha,\ell\alpha-\beta},k\geq 1\right) and (Zα,β(k),k1)\left(Z^{(k)}_{\alpha,\ell-\beta},k\geq 1\right) denote iid collections of variables with each component having distribution ML(α,αβ)\mathrm{ML}(\alpha,\ell\alpha-\beta) and ML(α,β)\mathrm{ML}(\alpha,\ell-\beta), respectively. Then, for each =1,2,\ell=1,2,\ldots, there are the following fixed point equations,

  1. (i)

    for (P~k,β)GEM(β,αβ),(\tilde{P}_{k,\beta})\sim\mathrm{GEM}(\beta,{\ell\alpha-\beta}), and Zα,αβML(α,αβ),Z_{\alpha,\ell\alpha-\beta}\sim\mathrm{ML}(\alpha,\ell\alpha-\beta), equivalent in distribution to the α\alpha-diversity of (Pk,α)PD(α,αβ),(P_{k,\alpha})\sim\mathrm{PD}(\alpha,\alpha\ell-\beta),

    Zα,αβ=𝑑k=1P~k,βαi=1Wi,kαZα,αβ(k),Z_{\alpha,\ell\alpha-\beta}\overset{d}{=}\sum_{k=1}^{\infty}\tilde{P}^{\alpha}_{k,\beta}\prod_{i=1}^{\ell}W^{\alpha}_{i,k}Z^{(k)}_{\alpha,\ell\alpha-\beta},

    and, hence, 𝔼[k=1P~k,βαi=1Wi,kα]=1.\mathbb{E}\left[\sum_{k=1}^{\infty}\tilde{P}^{\alpha}_{k,\beta}\prod_{i=1}^{\ell}W^{\alpha}_{i,k}\right]=1.

  2. (ii)

    For (P~k,β)GEM(β,β),(\tilde{P}_{k,\beta})\sim\mathrm{GEM}(\beta,{\ell-\beta}), and Zα,βML(α,β),Z_{\alpha,\ell-\beta}\sim\mathrm{ML}(\alpha,\ell-\beta), equivalent in distribution to the α\alpha-diversity of (Pk,α)PD(α,β),(P_{k,\alpha})\sim\mathrm{PD}(\alpha,\ell-\beta),

    Zα,β=𝑑k=1P~k,βαi=1Bi,kZα,β(k),Z_{\alpha,\ell-\beta}\overset{d}{=}\sum_{k=1}^{\infty}\tilde{P}^{\alpha}_{k,\beta}\prod_{i=1}^{\ell}B_{i,k}Z^{(k)}_{\alpha,\ell-\beta},

    and, hence, 𝔼[k=1P~k,βαi=1Bi,k]=1.\mathbb{E}\left[\sum_{k=1}^{\infty}\tilde{P}^{\alpha}_{k,\beta}\prod_{i=1}^{\ell}B_{i,k}\right]=1.

For clarity, for (P~k,β)(\tilde{P}_{k,\beta}) in  Proposition 4.3, one has (P~k,β)=𝑑(Rkj=1k1(1Rj),k1),(\tilde{P}_{k,\beta})\overset{d}{=}(R_{k}\prod_{j=1}^{k-1}(1-R_{j}),k\geq 1), where in the case of (P~k,β)GEM(β,αβ),(\tilde{P}_{k,\beta})\sim\mathrm{GEM}(\beta,{\ell\alpha-\beta}), the ((RkindBeta(1β,α+(k1)β))((R_{k}\overset{ind}{\sim}\mathrm{Beta}(1-\beta,\ell\alpha+(k-1)\beta)), and for (P~k,β)GEM(β,β),(\tilde{P}_{k,\beta})\sim\mathrm{GEM}(\beta,{\ell-\beta}), the ((RkindBeta(1β,+(k1)β))((R_{k}\overset{ind}{\sim}\mathrm{Beta}(1-\beta,\ell+(k-1)\beta)), for all 0β<10\leq\beta<1. When β=0,\beta=0, one has special cases corresponding to the fragmentation results Vα,α=FRAGα,0(V0,α),V_{\alpha,\ell\alpha}=\mathrm{FRAG}_{\alpha,0}(V_{0,\ell\alpha}), and Vα,=FRAGα,0(V0,),V_{\alpha,\ell}=\mathrm{FRAG}_{\alpha,0}(V_{0,\ell}), see [43, Chapter 5, p. 119].

4.5 PD(α,12)\mathrm{PD}(\alpha,-\frac{1}{2}) Fragmentation of a Brownian excursion partition conditioned on its local time

Following Pitman [42, Section 8] and [43, Section 4.5, p.90], let (P,0)PD(12,0)(P_{\ell,0})\sim\mathrm{PD}\big{(}\frac{1}{2},0\big{)} denote the ranked excursion lengths of a standard Brownian motion B:=(Bt:t[0,1])B:=(B_{t}:t\in[0,1]), with corresponding local time at 0 up till time 11 given by L1=𝑑(2T12)12=𝑑|B1|.L_{1}\overset{d}{=}\big{(}2T_{\frac{1}{2}}\big{)}^{-\frac{1}{2}}\overset{d}{=}|B_{1}|. Then, it follows that (P,0)|L1=λ(P_{\ell,0})|L_{1}=\lambda has a PD(12|12λ2)\mathrm{PD}(\frac{1}{2}|\frac{1}{2}\lambda^{-2}) distribution. Furthermore, with respect to (P(s))PD(12|12s2),(P_{\ell}(s))\sim\mathrm{PD}(\frac{1}{2}|\frac{1}{2}s^{-2}), we describe the special β=12\beta=\frac{1}{2} explicit case of the Gibbs partitions (EPPF) of [n][n] in terms of Hermite functions as derived in [42], see also [43, Section 4.5], as

p12(n1,,nk|12s2)=sk1H~k+12n(s)Γ(n)21nΓ(k)p12(n1,,nk),p_{\frac{1}{2}}\left(n_{1},\ldots,n_{k}\left|\frac{1}{2}s^{-2}\right.\right)=s^{k-1}\tilde{H}_{k+1-2n}(s)\frac{\Gamma(n)}{2^{1-n}\Gamma(k)}p_{\frac{1}{2}}(n_{1},\ldots,n_{k}), (4.12)

where, for U(a,b,c)U(a,b,c) a confluent hypergeometric function of the secondkind (see [35, p.263]),

H~2q(s)=2qU(q,12,s22)==0(s)!Γ(q+2)2Γ(2q)2q+2\tilde{H}_{-2q}(s)=2^{-q}U\left(q,\frac{1}{2},\frac{s^{2}}{2}\right)=\sum_{\ell=0}^{\infty}\frac{{(-s)}^{\ell}}{\ell!}\frac{\Gamma(q+\frac{\ell}{2})}{2\Gamma(2q)}2^{q+\frac{\ell}{2}}

is a Hermite function of index 2q.-2q. That is, to say

𝔾12(n,k)(12s2)=2nksk1H~k+12n(s).\mathbb{G}^{(n,k)}_{\frac{1}{2}}\bigg{(}\frac{1}{2}s^{-2}\bigg{)}=2^{n-k}s^{k-1}\tilde{H}_{k+1-2n}(s). (4.13)
Proposition 4.4.

Suppose that P1/2(s):=(P(s))PD(12|12s2).P_{1/2}(s):=(P_{\ell}(s))\sim\mathrm{PD}(\frac{1}{2}|\frac{1}{2}s^{-2}). Then, for α>1/2,\alpha>1/2,

Pα(s)=FRAGα,12(P1/2(s))PDα|12(α|12s2),P_{\alpha}(s)=\mathrm{FRAG}_{\alpha,-\frac{1}{2}}(P_{1/2}(s))\sim\mathrm{PD}_{\alpha|\frac{1}{2}}\left(\alpha\left|\frac{1}{2}s^{-2}\right.\right),

with corresponding EPPF\mathrm{EPPF} expressed in terms of a mixture of Hermite functions,

[j=1k12α,0(k)(j)2n1sj1H~j+12n(s)Γ(n)Γ(j)]pα(n1,,nk).\left[\sum_{j=1}^{k}\mathbb{P}^{(k)}_{\frac{1}{2\alpha},0}(j)2^{n-1}s^{j-1}\tilde{H}_{j+1-2n}(s)\frac{\Gamma(n)}{\Gamma(j)}\right]p_{\alpha}(n_{1},\ldots,n_{k}). (4.14)
Proof.

The result follows as a special case of Theorem 2.1 and Theorem 4.1, and otherwise using the explicit form of the EPPF in (4.12). ∎

Remark 4.4.

In order to obtain a partition of [n][n] corresponding to the EPPF in (4.14), one can sample from (4.12) via the prediction rules indicated in [42, eqs. (111) and (112)], or otherwise employ the scheme described in Section 4.3.

Now recall from [42, Proposition 14], equivalently [2, Corollary 5], that (P~(s)),(\tilde{P}_{\ell}(s)), the size biased re-arrangement of (P(s))PD(12|12s2),(P_{\ell}(s))\sim\mathrm{PD}(\frac{1}{2}|\frac{1}{2}s^{-2}), has a version with the explicit representation for each j1,j\geq 1, jointly and pointwise,

P~j(s)=s2s2+Sj1s2s2+Sj\tilde{P}_{j}(s)=\frac{s^{2}}{s^{2}+S_{j-1}}-\frac{s^{2}}{s^{2}+S_{j}} (4.15)

for Sj:=i=1jX~iS_{j}:=\sum_{i=1}^{j}\tilde{X}_{i}, where X~i\tilde{X}_{i} are independent and identically distributed variables like B12χ12B^{2}_{1}\sim\chi^{2}_{1} for B1N(0,1)B_{1}\sim\mathrm{N}(0,1) a standard Gaussian variable. Now, in view of the results and discussions in Sections 4.3 and 4.4, we easily obtain the following interesting result.

Proposition 4.5.

Let K^n(s2/2)=𝑑i=1Kn(s2/2)K|Ci|(i)\hat{K}_{n}(s^{-2}/2)\overset{d}{=}\sum_{i=1}^{K_{n}(s^{-2}/2)}K^{(i)}_{|C_{i}|} denote the number of blocks in a PDα|12(α|12s2)\mathrm{PD}_{\alpha|\frac{1}{2}}(\alpha|\frac{1}{2}s^{-2}) partition of [n],[n], as can otherwise be generated according to the scheme in Section 4.3, by using a PD(α,1/2)\mathrm{PD}(\alpha,-1/2) fragmentation of a PD(12|12s2)\mathrm{PD}(\frac{1}{2}|\frac{1}{2}s^{-2}) partition of [n][n] with blocks {Ci,i[Kn(s2/2)]}.\{C_{i},i\in[K_{n}(s^{-2}/2)]\}. K^n(s2/2)\hat{K}_{n}(s^{-2}/2) is as otherwise described in Corollary 4.1 with corresponding α\alpha-diversity Z^α|1/2(s2/2).\hat{Z}_{\alpha|1/2}(s^{-2}/2). Then, for (P~j(s),j1)(\tilde{P}_{j}(s),j\geq 1) as in (4.15),

Z^α|1/2(12s2)=𝑑j=1[P~j(s)]αZα,1/2(j).\hat{Z}_{\alpha|1/2}\bigg{(}\frac{1}{2}s^{-2}\bigg{)}\overset{d}{=}\sum_{j=1}^{\infty}[\tilde{P}_{j}(s)]^{\alpha}Z^{(j)}_{\alpha,-1/2}.

Furthermore, as n,n\rightarrow\infty,

(|Cj|n,K|Cj|(j)nα)𝑑(P~j(s),[P~j(s)]αZα,1/2(j))\left(\frac{|C_{j}|}{n},\frac{K^{(j)}_{|C_{j}|}}{n^{\alpha}}\right)\overset{d}{\rightarrow}\left(\tilde{P}_{j}(s),[\tilde{P}_{j}(s)]^{\alpha}Z^{(j)}_{\alpha,-1/2}\right)

jointly for j=1,2,,j=1,2,\ldots, where Z^α|1/2(12s2)\hat{Z}_{\alpha|1/2}(\frac{1}{2}s^{-2}) is equivalent in distribution to that of L1,α|L1,1/2=2sL_{1,\alpha}|L_{1,1/2}=\sqrt{2}s, and L1,1/2=L12α(L1,α).L_{1,1/2}=L_{\frac{1}{2\alpha}}(L_{1,\alpha}).

4.6 FRAGα,β\mathrm{FRAG}_{\alpha,-\beta} for the Mittag-Leffler class

We now present results for an application of the FRAGα,β\mathrm{FRAG}_{\alpha,-\beta} operator to the most basic case of the Mittag-Leffler class as described in [25], see also [28]. Recall that for λ>0,\lambda>0, the Laplace transform of L1,β=𝑑TββL_{1,\beta}\overset{d}{=}T^{-\beta}_{\beta} equates with the Mittag-Leffler function, see for instance [20], expressed as,

Eβ,1(λ)=𝔼[eλTββ]==0(λ)Γ(β+1).\mathrm{E}_{\beta,1}(-\lambda)=\mathbb{E}\big{[}{\mbox{e}}^{-\lambda T^{-\beta}_{\beta}}\big{]}=\sum_{\ell=0}^{\infty}\frac{{(-\lambda)}^{\ell}}{\Gamma(\beta\ell+1)}.

Let (N(s),s0)(N(s),s\geq 0) denote a standard Poisson process, where 𝔼[N(s)]=s,\mathbb{E}[N(s)]=s, and consider the mixed Poisson process (N(tL1,β),t0).(N(tL_{1,\beta}),t\geq 0). Then, as shown in [25], for VβPD(β,0),V_{\beta}\sim\mathrm{PD}(\beta,0), Vβ|N(λL1,β)=0V_{\beta}|N(\lambda L_{1,\beta})=0 corresponds in distribution to

Vβ(λ)0PD(β|t)eλtβEβ,1(λ)fβ(t)𝑑t,V_{\beta}(\lambda)\sim\int_{0}^{\infty}\mathrm{PD}(\beta|t)\frac{{\mbox{e}}^{-\lambda t^{-\beta}}}{\mathrm{E}_{\beta,1}(-\lambda)}f_{\beta}(t)dt, (4.16)

that is, to say a stable Poisson-Kingman distribution with index β\beta and h(t)=eλtβ/Eβ,1(λ).h(t)={\mbox{e}}^{-\lambda t^{-\beta}}/\mathrm{E}_{\beta,1}(-\lambda).

Proposition 4.6.

Let Vβ(λ):=(Vk,β(λ))V_{\beta}(\lambda):=(V_{k,\beta}(\lambda)) have distribution specified in (4.16), and otherwise consider the setting in Theorem 2.1.

  1. (i)

    V~α(λ)=FRAGα,β(Vβ(λ))PKα(h~βαfα)\tilde{V}_{\alpha}(\lambda)=\mathrm{FRAG}_{\alpha,-\beta}(V_{\beta}(\lambda))\sim\mathrm{PK}_{\alpha}\left(\tilde{h}_{\frac{\beta}{\alpha}}\cdot f_{\alpha}\right) where

    h~βα(v)=Eβα,1(λvβ)Eβ,1(λ).\tilde{h}_{\frac{\beta}{\alpha}}(v)=\frac{\mathrm{E}_{\frac{\beta}{\alpha},1}(-\lambda v^{-\beta})}{\mathrm{E}_{\beta,1}(-\lambda)}.
  2. (ii)

    Let L1,α(λ)=𝑑Tαα(λ)L_{1,\alpha}(\lambda)\overset{d}{=}T^{-\alpha}_{\alpha}(\lambda) denote the corresponding local time/α\alpha-diversity with density Eβα,1(λsβα)gα(s)/Eβ,1(λ),{\mathrm{E}_{\frac{\beta}{\alpha},1}(-\lambda s^{\frac{\beta}{\alpha}})}g_{\alpha}(s)/{\mathrm{E}_{\beta,1}(-\lambda)}, then

    L1,α(λ)=𝑑j=1[Vj,β(λ)]αZα,β(j),L_{1,\alpha}(\lambda)\overset{d}{=}\sum_{j=1}^{\infty}[V_{j,\beta}(\lambda)]^{\alpha}Z^{(j)}_{\alpha,-\beta},

    where ((Zα,β(j)))iidML(α,β),((Z^{(j)}_{\alpha,-\beta}))\overset{iid}{\sim}\mathrm{ML}(\alpha,-\beta), independent of Vβ(λ)V_{\beta}(\lambda).

5 Duals in the generalized Mittag-Leffler class

In Section 4.6, we examined the fragmentation of the Mittag-Leffler variable, Vβ(λ)V_{\beta}(\lambda) having distribution equivalent to Vβ|N(λL1,β)=0.V_{\beta}|N(\lambda L_{1,\beta})=0. The extension to more generalized Mittag-Leffler classes could proceed as in [25], by directly conditioning on VβV_{\beta} as Vβ|N(λL1,β)=j,V_{\beta}|N(\lambda L_{1,\beta})=j, for fixed j=0,1,2,.j=0,1,2,\ldots. Here we show that the corresponding Pαβα(h)\mathrm{P}^{\frac{\beta}{\alpha}}_{\alpha}(h) joint distribution can arise directly from (Vα,Qβα)|N(λL1,β)=j,(V_{\alpha},Q_{\frac{\beta}{\alpha}})|N(\lambda L_{1,\beta})=j, which, has not been previously studied. In order to describe this, we first recall the Laplace transform of the (P)PD(β,θ)(P_{\ell})\sim\mathrm{PD}(\beta,\theta) local time at 11 variable, or β\beta-diversity, say L^β,θ=𝑑Tβ,θβML(β,θ),\hat{L}_{\beta,\theta}\overset{d}{=}T^{-\beta}_{\beta,\theta}\sim\mathrm{ML}(\beta,\theta), with density gβ,θ(s)=sθ/βgβ(s)/𝔼[Tβθ],g_{\beta,\theta}(s)=s^{\theta/\beta}g_{\beta}(s)/\mathbb{E}[T^{-\theta}_{\beta}], as given in [28, Section 3], and [25, Section 4.1],

𝔼[eλTβ,θβ]=𝔼[eλ1/βXβ,θ]=Eβ,θ+1(θβ+1)(λ),\mathbb{E}\big{[}{\mbox{e}}^{-\lambda T^{-\beta}_{\beta,\theta}}\big{]}=\mathbb{E}\big{[}{\mbox{e}}^{-\lambda^{1/\beta}X_{\beta,\theta}}\big{]}=\mathrm{E}^{(\frac{\theta}{\beta}+1)}_{\beta,\theta+1}(-\lambda), (5.1)

where Xβ,θ:=Tβ/Tβ,θX_{\beta,\theta}:=T_{\beta}/T_{\beta,\theta} is the Lamperti variable studied in [28], and

Eβ,θ+1(θβ+1)(λ)==0(λ)!Γ(θβ+1+)Γ(θ+1)Γ(θβ+1)Γ(β+θ+1),θ>β,\mathrm{E}^{(\frac{\theta}{\beta}+1)}_{\beta,\theta+1}(-\lambda)=\sum_{\ell=0}^{\infty}\frac{{(-\lambda)}^{\ell}}{\ell!}\frac{\Gamma(\frac{\theta}{\beta}+1+\ell)\Gamma(\theta+1)}{\Gamma(\frac{\theta}{\beta}+1)\Gamma(\beta\ell+\theta+1)},\qquad\theta>-\beta, (5.2)

and from [25, Proposition 4.4] there is the density

gβ,θ+mβ(0)(s|λ)=(L^β,θds|N(λL^β,θ)=j)/ds=eλsgβ,θ+jβ(s)Eβ,θ+jβ+1(θβ+j+1)(λ).g^{(0)}_{\beta,\theta+m\beta}(s|\lambda)=\mathbb{P}(\hat{L}_{\beta,\theta}\in ds|N(\lambda\hat{L}_{\beta,\theta})=j)/ds=\frac{{\mbox{e}}^{-\lambda s}g_{\beta,\theta+j\beta}(s)}{\mathrm{E}^{(\frac{\theta}{\beta}+j+1)}_{\beta,\theta+j\beta+1}(-\lambda)}.

It follows that for (P)PD(β,θ),(P_{\ell})\sim\mathrm{PD}(\beta,\theta), (P)|N(λL^β,θ)=j𝕃β,θ+jβ(0)(λ),(P_{\ell})|N(\lambda\hat{L}_{\beta,\theta})=j\sim\mathbb{L}^{(0)}_{\beta,\theta+j\beta}(\lambda), such that,

𝕃β,θ+jβ(0)(λ):=0PD(β|s1β)gβ,θ+jβ(0)(s|λ)𝑑s,\mathbb{L}^{(0)}_{\beta,\theta+j\beta}(\lambda):=\int_{0}^{\infty}\mathrm{PD}(\beta|s^{-\frac{1}{\beta}})\,g^{(0)}_{\beta,\theta+j\beta}(s|\lambda)\,ds, (5.3)

and, hence, in this case,

h(t):=ϑβ,θ+jβ(λ)(t)=eλtβtθjβEβ,θ+jβ+1(θβ+j+1)(λ)𝔼[Tβθjβ].h(t):=\vartheta^{(\lambda)}_{\beta,\theta+j\beta}(t)=\frac{{\mbox{e}}^{-\lambda t^{-\beta}}t^{-\theta-j\beta}}{\mathrm{E}^{(\frac{\theta}{\beta}+j+1)}_{\beta,\theta+j\beta+1}(-\lambda)\mathbb{E}[T_{\beta}^{-\theta-j\beta}]}.

Setting θ=0,\theta=0, it follows for the variables (Vα,Qβα),(V_{\alpha},Q_{\frac{\beta}{\alpha}}), and VβV_{\beta} defined according to coag/frag duality in [8, 41], that the distribution of (Vα,Qβα)|N(λL1,β)=jPαβα(ϑβ,jβ(λ)),(V_{\alpha},Q_{\frac{\beta}{\alpha}})|N(\lambda L_{1,\beta})=j\sim\mathrm{P}^{\frac{\beta}{\alpha}}_{\alpha}(\vartheta^{(\lambda)}_{\beta,j\beta}), which can be expressed

00PD(α|s)PD(β/α|y)eλsβyβαsjβyjβαEβ,jβ+1(j+1)(λ)𝔼[Tβjβ]fβα(y)fα(s)𝑑y𝑑s,\int_{0}^{\infty}\int_{0}^{\infty}\mathrm{PD}(\alpha|s)\mathrm{PD}({\beta}/{\alpha}|y)\frac{{\mbox{e}}^{-\lambda s^{-\beta}y^{\frac{-\beta}{\alpha}}}s^{-j\beta}y^{-\frac{j\beta}{\alpha}}}{\mathrm{E}^{(j+1)}_{\beta,j\beta+1}(-\lambda)\mathbb{E}[T_{\beta}^{-j\beta}]}f_{\frac{\beta}{\alpha}}(y)f_{\alpha}(s)dyds,

equivalently,

00PD(α|s1α)PD(β/α|yαβ)eλsβαyEβ,jβ+1(j+1)(λ)gβα,jβα(y)gα,jβ(s)𝑑y𝑑s.\int_{0}^{\infty}\int_{0}^{\infty}\mathrm{PD}(\alpha|s^{-\frac{1}{\alpha}})\mathrm{PD}({\beta}/{\alpha}|y^{-\frac{\alpha}{\beta}})\frac{{\mbox{e}}^{-\lambda s^{\frac{\beta}{\alpha}}y}}{\mathrm{E}^{(j+1)}_{\beta,j\beta+1}(-\lambda)}g_{\frac{\beta}{\alpha},\frac{j\beta}{\alpha}}(y)g_{\alpha,j\beta}(s)dyds.

It follows that

𝔼[eλyβαTα,jββ]==0(λyβα)!Γ(β(j+)α)Γ(jβ)Γ(jβα)Γ(jβ+β).\mathbb{E}\big{[}{\mbox{e}}^{-\lambda y^{-\frac{\beta}{\alpha}}T^{-\beta}_{\alpha,j\beta}}\big{]}=\sum_{\ell=0}^{\infty}\frac{{(-\lambda y^{-\frac{\beta}{\alpha}})}^{\ell}}{\ell!}\frac{\Gamma(\frac{\beta(j+\ell)}{\alpha})\Gamma(j\beta)}{\Gamma(\frac{j\beta}{\alpha})\Gamma(j\beta+\ell\beta)}. (5.4)

Hence a direct application of Proposition 3.1 leads to identification of all relevant laws as described in the next result.

Proposition 5.1.

Consider the specifications in Proposition 3.1 with (V~,Q)Pαβα(ϑβ,jβ(λ)),(\tilde{V},Q)\sim\mathrm{P}^{\frac{\beta}{\alpha}}_{\alpha}(\vartheta^{(\lambda)}_{\beta,j\beta}), for each j=0,1,2j=0,1,2\ldots. Then, in this case,

  1. (i)

    V𝕃β,jβ(0)(λ)V\sim\mathbb{L}^{(0)}_{\beta,j\beta}(\lambda) as in (5.3) with θ=0.\theta=0.

  2. (ii)

    QQ has the marginal distribution

    0PD(β/α|y)𝔼[eλyβαTα,jββ]Eβ,jβ+1(j+1)(λ)fβα,jβα(y)𝑑y\int_{0}^{\infty}\mathrm{PD}(\beta/\alpha|y)\frac{\mathbb{E}\big{[}{\mbox{e}}^{-\lambda y^{-\frac{\beta}{\alpha}}T^{-\beta}_{\alpha,j\beta}}\big{]}}{{\mathrm{E}^{(j+1)}_{\beta,j\beta+1}(-\lambda)}}f_{\frac{\beta}{\alpha},\frac{j\beta}{\alpha}}(y)dy

    where T^1\hat{T}_{1} has density 𝔼[eλyβαTα,jββ]fβα,jβα(y)/Eβ,jβ+1(j+1)(λ),{\mathbb{E}\big{[}{\mbox{e}}^{-\lambda y^{-\frac{\beta}{\alpha}}T^{-\beta}_{\alpha,j\beta}}\big{]}}f_{\frac{\beta}{\alpha},\frac{j\beta}{\alpha}}(y)/{{\mathrm{E}^{(j+1)}_{\beta,j\beta+1}(-\lambda)}}, which may be expressed in terms of (5.4).

  3. (iii)

    V~|T^1=y,\tilde{V}|\hat{T}_{1}=y, has a stable Poisson-Kingman distribution with index α\alpha and mixing density

    eλsβyβα𝔼[eλyβαTα,jββ]fα,jβ(s).\frac{{\mbox{e}}^{-\lambda s^{-\beta}y^{\frac{-\beta}{\alpha}}}}{\mathbb{E}\big{[}{\mbox{e}}^{-\lambda y^{-\frac{\beta}{\alpha}}T^{-\beta}_{\alpha,j\beta}}\big{]}}f_{\alpha,j\beta}(s).
  4. (iv)

    V~=FRAGα,β(V)\tilde{V}=\mathrm{FRAG}_{\alpha,-\beta}(V) has a stable Poisson-Kingman distribution with index α\alpha and mixing density

    Eβα,jβα+1(j+1)(λsβ)Eβ,jβ+1(j+1)(λ)fα,jβ(s).\frac{{\mathrm{E}^{(j+1)}_{\frac{\beta}{\alpha},\frac{j\beta}{\alpha}+1}(-\lambda s^{-\beta})}}{{\mathrm{E}^{(j+1)}_{\beta,j\beta+1}(-\lambda)}}f_{\alpha,j\beta}(s).

6 Coagulation and fragmentation of generalized gamma models

For any 0<β<1,0<\beta<1, let (τβ(s),s0)(\tau_{\beta}(s),s\geq 0) denote a generalized gamma subordinator specified by its Laplace transform 𝔼[ewτβ(s)]=es[(1+w)β1].\mathbb{E}[{\mbox{e}}^{-w\tau_{\beta}(s)}]={\mbox{e}}^{-s[(1+w)^{\beta}-1]}. The generalized gamma subordinator and corresponding mass partitions, and bridges defined by normalization, as described in [42], arises in numerous contexts. However, for purpose of this exposition, the reader may refer to its role in the construction of PD(β,θ)\mathrm{PD}(\beta,\theta) distributions as described in [46, Proposition 21]. More generally, similar to the Mittag-Leffler class, let (N(tTβ(1)),t0)(N(tT_{\beta}(1)),t\geq 0) denote a mixed Poisson process. Then, for VβPD(β,0),V_{\beta}\sim\mathrm{PD}(\beta,0), and for ζ>0,\zeta>0, the distribution of Vβ|N(ζ1βTβ(1)))=mV_{\beta}|N(\zeta^{\frac{1}{\beta}}T_{\beta}(1)))=m corresponds to the laws β[m](ζ):=PKβ(rβ,ζ[m]fβ)\mathbb{P}^{[m]}_{\beta}(\zeta):=\mathrm{PK}_{\beta}(r^{[m]}_{\beta,\zeta}\cdot f_{\beta}), where

rβ,ζ[m](t)=tmeζ1βt𝔼[Tβmeζ1βTβ],r^{[m]}_{\beta,\zeta}(t)=\frac{t^{m}{\mbox{e}}^{-\zeta^{\frac{1}{\beta}}t}}{\mathbb{E}[T^{m}_{\beta}{\mbox{e}}^{-\zeta^{\frac{1}{\beta}}T_{\beta}}]}, (6.1)

for m=0,1,2,m=0,1,2,\ldots, as described in [25, 30, 31]. Here, we show how to use Proposition 3.1 to easily identify laws and explicit constructions of (dependent) random measures leading to a coag/frag duality in the case of m=0,1m=0,1 and also show how one may recover the Poisson-Dirichlet coag/frag duality results of [41], based on independent PD(α,θ)\mathrm{PD}(\alpha,\theta) and PD(βα,θα)\mathrm{PD}(\frac{\beta}{\alpha},\frac{\theta}{\alpha}) distributions, in the case of θ>0,\theta>0, using m=0m=0, and the general case of θ>β,\theta>-\beta, using m=1.m=1. Results for general m,m, using Proposition 3.1, are also manageable but require too many additional details for the present exposition.

Now, for a fixed value ζ,\zeta, define the scaled subordinator T^β(ζv)=τβ(ζv)/ζ1β\hat{T}_{\beta}(\zeta v)=\tau_{\beta}(\zeta v)/{\zeta^{\frac{1}{\beta}}}, for 0v1,0\leq v\leq 1, such that

T^1,β(ζ):=τβ(ζ)ζ1β\hat{T}_{1,\beta}(\zeta):=\frac{\tau_{\beta}(\zeta)}{\zeta^{\frac{1}{\beta}}}

has density eζ1βteζfβ(t),{\mbox{e}}^{-\zeta^{\frac{1}{\beta}}t}{\mbox{e}}^{\zeta}f_{\beta}(t), and one may form a normalized general gamma bridge, for v[0,1],v\in[0,1], as

FPβ(ζ)(v)=T^β(ζv)T^β(ζ)=τβ(ζv)τβ(ζ)=k=1P^β,k(ζ)𝕀{Ukv},F_{P_{\beta}(\zeta)}(v)=\frac{\hat{T}_{\beta}(\zeta v)}{\hat{T}_{\beta}(\zeta)}=\frac{\tau_{\beta}(\zeta v)}{\tau_{\beta}(\zeta)}=\sum_{k=1}^{\infty}\hat{P}_{\beta,k}(\zeta)\mathbb{I}_{\{U_{k}\leq v\}}, (6.2)

where Pβ(ζ):=(P^β,k(ζ))β(ζ):=PKβ(rβ,ζfβ)P_{\beta}(\zeta):=(\hat{P}_{\beta,k}(\zeta))\sim\mathbb{P}_{\beta}(\zeta):=\mathrm{PK}_{\beta}(r_{\beta,\zeta}\cdot f_{\beta}) with h(t)=rβ,ζ(t):=rβ,ζ[0](t)=eζ1βteζ,h(t)=r_{\beta,\zeta}(t):=r^{[0]}_{\beta,\zeta}(t)={\mbox{e}}^{-\zeta^{\frac{1}{\beta}}t}{\mbox{e}}^{\zeta}, and T^1,β(ζ)\hat{T}_{1,\beta}(\zeta) equates to its inverse local time at 1.1. Using this and Proposition 3.1, for V=𝑑Pβ(ζ)β(ζ),V\overset{d}{=}P_{\beta}(\zeta)\sim\mathbb{P}_{\beta}(\zeta), we obtain versions of (V~,Q)Pαβα(rβ,ζ)(\tilde{V},Q)\sim\mathrm{P}^{\frac{\beta}{\alpha}}_{\alpha}(r_{\beta,\zeta}) in this case as follows; for Q,Q,

hα(y)=𝔼α[rβ,ζ(Tαy1α)]=rβα,ζ(y)=eζαβyeζ,h_{\alpha}(y)=\mathbb{E}_{\alpha}\left[r_{\beta,\zeta}(T_{\alpha}y^{\frac{1}{\alpha}})\right]=r_{\frac{\beta}{\alpha},\zeta}(y)={\mbox{e}}^{-\zeta^{\frac{\alpha}{\beta}}y}{\mbox{e}}^{\zeta},

that is, Q=𝑑Pβα(ζ)βα(ζ)Q\overset{d}{=}P_{\frac{\beta}{\alpha}}(\zeta)\sim\mathbb{P}_{\frac{\beta}{\alpha}}(\zeta) with inverse local time at 1,1, T^1=𝑑T^1,βα(ζ)\hat{T}_{1}\overset{d}{=}\hat{T}_{1,\frac{\beta}{\alpha}}(\zeta), with density eζαβyeζfβα(y).{\mbox{e}}^{-\zeta^{\frac{\alpha}{\beta}}y}{\mbox{e}}^{\zeta}f_{\frac{\beta}{\alpha}}(y). Hence, V~|T^1=yα(ζαβy),\tilde{V}|\hat{T}_{1}=y\sim\mathbb{P}_{\alpha}(\zeta^{\frac{\alpha}{\beta}}y), and has a marginal distribution, corresponding to V~=FRAGα,β(V),\tilde{V}=\mathrm{FRAG}_{\alpha,-\beta}(V),

V~=𝑑Pα(τβα(ζ))𝔼[α(τβα(ζ))]:=0α(ζαβy)eζαβyeζfβα(y)𝑑y.\tilde{V}\overset{d}{=}P_{\alpha}(\tau_{\frac{\beta}{\alpha}}(\zeta))\sim\mathbb{E}[\mathbb{P}_{\alpha}(\tau_{\frac{\beta}{\alpha}}(\zeta))]:=\int_{0}^{\infty}\mathbb{P}_{\alpha}(\zeta^{\frac{\alpha}{\beta}}y){\mbox{e}}^{-\zeta^{\frac{\alpha}{\beta}}y}{\mbox{e}}^{\zeta}f_{\frac{\beta}{\alpha}}(y)dy.

Hence, jointly and component-wise, (V~,Q)=𝑑(Pα(τβα(ζ)),Pβα(ζ)),(\tilde{V},Q)\overset{d}{=}\left(P_{\alpha}(\tau_{\frac{\beta}{\alpha}}(\zeta)),P_{\frac{\beta}{\alpha}}(\zeta)\right), and V=𝑑Pβ(ζ)V\overset{d}{=}P_{{\beta}}(\zeta) is determined by the coagulation

FPβ(ζ)(v)=FPα(τβα(ζ))(FPβα(ζ)(v)),F_{P_{\beta}(\zeta)}(v)=F_{P_{\alpha}(\tau_{\frac{\beta}{\alpha}}(\zeta))}\left(F_{P_{\frac{\beta}{\alpha}}(\zeta)}(v)\right),

where, for clarity,

FPα(τβα(ζ))(v)=τβ(τβα(ζ)v)τβ(τβα(ζ)) and FPβα(ζ)(v)=τβα(ζv)τβα(ζ).F_{P_{\alpha}(\tau_{\frac{\beta}{\alpha}}(\zeta))}(v)=\frac{\tau_{\beta}\left(\tau_{\frac{\beta}{\alpha}}(\zeta)v\right)}{\tau_{\beta}\left(\tau_{\frac{\beta}{\alpha}}(\zeta)\right)}\qquad{\mbox{ and }}\qquad F_{P_{\frac{\beta}{\alpha}}(\zeta)}(v)=\frac{\tau_{\frac{\beta}{\alpha}}(\zeta v)}{\tau_{\frac{\beta}{\alpha}}(\zeta)}.

Conversely, V~=FRAGα,β(V)\tilde{V}=\mathrm{FRAG}_{\alpha,-\beta}(V) is equivalent in distribution to Pα(τβα(ζ))=FRAGα,β(Pβ(ζ))𝔼[α(τβα(ζ))].P_{\alpha}(\tau_{\frac{\beta}{\alpha}}(\zeta))=\mathrm{FRAG}_{\alpha,-\beta}(P_{\beta}(\zeta))\sim\mathbb{E}[\mathbb{P}_{\alpha}(\tau_{\frac{\beta}{\alpha}}(\zeta))]. Now, following [46, Proposition 21], for θ>0\theta>0, it follows that for γaGamma(a,1),\gamma_{a}\sim\mathrm{Gamma}(a,1), Pβ(γθβ)PD(β,θ)P_{\beta}(\gamma_{\frac{\theta}{\beta}})\sim\mathrm{PD}(\beta,\theta), and

Pα(τβα(γθβ))PD(α,θ), independent of Pβα(γθβ)PD(βα,θα),P_{\alpha}(\tau_{\frac{\beta}{\alpha}}(\gamma_{\frac{\theta}{\beta}}))\sim\mathrm{PD}(\alpha,\theta),\quad{\mbox{ independent of }}\quad P_{\frac{\beta}{\alpha}}(\gamma_{\frac{\theta}{\beta}})\sim\mathrm{PD}\left(\frac{\beta}{\alpha},\frac{\theta}{\alpha}\right),

where also Pα(τβα(γθβ))=FRAGα,β(Pβ(γθβ))PD(α,θ),P_{\alpha}(\tau_{\frac{\beta}{\alpha}}(\gamma_{\frac{\theta}{\beta}}))=\mathrm{FRAG}_{\alpha,-\beta}(P_{\beta}(\gamma_{\frac{\theta}{\beta}}))\sim\mathrm{PD}(\alpha,\theta), recovering the coag/frag duality in [41] for θ>0.\theta>0.

Remark 6.1.

See [29] for an earlier, less refined, treatment of these results which requires considerably more effort.

6.1 Results for size biased generalized gamma β[1](ζ)\mathbb{P}^{[1]}_{\beta}(\zeta)

In order to recover the duality for the entire range of θ>β\theta>-\beta, we now work with the size biased law of a generalized gamma density. Suppose that V=𝑑Pβ[1](ζ)β[1](ζ):=PKβ(rβ,ζ[1]fβ)V\overset{d}{=}P^{[1]}_{\beta}(\zeta)\sim\mathbb{P}^{[1]}_{\beta}(\zeta):=\mathrm{PK}_{\beta}\left(r^{[1]}_{\beta,\zeta}\cdot f_{\beta}\right), where

rβ,ζ[1](t)=ζ1β1teζ1βteζ/β,r^{[1]}_{\beta,\zeta}(t)={\zeta^{\frac{1}{\beta}-1}}t{\mbox{e}}^{-\zeta^{\frac{1}{\beta}}t}{\mbox{e}}^{\zeta}/{\beta}, (6.3)

and, now

T^1,β[1](ζ):=τβ(ζ+γ1ββ)ζ1β,\hat{T}^{[1]}_{1,\beta}(\zeta):=\frac{\tau_{\beta}\left(\zeta+\gamma_{\frac{1-\beta}{\beta}}\right)}{\zeta^{\frac{1}{\beta}}},

with density rβ,ζ[1](t)fβ(t)r^{[1]}_{\beta,\zeta}(t)f_{\beta}(t), is the corresponding inverse local time at 1.1. Since this case and a derivation for θ>β\theta>-\beta is not well known, we apply Proposition 3.1 to identify all the relevant distributions in the next result.

Proposition 6.1.

Consider the variables VV and (V~,Q),(\tilde{V},Q), forming the coagulation and fragmentation operations as described in Proposition 3.1, where V=𝑑Pβ[1](ζ)β[1](ζ):=PKβ(rβ,ζ[1]fβ)V\overset{d}{=}P^{[1]}_{\beta}(\zeta)\sim\mathbb{P}^{[1]}_{\beta}(\zeta):=\mathrm{PK}_{\beta}\left(r^{[1]}_{\beta,\zeta}\cdot f_{\beta}\right), and thus (V~,Q)Pαβα(rβ,ζ[1]).(\tilde{V},Q)\sim\mathrm{P}^{\frac{\beta}{\alpha}}_{\alpha}\left(r^{[1]}_{\beta,\zeta}\right). Then,

  1. (i)

    Q=𝑑Pβα[1](ζ)βα[1](ζ),Q\overset{d}{=}P^{[1]}_{\frac{\beta}{\alpha}}(\zeta)\sim\mathbb{P}^{[1]}_{\frac{\beta}{\alpha}}(\zeta), with T^1=𝑑T1,βα[1](ζ)\hat{T}_{1}\overset{d}{=}T^{[1]}_{1,\frac{\beta}{\alpha}}(\zeta)

  2. (ii)

    V~|T^1=yα[1](ζαβy)\tilde{V}|\hat{T}_{1}=y\sim\mathbb{P}^{[1]}_{\alpha}(\zeta^{\frac{\alpha}{\beta}}y)

  3. (iii)

    V~=𝑑Pα[1](τβα(ζ+γαββ))\tilde{V}\overset{d}{=}P^{[1]}_{\alpha}\left(\tau_{\frac{\beta}{\alpha}}(\zeta+\gamma_{\frac{\alpha-\beta}{\beta}})\right)

  4. (iv)

    (V~,Q)=𝑑(Pα[1](τβα(ζ+γαββ)),Pβα[1](ζ))(\tilde{V},Q)\overset{d}{=}\left(P^{[1]}_{\alpha}\bigg{(}\tau_{\frac{\beta}{\alpha}}\big{(}\zeta+\gamma_{\frac{\alpha-\beta}{\beta}}\big{)}\bigg{)},P^{[1]}_{\frac{\beta}{\alpha}}(\zeta)\right) jointly and component-wise.

  5. (v)

    Pα[1](τβα(ζ+γαββ))=FRAGα,β(Pβ[1](ζ))P^{[1]}_{\alpha}\bigg{(}\tau_{\frac{\beta}{\alpha}}\big{(}\zeta+\gamma_{\frac{\alpha-\beta}{\beta}}\big{)}\bigg{)}=\mathrm{FRAG}_{\alpha,-\beta}\left(P^{[1]}_{\beta}(\zeta)\right)

  6. (vi)

    Pβ[1](γθ+ββ)PD(β,θ)P^{[1]}_{\beta}(\gamma_{\frac{\theta+\beta}{\beta}})\sim\mathrm{PD}(\beta,\theta) for θ>β\theta>-\beta

  7. (vii)

    Pα[1](τβα(γθ+ββ+γαββ))PD(α,θ)P^{[1]}_{\alpha}\left(\tau_{\frac{\beta}{\alpha}}\big{(}\gamma_{\frac{\theta+\beta}{\beta}}+\gamma_{\frac{\alpha-\beta}{\beta}}\big{)}\right)\sim\mathrm{PD}(\alpha,\theta) independent of Pβα[1](γθ+ββ)PD(βα,θα)P^{[1]}_{\frac{\beta}{\alpha}}(\gamma_{\frac{\theta+\beta}{\beta}})\sim\mathrm{PD}(\frac{\beta}{\alpha},\frac{\theta}{\alpha})

Proof.

The results follow from a straightforward application of Proposition 3.1 using h(t)=rβ,ζ[1](t),h(t)=r^{[1]}_{\beta,\zeta}(t), the distributional representation of T^1\hat{T}_{1}, and the appropriate Gamma randomization to obtain independent PD\mathrm{PD} laws. The generalized gamma subordinator representation of T^1\hat{T}_{1} and Poisson Dirichlet distributional identities can be found in [25, 30, 31]. The independence of the Poisson-Dirichlet laws is due to [46, Proposition 21, see p. 877] and beta-gamma algebra, see also [25, Proposition 2.1]. ∎

Pα[1](τβα(ζ+γαββ))=FRAGα,β(Pβ[1](ζ))P^{[1]}_{\alpha}\bigg{(}\tau_{\frac{\beta}{\alpha}}\big{(}\zeta+\gamma_{\frac{\alpha-\beta}{\beta}}\big{)}\bigg{)}=\mathrm{FRAG}_{\alpha,-\beta}\left(P^{[1]}_{\beta}(\zeta)\right) has distribution

𝔼[α[1](τβα(ζ+γαββ))]\mathbb{E}\left[\mathbb{P}^{[1]}_{\alpha}\bigg{(}\tau_{\frac{\beta}{\alpha}}\big{(}\zeta+\gamma_{\frac{\alpha-\beta}{\beta}}\big{)}\bigg{)}\right]

with inverse local time at 1,1, equivalent in distribution to

T^1,α[1](τβα(ζ+γαββ))=𝑑τα(τβα(ζ+γαββ)+γ1αα)[τβα(ζ+γαββ)]1α.\hat{T}^{[1]}_{1,\alpha}\bigg{(}\tau_{\frac{\beta}{\alpha}}\big{(}\zeta+\gamma_{\frac{\alpha-\beta}{\beta}}\big{)}\bigg{)}\overset{d}{=}\frac{\tau_{\alpha}\left(\tau_{\frac{\beta}{\alpha}}\big{(}\zeta+\gamma_{\frac{\alpha-\beta}{\beta}}\big{)}+\gamma_{\frac{1-\alpha}{\alpha}}\right)}{{[\tau_{\frac{\beta}{\alpha}}\big{(}\zeta+\gamma_{\frac{\alpha-\beta}{\beta}}\big{)}]}^{\frac{1}{\alpha}}}.
Remark 6.2.

If VαPD(α,0)V_{\alpha}\sim\mathrm{PD}(\alpha,0) independent of QβαPD(βα,0)Q_{\frac{\beta}{\alpha}}\sim\mathrm{PD}(\frac{\beta}{\alpha},0), it is evident that (Vα,Qβα)|N(ζ1βTα(Tβα(1)))=mPαβα(rβ,ζ[m]).\big{(}V_{\alpha},Q_{\frac{\beta}{\alpha}}\big{)}\left|N\left(\zeta^{\frac{1}{\beta}}T_{\alpha}\big{(}T_{\frac{\beta}{\alpha}}(1)\big{)}\right)\right.=m\sim\mathrm{P}^{\frac{\beta}{\alpha}}_{\alpha}\left(r^{[m]}_{\beta,\zeta}\right).

The EPPF\mathrm{EPPF} of the PDα|β(α|y)\mathrm{PD}_{\alpha|\beta}(\alpha|y) Gibbs partition of [n][n] in Theorem 4.1 may be alternatively expressed in terms of Fox-HH functions [37] as

αH2,20,2[y|(11β,1β),(11αk,1α)(11α,1α),(n,1)]H1,10,1[y|(11β,1β)(0,1)]Γ(n)Γ(k)pα(n1,,nk).\frac{\alpha H_{2,2}^{0,2}\left[y\left|\begin{array}[]{l}\left(1-\frac{1}{\beta},\frac{1}{\beta}\right),\left(1-\frac{1}{\alpha}-k,\frac{1}{\alpha}\right)\vspace*{.05in}\\ \left(1-\frac{1}{\alpha},\frac{1}{\alpha}\right),(-n,1)\end{array}\right.\right]}{H_{1,1}^{0,1}\left[y\left|\begin{array}[]{l}\left(1-\frac{1}{\beta},\frac{1}{\beta}\right)\vspace*{.05in}\\ \left(0,1\right)\end{array}\right.\right]}\frac{\Gamma(n)}{\Gamma(k)}p_{\alpha}(n_{1},\ldots,n_{k}).

The above expression follows by noting the Fox-HH representations for fβ/αf_{\beta/\alpha} and fα,kα(nkα),f^{(n-k\alpha)}_{\alpha,k\alpha}, followed by applying [11, Theorem 4.1]. Otherwise details are similar to the arguments in [24].

{funding}

L.F. James was supported in part by grants RGC-GRF 16301521, 16300217 and 601712 of the Research Grants Council (RGC) of the Hong Kong SAR.

References

  • [1] Aldous, D. J. and Bandyopadhyay, A. (2005). A survey of max-type recursive distributional equations. Ann. Appl. Probab. 15 1047–1110.
  • [2] Aldous, D. and Pitman, J. (1998). The standard additive coalescent Ann. Probab. 26 1703–1726.
  • [3] Aldous, D. and Pitman, J. (2006). Two recursive decompositions of Brownian bridge related to the asymptotics of random mappings. In memoriam Paul-André Meyer: Séminaire de Probabilités XXXIX, 269–303, Lecture Notes in Math., 1874, Springer, Berlin.
  • [4] Bacallado, S., Battiston, M., Favaro, S. and Trippa, L. (2017). Sufficientness postulates for Gibbs-type priors and hierarchical generalizations. Statist. Sci. 32 487–500.
  • [5] Basdevant, A. L. (2006). Ruelleś probability cascades seen as a fragmentation process. Markov Process and Related Fields 12 447–474.
  • [6] Bertoin, J. (2006). Random Fragmentation and Coagulation Processes, Cambridge University Press.
  • [7] Bertoin, J. and Le Gall, J.-F. (2000). The Bolthausen-Sznitman coalescent and the genealogy of continuous-state branching processes. Probab. Theory Related Fields 117 249–266.
  • [8] Bertoin, J. and Pitman, J. (2000). Two coalescents derived from the ranges of stable subordinators. Electron. J. of Probab. 5 1–17.
  • [9] Bolthausen, E. and Sznitman, A. S. (1998). On Ruelleś probability cascades and an abstract cavity method. Comm. Math. Phys. 197(2):247(276).
  • [10] Caron, F. and Fox, E. B. (2017). Sparse graphs using exchangeable random measures. J. R. Stat. Soc. Ser. B. Stat. Methodol. 79 1–44.
  • [11] Carter, B. D. and Springer, M. D. (1977). The distribution of products, quotients and powers of independent HH-function variates. SIAM J. Appl. Math. 33 542–558.
  • [12] Curien, N. and Haas, B. (2013). The stable trees are nested. Probab. Theory Related Fields 157 847–883.
  • [13] De Blasi, P., Favaro, S., Lijoi, A., Mena, R., Prünster, I. and Ruggiero, M. (2015). Are Gibbs-type priors the most natural generalization of the Dirichlet Process? IEEE Trans. Pattern Anal. Mach. Intell. 37 212–229.
  • [14] Dong, R., Goldschmidt, C. and Martin, J. (2006). Coagulation-fragmentation duality, Poisson-Dirichlet distributions and random recursive trees. Ann. Appl. Probab. 16 1733–1750.
  • [15] Feng, S. (2010). The Poisson-Dirichlet Distribution and Related Topics: Models and Asymptotic Behaviors. Springer, Berlin, Heidelberg.
  • [16] Gasthaus, J. and Teh, Y.W.. (2010). Improvements to the sequence memoizer. Advances in Neural Information Processing Systems 23.
  • [17] Gnedin, A. and Pitman, J. (2006). Exchangeable Gibbs partitions and Stirling triangles. J. Math. Sci. 138 5674–5685.
  • [18] Gnedin, A. and Yakubovich, Y. (2011). Recursive partition structures. Ann. Probab. 34 2203–2218.
  • [19] Goldschmidt, C. and Haas, B. (2015). A line-breaking construction of the stable trees. Electron. J. Probab. 20 1–24.
  • [20] Gorenflo, R., Kilbas, A. A., Mainardi, F. and Rogosin, S. V. (2014). Mittag-Leffler Functions, Related Topics and Applications, Springer, Berlin.
  • [21] Griffiths, R. C. and Spanò, D. (2007). Record indices and age-ordered frequencies in exchangeable Gibbs partitions. Electron. J. Probab. 12 1101–1130.
  • [22] Haas, B., Miermont, G., Pitman, J. and Winkel, M. (2008). Continuum tree asymptotics of discrete fragmentations and applications to phylogenetic models. Ann. Probab. 36 1790–1837.
  • [23] Haas, B., Pitman, J. and Winkel, M. (2009). Spinal partitions and invariance under re-rooting of continuum random trees. Ann. Probab. 37 1381–1411.
  • [24] Ho, M.-W., James, L. F. and Lau, J. W. (2007). Gibbs partitions (EPPF’s) derived from a stable subordinator are Fox HH and Meijer GG transforms. arXiv:0708.0619 [math.PR].
  • [25] Ho, M.-W., James, L. F. and Lau, J. W. (2021). Gibbs partitions, Riemann-Liouville fractional operators, Mittag-Leffler functions, and fragmentations derived from stable subordinators. J. Appl. Probab. 58 314–334.
  • [26] Ishwaran, H. and James. L. F. (2001). Gibbs sampling methods for stick-breaking priors. J. Amer. Statist. Assoc. 96 161–173.
  • [27] Iksanov, A. M. (2004). Elementary fixed points of the BRW smoothing transforms with infinite number of summands. Stochastic Processes and their Applications 114 27–50.
  • [28] James, L. F. (2010). Lamperti type laws. Ann. Appl. Probab. 20 1303–1340.
  • [29] James, L. F. (2010). Coag-Frag duality for a class of stable Poisson-Kingman mixtures. Unpublished manuscript. arXiv:1008.2420 [math.PR].
  • [30] James, L. F. (2019). Stick-breaking Pitman-Yor processes given the species sampling size. arXiv:1908.07186 [math.ST].
  • [31] James,L. F. (2022). Single-Block Recursive Poisson–Dirichlet Fragmentations of Normalized Generalized Gamma Processes. Mathematics 10(4):561.
  • [32] James, L. F, Lee, J., and Ross, N. (2022). Hierarchical network models for data with granularity via fragmentation and coagulation. Manuscript in preparation.
  • [33] Janson, S. (2006). Limit theorems for triangular urn schemes. Probab. Theory Related Fields 134 417–452.
  • [34] Janson, S., Kuba, M. and Panholzer, A. (2011). Generalized Stirling permutations, families of increasing trees and urn models. J. Combin. Theory, Ser. A 118 94–114.
  • [35] Lebedev, N. N. (1972). Special Functions and Their Applications, Dover Publications, Incorporated, New York.
  • [36] Lomeli, M., Favaro, S. and Teh, Y. W. (2017). A marginal sampler for σ\sigma-stable Poisson-Kingman mixture models. J. Comput. Graph. Statist. 26 44–53.
  • [37] Mathai, A. M., Saxena, R. K. and Haubold, H. J. (2010). The HH-Function. Theory and Applications, Springer, New York.
  • [38] Peköz, E., Röllin, A. and Ross, N. (2017). Joint degree distributions of preferential attachment random graphs. Adv. Appl. Probab. 49 368–387.
  • [39] Perman, M., Pitman, J. and Yor, M. (1992). Size-biased sampling of Poisson point processes and excursions. Probab. Theory Related Fields 92 21–39.
  • [40] Pitman, J. (1996). Some developments of the Blackwell-MacQueen urn scheme. In Statistics, Probability and Game Theory. IMS Lecture Notes Monogr. Ser. 30 245–267, Inst. Math. Statist., Hayward, CA.
  • [41] Pitman, J. (1999). Coalescents with multiple collisions. Ann. Probab. 27 1870–1902.
  • [42] Pitman, J. (2003). Poisson-Kingman partitions. In Statistics and Science: a Festschrift for Terry Speed. IMS Lecture Notes Monogr. Ser. 40 1–34, Inst. Math. Statist., Beachwood, OH.
  • [43] Pitman, J. (2006). Combinatorial Stochastic Processes. Lectures from the 32nd Summer School on Probability Theory held in Saint-Flour, July 7–24, 2002. With a foreword by Jean Picard. Lecture Notes in Mathematics 1875, Springer-Verlag, Berlin.
  • [44] Pitman, J. and Yakubovich, Y. (2018). Ordered and size-biased frequencies in GEM and Gibbs models for species sampling. Ann. Appl. Probab. 28 1793–1820.
  • [45] Pitman, J. and Yor, M. (1992). Arcsine laws and interval partitions derived from a stable subordinator. Proc. London Math. Soc. 65 326–356.
  • [46] Pitman, J. and Yor, M. (1997). The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator. Ann. Probab. 25 855–900.
  • [47] Rembart, F. and Winkel, M. (2018). Recursive construction of continuum random trees. Ann. Probab. 46 2715–2748.
  • [48] Wood, F., Gasthaus, J., Archambeau, C., James, L. F. and Teh, Y. W. (2011). The Sequence Memoizer. Communications of the ACM (Research Highlights) 54 91–98.