This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Inverse Eigenvalue Problem For Mass-Spring-Inerter Systems 111The work was supported by the National Natural Science Foundation of China under Grants 11925109 and 11688101.

Zhaobo Liu222Z. B. Liu, Q. D. Xie and C. Li are with the Key Laboratory of Systems and Control, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, P. R. China. They are also with the School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China. Corresponding author: Chanying Li (Email: cyli@amss.ac.cn). ,  Qida Xie22footnotemark: 2 ,  Chanying Li 22footnotemark: 2
Abstract

This paper has solved the inverse eigenvalue problem for “fixed-free” mass-chain systems with inerters. It is well known that for a spring-mass system wherein the adjacent masses are linked through a spring, the natural frequency assignment can be achieved by choosing appropriate masses and spring stiffnesses if and only if the given positive eigenvalues are distinct. However, when we involve inerters, multiple eigenvalues in the assignment are allowed. In fact, arbitrarily given a set of positive real numbers, we derive a necessary and sufficient condition on the multiplicities of these numbers, which are assigned as the natural frequencies of the concerned mass-spring-inerter system.

1 Introduction

Natural frequency, an inherent attribute of mechanical vibration systems, has attracted wide attention for its importance. In particular, purposefully allocating the natural frequencies to some pre-specified values provides an effective way to induce or evade resonance (see [2], [23]). This naturally raises the inverse eigenvalue problem (IEP), that is, to construct a vibration system whose natural frequencies, or mathematically known as eigenvalues, are given beforehand.

A well-known result on this problem is due to [8] and [17], which is addressed for mass-spring systems. Observe that in such a basic system, the adjacent masses are linked merely by a spring. Therefore, the IEP turns out to be the construction of a Jacobi matrix with its eigenvalues being assigned to a set of specified positive numbers. Borrowing the tools for Jacobi matrices, [8] and [17] assert that the IEP is solvable if and only if the given positive eigenvalues are distinct. Later on, a various of inverse problems on Jacobi matrices and Jacobi operators are investigated as well. But when dampers are taken into consideration, the matrices associated with masses, spring stiffnesses and damping coefficients in mass-spring-damper systems are no longer Jacobi matrices and the quadratic inverse eigenvalue problem (QIEP) is put forth. Nevertheless, most of the literatures on mass-spring-damper systems focus on distinct eigenvalues assignment [3, 13, 1, 16].

Interestingly, the IEP admits multiple eigenvalues, if we introduce a mechanical element called the inerter. This new mechanical device can simulate masses by changing inertance. It was theoretically first studied by [20], completing the analogy between electrical and mechanical networks (see Figure 1.2). Through physical realization, inerters have been applied to many engineering fields such as vibration isolators, landing gears, train suspensions, building vibration control, and so on [6, 22, 14, 21, 11]. In a mass-spring-inerter system, the neighbouring masses are linked by a parallel combination of a spring and an inerter. As a starting point, we restrict our interest in this paper to “fixed-free” systems. The term “fixed-free” means one end of the mass-chain system is attached to the ground while the other end is hanging free, as shown in Figure 1.2.

The free vibration equation of such a mass-spring-inerter system is described by

(𝑴+𝑩)𝒙¨+𝑲𝒙=0,\boldsymbol{(M+B)\ddot{x}}+\boldsymbol{Kx}=0,

where 𝒙=(x1,x2,,xn)Tn\boldsymbol{x}=(x_{1},x_{2},\ldots,x_{n})^{\mathrm{T}}\in\mathbb{R}^{n} and

𝑴=diag{m1,m2,,mn},\displaystyle\boldsymbol{M}=\mbox{diag}\{m_{1},m_{2},\ldots,m_{n}\}, (1)
𝑲\displaystyle\boldsymbol{K} =\displaystyle= [k1+k2k2k2k2+k3k3kn1kn1+knknknkn],\displaystyle\begin{bmatrix}k_{1}+k_{2}&-k_{2}&&\\ -k_{2}&k_{2}+k_{3}&-k_{3}&\\ &\ddots&\ddots&\ddots&\\ &&-k_{n-1}&k_{n-1}+k_{n}&-k_{n}\\ &&&-k_{n}&k_{n}\end{bmatrix}, (2)
𝑩\displaystyle\boldsymbol{B} =\displaystyle= [b1+b2b2b2b2+b3b3bn1bn1+bnbnbnbn].\displaystyle\begin{bmatrix}b_{1}+b_{2}&-b_{2}&&\\ -b_{2}&b_{2}+b_{3}&-b_{3}&\\ &\ddots&\ddots&\ddots&\\ &&-b_{n-1}&b_{n-1}+b_{n}&-b_{n}\\ &&&-b_{n}&b_{n}\end{bmatrix}. (3)

Here, real numbers mj>0m_{j}>0, kj>0k_{j}>0, bj0b_{j}\geq 0 for j=1,,nj=1,\ldots,n stand for the masses, spring stiffnesses and inertances. Unlike mass-spring systems, the well-studied Jacobi matrix theory cannot illuminate the IEP for mass-spring-inerter systems since the inertial matrix in (3) is a tridiagonal matrix. Recently, [10] found that inerters render the multiple eigenvalues possible for a mass-chain system. It showed that the multiplicity tit_{i} of a natural frequency λi\lambda_{i} must fulfill n2ti1n\geq 2t_{i}-1. Beyond that, little is known for the multiple eigenvalue case.

The purpose of this paper is to solve the IEP for mass-spring-inerter systems, where the eigenvalues are arbitrarily specified to nn positive real numbers. We deduce a necessary and sufficient condition for this assignment on the multiplicities of the given numbers. With the proposed critical criterion, the set structure of the given real numbers will be intuitively clear for the natural frequency assignment. Our construction further implies that mm masses of the system can be arbitrarily fixed beforehand for the assignment, where mm is the amount of the distinct assigned eigenvalues. More precisely, our construction is carried out by only adjusting nmn-m massess, nn spring stiffnesses and nn inertances. It degenerates to the claim that, if the pre-specified eigenvalues are all distinct (m=nm=n), the IEP can be worked out by recovering 𝑲\boldsymbol{K} and 𝑩\boldsymbol{B}, whereas 𝑴\boldsymbol{M} is fixed arbitrarily. This claim is exactly the main result of [20], which demonstrates an advantage of using inerters in the mass-fixed situation. Unfortunately, not all the natural frequency assignments are realizable by merely adjusting spring stiffnesses and inertances. An example of five-degree-of-freedom system in this paper shows that there exist some restrictive relationships between masses and given eigenvalues.

The organization of this paper is as follows. In Section 2, we state the main result by deducing a necessary and sufficient condition of the IEP for mass-spring-inerter systems, while the proofs are included in Sections 3 and 4. Conclusions are drawn in Section 5.

Refer to caption
Figure 1.1: Mass-spring-inerter system
Refer to caption
Figure 1.2: The force-current analogy

2 Main Result

The natural frequencies of a mass-spring-inerter system are completely determined by the eigenvalues of matrix pencil 𝑲λ(𝑴+𝑩)\boldsymbol{K}-\lambda(\boldsymbol{M}+\boldsymbol{B}), where 𝑴,𝑲,𝑩\boldsymbol{M},\boldsymbol{K},\boldsymbol{B} are defined by (1), (2) and (3), respectively. So, with a slight abuse of language, we will not distinguish the term “eigenvalues” from the “natural frequencies” in this article. We now raise our problem.

Problem 1. Arbitrarily given a set of real numbers 0<λ1λ2λn0<\lambda_{1}\leq\lambda_{2}\leq\cdots\leq\lambda_{n}, is it possible to recover matrices 𝑴,𝑲,𝑩\boldsymbol{M},\boldsymbol{K},\boldsymbol{B} in (1), (2) and (3) by choosing mj>0m_{j}>0, kj>0k_{j}>0 and bj0b_{j}\geq 0 for j=1,,nj=1,\ldots,n, so that the nn eigenvalues of matrix pencil 𝑲λ(𝑴+𝑩)\boldsymbol{K}-\lambda(\boldsymbol{M}+\boldsymbol{B}) are exactly λi\lambda_{i}, i=1,,ni=1,\ldots,n?

Both [10] and [17] offered a positive answer to Problem 1 for the special case where the eigenvalues are all distinct. But the general situation should involve multiple eigenvalues, which is covered by the following theorem.

Theorem 2.1.

Let i=1m(λλi)ti\prod_{i=1}^{m}(\lambda-\lambda_{i})^{t_{i}} be a polynomial with 0<λ1<λ2<<λm0<\lambda_{1}<\lambda_{2}<\cdots<\lambda_{m} and i=1mti=n\sum_{i=1}^{m}{t_{i}}=n. Then, there exist some matrices 𝐊,𝐌,𝐁\boldsymbol{K},\boldsymbol{M},\boldsymbol{B} in the forms of (1)–(3) such that

i=1m(λλi)ti|det(𝑲λ(𝑴+𝑩))\displaystyle\prod_{i=1}^{m}(\lambda-\lambda_{i})^{t_{i}}\Big{|}\det(\boldsymbol{K}-\lambda(\boldsymbol{M}+\boldsymbol{B})) (4)

if and only if

tii,i=1,,m.\displaystyle t_{i}\leq i,\quad i=1,\ldots,m. (5)
Remark 2.1.

Theorem 2.1 completely solves Problem 1 by providing the critical criterion (5). As indicated later (see Proposition 4.1 for details), when (5) holds, the recover of the relevant matrices allows a total of mm masses being taken arbitrarily, where mm is the number of distinct eigenvalues λi\lambda_{i} given beforehand. Particularly, for m=nm=n, each mass mi,1inm_{i},1\leq i\leq n can be taken any fixed quantity in advance, as proved in [10]. However, when m<nm<n, it is generally impossible to achieve the natural frequency assignment with all the masses arbitrarily given. Example 2.1 suggests a restrictive relation between the masses and eigenvalues.

Example 2.1.

Let n=5n=5, t1=t2=1t_{1}=t_{2}=1, t3=3t_{3}=3 and 0<λ1<λ2<λ30<\lambda_{1}<\lambda_{2}<\lambda_{3}. If there exist some mj>0m_{j}>0, kj>0k_{j}>0, bj0b_{j}\geq 0, j=1,2,,5j=1,2,\ldots,5 such that i=13(λλi)ti|det(𝐊λ(𝐌+𝐁))\prod_{i=1}^{3}(\lambda-\lambda_{i})^{t_{i}}\Big{|}\det(\boldsymbol{K}-\lambda(\boldsymbol{M}+\boldsymbol{B})), then

maxj[2,4]mjmj+1>λ18λ3(1(λ2λ3)13).\displaystyle\max_{j\in[2,4]}\frac{m_{j}}{m_{j+1}}>\frac{\lambda_{1}}{8\lambda_{3}}\left(1-\left(\frac{\lambda_{2}}{\lambda_{3}}\right)^{\frac{1}{3}}\right). (6)

Clearly, (5) holds, but the masses cannot be taken arbitrarily. The proof of (6) is provided in Appendix A.

3 Proof of the necessity of Theorem 2.1.

This section is devoted to proving the necessity of Theorem 2.1, which is relatively easier than the argument for sufficiency. We begin by expressing det(𝑲λ(𝑴+𝑩))\det(\boldsymbol{K}-\lambda(\boldsymbol{M}+\boldsymbol{B})) in terms of a recursive sequence of polynomials. First, write

𝑲λ(𝑴+𝑩)=\displaystyle\boldsymbol{K}-\lambda(\boldsymbol{M}+\boldsymbol{B})=
[k1+k2λ(m1+b1+b2)k2+λb2k2+λb2k2+k3λ(m2+b2+b3)k3+λb3kn1+λbn1kn1+knλ(mn1+bn1+bn)kn+λbnkn+λbnknλ(mn+bn)].\displaystyle\begin{bmatrix}\begin{smallmatrix}k_{1}+k_{2}-\lambda(m_{1}+b_{1}+b_{2})&-k_{2}+\lambda b_{2}&\\ -k_{2}+\lambda b_{2}&k_{2}+k_{3}-\lambda(m_{2}+b_{2}+b_{3})&-k_{3}+\lambda b_{3}\\ &\ddots&\ddots&\ddots\\ &&-k_{n-1}+\lambda b_{n-1}&k_{n-1}+k_{n}-\lambda(m_{n-1}+b_{n-1}+b_{n})&-k_{n}+\lambda b_{n}\\ &&&-k_{n}+\lambda b_{n}&k_{n}-\lambda(m_{n}+b_{n})\\ \end{smallmatrix}\end{bmatrix}.

For j=1,,nj=1,\ldots,n, let 𝑴𝒋\boldsymbol{M_{j}}, 𝑲𝒋\boldsymbol{K_{j}} and 𝑩𝒋\boldsymbol{B_{j}} be some matrices defined analogously as 𝑴,𝑲\boldsymbol{M},\boldsymbol{K} and 𝑩\boldsymbol{B} in (1)–(3), respectively, but with order jj instead of nn. Next, denote fj(λ)f_{j}(\lambda) as the determinant of 𝑲𝒋λ(𝑴𝒋+𝑩𝒋)\boldsymbol{K_{j}}-\lambda(\boldsymbol{M_{j}}+\boldsymbol{B_{j}}), j=1,,nj=1,\ldots,n. Let g1(λ)=1g_{1}(\lambda)=1 and gj(λ)g_{j}(\lambda) the leading principal minor of 𝑲𝒋λ(𝑴𝒋+𝑩𝒋)\boldsymbol{K_{j}}-\lambda(\boldsymbol{M_{j}}+\boldsymbol{B_{j}}) of order j1j-1, where j=2,,nj=2,\ldots,n. So, to calculate det(𝑲λ(𝑴+𝑩))\det(\boldsymbol{K}-\lambda(\boldsymbol{M}+\boldsymbol{B})), we only need to treat fn(λ)f_{n}(\lambda).

Remark 3.1.

For each j=1,,nj=1,\ldots,n, since det𝐊𝐣=l=1jkl>0\det\boldsymbol{K_{j}}=\prod_{l=1}^{j}k_{l}>0, the Gershgorin’s circle theorem indicates that both 𝐊𝐣\boldsymbol{K_{j}} and 𝐌𝐣+𝐁𝐣\boldsymbol{M_{j}}+\boldsymbol{B_{j}} are positive definite matrices and so do their leading principal submatrices. Then, it follows that the roots of fj(λ)f_{j}(\lambda) and gj(λ)g_{j}(\lambda) are all real and positive (see [8, Theorem 1.4.3] ).

To facilitate the subsequent analysis, we introduce the following definition.

Definition 3.1.

Let f(λ)f(\lambda) and g(λ)g(\lambda) be two polynomials with degree ss, where s+s\in\mathbb{N}^{+}. Suppose f(λ)f(\lambda) and g(λ)g(\lambda) both have ss distinct real roots, which are denoted by α1<<αs\alpha_{1}<\cdots<\alpha_{s} and β1<<βs\beta_{1}<\cdots<\beta_{s}, respectively. We say g(λ)f(λ)g(\lambda)\ll f(\lambda), if their leading coefficients are of the same sign and

β1<α1<β2<α2<<βs<αs.\beta_{1}<\alpha_{1}<\beta_{2}<\alpha_{2}<\cdots<\beta_{s}<\alpha_{s}.

The proof depends on a simple observation below.

Lemma 3.1.

The polynomials {fj(λ)}j=1n\{f_{j}(\lambda)\}_{j=1}^{n} and {gj(λ)}j=1n\{g_{j}(\lambda)\}_{j=1}^{n} satisfy

{fj+1(λ)=(λmj+1)gj+1(λ)+(kj+1λbj+1)fj(λ)gj+1(λ)=fj(λ)+(kj+1λbj+1)gj(λ),j=1,,n1\displaystyle\left\{\begin{aligned} &f_{j+1}(\lambda)=(-\lambda m_{j+1})g_{j+1}(\lambda)+(k_{j+1}-\lambda b_{j+1})f_{j}(\lambda)\\ &g_{j+1}(\lambda)=f_{j}(\lambda)+(k_{j+1}-\lambda b_{j+1})g_{j}(\lambda)\end{aligned},\quad j=1,\ldots,n-1\right. (7)

with g1(λ)=1g_{1}(\lambda)=1 and f1(λ)=k1λ(m1+b1)f_{1}(\lambda)=k_{1}-\lambda(m_{1}+b_{1}).

Proof.

By the definition of 𝑲𝟏λ(𝑴𝟏+𝑩𝟏)\boldsymbol{K_{1}}-\lambda(\boldsymbol{M_{1}}+\boldsymbol{B_{1}}), it is trivial that f1(λ)=k1λ(m1+b1)f_{1}(\lambda)=k_{1}-\lambda(m_{1}+b_{1}). For j=1,,n1j=1,\ldots,n-1, expanding the leading principal minor of 𝑲𝒋+𝟏λ(𝑴𝒋+𝟏+𝑩𝒋+𝟏)\boldsymbol{K_{j+1}}-\lambda(\boldsymbol{M_{j+1}}+\boldsymbol{B_{j+1}}) of order jj by cofactors of the jjth row shows gj+1(λ)=fj(λ)+(kj+1λbj+1)gj(λ)g_{j+1}(\lambda)=f_{j}(\lambda)+(k_{j+1}-\lambda b_{j+1})g_{j}(\lambda). Furthermore, the expansion of det(𝑲𝒋+𝟏λ(𝑴𝒋+𝟏+𝑩𝒋+𝟏))\det(\boldsymbol{K_{j+1}}-\lambda(\boldsymbol{M_{j+1}}+\boldsymbol{B_{j+1}})) by cofactors of the (j+1)(j+1)th row yields

fj+1(λ)\displaystyle f_{j+1}(\lambda) =\displaystyle= (kj+1λ(mj+1+bj+1))gj+1(λ)(kj+1λbj+1)2gj(λ)\displaystyle(k_{j+1}-\lambda(m_{j+1}+b_{j+1}))g_{j+1}(\lambda)-(k_{j+1}-\lambda b_{j+1})^{2}g_{j}(\lambda)
=\displaystyle= (λmj+1)gj+1(λ)+(kj+1λbj+1)fj(λ)\displaystyle(-\lambda m_{j+1})g_{j+1}(\lambda)+(k_{j+1}-\lambda b_{j+1})f_{j}(\lambda)
+(kj+1λbj+1)2gj(λ)(kj+1λbj+1)2gj(λ)\displaystyle+(k_{j+1}-\lambda b_{j+1})^{2}g_{j}(\lambda)-(k_{j+1}-\lambda b_{j+1})^{2}g_{j}(\lambda)
=\displaystyle= (λmj+1)gj+1(λ)+(kj+1λbj+1)fj(λ),\displaystyle(-\lambda m_{j+1})g_{j+1}(\lambda)+(k_{j+1}-\lambda b_{j+1})f_{j}(\lambda),

as desired. \Box

Lemma 3.2.

Let f(λ)f(\lambda) and g(λ)g(\lambda) be two polynomials that g(λ)f(λ)g(\lambda)\ll f(\lambda), then for any a,b>0a,b>0, g(λ)ag(λ)+bf(λ)f(λ)g(\lambda)\ll ag(\lambda)+bf(\lambda)\ll f(\lambda).

Proof.

Since g(λ)f(λ)g(\lambda)\ll f(\lambda), considering Definition 3.1, we let deg(f(λ))=deg(g(λ))=s\deg(f(\lambda))=\deg(g(\lambda))=s for some s+s\in\mathbb{N}^{+} and let {αi}i=1s\{\alpha_{i}\}_{i=1}^{s} and {βi}i=1s\{\beta_{i}\}_{i=1}^{s} be the roots of f(λ)f(\lambda) and g(λ)g(\lambda), respectively. Clearly,

β1<α1<β2<α2<<βs<αs.\beta_{1}<\alpha_{1}<\beta_{2}<\alpha_{2}<\cdots<\beta_{s}<\alpha_{s}.

Without loss of generality, assume the leading coefficients of f(λ)f(\lambda) and g(λ)g(\lambda) are both positive. Then,

sgn((ag(λ)+bf(λ))(βi))=(1)s+1i=(1)si=sgn((ag(λ)+bf(λ))(αi)).\mbox{sgn}\,((ag(\lambda)+bf(\lambda))(\beta_{i}))=(-1)^{s+1-i}=-(-1)^{s-i}=-\mbox{sgn}\,((ag(\lambda)+bf(\lambda))(\alpha_{i})).

This implies that for each 1is1\leq i\leq s, there is a root of ag(λ)+bf(λ)ag(\lambda)+bf(\lambda) falling in interval (βi,αi)(\beta_{i},\alpha_{i}). Observing that the degree of ag(λ)+bf(λ)ag(\lambda)+bf(\lambda) is ss, the result follows immediately. \Box

We present an important property enjoyed by sequence {fj(λ),gj(λ)}j=1n\{f_{j}(\lambda),g_{j}(\lambda)\}_{j=1}^{n}.

Lemma 3.3.

Suppose for some j[1,n1]j\in[1,n-1],

(λ)gj(λ)(fj(λ),gj(λ))fj(λ)(fj(λ),gj(λ)),\displaystyle\frac{(-\lambda)g_{j}(\lambda)}{(f_{j}(\lambda),g_{j}(\lambda))}\ll\frac{f_{j}(\lambda)}{(f_{j}(\lambda),g_{j}(\lambda))}, (8)

then (λ)gj+1(λ)(fj+1(λ),gj+1(λ))fj+1(λ)(fj+1(λ),gj+1(λ)).\frac{(-\lambda)g_{j+1}(\lambda)}{(f_{j+1}(\lambda),g_{j+1}(\lambda))}\ll\frac{f_{j+1}(\lambda)}{(f_{j+1}(\lambda),g_{j+1}(\lambda))}. Moreover,
(i) if bj+10b_{j+1}\neq 0 and kj+1λbj+1|fj(λ)(fj(λ),gj(λ))k_{j+1}-\lambda b_{j+1}|\frac{f_{j}(\lambda)}{(f_{j}(\lambda),g_{j}(\lambda))}, then (fj+1(λ),gj+1(λ))=(fj(λ),gj(λ))(λkj+1bj+1)(f_{j+1}(\lambda),g_{j+1}(\lambda))=(f_{j}(\lambda),g_{j}(\lambda))(\lambda-\frac{k_{j+1}}{b_{j+1}}) and fj+1(λ)(fj+1(λ),gj+1(λ))fj(λ)(fj(λ),gj(λ))\frac{f_{j+1}(\lambda)}{(f_{j+1}(\lambda),g_{j+1}(\lambda))}\ll\frac{-f_{j}(\lambda)}{(f_{j}(\lambda),g_{j}(\lambda))};
(ii) if bj+10b_{j+1}\neq 0 and kj+1λbj+1fj(λ)(fj(λ),gj(λ))k_{j+1}-\lambda b_{j+1}\nmid\frac{f_{j}(\lambda)}{(f_{j}(\lambda),g_{j}(\lambda))}, then (fj+1(λ),gj+1(λ))=(fj(λ),gj(λ))(f_{j+1}(\lambda),g_{j+1}(\lambda))=(f_{j}(\lambda),g_{j}(\lambda)) and fj+1(λ)(fj+1(λ),gj+1(λ))fj(λ)(kj+1λbj+1)(fj(λ),gj(λ))\frac{f_{j+1}(\lambda)}{(f_{j+1}(\lambda),g_{j+1}(\lambda))}\ll\frac{f_{j}(\lambda)(k_{j+1}-\lambda b_{j+1})}{(f_{j}(\lambda),g_{j}(\lambda))};
(iii) if bj+1=0b_{j+1}=0, then (fj+1(λ),gj+1(λ))=(fj(λ),gj(λ))(f_{j+1}(\lambda),g_{j+1}(\lambda))=(f_{j}(\lambda),g_{j}(\lambda)) and (λ)fj(λ)(fj(λ),gj(λ))(λ)gj+1(λ)(fj+1(λ),gj+1(λ))fj+1(λ)(fj+1(λ),gj+1(λ))\frac{(-\lambda)f_{j}(\lambda)}{(f_{j}(\lambda),g_{j}(\lambda))}\ll\frac{(-\lambda)g_{j+1}(\lambda)}{(f_{j+1}(\lambda),g_{j+1}(\lambda))}\ll\frac{f_{j+1}(\lambda)}{(f_{j+1}(\lambda),g_{j+1}(\lambda))}.

Proof.

First, according to the definitions of {fj(λ),gj(λ)}j=1n\{f_{j}(\lambda),g_{j}(\lambda)\}_{j=1}^{n}, it is apparent that deg(fj(λ))=j\deg(f_{j}(\lambda))=j and deg(gj(λ))=j1\deg(g_{j}(\lambda))=j-1 for each j[1,n]j\in[1,n]. Let deg((fj(λ),gj(λ)))=jsj\deg((f_{j}(\lambda),g_{j}(\lambda)))=j-s_{j} for some integer sj[1,j]s_{j}\in[1,j]. Recalling (8), denote the roots of fj(λ)(fj(λ),gj(λ))\frac{f_{j}(\lambda)}{(f_{j}(\lambda),g_{j}(\lambda))} and (λ)gj(λ)(fj(λ),gj(λ))\frac{(-\lambda)g_{j}(\lambda)}{(f_{j}(\lambda),g_{j}(\lambda))} by αj,1<<αj,sj\alpha_{j,1}<\cdots<\alpha_{j,s_{j}} and 0<βj,1<<βj,sj10<\beta_{j,1}<\cdots<\beta_{j,s_{j}-1}, respectively. These roots fulfill

0<αj,1<βj,1<<αj,sj1<βj,sj1<αj,sj.\displaystyle 0<\alpha_{j,1}<\beta_{j,1}<\cdots<\alpha_{j,s_{j}-1}<\beta_{j,s_{j}-1}<\alpha_{j,s_{j}}. (9)

In addition, the second equation of (7) implies (fj(λ),gj(λ))|(fj(λ),gj+1(λ))(f_{j}(\lambda),g_{j}(\lambda))|(f_{j}(\lambda),g_{j+1}(\lambda)). Now, we prove this lemma by discussing three cases.

(i) bj+10b_{j+1}\neq 0 and kj+1λbj+1|fj(λ)(fj(λ),gj(λ))k_{j+1}-\lambda b_{j+1}|\frac{f_{j}(\lambda)}{(f_{j}(\lambda),g_{j}(\lambda))}. For this case, there exists some 1tjsj1\leq t_{j}\leq s_{j} such that αj,tj=kj+1bj+1\alpha_{j,t_{j}}=\frac{k_{j+1}}{b_{j+1}}. We shall evaluate the sign of gj+1(λ)(fj(λ),gj(λ))(kj+1λbj+1)\frac{g_{j+1}(\lambda)}{(f_{j}(\lambda),g_{j}(\lambda))(k_{j+1}-\lambda b_{j+1})} at αj,i,1isj\alpha_{j,i},1\leq i\leq s_{j}. In fact, according to the second equation of (7),

gj+1(λ)(fj(λ),gj(λ))(kj+1λbj+1)(αj,i)\displaystyle\frac{g_{j+1}(\lambda)}{(f_{j}(\lambda),g_{j}(\lambda))(k_{j+1}-\lambda b_{j+1})}(\alpha_{j,i})
=\displaystyle= fj(λ)(fj(λ),gj(λ))(kj+1λbj+1)(αj,i)+gj(λ)(fj(λ),gj(λ))(αj,i),1isj.\displaystyle\frac{f_{j}(\lambda)}{(f_{j}(\lambda),g_{j}(\lambda))(k_{j+1}-\lambda b_{j+1})}(\alpha_{j,i})+\frac{g_{j}(\lambda)}{(f_{j}(\lambda),g_{j}(\lambda))}(\alpha_{j,i}),\qquad 1\leq i\leq s_{j}.

Note that the leading coefficient of (fj(λ),gj(λ))(f_{j}(\lambda),g_{j}(\lambda)) is positive, the definitions of fj(λ)f_{j}(\lambda) and gj(λ)g_{j}(\lambda) read

{fj(λ)=(1)jsj(fj(λ),gj(λ))l=1sj(αj,lλ)gj(λ)=(1)jsj(fj(λ),gj(λ))l=1sj1(βj,lλ),\displaystyle\left\{\begin{aligned} &f_{j}(\lambda)=(-1)^{j-s_{j}}(f_{j}(\lambda),g_{j}(\lambda))\prod_{l=1}^{s_{j}}(\alpha_{j,l}-\lambda)\\ &g_{j}(\lambda)=(-1)^{j-s_{j}}(f_{j}(\lambda),g_{j}(\lambda))\prod_{l=1}^{s_{j}-1}(\beta_{j,l}-\lambda)\end{aligned},\right. (10)

which, together with (9), yields that for 1isj1\leq i\leq s_{j},

sgn(fj(λ)(fj(λ),gj(λ))(kj+1λbj+1)(αj,i))\displaystyle\mbox{sgn}\,\left(\frac{f_{j}(\lambda)}{(f_{j}(\lambda),g_{j}(\lambda))(k_{j+1}-\lambda b_{j+1})}(\alpha_{j,i})\right) =\displaystyle= (1)jsjsgn(l=1,ltjsj(αj,lαj,i))\displaystyle(-1)^{j-s_{j}}\mbox{sgn}\,\left(\prod_{l=1,l\neq t_{j}}^{s_{j}}(\alpha_{j,l}-\alpha_{j,i})\right)
=\displaystyle= {0,itj(1)jsj+tj1,i=tj\displaystyle\left\{\begin{array}[]{lcl}0,&i\neq t_{j}\\ (-1)^{j-s_{j}+t_{j}-1},&i=t_{j}\end{array}\right.

and

sgn(gj(λ)(fj(λ),gj(λ))(αj,i))=(1)jsjsgn(l=1sj1(βj,lαj,i))=(1)jsj+i1.\displaystyle\mbox{sgn}\,\left(\frac{g_{j}(\lambda)}{(f_{j}(\lambda),g_{j}(\lambda))}(\alpha_{j,i})\right)=(-1)^{j-s_{j}}\mbox{sgn}\,\left(\prod_{l=1}^{s_{j-1}}(\beta_{j,l}-\alpha_{j,i})\right)=(-1)^{j-s_{j}+i-1}.

Therefore,

sgn(gj+1(λ)(fj(λ),gj(λ))(kj+1λbj+1)(αj,i))=(1)jsj+i1for1isj.\mbox{sgn}\,\left(\frac{g_{j+1}(\lambda)}{(f_{j}(\lambda),g_{j}(\lambda))(k_{j+1}-\lambda b_{j+1})}(\alpha_{j,i})\right)=(-1)^{j-s_{j}+i-1}\quad\mbox{for}\quad 1\leq i\leq s_{j}.

This means that for each i[1,sj1]i\in[1,s_{j}-1], there exists exactly one root of gj+1(λ)(fj(λ),gj(λ))(kj+1λbj+1)\frac{g_{j+1}(\lambda)}{(f_{j}(\lambda),g_{j}(\lambda))(k_{j+1}-\lambda b_{j+1})} between αj,i\alpha_{j,i} and αj,i+1\alpha_{j,i+1}, and hence (λ)gj+1(λ)(fj(λ),gj(λ))(kj+1λbj+1)fj(λ)(fj(λ),gj(λ))\frac{(-\lambda)g_{j+1}(\lambda)}{(f_{j}(\lambda),g_{j}(\lambda))(k_{j+1}-\lambda b_{j+1})}\ll\frac{f_{j}(\lambda)}{(f_{j}(\lambda),g_{j}(\lambda))}.

Moreover, (fj(λ),gj(λ))|(fj(λ),gj+1(λ))(f_{j}(\lambda),g_{j}(\lambda))|(f_{j}(\lambda),g_{j+1}(\lambda)), so

(fj(λ),gj+1(λ))=(fj(λ),gj(λ))(λkj+1bj+1)(f_{j}(\lambda),g_{j+1}(\lambda))=(f_{j}(\lambda),g_{j}(\lambda))\left(\lambda-\frac{k_{j+1}}{b_{j+1}}\right)

and

(λ)gj+1(λ)(fj(λ),gj+1(λ))=(λ)gj+1(λ)(fj(λ),gj(λ))(λkj+1bj+1)fj(λ)(fj(λ),gj(λ))=(kj+1bj+1λ)fj(λ)(fj(λ),gj+1(λ)).\displaystyle\frac{(-\lambda)g_{j+1}(\lambda)}{(f_{j}(\lambda),g_{j+1}(\lambda))}=\frac{(-\lambda)g_{j+1}(\lambda)}{(f_{j}(\lambda),g_{j}(\lambda))\left(\lambda-\frac{k_{j+1}}{b_{j+1}}\right)}\ll\frac{-f_{j}(\lambda)}{(f_{j}(\lambda),g_{j}(\lambda))}=\frac{\left(\frac{k_{j+1}}{b_{j+1}}-\lambda\right)f_{j}(\lambda)}{(f_{j}(\lambda),g_{j+1}(\lambda))}.

Applying Lemma 3.2 to the first equation of (7), we thus deduce

(λ)gj+1(λ)(fj(λ),gj+1(λ))fj+1(λ)(fj(λ),gj+1(λ))(kj+1bj+1λ)fj(λ)(fj(λ),gj+1(λ))=fj(λ)(fj(λ),gj(λ)).\displaystyle\frac{(-\lambda)g_{j+1}(\lambda)}{(f_{j}(\lambda),g_{j+1}(\lambda))}\ll\frac{f_{j+1}(\lambda)}{(f_{j}(\lambda),g_{j+1}(\lambda))}\ll\frac{\left(\frac{k_{j+1}}{b_{j+1}}-\lambda\right)f_{j}(\lambda)}{(f_{j}(\lambda),g_{j+1}(\lambda))}=\frac{-f_{j}(\lambda)}{(f_{j}(\lambda),g_{j}(\lambda))}. (12)

Now, (fj+1(λ),gj+1(λ))=(fj(λ),gj+1(λ))(f_{j+1}(\lambda),g_{j+1}(\lambda))=(f_{j}(\lambda),g_{j+1}(\lambda)) becasue of (λ)gj+1(λ)(fj(λ),gj+1(λ))fj+1(λ)(fj(λ),gj+1(λ))\frac{(-\lambda)g_{j+1}(\lambda)}{(f_{j}(\lambda),g_{j+1}(\lambda))}\ll\frac{f_{j+1}(\lambda)}{(f_{j}(\lambda),g_{j+1}(\lambda))}, it follows from (12) that

(λ)gj+1(λ)(fj+1(λ),gj+1(λ))fj+1(λ)(fj+1(λ),gj+1(λ))fj(λ)(fj(λ),gj(λ)).\frac{(-\lambda)g_{j+1}(\lambda)}{(f_{j+1}(\lambda),g_{j+1}(\lambda))}\ll\frac{f_{j+1}(\lambda)}{(f_{j+1}(\lambda),g_{j+1}(\lambda))}\ll\frac{-f_{j}(\lambda)}{(f_{j}(\lambda),g_{j}(\lambda))}.

(ii) bj+10b_{j+1}\neq 0 and (kj+1λbj+1)fj(λ)(fj(λ),gj(λ))(k_{j+1}-\lambda b_{j+1})\nmid\frac{f_{j}(\lambda)}{(f_{j}(\lambda),g_{j}(\lambda))}. We first assume kj+1bj+1(αj,tj,βj,tj)\frac{k_{j+1}}{b_{j+1}}\in(\alpha_{j,t_{j}},\beta_{j,t_{j}}) for some 1tjsj11\leq t_{j}\leq s_{j}-1 and evaluate the sign of gj+1(λ)(fj(λ),gj(λ))\frac{g_{j+1}(\lambda)}{(f_{j}(\lambda),g_{j}(\lambda))} at points kj+1bj+1\frac{k_{j+1}}{b_{j+1}} and αj,i,1isj\alpha_{j,i},1\leq i\leq s_{j}. Since Lemma 3.1 shows

gj+1(λ)(fj(λ),gj(λ))(αj,i)=(kj+1αj,ibj+1)gj(λ)(fj(λ),gj(λ))(αj,i),1isj,\frac{g_{j+1}(\lambda)}{(f_{j}(\lambda),g_{j}(\lambda))}(\alpha_{j,i})=(k_{j+1}-\alpha_{j,i}b_{j+1})\frac{g_{j}(\lambda)}{(f_{j}(\lambda),g_{j}(\lambda))}(\alpha_{j,i}),\quad 1\leq i\leq s_{j},

by (9) and (10),

sgn(gj+1(λ)(fj(λ),gj(λ))(αj,i))\displaystyle\mbox{sgn}\,\left(\frac{g_{j+1}(\lambda)}{(f_{j}(\lambda),g_{j}(\lambda))}(\alpha_{j,i})\right) =\displaystyle= (1)jsjsgn((kj+1αj,ibj+1)l=1sj1(βj,lαj,i))\displaystyle(-1)^{j-s_{j}}\mbox{sgn}\,\left((k_{j+1}-\alpha_{j,i}b_{j+1})\prod_{l=1}^{s_{j-1}}(\beta_{j,l}-\alpha_{j,i})\right)
=\displaystyle= {(1)jsj+i1,1itj(1)jsj+i,tj+1isj.\displaystyle\left\{\begin{array}[]{lcl}(-1)^{j-s_{j}+i-1},&1\leq i\leq t_{j}\\ (-1)^{j-s_{j}+i},&t_{j}+1\leq i\leq s_{j}\end{array}.\right.

Similarly, by Lemma 3.1, (9) and (10),

sgn(gj+1(λ)(fj(λ),gj(λ))(kj+1bj+1))\displaystyle\mbox{sgn}\,\left(\frac{g_{j+1}(\lambda)}{(f_{j}(\lambda),g_{j}(\lambda))}\left(\frac{k_{j+1}}{b_{j+1}}\right)\right)
=\displaystyle= sgn(fj(λ)(fj(λ),gj(λ))(kj+1bj+1)+(kj+1λbj+1)gj(λ)(fj(λ),gj(λ))(kj+1bj+1))=(1)jsj+tj.\displaystyle\mbox{sgn}\,\left(\frac{f_{j}(\lambda)}{(f_{j}(\lambda),g_{j}(\lambda))}\left(\frac{k_{j+1}}{b_{j+1}}\right)+\frac{(k_{j+1}-\lambda b_{j+1})g_{j}(\lambda)}{(f_{j}(\lambda),g_{j}(\lambda))}\left(\frac{k_{j+1}}{b_{j+1}}\right)\right)=(-1)^{j-s_{j}+t_{j}}.

So, for each i[1,sj1]i\in[1,s_{j}-1] with itji\neq t_{j}, there is a root of gj+1(λ)(fj(λ),gj(λ))\frac{g_{j+1}(\lambda)}{(f_{j}(\lambda),g_{j}(\lambda))} falling in (αj,i,αj,i+1)(\alpha_{j,i},\alpha_{j,i+1}), and the rest two roots of gj+1(λ)(fj(λ),gj(λ))\frac{g_{j+1}(\lambda)}{(f_{j}(\lambda),g_{j}(\lambda))} lie in (αj,tj,kj+1bj+1)(\alpha_{j,t_{j}},\frac{k_{j+1}}{b_{j+1}}) and (kj+1bj+1,αj,tj+1)(\frac{k_{j+1}}{b_{j+1}},\alpha_{j,t_{j}+1}), respectively. This infers (fj(λ),gj+1(λ))=(fj(λ),gj(λ))(f_{j}(\lambda),g_{j+1}(\lambda))=(f_{j}(\lambda),g_{j}(\lambda)) by noting that (fj(λ),gj(λ))|(fj(λ),gj+1(λ))(f_{j}(\lambda),g_{j}(\lambda))|(f_{j}(\lambda),g_{j+1}(\lambda)). Hence, (λ)gj+1(λ)(fj(λ),gj+1(λ))fj(λ)(kj+1λbj+1)(fj(λ),gj+1(λ))\frac{(-\lambda)g_{j+1}(\lambda)}{(f_{j}(\lambda),g_{j+1}(\lambda))}\ll\frac{f_{j}(\lambda)(k_{j+1}-\lambda b_{j+1})}{(f_{j}(\lambda),g_{j+1}(\lambda))} and applying Lemma 3.2 to the first equation of (7), one has

(λ)gj+1(λ)(fj(λ),gj+1(λ))fj+1(λ)(fj(λ),gj+1(λ))fj(λ)(kj+1λbj+1)(fj(λ),gj+1(λ)).\frac{(-\lambda)g_{j+1}(\lambda)}{(f_{j}(\lambda),g_{j+1}(\lambda))}\ll\frac{f_{j+1}(\lambda)}{(f_{j}(\lambda),g_{j+1}(\lambda))}\ll\frac{f_{j}(\lambda)(k_{j+1}-\lambda b_{j+1})}{(f_{j}(\lambda),g_{j+1}(\lambda))}.

Then, (fj+1(λ),gj+1(λ))=(fj(λ),gj+1(λ))=(fj(λ),gj(λ))(f_{j+1}(\lambda),g_{j+1}(\lambda))=(f_{j}(\lambda),g_{j+1}(\lambda))=(f_{j}(\lambda),g_{j}(\lambda)) and consequently

(λ)gj+1(λ)(fj+1(λ),gj+1(λ))\displaystyle\frac{(-\lambda)g_{j+1}(\lambda)}{(f_{j+1}(\lambda),g_{j+1}(\lambda))} =\displaystyle= (λ)gj+1(λ)(fj(λ),gj+1(λ))\displaystyle\frac{(-\lambda)g_{j+1}(\lambda)}{(f_{j}(\lambda),g_{j+1}(\lambda))}
\displaystyle\ll fj+1(λ)(fj+1(λ),gj+1(λ))fj(λ)(kj+1λbj+1)(fj(λ),gj+1(λ))=fj(λ)(kj+1λbj+1)(fj(λ),gj(λ)).\displaystyle\frac{f_{j+1}(\lambda)}{(f_{j+1}(\lambda),g_{j+1}(\lambda))}\ll\frac{f_{j}(\lambda)(k_{j+1}-\lambda b_{j+1})}{(f_{j}(\lambda),g_{j+1}(\lambda))}=\frac{f_{j}(\lambda)(k_{j+1}-\lambda b_{j+1})}{(f_{j}(\lambda),g_{j}(\lambda))}.

As for the situations where kj+1bj+1(0,αj,1)\frac{k_{j+1}}{b_{j+1}}\in(0,\alpha_{j,1}), kj+1bj+1l=1sj1[βj,l,αj,l+1)\frac{k_{j+1}}{b_{j+1}}\in\bigcup_{l=1}^{s_{j}-1}[\beta_{j,l},\alpha_{j,l+1}) and kj+1bj+1(αj,sj,+)\frac{k_{j+1}}{b_{j+1}}\in(\alpha_{j,s_{j}},+\infty), an analogous treatment can be employed.

(iii) bj+1=0b_{j+1}=0. We also first calculate the sign of gj+1(λ)(fj(λ),gj(λ))\frac{g_{j+1}(\lambda)}{(f_{j}(\lambda),g_{j}(\lambda))} at the roots of fj(λ)(fj(λ),gj(λ))\frac{f_{j}(\lambda)}{(f_{j}(\lambda),g_{j}(\lambda))} and gj(λ)(fj(λ),gj(λ))\frac{g_{j}(\lambda)}{(f_{j}(\lambda),g_{j}(\lambda))}. As before,

{sgn(gj+1(λ)(fj(λ),gj(λ))(αj,i))=(1)jsj+i1,1isjsgn(gj+1(λ)(fj(λ),gj(λ))(βj,i))=(1)jsj+i,1isj1.\displaystyle\left\{\begin{array}[]{ll}\mbox{sgn}\,\left(\frac{g_{j+1}(\lambda)}{(f_{j}(\lambda),g_{j}(\lambda))}(\alpha_{j,i})\right)=(-1)^{j-s_{j}+i-1},&1\leq i\leq s_{j}\\ \mbox{sgn}\,\left(\frac{g_{j+1}(\lambda)}{(f_{j}(\lambda),g_{j}(\lambda))}(\beta_{j,i})\right)=(-1)^{j-s_{j}+i},&1\leq i\leq s_{j}-1\end{array}.\right. (16)

Now, deg(gj+1(λ))=j\deg(g_{j+1}(\lambda))=j and the leading coefficient of (fj(λ),gj(λ))(f_{j}(\lambda),g_{j}(\lambda)) is positive, if number θj,1>αj,sj\theta_{j,1}>\alpha_{j,s_{j}} is sufficiently large, it is evident that (fj(θj,1),gj+1(θj,1))>0(f_{j}(\theta_{j,1}),g_{j+1}(\theta_{j,1}))>0 and

sgn(gj+1(λ)(fj(λ),gj(λ))(θj,1))=(1)deg(gj+1(λ))=(1)j.\displaystyle\mbox{sgn}\,\left(\frac{g_{j+1}(\lambda)}{(f_{j}(\lambda),g_{j}(\lambda))}(\theta_{j,1})\right)=(-1)^{\deg(g_{j+1}(\lambda))}=(-1)^{j}.

So, each interval in {(αj,sj,+),(αj,i,βj,i),i=1,,sj1}\{(\alpha_{j,s_{j}},+\infty),(\alpha_{j,i},\beta_{j,i}),i=1,\cdots,s_{j}-1\} contains exactly one root of gj+1(λ)(fj(λ),gj(λ))\frac{g_{j+1}(\lambda)}{(f_{j}(\lambda),g_{j}(\lambda))}, which concludes

(fj(λ),gj+1(λ))=(fj(λ),gj(λ))andfj(λ)(fj(λ),gj+1(λ))gj+1(λ)(fj(λ),gj+1(λ)).(f_{j}(\lambda),g_{j+1}(\lambda))=(f_{j}(\lambda),g_{j}(\lambda))\quad\mbox{and}\quad\frac{f_{j}(\lambda)}{(f_{j}(\lambda),g_{j+1}(\lambda))}\ll\frac{g_{j+1}(\lambda)}{(f_{j}(\lambda),g_{j+1}(\lambda))}.

Let γj,1<<γj,sj\gamma_{j,1}<\cdots<\gamma_{j,s_{j}} be the roots of gj+1(λ)(fj(λ),gj+1(λ))\frac{g_{j+1}(\lambda)}{(f_{j}(\lambda),g_{j+1}(\lambda))}. From the first equation of (7) and (16), it follows that

{sgn(fj+1(λ)(fj(λ),gj+1(λ))(αj,i))=sgn((λ)gj+1(λ)(fj(λ),gj+1(λ))(αj,i))=(1)jsj+i,1isjsgn(fj+1(λ)(fj(λ),gj+1(λ))(γj,i))=sgn(fj(λ)(fj(λ),gj+1(λ))(γj,i))=(1)jsj+i,1isjsgn(fj+1(λ)(fj(λ),gj+1(λ))(0))=sgn(fj(λ)(fj(λ),gj+1(λ))(0))=(1)jsj.\displaystyle\left\{\begin{array}[]{ll}\mbox{sgn}\,\left(\frac{f_{j+1}(\lambda)}{(f_{j}(\lambda),g_{j+1}(\lambda))}(\alpha_{j,i})\right)=\mbox{sgn}\,\left(\frac{(-\lambda)g_{j+1}(\lambda)}{(f_{j}(\lambda),g_{j+1}(\lambda))}(\alpha_{j,i})\right)=(-1)^{j-s_{j}+i},&1\leq i\leq s_{j}\\ \mbox{sgn}\,\left(\frac{f_{j+1}(\lambda)}{(f_{j}(\lambda),g_{j+1}(\lambda))}(\gamma_{j,i})\right)=\mbox{sgn}\,\left(\frac{f_{j}(\lambda)}{(f_{j}(\lambda),g_{j+1}(\lambda))}(\gamma_{j,i})\right)=(-1)^{j-s_{j}+i},&1\leq i\leq s_{j}\\ \mbox{sgn}\,\left(\frac{f_{j+1}(\lambda)}{(f_{j}(\lambda),g_{j+1}(\lambda))}(0)\right)=\mbox{sgn}\,\left(\frac{f_{j}(\lambda)}{(f_{j}(\lambda),g_{j+1}(\lambda))}(0)\right)=(-1)^{j-s_{j}}\end{array}.\right. (20)

Because deg(fj+1(λ))=j+1\deg(f_{j+1}(\lambda))=j+1 and the leading coefficient of (fj(λ),gj(λ))(f_{j}(\lambda),g_{j}(\lambda)) is positive, we can choose a sufficiently large θj,2>γsj>αsj\theta_{j,2}>\gamma_{s_{j}}>\alpha_{s_{j}} such that (fj(θj,2),gj+1(θj,2))>0(f_{j}(\theta_{j,2}),g_{j+1}(\theta_{j,2}))>0 and

sgn(fj+1(λ)(fj(λ),gj+1(λ))(θj,2))=(1)j+1.\displaystyle\mbox{sgn}\,\left(\frac{f_{j+1}(\lambda)}{(f_{j}(\lambda),g_{j+1}(\lambda))}(\theta_{j,2})\right)=(-1)^{j+1}.

Recall that fj(λ)(fj(λ),gj+1(λ))gj+1(λ)(fj(λ),gj+1(λ))\frac{f_{j}(\lambda)}{(f_{j}(\lambda),g_{j+1}(\lambda))}\ll\frac{g_{j+1}(\lambda)}{(f_{j}(\lambda),g_{j+1}(\lambda))}, so each interval in

{(0,αj,1),(γj,sj,+),(γj,i,αj,i+1),i=1,,sj1}\{(0,\alpha_{j,1}),(\gamma_{j,s_{j}},+\infty),(\gamma_{j,i},\alpha_{j,i+1}),i=1,\ldots,s_{j}-1\}

contains exactly one root of fj+1(λ)(fj(λ),gj+1(λ))\frac{f_{j+1}(\lambda)}{(f_{j}(\lambda),g_{j+1}(\lambda))}. Because of this property,

(fj+1(λ),gj+1(λ))=(fj(λ),gj+1(λ))=(fj(λ),gj(λ)),(f_{j+1}(\lambda),g_{j+1}(\lambda))=(f_{j}(\lambda),g_{j+1}(\lambda))=(f_{j}(\lambda),g_{j}(\lambda)),

and hence (λ)fj(λ)(fj(λ),gj(λ))(λ)gj+1(λ)(fj+1(λ),gj+1(λ))fj+1(λ)(fj+1(λ),gj+1(λ))\frac{(-\lambda)f_{j}(\lambda)}{(f_{j}(\lambda),g_{j}(\lambda))}\ll\frac{(-\lambda)g_{j+1}(\lambda)}{(f_{j+1}(\lambda),g_{j+1}(\lambda))}\ll\frac{f_{j+1}(\lambda)}{(f_{j+1}(\lambda),g_{j+1}(\lambda))}. \Box

It is ready to prove the necessity of Theorem 2.1. To this end, we introduce some notations. Let f(λ)f(\lambda) be a polynomial whose roots {zi}i=1p\{z_{i}\}_{i=1}^{p} are all real and zi<zjz_{i}<z_{j} for every i<ji<j. Denote ξ(f(λ),zi)\xi(f(\lambda),z_{i}) as the multiplicity of root ziz_{i} and for a real number α\alpha, define ζ(f(λ),α)max{i[1,p]:zi<α}\zeta(f(\lambda),\alpha)\triangleq\max\{i\in[1,p]:z_{i}<\alpha\}.

The proof of the necessity of Theorem 2.1: First, in view of (4), we know that λi,1im\lambda_{i},1\leq i\leq m are the mm distinct roots of fn(λ)f_{n}(\lambda) with multiplicities tit_{i}. To proceed the argument, note that Lemma 3.1 gives (λ)g1(λ)(f1(λ),g1(λ))f1(λ)(f1(λ),g1(λ))\frac{(-\lambda)g_{1}(\lambda)}{(f_{1}(\lambda),g_{1}(\lambda))}\ll\frac{f_{1}(\lambda)}{(f_{1}(\lambda),g_{1}(\lambda))}, then by using Lemma 3.3,

(λ)gj(λ)(fj(λ),gj(λ))fj(λ)(fj(λ),gj(λ)),j=1,,n.\displaystyle\frac{(-\lambda)g_{j}(\lambda)}{(f_{j}(\lambda),g_{j}(\lambda))}\ll\frac{f_{j}(\lambda)}{(f_{j}(\lambda),g_{j}(\lambda))},\quad j=1,\ldots,n. (21)

Particularly, it turns out that all the roots of fn(λ)(fn(λ),gn(λ))\frac{f_{n}(\lambda)}{(f_{n}(\lambda),g_{n}(\lambda))} are distinct. So ξ(fn(λ)(fn(λ),gn(λ)),λi)1\xi\left(\frac{f_{n}(\lambda)}{(f_{n}(\lambda),g_{n}(\lambda))},\lambda_{i}\right)\leq 1 for all 1im1\leq i\leq m and then

ξ((fn(λ),gn(λ)),λi)=ξ(fn(λ),λi)ξ(fn(λ)(fn(λ),gn(λ)),λi)ti1.\displaystyle\xi\left((f_{n}(\lambda),g_{n}(\lambda)),\lambda_{i}\right)=\xi\left(f_{n}(\lambda),\lambda_{i}\right)-\xi\left(\frac{f_{n}(\lambda)}{(f_{n}(\lambda),g_{n}(\lambda))},\lambda_{i}\right)\geq t_{i}-1. (22)

Now, by (21) and Lemma 3.3, for each j=1,,n1j=1,\ldots,n-1,

(fj+1(λ),gj+1(λ))={(fj(λ),gj(λ))(λkj+1bj+1),ifbj+10,(λkj+1bj+1)|fj(λ)(fj(λ),gj(λ))(fj(λ),gj(λ)),otherwise,\displaystyle(f_{j+1}(\lambda),g_{j+1}(\lambda))=\left\{\begin{array}[]{ll}(f_{j}(\lambda),g_{j}(\lambda))(\lambda-\frac{k_{j+1}}{b_{j+1}}),&\mbox{if}~{}b_{j+1}\neq 0,(\lambda-\frac{k_{j+1}}{b_{j+1}})|\frac{f_{j}(\lambda)}{(f_{j}(\lambda),g_{j}(\lambda))}\\ (f_{j}(\lambda),g_{j}(\lambda)),&\mbox{otherwise}\end{array},\right.

which yields that for all 1im1\leq i\leq m,

ξ((fj+1(λ),gj+1(λ)),λi)\displaystyle\xi\left((f_{j+1}(\lambda),g_{j+1}(\lambda)),\lambda_{i}\right) (26)
=\displaystyle= {ξ((fj(λ),gj(λ)),λi)+1,ifbj+10,kj+1=λibj+1,(λλi)|fj(λ)(fj(λ),gj(λ))ξ((fj(λ),gj(λ)),λi),otherwise.\displaystyle\left\{\begin{array}[]{ll}\xi\left((f_{j}(\lambda),g_{j}(\lambda)),\lambda_{i}\right)+1,&\mbox{if}~{}b_{j+1}\neq 0,k_{j+1}=\lambda_{i}b_{j+1},(\lambda-\lambda_{i})|\frac{f_{j}(\lambda)}{(f_{j}(\lambda),g_{j}(\lambda))}\\ \xi\left((f_{j}(\lambda),g_{j}(\lambda)),\lambda_{i}\right),&\mbox{otherwise}\end{array}.\right.

On the other hand, given j[1,n1]j\in[1,n-1] and i[1,m]i\in[1,m], if bj+10,kj+1=λibj+1b_{j+1}\neq 0,k_{j+1}=\lambda_{i}b_{j+1} and (λλi)|fj(λ)(fj(λ),gj(λ))(\lambda-\lambda_{i})|\frac{f_{j}(\lambda)}{(f_{j}(\lambda),g_{j}(\lambda))}, Lemma 3.3 (i) indicates fj+1(λ)(fj+1(λ),gj+1(λ))fj(λ)(fj(λ),gj(λ))\frac{f_{j+1}(\lambda)}{(f_{j+1}(\lambda),g_{j+1}(\lambda))}\ll\frac{-f_{j}(\lambda)}{(f_{j}(\lambda),g_{j}(\lambda))}. Moreover, λi\lambda_{i} is a root of fj(λ)(fj(λ),gj(λ))\frac{f_{j}(\lambda)}{(f_{j}(\lambda),g_{j}(\lambda))}, it follows that ζ(fj+1(λ)(fj+1(λ),gj+1(λ)),λi)=ζ(fj(λ)(fj(λ),gj(λ)),λi)+1\zeta\left(\frac{f_{j+1}(\lambda)}{(f_{j+1}(\lambda),g_{j+1}(\lambda))},\lambda_{i}\right)=\zeta\left(\frac{f_{j}(\lambda)}{(f_{j}(\lambda),g_{j}(\lambda))},\lambda_{i}\right)+1. Otherwise, by virtue of Lemma 3.3, at least one of the following cases will happen:
(i) if bj+10,kj+1=λibj+1b_{j+1}\neq 0,k_{j+1}=\lambda_{i}b_{j+1} and (kj+1λbj+1)|fj(λ)(fj(λ),gj(λ))(k_{j+1}-\lambda b_{j+1})|\frac{f_{j}(\lambda)}{(f_{j}(\lambda),g_{j}(\lambda))}, then fj+1(λ)(fj+1(λ),gj+1(λ))fj(λ)(fj(λ),gj(λ));\frac{f_{j+1}(\lambda)}{(f_{j+1}(\lambda),g_{j+1}(\lambda))}\ll\frac{-f_{j}(\lambda)}{(f_{j}(\lambda),g_{j}(\lambda))};
(ii) if bj+10b_{j+1}\neq 0 and kj+1λbj+1fj(λ)(fj(λ),gj(λ))k_{j+1}-\lambda b_{j+1}\nmid\frac{f_{j}(\lambda)}{(f_{j}(\lambda),g_{j}(\lambda))}, then fj+1(λ)(fj+1(λ),gj+1(λ))fj(λ)(kj+1λbj+1)(fj(λ),gj(λ))\frac{f_{j+1}(\lambda)}{(f_{j+1}(\lambda),g_{j+1}(\lambda))}\ll\frac{f_{j}(\lambda)(k_{j+1}-\lambda b_{j+1})}{(f_{j}(\lambda),g_{j}(\lambda))};
(iii) if bj+1=0b_{j+1}=0, then (λ)fj(λ)(fj(λ),gj(λ))fj+1(λ)(fj+1(λ),gj+1(λ))\frac{(-\lambda)f_{j}(\lambda)}{(f_{j}(\lambda),g_{j}(\lambda))}\ll\frac{f_{j+1}(\lambda)}{(f_{j+1}(\lambda),g_{j+1}(\lambda))}.
All the above three cases lead to ζ(fj+1(λ)(fj+1(λ),gj+1(λ)),λi)ζ(fj(λ)(fj(λ),gj(λ)),λi)\zeta\left(\frac{f_{j+1}(\lambda)}{(f_{j+1}(\lambda),g_{j+1}(\lambda))},\lambda_{i}\right)\geq\zeta\left(\frac{f_{j}(\lambda)}{(f_{j}(\lambda),g_{j}(\lambda))},\lambda_{i}\right). So,

{ζ(fj+1(λ)(fj+1(λ),gj+1(λ)),λi)=ζ(fj(λ)(fj(λ),gj(λ)),λi)+1,if case (i) occursζ(fj+1(λ)(fj+1(λ),gj+1(λ)),λi)ζ(fj(λ)(fj(λ),gj(λ)),λi),otherwise.\displaystyle\left\{\begin{array}[]{ll}\zeta\left(\frac{f_{j+1}(\lambda)}{(f_{j+1}(\lambda),g_{j+1}(\lambda))},\lambda_{i}\right)=\zeta\left(\frac{f_{j}(\lambda)}{(f_{j}(\lambda),g_{j}(\lambda))},\lambda_{i}\right)+1,&\mbox{if case (i) occurs}\\ \zeta\left(\frac{f_{j+1}(\lambda)}{(f_{j+1}(\lambda),g_{j+1}(\lambda))},\lambda_{i}\right)\geq\zeta\left(\frac{f_{j}(\lambda)}{(f_{j}(\lambda),g_{j}(\lambda))},\lambda_{i}\right),&\mbox{otherwise}\end{array}.\right. (29)

Clearly, ζ(f1(λ)(f1(λ),g1(λ)),λi)ξ((f1(λ),g1(λ)),λi)=0\zeta\left(\frac{f_{1}(\lambda)}{(f_{1}(\lambda),g_{1}(\lambda))},\lambda_{i}\right)\geq\xi\left((f_{1}(\lambda),g_{1}(\lambda)),\lambda_{i}\right)=0. By (26) and (29), it can be derived inductively that

ζ(fn(λ)(fn(λ),gn(λ)),λi)ξ((fn(λ),gn(λ)),λi).\zeta\left(\frac{f_{n}(\lambda)}{(f_{n}(\lambda),g_{n}(\lambda))},\lambda_{i}\right)\geq\xi\left((f_{n}(\lambda),g_{n}(\lambda)),\lambda_{i}\right).

Together with (22), the above inequality shows that for each 1im1\leq i\leq m,

i1=ζ(fn(λ),λi)ζ(fn(λ)(fn(λ),gn(λ)),λi)ξ((fn(λ),gn(λ)),λi)ti1,\displaystyle i-1=\zeta\left(f_{n}(\lambda),\lambda_{i}\right)\geq\zeta\left(\frac{f_{n}(\lambda)}{(f_{n}(\lambda),g_{n}(\lambda))},\lambda_{i}\right)\geq\xi\left((f_{n}(\lambda),g_{n}(\lambda)),\lambda_{i}\right)\geq t_{i}-1,

which completes the proof.

4 Proof of sufficiency of Theorem 2.1.

The sufficiency of Theorem 2.1 is a direct consequence of the following proposition.

Proposition 4.1.

Given mm real numbers M1,,Mm>0M_{1},\ldots,M_{m}>0 and a polynomial i=1m(λλi)ti\prod_{i=1}^{m}(\lambda-\lambda_{i})^{t_{i}} with 0<λ1<λ2<<λm0<\lambda_{1}<\lambda_{2}<\cdots<\lambda_{m} and i=1mti=n\sum_{i=1}^{m}{t_{i}}=n, if tiit_{i}\leq i for each i=1,,mi=1,\ldots,m, then there exist some mj>0m_{j}>0, kj>0k_{j}>0, bj0b_{j}\geq 0, j=1,,nj=1,\ldots,n and mm distinct indices il,l=1,,mi_{l},l=1,\ldots,m such that mil=Mlm_{i_{l}}=M_{l} and

i=1m(λλi)ti|det(𝑲λ(𝑴+𝑩)).\displaystyle\prod_{i=1}^{m}(\lambda-\lambda_{i})^{t_{i}}\Big{|}\det(\boldsymbol{K}-\lambda(\boldsymbol{M}+\boldsymbol{B})).

We now begin the construction of the required mass-chain system for Proposition 4.1. That is, to find a sequence of {(ki,bi,mi)}i=1n\{(k_{i},b_{i},m_{i})\}_{i=1}^{n} and mm indices ili_{l} such that i=1m(λλi)ti|fn(λ)\prod_{i=1}^{m}(\lambda-\lambda_{i})^{t_{i}}|f_{n}(\lambda) and mil=Mlm_{i_{l}}=M_{l}, l=1,,ml=1,\ldots,m, where fn(λ)=det(𝑲λ(𝑴+𝑩))f_{n}(\lambda)=\det(\boldsymbol{K}-\lambda(\boldsymbol{M}+\boldsymbol{B})). Taking account to [10, Theorem 4], we take T=max1imti>1T=\max_{1\leqslant i\leqslant m}t_{i}>1. Moreover, denote qj|Sj|q_{j}\triangleq|S_{j}|, where

Sj{λi:tij+1},j=1,,T1.\displaystyle S_{j}\triangleq\{\lambda_{i}:t_{i}\geq j+1\},\quad j=1,\ldots,T-1. (30)

Evidently, j=1T1qj=nm\sum_{j=1}^{T-1}q_{j}=n-m. We reorder the elements of SjS_{j} by sj(1)<<sj(qj)s_{j}(1)<\cdots<s_{j}(q_{j}).

An important observation of Section 3 is that (22) implies every element in j=1T1Sj\bigcup_{j=1}^{T-1}S_{j} is equal to some ki/bi,i[2,n]k_{i}/b_{i},i\in[2,n]. This could help us to design a rule to determine which ki/bij=1T1Sjk_{i}/b_{i}\in\bigcup_{j=1}^{T-1}S_{j}. It is the key idea of our proof, so we offer an example to elaborate it.

Example 4.1.

Take n=15,m=8,t1=t5=t7=t8=1,t2=t4=2,t3=3,t6=4n=15,m=8,t_{1}=t_{5}=t_{7}=t_{8}=1,t_{2}=t_{4}=2,t_{3}=3,t_{6}=4 and 0<λ1<λ2<<λ80<\lambda_{1}<\lambda_{2}<\cdots<\lambda_{8} in Proposition 4.1. Then, we get sets Sj,j=1,2,3S_{j},j=1,2,3 as shown in Figure 4.4. Note that by (2)–(3), for all i[2,15]i\in[2,15], ki-k_{i} and bi-b_{i} are located in the secondary diagonals of matrices K and B, respectively. We now introduce a 15×1515\times 15 matrix A=(aij)\textbf{A}=(a_{ij}) and assign the elements ai,i+1a_{i,i+1} in the secondary diagonal the values taken from sets Sj,j=1,2,3S_{j},j=1,2,3 (see Figure 4.4). Specifically, for j=1j=1, we treat the first 1+q1=51+q_{1}=5 elements of ai,i+1a_{i,i+1} by skipping a5,6a_{5,6} and letting ai,i+1=s1(4i+1)a_{i,i+1}=s_{1}(4-i+1) for i=1,2,3,4i=1,2,3,4. So, a1,2=λ6,a2,3=λ4,a3,4=λ3,a4,5=λ2a_{1,2}=\lambda_{6},a_{2,3}=\lambda_{4},a_{3,4}=\lambda_{3},a_{4,5}=\lambda_{2}, as illustrated in Fig. 3. Repeat this procedure for elements ai,i+1,i=l=1j1ql+2,,l=1jql+2a_{i,i+1},i=\sum_{l=1}^{j-1}q_{l}+2,\ldots,\sum_{l=1}^{j}q_{l}+2 with j=2,3j=2,3. For each ii with ai,i+1j=13Sja_{i,i+1}\in\bigcup_{j=1}^{3}S_{j}, we assign ki+1/bi+1k_{i+1}/b_{i+1} a value equivalent to ai,i+1a_{i,i+1}. As a result, k2/b2=k7/b7=k10/b10=λ6k_{2}/b_{2}=k_{7}/b_{7}=k_{10}/b_{10}=\lambda_{6}, k3/b3=λ4k_{3}/b_{3}=\lambda_{4}, k4/b4=k8/b8=λ3k_{4}/b_{4}=k_{8}/b_{8}=\lambda_{3}, k5/b5=λ2k_{5}/b_{5}=\lambda_{2}.

Refer to caption
Figure 4.3: Association between ki/bik_{i}/b_{i} and λj\lambda_{j}
Refer to caption
Figure 4.4: Placement of λi\lambda_{i} in the secondary diagonal of matrix A

In general, the rule to determine ki/bij=1T1Sjk_{i}/b_{i}\in\bigcup_{j=1}^{T-1}S_{j} is summarized as follows:

kibi=sj+1(qj+1l+1),i=1+j+l,j=0,,T2,l=1,,qj+1.\displaystyle\frac{k_{i}}{b_{i}}=s_{j+1}(q_{j+1}-l+1),\qquad i=1+j+l,\quad j=0,\ldots,T-2,\quad l=1,\ldots,q_{j+1}. (31)

The proof of Proposition 4.1 thus will be completed in three steps.
Step 1: For each i=1+j+li=1+j+l with j=0,,T2j=0,\ldots,T-2 and l=1,,qj+1l=1,\ldots,q_{j+1}, we assign ki/bik_{i}/b_{i} a value taken from j=1T1Sj\bigcup_{j=1}^{T-1}S_{j} in the light of (31). So, the cardinal of set {i[2,n]:kibij=1T1Sj}\{i\in[2,n]:\frac{k_{i}}{b_{i}}\not\in\bigcup_{j=1}^{T-1}S_{j}\} is (n1)(nm)=m1(n-1)-(n-m)=m-1.
Step 2: Rewrite the elements of {1}{i[2,n]:kibij=1T1Sj}\{1\}\cup\{i\in[2,n]:\frac{k_{i}}{b_{i}}\not\in\bigcup_{j=1}^{T-1}S_{j}\} by 1=i1<<im1=i_{1}<\cdots<i_{m}. Let mil=Mlm_{i_{l}}=M_{l} for l=1,,ml=1,\ldots,m.
Step 3: Based on the above steps, we compute (fi(λ),gi(λ))(f_{i}(\lambda),g_{i}(\lambda)) for each i=1,,ni=1,\ldots,n. Then, take some suitable parameters (mi,bi,ki)(m_{i},b_{i},k_{i}), so that if ki+1bi+1j=1T1Sj\frac{k_{i+1}}{b_{i+1}}\not\in\bigcup_{j=1}^{T-1}S_{j},

{fi+1(λ)(fi+1(λ),gi+1(λ))=λmi+1gi+1(λ)(fi+1(λ),gi+1(λ))+(ki+1λbi+1)fi(λ)(fi(λ),gi(λ))gi+1(λ)(fi+1(λ),gi+1(λ))=fi(λ)(fi(λ),gi(λ))+(ki+1λbi+1)gi(λ)(fi(λ),gi(λ)),\displaystyle\left\{\begin{array}[]{l}\frac{f_{i+1}(\lambda)}{(f_{i+1}(\lambda),g_{i+1}(\lambda))}=-\lambda m_{i+1}\frac{g_{i+1}(\lambda)}{(f_{i+1}(\lambda),g_{i+1}(\lambda))}+(k_{i+1}-\lambda b_{i+1})\frac{f_{i}(\lambda)}{(f_{i}(\lambda),g_{i}(\lambda))}\\ \frac{g_{i+1}(\lambda)}{(f_{i+1}(\lambda),g_{i+1}(\lambda))}=\frac{f_{i}(\lambda)}{(f_{i}(\lambda),g_{i}(\lambda))}+(k_{i+1}-\lambda b_{i+1})\frac{g_{i}(\lambda)}{(f_{i}(\lambda),g_{i}(\lambda))}\\ \end{array},\right. (34)

otherwise, for ki+1bi+1j=1T1Sj\frac{k_{i+1}}{b_{i+1}}\in\bigcup_{j=1}^{T-1}S_{j},

{fi+1(λ)(fi+1(λ),gi+1(λ))=λmi+1gi+1(λ)(fi+1(λ),gi+1(λ))bi+1fi(λ)(fi(λ),gi(λ))(λki+1bi+1)gi+1(λ)(fi+1(λ),gi+1(λ))=fi(λ)(fi(λ),gi(λ))+(ki+1λbi+1)gi(λ)(fi(λ),gi(λ)).\displaystyle\left\{\begin{array}[]{l}\frac{f_{i+1}(\lambda)}{(f_{i+1}(\lambda),g_{i+1}(\lambda))}=-\lambda m_{i+1}\frac{g_{i+1}(\lambda)}{(f_{i+1}(\lambda),g_{i+1}(\lambda))}-b_{i+1}\frac{f_{i}(\lambda)}{(f_{i}(\lambda),g_{i}(\lambda))}\\ (\lambda-\frac{k_{i+1}}{b_{i+1}})\frac{g_{i+1}(\lambda)}{(f_{i+1}(\lambda),g_{i+1}(\lambda))}=\frac{f_{i}(\lambda)}{(f_{i}(\lambda),g_{i}(\lambda))}+(k_{i+1}-\lambda b_{i+1})\frac{g_{i}(\lambda)}{(f_{i}(\lambda),g_{i}(\lambda))}\end{array}.\right. (37)

The construction of {fi(λ)(fi(λ),gi(λ)),gi(λ)(fi(λ),gi(λ))}i=1n\{\frac{f_{i}(\lambda)}{(f_{i}(\lambda),g_{i}(\lambda))},\frac{g_{i}(\lambda)}{(f_{i}(\lambda),g_{i}(\lambda))}\}_{i=1}^{n} will be achieved by an induction method from nn to 11.

To proceed the proof, we first derive some technical lemmas.

Lemma 4.1.

Let F(λ)=μi=1p(λαi)F(\lambda)=\mu\prod_{i=1}^{p}(\lambda-\alpha_{i}) and G(λ)=νi=1p(λβi)G(\lambda)=\nu\prod_{i=1}^{p}(\lambda-\beta_{i}) be two polynomials of degree pp that G(λ)F(λ)G(\lambda)\ll F(\lambda), where |μ|>|ν||\mu|>|\nu|, α1<<αp\alpha_{1}<\cdots<\alpha_{p} and β1<<βp\beta_{1}<\cdots<\beta_{p}. Then, F(λ)G(λ)F(\lambda)-G(\lambda) has pp real roots γ1<<γp\gamma_{1}<\cdots<\gamma_{p} satisfying γi(αi,βi+1)\gamma_{i}\in(\alpha_{i},\beta_{i+1}) for i=1,,p1i=1,\ldots,p-1 and γp>αp\gamma_{p}>\alpha_{p}. Moreover, the following two statements hold:
(i) when p>1p>1, for any η(0,min1ip1(αi+1αi))\eta\in(0,\min_{1\leqslant i\leqslant p-1}(\alpha_{i+1}-\alpha_{i})), if

|ν||μ|<min{1,(min1ip1(αi+1αi)η)p}min{1,ηp}2+2maxj[1,p]|i=1p(αjβi)|\displaystyle\displaystyle\frac{|\nu|}{|\mu|}<\ \frac{\min\{1,\left(\min_{1\leqslant i\leqslant p-1}(\alpha_{i+1}-\alpha_{i})-\eta\right)^{p}\}\min\{1,\eta^{p}\}}{2+2\max_{j\in[1,p]}\left|\prod_{i=1}^{p}(\alpha_{j}-\beta_{i})\right|} (38)

then

max1ip(γiαi)<η;\displaystyle\max_{1\leqslant i\leqslant p}(\gamma_{i}-\alpha_{i})<\eta; (39)

(ii) when p=1p=1, for any η(0,12)\eta\in(0,\frac{1}{2}), (39) holds provided that

|ν|<|μ|2min{ηα1β1,1}.\displaystyle|\nu|<\frac{|\mu|}{2}\min\left\{\frac{\eta}{\alpha_{1}-\beta_{1}},1\right\}. (40)
Proof.

Note that G(λ)F(λ)G(\lambda)\ll F(\lambda) indicates μν>0\mu\nu>0 and for each j=1,,p1j=1,\ldots,p-1,

(F(αj)G(αj))(F(βj+1)G(βj+1))=μνi=1p(αjβi)(βj+1αi)<0,\displaystyle(F(\alpha_{j})-G(\alpha_{j}))(F(\beta_{j+1})-G(\beta_{j+1}))=-\mu\nu\prod_{i=1}^{p}(\alpha_{j}-\beta_{i})(\beta_{j+1}-\alpha_{i})<0,

which means F(λ)G(λ)F(\lambda)-G(\lambda) has a root γj\gamma_{j} in (αj,βj+1)(\alpha_{j},\beta_{j+1}). Further, since μν>0\mu\nu>0 and |μ|>|ν||\mu|>|\nu|, μ(F(λ)G(λ))>0\mu(F(\lambda)-G(\lambda))>0 holds for all sufficiently large λ>αp\lambda>\alpha_{p}. On the other hand,

μ(F(αp)G(αp))=μνi=1p(αpβi)<0,\mu(F(\alpha_{p})-G(\alpha_{p}))=-\mu\nu\prod_{i=1}^{p}(\alpha_{p}-\beta_{i})<0,

so F(λ)G(λ)F(\lambda)-G(\lambda) has a root γp\gamma_{p} in (αp,)(\alpha_{p},\infty). Clearly, γ1<<γp\gamma_{1}<\cdots<\gamma_{p}.

Next, we show statement (i). Observe that F(λ)G(λ)=(μν)i=1p(λγi)F(\lambda)-G(\lambda)=(\mu-\nu)\prod_{i=1}^{p}(\lambda-\gamma_{i}), then for each j[1,p]j\in[1,p],

(μν)i=1p(αjγi)=F(αj)G(αj)=νi=1p(αjβi).\displaystyle(\mu-\nu)\prod_{i=1}^{p}(\alpha_{j}-\gamma_{i})=F(\alpha_{j})-G(\alpha_{j})=-\nu\prod_{i=1}^{p}(\alpha_{j}-\beta_{i}). (41)

Let p>1p>1. If (39) fails, denote ll as the smallest subscript i[1,p]i\in[1,p] such that γiαiη\gamma_{i}-\alpha_{i}\geq\eta. Hence,

0<αi+1αiηαi+1γiαlγi,i=1,,l1.0<\alpha_{i+1}-\alpha_{i}-\eta\leq\alpha_{i+1}-\gamma_{i}\leq\alpha_{l}-\gamma_{i},\quad i=1,\ldots,l-1.

Moreover, it is clear that γiαlγlαl>0\gamma_{i}-\alpha_{l}\geq\gamma_{l}-\alpha_{l}>0 for all ili\geq l, then by (38) and (41),

(min1ip1(αi+1αi)η)l1(γlαl)pl+1\displaystyle\left(\min_{1\leqslant i\leqslant p-1}(\alpha_{i+1}-\alpha_{i})-\eta\right)^{l-1}(\gamma_{l}-\alpha_{l})^{p-l+1}
\displaystyle\leq |i=1p(αlγi)||ν/μ1ν/μ|maxj[1,p]|i=1p(αjβi)|\displaystyle\left|\prod_{i=1}^{p}(\alpha_{l}-\gamma_{i})\right|\leq\left|\frac{\nu/\mu}{1-\nu/\mu}\right|\max_{j\in[1,p]}\left|\prod_{i=1}^{p}(\alpha_{j}-\beta_{i})\right|
<\displaystyle< 2|νμ|maxj[1,p]|i=1p(αjβi)|<min{1,(min1ip1(αi+1αi)η)p}min{1,ηp}\displaystyle 2\left|\frac{\nu}{\mu}\right|\max_{j\in[1,p]}\left|\prod_{i=1}^{p}(\alpha_{j}-\beta_{i})\right|<\min\left\{1,\left(\min_{1\leqslant i\leqslant p-1}(\alpha_{i+1}-\alpha_{i})-\eta\right)^{p}\right\}\min\{1,\eta^{p}\}
\displaystyle\leq (min1ip1(αi+1αi)η)l1ηpl+1,\displaystyle\left(\min_{1\leqslant i\leqslant p-1}(\alpha_{i+1}-\alpha_{i})-\eta\right)^{l-1}\eta^{p-l+1},

which contradicts to γlαlη\gamma_{l}-\alpha_{l}\geq\eta. So, statement (i) is true.

When p=1p=1, (40) and (41) lead to

γ1α1|ν/μ1ν/μ|(α1β1)<2|νμ|(α1β1)<η.\displaystyle\gamma_{1}-\alpha_{1}\leq\left|\frac{\nu/\mu}{1-\nu/\mu}\right|(\alpha_{1}-\beta_{1})<2\left|\frac{\nu}{\mu}\right|(\alpha_{1}-\beta_{1})<\eta.

The statement (ii) is proved. \Box

The subsequent parts focus on Step 3 of the construction, whose key idea is to select some appropriate candidates for the roots of gn(λ)(fn(λ),gn(λ))\frac{g_{n}(\lambda)}{(f_{n}(\lambda),g_{n}(\lambda))}. We set these roots as λi+ρi\lambda_{i}+\rho_{i}, i=1,,m1i=1,\ldots,m-1, where ρi=ε(n+1)mi\rho_{i}=\varepsilon^{(n+1)^{m-i}},

ε=Δn2+n+1n23(n+1)3Λ(n+1)2,Δ12min{1,min1im1(λi+1λi)},Λ1+λm.\displaystyle\varepsilon=\frac{\Delta^{n^{2}+n+1}}{n2^{3(n+1)^{3}}\Lambda^{(n+1)^{2}}},\quad\Delta\triangleq\frac{1}{2}\min\{1,\min_{1\leq i\leq m-1}(\lambda_{i+1}-\lambda_{i})\},\quad\Lambda\triangleq 1+\lambda_{m}. (42)

Next, define

C1Δ2n+1ΛandC2(j)22(n+1)2Λn+1Δnε(n+1)mj1,j=1,,m1,\displaystyle C_{1}\triangleq\frac{\Delta}{2^{n+1}\Lambda}\quad\mbox{and}\quad C_{2}(j)\triangleq\frac{2^{2(n+1)^{2}}\Lambda^{n+1}}{\Delta^{n}\varepsilon^{(n+1)^{m-j-1}}},\quad j=1,\ldots,m-1, (43)

as well as

C22n+1(1+Λn)C12n2ρ12nandMk=1mMk.\displaystyle C\triangleq\frac{2^{2n+1}(1+\Lambda^{n})}{C_{1}^{2n^{2}}\rho_{1}^{2n}}\quad\mbox{and}\quad M\triangleq\sum_{k=1}^{m}M_{k}. (44)
Remark 4.1.

We remark that ε<1\varepsilon<1, Λ/Δ2\Lambda/\Delta\geq 2 in (42) and C>1C>1 in (44). Moreover, C2(j),j=1,,m1C_{2}(j),j=1,\ldots,m-1 defined by (43) satisfy (see Appendix B)

{(1+C2(m1))nρm1<Δ2,(1+C2(j))nρj<(1+C2(j+1))nρj+1,j=1,,m2,m>2n(1+C2(j1))nΔρj1<14(Δn2(n+1)2Λn+1)ρj+1,j=2,,m2,m>3.\displaystyle\left\{\begin{array}[]{ll}(1+C_{2}(m-1))^{n}\rho_{m-1}<\frac{\Delta}{2},\\ (1+C_{2}(j))^{n}\rho_{j}<(1+C_{2}(j+1))^{n}\rho_{j+1},&j=1,\ldots,m-2,\quad m>2\\ \frac{n(1+C_{2}(j-1))^{n}}{\Delta}\rho_{j-1}<\frac{1}{4}\left(\frac{\Delta^{n}}{2^{(n+1)^{2}}\Lambda^{n+1}}\right)\rho_{j+1},&j=2,\ldots,m-2,\quad m>3\end{array}.\right. (48)

The above series of constants are repeatedly used in the next two lemmas (Lemmas 4.24.3), whose proofs are contained in Appendix C. Both the two lemmas concern the following polynomials

F(λ)=i=1p(λαi)andG(λ)=i=1p1(λβi),p[2,m],\displaystyle F(\lambda)=\prod_{i=1}^{p}(\lambda-\alpha_{i})\quad\mbox{and}\quad G(\lambda)=\prod_{i=1}^{p-1}(\lambda-\beta_{i}),\qquad p\in[2,m], (49)

whose roots {αi}i=1p\{\alpha_{i}\}_{i=1}^{p} and {βi}i=1p1\{\beta_{i}\}_{i=1}^{p-1} satisfy

αp[λp,λ¯)for some number λ¯>λp\displaystyle\alpha_{p}\in[\lambda_{p},\bar{\lambda})\qquad\mbox{for some number }\bar{\lambda}>\lambda_{p} (50)

and for each i=1,,p1i=1,\ldots,p-1,

λi+C1nρiαi+C1nρi<βi<λi+(1+C2(i))nρi<λi+1.\displaystyle\lambda_{i}+C_{1}^{n}\rho_{i}\leq\alpha_{i}+C_{1}^{n}\rho_{i}<\beta_{i}<\lambda_{i}+(1+C_{2}(i))^{n}\rho_{i}<\lambda_{i+1}. (51)
Lemma 4.2.

Let F(λ)F(\lambda) and G(λ)G(\lambda) be two polynomials defined by (49)–(51) with λ¯=Λ\bar{\lambda}=\Lambda in (50). For any given constants μ,ν,m\mu,\nu,m^{*} satisfying 0<m<M0<m^{*}<M and μν>CM-\frac{\mu}{\nu}>CM, the following two statements hold.
(i) If p>2p>2, then there exist two monic polynomials F0(λ)F_{0}(\lambda) and G0(λ)G_{0}(\lambda) with distinct roots α1<<αp1\alpha_{1}^{\prime}<\cdots<\alpha_{p-1}^{\prime} and β1<<βp2\beta_{1}^{\prime}<\cdots<\beta_{p-2}^{\prime}, respectively, satisfying αp1(αp1,λp)\alpha_{p-1}^{\prime}\in(\alpha_{p-1},\lambda_{p}) and for i[1,p2]i\in[1,p-2],

αi(αi,βi),C1(βiαi)βiαiC2(i)(βiαi).\displaystyle\alpha_{i}^{\prime}\in(\alpha_{i},\beta_{i}),\qquad C_{1}(\beta_{i}-\alpha_{i})\leq\beta_{i}^{\prime}-\alpha_{i}^{\prime}\leq C_{2}(i)(\beta_{i}-\alpha_{i}). (52)

In addition, for some numbers λ,b>0\lambda^{*},b^{*}>0 and μ0,ν0\mu_{0},\nu_{0} with μ0ν0>μνm-\frac{\mu_{0}}{\nu_{0}}>-\frac{\mu}{\nu}-m^{*}, F0(λ)F_{0}(\lambda) and G0(λ)G_{0}(\lambda) fulfill

{μF(λ)=mνλG(λ)+bμ0(λλ)F0(λ)νG(λ)=μ0F0(λ)+bν0(λλ)G0(λ).\displaystyle\left\{\begin{array}[]{l}\mu F(\lambda)=-m^{*}\nu\lambda G(\lambda)+b^{*}\mu_{0}(\lambda^{*}-\lambda)F_{0}(\lambda)\\ \nu G(\lambda)=\mu_{0}F_{0}(\lambda)+b^{*}\nu_{0}(\lambda^{*}-\lambda)G_{0}(\lambda)\end{array}.\right. (55)

(ii) If p=2p=2, then there are some numbers λ,b>0\lambda^{*},b^{*}>0, α1(α1,λ2)\alpha_{1}^{\prime}\in(\alpha_{1},\lambda_{2}) and μ0,ν0\mu_{0},\nu_{0} with μ0ν0>μνm-\frac{\mu_{0}}{\nu_{0}}>-\frac{\mu}{\nu}-m^{*} such that polynomials F0(λ)=λα1F_{0}(\lambda)=\lambda-\alpha_{1}^{\prime} and G0(λ)=1G_{0}(\lambda)=1 satisfy equation (55).

Lemma 4.3.

Given μ,ν,λ\mu,\nu,\lambda^{*} with λp<λ<Λ\lambda_{p}<\lambda^{*}<\Lambda and μν<0\frac{\mu}{\nu}<0, the following two statements hold.
(i) For polynomials F(λ)F(\lambda) and G(λ)G(\lambda) defined by (49)–(51) with λ¯=λ\bar{\lambda}=\lambda^{*} in (50), there exist two monic polynomials F0(λ)F_{0}(\lambda) and G0(λ)G_{0}(\lambda) with distinct roots α1<<αp\alpha_{1}^{\prime}<\cdots<\alpha_{p}^{\prime} and β1<<βp1\beta_{1}^{\prime}<\cdots<\beta_{p-1}^{\prime}, respectively, such that αp=λ\alpha_{p}^{\prime}=\lambda^{*} and (52) holds for all i[1,p1]i\in[1,p-1]. In addition, for some numbers m,b>0m^{*},b^{*}>0 and μ0,ν0\mu_{0},\nu_{0} with μ0ν0>λ1Λμν-\frac{\mu_{0}}{\nu_{0}}>-\frac{\lambda_{1}}{\Lambda}\frac{\mu}{\nu}, F0(λ)F_{0}(\lambda) and G0(λ)G_{0}(\lambda) fulfill

{μF(λ)=mνλG(λ)bμ0F0(λ)ν(λλ)G(λ)=μ0F0(λ)+bν0(λλ)G0(λ).\displaystyle\left\{\begin{array}[]{l}\mu F(\lambda)=-m^{*}\nu\lambda G(\lambda)-b^{*}\mu_{0}F_{0}(\lambda)\\ \nu(\lambda-\lambda^{*})G(\lambda)=\mu_{0}F_{0}(\lambda)+b^{*}\nu_{0}(\lambda^{*}-\lambda)G_{0}(\lambda)\\ \end{array}.\right. (58)

(ii) For F(λ)=λα1F(\lambda)=\lambda-\alpha_{1} with α1<λ\alpha_{1}<\lambda^{*} and G(λ)=1G(\lambda)=1, there are some numbers m,b>0m^{*},b^{*}>0 and μ0,ν0\mu_{0},\nu_{0} with μ0ν0>λ1Λμν-\frac{\mu_{0}}{\nu_{0}}>-\frac{\lambda_{1}}{\Lambda}\frac{\mu}{\nu} such that polynomials F0(λ)=λλF_{0}(\lambda)=\lambda-\lambda^{*} and G0(λ)=1G_{0}(\lambda)=1 satisfy equation (58).

Lemma 4.4.

Let Fn(λ)=i=1m(λλi)F_{n}(\lambda)=\prod_{i=1}^{m}(\lambda-\lambda_{i}) and Gn(λ)=i=1m1(λλiρi)G_{n}(\lambda)=\prod_{i=1}^{m-1}(\lambda-\lambda_{i}-\rho_{i}) be two polynomials and μn,νn\mu_{n},\nu_{n} be two numbers satisfying

μnνn>C(Λλ1)nΛMΛλ1.\displaystyle-\frac{\mu_{n}}{\nu_{n}}>C\left(\frac{\Lambda}{\lambda_{1}}\right)^{n}\frac{\Lambda M}{\Lambda-\lambda_{1}}. (59)

Then, there exist some monic polynomials {Fj(λ)}j=1n1\{F_{j}(\lambda)\}_{j=1}^{n-1}, {Gj(λ)}j=1n1\{G_{j}(\lambda)\}_{j=1}^{n-1} and some sequences of numbers {(λj,bj,mj)}j=2n\{(\lambda_{j}^{*},b_{j},m_{j})\}_{j=2}^{n}, {(μj,νj)}j=1n1\{(\mu_{j},\nu_{j})\}_{j=1}^{n-1} such that for each j[1,n1]j\in[1,n-1], the following two properties hold:
(i) λj+1,bj+1,mj+1>0\lambda_{j+1}^{*},b_{j+1},m_{j+1}>0 and μjνj>C(Λλ1)jΛMΛλ1-\frac{\mu_{j}}{\nu_{j}}>C(\frac{\Lambda}{\lambda_{1}})^{j}\frac{\Lambda M}{\Lambda-\lambda_{1}};
(ii) if j[1,n1]h=0T2[l+1+h=1lqh,l+h=1l+1qh]j\in[1,n-1]\setminus\bigcup_{h=0}^{T-2}[l+1+\sum_{h=1}^{l}q_{h},l+\sum_{h=1}^{l+1}q_{h}], then

{μj+1Fj+1(λ)=mj+1νj+1λGj+1(λ)+bj+1μj(λj+1λ)Fj(λ)νj+1Gj+1(λ)=μjFj(λ)+bj+1νj(λj+1λ)Gj(λ),\displaystyle\left\{\begin{array}[]{l}\mu_{j+1}F_{j+1}(\lambda)=-m_{j+1}\nu_{j+1}\lambda G_{j+1}(\lambda)+b_{j+1}\mu_{j}(\lambda_{j+1}^{*}-\lambda)F_{j}(\lambda)\\ \nu_{j+1}G_{j+1}(\lambda)=\mu_{j}F_{j}(\lambda)+b_{j+1}\nu_{j}(\lambda_{j+1}^{*}-\lambda)G_{j}(\lambda)\end{array},\right. (62)

otherwise, for jl=0T2[l+1+h=1lqh,l+h=1l+1qh]j\in\bigcup_{l=0}^{T-2}[l+1+\sum_{h=1}^{l}q_{h},l+\sum_{h=1}^{l+1}q_{h}],

{μj+1Fj+1(λ)=mj+1νj+1λGj+1(λ)bj+1μjFj(λ)νj+1(λλj+1)Gj+1(λ)=μjFj(λ)+bj+1νj(λj+1λ)Gj(λ)λj+1=sl+1(l+1+h=1l+1qhj),\displaystyle\left\{\begin{array}[]{l}\mu_{j+1}F_{j+1}(\lambda)=-m_{j+1}\nu_{j+1}\lambda G_{j+1}(\lambda)-b_{j+1}\mu_{j}F_{j}(\lambda)\\ \nu_{j+1}(\lambda-\lambda_{j+1}^{*})G_{j+1}(\lambda)=\mu_{j}F_{j}(\lambda)+b_{j+1}\nu_{j}(\lambda_{j+1}^{*}-\lambda)G_{j}(\lambda)\\ \lambda_{j+1}^{*}=s_{l+1}(l+1+\sum_{h=1}^{l+1}q_{h}-j)\end{array},\right. (66)

where sl+1(l+1+h=1l+1qhj)Sl+1s_{l+1}(l+1+\sum_{h=1}^{l+1}q_{h}-j)\in S_{l+1} and Sl+1S_{l+1} is defined by (30).

Proof.

For j=n1,,1j=n-1,\ldots,1, we construct a series of numbers λj+1,bj+1,mj+1\lambda_{j+1}^{*},b_{j+1},m_{j+1}, μj,νj\mu_{j},\nu_{j} and polynomials Fj(λ)F_{j}(\lambda), Gj(λ)G_{j}(\lambda) on the basis of μj+1,νj+1\mu_{j+1},\nu_{j+1}, and Fj+1(λ)F_{j+1}(\lambda), Gj+1(λ)G_{j+1}(\lambda), according to the following strategies:

  1. a)

    if j[1,n1]l=0T2[l+1+h=1lqh,l+h=1l+1qh]j\in[1,n-1]\setminus\bigcup_{l=0}^{T-2}[l+1+\sum_{h=1}^{l}q_{h},l+\sum_{h=1}^{l+1}q_{h}], we apply Lemma 4.2 with F(λ)=Fj+1(λ)F(\lambda)=F_{j+1}(\lambda), G(λ)=Gj+1(λ)G(\lambda)=G_{j+1}(\lambda), m=mj+1m^{*}=m_{j+1}, μ=μj+1\mu=\mu_{j+1}, ν=νj+1\nu=\nu_{j+1} to obtain λj+1,bj+1\lambda_{j+1}^{*},b_{j+1}, μj,νj\mu_{j},\nu_{j} and Fj(λ)F_{j}(\lambda), Gj(λ)G_{j}(\lambda), where

    mj+1{Ml+2,j=l+1+h=1l+1qhforl<T2Mj+1n+m,j>T2+nm;\displaystyle m_{j+1}\triangleq\left\{\begin{array}[]{ll}M_{l+2},&j=l+1+\sum_{h=1}^{l+1}q_{h}\,\,\mbox{for}\,\,l<T-2\\ M_{j+1-n+m},&j>T-2+n-m\end{array};\right. (69)
  2. b)

    if j[l+1+h=1lqh,l+h=1l+1qh]j\in[l+1+\sum_{h=1}^{l}q_{h},l+\sum_{h=1}^{l+1}q_{h}] for some l[0,T2]l\in[0,T-2], we set λj+1=sl+1(l+1+h=1l+1qhj)\lambda_{j+1}^{*}=s_{l+1}(l+1+\sum_{h=1}^{l+1}q_{h}-j) and apply Lemma 4.3 with F(λ)=Fj+1(λ)F(\lambda)=F_{j+1}(\lambda), G(λ)=Gj+1(λ)G(\lambda)=G_{j+1}(\lambda), λ=λj+1\lambda^{*}=\lambda_{j+1}^{*}, μ=μj+1\mu=\mu_{j+1}, ν=νj+1\nu=\nu_{j+1} to obtain mj+1,bj+1m_{j+1},b_{j+1}, μj,νj\mu_{j},\nu_{j}, and Fj(λ)F_{j}(\lambda), Gj(λ)G_{j}(\lambda).

We shall use the induction method to show that either strategy a) or strategy b) can be implemented for each j=n1,,1j=n-1,\ldots,1. First, let j=n1j=n-1. Observe that TmT\leq m, it is easy to compute

(T2)+h=1l+1qh(m2)+(nm)=n2.(T-2)+\sum_{h=1}^{l+1}q_{h}\leq(m-2)+(n-m)=n-2.

Hence, n1l=0T2[l+1+h=1lqh,l+h=1l+1qh]n-1\notin\bigcup_{l=0}^{T-2}[l+1+\sum_{h=1}^{l}q_{h},l+\sum_{h=1}^{l+1}q_{h}]. In addition, since (59) and (69) yield μnνn>CM-\frac{\mu_{n}}{\nu_{n}}>CM and mn(0,M)m_{n}\in(0,M), by applying Lemma 4.2(i) with F(λ)=Fn(λ)F(\lambda)=F_{n}(\lambda), G(λ)=Gn(λ)G(\lambda)=G_{n}(\lambda), m=mnm^{*}=m_{n}, μ=μn\mu=\mu_{n}, ν=νn\nu=\nu_{n}, we can find some numbers λn,bn,μn1,νn1\lambda_{n}^{*},b_{n},\mu_{n-1},\nu_{n-1} with λn,bn>0\lambda_{n}^{*},b_{n}>0 and

μn1νn1>μnνnmn>C(Λλ1)n1ΛMΛλ1,-\frac{\mu_{n-1}}{\nu_{n-1}}>-\frac{\mu_{n}}{\nu_{n}}-m_{n}>C\left(\frac{\Lambda}{\lambda_{1}}\right)^{n-1}\frac{\Lambda M}{\Lambda-\lambda_{1}},

and two monic polynomials Fn1(λ)F_{n-1}(\lambda), Gn1(λ)G_{n-1}(\lambda) such that (62) holds. So, strategy a) applies and both (i) and (ii) are true for these λn,bn,μn1,νn1,Fn1(λ),Gn1(λ)\lambda_{n}^{*},b_{n},\mu_{n-1},\nu_{n-1},F_{n-1}(\lambda),G_{n-1}(\lambda).

Now, assume that we have constructed the required {(λj,bj,mj)}j=nr+1n\{(\lambda_{j}^{*},b_{j},m_{j})\}_{j=n-r+1}^{n}, {(μj,νj)}j=nrn1\{(\mu_{j},\nu_{j})\}_{j=n-r}^{n-1}, {Fj(λ)}j=nrn1\{F_{j}(\lambda)\}_{j=n-r}^{n-1} and {Gj(λ)}j=nrn1\{G_{j}(\lambda)\}_{j=n-r}^{n-1} for some r[1,n2]r\in[1,n-2] by following either strategy a) or strategy b), so that properties (i) and (ii) hold for j=n1,,nrj=n-1,\ldots,n-r. Considering Lemmas 4.2 and 4.3, we write Fnj(λ)=i=1znj(λαnj(i))F_{n-j}(\lambda)=\prod_{i=1}^{z_{n-j}}(\lambda-\alpha_{n-j}(i)) with αnj(1)<<αnj(znj)\alpha_{n-j}(1)<\cdots<\alpha_{n-j}(z_{n-j}) and Gnj(λ)=i=1znj1(λβnj(i))G_{n-j}(\lambda)=\prod_{i=1}^{z_{n-j}-1}(\lambda-\beta_{n-j}(i)) with βnj(1)<<βnj(znj1)\beta_{n-j}(1)<\cdots<\beta_{n-j}(z_{n-j}-1), j=0,1,,rj=0,1,\ldots,r. Here, for each j=0,,r1j=0,\ldots,r-1,

znj1={znj1,nj1l=0T2[l+1+h=1lqh,l+h=1l+1qh]znj,nj1l=0T2[l+1+h=1lqh,l+h=1l+1qh].\displaystyle z_{n-j-1}=\left\{\begin{array}[]{ll}z_{n-j}-1,&n-j-1\not\in\cup_{l=0}^{T-2}[l+1+\sum_{h=1}^{l}q_{h},l+\sum_{h=1}^{l+1}q_{h}]\\ z_{n-j},&n-j-1\in\cup_{l=0}^{T-2}[l+1+\sum_{h=1}^{l}q_{h},l+\sum_{h=1}^{l+1}q_{h}]\\ \end{array}.\right. (72)

Furthermore, if znr>1z_{n-r}>1, then for each j[1,r]j\in[1,r] and i[1,znr1]i\in[1,z_{n-r}-1],

{αnj(i)(αnj+1(i),βnj+1(i))C1(βnj+1(i)αnj+1(i))βnj(i)αnj(i)C2(i)(βnj+1(i)αnj+1(i)).\displaystyle\left\{\begin{array}[]{ll}\alpha_{n-j}(i)\in(\alpha_{n-j+1}(i),\beta_{n-j+1}(i))\\ C_{1}(\beta_{n-j+1}(i)-\alpha_{n-j+1}(i))\leq\beta_{n-j}(i)-\alpha_{n-j}(i)\leq C_{2}(i)(\beta_{n-j+1}(i)-\alpha_{n-j+1}(i))\end{array}.\right. (75)

Recall that αn(i)=λi\alpha_{n}(i)=\lambda_{i} and βn(i)=λi+ρi\beta_{n}(i)=\lambda_{i}+\rho_{i}, (75) implies that for i[1,znr1]i\in[1,z_{n-r}-1],

βnr(i)αnr(i)C1r(βn(i)αn(i))=C1rρi.\displaystyle\beta_{n-r}(i)-\alpha_{n-r}(i)\geq C_{1}^{r}(\beta_{n}(i)-\alpha_{n}(i))=C_{1}^{r}\rho_{i}. (76)

Moreover, by (75) again,

βnj(i)αn(i)\displaystyle\beta_{n-j}(i)-\alpha_{n}(i) =\displaystyle= βnj(i)αnj(i)+αnj(i)αn(i)\displaystyle\beta_{n-j}(i)-\alpha_{n-j}(i)+\alpha_{n-j}(i)-\alpha_{n}(i)
\displaystyle\leq C2(i)(βnj+1(i)αnj+1(i))+(βnj+1(i)αn(i))\displaystyle C_{2}(i)(\beta_{n-j+1}(i)-\alpha_{n-j+1}(i))+(\beta_{n-j+1}(i)-\alpha_{n}(i))
\displaystyle\leq (1+C2(i))(βnj+1(i)αn(i)),\displaystyle(1+C_{2}(i))(\beta_{n-j+1}(i)-\alpha_{n}(i)),

then a straightforward calculation leads to

αn(i)<αnr(i)<βnr(i)<αn(i)+(1+C2(i))r(βn(i)αn(i)).\displaystyle\alpha_{n}(i)<\alpha_{n-r}(i)<\beta_{n-r}(i)<\alpha_{n}(i)+(1+C_{2}(i))^{r}(\beta_{n}(i)-\alpha_{n}(i)). (77)

Note that by (48) in Remark 4.1,

(1+C2(i))r(βn(i)αn(i))<(1+C2(i))nρi<Δ,(1+C_{2}(i))^{r}(\beta_{n}(i)-\alpha_{n}(i))<(1+C_{2}(i))^{n}\rho_{i}<\Delta,

so by virtue of (76) and (77),

λi+C1n(i)ρi<αnr(i)+C1n(i)ρi<βnr(i)<λi+(1+C2(i))nρi<λi+1.\displaystyle\lambda_{i}+C_{1}^{n}(i)\rho_{i}<\alpha_{n-r}(i)+C_{1}^{n}(i)\rho_{i}<\beta_{n-r}(i)<\lambda_{i}+(1+C_{2}(i))^{n}\rho_{i}<\lambda_{i+1}. (78)

We remark that no matter strategy a) or b) applies, it always infers

{αnr(znr)<βnr(znr)<λznr+1,znr+11=znrαnr(znr)=λnr+1<Λ,znr+1=znr,\displaystyle\left\{\begin{array}[]{l}\alpha_{n-r}(z_{n-r})<\beta_{n-r}(z_{n-r})<\lambda_{z_{n-r}+1},\quad z_{n-r+1}-1=z_{n-r}\\ \alpha_{n-r}(z_{n-r})=\lambda_{n-r+1}^{*}<\Lambda,\quad~{}~{}~{}~{}\quad~{}~{}~{}~{}~{}z_{n-r+1}=z_{n-r}\\ \end{array},\right.

and hence

αnr(znr)[λznr,Λ).\displaystyle\alpha_{n-r}(z_{n-r})\in[\lambda_{z_{n-r}},\Lambda). (80)

We now verify that at least one of the strategies a) and b) is valid for j=nr1j=n-r-1. It is discussed by two cases.

Case 1: nr1l=0T2[l+1+h=1lqh,l+h=1l+1qh]n-r-1\not\in\cup_{l=0}^{T-2}[l+1+\sum_{h=1}^{l}q_{h},l+\sum_{h=1}^{l+1}q_{h}]. Because of (72), we estimate znrz_{n-r} directly by

znrm(n2h=1T1qh)=m(n2(nm))=2.\displaystyle z_{n-r}\geq m-\left(n-2-\sum_{h=1}^{T-1}q_{h}\right)=m-\left(n-2-(n-m)\right)=2.

Now, μnrνnr>C(Λλ1)nrΛMΛλ1-\frac{\mu_{n-r}}{\nu_{n-r}}>C(\frac{\Lambda}{\lambda_{1}})^{n-r}\frac{\Lambda M}{\Lambda-\lambda_{1}}, it thus gives μnrνnr>CM-\frac{\mu_{n-r}}{\nu_{n-r}}>CM. So combining (78) and (80), it shows that the assumptions of Lemma 4.2 are fulfilled. Therefore, Lemma 4.2 is applicable and strategy a) works. We thus conclude properties (i) and (ii) for j=nr1j=n-r-1 by Lemma 4.2 and

μnr1νnr1>μnrνnrmnr>C(Λλ1)nrΛMΛλ1M>C(Λλ1)nr1ΛMΛλ1.\displaystyle-\frac{\mu_{n-r-1}}{\nu_{n-r-1}}>-\frac{\mu_{{n-r}}}{\nu_{n-r}}-m_{n-r}>C\left(\frac{\Lambda}{\lambda_{1}}\right)^{n-r}\frac{\Lambda M}{\Lambda-\lambda_{1}}-M>C\left(\frac{\Lambda}{\lambda_{1}}\right)^{n-r-1}\frac{\Lambda M}{\Lambda-\lambda_{1}}.

Case 2: nr1[l+1+h=1lqh,l+h=1l+1qh]n-r-1\in[l+1+\sum_{h=1}^{l}q_{h},l+\sum_{h=1}^{l+1}q_{h}] for some l[0,T2]l\in[0,T-2]. If nr1<l+h=1l+1qhn-r-1<l+\sum_{h=1}^{l+1}q_{h}, then nr[l+1+h=1lqh,l+h=1l+1qh]n-r\in[l+1+\sum_{h=1}^{l}q_{h},l+\sum_{h=1}^{l+1}q_{h}], and hence Fnr(λ)F_{n-r}(\lambda) is constructed by strategy b). In view of Lemma 4.3, the maximal root of Fnr(λ)F_{n-r}(\lambda) is equivalent to λnr+1\lambda_{n-r+1}^{*}, which shows

sl+1(l+2+h=1l+1qhn+r)>sl+1(l+1+h=1l+1qhn+r)=λnr+1=αnr(znr).\displaystyle s_{l+1}(l+2+\sum\nolimits_{h=1}^{l+1}q_{h}-n+r)>s_{l+1}(l+1+\sum\nolimits_{h=1}^{l+1}q_{h}-n+r)=\lambda_{n-r+1}^{*}=\alpha_{n-r}(z_{n-r}).

If nr1=l+h=1l+1qhn-r-1=l+\sum_{h=1}^{l+1}q_{h}, then Fnr(λ)F_{n-r}(\lambda) is constructed by strategy a). Observe that

znr=T1(Tl2)=l+1,\displaystyle z_{n-r}=T-1-(T-l-2)=l+1,

so by (78), αnr(znr)<λznr+1=λl+2\alpha_{n-r}(z_{n-r})<\lambda_{z_{n-r}+1}=\lambda_{l+2}. On the other hand, if we suppose sl+1(l+2+h=1l+1qhn+r)=λis_{l+1}(l+2+\sum_{h=1}^{l+1}q_{h}-n+r)=\lambda_{i} for some i[1,m]i\in[1,m], then itil+2i\geq t_{i}\geq l+2 because of (30). As a consequence,

sl+1(l+2+h=1l+1qhn+r)λl+2,\displaystyle s_{l+1}(l+2+\sum\nolimits_{h=1}^{l+1}q_{h}-n+r)\geq\lambda_{l+2}, (81)

and hence

sl+1(l+2+h=1l+1qhn+r)>αnr(znr).\displaystyle s_{l+1}(l+2+\sum\nolimits_{h=1}^{l+1}q_{h}-n+r)>\alpha_{n-r}(z_{n-r}). (82)

We thus conclude (82) is always true in strategy a). By (80),

αnr(znr)[λznr,sl+1(l+2+h=1l+1qhn+r)).\alpha_{n-r}(z_{n-r})\in[\lambda_{z_{n-r}},s_{l+1}(l+2+\sum\nolimits_{h=1}^{l+1}q_{h}-n+r)).

This combining with (78) and (80) verifies the assumptions of Lemma 4.3. Hence, Lemma 4.3 applies and strategy b) can be implemented. So, properties (i) and (ii) hold for j=nr1j=n-r-1 due to Lemma 4.3 and

μnr1νnr1>μnrνnrλ1Λ>C(Λλ1)nr1ΛMΛλ1.-\frac{\mu_{n-r-1}}{\nu_{n-r-1}}>-\frac{\mu_{n-r}}{\nu_{n-r}}\frac{\lambda_{1}}{\Lambda}>C\left(\frac{\Lambda}{\lambda_{1}}\right)^{n-r-1}\frac{\Lambda M}{\Lambda-\lambda_{1}}.

The induction is completed. \Box

Proof of Proposition 4.1.

Let {μn,νn,Fn(λ),Gn(λ)}\{\mu_{n},\nu_{n},F_{n}(\lambda),G_{n}(\lambda)\} be defined in Lemma 4.4, then we can construct a series of numbers {(λj,bj,mj)}j=2n\{(\lambda_{j}^{*},b_{j},m_{j})\}_{j=2}^{n}, {(μj,νj)}j=1n1\{(\mu_{j},\nu_{j})\}_{j=1}^{n-1} and some monic polynomials {Fj(λ)}j=1n1\{F_{j}(\lambda)\}_{j=1}^{n-1}, {Gj(λ)}j=1n1\{G_{j}(\lambda)\}_{j=1}^{n-1}. Note that μ1ν1>M>M1-\frac{\mu_{1}}{\nu_{1}}>M>M_{1}, set

{m1=M1,b1=μ1ν1M1,k1=α1(1)μ1ν1kj=λjbj,j=2,,n.\displaystyle\left\{\begin{array}[]{l}m_{1}=M_{1},\quad b_{1}=-\frac{\mu_{1}}{\nu_{1}}-M_{1},\quad k_{1}=-\alpha_{1}(1)\frac{\mu_{1}}{\nu_{1}}\\ k_{j}=\lambda_{j}^{*}b_{j},\quad j=2,\ldots,n\\ \end{array}.\right. (85)

We shall see that {(kj,bj,mj)}j=1n\{(k_{j},b_{j},m_{j})\}_{j=1}^{n} meet the requirement of Proposition 4.1.

In fact, define a sequence of polynomials {Dj(λ)}j=1n\{D_{j}(\lambda)\}_{j=1}^{n} as follows:

{D1(λ)=1Dk+1(λ)=Dk(λ),k[1,n1]l=0T2[l+1+h=1lqj,l+h=1l+1qj]Dk+1(λ)=(λλk+1)Dk(λ),kl=0T2[l+1+h=1lqj,l+h=1l+1qj],\displaystyle\left\{\begin{array}[]{ll}D_{1}(\lambda)=1\\ D_{k+1}(\lambda)=D_{k}(\lambda),&k\in[1,n-1]\setminus\bigcup_{l=0}^{T-2}[l+1+\sum_{h=1}^{l}q_{j},l+\sum_{h=1}^{l+1}q_{j}]\\ D_{k+1}(\lambda)=(\lambda-\lambda_{k+1}^{*})D_{k}(\lambda),&k\in\bigcup_{l=0}^{T-2}[l+1+\sum_{h=1}^{l}q_{j},l+\sum_{h=1}^{l+1}q_{j}]\end{array},\right. (89)

and let

fj(λ)=μjν1Dj(λ)Fj(λ)andgj(λ)=νjν1Dj(λ)Gj(λ),j=1,,n.\displaystyle f_{j}(\lambda)=\frac{\mu_{j}}{\nu_{1}}D_{j}(\lambda)F_{j}(\lambda)\quad\mbox{and}\quad g_{j}(\lambda)=\frac{\nu_{j}}{\nu_{1}}D_{j}(\lambda)G_{j}(\lambda),\quad j=1,\ldots,n. (90)

Clearly, fn(λ)=μnν1Dn(λ)Fn(λ)=μnν1j=1m(λλj)tj.f_{n}(\lambda)=\frac{\mu_{n}}{\nu_{1}}D_{n}(\lambda)F_{n}(\lambda)=\frac{\mu_{n}}{\nu_{1}}\prod_{j=1}^{m}(\lambda-\lambda_{j})^{t_{j}}. The rest of the proof is to check whether {fj(λ)}j=1n\{f_{j}(\lambda)\}_{j=1}^{n} satisfy the recursive formula in Lemma 3.1.

Firstly, (85) and (90) imply f1(λ)=k1λ(m1+b1)f_{1}(\lambda)=k_{1}-\lambda(m_{1}+b_{1}). Moreover, in view of Lemma 4.4, G1(λ)=1G_{1}(\lambda)=1, which indicates g1(λ)=1g_{1}(\lambda)=1. Next, by Lemma 4.4 again, for j[1,n1]l=0T2[l+1+h=1lqh,l+h=1l+1qh]j\in[1,n-1]\setminus\bigcup_{l=0}^{T-2}[l+1+\sum_{h=1}^{l}q_{h},l+\sum_{h=1}^{l+1}q_{h}],

{fj+1(λ)=mj+1λgj+1(λ)+(kj+1λbj+1)fj(λ)gj+1(λ)=fj(λ)+(kj+1λbj+1)gj(λ),\displaystyle\left\{\begin{array}[]{l}f_{j+1}(\lambda)=-m_{j+1}\lambda g_{j+1}(\lambda)+(k_{j+1}-\lambda b_{j+1})f_{j}(\lambda)\\ g_{j+1}(\lambda)=f_{j}(\lambda)+(k_{j+1}-\lambda b_{j+1})g_{j}(\lambda)\end{array},\right. (93)

and for jl=0T2[l+1+h=1lqh,l+h=1l+1qh]j\in\bigcup_{l=0}^{T-2}[l+1+\sum_{h=1}^{l}q_{h},l+\sum_{h=1}^{l+1}q_{h}], we compute

fj+1(λ)\displaystyle f_{j+1}(\lambda) =\displaystyle= 1ν1μj+1Dj+1(λ)Fj+1(λ)=1ν1Dj+1(λ)(mj+1νj+1λGj+1(λ)bj+1μjFj(λ))\displaystyle\frac{1}{\nu_{1}}\mu_{j+1}D_{j+1}(\lambda)F_{j+1}(\lambda)=\frac{1}{\nu_{1}}D_{j+1}(\lambda)(-m_{j+1}\nu_{j+1}\lambda G_{j+1}(\lambda)-b_{j+1}\mu_{j}F_{j}(\lambda))
=\displaystyle= mj+1λgj+1(λ)(λλj+1)Dj(λ)ν1bj+1μjFj(λ)\displaystyle-m_{j+1}\lambda g_{j+1}(\lambda)-\frac{(\lambda-\lambda_{j+1}^{*})D_{j}(\lambda)}{\nu_{1}}b_{j+1}\mu_{j}F_{j}(\lambda)
=\displaystyle= mj+1λgj+1(λ)+(kj+1λbj+1)fj(λ),\displaystyle-m_{j+1}\lambda g_{j+1}(\lambda)+(k_{j+1}-\lambda b_{j+1})f_{j}(\lambda),
gj+1(λ)\displaystyle g_{j+1}(\lambda) =\displaystyle= νj+1ν1Dj+1(λ)Gj+1(λ)=Dj(λ)ν1νj+1(λλj+1)Gj+1(λ)\displaystyle\frac{\nu_{j+1}}{\nu_{1}}D_{j+1}(\lambda)G_{j+1}(\lambda)=\frac{D_{j}(\lambda)}{\nu_{1}}\nu_{j+1}(\lambda-\lambda_{j+1}^{*})G_{j+1}(\lambda)
=\displaystyle= Dj(λ)ν1(μjFj(λ)+bj+1νj(λj+1λ)Gj(λ))=fj(λ)+(kj+1λbj+1)gj(λ).\displaystyle\frac{D_{j}(\lambda)}{\nu_{1}}(\mu_{j}F_{j}(\lambda)+b_{j+1}\nu_{j}(\lambda_{j+1}^{*}-\lambda)G_{j}(\lambda))=f_{j}(\lambda)+(k_{j+1}-\lambda b_{j+1})g_{j}(\lambda).

The assertion thus follows. \Box

5 Concluding remarks.

The emergence of inerters in engineering brings some new phenomena in the study of inverse problems. Particularly, it enables a mass-chain system to possess multiple eigenvalues. This paper has solved the IEP for the “fixed-free” case, where the real numbers for eigenvalue assignment can be taken arbitrarily positive. Another common situation is that the both ends of the system are fixed at the wall. For such “fixed-fixed” systems, the construction cannot follow readily from the method developed in Section 4. To address this issue, a more detailed analysis is required and it would be our next work.

Appendix A Proof of Example 2.1

For each j=1,,5j=1,\ldots,5, let Fj(λ)F_{j}(\lambda) and Gj(λ)G_{j}(\lambda) be two monic polynomials such that

μjFj(λ)=fj(λ)(fj(λ),gj(λ))andνjGj(λ)=gj(λ)(fj(λ),gj(λ)),\displaystyle\mu_{j}F_{j}(\lambda)=\frac{f_{j}(\lambda)}{\left(f_{j}(\lambda),g_{j}(\lambda)\right)}\quad\mbox{and}\quad\nu_{j}G_{j}(\lambda)=\frac{g_{j}(\lambda)}{\left(f_{j}(\lambda),g_{j}(\lambda)\right)},

where μj\mu_{j} and νj\nu_{j} are the leading coefficients of fj(λ)f_{j}(\lambda) and gj(λ)g_{j}(\lambda), respectively. Apparently, μjνj<0\mu_{j}\nu_{j}<0 and

(Fj(λ),Gj(λ))=1,j=1,,5.\displaystyle(F_{j}(\lambda),G_{j}(\lambda))=1,\quad j=1,\ldots,5. (94)

Moreover, denote αj(1)<<αj(sj)\alpha_{j}(1)<\cdots<\alpha_{j}(s_{j}) and βj(1)<<βj(sj1)\beta_{j}(1)<\cdots<\beta_{j}(s_{j}-1) as the roots of Fj(λ)F_{j}(\lambda) and Gj(λ)G_{j}(\lambda). Define

J{j:kj=λ3bj,j=2,3,4,5} andH{j:Fj1(λ3)=0,j=2,3,4,5}.J\triangleq\{j:k_{j}=\lambda_{3}b_{j},j=2,3,4,5\}\quad\mbox{ and}\quad H\triangleq\{j:F_{j-1}(\lambda_{3})=0,j=2,3,4,5\}.

We first assert that JHJ\cap H cannot contain any adjacent natural numbers. Otherwise, suppose there is a number i{1,2,3}i\in\{1,2,3\} such that i+1,i+2JHi+1,i+2\in J\cap H. So, ki+1/bi+1=λ3k_{i+1}/b_{i+1}=\lambda_{3} and by Lemma 3.3,

μi+1Fi+1(λ)=mi+1νi+1λGi+1(λ)bi+1μiFi(λ).\displaystyle\mu_{i+1}F_{i+1}(\lambda)=-m_{i+1}\nu_{i+1}\lambda G_{i+1}(\lambda)-b_{i+1}\mu_{i}F_{i}(\lambda). (95)

Since the definition of HH indicates Fi(λ3)=Fi+1(λ3)=0F_{i}(\lambda_{3})=F_{i+1}(\lambda_{3})=0, then by (95),

mi+1νi+1λ3Gi+1(λ3)=bi+1μiFi(λ3)μi+1Fi+1(λ3)=0.m_{i+1}\nu_{i+1}\lambda_{3}G_{i+1}(\lambda_{3})=-b_{i+1}\mu_{i}F_{i}(\lambda_{3})-\mu_{i+1}F_{i+1}(\lambda_{3})=0.

Hence, (λλ3)|(Fi+1(λ),Gi+1(λ))(\lambda-\lambda_{3})|(F_{i+1}(\lambda),G_{i+1}(\lambda)), which contradicts to (94) that (Fi+1(λ),Gi+1(λ))=1(F_{i+1}(\lambda),G_{i+1}(\lambda))=1.

We in fact have derived |JH|2|J\cap H|\leq 2, which together with Lemma 3.2 implies F(λ3)=0F(\lambda_{3})=0 and 5H5\not\in H. On the other hand, (22) and (26) in Section 3 infer |JH|2|J\cap H|\geq 2, and hence |JH|=2|J\cap H|=2. Observe that JH{2,3}J\cap H\not=\{2,3\} or {3,4}\{3,4\}, it then follows that JH={2,4}J\cap H=\{2,4\}. So, α1(1)=λ3\alpha_{1}(1)=\lambda_{3} and by Lemma 3.3(i), s2=1s_{2}=1 and α2(1)<λ3\alpha_{2}(1)<\lambda_{3}. For the roots of Fj(λ),j=3,4,5F_{j}(\lambda),j=3,4,5, they can be discussed similarly by using Lemma 3.3 repeatedly. Indeed, 3JH3\notin J\cap H and 4H4\in H lead to s3=2s_{3}=2 and F3(λ3)=0F_{3}(\lambda_{3})=0, respectively. So,

{0<α3(1)<α2(1)<α3(2)=λ3,b3=0α3(1)<min{α2(1),k3/b3}<λ3,andα3(2)=λ3<k3/b3,b3>0.\displaystyle\left\{\begin{array}[]{ll}0<\alpha_{3}(1)<\alpha_{2}(1)<\alpha_{3}(2)=\lambda_{3},&b_{3}=0\\ \alpha_{3}(1)<\min\{\alpha_{2}(1),k_{3}/b_{3}\}<\lambda_{3},\quad\mbox{and}\quad\alpha_{3}(2)=\lambda_{3}<k_{3}/b_{3},&b_{3}>0\end{array}.\right.

In addition, 4JH4\in J\cap H indicates s4=2s_{4}=2 and

α4(1)<α3(1)<α4(2)<α3(2)=λ3.\displaystyle\alpha_{4}(1)<\alpha_{3}(1)<\alpha_{4}(2)<\alpha_{3}(2)=\lambda_{3}. (97)

At last, since 5JH5\notin J\cap H, s5=3s_{5}=3. By |JH|=2|J\cap H|=2 and (26), (f5(λ),g5(λ))=(λλ3)2,(f_{5}(\lambda),g_{5}(\lambda))=(\lambda-\lambda_{3})^{2}, which immediately gives F5(λ)=i=13(λλi)F_{5}(\lambda)=\prod_{i=1}^{3}(\lambda-\lambda_{i}). So, α5(1)=λ1<α5(2)=λ2<α5(3)=λ3\alpha_{5}(1)=\lambda_{1}<\alpha_{5}(2)=\lambda_{2}<\alpha_{5}(3)=\lambda_{3}. If b5>0b_{5}>0, then (97) infers that λ3<k5/b5\lambda_{3}<k_{5}/b_{5}. Therefore,

{0<α5(1)<α4(1)<α5(2)<α4(2)<α5(3)=λ3,b5=0α5(1)<α4(1)<α5(2)<α4(2)<α5(3)=λ3<k5/b5,b5>0.\displaystyle\left\{\begin{array}[]{ll}0<\alpha_{5}(1)<\alpha_{4}(1)<\alpha_{5}(2)<\alpha_{4}(2)<\alpha_{5}(3)=\lambda_{3},&b_{5}=0\\ \alpha_{5}(1)<\alpha_{4}(1)<\alpha_{5}(2)<\alpha_{4}(2)<\alpha_{5}(3)=\lambda_{3}<k_{5}/b_{5},&b_{5}>0\end{array}.\right.

We thus summarize

{s5=3,s4=s3=2,s2=s1=1α2(s2),α4(s4)<λ3andα1(s1)=α3(s3)=α5(s5)=λ3αj+1(i)<αj(i)<αj+1(i+1),j[1,4],i[1,sj+11]\displaystyle\left\{\begin{array}[]{l}s_{5}=3,\quad s_{4}=s_{3}=2,\quad s_{2}=s_{1}=1\\ \alpha_{2}(s_{2}),\alpha_{4}(s_{4})<\lambda_{3}\quad\mbox{and}\quad\alpha_{1}(s_{1})=\alpha_{3}(s_{3})=\alpha_{5}(s_{5})=\lambda_{3}\\ \alpha_{j+1}(i)<\alpha_{j}(i)<\alpha_{j+1}(i+1),\quad j\in[1,4],\,i\in[1,s_{j+1}-1]\end{array}\right. (102)

and

{kj/bj=λ3andbj>0,j=2,4kj/bj>λ3ifbj>0,j=3,5.\displaystyle\left\{\begin{array}[]{ll}k_{j}/b_{j}=\lambda_{3}\,\,\mbox{and}\,\,b_{j}>0,&j=2,4\\ k_{j}/b_{j}>\lambda_{3}\,\,\mbox{if}\,\,b_{j}>0,&j=3,5\end{array}.\right. (105)

This means J=JH={2,4}J=J\cap H=\{2,4\} and as a consequence, by Lemma 3.3,

{μj+1Fj+1(λ)=λmj+1νj+1Gj+1(λ)bj+1μjFj(λ)(λkj+1bj+1)νj+1Gj+1(λ)=μjFj(λ)+(kj+1λbj+1)νjGj(λ),j=1,3\displaystyle\left\{\begin{array}[]{l}\mu_{j+1}F_{j+1}(\lambda)=-\lambda m_{j+1}\nu_{j+1}G_{j+1}(\lambda)-b_{j+1}\mu_{j}F_{j}(\lambda)\\ \left(\lambda-\frac{k_{j+1}}{b_{j+1}}\right)\nu_{j+1}G_{j+1}(\lambda)=\mu_{j}F_{j}(\lambda)+(k_{j+1}-\lambda b_{j+1})\nu_{j}G_{j}(\lambda)\end{array},\quad j=1,3\right. (108)

and

{μj+1Fj+1(λ)=λmj+1νj+1Gj+1(λ)+(kj+1λbj+1)μjFj(λ)νj+1Gj+1(λ)=μjFj(λ)+(kj+1λbj+1)νjGj(λ),j=2,4.\displaystyle\left\{\begin{array}[]{l}\mu_{j+1}F_{j+1}(\lambda)=-\lambda m_{j+1}\nu_{j+1}G_{j+1}(\lambda)+(k_{j+1}-\lambda b_{j+1})\mu_{j}F_{j}(\lambda)\\ \nu_{j+1}G_{j+1}(\lambda)=\mu_{j}F_{j}(\lambda)+(k_{j+1}-\lambda b_{j+1})\nu_{j}G_{j}(\lambda)\end{array},\quad j=2,4.\right. (111)

With the above properties, we can also present the relationship between the roots of Fj(λ)F_{j}(\lambda) and Gj+1(λ)G_{j+1}(\lambda) for j=2,4j=2,4. In fact, when j=2,4j=2,4, sj+1=sj+1s_{j+1}=s_{j}+1 and by (21), (102) and (105), μjFj(λ)νj(λbj+1kj+1)Gj(λ)\mu_{j}F_{j}(\lambda)\ll-\nu_{j}(\lambda b_{j+1}-k_{j+1})G_{j}(\lambda). Then, (21), Lemma 3.2, (102) and (111) imply

αj(1)<βj+1(1)<αj(2)<<αj(sj)<βj+1(sj+11)<αj+1(sj+1)=λ3,j=2,4.\displaystyle\alpha_{j}(1)<\beta_{j+1}(1)<\alpha_{j}(2)<\cdots<\alpha_{j}(s_{j})<\beta_{j+1}(s_{j+1}-1)<\alpha_{j+1}(s_{j+1})=\lambda_{3},\quad j=2,4. (112)

Now, we prove (6) by using reduction to absurdity. Suppose

maxj[2,4]mjmj+1σλ18λ3(1(λ2λ3)13).\displaystyle\max_{j\in[2,4]}\frac{m_{j}}{m_{j+1}}\leq\sigma\triangleq\frac{\lambda_{1}}{8\lambda_{3}}\left(1-\left(\frac{\lambda_{2}}{\lambda_{3}}\right)^{\frac{1}{3}}\right). (113)

First, it is evident that for each j[1,4]j\in[1,4], (102), (108) and (111) yield

mj+1=μj+1νj+1Fj+1(αj(1))αj(1)Gj+1(αj(1))\displaystyle m_{j+1}=-\frac{\mu_{j+1}}{\nu_{j+1}}\frac{F_{j+1}(\alpha_{j}(1))}{\alpha_{j}(1)G_{j+1}(\alpha_{j}(1))} =\displaystyle= μj+1νj+1i=1sj+1(αj(1)αj+1(i))αj(1)i=1sj+11(αj(1)βj+1(i))\displaystyle-\frac{\mu_{j+1}}{\nu_{j+1}}\frac{\prod_{i=1}^{s_{j+1}}(\alpha_{j}(1)-\alpha_{j+1}(i))}{\alpha_{j}(1)\prod_{i=1}^{s_{j+1}-1}(\alpha_{j}(1)-\beta_{j+1}(i))} (114)
\displaystyle\geq μj+1νj+1αj(1)αj+1(1)αj(1).\displaystyle-\frac{\mu_{j+1}}{\nu_{j+1}}\frac{\alpha_{j}(1)-\alpha_{j+1}(1)}{\alpha_{j}(1)}.

In particular, when j=1,3j=1,3, (21) further implies

mj+1=μj+1νj+1Fj+1(αj(sj))αj(sj)Gj+1(αj(sj))=μj+1νj+1i=1sj+1(λ3αj+1(i))λ3i=1sj+11(λ3βj+1(i))<μj+1νj+1.\displaystyle m_{j+1}=-\frac{\mu_{j+1}}{\nu_{j+1}}\frac{F_{j+1}(\alpha_{j}(s_{j}))}{\alpha_{j}(s_{j})G_{j+1}(\alpha_{j}(s_{j}))}=-\frac{\mu_{j+1}}{\nu_{j+1}}\frac{\prod_{i=1}^{s_{j+1}}(\lambda_{3}-\alpha_{j+1}(i))}{\lambda_{3}\prod_{i=1}^{s_{j+1}-1}(\lambda_{3}-\beta_{j+1}(i))}<-\frac{\mu_{j+1}}{\nu_{j+1}}. (115)

Note that by comparing the leading coefficients of the polynomials in (108)–(111), we assert that for each j[1,4]j\in[1,4] with bj+1>0b_{j+1}>0,

μjνj=μj+1+mj+1νj+1νj+1μj.\displaystyle-\frac{\mu_{j}}{\nu_{j}}=-\frac{\mu_{j+1}+m_{j+1}\nu_{j+1}}{\nu_{j+1}-\mu_{j}}. (116)

Finally, let us complete the proof by considering the following four cases.

Case 1: b3b5>0b_{3}b_{5}>0. First, we estimate mj/mj+1m_{j}/m_{j+1} for j=2,4j=2,4. Let ςj=kj+1/bj+1\varsigma_{j}=k_{j+1}/b_{j+1}, then ςj>αj+1(sj+1)=λ3\varsigma_{j}>\alpha_{j+1}(s_{j+1})=\lambda_{3} by (102)–(105). Therefore, noting that νj+1μj>0\nu_{j+1}\mu_{j}>0, (21) and (116) lead to

μjνj\displaystyle-\frac{\mu_{j}}{\nu_{j}} =\displaystyle= μj+1+mj+1νj+1νj+1μj>μj+1+mj+1νj+1νj+1=μj+1νj+1(1Fj+1(ςj)ςjGj+1(ςj))\displaystyle-\frac{\mu_{j+1}+m_{j+1}\nu_{j+1}}{\nu_{j+1}-\mu_{j}}>-\frac{\mu_{j+1}+m_{j+1}\nu_{j+1}}{\nu_{j+1}}=-\frac{\mu_{j+1}}{\nu_{j+1}}\left(1-\frac{F_{j+1}(\varsigma_{j})}{\varsigma_{j}G_{j+1}(\varsigma_{j})}\right) (117)
=\displaystyle= μj+1νj+1ςji=1sj+11(ςjβj+1(i))i=1sj+1(ςjαj+1(i))ςji=1sj+11(ςjβj+1(i))\displaystyle-\frac{\mu_{j+1}}{\nu_{j+1}}\frac{\varsigma_{j}\prod_{i=1}^{s_{j+1}-1}(\varsigma_{j}-\beta_{j+1}(i))-\prod_{i=1}^{s_{j+1}}(\varsigma_{j}-\alpha_{j+1}(i))}{\varsigma_{j}\prod_{i=1}^{s_{j+1}-1}(\varsigma_{j}-\beta_{j+1}(i))}
>\displaystyle> μj+1νj+1αj+1(1)i=1sj+11(ςjβj+1(i))ςji=1sj+11(ςjβj+1(i))\displaystyle-\frac{\mu_{j+1}}{\nu_{j+1}}\frac{\alpha_{j+1}(1)\prod_{i=1}^{s_{j+1}-1}(\varsigma_{j}-\beta_{j+1}(i))}{\varsigma_{j}\prod_{i=1}^{s_{j+1}-1}(\varsigma_{j}-\beta_{j+1}(i))}
=\displaystyle= μj+1νj+1αj+1(1)ςjμj+1νj+1λ1ςj,j=2,4.\displaystyle-\frac{\mu_{j+1}}{\nu_{j+1}}\frac{\alpha_{j+1}(1)}{\varsigma_{j}}\geq-\frac{\mu_{j+1}}{\nu_{j+1}}\frac{\lambda_{1}}{\varsigma_{j}},\quad j=2,4.

So, if ςj2λ3\varsigma_{j}\leq 2\lambda_{3}, the above inequality reduces to

μjνj>μj+1νj+1λ12λ3,j=2,4.\displaystyle-\frac{\mu_{j}}{\nu_{j}}>-\frac{\mu_{j+1}}{\nu_{j+1}}\frac{\lambda_{1}}{2\lambda_{3}},\quad j=2,4. (118)

We next treat ς2>2λ3\varsigma_{2}>2\lambda_{3}. Since (21) and (102) imply β3(1)<α3(2)\beta_{3}(1)<\alpha_{3}(2) and λ1=α5(1)<α3(1)\lambda_{1}=\alpha_{5}(1)<\alpha_{3}(1), then

(ς2λ1)G3(ς2)=(ς2λ1)(ς2β3(1))>(ς2α3(1))(ς2α3(2))=F3(ς2),\displaystyle(\varsigma_{2}-\lambda_{1})G_{3}(\varsigma_{2})=(\varsigma_{2}-\lambda_{1})(\varsigma_{2}-\beta_{3}(1))>(\varsigma_{2}-\alpha_{3}(1))(\varsigma_{2}-\alpha_{3}(2))=F_{3}(\varsigma_{2}),

which is equivalent to 1F3(ς2)ς2G3(ς2)>λ1ς2.1-\frac{F_{3}(\varsigma_{2})}{\varsigma_{2}G_{3}(\varsigma_{2})}>\frac{\lambda_{1}}{\varsigma_{2}}. Further, by (111) again, μ2/ν3=G3(ς2)/F2(ς2)\mu_{2}/\nu_{3}=G_{3}(\varsigma_{2})/F_{2}(\varsigma_{2}), so (112) shows

μ2ν2\displaystyle-\frac{\mu_{2}}{\nu_{2}} =\displaystyle= μ3+m3ν3ν3μ2=μ3ν31F3(ς2)ς2G3(ς2)1G3(ς2)F2(ς2)>μ3ν3λ1ς2F2(ς2)F2(ς2)G3(ς2)\displaystyle-\frac{\mu_{3}+m_{3}\nu_{3}}{\nu_{3}-\mu_{2}}=-\frac{\mu_{3}}{\nu_{3}}\frac{1-\frac{F_{3}(\varsigma_{2})}{\varsigma_{2}G_{3}(\varsigma_{2})}}{1-\frac{G_{3}(\varsigma_{2})}{F_{2}(\varsigma_{2})}}>-\frac{\mu_{3}}{\nu_{3}}\frac{\lambda_{1}}{\varsigma_{2}}\frac{F_{2}(\varsigma_{2})}{F_{2}(\varsigma_{2})-G_{3}(\varsigma_{2})} (119)
=\displaystyle= μ3ν3λ1β3(1)α2(1)ς2α2(1)ς2>μ3ν3λ1λ3(1λ32λ3)>μ3ν3λ18λ3.\displaystyle-\frac{\mu_{3}}{\nu_{3}}\frac{\lambda_{1}}{\beta_{3}(1)-\alpha_{2}(1)}\frac{\varsigma_{2}-\alpha_{2}(1)}{\varsigma_{2}}>-\frac{\mu_{3}}{\nu_{3}}\frac{\lambda_{1}}{\lambda_{3}}\left(1-\frac{\lambda_{3}}{2\lambda_{3}}\right)>-\frac{\mu_{3}}{\nu_{3}}\frac{\lambda_{1}}{8\lambda_{3}}. (120)

As for ς4>2λ3\varsigma_{4}>2\lambda_{3}, similar to (119), we compute by (112) that

μ4ν4\displaystyle-\frac{\mu_{4}}{\nu_{4}} >\displaystyle> μ5ν5λ1ς4F4(ς4)F4(ς4)G5(ς4)\displaystyle-\frac{\mu_{5}}{\nu_{5}}\frac{\lambda_{1}}{\varsigma_{4}}\frac{F_{4}(\varsigma_{4})}{F_{4}(\varsigma_{4})-G_{5}(\varsigma_{4})} (121)
=\displaystyle= μ5ν5λ1ς4(ς4α4(1))(ς4α4(2))(ς4α4(1))(ς4α4(2))(ς4β5(1))(ς4β5(2))\displaystyle-\frac{\mu_{5}}{\nu_{5}}\frac{\lambda_{1}}{\varsigma_{4}}\frac{(\varsigma_{4}-\alpha_{4}(1))(\varsigma_{4}-\alpha_{4}(2))}{(\varsigma_{4}-\alpha_{4}(1))(\varsigma_{4}-\alpha_{4}(2))-(\varsigma_{4}-\beta_{5}(1))(\varsigma_{4}-\beta_{5}(2))}
=\displaystyle= μ5ν5λ1ς4(ς4α4(1))(ς4α4(2))(β5(1)+β5(2)α4(1)α4(2))ς4+α4(1)α4(2)β5(1)β5(2)\displaystyle-\frac{\mu_{5}}{\nu_{5}}\frac{\lambda_{1}}{\varsigma_{4}}\frac{(\varsigma_{4}-\alpha_{4}(1))(\varsigma_{4}-\alpha_{4}(2))}{(\beta_{5}(1)+\beta_{5}(2)-\alpha_{4}(1)-\alpha_{4}(2))\varsigma_{4}+\alpha_{4}(1)\alpha_{4}(2)-\beta_{5}(1)\beta_{5}(2)}
>\displaystyle> μ5ν5λ1β5(1)+β5(2)α4(1)α4(2)ς4α4(1)ς4ς4α4(2)ς4\displaystyle-\frac{\mu_{5}}{\nu_{5}}\frac{\lambda_{1}}{\beta_{5}(1)+\beta_{5}(2)-\alpha_{4}(1)-\alpha_{4}(2)}\frac{\varsigma_{4}-\alpha_{4}(1)}{\varsigma_{4}}\frac{\varsigma_{4}-\alpha_{4}(2)}{\varsigma_{4}}
>\displaystyle> μ5ν5λ12λ3(1λ32λ3)2=μ5ν5λ18λ3.\displaystyle-\frac{\mu_{5}}{\nu_{5}}\frac{\lambda_{1}}{2\lambda_{3}}\left(1-\frac{\lambda_{3}}{2\lambda_{3}}\right)^{2}=-\frac{\mu_{5}}{\nu_{5}}\frac{\lambda_{1}}{8\lambda_{3}}.

As a result, by (118), (120) and (121), the following inequality always holds:

μjνj>μj+1νj+1λ18λ3,j=2,4,\displaystyle-\frac{\mu_{j}}{\nu_{j}}>-\frac{\mu_{j+1}}{\nu_{j+1}}\frac{\lambda_{1}}{8\lambda_{3}},\quad j=2,4,

and thus (114) and (115) yield

mj>μj+1νj+1λ18λ3αj1(1)αj(1)αj1(1)>mj+1λ18λ3αj1(1)αj(1)αj1(1),j=2,4.\displaystyle m_{j}>-\frac{\mu_{j+1}}{\nu_{j+1}}\frac{\lambda_{1}}{8\lambda_{3}}\frac{\alpha_{j-1}(1)-\alpha_{j}(1)}{\alpha_{j-1}(1)}>m_{j+1}\frac{\lambda_{1}}{8\lambda_{3}}\frac{\alpha_{j-1}(1)-\alpha_{j}(1)}{\alpha_{j-1}(1)},\quad j=2,4. (122)

We proceed to the calculation of m3/m4m_{3}/m_{4}. Note that λ1<β4(1)<α4(2)<α3(2)=λ3\lambda_{1}<\beta_{4}(1)<\alpha_{4}(2)<\alpha_{3}(2)=\lambda_{3}, then analogous to (117), we can prove μ3ν3>μ4ν4λ1λ3,-\frac{\mu_{3}}{\nu_{3}}>-\frac{\mu_{4}}{\nu_{4}}\frac{\lambda_{1}}{\lambda_{3}}, which together with (114) and (115) leads to

m3μ4ν4λ1λ3α2(1)α3(1)α2(1)>m4λ1λ3α2(1)α3(1)α2(1).\displaystyle m_{3}\geq-\frac{\mu_{4}}{\nu_{4}}\frac{\lambda_{1}}{\lambda_{3}}\frac{\alpha_{2}(1)-\alpha_{3}(1)}{\alpha_{2}(1)}>m_{4}\frac{\lambda_{1}}{\lambda_{3}}\frac{\alpha_{2}(1)-\alpha_{3}(1)}{\alpha_{2}(1)}. (123)

Now, combining (122) and (123), (113) derives

λ18λ3αj(1)αj+1(1)αj(1)σ,j=1,2,3.\displaystyle\frac{\lambda_{1}}{8\lambda_{3}}\frac{\alpha_{j}(1)-\alpha_{j+1}(1)}{\alpha_{j}(1)}\leq\sigma,\quad j=1,2,3.

This is no other than

αj(1)αj+1(1)λ1λ18λ3σ,j=1,2,3.\displaystyle\frac{\alpha_{j}(1)}{\alpha_{j+1}(1)}\leq\frac{\lambda_{1}}{\lambda_{1}-8\lambda_{3}\sigma},\quad j=1,2,3.

Consequently,

λ3=α1(1)(λ1λ18λ3σ)3α4(1)<(λ1λ18λ3σ)3λ2,\displaystyle\lambda_{3}=\alpha_{1}(1)\leq\left(\frac{\lambda_{1}}{\lambda_{1}-8\lambda_{3}\sigma}\right)^{3}\alpha_{4}(1)<\left(\frac{\lambda_{1}}{\lambda_{1}-8\lambda_{3}\sigma}\right)^{3}\lambda_{2},

which contradicts to the definition of σ\sigma in (113).

Case 2: b3=b5=0b_{3}=b_{5}=0. Then, (111) infers

m3=μ3ν3andm5=μ5ν5.\displaystyle m_{3}=-\frac{\mu_{3}}{\nu_{3}}\quad\mbox{and}\quad m_{5}=-\frac{\mu_{5}}{\nu_{5}}.

In this case, ν5=μ4\nu_{5}=\mu_{4} and then (111) becomes

{μ5(F5(λ)λG5(λ))=k5ν5F4(λ)μ4(G5(λ)F4(λ))=k5ν4G4(λ).\displaystyle\left\{\begin{array}[]{l}\mu_{5}(F_{5}(\lambda)-\lambda G_{5}(\lambda))=k_{5}\nu_{5}F_{4}(\lambda)\\ \mu_{4}(G_{5}(\lambda)-F_{4}(\lambda))=k_{5}\nu_{4}G_{4}(\lambda)\end{array}.\right. (126)

Since deg(F5(λ)λG5(λ))=2\deg(F_{5}(\lambda)-\lambda G_{5}(\lambda))=2 and deg(G5(λ)F4(λ))=1\deg(G_{5}(\lambda)-F_{4}(\lambda))=1, comparing the leading coefficients of the polynomials in (126), we calculate

μ4ν4(i=12β5(i)i=12α4(i))=μ5ν5(i=13α5(i)i=12β5(i))=k5.\displaystyle-\frac{\mu_{4}}{\nu_{4}}\left(\sum_{i=1}^{2}\beta_{5}(i)-\sum_{i=1}^{2}\alpha_{4}(i)\right)=-\frac{\mu_{5}}{\nu_{5}}\left(\sum_{i=1}^{3}\alpha_{5}(i)-\sum_{i=1}^{2}\beta_{5}(i)\right)=k_{5}.

Consequently, by (21) and (112),

μ4ν4=μ5ν5i=13α5(i)i=12β5(i)i=12β5(i)i=12α4(i)>μ5ν5α5(1)2λ3>λ12λ3m5,\displaystyle-\frac{\mu_{4}}{\nu_{4}}=-\frac{\mu_{5}}{\nu_{5}}\frac{\sum_{i=1}^{3}\alpha_{5}(i)-\sum_{i=1}^{2}\beta_{5}(i)}{\sum_{i=1}^{2}\beta_{5}(i)-\sum_{i=1}^{2}\alpha_{4}(i)}>-\frac{\mu_{5}}{\nu_{5}}\frac{\alpha_{5}(1)}{2\lambda_{3}}>\frac{\lambda_{1}}{2\lambda_{3}}m_{5}, (127)

and hence

m3=μ3ν3=μ4+m4ν4ν4μ3>μ4ν4m4=λ12λ3m5m4.\displaystyle m_{3}=-\frac{\mu_{3}}{\nu_{3}}=-\frac{\mu_{4}+m_{4}\nu_{4}}{\nu_{4}-\mu_{3}}>-\frac{\mu_{4}}{\nu_{4}}-m_{4}=\frac{\lambda_{1}}{2\lambda_{3}}m_{5}-m_{4}.

Therefore, by (113),

σ2m5m3>λ12λ3m5m4λ12λ3m5σm5,\sigma^{2}m_{5}\geq m_{3}>\frac{\lambda_{1}}{2\lambda_{3}}m_{5}-m_{4}\geq\frac{\lambda_{1}}{2\lambda_{3}}m_{5}-\sigma m_{5},

which infers σ2+σ>λ12λ3\sigma^{2}+\sigma>\frac{\lambda_{1}}{2\lambda_{3}}. This is impossible due to the definition of σ\sigma in (113).

Case 3: b3=0b_{3}=0 and b5>0b_{5}>0. Then, m3=μ3ν3m_{3}=-\frac{\mu_{3}}{\nu_{3}} and a similar argument as (127) indicates

μ2ν2=μ3ν3i=12α3(i)β3(1)β3(1)α2(1),\displaystyle-\frac{\mu_{2}}{\nu_{2}}=-\frac{\mu_{3}}{\nu_{3}}\frac{\sum_{i=1}^{2}\alpha_{3}(i)-\beta_{3}(1)}{\beta_{3}(1)-\alpha_{2}(1)},

and then by (21) and (112),

m2\displaystyle m_{2} =\displaystyle= μ2ν2λ3α2(1)λ3=μ3ν3λ3α2(1)λ3i=12α3(i)β3(1)β3(1)α2(1)\displaystyle-\frac{\mu_{2}}{\nu_{2}}\frac{\lambda_{3}-\alpha_{2}(1)}{\lambda_{3}}=-\frac{\mu_{3}}{\nu_{3}}\frac{\lambda_{3}-\alpha_{2}(1)}{\lambda_{3}}\frac{\sum_{i=1}^{2}\alpha_{3}(i)-\beta_{3}(1)}{\beta_{3}(1)-\alpha_{2}(1)}
>\displaystyle> μ3ν3i=12α3(i)β3(1)λ3>m3λ1λ3.\displaystyle-\frac{\mu_{3}}{\nu_{3}}\frac{\sum_{i=1}^{2}\alpha_{3}(i)-\beta_{3}(1)}{\lambda_{3}}>m_{3}\frac{\lambda_{1}}{\lambda_{3}}.

It contradicts to (113) that m2m3σ<λ1λ3\frac{m_{2}}{m_{3}}\leq\sigma<\frac{\lambda_{1}}{\lambda_{3}}.

Case 4: b3>0b_{3}>0 and b5=0b_{5}=0. Then, (127) holds and according to (114),

m4>μ4ν4α3(1)α4(1)α3(1)>m5λ12λ3α3(1)α4(1)α3(1).\displaystyle m_{4}>-\frac{\mu_{4}}{\nu_{4}}\frac{\alpha_{3}(1)-\alpha_{4}(1)}{\alpha_{3}(1)}>m_{5}\frac{\lambda_{1}}{2\lambda_{3}}\frac{\alpha_{3}(1)-\alpha_{4}(1)}{\alpha_{3}(1)}.

By (117)–(120) and (123) in Case 1, we can demonstrate

mj>mj+1λ18λ3αj1(1)αj(1)αj1(1),j=2,3.\displaystyle m_{j}>m_{j+1}\frac{\lambda_{1}}{8\lambda_{3}}\frac{\alpha_{j-1}(1)-\alpha_{j}(1)}{\alpha_{j-1}(1)},\quad j=2,3.

The rest of the proof thus keeps the same as that in Case 1. \Box

Appendix B Proof of Remark 4.1

We only prove (48), as the other results are trivial. First, note that C2(m1)>1C_{2}(m-1)>1 and Λ/Δ2\Lambda/\Delta\geq 2, so

(1+C2(m1))nρm1\displaystyle(1+C_{2}(m-1))^{n}\rho_{m-1} <\displaystyle< 2nC2n(m1)ρm1=2n(22n(n+1)2Λn(n+1)Δn2εn)εn+1\displaystyle 2^{n}C_{2}^{n}(m-1)\rho_{m-1}=2^{n}\left(\frac{2^{2n(n+1)^{2}}\Lambda^{n(n+1)}}{\Delta^{n^{2}}\varepsilon^{n}}\right)\varepsilon^{n+1}
<\displaystyle< 22(n+1)3Λ(n+1)22Δn2+nε<Δ2n<Δ2.\displaystyle\frac{2^{2(n+1)^{3}}\Lambda^{(n+1)^{2}}}{2\Delta^{n^{2}+n}}\varepsilon<\frac{\Delta}{2n}<\frac{\Delta}{2}.

Let m>2m>2. Since 2ε<12\varepsilon<1, for each j[1,m2]j\in[1,m-2],

(1+C2(j))nρj\displaystyle(1+C_{2}(j))^{n}\rho_{j} <\displaystyle< 2nC2n(j)ρj=2n(22n(n+1)2Λn(n+1)Δn2εn(n+1)mj1)ε(n+1)mj\displaystyle 2^{n}C_{2}^{n}(j)\rho_{j}=2^{n}\left(\frac{2^{2n(n+1)^{2}}\Lambda^{n(n+1)}}{\Delta^{n^{2}}\varepsilon^{n(n+1)^{m-j-1}}}\right)\varepsilon^{(n+1)^{m-j}}
=\displaystyle= 2n(22n(n+1)2Λn(n+1)Δn2)(ε(n+1)mj2)n+1\displaystyle 2^{n}\left(\frac{2^{2n(n+1)^{2}}\Lambda^{n(n+1)}}{\Delta^{n^{2}}}\right)\left(\varepsilon^{(n+1)^{m-j-2}}\right)^{n+1}
<\displaystyle< 22n(n+1)2Λn(n+1)Δn2ε(n+1)mj2=C2n(j+1)ρj+1<(1+C2(j+1))nρj+1.\displaystyle\frac{2^{2n(n+1)^{2}}\Lambda^{n(n+1)}}{\Delta^{n^{2}}}\varepsilon^{(n+1)^{m-j-2}}=C_{2}^{n}(j+1)\rho_{j+1}<(1+C_{2}(j+1))^{n}\rho_{j+1}.

When m>3m>3, for each j[2,m2]j\in[2,m-2],

n(1+C2(j1))nρj1Δ\displaystyle\frac{n(1+C_{2}(j-1))^{n}\rho_{j-1}}{\Delta} <\displaystyle< n2nC2n(j1)ρj1Δ=n2n(22n(n+1)2Λn(n+1)Δn2+1)ε(n+1)mj\displaystyle\frac{n2^{n}C_{2}^{n}(j-1)\rho_{j-1}}{\Delta}=n2^{n}\left(\frac{2^{2n(n+1)^{2}}\Lambda^{n(n+1)}}{\Delta^{n^{2}+1}}\right)\varepsilon^{(n+1)^{m-j}}
=\displaystyle= n2n(22n(n+1)2Λn(n+1)Δn2+1)ε(n+1)mj(n+1)mj1ρj+1\displaystyle n2^{n}\left(\frac{2^{2n(n+1)^{2}}\Lambda^{n(n+1)}}{\Delta^{n^{2}+1}}\right)\varepsilon^{(n+1)^{m-j}-(n+1)^{m-j-1}}\rho_{j+1}
<\displaystyle< n2n(22n(n+1)2Λn(n+1)εΔn2+1)ρj+1\displaystyle n2^{n}\left(\frac{2^{2n(n+1)^{2}}\Lambda^{n(n+1)}\varepsilon}{\Delta^{n^{2}+1}}\right)\rho_{j+1}
<\displaystyle< Δn2(n+1)3Λn+1ρj+114(Δn2(n+1)2Λn+1)ρj+1.\displaystyle\frac{\Delta^{n}}{2^{(n+1)^{3}}\Lambda^{n+1}}\rho_{j+1}\leq\frac{1}{4}\left(\frac{\Delta^{n}}{2^{(n+1)^{2}}\Lambda^{n+1}}\right)\rho_{j+1}.

Hence, (48) follows immediately.

Appendix C Proofs of Lemmas 4.24.3

Proof of Lemma 4.2.

Let p1p\geq 1. We first take a number λ\lambda^{*} satisfying

λ>αpandμνF(λ)λG(λ)=m.\displaystyle\lambda^{*}>\alpha_{p}\quad\mbox{and}\quad-\frac{\mu}{\nu}\frac{F(\lambda^{*})}{\lambda^{*}G(\lambda^{*})}=m^{*}. (128)

Such λ\lambda^{*} indeed exists because of (49)–(51), which yield μνF(αp)αpG(αp)=0-\frac{\mu}{\nu}\frac{F(\alpha_{p})}{\alpha_{p}G(\alpha_{p})}=0 and

limλ+μνF(λ)λG(λ)=μν>CM>m.\displaystyle\lim_{\lambda\rightarrow+\infty}-\frac{\mu}{\nu}\frac{F(\lambda)}{\lambda G(\lambda)}=-\frac{\mu}{\nu}>CM>m^{*}.

Then, let

{F0(λ)=μF(λ)+mνλG(λ)(μ+mν)(λλ)b=μ+mννF0(λ)G(λ)μ0=νG(λ)F0(λ)G0(λ)=νG(λ)μ0F0(λ)(νμ0)(λλ)ν0=μ0νb,\displaystyle\left\{\begin{array}[]{l}F_{0}(\lambda)=\frac{\mu F(\lambda)+m^{*}\nu\lambda G(\lambda)}{(\mu+m^{*}\nu)(\lambda-\lambda^{*})}\\ b^{*}=-\frac{\mu+m^{*}\nu}{\nu}\frac{F_{0}(\lambda^{*})}{G(\lambda^{*})}\\ \mu_{0}=\nu\frac{G(\lambda^{*})}{F_{0}(\lambda^{*})}\\ G_{0}(\lambda)=\frac{\nu G(\lambda)-\mu_{0}F_{0}(\lambda)}{(\nu-\mu_{0})(\lambda-\lambda^{*})}\\ \nu_{0}=\frac{\mu_{0}-\nu}{b^{*}}\end{array},\right. (134)

we shall show that all the above defined numbers and polynomials fulfill our requirements.

Observe that μν<0\mu\nu<0 and by (50)–(51),

αpλp>λp1+(1+C2(p1))nρp1>βp1>αp1>>β1>α1>0,\alpha_{p}\geq\lambda_{p}>\lambda_{p-1}+(1+C_{2}(p-1))^{n}\rho_{p-1}>\beta_{p-1}>\alpha_{p-1}>\cdots>\beta_{1}>\alpha_{1}>0,

then λG(λ)F(λ)\lambda G(\lambda)\ll F(\lambda). As a result, by (128),

μ+mνν=μν(1F(λ)λG(λ))>μν(1i=1p(λαi)(λα1)i=1p1(λαi+1))=0.\displaystyle-\frac{\mu+m^{*}\nu}{\nu}=-\frac{\mu}{\nu}\left(1-\frac{F(\lambda^{*})}{\lambda^{*}G(\lambda^{*})}\right)>-\frac{\mu}{\nu}\left(1-\frac{\prod_{i=1}^{p}(\lambda^{*}-\alpha_{i})}{(\lambda^{*}-\alpha_{1})\prod_{i=1}^{p-1}(\lambda^{*}-\alpha_{i+1})}\right)=0. (135)

Since (128) indicates (λλ)|(μF(λ)+λmνG(λ))(\lambda-\lambda^{*})|(\mu F(\lambda)+\lambda m^{*}\nu G(\lambda)), (135) means F0(λ)F_{0}(\lambda) is a well-defined monic polynomial of degree p1p-1. Recall that λG(λ)F(λ)\lambda G(\lambda)\ll F(\lambda) and |μ|>m|ν||\mu|>m^{*}|\nu|, applying Lemma 4.1 to polynomials μF(λ)\mu F(\lambda) and mνλG(λ)-m^{*}\nu\lambda G(\lambda) shows

αi(αi,βi),i=1,,p1.\displaystyle\alpha_{i}^{\prime}\in(\alpha_{i},\beta_{i}),\quad i=1,\ldots,p-1. (136)

Therefore,

λF0(λ)F(λ)andF0(λ)G(λ),\displaystyle\lambda F_{0}(\lambda)\ll F(\lambda)\quad\mbox{and}\quad F_{0}(\lambda)\ll G(\lambda), (137)

which give b=μ+mνν(F0(λ)G(λ))>0,b^{*}=-\frac{\mu+m^{*}\nu}{\nu}\left(\frac{F_{0}(\lambda^{*})}{G(\lambda^{*})}\right)>0,

μ0ν=ν2(G(λ)F0(λ))>0and|μ0|=|ν|(G(λ)F0(λ))<|ν|.\displaystyle\mu_{0}\nu=\nu^{2}\left(\frac{G(\lambda^{*})}{F_{0}(\lambda^{*})}\right)>0\quad\mbox{and}\quad|\mu_{0}|=|\nu|\left(\frac{G(\lambda^{*})}{F_{0}(\lambda^{*})}\right)<|\nu|. (138)

Consequently, by (134) and (135),

μ0ν0=μ+mννμ0=μ+mνν11μ0/ν>μνm.\displaystyle-\frac{\mu_{0}}{\nu_{0}}=-\frac{\mu+m^{*}\nu}{\nu-\mu_{0}}=-\frac{\mu+m^{*}\nu}{\nu}\frac{1}{1-\mu_{0}/\nu}>-\frac{\mu}{\nu}-m^{*}. (139)

So far, we have verified that λ,b,μ0\lambda^{*},b^{*},\mu_{0} and ν0\nu_{0} satisfy the condition of Lemma 4.2. For these numbers, the first equality of (55) follows directly from (134). Considering (136), if the second inequality of (52) holds when p>2p>2, then F0(λ)F_{0}(\lambda) in (134) will be the exact polynomial desired for both statements (i) and (ii).

Next, we check G0(λ)G_{0}(\lambda) in (134). The definition of μ0\mu_{0} infers (λλ)|(νG(λ)μ0F0(λ))(\lambda-\lambda^{*})\big{|}(\nu G(\lambda)-\mu_{0}F_{0}(\lambda)), hence (138) implies that G0(λ)G_{0}(\lambda) is a well-defined monic polynomial. We discuss this part by considering two cases.
(i) p=2p=2. In this case, G0(λ)=1G_{0}(\lambda)=1 fulfills the second equality of (55) by (134).
(ii) p>2p>2. Taking account to (137) and (138), we apply Lemma 4.1 to polynomials νG(λ)\nu G(\lambda) and μ0F0(λ)\mu_{0}F_{0}(\lambda), then

βi(βi,αi+1),i=1,,p2,\displaystyle\beta_{i}^{\prime}\in(\beta_{i},\alpha_{i+1}^{\prime}),\quad i=1,\ldots,p-2, (140)

so the roots of G0(λ)G_{0}(\lambda) are distinct. Further, we can verify the second equality of (55) from (134) again.

Now, it remains to show the second inequality of (52) for i=1,,p2i=1,\ldots,p-2 when p>2p>2. Combining (136) and (140), it gives λG0(λ)F0(λ)\lambda G_{0}(\lambda)\ll F_{0}(\lambda). Fix an index i[1,p2]i\in[1,p-2], we compute

j=1p1(βiαj)=F0(βi)=1μ0(νG(βi)b(λβi)ν0G0(βi))=F0(λ)G(λ)j=1p1(βiβj).\displaystyle\prod_{j=1}^{p-1}(\beta_{i}^{\prime}-\alpha_{j}^{\prime})=F_{0}(\beta_{i}^{\prime})=\frac{1}{\mu_{0}}(\nu G(\beta_{i}^{\prime})-b^{*}(\lambda^{*}-\beta_{i}^{\prime})\nu_{0}G_{0}(\beta_{i}^{\prime}))=\frac{F_{0}(\lambda^{*})}{G(\lambda^{*})}\prod_{j=1}^{p-1}(\beta_{i}^{\prime}-\beta_{j}). (141)

Note that F0(λ)G(λ)>1\frac{F_{0}(\lambda^{*})}{G(\lambda^{*})}>1 by (137) and j>i+1βiβjβiαj1\prod_{j>i+1}\frac{\beta_{i}^{\prime}-\beta_{j}}{\beta_{i}^{\prime}-\alpha_{j}^{\prime}}\geq 1 by (136) and (140), (141) immediately leads to

βiαiβiβi>βiβi+1βiαi+1j<iβiβjβiαj.\displaystyle\frac{\beta_{i}^{\prime}-\alpha_{i}^{\prime}}{\beta_{i}^{\prime}-\beta_{i}}>\frac{\beta_{i}^{\prime}-\beta_{i+1}}{\beta_{i}^{\prime}-\alpha_{i+1}^{\prime}}\prod_{j<i}\frac{\beta_{i}^{\prime}-\beta_{j}}{\beta_{i}^{\prime}-\alpha_{j}^{\prime}}. (142)

We are going to employ Lemma 4.1 to estimate term βiβi+1βiαi+1\frac{\beta_{i}^{\prime}-\beta_{i+1}}{\beta_{i}^{\prime}-\alpha_{i+1}^{\prime}} in (142). For this, denote η=12minj[1,p1](βjαj)\eta=\frac{1}{2}\min_{j\in[1,p-1]}(\beta_{j}-\alpha_{j}). Recall that C1,ρ1<1C_{1},\rho_{1}<1, then by (51), for each j[1,p1]j\in[1,p-1],

C1nρ1min{1,C1nρj}<min{1,βjαj},C_{1}^{n}\rho_{1}\leq\min\{1,C_{1}^{n}\rho_{j}\}<\min\{1,\beta_{j}-\alpha_{j}\},

which means C1nρ1/2<min{1,η}C_{1}^{n}\rho_{1}/2<\min\{1,\eta\}. As a result, by (44),

|mνμ|\displaystyle\left|\frac{m^{*}\nu}{\mu}\right| <\displaystyle< mCM<(C1nρ12)2n12+2Λn<min{1,η2p}2+2Λp\displaystyle\frac{m^{*}}{CM}<\left(\frac{C_{1}^{n}\rho_{1}}{2}\right)^{2n}\frac{1}{2+2\Lambda^{n}}<\frac{\min\{1,\eta^{2p}\}}{2+2\Lambda^{p}}
<\displaystyle< min{1,(12min1lp1(αl+1αl))p}min{1,ηp}2+2Λp\displaystyle\frac{\min\left\{1,\left(\frac{1}{2}\min_{1\leqslant l\leqslant p-1}\left(\alpha_{l+1}-\alpha_{l}\right)\right)^{p}\right\}\min\{1,\eta^{p}\}}{2+2\Lambda^{p}}
<\displaystyle< min{1,(min1lp1(αl+1αl)η)p}min{1,ηp}2+2maxj[1,p]|αjl=1p1(αjβl)|.\displaystyle\frac{\min\left\{1,\left(\min_{1\leqslant l\leqslant p-1}(\alpha_{l+1}-\alpha_{l})-\eta\right)^{p}\}\min\{1,\eta^{p}\right\}}{2+2\max_{j\in[1,p]}\left|\alpha_{j}\prod_{l=1}^{p-1}(\alpha_{j}-\beta_{l})\right|}.

So, by applying Lemma 4.1 to polynomials μF(λ)\mu F(\lambda) and mνλG(λ)-m^{*}\nu\lambda G(\lambda), we conclude

maxj[1,p1](αjαj)<η=12minj[1,p1](βjαj).\displaystyle\max_{j\in[1,p-1]}(\alpha_{j}^{\prime}-\alpha_{j})<\eta=\frac{1}{2}\min_{j\in[1,p-1]}(\beta_{j}-\alpha_{j}). (143)

Then, βi+1αi+1βi+1αi+12\beta_{i+1}-\alpha_{i+1}^{\prime}\geq\frac{\beta_{i+1}-\alpha_{i+1}}{2}, which together with (51) indicates

βiβi+1βiαi+1\displaystyle\frac{\beta_{i}^{\prime}-\beta_{i+1}}{\beta_{i}^{\prime}-\alpha_{i+1}^{\prime}} =\displaystyle= 1+βi+1αi+1αi+1βi1+βi+1αi+12(βi+1βi)\displaystyle 1+\frac{\beta_{i+1}-\alpha_{i+1}^{\prime}}{\alpha_{i+1}^{\prime}-\beta_{i}^{\prime}}\geq 1+\frac{\beta_{i+1}-\alpha_{i+1}}{2(\beta_{i+1}-\beta_{i}^{\prime})} (144)
\displaystyle\geq 1+C1nρi+12(λi+1βi)1+Δn2(n+1)2Λn+1ρi+1.\displaystyle 1+\frac{C_{1}^{n}\rho_{i+1}}{2(\lambda_{i+1}-\beta_{i}^{\prime})}\geq 1+\frac{\Delta^{n}}{2^{(n+1)^{2}}\Lambda^{n+1}}\rho_{i+1}.

Next, we deal with j<iβiβjβiαj\prod_{j<i}\frac{\beta_{i}^{\prime}-\beta_{j}}{\beta_{i}^{\prime}-\alpha_{j}^{\prime}} in (142) for i2i\geq 2. As a matter of fact, by (51), for any j<ij<i,

βiβjβiαj\displaystyle\frac{\beta_{i}^{\prime}-\beta_{j}}{\beta_{i}^{\prime}-\alpha_{j}^{\prime}} >\displaystyle> βiβjβiαj=1βjαjβiαj\displaystyle\frac{\beta_{i}^{\prime}-\beta_{j}}{\beta_{i}^{\prime}-\alpha_{j}}=1-\frac{\beta_{j}-\alpha_{j}}{\beta_{i}^{\prime}-\alpha_{j}} (145)
>\displaystyle> 1βjλjβiλj>1βjλjλiλj1(1+C2(j))nρjΔ.\displaystyle 1-\frac{\beta_{j}-\lambda_{j}}{\beta_{i}^{\prime}-\lambda_{j}}>1-\frac{\beta_{j}-\lambda_{j}}{\lambda_{i}-\lambda_{j}}\geq 1-\frac{(1+C_{2}(j))^{n}\rho_{j}}{\Delta}.

Now, if i2i\geq 2, substituting (144) and (145) into (142) yields

βiαiβiβi\displaystyle\frac{\beta_{i}^{\prime}-\alpha_{i}^{\prime}}{\beta_{i}^{\prime}-\beta_{i}} >\displaystyle> (1+Δn2(n+1)2Λn+1ρi+1)j<i(1(1+C2(j))nρjΔ)\displaystyle\left(1+\frac{\Delta^{n}}{2^{(n+1)^{2}}\Lambda^{n+1}}\rho_{i+1}\right)\prod_{j<i}\left(1-\frac{(1+C_{2}(j))^{n}\rho_{j}}{\Delta}\right) (146)
\displaystyle\geq (1+Δn2(n+1)2Λn+1ρi+1)(1(1+C2(i1))nρi1Δ)i1\displaystyle\left(1+\frac{\Delta^{n}}{2^{(n+1)^{2}}\Lambda^{n+1}}\rho_{i+1}\right)\left(1-\frac{(1+C_{2}(i-1))^{n}\rho_{i-1}}{\Delta}\right)^{i-1}
>\displaystyle> (1+Δn2(n+1)2Λn+1ρi+1)(1(1+C2(i1))nρi1Δ)n,\displaystyle\left(1+\frac{\Delta^{n}}{2^{(n+1)^{2}}\Lambda^{n+1}}\rho_{i+1}\right)\left(1-\frac{(1+C_{2}(i-1))^{n}\rho_{i-1}}{\Delta}\right)^{n},

where the second inequality follows from (48) in Remark 4.1. Since the Bernoulli inequality gives

(1(1+C2(i1))nρi1Δ)n>1n(1+C2(i1))nρi1Δ,\left(1-\frac{(1+C_{2}(i-1))^{n}\rho_{i-1}}{\Delta}\right)^{n}>1-\frac{n(1+C_{2}(i-1))^{n}\rho_{i-1}}{\Delta},

(146) reduces to

βiαiβiβi\displaystyle\frac{\beta_{i}^{\prime}-\alpha_{i}^{\prime}}{\beta_{i}^{\prime}-\beta_{i}} >\displaystyle> (1+Δn2(n+1)2Λn+1ρi+1)(1n(1+C2(i1))nρi1Δ)\displaystyle\left(1+\frac{\Delta^{n}}{2^{(n+1)^{2}}\Lambda^{n+1}}\rho_{i+1}\right)\left(1-\frac{n(1+C_{2}(i-1))^{n}\rho_{i-1}}{\Delta}\right) (147)
>\displaystyle> 1+Δn2(n+1)2+1Λn+1ρi+1.\displaystyle 1+\frac{\Delta^{n}}{2^{(n+1)^{2}+1}\Lambda^{n+1}}\rho_{i+1}.

As for i=1i=1, it is trivial that βiαiβiβi>1+Δn2(n+1)2Λn+1ρi+1.\frac{\beta_{i}^{\prime}-\alpha_{i}^{\prime}}{\beta_{i}^{\prime}-\beta_{i}}>1+\frac{\Delta^{n}}{2^{(n+1)^{2}}\Lambda^{n+1}}\rho_{i+1}. So, both the two cases lead to (147). Hence,

βiαiβiαi<βiαiβiαi=1+1βiαiβiβi11+2(n+1)2+1Λn+1Δnρi+1<C2(i).\displaystyle\frac{\beta_{i}^{\prime}-\alpha_{i}^{\prime}}{\beta_{i}-\alpha_{i}}<\frac{\beta_{i}^{\prime}-\alpha_{i}^{\prime}}{\beta_{i}-\alpha_{i}^{\prime}}=1+\frac{1}{\frac{\beta_{i}^{\prime}-\alpha_{i}^{\prime}}{\beta_{i}^{\prime}-\beta_{i}}-1}\leq 1+\frac{2^{(n+1)^{2}+1}\Lambda^{n+1}}{\Delta^{n}\rho_{i+1}}<C_{2}(i). (148)

On the other hand, in view of (143),

βiαiβiαi>βiαiβiαi12C1.\displaystyle\frac{\beta_{i}^{\prime}-\alpha_{i}^{\prime}}{\beta_{i}-\alpha_{i}}>\frac{\beta_{i}-\alpha_{i}^{\prime}}{\beta_{i}-\alpha_{i}}\geq\frac{1}{2}\geq C_{1}. (149)

Therefore, (52) is a direct result of (148) and (149). \Box

Proof of Lemma 4.3.

(i) Let p2p\geq 2 and set

{m=μνF(λ)λG(λ)F0(λ)=μF(λ)+mνλG(λ)μ+mν.\displaystyle\left\{\begin{array}[]{l}m^{*}=-\frac{\mu}{\nu}\frac{F(\lambda^{*})}{\lambda^{*}G(\lambda^{*})}\\ F_{0}(\lambda)=\frac{\mu F(\lambda)+m^{*}\nu\lambda G(\lambda)}{\mu+m^{*}\nu}\end{array}.\right. (152)

By (49) and (51), it is clear that m>0m^{*}>0. Observe that

|mνμ|=j=1p(λαj)λj=1p1(λβj)<j=1p(λαj)(λα1)j=1p1(λαj+1)=1,\displaystyle\left|\frac{m^{*}\nu}{\mu}\right|=\frac{\prod_{j=1}^{p}(\lambda^{*}-\alpha_{j})}{\lambda^{*}\prod_{j=1}^{p-1}(\lambda^{*}-\beta_{j})}<\frac{\prod_{j=1}^{p}(\lambda^{*}-\alpha_{j})}{(\lambda^{*}-\alpha_{1})\prod_{j=1}^{p-1}(\lambda^{*}-\alpha_{j+1})}=1,

then F0(λ)F_{0}(\lambda) is a well-defined monic polynomial of deg(F0(λ))=deg(F(λ))=p.\deg(F_{0}(\lambda))=\deg(F(\lambda))=p. Now, (51) indicates λG(λ)F(λ)\lambda G(\lambda)\ll F(\lambda), by applying Lemma 4.1 to polynomials μF(λ)\mu F(\lambda) and mνλG(λ)-m^{*}\nu\lambda G(\lambda), it follows that the first p1p-1 roots of F0(λ)F_{0}(\lambda) satisfy

αj(αj,βj),j=1,,p1.\displaystyle\alpha_{j}^{\prime}\in(\alpha_{j},\beta_{j}),\quad j=1,\ldots,p-1. (153)

Moreover, the definition of mm^{*} in (152) shows

(λλ)|(μF(λ)+mνλG(λ)),(\lambda-\lambda^{*})|(\mu F(\lambda)+m^{*}\nu\lambda G(\lambda)),

which yields αp=λ.\alpha_{p}^{\prime}=\lambda^{*}. Hence, F(λ)F0(λ)F(\lambda)\ll F_{0}(\lambda).

Next, let

{μ0=τνb=μ+mνμ0ν0=μ0νbG0(λ)=ν(λλ)G(λ)μ0F0(λ)bν0(λλ),\displaystyle\left\{\begin{array}[]{l}\mu_{0}=\tau\nu\\ b^{*}=-\frac{\mu+m^{*}\nu}{\mu_{0}}\\ \nu_{0}=\frac{\mu_{0}-\nu}{b^{*}}\\ G_{0}(\lambda)=\frac{\nu(\lambda-\lambda^{*})G(\lambda)-\mu_{0}F_{0}(\lambda)}{b^{*}\nu_{0}(\lambda^{*}-\lambda)}\end{array},\right. (158)

where

τ={v1,p>2v2,p=2,\displaystyle\tau=\left\{\begin{array}[]{l}v_{1},\quad p>2\\ v_{2},\quad p=2\\ \end{array},\right. (161)

with

v1\displaystyle v_{1} =\displaystyle= 12min{1,(min1lp2(βl+1βl)η1)p1}min{1,η1p1}2+2maxj[1,p1]|h=1p1(βjαh)|,\displaystyle\frac{1}{2}\frac{\min\{1,\left(\min_{1\leqslant l\leqslant p-2}(\beta_{l+1}-\beta_{l})-\eta_{1}\right)^{p-1}\}\min\{1,\eta_{1}^{p-1}\}}{2+2\max_{j\in[1,p-1]}\left|\prod_{h=1}^{p-1}(\beta_{j}-\alpha_{h}^{\prime})\right|},
v2\displaystyle v_{2} =\displaystyle= 14min{η2β1α1,1},\displaystyle\frac{1}{4}\min\left\{\frac{\eta_{2}}{\beta_{1}-\alpha_{1}^{\prime}},1\right\},
η1\displaystyle\eta_{1} =\displaystyle= min{min1lp2(βl+1βl)4,min1lp1(βlαl)},\displaystyle\min\left\{\frac{\min_{1\leqslant l\leqslant p-2}(\beta_{l+1}-\beta_{l})}{4},\min_{1\leqslant l\leqslant p-1}(\beta_{l}-\alpha_{l})\right\},
η2\displaystyle\eta_{2} =\displaystyle= min{β1α1,12}.\displaystyle\min\left\{\beta_{1}-\alpha_{1},\frac{1}{2}\right\}.

Therefore,

b=μ+mνμ0=μτν(1F(λ)λG(λ))>0.\displaystyle b^{*}=-\frac{\mu+m^{*}\nu}{\mu_{0}}=-\frac{\mu}{\tau\nu}\left(1-\frac{F(\lambda^{*})}{\lambda^{*}G(\lambda^{*})}\right)>0.

Note that τ(0,1)\tau\in(0,1), then (158) gives μ0/ν(0,1)\mu_{0}/\nu\in(0,1). As a result, by λG(λ)F(λ)\lambda G(\lambda)\ll F(\lambda),

μ0ν0=μ+mννμ0>μν(1F(λ)λG(λ))>μνλG(λ)(λα1)G(λ)λG(λ)>λ1Λμν>0.\displaystyle-\frac{\mu_{0}}{\nu_{0}}=-\frac{\mu+m^{*}\nu}{\nu-\mu_{0}}>-\frac{\mu}{\nu}\left(1-\frac{F(\lambda^{*})}{\lambda^{*}G(\lambda^{*})}\right)>-\frac{\mu}{\nu}\frac{\lambda^{*}G(\lambda^{*})-(\lambda^{*}-\alpha_{1})G(\lambda^{*})}{\lambda^{*}G(\lambda^{*})}>-\frac{\lambda_{1}}{\Lambda}\frac{\mu}{\nu}>0.

So, G0(λ)G_{0}(\lambda) is a well-defined monic polynomial of degree p1p-1. Since (153) means that F0(λ)(λλ)G(λ)\frac{F_{0}(\lambda)}{(\lambda-\lambda^{*})}\ll G(\lambda), by applying Lemma 4.1 to polynomials νG(λ)\nu G(\lambda) and μ0F0(λ)(λλ)\mu_{0}\frac{F_{0}(\lambda)}{(\lambda-\lambda^{*})}, we deduce βp1>βp1\beta_{p-1}^{\prime}>\beta_{p-1} and

βj(βj,αj+1),j=1,,p2.\displaystyle\beta_{j}^{\prime}\in(\beta_{j},\alpha_{j+1}^{\prime}),\quad j=1,\ldots,p-2. (162)

Observe that plugging (152) and (158) into (58) immediately shows the validity of (58).

At last, we show the second inequality of (52) for i=1,,p1i=1,\ldots,p-1. Fix an index i[1,p1]i\in[1,p-1]. By plugging λ=βi\lambda=\beta_{i} into (58), we obtain μF(βi)=bμ0F0(βi),\mu F(\beta_{i})=-b^{*}\mu_{0}F_{0}(\beta_{i}), which equals to

j=1p(βiαj)=11F(λ)λG(λ)j=1p(βiαj).\displaystyle\prod_{j=1}^{p}(\beta_{i}-\alpha_{j}^{\prime})=\frac{1}{1-\frac{F(\lambda^{*})}{\lambda^{*}G(\lambda^{*})}}\prod_{j=1}^{p}(\beta_{i}-\alpha_{j}). (163)

Note that βiαjβiαj>1\frac{\beta_{i}-\alpha_{j}}{\beta_{i}-\alpha_{j}^{\prime}}>1 for all j<ij<i because of (153). As for j[i+1,p1]j\in[i+1,p-1], by (51) and (153),

βiαjβiαj=1αjαjαjβi1βjλjαjβi1βjλjλi+1βi,\displaystyle\frac{\beta_{i}-\alpha_{j}}{\beta_{i}-\alpha_{j}^{\prime}}=1-\frac{\alpha_{j}^{\prime}-\alpha_{j}}{\alpha_{j}^{\prime}-\beta_{i}}\geq 1-\frac{\beta_{j}-\lambda_{j}}{\alpha_{j}-\beta_{i}}\geq 1-\frac{\beta_{j}-\lambda_{j}}{\lambda_{i+1}-\beta_{i}},

which together with (48) yields

βiαjβiαj1βjλj(λi+1λi)(βiλi)1(1+C2(j))nρj2Δ(1+C2(i))nρi>12.\displaystyle\frac{\beta_{i}-\alpha_{j}}{\beta_{i}-\alpha_{j}^{\prime}}\geq 1-\frac{\beta_{j}-\lambda_{j}}{(\lambda_{i+1}-\lambda_{i})-(\beta_{i}-\lambda_{i})}\geq 1-\frac{(1+C_{2}(j))^{n}\rho_{j}}{2\Delta-(1+C_{2}(i))^{n}\rho_{i}}>\frac{1}{2}.

Furthermore, since αp[λp,λ)[λp,Λ)\alpha_{p}\in[\lambda_{p},\lambda^{*})\subset[\lambda_{p},\Lambda), (42), (48) and (51) lead to

βiαpβiαpλi+1βiΛΔ(1+C2n(i))ρiΛ>Δ2Λ.\displaystyle\frac{\beta_{i}-\alpha_{p}}{\beta_{i}-\alpha_{p}^{\prime}}\geq\frac{\lambda_{i+1}-\beta_{i}}{\Lambda}\geq\frac{\Delta-(1+C_{2}^{n}(i))\rho_{i}}{\Lambda}>\frac{\Delta}{2\Lambda}.

Consequently, it follows from (162) and (163) that

βiαiβiαi>βiαiβiαi=11F(λ)λG(λ)jiβiαjβiαj>12nΔ2Λ=C1.\displaystyle\frac{\beta_{i}^{\prime}-\alpha_{i}^{\prime}}{\beta_{i}-\alpha_{i}}>\frac{\beta_{i}-\alpha_{i}^{\prime}}{\beta_{i}-\alpha_{i}}=\frac{1}{1-\frac{F(\lambda^{*})}{\lambda^{*}G(\lambda^{*})}}\prod_{j\not=i}\frac{\beta_{i}-\alpha_{j}}{\beta_{i}-\alpha_{j}^{\prime}}>\frac{1}{2^{n}}\frac{\Delta}{2\Lambda}=C_{1}.

Now, we prove βiαiC2(i)(βiαi)\beta_{i}^{\prime}-\alpha_{i}^{\prime}\leq C_{2}(i)(\beta_{i}-\alpha_{i}) for each i[1,p1]i\in[1,p-1]. If p>2p>2,

|μ0ν|=τ=v1<min{1,(min1lp2(βl+1βl)η1)p1}min{1,η1p1}2+2maxj[1,p1]|h=1p1(βjαh)|.\displaystyle\left|\frac{\mu_{0}}{\nu}\right|=\tau=v_{1}<\frac{\min\{1,\left(\min_{1\leqslant l\leqslant p-2}(\beta_{l+1}-\beta_{l})-\eta_{1}\right)^{p-1}\}\min\{1,\eta_{1}^{p-1}\}}{2+2\max_{j\in[1,p-1]}\left|\prod_{h=1}^{p-1}(\beta_{j}-\alpha_{h}^{\prime})\right|}.

By applying Lemma 4.1 to polynomials νG(λ)\nu G(\lambda) and μ0F0(λ)(λλ)\mu_{0}\frac{F_{0}(\lambda)}{(\lambda-\lambda^{*})}, it infers

maxi[1,p1](βiβi)<η1min1ip1(βiαi).\displaystyle\max_{i\in[1,p-1]}(\beta_{i}^{\prime}-\beta_{i})<\eta_{1}\leq\min_{1\leqslant i\leqslant p-1}(\beta_{i}-\alpha_{i}).

When p=2p=2,

|μ0ν|=τ<12min{η2β1α1,1}\displaystyle\left|\frac{\mu_{0}}{\nu}\right|=\tau<\frac{1}{2}\min\left\{\frac{\eta_{2}}{\beta_{1}-\alpha_{1}^{\prime}},1\right\}

and applying Lemma 4.1 to polynomials νG(λ)\nu G(\lambda) and μ0F0(λ)(λλ)\mu_{0}\frac{F_{0}(\lambda)}{(\lambda-\lambda^{*})} shows

β1β1<η2β1α1.\displaystyle\beta_{1}^{\prime}-\beta_{1}<\eta_{2}\leq\beta_{1}-\alpha_{1}.

So both cases result in

maxi[1,p1](βiβi)<min1ip1(βiαi),\displaystyle\max_{i\in[1,p-1]}(\beta_{i}^{\prime}-\beta_{i})<\min_{1\leqslant i\leqslant p-1}(\beta_{i}-\alpha_{i}),

which implies that βiαi<2(βiαi)\beta_{i}^{\prime}-\alpha_{i}<2(\beta_{i}-\alpha_{i}) for each i[1,p1]i\in[1,p-1]. Then,

βiαi<βiαi<2(βiαi)C2(i)(βiαi).\displaystyle\beta_{i}^{\prime}-\alpha_{i}^{\prime}<\beta_{i}^{\prime}-\alpha_{i}<2(\beta_{i}-\alpha_{i})\leq C_{2}(i)(\beta_{i}-\alpha_{i}).

This finishes the proof of statement (i).

(ii) Let m=μνλα1λm^{*}=-\frac{\mu}{\nu}\frac{\lambda^{*}-\alpha_{1}}{\lambda^{*}}, μ0=12ν\mu_{0}=\frac{1}{2}\nu, b=μν2α1λb^{*}=-\frac{\mu}{\nu}\frac{2\alpha_{1}}{\lambda^{*}} and ν0=14ν2μλα1\nu_{0}=\frac{1}{4}\frac{\nu^{2}}{\mu}\frac{\lambda^{*}}{\alpha_{1}}, we can directly compute that F0(λ)=λλF_{0}(\lambda)=\lambda-\lambda^{*} and G0(λ)=1G_{0}(\lambda)=1 satisfy equation (58). \Box

References

  • [1] Bai Z 2007 Symmetric tridiagonal inverse quadratic eigenvalue problems with partial eigendata Inverse Problems 24 015005
  • [2] Beeby S P, Tudor M J and White N M 2006 Energy harvesting vibration sources for microsystems applications Meas. Sci. Technol. 17 175–195
  • [3] Cai Y F and Xu S F 2009 On a quadratic inverse eigenvalue problem Inverse Problems 25 085004
  • [4] Chen M Z Q, Hu Y, Huang L and Chen G 2014 Influence of inerter on natural frequencies of vibration systems J. Sound Vib. 333 1874-1887
  • [5] Chu M T 1998 Inverse eigenvalue problems SIAM Rev. 40 139
  • [6] Dong X, Liu Y and Chen M Z Q 2015 Application of inerter to aircraft landing gear suspension Proceedings of the 34th Chinese Control Conference, Hangzhou, China 2066-2071
  • [7] Gladwell G M L 1997 Inverse vibration problems for finite-element models Inverse Problems 13 311
  • [8] Gladwell G M L 2005 Inverse problems in vibration second ed. Springer Science Business Media
  • [9] Gladwell G M L 2006 Minimal mass solutions to inverse eigenvalue problems Inverse Problems 22 539
  • [10] Hu Y L, Chen M Z Q and Smith M C 2018 Natural frequency assignment for mass-chain systems with inerters Mech. Syst. Signal Process. 108 126–139
  • [11] Lazar I F, Neild S A and Wagg D J 2014 Using an inerter-based device for structural vibration suppression Earthq. Eng. Struct. Dynam. 43 1129–1147
  • [12] Liang Y, Yamaura H and Ouyang H 2017 Active assignment of eigenvalues and eigen-sensitivities for robust stabilization of friction-induced vibration Mech. Syst. Signal Process. 90 254–267
  • [13] Lin M M, Dong B and Chu M T 2010 Inverse mode problems for real and symmetric quadratic models Inverse Problems 26 065003
  • [14] Matamoros-Sanchez A Z and Goodall R M 2015 Novel mechatronic solutions incorporating inerters for railway vehicle vertical secondary suspensions Veh. Syst. Dynam. 53 113–136
  • [15] Mottershead J E and Ram Y M 2006 Inverse eigenvalue problems in vibration absorption: Passive modification and active control Mech. Syst. Signal Process. 20 5–44
  • [16] Nylen P 1999 Inverse eigenvalue problem: existence of special mass-damper-spring systems Linear Algebr. Appl. 297 107–132
  • [17] Nylen P and Uhlig F 1997 Inverse eigenvalue problem associated with spring-mass systems Linear Algebr. Appl. 254 409–425
  • [18] Olsson P and Lidström P 2007 Inverse structural modification using constraints J. Sound Vib. 303 767–779
  • [19] Ouyang H and Zhang J 2015 Passive modifications for partial assignment of natural frequencies of mass-spring systems Mech. Syst. Signal Process. 50 214–226
  • [20] Smith M C 2002 Synthesis of mechanical networks: the inerter IEEE Trans. Autom. Control 47 1648–1662
  • [21] Wang F C, Hong M F and Chen C W 2010 Building suspensions with inerters Proc. IMechE Part C: J. Mech. Eng. Sci. 224 1605–1616
  • [22] Wang F C and Liao M K 2010 The lateral stability of train suspension systems employing inerters Veh. Syst. Dynam. 48 619–643
  • [23] Yu Y H and Naganathan N G 2001 A literature review of automotive vehicle engine mounting systems Mech. Mach. Theory 36 123–142