This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Inverse problems of the Erdős-Ko-Rado type theorems for families of vector spaces and permutations

Xiangliang Konga{}^{\text{a}}, Yuanxiao Xib{}^{\text{b}}, Bingchen Qianb{}^{\text{b}} and Gennian Gea,{}^{\text{a,}}
a{}^{\text{a}} School of Mathematical Sciences, Capital Normal University, Beijing, 100048, China
b{}^{\text{b}} School of Mathematical Sciences, Zhejiang University, Hangzhou 310027, Zhejiang, China
Corresponding author. Email address: gnge@zju.edu.cn. The research of G. Ge was supported by the National Natural Science Foundation of China under Grant No. 11971325, National Key Research and Development Program of China under Grant Nos. 2020YFA0712100 and 2018YFA0704703, and Beijing Scholars Program.
Abstract

Ever since the famous Erdős-Ko-Rado theorem initiated the study of intersecting families of subsets, extremal problems regarding intersecting properties of families of various combinatorial objects have been extensively investigated. Among them, studies about families of subsets, vector spaces and permutations are of particular concerns.

Recently, the authors proposed a new quantitative intersection problem for families of subsets: For ([n]k)\mathcal{F}\subseteq{[n]\choose k}, define its total intersection number as ()=F1,F2|F1F2|\mathcal{I}(\mathcal{F})=\sum_{F_{1},F_{2}\in\mathcal{F}}|F_{1}\cap F_{2}|. Then, what is the structure of \mathcal{F} when it has the maximal total intersection number among all families in ([n]k){[n]\choose k} with the same family size? In [23], the authors studied this problem and characterized extremal structures of families maximizing the total intersection number of given sizes.

In this paper, we consider the analogues of this problem for families of vector spaces and permutations. For certain ranges of family size, we provide structural characterizations for both families of subspaces and families of permutations having maximal total intersection numbers. To some extent, these results determine the unique structure of the optimal family for some certain values of |||\mathcal{F}| and characterize the relation between having maximal total intersection number and being intersecting. Besides, we also show several upper bounds on the total intersection numbers for both families of subspaces and families of permutations of given sizes.

Keywords: total intersection number, vector spaces, permutations.

AMS subject classifications: 05D05.

1 Introduction

For a positive integer nn, let [n]={1,2,,n}[n]=\{1,2,\ldots,n\} and ([n]k){[n]\choose k} denote the collection of all kk-element subsets of [n][n]. A family ([n]k)\mathcal{F}\subseteq{[n]\choose k} is called intersecting if any two of its members share at least one common element. The classic Erdős-Ko-Rado theorem states that if n2k+1n\geq 2k+1, an intersecting family has size at most (n1k1){n-1\choose k-1}; if the equality holds, the family must be consisted of all kk-subsets of [n][n] containing a fixed element. Inspired by this cornerstone result in extremal set theory, there have been a great deal of extensions and variations. As two major extensions, intersection problems for families of permutations and families of subspaces over a given finite field have drawn lots of attentions in these years.

Let 𝔽q\mathbb{F}_{q} be the finite field with qq elements and VV be an nn-dimensional vector space over 𝔽q\mathbb{F}_{q}. Denote [Vk]\genfrac{[}{]}{0.0pt}{}{V}{k} as the collection of all kk-dimensional subspaces of VV and for t1t\geq 1, [Vk]\mathcal{F}\subseteq\genfrac{[}{]}{0.0pt}{}{V}{k} is called tt-intersecting if dim(FF)t\dim(F\cap F^{\prime})\geq t holds for all F,FF,F^{\prime}\in\mathcal{F}. In 1986, using spectra method, Frankl and Wilson [18] proved the following analogue result of Erdős-Ko-Rado theorem for tt-intersecting family of subspaces of VV. Since then, many other kinds of intersection problems for families of subspaces have been studied, for examples, see [7, 30, 5].

Theorem 1.1.

([18]) Let n2kn\geq 2k and kt>0k\geq t>0 be integers and let [Vk]\mathcal{F}\subseteq\genfrac{[}{]}{0.0pt}{}{V}{k} be a tt-intersecting family, then ||[ntkt]q|\mathcal{F}|\leq\genfrac{[}{]}{0.0pt}{}{n-t}{k-t}_{q}. Moreover, when n2k+1n\geq 2k+1, the equality holds if and only if \mathcal{F} is the family of kk-dim subspaces containing a fixed tt-dim subspace.

Let SnS_{n} be the symmetric group of all permutations of [n][n] and for t1t\geq 1, a subset Sn\mathcal{F}\subseteq S_{n} is called tt-intersecting if there exist tt distinct integers i1,i2,,it[n]i_{1},i_{2},\ldots,i_{t}\in[n] such that σ(ij)=τ(ij)\sigma(i_{j})=\tau(i_{j}) for j=1,2,,tj=1,2,\ldots,t and σ,τ\sigma,\tau\in\mathcal{F}. Let 𝒞i1j1,,itjt={σSn:σ(is)=js, for s=1,,t}\mathcal{C}_{{i_{1}\rightarrow j_{1}},\ldots,{i_{t}\rightarrow j_{t}}}=\{\sigma\in S_{n}:\sigma(i_{s})=j_{s},\text{~{}for~{}}s=1,\ldots,t\}, if i1,,iti_{1},\ldots,i_{t} are distinct and j1,,jtj_{1},\ldots,j_{t} are distinct, then 𝒞i1j1,,itjt\mathcal{C}_{{i_{1}\rightarrow j_{1}},\ldots,{i_{t}\rightarrow j_{t}}} is a coset of the stabilizer of tt points, which is referred as a tt-coset. In [16], Deza and Frankl proved the following theorem for 11-intersecting family of permutations.

Theorem 1.2.

([16]) For any positive integer nn, if Sn\mathcal{F}\subseteq S_{n} is 11-intersecting, then ||(n1)!|\mathcal{F}|\leq(n-1)!.

Clearly, a 11-coset is a 11-intersecting family of size (n1)!(n-1)!. Deza and Frankl [16] conjectured that the 11-cosets are the only 11-intersecting families of permutations with size (n1)!(n-1)!. This conjecture was first confirmed by Cameron and Ku [6] and independently by Larose and Malvenuto [26]. As for tt-intersecting families of permutations when t2t\geq 2, in the same paper, Deza and Frankl also conjectured that the tt-cosets are the only largest tt-intersecting families in SnS_{n} provided nn is large enough. Using eigenvalue techniques together with the representation theory of SnS_{n}, Ellis, Friedgut and Pilpel [14] proved this conjecture.

Following the path led by Erdős, Ko and Rado, the above studies of intersections problems about subspaces and permutations share a same type of flavour: Given a family of subspaces or permutations with some certain kind of intersecting property, people try to figure out how large this family can be. Once the maximal size of the family with given intersecting property is determined, people turn to an immediate inverse problem — characterizing the structure of the extremal family. This gives rise to further studies of the stability and supersaturation for extremal families. In recent years, there have been a lot of works concerning this kind of inverse problems, for examples, see [2, 8, 1, 22, 11, 17, 29, 19, 9].

In this paper, with the same spirit, we consider an inverse problem for intersecting families of subspaces and permutations from another point of view. Instead of being intersecting, we assume that the family possesses a certain property that “maximizes” the intersections quantitatively. The study of this kind of inverse problem was first initiated by the first and the last authors in [23], where families of subsets were investigated.

To state the problem formally, first, we introduce the notion total intersection number of a family. Let XX be the underlying set with finite members, XX can be ([n]k){[n]\choose k}, or [Vk]\genfrac{[}{]}{0.0pt}{}{V}{k} for an nn-dimensional space VV over 𝔽q\mathbb{F}_{q}, or SnS_{n}. Consider a family X\mathcal{F}\subseteq X, the total intersection number of \mathcal{F} is defined by

()=ABint(A,B),\displaystyle\mathcal{I}(\mathcal{F})=\sum\limits_{A\in\mathcal{F}}\sum\limits_{B\in\mathcal{F}}int(A,B), (1)

where int(A,B)int(A,B) has different meanings for different XXs. When X=([n]k)X={[n]\choose k}, int(A,B)=|AB|int(A,B)=|A\cap B|; when X=[Vk]X=\genfrac{[}{]}{0.0pt}{}{V}{k}, int(A,B)=dim(AB)int(A,B)=\dim(A\cap B); when X=SnX=S_{n}, int(A,B)=|{i[n]:A(i)=B(i)}|int(A,B)=|\{i\in[n]:A(i)=B(i)\}|. Moreover, we denote

(X,)=max𝒢X,|𝒢|=||(𝒢)\mathcal{MI}(X,\mathcal{F})=\max_{\mathcal{G}\subseteq X,|\mathcal{G}|=|\mathcal{F}|}\mathcal{I}(\mathcal{G}) (2)

as the maximal total intersection number among all families in XX with the same size of \mathcal{F} and we denote it as ()\mathcal{MI}(\mathcal{F}) for short if XX is clear. Similarly, for two families 1\mathcal{F}_{1} and 2\mathcal{F}_{2} in XX, the total intersection number between 1\mathcal{F}_{1} and 2\mathcal{F}_{2} is defined as

(1,2)=A1B2int(A,B).\mathcal{I}(\mathcal{F}_{1},\mathcal{F}_{2})=\sum_{A\in\mathcal{F}_{1}}\sum_{B\in\mathcal{F}_{2}}int(A,B). (3)

Clearly, we have (,)=()\mathcal{I}(\mathcal{F},\mathcal{F})=\mathcal{I}(\mathcal{F}).

Certainly, the value of ()\mathcal{I}(\mathcal{F}) reveals the level of intersections among the members of \mathcal{F}: the larger ()\mathcal{I}(\mathcal{F}) is, the more intersections there will be in \mathcal{F}. For an integer t1t\geq 1, note that being tt-intersecting also indicates that \mathcal{F} possesses a large amount of intersections, therefore, it is natural to ask the relationship between being tt-intersecting and having large ()\mathcal{I}(\mathcal{F}):

Question 1.3.

For t1t\geq 1 and nn large enough, denote M(X,t)M(X,t) as the maximal size of the tt-intersecting family in XX. Let X\mathcal{F}\subseteq X with size M(X,t)M(X,t), if ()=()\mathcal{I}(\mathcal{F})=\mathcal{MI}(\mathcal{F}), is \mathcal{F} a tt-intersecting family? Or, if \mathcal{F} is a maximal tt-intersecting family in XX, do we have ()=()\mathcal{I}(\mathcal{F})=\mathcal{MI}(\mathcal{F})?

In [23], by taking X=([n]k)X={[n]\choose k}, we show that when ||=(ntkt)|\mathcal{F}|={n-t\choose k-t} and ()=()\mathcal{I}(\mathcal{F})=\mathcal{MI}(\mathcal{F}), the full tt-star (the family consisting of all kk-sets in ([n]k){[n]\choose k} containing tt fixed elements) is indeed the only structure of \mathcal{F}, which answers the Question 1.3 for the case X=([n]k)X={[n]\choose k}. In this paper, when X=[Vk]X=\genfrac{[}{]}{0.0pt}{}{V}{k} and dim(V)=n\dim(V)=n is large enough, we obtain similar results for general t1t\geq 1; when X=SnX=S_{n}, we answer the Question 1.3 for the case t=1t=1. Noticed that the property of having maximal total intersection number can be considered for families of any size. Actually, we can ask the following more general question:

Question 1.4.

For a family X\mathcal{F}\subseteq X, if ()=()\mathcal{I}(\mathcal{F})=\mathcal{MI}(\mathcal{F}), what can we say about its structure?

Aiming to solve these questions, we provide structural characterizations for optimal families satisfying ()=()\mathcal{I}(\mathcal{F})=\mathcal{MI}(\mathcal{F}) for both of the cases when X=[Vk]X=\genfrac{[}{]}{0.0pt}{}{V}{k} and X=SnX=S_{n}. Moreover, we also obtain some upper bounds on ()\mathcal{MI}(\mathcal{F}) for several ranges of |||\mathcal{F}| for both cases. The detailed descriptions of our results will be shown in the following subsection.

1.1 Our results

When X=[Vk]X=\genfrac{[}{]}{0.0pt}{}{V}{k}, through combinatorial arguments, we have the following theorem which shows the main structure of the optimal family X\mathcal{F}\subseteq X with |||\mathcal{F}| not much larger than [ntkt]q\genfrac{[}{]}{0.0pt}{}{n-t}{k-t}_{q}.

Theorem 1.5.

Given positive integers 1t<k1\leq t<k and n(4k+4)2[kt]q2n\geq(4k+4)^{2}\genfrac{[}{]}{0.0pt}{}{k}{t}_{q}^{2}, let \mathcal{F} be a family of kk-dim subspaces of VV with size ||=δ[ntkt]q|\mathcal{F}|=\delta\genfrac{[}{]}{0.0pt}{}{n-t}{k-t}_{q} for some δ[(4k+4)2nqnk,1+196tlnq(k+1)]\delta\in[\frac{(4k+4)^{2}n}{q^{n-k}},1+\frac{1}{96t\ln{q}(k+1)}] satisfying ()=()\mathcal{I}(\mathcal{F})=\mathcal{MI}(\mathcal{F}). Then, when δ1\delta\leq 1, \mathcal{F} is contained in a full tt-star and when δ>1\delta>1, \mathcal{F} contains a full tt-star.

When X=SnX=S_{n}, for an integer s>12(n1)!s>\frac{1}{2}(n-1)!, consider the subfamilies of XX consisting of s(n1)!\lfloor\frac{s}{(n-1)!}\rfloor pairwise disjoint 11-cosets and ss(n1)!(n1)!s-\lfloor\frac{s}{(n-1)!}\rfloor(n-1)! permutations from another 11-coset disjoint with all the former 11-cosets. We denote 𝒯(n,s)\mathcal{T}(n,s) as the family of this form with size ss with maximal total intersection number. Using eigenvalue techniques together with the representation theory of SnS_{n}, we prove that families of permutations of size Θ((n1)!)\Theta((n-1)!) having large total intersection numbers are close to the union of 11-cosets.

Theorem 1.6.

For a sufficiently large integer nn, there exist positive constants C0C_{0} and cc such that the following holds. For integer 0kn120\leq k\leq\frac{n-1}{2}, let ε(12,12]\varepsilon\in(-\frac{1}{2},\frac{1}{2}] and δ0\delta\geq 0 such that max{|ε|,δ}ck\max\{|\varepsilon|,\delta\}\leq ck. If \mathcal{F} is a subfamily of SnS_{n} with size (k+ε)(n1)!(k+\varepsilon)(n-1)! and ()(𝒯(n,||))δ((n1)!)2\mathcal{I}(\mathcal{F})\geq\mathcal{I}(\mathcal{T}(n,|\mathcal{F}|))-\delta((n-1)!)^{2}, then there exists some 𝒢Sn\mathcal{G}\subseteq S_{n} consisting of kk 11-cosets such that

|Δ𝒢|C0(2k(|ε|+δ)+kn)||.|\mathcal{F}\Delta\mathcal{G}|\leq C_{0}\left(\sqrt{2k(|\varepsilon|+\delta)}+\frac{k}{n}\right)|\mathcal{F}|.

Moreover, when ε=δ=0\varepsilon=\delta=0, =𝒢0\mathcal{F}=\mathcal{G}_{0} for some 𝒢0Sn\mathcal{G}_{0}\subseteq S_{n} consisting of kk pairwise disjoint 11-cosets.

Moreover, using linear programming method over association schemes, we also have the following upper bounds on ()\mathcal{MI}(\mathcal{F}).

Theorem 1.7.

Given positive integers nn, kk, MM with knk\leq n and M[nk]qM\leq\genfrac{[}{]}{0.0pt}{}{n}{k}_{q}, for [Vk]\mathcal{F}\subseteq\genfrac{[}{]}{0.0pt}{}{V}{k} with ||=M|\mathcal{F}|=M, we have

()([nk]qM[n1]q)qM2[k1]q[nk1]q[n1]q([n1]q1)+kM2,\displaystyle\mathcal{MI}(\mathcal{F})\leq\left(\frac{\genfrac{[}{]}{0.0pt}{}{n}{k}_{q}}{M}-\genfrac{[}{]}{0.0pt}{}{n}{1}_{q}\right)\frac{qM^{2}\genfrac{[}{]}{0.0pt}{}{k}{1}_{q}\genfrac{[}{]}{0.0pt}{}{n-k}{1}_{q}}{\genfrac{[}{]}{0.0pt}{}{n}{1}_{q}\left(\genfrac{[}{]}{0.0pt}{}{n}{1}_{q}-1\right)}+kM^{2}, (4)

especially, when n2kn\geq 2k and M[n1k1]qM\leq\genfrac{[}{]}{0.0pt}{}{n-1}{k-1}_{q}, we have

()[[nk]qM(qn1)(qn11)(q1)(qk1)]M2(qk1)(qk11)(qnk1)(qn1)(qn11)(qn21)+kM2.\displaystyle\mathcal{MI}(\mathcal{F})\leq\left[\frac{\genfrac{[}{]}{0.0pt}{}{n}{k}_{q}}{M}-\frac{(q^{n}-1)(q^{n-1}-1)}{(q-1)(q^{k}-1)}\right]\frac{M^{2}(q^{k}-1)(q^{k-1}-1)(q^{n-k}-1)}{(q^{n}-1)(q^{n-1}-1)(q^{n-2}-1)}+kM^{2}. (5)
Theorem 1.8.

Given positive integers nn and Mn!M\leq n!, for Sn\mathcal{F}\subseteq S_{n} with ||=M|\mathcal{F}|=M, we have

()M2n1(n!M+n2).\displaystyle\mathcal{MI}(\mathcal{F})\leq\frac{M^{2}}{n-1}\left(\frac{n!}{M}+n-2\right).

1.2 Notations and Outline

Throughout this paper, we shall use the following standard mathematical notations .

  • Denote \mathbb{N} as the set of all nonnegative integers. For any n{0}n\in\mathbb{N}\setminus\{0\}, let [n]={1,2,,n}[n]=\{1,2,\ldots,n\}. For any a,ba,b\in\mathbb{N} such that aba\leq b, let [a,b]={a,a+1,,b}[a,b]=\{a,a+1,\ldots,b\}.

  • Given finite set SS and any positive integer kk, denote (Sk){S\choose k} as the family of all kk-subsets of SS and 2S2^{S} as the family of all subsets of SS.

  • For a given prime power qq and a positive integer nn, we denote 𝔽q\mathbb{F}_{q} as a finite field with qq elements and 𝔽qn\mathbb{F}_{q}^{n} as the nn-dimensional vector space over 𝔽q\mathbb{F}_{q}. Moreover, for a vector 𝐱\mathbf{x} with length nn, we denote 𝐱i\mathbf{x}_{i} as the ithi_{th} position of 𝐱\mathbf{x} for 1in1\leq i\leq n.

  • For two subspaces V1,V2𝔽qnV_{1},V_{2}\subseteq\mathbb{F}^{n}_{q}, we denote V1+V2V_{1}+V_{2} as the sum of these two subspaces and V1/V2V_{1}/V_{2} as the quotient subspace of V1V_{1} by V2V_{2}. If V1V2={𝟎}V_{1}\cap V_{2}=\{\mathbf{0}\}, we denote V1V2V_{1}\oplus V_{2} as the direct sum of V1,V2V_{1},V_{2}. Moreover, we have dim(V1+V2)=dim(V1)+dim(V2)dim(V1V2)\dim(V_{1}+V_{2})=\dim(V_{1})+\dim(V_{2})-\dim(V_{1}\cap V_{2}) and dim(V1/V2)=dim(V1)dim(V1V2)\dim(V_{1}/V_{2})=\dim(V_{1})-\dim(V_{1}\cap V_{2}).

  • For a given prime power qq and positive integers nn, kk with knk\leq n, the Gaussian binomial coefficient [nk]q\genfrac{[}{]}{0.0pt}{}{n}{k}_{q} is defined by

    [nk]q=i=0k1qni1qki1.\displaystyle\genfrac{[}{]}{0.0pt}{}{n}{k}_{q}=\prod\limits_{i=0}^{k-1}\frac{q^{n-i}-1}{q^{k-i}-1}.

    Usually, the qq is omitted when it is clear.

  • For a given family \mathcal{F} in [Vk]\genfrac{[}{]}{0.0pt}{}{V}{k} and a tt-dim subspace UVU\subseteq V, we denote (U)={F:UF}\mathcal{F}(U)=\{F\in\mathcal{F}:U\subseteq F\} as the subfamily in \mathcal{F} containing UU and deg(U)=|(U)|\deg_{\mathcal{F}}(U)=|\mathcal{F}(U)| is called the degree of UU in \mathcal{F}.

The remainder of the paper is organized as follows. In Section 2, we will introduce some basic notions and known results on general association schemes, representation theory of SnS_{n} and spectra of Cayley graphs on SnS_{n}. Moreover, we also include some preliminary lemmas for the proof of our main results. In Section 3, we consider families of vector spaces and prove Theorem 1.5. In Section 4, we consider families of permutations and prove Theorem 1.6. And we prove Theorem 1.7 and Theorem 1.8 in Section 5. Finally, we will conclude the paper and discuss some remaining problems in Section 6.

2 Preliminaries

In this section, we will introduce some necessary notions and related results to support proofs of our theorems. First, we will introduce some notions about general association schemes, which are crucial for the proof of the upper bounds on (X,)\mathcal{MI}(X,\mathcal{F}) for X=[Vk]X=\genfrac{[}{]}{0.0pt}{}{V}{k} and X=SnX=S_{n}. Then, we shall give a brief introduction on the representation theory of SnS_{n}. Finally, we will review some known results about spectra of Cayley graphs on SnS_{n}. Readers familiar with these parts are invited to skip corresponding subsections. Based on these results, we will provide some new estimations about eigenvalues of Cayley graphs on SnS_{n} for the proof of Theorem 1.6.

2.1 Association schemes

Association scheme is one of the most important topics in algebraic combinatorics, coding theory, etc. Many questions concerning distance-regular graphs are best solved in this framework, see [3],[4]. In 1973, by performing linear programming methods on specific association schemes, Delsarte [10] proved many of the sharpest bounds on the size of a code, which demonstrated the power of association schemes in coding theory. Since then, association schemes have been widely studied and related notions have also been extended to other objects, such as equiangular lines and special codes, etc. In this subsection, we only include some basic notions about association schemes. For more details about association schemes, we recommend [10] and [20] as standard references.

Let XX be a finite set with vv (v2)(v\geq 2) elements, and for any integer s1s\geq 1, let ={R0,R1,,Rs}\mathcal{R}=\{R_{0},R_{1},\ldots,R_{s}\} be a family of s+1s+1 relations on XX. The pair (X,)(X,\mathcal{R}) is called an association scheme with ss classes if the following three conditions are satisfied:

  • 1.

    The set \mathcal{R} is a partition of X×XX\times X and R0R_{0} is the diagonal relation, i.e., R0={(x,x)|xX}R_{0}=\{(x,x)|~{}x\in X\}.

  • 2.

    For i=0,1,,si=0,1,\ldots,s, the inverse Ri1={(y,x)|(x,y)Ri}R_{i}^{-1}=\{(y,x)|~{}(x,y)\in R_{i}\} of the relation RiR_{i} also belongs to \mathcal{R}.

  • 3.

    For any triple of integers i,j,k{0,1,,s}i,j,k\in\{0,1,\ldots,s\}, there exists a number pi,j(k)=pj,i(k)p_{i,j}^{(k)}=p_{j,i}^{(k)} such that, for all (x,y)Rk(x,y)\in R_{k}:

    |{zX|(x,z)Ri,(z,y)Rj}|=pi,j(k).|\{z\in X|~{}(x,z)\in R_{i},~{}(z,y)\in R_{j}\}|=p_{i,j}^{(k)}.

    And pi,j(k)p_{i,j}^{(k)}s are called the intersectionintersection numbersnumbers of (X,)(X,\mathcal{R}).

For relation RiR_{i}\in\mathcal{R}, the adjacency matrix of RiR_{i} is defined as follows:

Ai(x,y)={1,(x,y)Ri,0,(x,y)Ri.\displaystyle A_{i}(x,y)=\left\{\begin{array}[]{ll}1,&~{}(x,y)\in R_{i},\\ 0,&~{}(x,y)\notin R_{i}.\end{array}\right.

The space consisting of all complex linear combinations of the matrices {A0,,As}\{A_{0},\ldots,A_{s}\} in an association scheme (X,)(X,\mathcal{R}) is called a BoseBose-MesnerMesner algebraalgebra. Moreover, denote JJ as the v×vv\times v matrix with all entries 1, there is a set of pairwise orthogonal idempotent matrices {B0=Jv,,Bs}\{B_{0}=\frac{J}{v},\ldots,B_{s}\}, which forms another basis of this Bose-Mesner algebra. The relations between {Ar}r=0s\{A_{r}\}_{r=0}^{s} and {Br}r=0s\{B_{r}\}_{r=0}^{s} are shown as follows:

Ai=j=0sPi(j)Bj,i=0,,s;Bj=1vi=0sQj(i)Ai,j=0,,s,\displaystyle A_{i}=\sum\limits_{j=0}^{s}P_{i}(j)B_{j},~{}i=0,\ldots,s;~{}~{}~{}~{}~{}B_{j}=\frac{1}{v}\sum\limits_{i=0}^{s}Q_{j}(i)A_{i},~{}j=0,\ldots,s, (6)

where Pi(0),,Pi(s)P_{i}(0),\ldots,P_{i}(s) are the eigenvalues of AiA_{i}, which are called the eigenvalueseigenvalues of the association scheme; and Qj(i)Q_{j}(i) are known as dualdual eigenvalueseigenvalues of the association scheme. Usually, vi:=Pi(0)v_{i}:=P_{i}(0) denotes the number of 1’s in each row of AiA_{i} and uj:=Qj(0)=tr(Bj)u_{j}:=Q_{j}(0)=tr(B_{j}). According to [20], for 1i,js1\leq i,j\leq s, Pi(j)P_{i}(j)s and Qj(i)Q_{j}(i)s have the following relation:

Pi(j)¯vi=Qj(i)uj.\displaystyle\frac{\overline{P_{i}(j)}}{v_{i}}=\frac{Q_{j}(i)}{u_{j}}. (7)

Let ={R0,R1,,Rs}\mathcal{R}=\{R_{0},R_{1},\ldots,R_{s}\} be a set of s+1s+1 relations on XX of an association scheme. Given a subset YXY\subseteq X with |Y|=M|Y|=M, the innerdistributioninner~{}distribution of YY with respect to \mathcal{R} is an (s+1)(s+1)-tuple 𝐚=(a0,,as)\mathbf{a}=(a_{0},\ldots,a_{s}) of nonnegative rational numbers aia_{i} (0is)(0\leq i\leq s) given by

ai=|Ri(Y×Y)|M.\displaystyle a_{i}=\frac{|R_{i}\cap(Y\times Y)|}{M}. (8)

Clearly, we have a0=1a_{0}=1 and i=0sai=|Y|\sum_{i=0}^{s}a_{i}=|Y|.

Moveover, let 𝐮\mathbf{u} be the indicator vector of YY with respect to XX, i.e., 𝐮x=1\mathbf{u}_{x}=1, if xYx\in Y and 𝐮x=0\mathbf{u}_{x}=0, if xYx\notin Y. Then, (8)(\ref{inner_distribution}) can be rewritten as

ai=1M𝐮Ai𝐮T.\displaystyle a_{i}=\frac{1}{M}\mathbf{u}A_{i}\mathbf{u}^{T}. (9)

Besides, for 0js0\leq j\leq s, define

bj=vM2𝐮Bj𝐮T,\displaystyle b_{j}=\frac{v}{M^{2}}\mathbf{u}B_{j}\mathbf{u}^{T}, (10)

and 𝐛=(b0,,bs)\mathbf{b}=(b_{0},\ldots,b_{s}) as the dualdual distributiondistribution of YY. By combining (6)(\ref{relationship}) and (10)(\ref{A_represent_B}) together, we have the following lemma which provides a linear relationship between aia_{i}s and bjb_{j}s.

Lemma 2.1.

Given an association scheme (X,)(X,\mathcal{R}) with ss classes and |X|=v|X|=v. Let YXY\subseteq X with size MM, then for {a0,,as}\{a_{0},\ldots,a_{s}\} and {b0,,bs}\{b_{0},\ldots,b_{s}\} defined in (8)(\ref{inner_distribution}) and (10)(\ref{A_represent_B}) respectively, we have

ai=Mvj=0sbjPi(j),i=0,1,,s.\displaystyle a_{i}=\frac{M}{v}\sum\limits_{j=0}^{s}b_{j}P_{i}(j),~{}~{}i=0,1,\ldots,s.

As a consequence of Lemma 2.1, we have the following properties of {bj:0js}\{b_{j}:0\leq j\leq s\}.

Lemma 2.2.

([27], Theorem 12 in Section 6, Chapter 21) Given an association scheme (X,)(X,\mathcal{R}) with ss classes and |X|=v|X|=v. Let YXY\subseteq X with size MM and {b0,,bs}\{b_{0},\ldots,b_{s}\} be defined as (10)(\ref{A_represent_B}), then bj0b_{j}\geq 0 for all 0js0\leq j\leq s.

Lemma 2.3.

With the same conditions as those in Lemma 2.2, for {b0,,bs}\{b_{0},\ldots,b_{s}\}, we have

b0=1 and j=0sbj=vM.\displaystyle b_{0}=1\text{~{}and~{}}\sum\limits_{j=0}^{s}b_{j}=\frac{v}{M}. (11)
Proof of Lemma 2.3.

Since B0=J/vB_{0}=J/v, by the definition of bjb_{j} in (10)(\ref{A_represent_B}), we can obtain

b0=1M2𝐮J𝐮T=1.\displaystyle b_{0}=\frac{1}{M^{2}}\mathbf{u}J\mathbf{u}^{T}=1.

Note that a0=1a_{0}=1 and P0(j)=1P_{0}(j)=1 for 0js0\leq j\leq s, by taking i=0i=0 in Lemma 2.1, we can obtain

j=0sbj=vM.\displaystyle\sum\limits_{j=0}^{s}b_{j}=\frac{v}{M}.

2.2 Background on the representation theory of SnS_{n}

A partition of nn is a nonincreasing sequence of positive integers summing to nn, i.e., a sequence λ=(λ1,,λl)\lambda=(\lambda_{1},\ldots,\lambda_{l}) with λ1λl\lambda_{1}\geq\cdots\geq\lambda_{l} and i=1lλi=n\sum_{i=1}^{l}\lambda_{i}=n, and we write λn\lambda\vdash n. The Young diagram of λ\lambda is an array of nn cells, having ll left-justified rows, where row ii contains λi\lambda_{i} cells. For example, the Young diagram of the partition (3,22)(3,2^{2}) is:

{ytableau}

&

If the array contains the numbers {1,,n}\{1,\ldots,n\} in some order in place of dots, we call it λ\lambda-tableau, for example,

{ytableau}

5 & 1 3

2 4

6 7

is a (3,22)(3,2^{2})-tableau. Two λ\lambda-tableaux are said to be row-equivalent if they have the same numbers in each row; if a λ\lambda-tableau ss has rows R1,,Rl1[n]R_{1},\ldots,R_{l_{1}}\subseteq[n] and columns C1,,Cl2[n]C_{1},\ldots,C_{l_{2}}\subseteq[n], then we let Rs=SR1××SRl1R_{s}=S_{R_{1}}\times\cdots\times S_{R_{l_{1}}} be the row-stabilizer of ss and Cs=SC1××SCl2C_{s}=S_{C_{1}}\times\cdots\times S_{C_{l_{2}}} be the column-stabilizer of ss.

A λ\lambda-tabloid is a λ\lambda-tableau with unordered row entries. Given a tableau ss, denote [s][s] as the tabloid it produces. For example, the (3,22)(3,2^{2})-tableau above produces the following (3,22)(3,2^{2})-tabloid:

{513}\displaystyle\{5~{}~{}1~{}~{}3\}
{24}\displaystyle\{2~{}~{}4\}
{67}\displaystyle\{6~{}~{}7\}

For given group GG and set SS, denote ee as the identity in GG. The left action of GG on SS is a function G×SSG\times S\rightarrow S (denoted by (g,x)gx(g,x)\mapsto gx) such that for all xSx\in S and g1,g2G:g_{1},g_{2}\in G:

ex=xand(g1g2)x=g1(g2x).ex=x~{}\text{and}~{}(g_{1}g_{2})x=g_{1}(g_{2}x).

Now, consider the left action of SnS_{n} on XλX^{\lambda}, the set of all λ\lambda-tabloids; let Mλ=[Xλ]M^{\lambda}=\mathbb{C}[X^{\lambda}] be the corresponding permutation module, i.e., the complex vector space with basis XλX^{\lambda} and the action of SnS_{n} on [Xλ]\mathbb{C}[X^{\lambda}] linearly extended from the action of SnS_{n} on XλX^{\lambda}. Given a λ\lambda-tableau ss, the corresponding λ\lambda-polytabloid is defined as

es:=πCssgn(π)π[s].e_{s}:=\sum_{\pi\in C_{s}}sgn(\pi)\pi[s].

We define the Specht module SλS^{\lambda} to be the submodule of MλM^{\lambda} spanned by the λ\lambda-polytabloids:

Sλ=Span{es:s is a λ-tableau}.S^{\lambda}=\text{Span}\{e_{s}:s\text{~{}is a }\lambda\text{-tableau}\}.

As shown in [14], any irreducible representation ρ\rho of SnS_{n} is isomorphic to some SλS^{\lambda}. This leads to a one to one correspondence between irreducible representations and partitions of nn. In the following of this paper, for convenience, we shall write [λ][\lambda] for the equivalence class of the irreducible representation SλS^{\lambda}, χλ\chi_{\lambda} for the character χSλ\chi_{S^{\lambda}} (The formal definition of the character of a representation will be presented in Section 2.3.1).

Let λ=(λ1,,λl1)\lambda=(\lambda_{1},\ldots,\lambda_{l_{1}}) be a partition of nn. If its Young diagram has columns of lengths λ1λ2λl21\lambda^{\prime}_{1}\geq\lambda^{\prime}_{2}\geq\cdots\geq\lambda^{\prime}_{l_{2}}\geq 1, then the partition λT=(λ1,,λl2)\lambda^{T}=(\lambda^{\prime}_{1},\dots,\lambda^{\prime}_{l_{2}}) is called the transpose (or conjugate) of λ\lambda. Consider each cell (i,j)(i,j) in the Young diagram of λ\lambda, the hook of (i,j)(i,j) is Hi,j={(i,j):jj}{(i,j):ii}H_{i,j}=\{(i,j^{\prime}):j^{\prime}\geq j\}\cup\{(i^{\prime},j):i^{\prime}\geq i\}. The hook length of (i,j)(i,j) is hi,j=|Hi,j|h_{i,j}=|H_{i,j}|. As an important parameter, the dimension dim[λ]\dim[\lambda] of the Specht module SλS^{\lambda} is given by the following theorem:

Theorem 2.4.

([15]) If λ\lambda is a partition of nn with hook lengths (hi,j)(h_{i,j}), then

dim[λ]=n!i,jhi,j.\dim[\lambda]=\frac{n!}{\prod_{i,j}h_{i,j}}. (12)

As an immediate consequence of Theorem 2.4, we have dim[λ]=dim[λT]\dim[\lambda]=\dim[\lambda^{T}].

2.3 Spectra of Cayley graphs on SnS_{n}

2.3.1 Basics and known results

Given a group GG and an inverse-closed subset XGX\subseteq G, the Cayley graph on GG generated by XX, denoted by Cay(G,X)Cay(G,X), is the graph with vertex-set GG and edge-set {{u,v}(G2):uv1X}\{\{u,v\}\in{G\choose 2}:uv^{-1}\in X\}. Cayley graphs have been studied for many years and are a class of the most important structures in algebraic graph theory. Here, we only consider a very special kind of Cayley graphs where G=SnG=S_{n} and XX is a union of conjugacy classes.

For fixed k1k\geq 1, consider the Cayley graph Γk\Gamma_{k} on SnS_{n} with generating set

FPFk={σSn:σ has less than k fixed points}.FPF_{k}=\{\sigma\in S_{n}:\sigma\text{~{}has less than~{}}k\text{~{}fixed points}\}.

When k=1k=1, the corresponding Cayley graph Γ1\Gamma_{1} is also called the derangement graph on SnS_{n}.

For i,j[n]i,j\in[n], denote 𝒞ij\mathcal{C}_{i\rightarrow j} as the coset consisting of permutations σSn\sigma\in S_{n} with σ(i)=j\sigma(i)=j. In [14], by taking FPFkFPF_{k} as a union of conjugacy classes, the authors used the representation theory of SnS_{n} and obtained the following results about the eigenvalues of Γk\Gamma_{k}:

λρ(k)=1dim[ρ]σFPFkχρ(σ)(ρn),\lambda_{\rho}^{(k)}=\frac{1}{\dim[\rho]}\sum_{\sigma\in{FPF_{k}}}\chi_{\rho}(\sigma)~{}~{}~{}(\rho\vdash n), (13)

where the character χρ\chi_{\rho} of ρ\rho is the map defined by

χρ\displaystyle\chi_{\rho} :Sn,\displaystyle:S_{n}\rightarrow\mathbb{C},
χρ(σ)\displaystyle\chi_{\rho}(\sigma) =Tr(ρ(σ)),\displaystyle=Tr(\rho(\sigma)),

and Tr(ρ(σ))Tr(\rho(\sigma)) denotes the trace of the linear map of ρ(σ)\rho(\sigma). If there is no confusion, for a partition ρ\rho of nn, we also use the notation ρ\rho to denote the corresponding irreducible representation of SnS_{n} (For this correspondence, see Theorem 14 in [14].).

Let dn=|FPF1(n)|d_{n}=|FPF_{1}(n)| be the number of derangements in SnS_{n}, using the inclusion-exclusion formula, we have

dn=i=0n(1)i(ni)(ni)!=i=0n(1)in!i!=(1e+o(1))n!.d_{n}=\sum_{i=0}^{n}{(-1)}^{i}{n\choose i}(n-i)!=\sum_{i=0}^{n}(-1)^{i}\frac{n!}{i!}=\left(\frac{1}{e}+o(1)\right)\cdot{n!}.

From [14], we know that for n5n\geq 5, the eigenvalues of Γ1\Gamma_{1} satisfy:

λ(n)(1)\displaystyle\lambda_{(n)}^{(1)} =dn,\displaystyle=d_{n},
λ(n1,1)(1)\displaystyle\lambda_{(n-1,1)}^{(1)} =dn(n1),\displaystyle=-\frac{d_{n}}{(n-1)}, (14)
|λρ(1)|\displaystyle|\lambda_{\rho}^{(1)}| <cdnn2<dn(n1)for all otherρn,\displaystyle<\frac{c\cdot d_{n}}{n^{2}}<\frac{d_{n}}{(n-1)}~{}\text{for all other}~{}\rho\vdash n,

where cc is an absolute constant. And the eigenvalues of Γk\Gamma_{k} satisfy:

λ(n)(k)\displaystyle\lambda_{(n)}^{(k)} =i=0k1[(ni)dni],\displaystyle=\sum_{i=0}^{k-1}\big{[}{n\choose i}\cdot d_{n-i}\big{]},
λ(n1,1)(k)\displaystyle\lambda_{(n-1,1)}^{(k)} =1(n1)i=0k1[(ni)dni(i1)],\displaystyle=\frac{1}{(n-1)}\cdot\sum_{i=0}^{k-1}\big{[}{n\choose i}\cdot d_{n-i}\cdot(i-1)\big{]}, (15)
|λρ(k)|\displaystyle|\lambda_{\rho}^{(k)}| <ckn!n2for all otherρn,\displaystyle<\frac{c_{k}\cdot n!}{n^{2}}~{}\text{for all other}~{}\rho\vdash n,

where ck>0c_{k}>0 depends on kk alone. As shown in [13], for λρ(k)\lambda_{\rho}^{(k)}s with different kks and the same ρ\rho, their corresponding eigenspaces are the same UρU_{\rho} with dimension dim[ρ]\dim[\rho]. For each tt\in\mathbb{N}, define

Ut=ρn:ρ1ntUρ.U_{t}=\bigoplus_{\rho\vdash n:\rho_{1}\geq n-t}U_{\rho}.

It was proved in [14] that UtU_{t} is the linear span of the characteristic functions of the tt-cosets of SnS_{n}, i.e.,

Ut=Span{𝒞IJ:I,J are ordered t-tuples of distinct elements of [n]},U_{t}=Span\{\mathcal{C}_{I\rightarrow J}:I,J\text{~{}are ordered~{}}t\text{-tuples of distinct elements of~{}}[n]\},

where for I={i1,,it}I=\{i_{1},\ldots,i_{t}\} and J={j1,,jt}J=\{j_{1},\ldots,j_{t}\}, 𝒞IJ={σSn:σ(i1)=j1,,σ(it)=jt}\mathcal{C}_{I\rightarrow J}=\{\sigma\in S_{n}:\sigma(i_{1})=j_{1},\ldots,\sigma(i_{t})=j_{t}\} is a tt-coset of SnS_{n}. Moreover, write Vt=ρn:ρ1=ntUρV_{t}=\bigoplus_{\rho\vdash n:\rho_{1}=n-t}U_{\rho}. Clearly, VtV_{t}s are pairwise orthogonal and

Ut=Ut1Vt.U_{t}=U_{t-1}\bigoplus V_{t}. (16)

During their study of intersecting families for permutations in [14], Ellis, Friedgut and Pilpel developed several tools to estimate the spectra of Γk\Gamma_{k}s, we include the following three lemmas which are useful for our estimations of the eigenvalues of Γk\Gamma_{k}s.

Lemma 2.5.

([14], Lemma 6) Let GG be a finite group, let XGX\subseteq G be inverse-closed and conjugation-invariant, and let Cay(G,X)Cay(G,X) be the Cayley graph on GG with generating set XX. Let ρ\rho be an irreducible representation of GG with dimension dd, and let λρ\lambda_{\rho} be the corresponding eigenvalue of Cay(G,X)Cay(G,X). Then

|λρ||G||X|d.|\lambda_{\rho}|\leq\frac{\sqrt{|G||X|}}{d}. (17)
Lemma 2.6.

([14], Claim 1 in Section 3.2.1) Let [ρ][\rho] be an irreducible representation whose first row or column is of length ntn-t. Then

dim[ρ](nt)et.\dim{[\rho]}\geq{n\choose t}e^{-t}. (18)
Theorem 2.7.

([28]) If α,ϵ>0\alpha,\epsilon>0, then there exists N(α,ϵ)N(\alpha,\epsilon)\in\mathbb{N} such that for all n>N(α,ϵ)n>N(\alpha,\epsilon), any irreducible representation [λ][\lambda] of SnS_{n} which has all rows and columns of length at most nα\frac{n}{\alpha} has

dim[λ](αϵ)n.\dim{[\lambda]}\geq(\alpha-\epsilon)^{n}. (19)

The above three lemmas provide a way to control |λρ(k)||\lambda_{\rho}^{(k)}| based on the dimension of [ρ][\rho]. When the structure of the partition ρ\rho is relatively simple, [ρ][\rho]’s dimension can be well bounded and therefore leads to a good control of |λρ(k)||\lambda_{\rho}^{(k)}|. When the dimension of [ρ][\rho] is relatively large, this method no longer works. Thus, we need the following results from [24] and [25].

Theorem 2.8.

([24], Theorem 3.7) Let 0<k<n0<k<n and ρn\rho\vdash n. Let μ1,,μq\mu_{1},\ldots,\mu_{q} be the Young diagram obtained from ρ\rho by removing the right most box from any row of the diagram so that the resulting diagram is still a partition of (n1)(n-1). Then

λρ(k)=nkdim[ρ]j=1qdim[μj]λμj(k1).\lambda_{\rho}^{(k)}=\frac{n}{k\dim[\rho]}\sum_{j=1}^{q}\dim[\mu_{j}]\lambda_{\mu_{j}}^{(k-1)}. (20)
Theorem 2.9.

([25], Theorem 3.5) Let n,kn,k be integers with n>k0n>k\geq 0, and ρ=(n)n\rho=(n)\vdash n. Then

λρT(k)=(nk)(1)nk1(nk1).\lambda_{\rho^{T}}^{(k)}={n\choose k}(-1)^{n-k-1}(n-k-1). (21)

For positive integers n1n_{1} and n2n_{2}, we write n1=Ot(n2)n_{1}=O_{t}(n_{2}) if n1Ctn2n_{1}\leq C_{t}n_{2} for some constant CtC_{t} that depends only on tt.

Theorem 2.10.

([25], Theorem 3.9) Let n,k,tn,k,t be integers with k0k\geq 0, t>0t>0 and n>k+2tn>k+2t, ρ=(nt,ρ2,,ρr)n\rho=(n-t,\rho_{2},\ldots,\rho_{r})\vdash n with i=2rρi=t\sum_{i=2}^{r}\rho_{i}=t, and β=(ρ2,,ρr)t\beta=(\rho_{2},\ldots,\rho_{r})\vdash t. Then

dim[ρ]λρ(k)=dim[β](nk)(r=0t(kr)(1)tr(tr)!)dnk+Ot(n2t1+k).\dim[\rho]\lambda_{\rho}^{(k)}=\dim[\beta]{n\choose k}\left(\sum_{r=0}^{t}{k\choose r}\frac{(-1)^{t-r}}{(t-r)!}\right)d_{n-k}+O_{t}(n^{2t-1+k}). (22)

Let n,k,tn,k,t be integers with 0k<n0\leq k<n and 02t<n0\leq 2t<n. We define V(n,t)={ρn:ρ=(nt,ρ2,,ρl) with i=2lρi=t}V(n,t)=\{\rho\vdash n:\rho=(n-t,\rho_{2},\ldots,\rho_{l})\text{ with }\sum_{i=2}^{l}\rho_{i}=t\}, and we also need the following lemma.

Lemma 2.11.

([25], Lemma 3.16) Let t0t\geq 0 and ρV(n,t)\rho\in V(n,t). Then

λρT(k)=Ot(nk+1).\lambda_{\rho^{T}}^{(k)}=O_{t}(n^{k+1}). (23)

2.3.2 Some new results about λρ(k)\lambda_{\rho}^{(k)}s

In this part, first, we shall prove two identities of the linear combinations of λ(n)(k)\lambda_{(n)}^{(k)}s. Then, using aforementioned results, we will provide some new estimations about |λρ(k)||\lambda_{\rho}^{(k)}| for ρn\rho\vdash n and ρ(n),(n1,1)\rho\neq(n),(n-1,1).

Based on the formula of dnd_{n}, we have the following simple identity.

Proposition 2.12.

For any positive integer n5n\geq 5, we have

k=2ni=1k11(i1)!(s=0ni(1)ss!)=n2.\sum_{k=2}^{n}\sum_{i=1}^{k-1}\frac{1}{(i-1)!}\cdot\left(\sum_{s=0}^{n-i}\frac{(-1)^{s}}{s!}\right)=n-2. (24)
Proof.

First, by interchanging the summation order of the LHS of (24), we have

k=2ni=1k11(i1)!(s=0ni(1)ss!)\displaystyle\sum_{k=2}^{n}\sum_{i=1}^{k-1}\frac{1}{(i-1)!}\cdot\left(\sum_{s=0}^{n-i}\frac{(-1)^{s}}{s!}\right) =k=2ni=0k21i!(s=0ni1(1)ss!)\displaystyle=\sum_{k=2}^{n}\sum_{i=0}^{k-2}\frac{1}{i!}\cdot\left(\sum_{s=0}^{n-i-1}\frac{(-1)^{s}}{s!}\right)
=i=0n21i!(k=i+2ns=0ni1(1)ss!)\displaystyle=\sum_{i=0}^{n-2}\frac{1}{i!}\cdot\left(\sum_{k=i+2}^{n}\sum_{s=0}^{n-i-1}\frac{(-1)^{s}}{s!}\right)
=i=0n2ni1i!(s=0ni1(1)ss!).\displaystyle=\sum_{i=0}^{n-2}\frac{n-i-1}{i!}\cdot\left(\sum_{s=0}^{n-i-1}\frac{(-1)^{s}}{s!}\right).

Now, let am=s=0m(1)ss!a_{m}=\sum_{s=0}^{m}\frac{(-1)^{s}}{s!} and A(x)A(x) be the generating function m0amxm\sum_{m\geq 0}a_{m}x^{m} of sequence {am}m0\{a_{m}\}_{m\geq 0}. Then, we have A(x)=ex1xA(x)=\frac{e^{-x}}{1-x} and

m0mamxm=(ex1x)x=exx2(1x)2.\sum_{m\geq 0}ma_{m}x^{m}=\left(\frac{e^{-x}}{1-x}\right)^{{}^{\prime}}x=\frac{e^{-x}x^{2}}{(1-x)^{2}}.

Let bn=i=0nni+1i!ani+1b_{n}=\sum_{i=0}^{n}\frac{n-i+1}{i!}a_{n-i+1} and B(x)B(x) be the generating function n0bnxn\sum_{n\geq 0}b_{n}x^{n} of sequence {bn}n0\{b_{n}\}_{n\geq 0}. From the above equality and the property of products of generating functions, we immediately have

B(x)=exm0mamxmx=x(1x)2=n1nxn.B(x)=e^{x}\cdot\frac{\sum_{m\geq 0}ma_{m}x^{m}}{x}=\frac{x}{(1-x)^{2}}=\sum_{n\geq 1}nx^{n}.

Therefore, bn=nb_{n}=n and

k=2ni=1k11(i1)!(s=0ni(1)ss!)=i=0n2ni1i!(s=0ni1(1)ss!)=bn2=n2.\sum_{k=2}^{n}\sum_{i=1}^{k-1}\frac{1}{(i-1)!}\cdot\left(\sum_{s=0}^{n-i}\frac{(-1)^{s}}{s!}\right)=\sum_{i=0}^{n-2}\frac{n-i-1}{i!}\cdot\left(\sum_{s=0}^{n-i-1}\frac{(-1)^{s}}{s!}\right)=b_{n-2}=n-2.

This completes the proof of (24). ∎

As an application of Proposition 2.12, we can prove the following lemma.

Lemma 2.13.

For any integer n5n\geq 5,

k=1n(λ(n)(k)+(n1)λ(n1,1)(k))=n!(n2),\displaystyle\sum_{k=1}^{n}(\lambda_{(n)}^{(k)}+(n-1)\cdot\lambda_{(n-1,1)}^{(k)})=n!\cdot(n-2), (25)
k=1n(λ(n)(k)λ(n1,1)(k))=n!(nn2n1).\displaystyle\sum_{k=1}^{n}(\lambda_{(n)}^{(k)}-\lambda_{(n-1,1)}^{(k)})=n!\cdot\left(n-\frac{n-2}{n-1}\right). (26)
Proof.

By (2.3.1), we have

λ(n)(k)+(n1)λ(n1,1)(k)\displaystyle\lambda_{(n)}^{(k)}+(n-1)\cdot\lambda_{(n-1,1)}^{(k)} =i=0k1(ni)idni\displaystyle=\sum_{i=0}^{k-1}{n\choose i}\cdot i\cdot d_{n-i}
=0+n!i=1k11(i1)!(s=0ni(1)ss!),\displaystyle=0+n!\cdot\sum_{i=1}^{k-1}\frac{1}{(i-1)!}\cdot(\sum_{s=0}^{n-i}\frac{(-1)^{s}}{s!}),

where the second term n!i=1k11(i1)!(s=0ni(1)ss!)n!\cdot\sum_{i=1}^{k-1}\frac{1}{(i-1)!}\cdot(\sum_{s=0}^{n-i}\frac{(-1)^{s}}{s!}) in the RHS of the above equality equals 0 when k1k\leq 1. Thus the identity (25) follows from Lemma 2.12.

Similarly, by (2.3.1), we have

λ(n)(k)λ(n1,1)(k)\displaystyle\lambda_{(n)}^{(k)}-\lambda_{(n-1,1)}^{(k)} =i=0k1(ni)(1i1n1)dni\displaystyle=\sum_{i=0}^{k-1}{n\choose i}\cdot\left(1-\frac{i-1}{n-1}\right)\cdot d_{n-i}
=nn1i=0k1(ni)dni1n1i=0k1(ni)idni.\displaystyle=\frac{n}{n-1}\cdot\sum_{i=0}^{k-1}{n\choose i}\cdot d_{n-i}-\frac{1}{n-1}\cdot\sum_{i=0}^{k-1}{n\choose i}\cdot i\cdot d_{n-i}.

Therefore,

k=1n(λ(n)(k)λ(n1,1)(k))\displaystyle\sum_{k=1}^{n}(\lambda_{(n)}^{(k)}-\lambda_{(n-1,1)}^{(k)}) =k=1n(nn1i=0k1(ni)dni1n1i=0k1(ni)idni)\displaystyle=\sum_{k=1}^{n}\left(\frac{n}{n-1}\cdot\sum_{i=0}^{k-1}{n\choose i}\cdot d_{n-i}-\frac{1}{n-1}\cdot\sum_{i=0}^{k-1}{n\choose i}\cdot i\cdot d_{n-i}\right)
=n!nn1k=1ni=0k11i!(s=0ni(1)ss!)n!n2n1.\displaystyle=n!\cdot\frac{n}{n-1}\cdot\sum_{k=1}^{n}\sum_{i=0}^{k-1}\frac{1}{i!}\cdot\left(\sum_{s=0}^{n-i}\frac{(-1)^{s}}{s!}\right)-n!\cdot\frac{n-2}{n-1}.

From the definition of MnM_{n} in Proposition 2.12, we have k=1ni=0k11i!(s=0ni(1)ss!)=Mn\sum_{k=1}^{n}\sum_{i=0}^{k-1}\frac{1}{i!}\cdot(\sum_{s=0}^{n-i}\frac{(-1)^{s}}{s!})=M_{n}. Thus we have

k=1n(λ(n)(k)λ(n1,1)(k))=n!(nn2n1).\displaystyle\sum_{k=1}^{n}(\lambda_{(n)}^{(k)}-\lambda_{(n-1,1)}^{(k)})=n!\cdot\left(n-\frac{n-2}{n-1}\right).

This completes the proof. ∎

Denote Φ={ρn:ρ(n),(n1,1)}\Phi=\{\rho\vdash n:\rho\neq(n),(n-1,1)\}. According to (2.3.1), for fixed kk and ρ(n),(n1,1)\rho\neq(n),(n-1,1), we have |λρ(k)|ckn!n2|\lambda_{\rho}^{(k)}|\leq\frac{c_{k}\cdot n!}{n^{2}}. However, this bound is not good enough. When the index kk varies from 11 to nn, the constant ckc_{k} might become relatively large. Thus, if we try to get similar identities as (25) and (26) for λρ(k)\lambda_{\rho}^{(k)} with ρΦ\rho\in\Phi, we need some more delicate evaluations about λρ(k)\lambda_{\rho}^{(k)}s for ρΦ\rho\in\Phi.

According to the structure of their corresponding partitions, we can divide ρΦ\rho\in\Phi into the following four parts:

Φ1=\displaystyle\Phi_{1}= {ρΦ:the first row or column of ρ is of length at most n3};\displaystyle\{\rho\in{\Phi}:\text{the first row or column of }\rho\text{ is of length at most }n-3\};
Φ2=\displaystyle\Phi_{2}= {(n)T};\displaystyle\{(n)^{T}\};
Φ3=\displaystyle\Phi_{3}= {(n2,1,1),(n2,2)};\displaystyle\{(n-2,1,1),(n-2,2)\};
Φ4=\displaystyle\Phi_{4}= {(n1,1)T,(n2,1,1)T,(n2,2)T}.\displaystyle\{(n-1,1)^{T},(n-2,1,1)^{T},(n-2,2)^{T}\}.

Clearly, Φ\Phi are formed by these four parts and all of them are pairwise disjoint. Based on the known results, we can prove the following bounds about λρ(k)\lambda_{\rho}^{(k)}s for ρΦ\rho\in\Phi.

Lemma 2.14.

Let n,k,tn,k,t be positive integers with nn sufficiently large. Then,

  • When ρΦ1Φ2\rho\in\Phi_{1}\sqcup\Phi_{2}, we have |λρ(k)|7e3n!n3|\lambda_{\rho}^{(k)}|\leq\frac{7e^{3}n!}{n^{3}} for all 1kn1\leq k\leq n.

  • When ρΦ3\rho\in\Phi_{3}, we have λρ(k)c0n!n3\lambda_{\rho}^{(k)}\geq-\frac{c_{0}n!}{n^{3}} for 3knnlnn73\leq k\leq n-\frac{n}{\ln{n}}-7, where c0c_{0} is an absolute constant; and |λρ(k)|3n!n2|\lambda_{\rho}^{(k)}|\leq\frac{3n!}{n^{2}} for k=1,2k=1,2 or k>nnlnn7k>n-\frac{n}{\ln{n}}-7.

  • When ρΦ4\rho\in\Phi_{4}, we have |λρ(k)|n!n3|\lambda_{\rho}^{(k)}|\leq\frac{n!}{n^{3}} for 1knnlnn71\leq k\leq n-\frac{n}{\ln{n}}-7; and |λρ(k)|3n!n2|\lambda_{\rho}^{(k)}|\leq\frac{3n!}{n^{2}} for k>nnlnn7k>n-\frac{n}{\ln{n}}-7.

Proof.

Consider the eigenvalues corresponding to irreducible representations in Φ1Φ2\Phi_{1}\sqcup\Phi_{2}. For each ρΦ1\rho\in\Phi_{1}, assume that the length of the first row or column of ρ\rho is ntn-t. When 3tn33\leq t\leq\frac{n}{3}, since (nt)et{n\choose t}e^{-t} is increasing in the range 3tnee+13\leq t\leq\frac{n-e}{e+1} and is decreasing in the range nee+1<tn3\frac{n-e}{e+1}<t\leq\frac{n}{3}, thus, we have (nt)etn37e3{n\choose t}e^{-t}\geq\frac{n^{3}}{7e^{3}}. By Lemma 2.6, dim[ρ](nt)etn37e3\dim[\rho]\geq{n\choose t}e^{-t}\geq\frac{n^{3}}{7e^{3}}. When tn3t\geq\frac{n}{3}, ρ\rho has all rows and columns of length at most 2n3\frac{2n}{3}. Since nn is sufficiently large, by Theorem 2.7, dim[ρ](32ϵ)nn37e3\dim[\rho]\geq(\frac{3}{2}-\epsilon)^{n}\geq\frac{n^{3}}{7e^{3}}. Therefore, for all ρΦ1\rho\in\Phi_{1}, we have dim[ρ]n37e3\dim[\rho]\geq\frac{n^{3}}{7e^{3}}. Note that |FPFk|<n!|FPF_{k}|<n!. By Lemma 2.5, we have

|λρ(k)|7e3n!n3|\lambda_{\rho}^{(k)}|\leq\frac{7e^{3}n!}{n^{3}}

for all ρΦ1\rho\in\Phi_{1} and 1kn1\leq k\leq n. According to Theorem 2.9, λ(n)T(k)=(1)nk1(nk1)(nk)\lambda_{(n)^{T}}^{(k)}=(-1)^{n-k-1}(n-k-1){n\choose k}. Thus, we also have |λ(n)T(k)|7e3n!n3|\lambda_{(n)^{T}}^{(k)}|\leq\frac{7e^{3}n!}{n^{3}}.

Consider the eigenvalues corresponding to irreducible representations in Φ3\Phi_{3}. Based on structures of Young diagrams of (n2,1,1)(n-2,1,1) and (n2,2)(n-2,2), one can easily get their hook lengths. Thus, by Theorem 2.4, dim[(n2,1,1)]=(n1)(n2)2\dim[(n-2,1,1)]=\frac{(n-1)(n-2)}{2} and dim[(n2,2)]=(n1)(n3)2\dim[(n-2,2)]=\frac{(n-1)(n-3)}{2}. Take t=2t=2 in Theorem 2.10, for 1kn51\leq k\leq n-5, we have

(n1)(n2)2λ(n2,1,1)(k)\displaystyle\frac{(n-1)(n-2)}{2}\lambda_{(n-2,1,1)}^{(k)} =(nk)k23k+12dnk+O2(nk+3);\displaystyle={n\choose k}\frac{k^{2}-3k+1}{2}d_{n-k}+O_{2}(n^{k+3});
(n1)(n3)2λ(n2,2)(k)\displaystyle\frac{(n-1)(n-3)}{2}\lambda_{(n-2,2)}^{(k)} =(nk)k23k+12dnk+O2(nk+3).\displaystyle={n\choose k}\frac{k^{2}-3k+1}{2}d_{n-k}+O_{2}(n^{k+3}).

For k=1,2k=1,2 and nn sufficiently large, this leads to λ(n2,1,1)(1)=λ(n2,2)(1)=(1e+o(1))n!n2\lambda_{(n-2,1,1)}^{(1)}=\lambda_{(n-2,2)}^{(1)}=-\left(\frac{1}{e}+o(1)\right)\cdot\frac{n!}{n^{2}} and λ(n2,1,1)(2)=λ(n2,2)(2)=(12e+o(1))n!n2\lambda_{(n-2,1,1)}^{(2)}=\lambda_{(n-2,2)}^{(2)}=-\left(\frac{1}{2e}+o(1)\right)\cdot\frac{n!}{n^{2}}. For 3knnlnn73\leq k\leq n-\frac{n}{\ln{n}}-7, we have (nk)k23k+12dnk>0{n\choose k}\frac{k^{2}-3k+1}{2}d_{n-k}>0 and nk+3<n!n3n^{k+3}<\frac{n!}{n^{3}}. This indicates that

λ(n2,1,1)(k)c1n!n3 and λ(n2,2)(k)c2n!n3\displaystyle\lambda_{(n-2,1,1)}^{(k)}\geq-c_{1}\frac{n!}{n^{3}}\text{~{}and~{}}\lambda_{(n-2,2)}^{(k)}\geq-c_{2}\frac{n!}{n^{3}}

for all 3knnlnn73\leq k\leq n-\frac{n}{\ln{n}}-7, where c1,c20c_{1},c_{2}\geq 0 are absolute constants. For k>nnlnn7k>n-\frac{n}{\ln{n}}-7, since we already have dim[(n2,1,1)]=(n1)(n2)2\dim[(n-2,1,1)]=\frac{(n-1)(n-2)}{2} and dim[(n2,2)]=(n1)(n3)2\dim[(n-2,2)]=\frac{(n-1)(n-3)}{2}, by Lemma 2.5 and |FPFk|<n!|FPF_{k}|<n!, we have

|λ(n2,1,1)(k)|,|λ(n2,2)(k)|3n!n2.\displaystyle|\lambda_{(n-2,1,1)}^{(k)}|,~{}|\lambda_{(n-2,2)}^{(k)}|\leq\frac{3n!}{n^{2}}.

Consider the eigenvalues corresponding to irreducible representations in Φ4\Phi_{4}. For 1knnlnn71\leq k\leq n-\frac{n}{\ln{n}}-7, by Lemma 2.11, we have λ(n1,1)T(k)=O1(nk+1)\lambda_{(n-1,1)^{T}}^{(k)}=O_{1}(n^{k+1}) and λ(n2,1,1)T(k)=λ(n2,2)T(k)=O2(nk+1)\lambda_{(n-2,1,1)^{T}}^{(k)}=\lambda_{(n-2,2)^{T}}^{(k)}=O_{2}(n^{k+1}). Therefore, we have

|λ(n1,1)T(k)|,|λ(n2,1,1)T(k)|,|λ(n2,2)T(k)|n!n3,\displaystyle|\lambda_{(n-1,1)^{T}}^{(k)}|,~{}|\lambda_{(n-2,1,1)^{T}}^{(k)}|,~{}|\lambda_{(n-2,2)^{T}}^{(k)}|\leq\frac{n!}{n^{3}},

for all 1knnlnn71\leq k\leq n-\frac{n}{\ln{n}}-7. For k>nnlnn7k>n-\frac{n}{\ln{n}}-7, based on the structure of (n1,1)T(n-1,1)^{T}, we have

λ(n1,1)T(k)=nkdim[ρ](dim[(n1)T]λ(n1)T(k1)+dim[(n2,1)T]λ(n2,1)T(k1))\lambda_{(n-1,1)^{T}}^{(k)}=\frac{n}{k\dim[\rho]}\cdot(\dim[(n-1)^{T}]\cdot\lambda_{(n-1)^{T}}^{(k-1)}+\dim[(n-2,1)^{T}]\cdot\lambda_{(n-2,1)^{T}}^{(k-1)})

by Theorem 2.8. Since dim[(n1)T]=dim[(n1)]=1\dim[(n-1)^{T}]=\dim[(n-1)]=1 and dim[ρ]=dim[(n1,1)]=n1\dim[\rho]=\dim[(n-1,1)]=n-1, we further have

|λ(n1,1)T(k)|nk(n1)|λ(n1)T(k1)|+nk|λ(n2,1)T(k1)|.|\lambda_{(n-1,1)^{T}}^{(k)}|\leq\frac{n}{k(n-1)}\cdot|\lambda_{(n-1)^{T}}^{(k-1)}|+\frac{n}{k}\cdot|\lambda_{(n-2,1)^{T}}^{(k-1)}|.

From the first part of this proof, |λ(n1)T(k1)|7e3(n1)!(n1)3<n!2n2|\lambda_{(n-1)^{T}}^{(k-1)}|\leq\frac{7e^{3}(n-1)!}{(n-1)^{3}}<\frac{n!}{2n^{2}}. Meanwhile, since dim[(n2,1)T]=n2\dim[(n-2,1)^{T}]=n-2, by Lemma 2.5, we have |λ(n2,1)T(k1)|(n1)!n2<3n!2n2|\lambda_{(n-2,1)^{T}}^{(k-1)}|\leq\frac{(n-1)!}{n-2}<\frac{3n!}{2n^{2}}. Therefore, by the choice of kk, we have

|λ(n1,1)T(k)|3n!n2.|\lambda_{(n-1,1)^{T}}^{(k)}|\leq\frac{3n!}{n^{2}}.

Similarly, note that dim[(n2,1,1)T]=dim[(n2,1,1)]\dim[(n-2,1,1)^{T}]=\dim[(n-2,1,1)] and dim[(n2,2)T]=dim[(n2,2)]\dim[(n-2,2)^{T}]=\dim[(n-2,2)], by Lemma 2.5, we also have

|λ(n2,1,1)T(k)|,|λ(n2,2)T(k)|3n!n2.\displaystyle|\lambda_{(n-2,1,1)^{T}}^{(k)}|,~{}|\lambda_{(n-2,2)^{T}}^{(k)}|\leq\frac{3n!}{n^{2}}.

This completes the proof. ∎

3 Proof of Theorem 1.5

Let nn be a positive integer and VV be an nn-dimensional vector space over 𝔽q\mathbb{F}_{q}. In the following, if there is no confusion, we shall omit the field size qq in the Gaussian binomial coefficient and use “dim” in short for “dimensional”.

Lemma 3.1.

[20] Let α\mathbf{\alpha} be a kk-dim subspace of VV. Then, for integers j,lj,l satisfying 0jl0\leq j\leq l, the number of ll-dim subspaces of VV whose intersection with α\mathbf{\alpha} has dimension jj is

q(kj)(lj)[nklj][kj].\displaystyle q^{(k-j)(l-j)}\genfrac{[}{]}{0.0pt}{}{n-k}{l-j}\genfrac{[}{]}{0.0pt}{}{k}{j}.
Proposition 3.2.

For integer 1tn1\leq t\leq n, denote U0U_{0} as a tt-dim subspace of VV. Let \mathcal{F} be the family of all kk-dim subspaces of VV containing U0U_{0}. Then, we have ||=[ntkt]|\mathcal{F}|=\genfrac{[}{]}{0.0pt}{}{n-t}{k-t} and

()=(j=0kt(j+t)q(ktj)2[nkktj][ktj])[ntkt].\displaystyle\mathcal{I}(\mathcal{F})=\left(\sum_{j=0}^{k-t}(j+t)q^{(k-t-j)^{2}}\genfrac{[}{]}{0.0pt}{}{n-k}{k-t-j}\genfrac{[}{]}{0.0pt}{}{k-t}{j}\right)\genfrac{[}{]}{0.0pt}{}{n-t}{k-t}. (27)
Proof.

The first statement is an immediate consequence of Lemma 3.1.

Denote V=U0V1V=U_{0}\oplus V_{1} and take 𝒢0\mathcal{G}_{0} as the family of all (kt)(k-t)-dim subspaces of V1V_{1}. Therefore, =U0𝒢0={U0G:G𝒢0}\mathcal{F}=U_{0}\oplus\mathcal{G}_{0}=\{U_{0}\oplus G:G\in\mathcal{G}_{0}\}. For F1F_{1}\in\mathcal{F}, let F1=U0G1F_{1}=U_{0}\oplus G_{1}. Then, we have (F1,)=F|dim(F1F)|=G𝒢0(|dim(G1G)|+t)\mathcal{I}(F_{1},\mathcal{F})=\sum_{F\in\mathcal{F}}|\dim(F_{1}\cap F)|=\sum_{G\in\mathcal{G}_{0}}(|\dim(G_{1}\cap G)|+t). Combined with Lemma 3.1, this leads to

(F1,)=j=0kt(j+t)q(ktj)2[(nt)(kt)ktj][ktj].\displaystyle\mathcal{I}(F_{1},\mathcal{F})=\sum_{j=0}^{k-t}(j+t)q^{(k-t-j)^{2}}\genfrac{[}{]}{0.0pt}{}{(n-t)-(k-t)}{k-t-j}\genfrac{[}{]}{0.0pt}{}{k-t}{j}.

Therefore, (27) follows from ()=F(F,)\mathcal{I}(\mathcal{F})=\sum_{F\in\mathcal{F}}\mathcal{I}(F,\mathcal{F}). ∎

Now, we present the proof of Theorem 1.5.

Proof of Theorem 1.5.

First, we shall show that the number of popular tt-dim subspaces is not large.

Claim 3.1.

Let 𝒳={U[Vt]:|(U)|||(2k+2)[kt]}\mathcal{X}=\{U\in\genfrac{[}{]}{0.0pt}{}{V}{t}:|\mathcal{F}(U)|\geq\frac{|\mathcal{F}|}{(2k+2)\genfrac{[}{]}{0.0pt}{}{k}{t}}\}, then |𝒳|<(4k+4)[kt]|\mathcal{X}|<(4k+4)\genfrac{[}{]}{0.0pt}{}{k}{t}.

Proof.

Otherwise, assume that there is an 𝒳0𝒳\mathcal{X}_{0}\subseteq\mathcal{X} such that |𝒳0|=(4k+4)[kt]|\mathcal{X}_{0}|=(4k+4)\genfrac{[}{]}{0.0pt}{}{k}{t}. We have

|||U𝒳(U)|\displaystyle|\mathcal{F}|\geq|\bigcup\limits_{U\in\mathcal{X}}\mathcal{F}(U)| U𝒳0|(U)|U1U2𝒳0|(U1+U2)|\displaystyle\geq\sum_{U\in\mathcal{X}_{0}}|\mathcal{F}(U)|-\sum_{U_{1}\neq U_{2}\in\mathcal{X}_{0}}|\mathcal{F}(U_{1}+U_{2})|
2||(|𝒳0|2)[nt1kt1].\displaystyle\geq 2|\mathcal{F}|-{|\mathcal{X}_{0}|\choose 2}\genfrac{[}{]}{0.0pt}{}{n-t-1}{k-t-1}.

Since ||=δ[ntkt]|\mathcal{F}|=\delta\genfrac{[}{]}{0.0pt}{}{n-t}{k-t} and δ(4k+4)2nqnk\delta\geq\frac{(4k+4)^{2}n}{q^{n-k}}, based on the choice of nn and δ\delta, we have

||\displaystyle|\mathcal{F}| (4k+4)2nqnk[ntkt]=(4k+4)2nqnkqnt1qkt1[nt1kt1]\displaystyle\geq\frac{(4k+4)^{2}n}{q^{n-k}}\cdot\genfrac{[}{]}{0.0pt}{}{n-t}{k-t}=\frac{(4k+4)^{2}n}{q^{n-k}}\cdot\frac{q^{n-t}-1}{q^{k-t}-1}\cdot\genfrac{[}{]}{0.0pt}{}{n-t-1}{k-t-1}
=(4k+4)2nqnt1qntqnk[nt1kt1]\displaystyle=(4k+4)^{2}n\cdot\frac{q^{n-t}-1}{q^{n-t}-q^{n-k}}\cdot\genfrac{[}{]}{0.0pt}{}{n-t-1}{k-t-1}
>8(k+1)2[kt]2[nt1kt1](|𝒳0|2)[nt1kt1].\displaystyle>8(k+1)^{2}\cdot{\genfrac{[}{]}{0.0pt}{}{k}{t}}^{2}\cdot\genfrac{[}{]}{0.0pt}{}{n-t-1}{k-t-1}\geq{|\mathcal{X}_{0}|\choose 2}\genfrac{[}{]}{0.0pt}{}{n-t-1}{k-t-1}. (28)

This leads to 2||(|𝒳0|2)[nt1kt1]>||2|\mathcal{F}|-{|\mathcal{X}_{0}|\choose 2}\genfrac{[}{]}{0.0pt}{}{n-t-1}{k-t-1}>|\mathcal{F}|, a contradiction. ∎

Claim 3.1 enables us to proceed further estimation on ()\mathcal{I}(\mathcal{F}). Next, we shall prove that the most popular tt-dim subspace is contained in the majority members of \mathcal{F}.

Claim 3.2.

There exists a tt-dim subspace U0𝒳U_{0}\in\mathcal{X} such that |(U0)|(123k+3)|||\mathcal{F}(U_{0})|\geq(1-\frac{2}{3k+3})|\mathcal{F}|.

Proof.

Denote U0U_{0} as the most popular tt-dim subspace appearing in the members of \mathcal{F}.

  • When δ1\delta\leq 1.

Consider the new family 0[Vk]\mathcal{F}_{0}\subseteq\genfrac{[}{]}{0.0pt}{}{V}{k} of size |||\mathcal{F}| and U0FU_{0}\subseteq F for all F0F\in\mathcal{F}_{0}. According to (1), we have (0)t||2\mathcal{I}(\mathcal{F}_{0})\geq t|\mathcal{F}|^{2}. Therefore, by the optimality of \mathcal{F}, ()t||2\mathcal{I}(\mathcal{F})\geq t|\mathcal{F}|^{2}.

Given a positive integer qq, for variable x+x\in\mathbb{R}^{+}, define the function [xk]=i=0k1qxi1qki1\genfrac{[}{]}{0.0pt}{}{x}{k}=\prod\limits_{i=0}^{k-1}\frac{q^{x-i}-1}{q^{k-i}-1}. One can easily verify that [xk]\genfrac{[}{]}{0.0pt}{}{x}{k} is a convex increasing function when xk1x\geq k-1. Thus by Jensen Inequality, we have

U[Vt]|(U)|2=A,B[dim(AB)t]\displaystyle\sum_{U\in\genfrac{[}{]}{0.0pt}{}{V}{t}}|\mathcal{F}(U)|^{2}=\sum_{A,B\in\mathcal{F}}\genfrac{[}{]}{0.0pt}{}{\dim(A\cap B)}{t} [A,Bdim(AB)||2t]||2.\displaystyle\geq\genfrac{[}{]}{0.0pt}{}{\frac{\sum_{A,B\in\mathcal{F}}\dim(A\cap B)}{|\mathcal{F}|^{2}}}{t}\cdot|\mathcal{F}|^{2}. (29)

Note that ()=A,Bdim(AB)\mathcal{I}(\mathcal{F})=\sum_{A,B\in\mathcal{F}}\dim(A\cap B), (29) leads to U[Vt]|(U)|2[()||2t]||2||2\sum_{U\in\genfrac{[}{]}{0.0pt}{}{V}{t}}|\mathcal{F}(U)|^{2}\geq\genfrac{[}{]}{0.0pt}{}{\frac{\mathcal{I}(\mathcal{F})}{|\mathcal{F}|^{2}}}{t}\cdot|\mathcal{F}|^{2}\geq|\mathcal{F}|^{2}. Moreover, we also have

U[Vt]|(U)|2\displaystyle\sum_{U\in\genfrac{[}{]}{0.0pt}{}{V}{t}}|\mathcal{F}(U)|^{2} =U𝒳|(U)|2+U𝒳|(U)|2|(U0)|U𝒳|(U)|+||(2k+2)[kt]U𝒳|(U)|\displaystyle=\sum_{U\in\mathcal{X}}|\mathcal{F}(U)|^{2}+\sum_{U\notin\mathcal{X}}|\mathcal{F}(U)|^{2}\leq|\mathcal{F}(U_{0})|\cdot\sum_{U\in\mathcal{X}}|\mathcal{F}(U)|+\frac{|\mathcal{F}|}{(2k+2)\genfrac{[}{]}{0.0pt}{}{k}{t}}\cdot\sum_{U\notin\mathcal{X}}|\mathcal{F}(U)|
|(U0)|(||+U1U2𝒳|(U1+U2)|)+||(2k+2)[kt]U[Vt]|(U)|.\displaystyle\leq|\mathcal{F}(U_{0})|\cdot\left(|\mathcal{F}|+\sum_{U_{1}\neq U_{2}\in\mathcal{X}}|\mathcal{F}(U_{1}+U_{2})|\right)+\frac{|\mathcal{F}|}{(2k+2)\genfrac{[}{]}{0.0pt}{}{k}{t}}\cdot\sum_{U\in\genfrac{[}{]}{0.0pt}{}{V}{t}}|\mathcal{F}(U)|.

Note that dim(U1+U2)t+1\dim(U_{1}+U_{2})\geq t+1 for U1U2𝒳U_{1}\neq U_{2}\in\mathcal{X} and U[Vt]|(U)|=F|{UF:U[Vt]}|=||[kt]\sum_{U\in\genfrac{[}{]}{0.0pt}{}{V}{t}}|\mathcal{F}(U)|=\sum_{F\in\mathcal{F}}|\{U\subseteq F:U\in\genfrac{[}{]}{0.0pt}{}{V}{t}\}|=|\mathcal{F}|\genfrac{[}{]}{0.0pt}{}{k}{t}, we can further obtain

U[Vt]|(U)|2\displaystyle\sum_{U\in\genfrac{[}{]}{0.0pt}{}{V}{t}}|\mathcal{F}(U)|^{2} |(U0)|(||+(|𝒳|2)[nt1kt1])+||(2k+2)[kt]F|{UF:U[Vt]}|\displaystyle\leq|\mathcal{F}(U_{0})|\cdot\left(|\mathcal{F}|+{|\mathcal{X}|\choose 2}\genfrac{[}{]}{0.0pt}{}{n-t-1}{k-t-1}\right)+\frac{|\mathcal{F}|}{(2k+2)\genfrac{[}{]}{0.0pt}{}{k}{t}}\cdot\sum_{F\in\mathcal{F}}|\{U\subseteq F:U\in\genfrac{[}{]}{0.0pt}{}{V}{t}\}|
|(U0)|(||+(|𝒳|2)[nt1kt1])+||22k+2.\displaystyle\leq|\mathcal{F}(U_{0})|\cdot\left(|\mathcal{F}|+{|\mathcal{X}|\choose 2}\genfrac{[}{]}{0.0pt}{}{n-t-1}{k-t-1}\right)+\frac{|\mathcal{F}|^{2}}{2k+2}. (30)

According to the calculation of (3), the choice of δ\delta leads to (|𝒳|2)[nt1kt1][kt]2||n{|\mathcal{X}|\choose 2}\genfrac{[}{]}{0.0pt}{}{n-t-1}{k-t-1}\leq\frac{{\genfrac{[}{]}{0.0pt}{}{k}{t}}^{2}|\mathcal{F}|}{n}. Note that n(4k+4)2[kt]2n\geq(4k+4)^{2}\genfrac{[}{]}{0.0pt}{}{k}{t}^{2}, this indicates that (|𝒳|2)[nt1kt1]||(4k+4)2{|\mathcal{X}|\choose 2}\genfrac{[}{]}{0.0pt}{}{n-t-1}{k-t-1}\leq\frac{|\mathcal{F}|}{(4k+4)^{2}}. Therefore, by (3), we have |(U0)|(123k+3)|||\mathcal{F}(U_{0})|\geq(1-\frac{2}{3k+3})|\mathcal{F}|.

  • When δ>1\delta>1.

Write U0=U1u0U_{0}=U_{1}\oplus\langle u_{0}\rangle, where U1U_{1} is a (t1)(t-1)-dim subspace of U0U_{0} and u0\langle u_{0}\rangle is the 11-dim subspace spanned by some u0U0u_{0}\in U_{0}. Let U=U1u1U^{\prime}=U_{1}\oplus\langle u_{1}\rangle be another tt-dim subspace of VV, where u1VU0u_{1}\in V\setminus U_{0}. Consider the new family 𝒢0=𝒢1𝒢2\mathcal{G}_{0}=\mathcal{G}_{1}\sqcup\mathcal{G}_{2} with size |||\mathcal{F}|, where 𝒢1\mathcal{G}_{1} consists of all kk-dim subspaces containing U0U_{0} and 𝒢2\mathcal{G}_{2} consists of (δ1)[ntkt](\delta-1)\genfrac{[}{]}{0.0pt}{}{n-t}{k-t} kk-dim subspaces containing UU^{\prime}. Based on the structure of 𝒢0\mathcal{G}_{0}, according to (1), we have

(𝒢0)\displaystyle\mathcal{I}(\mathcal{G}_{0}) (t1)||2+|𝒢1|2+|𝒢2|2\displaystyle\geq(t-1)|\mathcal{F}|^{2}+|\mathcal{G}_{1}|^{2}+|\mathcal{G}_{2}|^{2}
=t||22|𝒢1||𝒢2|=(t2(δ1)δ2)||2.\displaystyle=t|\mathcal{F}|^{2}-2|\mathcal{G}_{1}||\mathcal{G}_{2}|=(t-\frac{2(\delta-1)}{\delta^{2}})|\mathcal{F}|^{2}.

Again, by the optimality of \mathcal{F}, we have ()(𝒢0)(t2(δ1)δ2)||2\mathcal{I}(\mathcal{F})\geq\mathcal{I}(\mathcal{G}_{0})\geq(t-\frac{2(\delta-1)}{\delta^{2}})|\mathcal{F}|^{2}. Therefore, (29) leads to U[Vt]|(U)|2[t2(δ1)δ2t]||2\sum_{U\in\genfrac{[}{]}{0.0pt}{}{V}{t}}|\mathcal{F}(U)|^{2}\geq\genfrac{[}{]}{0.0pt}{}{t-\frac{2(\delta-1)}{\delta^{2}}}{t}\cdot|\mathcal{F}|^{2}. Now, consider the function [txt]=i=0t1qtxi1qti1\genfrac{[}{]}{0.0pt}{}{t-x}{t}=\prod_{i=0}^{t-1}\frac{q^{t-x-i}-1}{q^{t-i}-1} for xx\in\mathbb{R} satisfying 0<x<10<x<1. Clearly, [txt]\genfrac{[}{]}{0.0pt}{}{t-x}{t} is a decreasing function and when xx is fixed, the term qtxi1qti1\frac{q^{t-x-i}-1}{q^{t-i}-1} is decreasing as ii increases. Therefore, we have

[txt]\displaystyle\genfrac{[}{]}{0.0pt}{}{t-x}{t} =i=0t1qtxi1qti1(q1x1q1)t.\displaystyle=\prod_{i=0}^{t-1}\frac{q^{t-x-i}-1}{q^{t-i}-1}\geq(\frac{q^{1-x}-1}{q-1})^{t}.

Since δ1+196t(k+1)lnq\delta\leq 1+\frac{1}{96t(k+1)\ln{q}}, we have 2(δ1)δ2148t(k+1)lnq\frac{2(\delta-1)}{\delta^{2}}\leq\frac{1}{48t(k+1)\ln{q}}. Denote ε=148t(k+1)lnq\varepsilon=\frac{1}{48t(k+1)\ln{q}}. Then, we have [t2(δ1)δ2t](q1ε1q1)t=(11qε1q1)t\genfrac{[}{]}{0.0pt}{}{t-\frac{2(\delta-1)}{\delta^{2}}}{t}\geq(\frac{q^{1-\varepsilon}-1}{q-1})^{t}=(1-\frac{1-q^{-\varepsilon}}{1-q^{-1}})^{t}. Note that for q2q\geq 2, 1qεεlnq1-q^{-\varepsilon}\leq\varepsilon\ln{q} and 11q121-\frac{1}{q}\geq\frac{1}{2}. Thus, we have

[t2(δ1)δ2t](12εlnq)t12tεlnq=1124(k+1).\genfrac{[}{]}{0.0pt}{}{t-\frac{2(\delta-1)}{\delta^{2}}}{t}\geq(1-2\varepsilon\ln{q})^{t}\geq 1-2t\varepsilon\ln{q}=1-\frac{1}{24(k+1)}.

This leads to

U[Vt]|(U)|2[t2(δ1)δ2t]||2(1124(k+1))||2.\sum_{U\in\genfrac{[}{]}{0.0pt}{}{V}{t}}|\mathcal{F}(U)|^{2}\geq\genfrac{[}{]}{0.0pt}{}{t-\frac{2(\delta-1)}{\delta^{2}}}{t}\cdot|\mathcal{F}|^{2}\geq(1-\frac{1}{24(k+1)})|\mathcal{F}|^{2}.

Combined with the upper bound given by (3), by the choice of nn and δ\delta, we also have |(U0)|(123k+3)|||\mathcal{F}(U_{0})|\geq(1-\frac{2}{3k+3})|\mathcal{F}|. ∎

Finally, we show that when δ1\delta\leq 1, U0U_{0} is contained in all members of \mathcal{F}; when δ>1\delta>1, all kk-dim subspaces of VV that contains U0U_{0} are in \mathcal{F}.

  • When δ1\delta\leq 1.

Assume that there exists an F0F_{0}\in\mathcal{F} such that U0F0U_{0}\nsubseteq F_{0}. Since for each FF\in\mathcal{F},

I(F,)=Adim(FA)=U0A,Adim(FA)+U0A,Adim(FA).\displaystyle I(F,\mathcal{F})=\sum_{A\in\mathcal{F}}\dim(F\cap A)=\sum_{U_{0}\subseteq A,A\in\mathcal{F}}\dim(F\cap A)+\sum_{U_{0}\nsubseteq A,A\in\mathcal{F}}\dim(F\cap A). (31)

Take F=F0F=F_{0} in the above equality and consider the first term U0A,Adim(F0A)\sum_{U_{0}\subseteq A,A\in\mathcal{F}}\dim(F_{0}\cap A) in the RHS. Assume that A=A0U0A=A_{0}\oplus U_{0} and F0=F1(U0F0)F_{0}=F_{1}\oplus(U_{0}\cap F_{0}). When dim(F0A)t\dim(F_{0}\cap A)\geq t, knowing that U0F0U_{0}\nsubseteq F_{0}, we have |dim(A0F1)|1|\dim(A_{0}\cap F_{1})|\geq 1. Therefore, we can write A0=A1U1A_{0}=A_{1}\oplus U_{1} for some 11-dim subspace in F1F_{1}. Note that there are at most [k1]\genfrac{[}{]}{0.0pt}{}{k}{1} different choices of such U1F1U_{1}\subseteq F_{1}. And for each fixed U1U_{1}, there are at most [n(t+1)k(t+1)]\genfrac{[}{]}{0.0pt}{}{n-(t+1)}{k-(t+1)} different choices of AA satisfying U0U1AU_{0}\oplus U_{1}\subseteq A. Therefore, the number of such AAs is at most [k1][nt1kt1]\genfrac{[}{]}{0.0pt}{}{k}{1}\genfrac{[}{]}{0.0pt}{}{n-t-1}{k-t-1}. When dim(F0A)t1\dim(F_{0}\cap A)\leq t-1, since AA\in\mathcal{F}, the number of such AAs is upper bounded by |(U0)||\mathcal{F}(U_{0})|. Therefore, we have

U0A,Adim(F0A)(k1)[k1][nt1kt1]+(t1)|(U0)|.\sum_{U_{0}\subseteq A,A\in\mathcal{F}}\dim(F_{0}\cap A)\leq(k-1)\genfrac{[}{]}{0.0pt}{}{k}{1}\genfrac{[}{]}{0.0pt}{}{n-t-1}{k-t-1}+(t-1)|\mathcal{F}(U_{0})|.

As for the second term, we have that U0A,Adim(F0A)k(|||(U0)|)\sum_{U_{0}\nsubseteq A,A\in\mathcal{F}}\dim(F_{0}\cap A)\leq k(|\mathcal{F}|-|\mathcal{F}(U_{0})|). Therefore, combined with Claim 3.2, this leads to

I(F0,)\displaystyle I(F_{0},\mathcal{F}) k(||+[k1][nt1kt1])(kt+1)|(U0)|\displaystyle\leq k\left(|\mathcal{F}|+\genfrac{[}{]}{0.0pt}{}{k}{1}\genfrac{[}{]}{0.0pt}{}{n-t-1}{k-t-1}\right)-(k-t+1)|\mathcal{F}(U_{0})|
(t2t+k+13k+3)||+k[k1][nt1kt1].\displaystyle\leq(t-\frac{2t+k+1}{3k+3})|\mathcal{F}|+k\genfrac{[}{]}{0.0pt}{}{k}{1}\genfrac{[}{]}{0.0pt}{}{n-t-1}{k-t-1}. (32)

From the assumption, we know that \mathcal{F} is not contained in any full tt-star. Therefore, we can replace F0F_{0} with some FF^{\prime}\notin\mathcal{F} containing U0U_{0}. Denote the resulting new family as \mathcal{F}^{\prime}, we have

()()\displaystyle\mathcal{I}(\mathcal{F}^{\prime})-\mathcal{I}(\mathcal{F}) =F(F,)F(F,)\displaystyle=\sum_{F\in\mathcal{F}^{\prime}}\mathcal{I}(F,\mathcal{F}^{\prime})-\sum_{F\in\mathcal{F}}\mathcal{I}(F,\mathcal{F})
=2((F,{F0})(F0,{F0})),\displaystyle=2(\mathcal{I}(F^{\prime},\mathcal{F}\setminus\{F_{0}\})-\mathcal{I}(F_{0},\mathcal{F}\setminus\{F_{0}\})),

where the second equality follows from {F}={F0}\mathcal{F}^{\prime}\setminus\{F^{\prime}\}=\mathcal{F}\setminus\{F_{0}\}. By (31) and Claim 3.2, we have I(F,{F0})t|(U0)|(t2t3k+3)||I(F^{\prime},\mathcal{F}\setminus\{F_{0}\})\geq t|\mathcal{F}(U_{0})|\geq(t-\frac{2t}{3k+3})|\mathcal{F}|. Therefore, based on (3) and the calculations in (3), we have

(F,{F0})(F0,{F0})\displaystyle\mathcal{I}(F^{\prime},\mathcal{F}\setminus\{F_{0}\})-\mathcal{I}(F_{0},\mathcal{F}\setminus\{F_{0}\}) (F,{F0})(F0,)\displaystyle\geq\mathcal{I}(F^{\prime},\mathcal{F}\setminus\{F_{0}\})-\mathcal{I}(F_{0},\mathcal{F})
(t2t3k+3)||(t2t+k+13k+3)||k[k1][nt1kt1]\displaystyle\geq(t-\frac{2t}{3k+3})|\mathcal{F}|-(t-\frac{2t+k+1}{3k+3})|\mathcal{F}|-k\genfrac{[}{]}{0.0pt}{}{k}{1}\genfrac{[}{]}{0.0pt}{}{n-t-1}{k-t-1}
||3k[k1]8(k+1)2[kt]2||\displaystyle\geq\frac{|\mathcal{F}|}{3}-\frac{k\genfrac{[}{]}{0.0pt}{}{k}{1}}{8(k+1)^{2}\genfrac{[}{]}{0.0pt}{}{k}{t}^{2}}|\mathcal{F}|
(1318(k+1)[kt])||>0.\displaystyle\geq(\frac{1}{3}-\frac{1}{8(k+1)\genfrac{[}{]}{0.0pt}{}{k}{t}})|\mathcal{F}|>0.

This contradicts the fact that ()=()\mathcal{I}(\mathcal{F})=\mathcal{MI}(\mathcal{F}). Thus, all FF\in\mathcal{F} must contain U0U_{0}.

  • When δ>1\delta>1.

Assume that there exists a G[Vk]G^{\prime}\in\genfrac{[}{]}{0.0pt}{}{V}{k}\setminus\mathcal{F} with U0GU_{0}\subseteq G^{\prime}. Since ||=δ[ntkt]|\mathcal{F}|=\delta\genfrac{[}{]}{0.0pt}{}{n-t}{k-t} and δ>1\delta>1, clearly, there exists some G0G_{0}\in\mathcal{F} such that U0G0U_{0}\nsubseteq G_{0}. Take F=G0F=G_{0} in (31), since the estimation in (3) is irrelevant to the choice of δ\delta. Thus, with similar procedures, we can also obtain (G0,)(t2t+k+13k+3)||+k[k1][nt1kt1]\mathcal{I}(G_{0},\mathcal{F})\leq(t-\frac{2t+k+1}{3k+3})|\mathcal{F}|+k\genfrac{[}{]}{0.0pt}{}{k}{1}\genfrac{[}{]}{0.0pt}{}{n-t-1}{k-t-1}. On the other hand, by (31), we also have (G,{G0})t|(U0)|(t2t3k+3)||\mathcal{I}(G^{\prime},\mathcal{F}\setminus\{G_{0}\})\geq t|\mathcal{F}(U_{0})|\geq(t-\frac{2t}{3k+3})|\mathcal{F}|. Again, we can replace G0G_{0} with GG^{\prime} and denote the resulting new family as \mathcal{F}^{\prime}. With similar arguments as those for the case δ1\delta\leq 1, this procedure increases the value of ()\mathcal{I}(\mathcal{F}) strictly, a contradiction. Therefore, all kk-dim subspaces of VV containing U0U_{0} are in \mathcal{F}.

This completes the proof of Theorem 1.5. ∎

4 Proof of Theorem 1.6

For any integer s12(n1)!s\geq\frac{1}{2}(n-1)!, there exist unique kk\in\mathbb{N} and ε(12,12]\varepsilon\in(-\frac{1}{2},\frac{1}{2}] such that s=(k+ε)(n1)!s=(k+\varepsilon)(n-1)!. Denote 𝒯0(n,s)\mathcal{T}_{0}(n,s) as the subfamily of 𝒯(n,s)\mathcal{T}(n,s) consisting of k+ε=a0\lfloor k+\varepsilon\rfloor=a_{0} pairwise disjoint 11-cosets and (k+εa0)(n1)=a1\lfloor(k+\varepsilon-a_{0})(n-1)\rfloor=a_{1} pairwise disjoint 22-cosets from another 11-coset disjoint from the former a0a_{0} 11-cosets.

Assume that

𝒯0(n,s)=(i=2a1+1𝒞11,2i)(j=2a0+1𝒞1j),\displaystyle\mathcal{T}_{0}(n,s)=(\bigsqcup_{i=2}^{a_{1}+1}\mathcal{C}_{{1\rightarrow 1},{2\rightarrow i}})\sqcup(\bigsqcup_{j=2}^{a_{0}+1}\mathcal{C}_{{1\rightarrow j}}), (33)

where 𝒞11,2i={σSn:σ(1)=1 and σ(2)=i}\mathcal{C}_{{1\rightarrow 1},{2\rightarrow i}}=\{\sigma\in S_{n}:\sigma(1)=1\text{~{}and~{}}\sigma(2)=i\} and 𝒞1j={σSn:σ(1)=j}\mathcal{C}_{{1\rightarrow j}}=\{\sigma\in S_{n}:\sigma(1)=j\}. Note that for every 𝒯Sn\mathcal{T}\subseteq S_{n},

(𝒯)\displaystyle\mathcal{I}(\mathcal{T}) =i,j[n]|𝒯ij|2,\displaystyle=\sum_{i,j\in[n]}|\mathcal{T}_{{i\rightarrow j}}|^{2},

where 𝒯ij={σ𝒯:σ(i)=j}\mathcal{T}_{{i\rightarrow j}}=\{\sigma\in\mathcal{T}:\sigma(i)=j\}. Hence, when 0a0a1n10\leq a_{0}\leq a_{1}\leq n-1, we have

(𝒯0(n,s))\displaystyle\mathcal{I}(\mathcal{T}_{0}(n,s)) =i,j[n]|𝒯0(n,s)ij|2=j[n]|𝒯0(n,s)1j|2+j[n]|𝒯0(n,s)2j|2+i[3,n]j[n]|𝒯0(n,s)ij|2\displaystyle=\sum_{i,j\in[n]}|\mathcal{T}_{0}(n,s)_{i\rightarrow j}|^{2}=\sum_{j\in[n]}|\mathcal{T}_{0}(n,s)_{1\rightarrow j}|^{2}+\sum_{j\in[n]}|\mathcal{T}_{0}(n,s)_{2\rightarrow j}|^{2}+\sum_{i\in[3,n]}\sum_{j\in[n]}|\mathcal{T}_{0}(n,s)_{i\rightarrow j}|^{2}
=[(a1(n2)!)2+a0((n1)!)2]+((n2)!)2(a02n+2a0a12a02+a1a0)+\displaystyle=\big{[}(a_{1}(n-2)!)^{2}+a_{0}((n-1)!)^{2}\big{]}+((n-2)!)^{2}(a_{0}^{2}n+2a_{0}a_{1}-2a_{0}^{2}+a_{1}-a_{0})+
(n2)[(a0(n2)!)2+a0((a01)(n2)!+(a11)(n3)!)2+\displaystyle~{}~{}~{}~{}(n-2)\big{[}(a_{0}(n-2)!)^{2}+a_{0}((a_{0}-1)(n-2)!+(a_{1}-1)(n-3)!)^{2}+
(a1a0)(a0(n2)!+(a11)(n3)!)2+\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}(a_{1}-a_{0})(a_{0}(n-2)!+(a_{1}-1)(n-3)!)^{2}+
(na11)(a0(n2)!+a1(n3)!)2].\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}(n-a_{1}-1)(a_{0}(n-2)!+a_{1}(n-3)!)^{2}\big{]}. (34)

When 0a1a0n10\leq a_{1}\leq a_{0}\leq n-1, similarly, we have

(𝒯0(n,s))\displaystyle\mathcal{I}(\mathcal{T}_{0}(n,s)) =[(a1(n2)!)2+a0((n1)!)2]+((n2)!)2(a02n+2a0a12a02+a0a1)+\displaystyle=\big{[}(a_{1}(n-2)!)^{2}+a_{0}((n-1)!)^{2}\big{]}+((n-2)!)^{2}(a_{0}^{2}n+2a_{0}a_{1}-2a_{0}^{2}+a_{0}-a_{1})+
(n2)[(a0(n2)!)2+a1((a01)(n2)!+(a11)(n3)!)2+\displaystyle~{}~{}~{}~{}(n-2)\big{[}(a_{0}(n-2)!)^{2}+a_{1}((a_{0}-1)(n-2)!+(a_{1}-1)(n-3)!)^{2}+
(a0a1)((a01)(n2)!+a1(n3)!)2+\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}(a_{0}-a_{1})((a_{0}-1)(n-2)!+a_{1}(n-3)!)^{2}+
(na01)(a0(n2)!+a1(n3)!)2].\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}(n-a_{0}-1)(a_{0}(n-2)!+a_{1}(n-3)!)^{2}\big{]}. (35)

For both cases, if we denote η1=a1n1\eta_{1}=\frac{a_{1}}{n-1}, then we have

(𝒯0(n,s))\displaystyle\mathcal{I}(\mathcal{T}_{0}(n,s)) ((n1)!)2{(a0+η12)+(a02n+2a0a12a02+a1a0)(n1)2+\displaystyle\geq((n-1)!)^{2}\big{\{}(a_{0}+\eta_{1}^{2})+\frac{(a_{0}^{2}n+2a_{0}a_{1}-2a_{0}^{2}+a_{1}-a_{0})}{(n-1)^{2}}+
n2o(1)(n1)2[a02+a0(a01+η1)2+(na01)(a0+η1)2]}.\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}\frac{n-2-o(1)}{(n-1)^{2}}\big{[}a_{0}^{2}+a_{0}(a_{0}-1+\eta_{1})^{2}+(n-a_{0}-1)(a_{0}+\eta_{1})^{2}\big{]}\big{\}}. (36)

To proceed the proof of Theorem 1.6, we need some additional notations and a stability result by Ellis, Filmus and Friedgut [12] (see Theorem 1 in [12]). Assume each permutation in SnS_{n} is distributed uniformly. Then, for a function f:Snf:S_{n}\rightarrow\mathbb{R}, the expected value of ff is defined by 𝔼[f]=1n!σSnf(σ)\mathbb{E}[f]=\frac{1}{n!}\sum_{\sigma\in S_{n}}f(\sigma). The inner product of two functions f,g:Snf,g:S_{n}\rightarrow\mathbb{R} is defined as f,g:=𝔼[fg]\langle f,g\rangle:=\mathbb{E}[f\cdot g], this induces the norm f:=f,f\|f\|:=\sqrt{\langle f,f\rangle}. Given c>0c>0, denote round(c)round(c) as the nearest integer to cc.

Theorem 4.1.

[12] There exist positive constants C0C_{0} and ε0\varepsilon_{0} such that the following holds. Let \mathcal{F} be a subfamily of SnS_{n} with ||=α(n1)!|\mathcal{F}|=\alpha(n-1)! for some αn2\alpha\leq\frac{n}{2}. Let f=𝟙f=\mathbbm{1}_{\mathcal{F}} be the characteristic function of \mathcal{F} and let fU1f_{U_{1}} be the orthogonal projection of ff onto U1U_{1}. If 𝔼[(ffU1)2]=ε𝔼[f]\mathbb{E}[(f-f_{U_{1}})^{2}]=\varepsilon\mathbb{E}[f] for some εε0\varepsilon\leq\varepsilon_{0}, then

𝔼[(fg)2]C0α2(1n2+ε12n),\mathbb{E}[(f-g)^{2}]\leq C_{0}\alpha^{2}\left(\frac{1}{n^{2}}+\frac{\varepsilon^{\frac{1}{2}}}{n}\right),

where gg is the characteristic function of a union of round(α)round(\alpha) cosets of SnS_{n}.

Proof of Theorem 1.6.

For the convenience of our proof, for σ,πSn\sigma,\pi\in S_{n}, we denote σπ={i[n]:σ(i)=π(i)}\sigma\cap\pi=\{i\in[n]:\sigma(i)=\pi(i)\}. Set c=min{ε012,12}c=\min\{\frac{\varepsilon_{0}}{12},\frac{1}{2}\} and C=3C0C=3C_{0}, where ε0\varepsilon_{0} and C0C_{0} are the positive constants from Theorem 4.1. Let ff be the characteristic vector of \mathcal{F}. Write f=f0+f1+f2f=f_{0}+f_{1}+f_{2}, where f0f_{0} is the projection of ff onto the eigenspace U(n)U_{(n)} and f1f_{1} is the projection of ff onto the eigenspace U(n1,1)U_{(n-1,1)}. By the orthogonality of the eigenspaces, we have

f2=f02+f12+f22.\|f\|^{2}=\|f_{0}\|^{2}+\|f_{1}\|^{2}+\|f_{2}\|^{2}. (37)

Moreover, since ff is Boolean and U(n)=span{𝟏}U_{(n)}=span\{\vec{\mathbf{1}}\}, we also have

{f2=𝔼[f2]=𝔼[f]=||n!=k+εn,f02=f,𝟏2=𝔼[f]2=(k+ε)2n2.\begin{cases}\|f\|^{2}=\mathbb{E}[f^{2}]=\mathbb{E}[f]=\frac{|\mathcal{F}|}{n!}=\frac{k+\varepsilon}{n},\\ \|f_{0}\|^{2}=\langle f,\vec{\mathbf{1}}\rangle^{2}=\mathbb{E}[f]^{2}=\frac{(k+\varepsilon)^{2}}{n^{2}}.\end{cases} (38)

By the definition of ()\mathcal{I}(\mathcal{F}), we have

()\displaystyle\mathcal{I}(\mathcal{F}) =σπ|σπ|=ftBf,\displaystyle=\sum_{\sigma\in\mathcal{F}}\sum_{\pi\in\mathcal{F}}|\sigma\cap\pi|=f^{t}Bf, (39)

where B=(bi,j)n!×n!B=(b_{i,j})_{n!\times n!} is a matrix with entry bi,j=|σiσj|b_{i,j}=|\sigma_{i}\cap\sigma_{j}| under a certain ordering of all permutations in Sn={σ1,,σn!}S_{n}=\{\sigma_{1},\ldots,\sigma_{n!}\}. According to the definition of BB, we can write B=s=1nBsB=\sum_{s=1}^{n}B_{s}, where Bs=(bi,js)n!×n!B_{s}=(b^{s}_{i,j})_{n!\times n!} is the matrix with entries

bi,js={1,if|σiσj|s;0,otherwise.b^{s}_{i,j}=\begin{cases}1,~{}\text{if}~{}|\sigma_{i}\cap\sigma_{j}|\geq s;\\ 0,~{}\text{otherwise}.\end{cases}

From a simple observation, we know that Bs=JAsB_{s}=J-A_{s}, where JJ is the n!×n!n!\times n! matrix with all entries 11 and AsA_{s} is the adjacency matrix of Γs\Gamma_{s}, i.e., the adjacency matrix of the Cayley graph on SnS_{n} with generating set FPFsFPF_{s}. Therefore, by (39), we have

()\displaystyle\mathcal{I}(\mathcal{F}) =fts=1n(JAs)f=nftJfs=1nftAsf\displaystyle=f^{t}\sum_{s=1}^{n}(J-A_{s})f=nf^{t}Jf-\sum_{s=1}^{n}f^{t}A_{s}f
=n||2s=1n(f0tAsf0+f1tAsf1+f2tAsf2).\displaystyle=n|\mathcal{F}|^{2}-\sum_{s=1}^{n}(f_{0}^{t}A_{s}f_{0}+f_{1}^{t}A_{s}f_{1}+f_{2}^{t}A_{s}f_{2}). (40)

Since U(n)U_{(n)} and U(n1,1)U_{(n-1,1)} are eigenspaces for all AsA_{s}, 1sn1\leq s\leq n, therefore,

()\displaystyle\mathcal{I}(\mathcal{F}) =n||2n!s=1n(λ(n)(s)f02+λ(n1,1)(s)f12)s=1nf2tAsf2\displaystyle=n|\mathcal{F}|^{2}-n!\sum_{s=1}^{n}(\lambda_{(n)}^{(s)}\|f_{0}\|^{2}+\lambda_{(n-1,1)}^{(s)}\|f_{1}\|^{2})-\sum_{s=1}^{n}f_{2}^{t}A_{s}f_{2}
=n||2n!s=1n[(λ(n)(s)λ(n1,1)(s))f02+λ(n1,1)(s)f2λ(n1,1)(s)f22]s=1nf2tAsf2.\displaystyle=n|\mathcal{F}|^{2}-n!\sum_{s=1}^{n}\big{[}(\lambda_{(n)}^{(s)}-\lambda_{(n-1,1)}^{(s)})\|f_{0}\|^{2}+\lambda_{(n-1,1)}^{(s)}\|f\|^{2}-\lambda_{(n-1,1)}^{(s)}\|f_{2}\|^{2}\big{]}-\sum_{s=1}^{n}f_{2}^{t}A_{s}f_{2}.

According to Lemma 2.13, s=1n(λ(n)(s)λ(n1,1)(s))=n!(nn2n1)\sum_{s=1}^{n}(\lambda_{(n)}^{(s)}-\lambda_{(n-1,1)}^{(s)})=n!(n-\frac{n-2}{n-1}) and s=1nλ(n1,1)(s)=(n1)!(n2n12)\sum_{s=1}^{n}\lambda_{(n-1,1)}^{(s)}=(n-1)!(\frac{n-2}{n-1}-2). Therefore, we have

()\displaystyle\mathcal{I}(\mathcal{F}) =n||2((n1)!)2[(k+ε)2(nn2n1)+(k+ε)(n2n12)]\displaystyle=n|\mathcal{F}|^{2}-((n-1)!)^{2}\big{[}(k+\varepsilon)^{2}(n-\frac{n-2}{n-1})+(k+\varepsilon)(\frac{n-2}{n-1}-2)\big{]}-
((n1)!)2(2nn22nn1)f22s=1nf2tAsf2\displaystyle~{}~{}~{}~{}((n-1)!)^{2}(2n-\frac{n^{2}-2n}{n-1})\|f_{2}\|^{2}-\sum_{s=1}^{n}f_{2}^{t}A_{s}f_{2}
=((n1)!)2[(k+ε)2n2n1+(k+ε)nn1]((n)!)2n1f22s=1nf2tAsf2.\displaystyle=((n-1)!)^{2}\big{[}(k+\varepsilon)^{2}\frac{n-2}{n-1}+(k+\varepsilon)\frac{n}{n-1}\big{]}-\frac{((n)!)^{2}}{n-1}\|f_{2}\|^{2}-\sum_{s=1}^{n}f_{2}^{t}A_{s}f_{2}. (41)

On the other hand, write k+ε=a0+η1+cn1k+\varepsilon=a_{0}+\eta_{1}+\frac{c}{n-1} for some 0c10\leq c\leq 1. By (4) and (4), we have

()(𝒯0(n,s))\displaystyle\mathcal{I}(\mathcal{F})-\mathcal{I}(\mathcal{T}_{0}(n,s)) (η1η12+cn1)((n1)!)2((n)!)2n1f22s=1nf2tAsf2,\displaystyle\leq(\eta_{1}-\eta_{1}^{2}+\frac{c^{\prime}}{n-1})((n-1)!)^{2}-\frac{((n)!)^{2}}{n-1}\|f_{2}\|^{2}-\sum_{s=1}^{n}f_{2}^{t}A_{s}f_{2},

where c=(1+2c)(a0+η1+1)c^{\prime}=(1+2c)(a_{0}+\eta_{1}+1). Note that ()(𝒯0(n,s))δ((n1)!)2\mathcal{I}(\mathcal{F})\geq\mathcal{I}(\mathcal{T}_{0}(n,s))-\delta((n-1)!)^{2}, which indicates that

(n!)2n1f22+s=1nf2tAsf2(η1η12+δ+cn1)((n1)!)2.\displaystyle\frac{(n!)^{2}}{n-1}\|f_{2}\|^{2}+\sum_{s=1}^{n}f_{2}^{t}A_{s}f_{2}\leq(\eta_{1}-\eta_{1}^{2}+\delta+\frac{c^{\prime}}{n-1})((n-1)!)^{2}. (42)

To obtain an upper bound on f22\|f_{2}\|^{2}, we need the following claim.

Claim 1. s=1nf2tAsf2(c3(n!)2n2+6(n!)2nlnn)f22\sum_{s=1}^{n}f_{2}^{t}A_{s}f_{2}\geq-(c_{3}\frac{(n!)^{2}}{n^{2}}+\frac{6(n!)^{2}}{n\ln{n}})\|f_{2}\|^{2} for some absolute constant c3c_{3}.

Proof.

Denote Φ={ρn:ρ(n),(n1,1)}\Phi=\{\rho\vdash n:\rho\neq(n),(n-1,1)\}. First, note that f2f_{2} lies in U1U_{1}^{\bot} and the eigenvalues corresponding to U1U_{1}^{\bot} are {λρ(s):ρΦ,1sn}\{\lambda_{\rho}^{(s)}:\rho\in\Phi,1\leq s\leq n\}. Thus, we have

f2tAsf2=n!ρΦλρ(s)fρ2,f_{2}^{t}A_{s}f_{2}=n!\sum_{\rho\in\Phi}\lambda_{\rho}^{(s)}\|f_{\rho}\|^{2}, (43)

where fρf_{\rho} is the orthogonal projection of f2f_{2} (or ff) onto UρU_{\rho}.

Based on estimations about λρ(s)\lambda_{\rho}^{(s)}s for ρΦ\rho\in\Phi from Lemma 2.14, we have

{f2tAsf2c3(n!)2n3f22,for 3snnlnn7;f2tAsf23(n!)2n2f22,for s=1,2and nnlnn7sn,\displaystyle\begin{cases}f_{2}^{t}A_{s}f_{2}\geq-c_{3}\frac{(n!)^{2}}{n^{3}}\|f_{2}\|^{2},~{}\text{for }3\leq s\leq n-\frac{n}{\ln{n}}-7;\\ f_{2}^{t}A_{s}f_{2}\geq-\frac{3(n!)^{2}}{n^{2}}\|f_{2}\|^{2},~{}\text{for }s=1,2~{}\text{and }n-\frac{n}{\ln{n}}-7\leq s\leq n,\end{cases} (44)

where c3>0c_{3}>0 is an absolute constant. This leads to

s=1nf2tAsf2(c3(n!)2n2+6(n!)2nlnn)f22.\sum_{s=1}^{n}f_{2}^{t}A_{s}f_{2}\geq-(c_{3}\frac{(n!)^{2}}{n^{2}}+\frac{6(n!)^{2}}{n\ln{n}})\|f_{2}\|^{2}.

Now, with the help of Claim 1 and (42), we have

(η1η12+δ+cn1)((n1)!)2\displaystyle(\eta_{1}-\eta_{1}^{2}+\delta+\frac{c^{\prime}}{n-1})((n-1)!)^{2} (n!)2n1f22+s=1nf2tAsf2\displaystyle\geq\frac{(n!)^{2}}{n-1}\|f_{2}\|^{2}+\sum_{s=1}^{n}f_{2}^{t}A_{s}f_{2}
(n!)2(1n17nlnn)f22\displaystyle\geq(n!)^{2}(\frac{1}{n-1}-\frac{7}{n\ln{n}})\|f_{2}\|^{2}
n!(n1)!1+o(1)f22.\displaystyle\geq\frac{n!(n-1)!}{1+o(1)}\|f_{2}\|^{2}.

From the definition, min{η1,1η1}|ε|\min\{\eta_{1},1-\eta_{1}\}\leq|\varepsilon| and c3(k+ε+1)c^{\prime}\leq 3(k+\varepsilon+1). Thus, we have

f22η1η12+δ+cn1n(1+o(1))|ε|+δk+ε(1+o(1))f2.\displaystyle\|f_{2}\|^{2}\leq\frac{\eta_{1}-\eta_{1}^{2}+\delta+\frac{c^{\prime}}{n-1}}{n}(1+o(1))\leq\frac{|\varepsilon|+\delta}{k+\varepsilon}(1+o(1))\|f\|^{2}.

Since max{|ε|,δ}ck\max\{|\varepsilon|,\delta\}\leq ck, we have

𝔼[(ffU1)2]=f22ε0f2=ε0𝔼[f].\mathbb{E}[(f-f_{U_{1}})^{2}]=\|f_{2}\|^{2}\leq\varepsilon_{0}\|f\|^{2}=\varepsilon_{0}\mathbb{E}[f].

By Theorem 4.1, there exists 𝒢\mathcal{G}, a union of kk 11-cosets of SnS_{n} such that

𝔼[(f𝟙𝒢)2]C0(k+ε)2(|ε|+δ(k+ε)n2(1+o(1))+1n2).\mathbb{E}[(f-\mathbbm{1}_{\mathcal{G}})^{2}]\leq C_{0}(k+\varepsilon)^{2}\left(\sqrt{\frac{|\varepsilon|+\delta}{(k+\varepsilon)n^{2}}}(1+o(1))+\frac{1}{n^{2}}\right).

This leads to |Δ𝒢|=𝔼[(f𝟙𝒢)2]n!C0(2k(|ε|+δ)+kn)|||\mathcal{F}\Delta\mathcal{G}|=\mathbb{E}[(f-\mathbbm{1}_{\mathcal{G}})^{2}]\cdot n!\leq C_{0}(\sqrt{2k(|\varepsilon|+\delta)}+\frac{k}{n})|\mathcal{F}|.

When ε=δ=0\varepsilon=\delta=0, we have k+ε=k=a0k+\varepsilon=k=a_{0} and η1=0\eta_{1}=0. Since 0=a1<a00=a_{1}<a_{0} for this case, we need another estimation of (𝒯0(n,a0(n1)!))\mathcal{I}(\mathcal{T}_{0}(n,a_{0}(n-1)!)). Similar to (4), we have

(𝒯0(n,s))\displaystyle\mathcal{I}(\mathcal{T}_{0}(n,s)) =i,j[n]|𝒯0(n,s)ij|2=j[n]|𝒯0(n,s)1j|2+i[2,n]j[n]|𝒯0(n,s)ij|2\displaystyle=\sum_{i,j\in[n]}|\mathcal{T}_{0}(n,s)_{i\rightarrow j}|^{2}=\sum_{j\in[n]}|\mathcal{T}_{0}(n,s)_{1\rightarrow j}|^{2}+\sum_{i\in[2,n]}\sum_{j\in[n]}|\mathcal{T}_{0}(n,s)_{i\rightarrow j}|^{2}
=a0((n1)!)2+(n1)[a0((a01)(n2)!)2+(na0)(a0(n2)!)2].\displaystyle=a_{0}((n-1)!)^{2}+(n-1)\big{[}a_{0}((a_{0}-1)(n-2)!)^{2}+(n-a_{0})(a_{0}(n-2)!)^{2}\big{]}. (45)

Therefore, combined with (4), (4) leads to

(n!)2n1f22+s=1nf2tAsf20.\displaystyle\frac{(n!)^{2}}{n-1}\|f_{2}\|^{2}+\sum_{s=1}^{n}f_{2}^{t}A_{s}f_{2}\leq 0. (46)

By Claim 1, we have f220\|f_{2}\|^{2}\leq 0. Thus, f=𝟙=f0+f1U1f=\mathbbm{1}_{\mathcal{F}}=f_{0}+f_{1}\in U_{1}. As shown by Ellis et. al [14] (see Theorem 7 and Theorem 8 in [14]), this indicates that \mathcal{F} is the union of kk 11-cosets of SnS_{n}. Since ||=k(n1)!|\mathcal{F}|=k(n-1)!, these kk 11-cosets must be pairwise disjoint.

This completes the proof. ∎

Remark 4.2.

As an immediate consequence of Theorem 1.6, when |ε|,δ=o(1n)|\varepsilon|,~{}\delta=o(\frac{1}{n}), the optimal family \mathcal{F} with maximal total intersection number is “almost” the union of kk disjoint 11-cosets. However, due to the restrictions of parameters in Theorem 4.1, the structural characterization given by Theorem 1.6 becomes weaker as each value of |ε||\varepsilon| and δ\delta grows.

5 Upper bounds on maximal total intersection numbers for families from different schemes

In this section, we will show several upper bounds on maximal total intersection numbers for families of vector spaces and permutations using linear programming method for corresponding association schemes.

5.1 Grassmann scheme

In this subsection, we take (X,)(X,\mathcal{R}) as the Grassmann scheme, which can be regarded as a qq-analogue of the Johnson scheme (for explicit definition of Johnson scheme, see [20]).

For 1kn1\leq k\leq n, denote Gq(n,k)G_{q}(n,k) as the set of all subspaces in 𝔽qn\mathbb{F}_{q}^{n} with constant dimension kk and ={R0,,Rk}\mathcal{R}=\{R_{0},\ldots,R_{k}\} as the corresponding distance relation set, where Ri={(U1,U2)Gq(n,k)×Gq(n,k):dim(U1U2)=ki}R_{i}=\{(U_{1},U_{2})\in G_{q}(n,k)\times G_{q}(n,k):\dim(U_{1}\cap U_{2})=k-i\}. (Gq(n,k),)(G_{q}(n,k),\mathcal{R}) is called thethe GrassmannGrassmann schemescheme.

Theorem 5.1.

[10] Given 0i,jk0\leq i,j\leq k, the eigenvalues and the dual eigenvalues of the Grassmann scheme Gq(n,k)G_{q}(n,k) are given by

Pi(j)=Ei(q)(j);\displaystyle P_{i}(j)=E^{(q)}_{i}(j); (47)
Qj(i)=Dj(q)(i),\displaystyle Q_{j}(i)=D^{(q)}_{j}(i), (48)

where the generalizedEberleinpolynomialgeneralized~{}Eberlein~{}polynomial Ei(q)(x)E^{(q)}_{i}(x) and the dualdual HahnHahn polynomialpolynomial Dj(q)(x)D^{(q)}_{j}(x) are defined as follows:

Ei(q)(x)\displaystyle E_{i}^{(q)}(x) =r=0i(1)irq(ir2)[krki][kxr][n+rkxr]qrx,\displaystyle=\sum\limits_{r=0}^{i}(-1)^{i-r}q^{i-r\choose 2}\genfrac{[}{]}{0.0pt}{}{k-r}{k-i}\genfrac{[}{]}{0.0pt}{}{k-x}{r}\genfrac{[}{]}{0.0pt}{}{n+r-k-x}{r}q^{rx}, (49)
Dj(q)(x)\displaystyle D_{j}^{(q)}(x) =([nj][nj1])r=0j{(1)rq(r2)[jr][n+1rr][kr]1[nkr]1}[xr]qrx.\displaystyle=\left(\genfrac{[}{]}{0.0pt}{}{n}{j}-\genfrac{[}{]}{0.0pt}{}{n}{j-1}\right)\sum\limits_{r=0}^{j}\left\{(-1)^{r}q^{r\choose 2}\genfrac{[}{]}{0.0pt}{}{j}{r}\genfrac{[}{]}{0.0pt}{}{n+1-r}{r}{\genfrac{[}{]}{0.0pt}{}{k}{r}}^{-1}{\genfrac{[}{]}{0.0pt}{}{n-k}{r}}^{-1}\right\}\genfrac{[}{]}{0.0pt}{}{x}{r}q^{-rx}. (50)

Now, consider a family Gq(n,k)\mathcal{F}\subseteq G_{q}(n,k) with size MM. According to the definition of aia_{i} in (8), we have

ai=1M|{(U1,U2):U1,U2,dim(U1U2)=ki}|.\displaystyle a_{i}=\frac{1}{M}|\{(U_{1},U_{2}):~{}U_{1},U_{2}\in\mathcal{F},~{}\dim(U_{1}\cap U_{2})=k-i\}|.

This leads to

a0=1,i=0kai=M.\displaystyle a_{0}=1,~{}\sum\limits_{i=0}^{k}a_{i}=M. (51)

Then, recall the definition of ()\mathcal{I}(\mathcal{F}) from (1), we have

()\displaystyle\mathcal{I}(\mathcal{F}) =Mi=0k(ki)ai=kMi=0kaiMi=0kiai\displaystyle=M\sum\limits_{i=0}^{k}(k-i)a_{i}=kM\sum\limits_{i=0}^{k}a_{i}-M\sum\limits_{i=0}^{k}ia_{i}
=kM2Mi=0kiai.\displaystyle=kM^{2}-M\sum\limits_{i=0}^{k}ia_{i}. (52)

Based on the relationship between inner distribution aia_{i}s and dual distribution bib_{i}s, we have the following theorem.

Theorem 5.2.

Given a prime power qq and positive integers n,k,Mn,k,M with knk\leq n, M[nk]M\leq\genfrac{[}{]}{0.0pt}{}{n}{k}. Let Gq(n,k)\mathcal{F}\subseteq G_{q}(n,k) with ||=M|\mathcal{F}|=M and {b0,,bk}\{b_{0},\ldots,b_{k}\} be the dual distribution of \mathcal{F}. Then, we have

()\displaystyle\mathcal{I}(\mathcal{F}) (b1+1[n1])qM2[k1][nk1][n1]([n1]1)+kM2,\displaystyle\leq\left(b_{1}+1-\genfrac{[}{]}{0.0pt}{}{n}{1}\right)\frac{qM^{2}\genfrac{[}{]}{0.0pt}{}{k}{1}\genfrac{[}{]}{0.0pt}{}{n-k}{1}}{\genfrac{[}{]}{0.0pt}{}{n}{1}\left(\genfrac{[}{]}{0.0pt}{}{n}{1}-1\right)}+kM^{2}, (53)
()\displaystyle\mathcal{I}(\mathcal{F}) ([nk]Mr=2kbr[n1])qM2[k1][nk1][n1]([n1]1)+kM2.\displaystyle\leq\left(\frac{\genfrac{[}{]}{0.0pt}{}{n}{k}}{M}-\sum\limits_{r=2}^{k}b_{r}-\genfrac{[}{]}{0.0pt}{}{n}{1}\right)\frac{qM^{2}\genfrac{[}{]}{0.0pt}{}{k}{1}\genfrac{[}{]}{0.0pt}{}{n-k}{1}}{\genfrac{[}{]}{0.0pt}{}{n}{1}\left(\genfrac{[}{]}{0.0pt}{}{n}{1}-1\right)}+kM^{2}. (54)
Proof.

From (6) and (10), we know that b1=1Mi=0kQ1(i)aib_{1}=\frac{1}{M}\sum\limits_{i=0}^{k}Q_{1}(i)a_{i}. By (48) and (49) from Theorem 5.1, we can further obtain

b1\displaystyle b_{1} =1Mi=0k([n1]1)(1[n1][i1][k1][nk1]qi)ai\displaystyle=\frac{1}{M}\sum\limits_{i=0}^{k}\left(\genfrac{[}{]}{0.0pt}{}{n}{1}-1\right)\left(1-\frac{\genfrac{[}{]}{0.0pt}{}{n}{1}\genfrac{[}{]}{0.0pt}{}{i}{1}}{{\genfrac{[}{]}{0.0pt}{}{k}{1}\genfrac{[}{]}{0.0pt}{}{n-k}{1}q^{i}}}\right)a_{i}
([n1]1)Mi=0kai[n1]([n1]1)qM[k1][nk1]i=0kiai\displaystyle\geq\frac{\left(\genfrac{[}{]}{0.0pt}{}{n}{1}-1\right)}{M}\sum\limits_{i=0}^{k}a_{i}-\frac{\genfrac{[}{]}{0.0pt}{}{n}{1}\left(\genfrac{[}{]}{0.0pt}{}{n}{1}-1\right)}{qM\genfrac{[}{]}{0.0pt}{}{k}{1}\genfrac{[}{]}{0.0pt}{}{n-k}{1}}\sum\limits_{i=0}^{k}ia_{i}
=([n1]1)[n1]([n1]1)qM[k1][nk1](kM()M),\displaystyle=\left(\genfrac{[}{]}{0.0pt}{}{n}{1}-1\right)-\frac{\genfrac{[}{]}{0.0pt}{}{n}{1}\left(\genfrac{[}{]}{0.0pt}{}{n}{1}-1\right)}{qM\genfrac{[}{]}{0.0pt}{}{k}{1}\genfrac{[}{]}{0.0pt}{}{n-k}{1}}\left(kM-\frac{\mathcal{I}(\mathcal{F})}{M}\right),

where the last equality follows from (51) and (52). This leads to (53).

On the other hand, from Lemma 2.3, we know that b1=[nk]M1r=2kbrb_{1}=\frac{\genfrac{[}{]}{0.0pt}{}{n}{k}}{M}-1-\sum_{r=2}^{k}b_{r}. Thus, combined with (53)(\ref{distance_and_B1'_grassmann}), this implies that

()\displaystyle\mathcal{I}(\mathcal{F}) (b1+1[n1])qM2[k1][nk1][n1]([n1]1)+kM2\displaystyle\leq\left(b_{1}+1-\genfrac{[}{]}{0.0pt}{}{n}{1}\right)\frac{qM^{2}\genfrac{[}{]}{0.0pt}{}{k}{1}\genfrac{[}{]}{0.0pt}{}{n-k}{1}}{\genfrac{[}{]}{0.0pt}{}{n}{1}\left(\genfrac{[}{]}{0.0pt}{}{n}{1}-1\right)}+kM^{2}
=([nk]Mr=2kbr[n1])qM2[k1][nk1][n1]([n1]1)+kM2,\displaystyle=\left(\frac{\genfrac{[}{]}{0.0pt}{}{n}{k}}{M}-\sum\limits_{r=2}^{k}b_{r}-\genfrac{[}{]}{0.0pt}{}{n}{1}\right)\frac{qM^{2}\genfrac{[}{]}{0.0pt}{}{k}{1}\genfrac{[}{]}{0.0pt}{}{n-k}{1}}{\genfrac{[}{]}{0.0pt}{}{n}{1}\left(\genfrac{[}{]}{0.0pt}{}{n}{1}-1\right)}+kM^{2},

which gives (54). ∎

With the help of Theorem 5.2, we now proceed the proof of Theorem 1.7.

Proof of Theorem 1.7.

From Lemma 2.2, we know that bj0b_{j}\geq 0 for 0jk0\leq j\leq k. This leads to r=2kbr0\sum_{r=2}^{k}b_{r}\geq 0. Thus, combined with (54)(\ref{d_lp_bound_grassmann}), we have

()\displaystyle\mathcal{MI}(\mathcal{F}) ([nk]Mr=2kbr[n1])qM2[k1][nk1][n1]([n1]1)+kM2\displaystyle\leq\left(\frac{\genfrac{[}{]}{0.0pt}{}{n}{k}}{M}-\sum\limits_{r=2}^{k}b_{r}-\genfrac{[}{]}{0.0pt}{}{n}{1}\right)\frac{qM^{2}\genfrac{[}{]}{0.0pt}{}{k}{1}\genfrac{[}{]}{0.0pt}{}{n-k}{1}}{\genfrac{[}{]}{0.0pt}{}{n}{1}\left(\genfrac{[}{]}{0.0pt}{}{n}{1}-1\right)}+kM^{2}
([nk]M[n1])qM2[k1][nk1][n1]([n1]1)+kM2.\displaystyle\leq\left(\frac{\genfrac{[}{]}{0.0pt}{}{n}{k}}{M}-\genfrac{[}{]}{0.0pt}{}{n}{1}\right)\frac{qM^{2}\genfrac{[}{]}{0.0pt}{}{k}{1}\genfrac{[}{]}{0.0pt}{}{n-k}{1}}{\genfrac{[}{]}{0.0pt}{}{n}{1}\left(\genfrac{[}{]}{0.0pt}{}{n}{1}-1\right)}+kM^{2}.

This proves inequality (4)(\ref{lower_bound_0}).

Next, we shall use a linear programming method to give a lower bound of r=2kbs\sum_{r=2}^{k}b_{s}. From Lemma 2.1, we know that for 1ik1\leq i\leq k,

r=0kbrPi(r)0.\displaystyle\sum\limits_{r=0}^{k}b_{r}P_{i}(r)\geq 0. (55)

Meanwhile, by Lemma 2.3, we also have b0=1b_{0}=1 and b1=[nk]M1r=2kbrb_{1}=\frac{\genfrac{[}{]}{0.0pt}{}{n}{k}}{M}-1-\sum_{r=2}^{k}b_{r}. Thus, this leads to

r=0kbrPi(r)\displaystyle\sum\limits_{r=0}^{k}b_{r}P_{i}(r) =b0Pi(0)+b1Pi(1)+r=2kbrPi(r)\displaystyle=b_{0}P_{i}(0)+b_{1}P_{i}(1)+\sum\limits_{r=2}^{k}b_{r}P_{i}(r)
=Pi(0)+([nk]M1r=2kbr)Pi(1)+r=2kbrPi(r)\displaystyle=P_{i}(0)+\left(\frac{\genfrac{[}{]}{0.0pt}{}{n}{k}}{M}-1-\sum\limits_{r=2}^{k}b_{r}\right)P_{i}(1)+\sum\limits_{r=2}^{k}b_{r}P_{i}(r)
=Pi(0)+[nk]MPi(1)Pi(1)+r=2k[Pi(r)Pi(1)]br.\displaystyle=P_{i}(0)+\frac{\genfrac{[}{]}{0.0pt}{}{n}{k}}{M}P_{i}(1)-P_{i}(1)+\sum\limits_{r=2}^{k}[P_{i}(r)-P_{i}(1)]b_{r}. (56)

Combining (55)(\ref{A'ige0_subspace}) with (56)(\ref{lp_subspace}), we further have

r=2kbr[Pi(1)Pi(r)]Pi(0)+[nk]MPi(1)Pi(1),\displaystyle\sum\limits_{r=2}^{k}b_{r}[P_{i}(1)-P_{i}(r)]\leq P_{i}(0)+\frac{\genfrac{[}{]}{0.0pt}{}{n}{k}}{M}P_{i}(1)-P_{i}(1),

for 1ik1\leq i\leq k. To obtain a lower bound on r=2kbr\sum_{r=2}^{k}b_{r} under the restrictions of the above inequality together with br0b_{r}\geq 0 (2rk2\leq r\leq k) from Lemma 2.2, we now consider the following LP problem:

(I) Choose real variables y2,,yky_{2},\ldots,y_{k} so as to

Λ(n,k,q,M)=minimize r=2kyr,\displaystyle\Lambda(n,k,q,M)=\text{minimize }\sum\limits_{r=2}^{k}y_{r},

subject to

{yr0,forr=2,3,,k;r=2kyr[Pi(1)Pi(r)]Pi(0)+[nk]MPi(1)Pi(1),fori=1,2,,k.\displaystyle\begin{cases}y_{r}\geq 0,~{}\text{for}~{}r=2,3,\ldots,k;\\ \sum\limits_{r=2}^{k}y_{r}[P_{i}(1)-P_{i}(r)]\leq P_{i}(0)+\frac{\genfrac{[}{]}{0.0pt}{}{n}{k}}{M}P_{i}(1)-P_{i}(1),~{}\text{for}~{}i=1,2,\ldots,k.\end{cases}

Note that when M[n1k1]M\geq\genfrac{[}{]}{0.0pt}{}{n-1}{k-1}, by (47)(\ref{p_ploy}) and (49)(\ref{gen_p}), we have

1+[nk]MPi(1)Pi(0)Pi(1)Pi(0)\displaystyle 1+\frac{\genfrac{[}{]}{0.0pt}{}{n}{k}}{M}\frac{P_{i}(1)}{P_{i}(0)}-\frac{P_{i}(1)}{P_{i}(0)} =1+([nk]M1)Pi(1)Pi(0)\displaystyle=1+\left(\frac{\genfrac{[}{]}{0.0pt}{}{n}{k}}{M}-1\right)\frac{P_{i}(1)}{P_{i}(0)}
=1+([nk]M1)(1[n1][i1][k1][nk1]qi)\displaystyle=1+\left(\frac{\genfrac{[}{]}{0.0pt}{}{n}{k}}{M}-1\right)\left(1-\frac{\genfrac{[}{]}{0.0pt}{}{n}{1}\genfrac{[}{]}{0.0pt}{}{i}{1}}{\genfrac{[}{]}{0.0pt}{}{k}{1}\genfrac{[}{]}{0.0pt}{}{n-k}{1}q^{i}}\right)
1+([nk][n1k1]1)(1[n1][nk1]qk)=0.\displaystyle\geq 1+\left(\frac{\genfrac{[}{]}{0.0pt}{}{n}{k}}{\genfrac{[}{]}{0.0pt}{}{n-1}{k-1}}-1\right)\left(1-\frac{\genfrac{[}{]}{0.0pt}{}{n}{1}}{\genfrac{[}{]}{0.0pt}{}{n-k}{1}q^{k}}\right)=0.

Moveover, since Pi(0)=[k1][nk1]qi20P_{i}(0)=\genfrac{[}{]}{0.0pt}{}{k}{1}\genfrac{[}{]}{0.0pt}{}{n-k}{1}q^{i^{2}}\geq 0, this also leads to Pi(0)+[nk]MPi(1)Pi(1)0P_{i}(0)+\frac{\genfrac{[}{]}{0.0pt}{}{n}{k}}{M}P_{i}(1)-P_{i}(1)\geq 0, for 1ik1\leq i\leq k. Therefore, by taking y2=y3==yk=0y_{2}=y_{3}=\cdots=y_{k}=0, we can obtain the optimal solution Λ(n,k,q,M)=0\Lambda(n,k,q,M)=0.

When M[n1k1]M\leq\genfrac{[}{]}{0.0pt}{}{n-1}{k-1}, by (54), for Gq(n,k)\mathcal{F}\subseteq G_{q}(n,k) with ||=M[n1k1]|\mathcal{F}|=M\leq\genfrac{[}{]}{0.0pt}{}{n-1}{k-1}, we have:

()\displaystyle\mathcal{MI}(\mathcal{F}) ([nk]Mr=2kbr[n1])qM2[k1][nk1][n1]([n1]1)+kM2\displaystyle\leq\left(\frac{\genfrac{[}{]}{0.0pt}{}{n}{k}}{M}-\sum\limits_{r=2}^{k}b_{r}-\genfrac{[}{]}{0.0pt}{}{n}{1}\right)\frac{qM^{2}\genfrac{[}{]}{0.0pt}{}{k}{1}\genfrac{[}{]}{0.0pt}{}{n-k}{1}}{\genfrac{[}{]}{0.0pt}{}{n}{1}\left(\genfrac{[}{]}{0.0pt}{}{n}{1}-1\right)}+kM^{2}
([nk]MΛ(n,k,q,M)[n1])qM2[k1][nk1][n1]([n1]1)+kM2.\displaystyle\leq\left(\frac{\genfrac{[}{]}{0.0pt}{}{n}{k}}{M}-\Lambda(n,k,q,M)-\genfrac{[}{]}{0.0pt}{}{n}{1}\right)\frac{qM^{2}\genfrac{[}{]}{0.0pt}{}{k}{1}\genfrac{[}{]}{0.0pt}{}{n-k}{1}}{\genfrac{[}{]}{0.0pt}{}{n}{1}\left(\genfrac{[}{]}{0.0pt}{}{n}{1}-1\right)}+kM^{2}. (57)

Consider the dual problem of (I), which is given as follows (see [27, Section 4 of Chapter 17]).

(II) Choose real variables x1,x2,,xkx_{1},x_{2},\dots,x_{k} so as to

Λ¯(n,k,q,M)=maximize i=1k[Pi(1)[nk]MPi(1)Pi(0)]xi,\displaystyle{\bar{\Lambda}}(n,k,q,M)=\text{maximize }\sum\limits_{i=1}^{k}\left[P_{i}(1)-\frac{\genfrac{[}{]}{0.0pt}{}{n}{k}}{M}P_{i}(1)-P_{i}(0)\right]x_{i},

subject to

{xi0,fori=1,2,,k;i=1kxi[Pi(1)Pi(r)]1,forr=2,3,,k.\displaystyle\begin{cases}x_{i}\geq 0,~{}\text{for}~{}i=1,2,\ldots,k;\\ \sum\limits_{i=1}^{k}x_{i}[P_{i}(1)-P_{i}(r)]\geq-1,~{}\text{for}~{}r=2,3,\ldots,k.\end{cases}

We claim that x1==xk1=0x_{1}=\cdots=x_{k-1}=0, xk=[Pk(2)Pk(1)]1x_{k}=[P_{k}(2)-P_{k}(1)]^{-1} is a feasible solution to the above LPLP problem (II). To show this, we only need to prove that

Pk(1)Pk(r)Pk(2)Pk(1)1,\displaystyle\frac{P_{k}(1)-P_{k}(r)}{P_{k}(2)-P_{k}(1)}\geq-1, (58)

for 2rk2\leq r\leq k. From (49)(\ref{gen_p}) and (47)(\ref{p_ploy}), we know that Pk(r)=(1)rq(r2)+k(kr)[nkrkr]P_{k}(r)=(-1)^{r}q^{{r\choose 2}+k(k-r)}\genfrac{[}{]}{0.0pt}{}{n-k-r}{k-r}. Thereofore, Pk(2)Pk(1)>0P_{k}(2)-P_{k}(1)>0 and (58)(\ref{c1}) follows from the fact that q(r2)+k(kr)[nkrkr]q^{{r\choose 2}+k(k-r)}\genfrac{[}{]}{0.0pt}{}{n-k-r}{k-r} is decreasing on rr when kn/2k\leq n/2. With this feasible solution, we have

Λ¯(n,k,q,M)\displaystyle{\bar{\Lambda}}(n,k,q,M) Pk(1)[nk]MPk(1)Pk(0)Pk(2)Pk(1)\displaystyle\geq\frac{P_{k}(1)-\frac{\genfrac{[}{]}{0.0pt}{}{n}{k}}{M}P_{k}(1)-P_{k}(0)}{P_{k}(2)-P_{k}(1)}
=qk(k1)[nk1k1]+[nk]Mqk(k1)[nk1k1]qk2[nkk]q1+k(k2)[nk2k2]+qk(k1)[nk1k1]\displaystyle=\frac{-q^{k(k-1)}\genfrac{[}{]}{0.0pt}{}{n-k-1}{k-1}+\frac{\genfrac{[}{]}{0.0pt}{}{n}{k}}{M}q^{k(k-1)}\genfrac{[}{]}{0.0pt}{}{n-k-1}{k-1}-q^{k^{2}}\genfrac{[}{]}{0.0pt}{}{n-k}{k}}{q^{1+k(k-2)}\genfrac{[}{]}{0.0pt}{}{n-k-2}{k-2}+q^{k(k-1)}\genfrac{[}{]}{0.0pt}{}{n-k-1}{k-1}}
=([nk]Mqn1qk1)qk1(qnk11)qn21.\displaystyle=\left(\frac{\genfrac{[}{]}{0.0pt}{}{n}{k}}{M}-\frac{q^{n}-1}{q^{k}-1}\right)\frac{q^{k-1}(q^{n-k-1}-1)}{q^{n-2}-1}.

Therefore, it follows from (57)(\ref{d_lp_bound_formal_space}) that

()\displaystyle\mathcal{MI}(\mathcal{F}) [[nk]M([nk]Mqn1qk1)qk1(qnk11)qn21[n1]]qM2[k1][nk1][n1]([n1]1)+kM2\displaystyle\leq\left[\frac{\genfrac{[}{]}{0.0pt}{}{n}{k}}{M}-\left(\frac{\genfrac{[}{]}{0.0pt}{}{n}{k}}{M}-\frac{q^{n}-1}{q^{k}-1}\right)\frac{q^{k-1}(q^{n-k-1}-1)}{q^{n-2}-1}-\genfrac{[}{]}{0.0pt}{}{n}{1}\right]\frac{qM^{2}\genfrac{[}{]}{0.0pt}{}{k}{1}\genfrac{[}{]}{0.0pt}{}{n-k}{1}}{\genfrac{[}{]}{0.0pt}{}{n}{1}\left(\genfrac{[}{]}{0.0pt}{}{n}{1}-1\right)}+kM^{2}
=[[nk](qk11)M(qn21)(qn1)(qn11)(qk11)(q1)(qk1)(qn21)]M2(qk1)(qnk1)(qn1)(qn11)+kM2\displaystyle=\left[\frac{\genfrac{[}{]}{0.0pt}{}{n}{k}(q^{k-1}-1)}{M(q^{n-2}-1)}-\frac{(q^{n}-1)(q^{n-1}-1)(q^{k-1}-1)}{(q-1)(q^{k}-1)(q^{n-2}-1)}\right]\frac{M^{2}(q^{k}-1)(q^{n-k}-1)}{(q^{n}-1)(q^{n-1}-1)}+kM^{2}
=[[nk]M(qn1)(qn11)(q1)(qk1)]M2(qk1)(qk11)(qnk1)(qn1)(qn11)(qn21)+kM2.\displaystyle=\left[\frac{\genfrac{[}{]}{0.0pt}{}{n}{k}}{M}-\frac{(q^{n}-1)(q^{n-1}-1)}{(q-1)(q^{k}-1)}\right]\frac{M^{2}(q^{k}-1)(q^{k-1}-1)(q^{n-k}-1)}{(q^{n}-1)(q^{n-1}-1)(q^{n-2}-1)}+kM^{2}.

This completes the proof of (5)(\ref{lower_bound_space_2}). ∎

As an immediate consequence of Theorem 1.7 and Proposition 3.2, we have the following corollaries showing that bounds in Theorem 1.7 are tight for some special cases.

Corollary 5.3.

Given a prime power qq, a positive integer nn with n2n\geq 2, for Gq(n,2)\mathcal{F}\subseteq G_{q}(n,2) with ||=[n11]|\mathcal{F}|=\genfrac{[}{]}{0.0pt}{}{n-1}{1}, we have

()=(qn1+q2)(qn11)(q1)2.\displaystyle\mathcal{MI}\left(\mathcal{F}\right)=\frac{(q^{n-1}+q-2)(q^{n-1}-1)}{(q-1)^{2}}. (59)
Proof.

By inequality (4), we already have

()(qn1+q2)(qn11)(q1)2.\displaystyle\mathcal{MI}\left(\mathcal{F}\right)\leq\frac{(q^{n-1}+q-2)(q^{n-1}-1)}{(q-1)^{2}}.

To show that this upper bound is tight, we take 𝒴1Gq(n,2)\mathcal{Y}_{1}\subseteq G_{q}(n,2) as the family of all 22-dim subspaces containing some fixed 11-dim subspace. Clearly, |𝒴1|=[n11]|\mathcal{Y}_{1}|=\genfrac{[}{]}{0.0pt}{}{n-1}{1}. By Proposition 3.2, we have

(𝒴1)\displaystyle\mathcal{I}(\mathcal{Y}_{1}) =[n11]j=01(j+1)q(1j)2[n21j][1j]\displaystyle=\genfrac{[}{]}{0.0pt}{}{n-1}{1}\sum\limits_{j=0}^{1}(j+1)q^{(1-j)^{2}}\genfrac{[}{]}{0.0pt}{}{n-2}{1-j}\genfrac{[}{]}{0.0pt}{}{1}{j}
=[n11]qn1+q2q1.\displaystyle=\genfrac{[}{]}{0.0pt}{}{n-1}{1}\frac{q^{n-1}+q-2}{q-1}.

Hence, (59)(\ref{subspace_1_star_2}) follows from ()(𝒴1)\mathcal{MI}(\mathcal{F})\geq\mathcal{I}(\mathcal{Y}_{1}). ∎

Corollary 5.4.

Given a prime power qq, a positive integer nn with n6n\geq 6, for Gq(n,3)\mathcal{F}\subseteq G_{q}(n,3) with ||=[n21]|\mathcal{F}|=\genfrac{[}{]}{0.0pt}{}{n-2}{1}, we have

()=(2qn2+q3)(qn21)(q1)2.\displaystyle\mathcal{MI}\left(\mathcal{F}\right)=\frac{(2q^{n-2}+q-3)(q^{n-2}-1)}{(q-1)^{2}}. (60)
Proof.

Similarly, by (5)(\ref{lower_bound_space_2}), we have

()(2qn2+q3)(qn21)(q1)2.\displaystyle\mathcal{MI}\left(\mathcal{F}\right)\leq\frac{(2q^{n-2}+q-3)(q^{n-2}-1)}{(q-1)^{2}}.

Now, take 𝒴2Gq(n,3)\mathcal{Y}_{2}\subseteq G_{q}(n,3) as the family of all 33-dim subspaces containing some fixed 22-dim subspace. Clearly, |𝒴2|=[n21]|\mathcal{Y}_{2}|=\genfrac{[}{]}{0.0pt}{}{n-2}{1}. By Proposition 3.2, we have

(𝒴2)\displaystyle\mathcal{I}(\mathcal{Y}_{2}) =[n21]j=01(j+2)q(1j)2[n31j][1j]\displaystyle=\genfrac{[}{]}{0.0pt}{}{n-2}{1}\sum\limits_{j=0}^{1}(j+2)q^{(1-j)^{2}}\genfrac{[}{]}{0.0pt}{}{n-3}{1-j}\genfrac{[}{]}{0.0pt}{}{1}{j}
=(2qn2+q3)(qn21)(q1)2.\displaystyle=\frac{(2q^{n-2}+q-3)(q^{n-2}-1)}{(q-1)^{2}}.

Hence, (60)(\ref{subspace_2_star_3}) follows from ()(𝒴2)\mathcal{MI}(\mathcal{F})\geq\mathcal{I}(\mathcal{Y}_{2}). ∎

5.2 The conjugacy scheme of symmetric group

Given a positive integer nn, we take XX as the symmetric group SnS_{n}. Denote C0,C1,,CsC_{0},C_{1},\ldots,C_{s} as the conjugacy classes of SnS_{n} and the relations ={R0,,Rs}\mathcal{R}=\{R_{0},\ldots,R_{s}\} are defined as follows:

Ri={(g,h)Sn×Sn|gh1Ci}.\displaystyle R_{i}=\{(g,h)\in S_{n}\times S_{n}|~{}gh^{-1}\in C_{i}\}.

(Sn,)(S_{n},\mathcal{R}) is called theconjugacyschemethe~{}conjugacy~{}scheme of SnS_{n}.

For each element σ\sigma of SnS_{n}, one can write

σ=(a1ak1)(b1bk2)(c1ckm),\displaystyle\sigma=(a_{1}\ldots a_{k_{1}})(b_{1}\ldots b_{k_{2}})\ldots(c_{1}\ldots c_{k_{m}}),

as a product of disjoint cycles with k1k2km1k_{1}\geq k_{2}\geq\ldots\geq k_{m}\geq 1. This mm-tuple (k1,,km)(k_{1},\ldots,k_{m}) is called the cycle-shape of σ\sigma. Then, the conjugacy classes of SnS_{n} are precisely

{σSn:cycle-shape(σ)=λ}λn.\displaystyle\{\sigma\in S_{n}:~{}\text{cycle-shape}(\sigma)=\lambda\}_{\lambda\vdash n}.

Clearly, each conjugacy class {Ci:0is}\{C_{i}:~{}0\leq i\leq s\} corresponds to a cycle-shape σi\sigma_{i} of SnS_{n} respectively. In particular, C0C_{0} corresponds to the cycle-shape (1,1,,1)(1,1,\ldots,1). According to [20, Chapter 11.12], eigenvalues and dual eigenvalues of the conjugacy scheme of SnS_{n} are given by

Pi(j)=|Ci|ψj(ci)¯ψj(e0),Qj(i)=ψj(ci)ψj(e0),\displaystyle P_{i}(j)=\frac{|C_{i}|\overline{\psi_{j}(c_{i})}}{\psi_{j}(e_{0})},~{}~{}Q_{j}(i)=\psi_{j}(c_{i})\psi_{j}(e_{0}), (61)

where ciCic_{i}\in C_{i} for 0is0\leq i\leq s, e0e_{0} is the identity element in SnS_{n} and ψj\psi_{j} (0js)(0\leq j\leq s) denote irreducible characters of SnS_{n}. Especially, ψ0\psi_{0} denotes the trivial character, which maps all the elements of GG into 11.

Given Sn\mathcal{F}\subseteq S_{n} with size MM, consider the inner distribution of \mathcal{F} with respect to \mathcal{R}. According to the definition of aia_{i}, (8)(\ref{inner_distribution}) can be rewritten as

ai=1M|{(x,y):x,y,xy1Ci}|.\displaystyle a_{i}=\frac{1}{M}|\{(x,y):~{}x,y\in\mathcal{F},~{}xy^{-1}\in C_{i}\}|.

Thus, one can easily obtain

a0=1andi=0sai=M.\displaystyle a_{0}=1~{}\text{and}~{}\sum\limits_{i=0}^{s}a_{i}=M. (62)

Given a cycle-shape σ=(k1,,km)\sigma=(k_{1},\ldots,k_{m}), define Uσ=|{i[m]:ki=1}|U_{\sigma}=|\{i\in[m]:k_{i}=1\}|. From the new expression of aia_{i} above, we have

()=Mi=1sUσai.\displaystyle\mathcal{I}(\mathcal{F})=M\sum\limits_{i=1}^{s}U_{\sigma}a_{i}. (63)

Now, according to the relationship between inner distribution aia_{i}s and dual distribution bib_{i}s, we have the following theorem.

Theorem 5.5.

Given positive integers nn and MM with Mn!M\leq n!. Let Sn\mathcal{F}\subseteq S_{n} with ||=M|\mathcal{F}|=M and {b0,,bs}\{b_{0},\ldots,b_{s}\} be the dual distribution of \mathcal{F}. Then, we have

()\displaystyle\mathcal{I}(\mathcal{F}) =M2(b1n1+1),\displaystyle=M^{2}\left(\frac{b_{1}}{n-1}+1\right), (64)
()\displaystyle\mathcal{I}(\mathcal{F}) =M2n1(n!M+n2r=2sbr).\displaystyle=\frac{M^{2}}{n-1}\left(\frac{n!}{M}+n-2-\sum\limits_{r=2}^{s}b_{r}\right). (65)
Proof.

According to [21, Lemma 6.9], there exists an irreducible character ψ\psi of SnS_{n} which is defined as: ψ(c)=Uσ(c)1\psi(c)=U_{\sigma(c)}-1 for cSnc\in S_{n}, where σ(c)\sigma(c) is the cycle-shape of cc. W.l.o.g, we can assume that ψ1=ψ\psi_{1}=\psi. By (6) and (10), we know that b1=1Mi=0sQ1(i)aib_{1}=\frac{1}{M}\sum\limits_{i=0}^{s}Q_{1}(i)a_{i}. Then, by (61), we further have

b1\displaystyle b_{1} =1Mi=0sψ1(ci)ψ1(e0)ai\displaystyle=\frac{1}{M}\sum\limits_{i=0}^{s}\psi_{1}(c_{i})\psi_{1}(e_{0})a_{i}
=1Mi=0s(Uσ(ci)1)(n1)ai.\displaystyle=\frac{1}{M}\sum\limits_{i=0}^{s}(U_{\sigma(c_{i})}-1)(n-1)a_{i}.

Combined with (62) and (63), this leads to

b1\displaystyle b_{1} =1M(i=0s(n1)aiUσ(ci)i=0s(n1)ai)\displaystyle=\frac{1}{M}\left(\sum\limits_{i=0}^{s}(n-1)a_{i}U_{\sigma(c_{i})}-\sum\limits_{i=0}^{s}(n-1)a_{i}\right)
=1M2(n1)()(n1),\displaystyle=\frac{1}{M^{2}}(n-1)\mathcal{I}(\mathcal{F})-(n-1),

Therefore, we have (64).

On the other hand, by Lemma 2.3, we have b1=n!M1r=2sbrb_{1}=\frac{n!}{M}-1-\sum_{r=2}^{s}b_{r}. Thus, combined with (64), this implies that

()\displaystyle\mathcal{I}(\mathcal{F}) =M2(b1n1+1)=M2n1(n!M+n2r=2sbr).\displaystyle=M^{2}\left(\frac{b_{1}}{n-1}+1\right)=\frac{M^{2}}{n-1}\left(\frac{n!}{M}+n-2-\sum\limits_{r=2}^{s}b_{r}\right).

Proof of Theorem 1.8.

From Lemma 2.2, bj0b_{j}\geq 0 for 0js0\leq j\leq s. This leads to r=2sbr0\sum_{r=2}^{s}b_{r}\geq 0. Thus, combined with (65)(\ref{d_lp_bound}), we have

()\displaystyle\mathcal{MI}(\mathcal{F}) =M2n1(n!M+n2r=2sbr)\displaystyle=\frac{M^{2}}{n-1}\left(\frac{n!}{M}+n-2-\sum\limits_{r=2}^{s}b_{r}\right)
M2n1(n!M+n2).\displaystyle\leq\frac{M^{2}}{n-1}\left(\frac{n!}{M}+n-2\right).

Remark 5.6.

Actually, similar to the proof of Theorem 1.7, we can also use the linear programming approach to bound r=2sbr\sum_{r=2}^{s}b_{r}. For interested readers, the corresponding LP problem is formulated as follows:

(I) Choose real variables y2,,yky_{2},\ldots,y_{k} so as to

Λ(n,M)=minimize r=2syr,\displaystyle\Lambda(n,M)=\text{minimize }\sum\limits_{r=2}^{s}y_{r},

subject to

{yr0,forr=2,3,,s;r=2kyr[Pi(1)Pi(r)]Pi(0)+n!MPi(1)Pi(1),fori=1,2,,s.\displaystyle\begin{cases}y_{r}\geq 0,~{}\text{for}~{}r=2,3,\ldots,s;\\ \sum\limits_{r=2}^{k}y_{r}[P_{i}(1)-P_{i}(r)]\leq P_{i}(0)+\frac{n!}{M}P_{i}(1)-P_{i}(1),~{}\text{for}~{}i=1,2,\ldots,s.\end{cases}

Note that when M(n1)!M\geq(n-1)!, the optimal solution Λ(n,M)=0\Lambda(n,M)=0 is given by taking y2=y3==ys=0y_{2}=y_{3}=\cdots=y_{s}=0. When M(n1)!M\leq(n-1)!, we turn to the following the dual problem of (I).

(II) Choose real variables x1,x2,,xsx_{1},x_{2},\dots,x_{s} so as to

Λ¯(n,M)=maximize i=1s[Pi(1)n!MPi(0)]xi,\displaystyle\overline{\Lambda}(n,M)=\text{maximize }\sum\limits_{i=1}^{s}\left[P_{i}(1)-\frac{n!}{M}-P_{i}(0)\right]x_{i},

subject to

{xi0,fori=1,2,,s;i=1sxi[Pi(1)Pi(r)]1,forr=2,3,,s.\displaystyle\begin{cases}x_{i}\geq 0,~{}\text{for}~{}i=1,2,\ldots,s;\\ \sum\limits_{i=1}^{s}x_{i}[P_{i}(1)-P_{i}(r)]\geq-1,~{}\text{for}~{}r=2,3,\ldots,s.\end{cases}

Unfortunately, the feasible solution we find is x1==xs=0x_{1}=\ldots=x_{s}=0, which leads to the same lower bound r=2sbr0\sum_{r=2}^{s}b_{r}\geq 0 as Lemma 2.2. Possibly, one can find other more proper feasible solutions to improve Theorem 1.8.

As an immediate consequence of Theorem 1.8, we have the following corollary.

Corollary 5.7.

Given a positive integer n2n\geq 2, let Sn\mathcal{F}\subseteq S_{n} with ||=(n1)!|\mathcal{F}|=(n-1)!, we have

()=2((n1)!)2.\displaystyle\mathcal{MI}\left(\mathcal{F}\right)=2\left((n-1)!\right)^{2}. (66)
Proof.

By Theorem 1.8, we have

()2((n1)!)2.\displaystyle\mathcal{MI}\left(\mathcal{F}\right)\leq 2\left((n-1)!\right)^{2}.

On the other hand, by taking 𝒴={ySn:y(1)=1}Sn\mathcal{Y}=\{y\in S_{n}:y(1)=1\}\subseteq S_{n}, we have (𝒴)=2((n1)!)2\mathcal{I}(\mathcal{Y})=2\left((n-1)!\right)^{2}. Therefore, (66) follows from ()(𝒴)\mathcal{MI}(\mathcal{F})\geq\mathcal{I}(\mathcal{Y}). ∎

6 Concluding remarks

In this paper, we consider a new type of intersection problems which can be viewed as inverse problems of Erdős-Ko-Rado type theorems for vector spaces and permutations. This type of problems concerns extremal structures of the families of subspaces or permutations with maximal total intersection numbers. Through different methods, we obtain structural characterizations of the optimal family of subspaces and the optimal family of permutations satisfying ()=()\mathcal{I}(\mathcal{F})=\mathcal{MI}(\mathcal{F}). To some extent, these results determine the unique structure of the optimal families for certain values of |||\mathcal{F}| and characterize the relation between maximizing ()\mathcal{I}(\mathcal{F}) and being intersecting, which partially answers Question 1.3. Moreover, using linear programming methods, we have also shown several upper bounds on ()\mathcal{MI}(\mathcal{F}). These bounds may provide a reference for the study of structures of optimal families.

However, our results have the following limits:

  • Take ε0=196tlnq(k+1)\varepsilon_{0}=\frac{1}{96t\ln{q}(k+1)}, Theorem 1.5 shows that for nn large enough and δ1+ε0\delta\leq 1+\varepsilon_{0} not too close to 0, the optimal family with maximal total intersection number is either contained in a full tt-star or containing a full tt-star. When ||>(1+ε0)[ntkt]|\mathcal{F}|>(1+\varepsilon_{0})\genfrac{[}{]}{0.0pt}{}{n-t}{k-t}, the quantitative shifting arguments in the proof of Theorem 1.5 no longer work. So, can we obtain similar structural results for families with size larger than (1+ε0)[ntkt](1+\varepsilon_{0})\genfrac{[}{]}{0.0pt}{}{n-t}{k-t}? Note that the intersection problem of vector spaces often requires tools from linear algebra or exterior algebra, maybe ideas from these areas can help us to tackle this problem.

  • For families of permutations, we consider the case for ||=Θ((n1)!)|\mathcal{F}|=\Theta((n-1)!). Nevertheless, for ||=Θ((nt)!)|\mathcal{F}|=\Theta((n-t)!) (t2t\geq 2), nothing is known yet. It is worth noting that, in [13], the authors provide a stability result for families of permutations with size Θ((nt)!)\Theta((n-t)!) similar to Theorem 4.1. Thus, it is natural to wonder if we can extend the result of Theorem 1.6 to families with size ||=Θ((nt)!)|\mathcal{F}|=\Theta((n-t)!) using this stability result. Sadly, this requires more information about spectra of Γk\Gamma_{k}, which is beyond our capability.

    Moreover, when ε\varepsilon becomes relatively large, the result of Theorem 1.6 seems to be trivial. Thus, for this case, more specific structural characterizations for families of permutations are also worth studying.

  • Due to the choice of feasible solutions of corresponding LP problems, our upper bounds on ()\mathcal{MI}(\mathcal{F}) are no longer tight for families of subspaces with size Θ([ntkt])\Theta(\genfrac{[}{]}{0.0pt}{}{n-t}{k-t}) or families of permutations with size Θ((nt)!)\Theta((n-t)!), for t2t\geq 2. Therefore, one can try to find other more proper feasible solutions to improve these upper bounds.

Acknowledgements

The authors express their gratitude to the two anonymous reviewers for their detailed and constructive comments which are very helpful to the improvement of the presentation of this paper, especially for providing a simpler proof of Proposition 2.12 using the method of generating functions. And the authors also express their gratitude to the associate editor for his excellent editorial job.

References

  • [1] J. Balogh, S. Das, M. Delcourt, H. Liu, and M. Sharifzadeh. Intersecting families of discrete structures are typically trivial. J. Combin. Theory Ser. A, 132:224–245, 2015.
  • [2] J. Balogh, S. Das, H. Liu, M. Sharifzadeh, and T. Tran. Structure and supersaturation for intersecting families. Electron. J. Combin., 26(2):Paper 2.34, 38, 2019.
  • [3] N. Biggs. Intersection matrices for linear graphs. In Combinatorial Mathematics and its Applications, pages 15–23. Academic Press, London, 1971.
  • [4] N. Biggs. Algebraic graph theory. Cambridge University Press, London, 1974.
  • [5] A. Blokhuis, A. E. Brouwer, A. Chowdhury, P. Frankl, T. Mussche, B. Patkós, and T. Szönyi. A Hilton-Milner Theorem for Vector Spaces. Electron. J. Combin., 17(1):Paper 71, 12, 2010.
  • [6] P. J. Cameron and C. Ku. Intersecting families of permutations. European J. Combin., 24(7):881–890, 2003.
  • [7] A. Chowdhury and B. Patkós. Shadows and intersections in vector spaces. J. Comb. Theory Ser. A, 117(8):1095–1106, 2010.
  • [8] S. Das, W. Gan, and B. Sudakov. The minimum number of disjoint pairs in set systems and related problems. Combinatorica, 36(6):623–660, 2016.
  • [9] S. Das and T. Tran. Removal and stability for Erdős-Ko-Rado. SIAM J. Discrete Math., 30(2):1102–1114, 2016.
  • [10] P. Delsarte. An algebraic approach to the association schemes of coding theory. Philips Res. Rep. Suppl., (10):vi+97, 1973.
  • [11] D. Ellis. Stability for tt-intersecting families of permutations. J. Comb. Theory Ser. A, 118(1):208–227, 2011.
  • [12] D. Ellis, Y. Filmus, and E. Friedgut. A quasi-stability result for dictatorships in SnS_{n}. Combinatorica, 35(5):573–618, 2015.
  • [13] D. Ellis, Y. Filmus, and E. Friedgut. Low-degree Boolean functions on SnS_{n}, with an application to isoperimetry. Forum Math. Sigma, 5:e23, 46, 2017.
  • [14] D. Ellis, E. Friedgut, and H. Pilpel. Intersecting families of permutations. J. Amer. Math. Soc., 24(3):649–682, 2011.
  • [15] J. S. Frame, G. B. Robinson, and R. M. Thrall. The Hook graphs of Sn{S}_{n}. Canad. J. Math., 6:316–324, 1954.
  • [16] P. Frankl and M. Deza. On the maximum number of permutations with given maximal or minimal distance. J. Comb. Theory Ser. A, 22(3):352–360, 1977.
  • [17] P. Frankl, Y. Kohayakawa, and V. Rödl. A note on supersaturated set systems. European J. Combin., 51:190–199, 2016.
  • [18] P. Frankl and R. Wilson. The Erdős-Ko-Rado theorem for vector spaces. J. Comb. Theory Ser. A, 43(2):228–236, 1986.
  • [19] A. Girão and R. Snyder. Disjoint pairs in set systems with restricted intersection. European J. Combin., 83:102998, 13pp, 2020.
  • [20] C. Godsil and K. Meagher. Erdős-Ko-Rado theorems: algebraic approaches. Cambridge University Press, 2016.
  • [21] G. D. James. The representation theory of the symmetric groups. Springer, Berlin, 1978.
  • [22] G. O. H. Katona, G. Y. Katona, and Z. Katona. Most probably intersecting families of subsets. Combin. Probab. Comput., 21(1-2):219–227, 2012.
  • [23] X. Kong and G. Ge. On an inverse problem of the Erdős-Ko-Rado type theorems. arXiv:2004.01529v1, 2020.
  • [24] C. Y. Ku, T. Lau, and K. B. Wong. Cayley graph on symmetric group generated by elements fixing kk points. Linear Algebra Appl., 471:405–426, 2015.
  • [25] C. Y. Ku, T. Lau, and K. B. Wong. On the partition associated to the smallest eigenvalues of the kk-point fixing graph. European J. Combin., 63:70–94, 2017.
  • [26] B. Larose and C. Malvenuto. Stable sets of maximal size in Kneser-type graphs. European J. Combin., 25(5):657–673, 2004.
  • [27] F. J. MacWilliams and N. J. A. Sloane. The theory of error-correcting codes. North-Holland, Amsterdam, 1977.
  • [28] S. P. Mishchenko. Lower bounds on the dimensions of irreducible representations of symmetric groups and of the exponents of the exponential of varieties of Lie algebras. Mat. Sb., 187:83–94, 1996.
  • [29] P. A. Russell. Compressions and probably intersecting families. Combin. Probab. Comput., 21(1-2):301–313, 2012.
  • [30] H. Tanaka. Classification of subsets with minimal width and dual width in grassmann, bilinear forms and dual polar graphs. J. Comb. Theory Ser. A, 113(5):903–910, 2006.