This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Investigating excited Ωc\Omega_{c} states from pentaquark perspective

Ye Yan1 221001005@njnu.edu.cn    Xiaohuang Hu2 xiaohuanghu@foxmail.com    Hongxia Huang1 hxhuang@njnu.edu.cn(Corresponding author)    Jialun Ping1 jlping@njnu.edu.cn(Corresponding author) 1Department of Physics, Nanjing Normal University, Nanjing, Jiangsu 210097, P. R. China 2Changzhou Institute of Industry Technology, Changzhou, Jiangsu 213164, P. R. China
Abstract

Inspired by the recent observation of new Ωc0\Omega_{c}^{0} states by the LHCb Collaboration, we explore the excited Ωc\Omega_{c} states from the pentaquark perspective in the quark delocalization color screening model. Our results indicate that the Ωc(3185)\Omega_{c}(3185) can be well interpreted as a molecular ΞD\Xi D predominated resonance state with JP=1/2J^{P}=1/2^{-}. The Ωc(3120)\Omega_{c}(3120) can also be interpreted as a molecular ΞcK¯\Xi_{c}^{*}\bar{K} state with JP=3/2J^{P}=3/2^{-} and a new molecular state ΞcK¯\Xi^{*}_{c}\bar{K}^{*} with JP=5/2J^{P}=5/2^{-} and a mass of 3527 MeV is predicted, which is worth searching in the future. Other reported Ωc\Omega_{c} states cannot be well described in the framework of pentaquark systems in present work. The three-quark excited state, or the unquenched picture may be a good explanation, which is worth further exploration.

I Introduction

In the last few decades, significant experimental progress has been made in the sector of heavy baryons. Many heavy baryons have been reported, such as Λc\Lambda_{c} and Σc\Sigma_{c} family Knapp:1976qw ; ARGUS:1993vtm ; CLEO:1994oxm ; ARGUS:1997snv ; E687:1993bax ; CLEO:2000mbh ; LHCb:2017jym ; BaBar:2006itc ; Belle:2021qip ; Belle:2014fde ; Ammosov:1993pi ; CLEO:1996czm ; Belle:2004zjl ; Belle:2022hnm , Ξc\Xi_{c} family LHCb:2020gge ; ALICE:2021bli ; Belle:2016lhy ; CLEO:1998wvk ; Belle:2013htj ; Belle:2020ozq ; LHCb:2020iby ; Belle:2020tom ; Belle:2016tai and Ωc\Omega_{c} family Belle:2021gtf ; LHCb:2017uwr ; BaBar:2006pve ; LHCb:2021ptx ; Belle:2017ext . These observations have stimulated extensive interest in understanding the structures of these baryons. For one thing, verifying these heavy baryons could deepen our understanding of the non-perturbative behavior of quantum chromodynamics (QCD) Chen:2016qju ; Swanson:2006st ; Voloshin:2007dx ; Chen:2016heh ; Huang:2023jec ; Esposito:2016noz ; Lebed:2016hpi ; Guo:2017jvc . For another thing, with the appearance of heavy baryons that are difficult to be interpreted simply as traditional three-quark baryons, the study of multi-quark explanation has become a non-negligible subject.

Among them, the excited Ωc\Omega_{c} baryons were considerably enriched by the LHCb Collaboration in 2017 LHCb:2017uwr . Five narrow Ωc0\Omega_{c}^{0} states were observed in the Ξc+K\Xi_{c}^{+}K^{-} invariant mass spectrum, which are Ωc0(3000)\Omega_{c}^{0}(3000), Ωc0(3050)\Omega_{c}^{0}(3050), Ωc0(3065)\Omega_{c}^{0}(3065), Ωc0(3090)\Omega_{c}^{0}(3090) and Ωc0(3120)\Omega_{c}^{0}(3120). The narrow width of these states, along with their unknown quantum numbers and structures, has attracted broad interest in theoretical work. A classical way to describe these Ωc\Omega_{c} baryons is considering that they are conventional three-quark excitations, and another way is treating them as multi-quark states.

On the basis of three-quark configuration, Ωc\Omega_{c} states have been studied in the framework of the Lattice QCD Padmanath:2017lng ; Bahtiyar:2020uuj , the QCD sum rules Agaev:2017jyt ; Wang:2017zjw ; Aliev:2017led ; Agaev:2017lip ; Wang:2017xam , the light cone QCD sum rules Chen:2017sci ; Aliev:2018uby , the heavy hadron chiral perturbation theory Cheng:2017ove , the Regge phenomenology Oudichhya:2021kop ; Oudichhya:2023awb , the chiral quark model Yang:2017rpg , the constituent quark model Wang:2017hej ; Wang:2017kfr ; Yao:2018jmc , the quark-diquark model Wang:2017vnc ; Ali:2017wsf , the quark pair creation model Chen:2017gnu , the P03{}^{3}P_{0} model Zhao:2017fov ; Garcia-Tecocoatzi:2022zrf , the chiral quark-soliton model Kim:2017jpx ; Kim:2017khv , the holographic model Liu:2017frj , the string model Sonnenschein:2017ylo , the harmonic oscillator based model Santopinto:2018ljf , the light-front quark model Chua:2019yqh , the relativized potential quark model Jia:2020vek , the non-relativistic potential model Luo:2023sra , the relativistic flux tube model Jakhad:2023mni and other quark models Karliner:2017kfm ; Ortiz-Pacheco:2020hmj .

On the other hand, the pentaquark interpretation of Ωc\Omega_{c} states has been investigated in the framework of the QCD sum rules Wang:2018alb ; Wang:2021cku , the chiral quark model Yang:2017rpg ; Huang:2017dwn , the constituent quark model An:2017lwg , the diquark-diquark-antiquark model Anisovich:2017aqa , the heavy-quark spin symmetry model Nieves:2017jjx , the one boson exchange model Liu:2018bkx , the vector meson exchange model Montana:2018teh ; Montana:2017kjw , the meson-baryon interaction model Ramos:2020bgs , the chiral quark-soliton model Praszalowicz:2022hcp , the extended local hidden gauge approach Debastiani:2017ewu ; Debastiani:2018adr , the Bethe–Salpeter formalism Wang:2017smo , the effective Lagrangian approach Huang:2018wgr and the quasipotential Bethe-Salpeter equation approach Zhu:2022fyb .

Very recently, two new excited states, Ωc0(3185)\Omega_{c}^{0}(3185) and Ωc0(3327)\Omega_{c}^{0}(3327) are observed in the Ξc+K\Xi_{c}^{+}K^{-} invariant-mass spectrum by the LHCb Collaboration LHCb:2023zpu . Bisides, the five narrow Ωc\Omega_{c} states obtained before LHCb:2017uwr are also confirmed. The measured masses and widths of the two newly found states are

MΩc(3185)\displaystyle M_{\Omega_{c}(3185)} =3185.1±1.70.9+7.4±0.2MeV,\displaystyle=3185.1\pm 1.7_{-0.9}^{+7.4}\pm 0.2\mathrm{MeV},
ΓΩc(3185)\displaystyle\Gamma_{\Omega_{c}(3185)} =50±720+10MeV,\displaystyle=50\pm 7_{-20}^{+10}\mathrm{MeV},
MΩc(3327)\displaystyle M_{\Omega_{c}(3327)} =3327.1±1.21.3+0.1±0.2MeV,\displaystyle=3327.1\pm 1.2_{-1.3}^{+0.1}\pm 0.2\mathrm{MeV},
ΓΩc(3327)\displaystyle\Gamma_{\Omega_{c}(3327)} =20±51+13MeV.\displaystyle=20\pm 5_{-1}^{+13}\mathrm{MeV}. (1)

So far, there have been a few studies on the two newly discovered states. In Ref. Luo:2023sra , in the framework of the non-relativistic potential model with Gaussian Expansion Method, the authors’ results imply that the Ωc0(3327)\Omega_{c}^{0}(3327) is a good candidate of Ωc0(1D)\Omega_{c}^{0}(1D) state with JP=5/2+J^{P}=5/2^{+}. In Ref. Yu:2023bxn , the P03{}^{3}P_{0} model calculation results support assigning the observed Ωc0(3185)\Omega_{c}^{0}(3185) and Ωc0(3327)\Omega_{c}^{0}(3327) as the 2S(3/2+2S(3/2^{+}) and 1D(3/2+1D(3/2^{+}) states, respectively. In Ref. Wang:2023wii , using the QCD sum rules, the Ωc0(3327)\Omega_{c}^{0}(3327) is assigned to be DD-wave Ωc\Omega_{c} state with JP=1/2+,3/2+J^{P}=1/2^{+},3/2^{+} or 5/2+5/2^{+}. In Ref. Feng:2023ixl , Ωc0(3185)\Omega_{c}^{0}(3185) and Ωc0(3327)\Omega_{c}^{0}(3327) are studied in the effective Lagrangian approach by assuming they are molecular states. The results support Ωc0(3327)\Omega_{c}^{0}(3327) as a JP=3/2J^{P}=3/2^{-} DΞD^{*}\Xi molecular state, and the Ωc0(3185)\Omega_{c}^{0}(3185) may be a meson-baryon molecule with a big DΞD\Xi component. In Ref. Karliner:2023okv , the assignment of Ωc0(3185)\Omega_{c}^{0}(3185) and Ωc0(3327)\Omega_{c}^{0}(3327) to 2S1/22S_{1/2} and 2S3/22S_{3/2} is discussed. In Ref. Yan:2023ttx , within a simple contact-range theory in which the couplings are saturated by light-meson exchanges, Ωc0(3185)\Omega_{c}^{0}(3185) and Ωc0(3327)\Omega_{c}^{0}(3327) match the masses of J=1/2J=1/2 ΞD\Xi D and J=3/2J=3/2 ΞD\Xi D^{*}, respectively. In Ref. Jakhad:2023mni , based on the quark-diquark configuration with relativistic flux tube model, Ωc0(3185)\Omega_{c}^{0}(3185) and Ωc0(3327)\Omega_{c}^{0}(3327) is assigned to be |2S,3/2+\left|2S,3/2^{+}\right\rangle and |1D,3/2+\left|1D,3/2^{+}\right\rangle. In Ref. Xin:2023gkf , via the QCD sum rules, the numerical results favor assigning Ωc0(3185)\Omega_{c}^{0}(3185) as the DΞD\Xi molecular state with the JP=1/2J^{P}=1/2^{-}, assigning Ωc0(3327)\Omega_{c}^{0}(3327) as the DΞD^{*}\Xi molecular state with the JP=3/2J^{P}=3/2^{-}.

In addition to the above theoretical methods, quark delocalization color screening model (QDCSM) is a reliable approach, which was developed in the 1990s with the aim of explaining the similarities between nuclear and molecular forces Wu:1996fm . The model gives a good description of NNNN and YNYN interactions and the properties of deuteron Ping:2000dx ; Ping:1998si ; Wu:1998wu ; Pang:2001xx . It is also employed to calculate the baryon-baryon and baryon-meson scattering phase shifts, and the exotic hadronic states are also studied in this model. Studies show that color screening is an effective description of the hidden-color channel coupling ChenLZ ; Huang:2011kf . So it is feasible and meaningful to extend this model to investigate the pentaquark interpretation of excited Ωc\Omega_{c} states.

In this work, we systematically investigate the sscq¯qssc\bar{q}q systems in order to find out if there are Ωc\Omega_{c} states that are possible to be interpreted as pentaquark states. The five-body system is calculated by means of the resonating group method to search for bound states. The strong decay channels of the sscq¯qssc\bar{q}q systems are investigated to determine the resonance states, based on the conservation of the quantum numbers and the limit of phase space. In order to ensure the reliability and stability of the calculation results, the parameters used in this work are the same as those used in the previous work Yan:2022nxp .

This paper is organized as follows. After introduction, the details of QDCSM are presented in section II. The calculation of the bound state and scattering phase shift is presented in Section III, along with the discussion and analysis of the results. Finally, the paper ends with summary in Section IV.

II QUARK DELOCALIZATION COLOR SCREENING MODEL (QDCSM)

Herein, the QDCSM is employed to investigate the properties of sscq¯qssc\bar{q}q systems. The QDCSM is an extension of the native quark cluster model DeRujula:1975qlm ; Isgur:1978xj ; Isgur:1978wd ; Isgur:1979be . It has been developed to address multi-quark systems. The detail of the QDCSM can be found in Refs. Wu:1996fm ; Huang:2011kf ; ChenLZ ; Ping:1998si ; Wu:1998wu ; Pang:2001xx ; Ping:2000cb ; Ping:2000dx ; Ping:2008tp . In this sector, we mainly introduce the salient features of this model. The general form of the pentaquark Hamiltonian is given by

H=\displaystyle H= i=15(mi+𝒑i22mi)TCM+j>i=15V(𝒓ij),\displaystyle\sum_{i=1}^{5}\left(m_{i}+\frac{\boldsymbol{p}_{i}^{2}}{2m_{i}}\right)-T_{CM}+\sum_{j>i=1}^{5}V(\boldsymbol{r}_{ij}), (2)

where mim_{i} is the quark mass, 𝒑i\boldsymbol{p}_{i} is the momentum of the quark, and TCMT_{CM} is the center-of-mass kinetic energy. The dynamics of the pentaquark system is driven by a two-body potential

V(𝒓ij)=\displaystyle V(\boldsymbol{r}_{ij})= VCON(𝒓ij)+VOGE(𝒓ij)+Vχ(𝒓ij).\displaystyle V_{CON}(\boldsymbol{r}_{ij})+V_{OGE}(\boldsymbol{r}_{ij})+V_{\chi}(\boldsymbol{r}_{ij}). (3)

The most relevant features of QCD at its low energy regime: color confinement (VCONV_{CON}), perturbative one-gluon exchange interaction (VOGEV_{OGE}), and dynamical chiral symmetry breaking (VχV_{\chi}) have been taken into consideration.

Here, a phenomenological color screening confinement potential (VCONV_{CON}) is used as

VCON(𝒓ij)=\displaystyle V_{CON}(\boldsymbol{r}_{ij})= ac𝝀ic𝝀jc[f(𝒓ij)+V0],\displaystyle-a_{c}\boldsymbol{\lambda}_{i}^{c}\cdot\boldsymbol{\lambda}_{j}^{c}\left[f(\boldsymbol{r}_{ij})+V_{0}\right], (4)
f(𝒓ij)=\displaystyle f(\boldsymbol{r}_{ij})= {𝒓ij2,i,joccur in the same cluster 1eμqiqj𝒓ij2μqiqj,i,joccur in different cluster \displaystyle\left\{\begin{array}[]{l}\boldsymbol{r}_{ij}^{2},~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}i,j~{}\text{occur in the same cluster }\\ \frac{1-e^{-\mu_{q_{i}q_{j}}\boldsymbol{r}_{ij}^{2}}}{\mu_{q_{i}q_{j}}},~{}~{}~{}i,j~{}\text{occur in different cluster }\end{array}\right. (7)

where aca_{c}, V0V_{0} and μqiqj\mu_{q_{i}q_{j}} are model parameters, and 𝝀c\boldsymbol{\lambda}^{c} stands for the SU(3) color Gell-Mann matrices. Among them, the color screening parameter μqiqj\mu_{q_{i}q_{j}} is determined by fitting the deuteron properties, nucleon-nucleon scattering phase shifts, and hyperon-nucleon scattering phase shifts, respectively, with μqq=0.45\mu_{qq}=0.45~{}fm-2, μqs=0.19\mu_{qs}=0.19~{}fm-2 and μss=0.08\mu_{ss}=0.08~{}fm-2, satisfying the relation, μqs2=μqqμss\mu_{qs}^{2}=\mu_{qq}\mu_{ss} ChenM . Besides, we found that the heavier the quark, the smaller this parameter μqiqj\mu_{q_{i}q_{j}}. When extending to the heavy quark system, the hidden-charm pentaquark system, we took μcc\mu_{cc} as a adjustable parameter from 0.010.01~{}fm-2 to 0.0010.001~{}fm-2, and found that the results were insensitive to the value of μcc\mu_{cc} HuangPc1 . Moreover, the PcP_{c} states were well predicted in the work of Refs. HuangPc1 ; HuangPc2 . So here we take μcc=0.01\mu_{cc}=0.01~{}fm-2 and μqc=0.067\mu_{qc}=0.067~{}fm-2, also satisfy the relation μqc2=μqqμqc\mu_{qc}^{2}=\mu_{qq}\mu_{qc}.

In the present work, we mainly focus on the low-lying negative parity sscq¯qssc\bar{q}q pentaquark states of SS-wave, so the spin-orbit and tensor interactions are not included. The one-gluon exchange potential (VOGEV_{OGE}), which includes coulomb and chromomagnetic interactions, is written as

VOGE(𝒓ij)=\displaystyle V_{OGE}(\boldsymbol{r}_{ij})= 14αsqiqj𝝀ic𝝀jc\displaystyle\frac{1}{4}\alpha_{s_{q_{i}q_{j}}}\boldsymbol{\lambda}_{i}^{c}\cdot\boldsymbol{\lambda}_{j}^{c} (8)
[1rijπ2δ(𝐫ij)(1mi2+1mj2+4𝝈i𝝈j3mimj)],\displaystyle\cdot\left[\frac{1}{r_{ij}}-\frac{\pi}{2}\delta\left(\mathbf{r}_{ij}\right)\left(\frac{1}{m_{i}^{2}}+\frac{1}{m_{j}^{2}}+\frac{4\boldsymbol{\sigma}_{i}\cdot\boldsymbol{\sigma}_{j}}{3m_{i}m_{j}}\right)\right],

where 𝝈\boldsymbol{\sigma} is the Pauli matrices and αsqiqj\alpha_{s_{q_{i}q_{j}}} is the quark-gluon coupling constant.

However, the quark-gluon coupling constant between quark and anti-quark, which offers a consistent description of mesons from light to heavy-quark sector, is determined by the mass differences between pseudoscalar mesons (spin-parity JP=0J^{P}=0^{-}) and vector (spin-parity JP=1J^{P}=1^{-}), respectively. For example, from the model Hamiltonian, the mass difference between DD and DD^{*} is determined by the chromomagnetic interaction in Eq. (II), so the parameter αsqc\alpha_{s_{qc}} is determined by fitting the mass difference between DD and DD^{*}.

The dynamical breaking of chiral symmetry results in the SU(3) Goldstone boson exchange interactions appear between constituent light quarks u,du,d and ss. Hence, the chiral interaction is expressed as

Vχ(𝒓ij)=\displaystyle V_{\chi}(\boldsymbol{r}_{ij})= Vπ(𝒓ij)+VK(𝒓ij)+Vη(𝒓ij).\displaystyle V_{\pi}(\boldsymbol{r}_{ij})+V_{K}(\boldsymbol{r}_{ij})+V_{\eta}(\boldsymbol{r}_{ij}). (9)

Among them

Vπ(𝒓ij)=\displaystyle V_{\pi}\left(\boldsymbol{r}_{ij}\right)= gch24πmπ212mimjΛπ2Λπ2mπ2mπ[Y(mπ𝒓ij)\displaystyle\frac{g_{ch}^{2}}{4\pi}\frac{m_{\pi}^{2}}{12m_{i}m_{j}}\frac{\Lambda_{\pi}^{2}}{\Lambda_{\pi}^{2}-m_{\pi}^{2}}m_{\pi}\left[Y\left(m_{\pi}\boldsymbol{r}_{ij}\right)\right.
Λπ3mπ3Y(Λπ𝒓ij)](𝝈i𝝈j)a=13(𝝀ia𝝀ja),\displaystyle\left.-\frac{\Lambda_{\pi}^{3}}{m_{\pi}^{3}}Y\left(\Lambda_{\pi}\boldsymbol{r}_{ij}\right)\right]\left(\boldsymbol{\sigma}_{i}\cdot\boldsymbol{\sigma}_{j}\right)\sum_{a=1}^{3}\left(\boldsymbol{\lambda}_{i}^{a}\cdot\boldsymbol{\lambda}_{j}^{a}\right), (10)
VK(𝒓ij)=\displaystyle V_{K}\left(\boldsymbol{r}_{ij}\right)= gch24πmK212mimjΛK2ΛK2mK2mK[Y(mK𝒓ij)\displaystyle\frac{g_{ch}^{2}}{4\pi}\frac{m_{K}^{2}}{12m_{i}m_{j}}\frac{\Lambda_{K}^{2}}{\Lambda_{K}^{2}-m_{K}^{2}}m_{K}\left[Y\left(m_{K}\boldsymbol{r}_{ij}\right)\right.
ΛK3mK3Y(ΛK𝒓ij)](𝝈i𝝈j)a=47(𝝀ia𝝀ja),\displaystyle\left.-\frac{\Lambda_{K}^{3}}{m_{K}^{3}}Y\left(\Lambda_{K}\boldsymbol{r}_{ij}\right)\right]\left(\boldsymbol{\sigma}_{i}\cdot\boldsymbol{\sigma}_{j}\right)\sum_{a=4}^{7}\left(\boldsymbol{\lambda}_{i}^{a}\cdot\boldsymbol{\lambda}_{j}^{a}\right), (11)
Vη(𝒓ij)=\displaystyle V_{\eta}\left(\boldsymbol{r}_{ij}\right)= gch24πmη212mimjΛη2Λη2mη2mη[Y(mη𝒓ij)\displaystyle\frac{g_{ch}^{2}}{4\pi}\frac{m_{\eta}^{2}}{12m_{i}m_{j}}\frac{\Lambda_{\eta}^{2}}{\Lambda_{\eta}^{2}-m_{\eta}^{2}}m_{\eta}\left[Y\left(m_{\eta}\boldsymbol{r}_{ij}\right)\right.
Λη3mη3Y(Λη𝒓ij)](𝝈i𝝈j)[cosθp(𝝀i8𝝀j8)\displaystyle\left.-\frac{\Lambda_{\eta}^{3}}{m_{\eta}^{3}}Y\left(\Lambda_{\eta}\boldsymbol{r}_{ij}\right)\right]\left(\boldsymbol{\sigma}_{i}\cdot\boldsymbol{\sigma}_{j}\right)\left[\cos\theta_{p}\left(\boldsymbol{\lambda}_{i}^{8}\cdot\boldsymbol{\lambda}_{j}^{8}\right)\right.
sinθp(𝝀i0𝝀j0)],\displaystyle\left.-\sin\theta_{p}\left(\boldsymbol{\lambda}_{i}^{0}\cdot\boldsymbol{\lambda}_{j}^{0}\right)\right], (12)

where Y(x)=ex/xY(x)=e^{-x}/x is the standard Yukawa function. The physical η\eta meson is considered by introducing the angle θp\theta_{p} instead of the octet one. The 𝝀a\boldsymbol{\lambda}^{a} are the SU(3) flavor Gell-Mann matrices. The values of mπm_{\pi}, mkm_{k} and mηm_{\eta} are the masses of the SU(3) Goldstone bosons, which adopt the experimental values ParticleDataGroup:2020ssz . The chiral coupling constant gchg_{ch}, is determined from the πNN\pi NN coupling constant through

gch24π\displaystyle\frac{g_{ch}^{2}}{4\pi} =(35)2gπNN24πmu,d2mN2.\displaystyle=\left(\frac{3}{5}\right)^{2}\frac{g_{\pi NN}^{2}}{4\pi}\frac{m_{u,d}^{2}}{m_{N}^{2}}. (13)

Assuming that flavor SU(3) is an exact symmetry, it will only be broken by the different mass of the strange quark. The other symbols in the above expressions have their usual meanings. All the parameters shown in Table 1 are fixed by masses of the ground baryons and mesons. Table 2 shows the masses of the baryons and mesons used in this work.

In the QDCSM, quark delocalization was introduced to enlarge the model variational space to take into account the mutual distortion or the internal excitations of nucleons in the course of interaction. It is realized by specifying the single particle orbital wave function of the QDCSM as a linear combination of left and right Gaussians, the single particle orbital wave functions used in the ordinary quark cluster model

ψα(𝑺𝒊,ϵ)\displaystyle\psi_{\alpha}(\boldsymbol{S_{i}},\epsilon) =\displaystyle= (ϕα(𝑺𝒊)+ϵϕα(𝑺𝒊))/N(ϵ),\displaystyle\left(\phi_{\alpha}(\boldsymbol{S_{i}})+\epsilon\phi_{\alpha}(-\boldsymbol{S_{i}})\right)/N(\epsilon),
ψβ(𝑺𝒊,ϵ)\displaystyle\psi_{\beta}(-\boldsymbol{S_{i}},\epsilon) =\displaystyle= (ϕβ(𝑺𝒊)+ϵϕβ(𝑺𝒊))/N(ϵ),\displaystyle\left(\phi_{\beta}(-\boldsymbol{S_{i}})+\epsilon\phi_{\beta}(\boldsymbol{S_{i}})\right)/N(\epsilon),
N(Si,ϵ)\displaystyle N(S_{i},\epsilon) =\displaystyle= 1+ϵ2+2ϵeSi2/4b2.\displaystyle\sqrt{1+\epsilon^{2}+2\epsilon e^{-S_{i}^{2}/4b^{2}}}. (14)

It is worth noting that the mixing parameter ϵ\epsilon is not an adjusted one but determined variationally by the dynamics of the multi-quark system itself. In this way, the multi-quark system chooses its favorable configuration in the interacting process. This mechanism has been used to explain the cross-over transition between hadron phase and quark-gluon plasma phase Xu .

In addition, the dynamical calculation is carried out using the resonating group method and the generating coordinates method. The details of the two methods can be seen in Appendix A, and the way of constructing wave functions are presented in Appendix B.

Table 1: Model parameters used in this work: mπ=0.7m_{\pi}=0.7 fm-1, mK=2.51m_{K}=2.51 fm-1, mη=2.77m_{\eta}=2.77 fm-1, Λπ=4.2\Lambda_{\pi}=4.2 fm-1, ΛK=5.2\Lambda_{K}=5.2 fm-1, Λη=5.2\Lambda_{\eta}=5.2 fm-1, gch2/(4π)g_{ch}^{2}/(4\pi)=0.54.
    bb   mqm_{q}    mcm_{c}    V0qqV_{0_{qq}}    V0qq¯V_{0_{q\bar{q}}}    aca_{c}
(fm) (MeV) (MeV) (fm-2) (fm-2)  (MeV fm-2)
0.518 313 1788 -1.288 -0.743 58.03
αsqs\alpha_{s_{qs}} αsqc\alpha_{s_{qc}} αssc\alpha_{s_{sc}} αsqq¯\alpha_{s_{q\bar{q}}} αssq¯\alpha_{s_{s\bar{q}}} αscq¯\alpha_{s_{c\bar{q}}}
0.524 0.467 0.351 1.491 1.423 1.200
Table 2: The masses (in MeV) of the baryons and mesons. Experimental values are taken from the Particle Data Group (PDG) ParticleDataGroup:2020ssz .
    Hadron      I(JP)I(J^{P})       MExpM_{Exp}     MTheoM_{Theo}
NN 1/2(1/2+)1/2(1/2^{+}) 939 939
Δ\Delta 3/2(3/2+)3/2(3/2^{+}) 1232 1232
Σc\Sigma_{c} 1(1/2+)1(1/2^{+}) 2455 2465
Σc\Sigma^{*}_{c} 1(3/2+)1(3/2^{+}) 2490 2518
Λc\Lambda_{c} 0(1/2+)0(1/2^{+}) 2286 2286
Ξ\Xi 1/2(1/2+)1/2(1/2^{+}) 1318 1375
Ξ\Xi^{*} 1/2(3/2+)1/2(3/2^{+}) 1536 1496
Ξc\Xi_{c} 1/2(1/2+)1/2(1/2^{+}) 2467 2551
Ξc\Xi_{c}^{\prime} 1/2(1/2+)1/2(1/2^{+}) 2577 2621
Ξc\Xi_{c}^{*} 1/2(3/2+)1/2(3/2^{+}) 2645 2638
Ωc\Omega_{c} 0(1/2+)0(1/2^{+}) 2695 2785
Ωc\Omega_{c}^{*} 0(3/2+)0(3/2^{+}) 2766 2796
π\pi 1(0)1(0^{-}) 139 139
ρ\rho 1(1)1(1^{-}) 770 770
ω\omega 0(1)0(1^{-}) 782 722
K¯\bar{K} 1/2(0)1/2(0^{-}) 495 495
K¯\bar{K}^{*} 1/2(1)1/2(1^{-}) 892 814
DD 1/2(0)1/2(0^{-}) 1869 1869
DD^{*} 1/2(1)1/2(1^{-}) 2007 1952

III The results and discussions

In this work, we investigate the SS-wave sscq¯qssc\bar{q}q pentaquark systems in the framework of QDCSM with resonating group method. The quantum numbers of the pentaquark system are I=0I=0, JP=1/2,3/2J^{P}=1/2^{-},3/2^{-} and 5/25/2^{-}. Three structures qssq¯cqss-\bar{q}c, qscq¯sqsc-\bar{q}s and sscq¯qssc-\bar{q}q, as well as the coupling of these structures are taken into consideration. To find out if there exists any bound state, we carry out a dynamic bound-state calculation. The scattering process is also studied to obtain the genuine resonance state. The introduction of the bound state calculation and scattering process can be seen in Appendix A. Moreover, the calculation of root mean square (RMS) of cluster spacing is helpful to explore the structure of the bound state or resonance state on the one hand, and to further estimate whether the observed states are resonance state or scattering state on the other hand.

The single-channel results of different systems are listed in Tables 3, 5 and 7, respectively. The first column headed with Structure incluedes qssq¯cqss-\bar{q}c, qscq¯sqsc-\bar{q}s and sscq¯qssc-\bar{q}q three kinds. The second and third columns, headed with χfi\chi^{f_{i}} and χσj\chi^{\sigma_{j}}, denote the way how wave functions constructed, which can be seen in Appendix B. The forth column headed with Channel gives the physical channels involved in the present work. The fifth column headed with EthTheoE_{th}^{Theo} refers to the theoretical value of non-interacting baryon-meson threshold. The sixth column headed with EscE_{sc} shows the energy of each single channel. The values of binding energies EBE_{B}= EscEthTheoE_{sc}-E_{th}^{Theo} are listed in the eighth column only if EB<0E_{B}<0 MeV. Finally, the experimental thresholds EthExpE_{th}^{Exp} (the sum of the experimental masses of the corresponding baryon and meson) along with corrected energies E=EthExp+EBE^{\prime}=E_{th}^{Exp}+E_{B} are given in last two columns.

As for coupled-channel, the results are listed in the Tables 4, 6 and 8, respectively. The first column represents the structures involved in the channel coupling and the second column is the theoretical value of the lowest threshold. The third column headed with EccE_{cc} shows the energy of coupled-channel. The definitions of EBE_{B}, EthExpE_{th}^{Exp} and EE^{\prime} in coupled-channel calculation are similar to their definitions in single-channel calculation.

III.1 JP=12J^{P}=\frac{1}{2}^{-} sector

First of all, an intuitive analysis can be based on the results of single-channel calculation, which is shown in the Table 3. Except for the Ωcω\Omega_{c}\omega and Ωcω\Omega_{c}^{*}\omega, the energies of other single-channels are all higher than the corresponding thresholds. The binding energies of the Ωcω\Omega_{c}\omega and Ωcω\Omega_{c}^{*}\omega are -3 MeV and -4 MeV, respectively. Since that different channels of the system are influenced by each other, so it is unavoidable to take into account the channel coupling effect.

Table 3: The single-channel energies of the sscq¯qssc\bar{q}q pentaquark system with JP=12J^{P}=\frac{1}{2}^{-} (unit: MeV).
   Structure     χfi\chi^{f_{i}}       χσj\chi^{\sigma_{j}}  Channel       EthTheoE_{th}^{Theo}     EscE_{sc}      EBE_{B}      EthExpE_{th}^{Exp}      EE^{\prime}
qssq¯cqss-\bar{q}c i=2i=2 j=1j=1 ΞD\Xi D 3235 3238 ub 3187 3190
i=2i=2 j=2j=2 ΞD\Xi D^{*} 3319 3321 ub 3325 3327
i=2i=2 j=3j=3 ΞD\Xi^{*}D^{*} 3441 3447 ub 3543 3549
qscq¯sqsc-\bar{q}s i=2i=2 j=1j=1 ΞcK¯\Xi^{\prime}_{c}\bar{K} 3130 3137 ub 3072 3079
i=2i=2 j=1j=1 ΞcK¯\Xi_{c}\bar{K} 3060 3066 ub 2962 2968
i=2i=2 j=2j=2 ΞcK¯\Xi^{\prime}_{c}\bar{K}^{*} 3449 3454 ub 3469 3574
i=2i=2 j=2j=2 ΞcK¯\Xi_{c}\bar{K}^{*} 3379 3386 ub 3359 3366
i=2i=2 j=3j=3 ΞcK¯\Xi^{*}_{c}\bar{K}^{*} 3466 3472 ub 3537 3543
sscq¯qssc-\bar{q}q i=1i=1 j=2j=2 Ωcω\Omega_{c}\omega 3548 3545 -3 3477 3474
i=1i=1 j=3j=3 Ωcω\Omega_{c}^{*}\omega 3558 3554 -4 3548 3544

In order to better understand channel coupling, we first couple the channels with the same spatial structure, and then coupled the channels with different spatial structures. By solving the Schrodinger equation with channel coupling, we can obtain a series of eigenvalues theoretically. Only the lowest energy is presented in Table 4, because whether the system can form a bound state depends on whether the lowest energy is below the lowest threshold. After coupling the channels with the same spatial structure, the loweset energiges of qssq¯cqss-\bar{q}c and qscq¯sqsc-\bar{q}s systems are still higher than their respective thresholds. Besides, the sscq¯qssc-\bar{q}q system forms a bound state with the binding energy of 3 MeV.

Further, we couple the channels with two different spatial structures, qssq¯cqss-\bar{q}c and sscq¯qssc-\bar{q}q, and then add the third spatial structure sscq¯qssc-\bar{q}q into the coupling. The result shows that the coupling of qssq¯cqss-\bar{q}c and sscq¯qssc-\bar{q}q depresses the lowest energy and makes it 5 MeV below the threshold ΞD\Xi D. After an overall coupling of all channels, the lowest energy of the system is still higher than the lowest threshold of channel ΞcK¯\Xi_{c}\bar{K}, indicating that the JP=1/2J^{P}=1/2^{-} sscq¯qssc\bar{q}q pentaquark system does not form a genuine bound state.

Table 4: The coupled-channel energies of the sscq¯qssc\bar{q}q pentaquark system with JP=12J^{P}=\frac{1}{2}^{-} (unit: MeV).
    Coupled-structure        EthTheoE_{th}^{Theo} (Channel)       EccE_{cc}        EBE_{B}       EthExpE_{th}^{Exp}      EE^{\prime}
qssq¯cqss-\bar{q}c 3235 (ΞD\Xi D) 3237 ub 3187 3190
qscq¯sqsc-\bar{q}s 3060 (ΞcK¯\Xi_{c}\bar{K}) 3065 ub 2962 2967
sscq¯qssc-\bar{q}q 3548 (Ωcω\Omega_{c}\omega) 3545 -3 3477 3474
qssq¯c,sscq¯qqss-\bar{q}c,~{}ssc-\bar{q}q 3235 (ΞD\Xi D) 3230 -5 3187 3192
qssq¯c,qscq¯s,sscq¯qqss-\bar{q}c,~{}qsc-\bar{q}s,~{}ssc-\bar{q}q 3060 (ΞcK¯\Xi_{c}\bar{K}) 3064 ub 2962 2966

According to the results above, some quasi-bound states are obtained in the single-channel calculation and structure coupling. By coupling to open channels, these states can decay to the corresponding open channels and may become resonance states. Yet it is not excluded that these states become scattered states under the coupling effect of open channels and closed channels. So to determine whether resonance states would exist, we continue to study the scattering phase shifts of possible open channels in the QDCSM. The resonance masses and the decay widths of the resonance states are also calculated. The current calculation applies only to the decay of SS-wave open channels.

First, in order to determine whether ΞD\Xi D forms a resonance state, we study the scattering process of open channels ΞcK¯\Xi_{c}\bar{K} and ΞcK¯\Xi_{c}^{\prime}\bar{K}, because the two channels have lower thresholds than the energy of the ΞD\Xi D state. The phase shifts of ΞcK¯\Xi_{c}\bar{K} and ΞcK¯\Xi_{c}^{\prime}\bar{K} are shown in Fig. 1 and Fig. 2, respectively. It is obvious that both phase shifts show a sharp increase around the corresponding resonance mass, which indicates that the ΞD\Xi D state becomes a resonance state in both ΞcK¯\Xi_{c}\bar{K} and ΞcK¯\Xi_{c}^{\prime}\bar{K} scattering process. The resonance mass, corrected mass and the decay width are summarized as follows:

InΞcK¯channel:MresTheo\displaystyle\text{In}~{}\Xi_{c}\bar{K}~{}\text{channel}:~{}~{}~{}~{}M_{res}^{Theo} =3230MeV,\displaystyle=3230~{}\mathrm{MeV},
Mres\displaystyle M_{res}^{\prime} =3182MeV,\displaystyle=3182~{}\mathrm{MeV},
Γres\displaystyle\Gamma_{res} =8.4MeV,\displaystyle=8.4~{}\mathrm{MeV},
InΞcK¯channel:MresTheo\displaystyle\text{In}~{}\Xi_{c}^{\prime}\bar{K}~{}\text{channel}:~{}~{}~{}~{}M_{res}^{Theo} =3221MeV,\displaystyle=3221~{}\mathrm{MeV},
Mres\displaystyle M_{res}^{\prime} =3174MeV,\displaystyle=3174~{}\mathrm{MeV},
Γres\displaystyle\Gamma_{res} =33.6MeV.\displaystyle=33.6~{}\mathrm{MeV}.
Refer to caption
Figure 1: The phase shift of the open channel ΞcK¯\Xi_{c}\bar{K} with JP=12J^{P}=\frac{1}{2}^{-}.
Refer to caption
Figure 2: The phase shift of the open channel ΞcK¯\Xi_{c}^{\prime}\bar{K} with JP=12J^{P}=\frac{1}{2}^{-}.

Thus, a resonance state dominated by ΞD\Xi D with JP=1/2J^{P}=1/2^{-} in the decay channel ΞcK¯\Xi_{c}\bar{K} and ΞcK¯\Xi_{c}^{\prime}\bar{K}, with the corrected resonance mass 3174\sim3182 MeV and decay width 42 MeV, is confirmed. This is consistent with the newly reported Ωc(3185)\Omega_{c}(3185), the mass and decay width of which are 3185.1±1.70.9+7.4±0.23185.1\pm 1.7_{-0.9}^{+7.4}\pm 0.2 MeV and 50±720+1050\pm 7_{-20}^{+10} MeV, respectively. Therefore, in our quark model calculation, the Ωc(3185)\Omega_{c}(3185) can be well interpreted as a ΞD\Xi D resonance state with JP=1/2J^{P}=1/2^{-}. In addition, one may be curious about the cusps around 50 MeV and 250 MeV in the Fig. 1. They are caused by the thresholds of the corresponding single channels and the similar situation can also be found in Fig. 2.

In order to investigate the structure of this ΞD\Xi D resonance, we further calculate its RMS. It is worth noting that, the scattering state has no real RMS since the relative motion wave functions of the scattered states are non-integrable in the infinite space. If we calculate the RMS of a scattering state in a limited space, we can only obtain a value that increases with the expansion of computing space. Although the wave function of a resonance state is also non-integrable, we can calculate the RMS of the main component of the resonance state, whose wave function is integrable. In this way, we can calculate the RMS of various states to identify the nature of these states by keep expanding the computing space. According to the numerical result, the RMS of the resonance state ΞD\Xi D is 1.9 fm, indicating that it is likely to be a molecular state.

Ωcω\Omega_{c}\omega, Ωcω\Omega_{c}^{*}\omega and their coupling also form quasi-bound states in the previous calculations. The energies of the Ωcω\Omega_{c}\omega and Ωcω\Omega_{c}^{*}\omega single channels are about 485\sim495 MeV above the threshold of ΞcK¯\Xi_{c}\bar{K} and 415\sim425 MeV above the threshold of ΞcK¯\Xi_{c}^{\prime}\bar{K}. However, in Fig. 1 and Fig. 2, the sharp increase structure of phase shift representing the resonance state, does not appear around the energies of Ωcω\Omega_{c}\omega and Ωcω\Omega_{c}^{*}\omega channels. Besides, it is still possible that Ωcω\Omega_{c}\omega and Ωcω\Omega_{c}^{*}\omega decay to other open channels than ΞcK¯\Xi_{c}\bar{K} or ΞcK¯\Xi_{c}^{\prime}\bar{K} channels.

Therefore, we also calculate the phase shifts of other different open channels with channel coupling, which are shown in Fig. 3. The ranges of incident energy for different open channels are determined to fit the energy of Ωcω\Omega_{c}^{*}\omega, which is the highest energy of the system. As a result, the ranges of incident energy for different open channels are not the same in Fig. 3. After considering the different decay channels, no resonance state of Ωcω\Omega_{c}\omega or Ωcω\Omega_{c}^{*}\omega is found. This can be explained by the effect of channel coupling, which should be fully considered. As listed in the Table 4, the energy of qssq¯cqss-\bar{q}c structure coupling is above the corresponding threshold ΞD\Xi D. Nevertheless, the energy of qssq¯cqss-\bar{q}c structure is pushed below the threshold ΞD\Xi D, after being coupled to the sscq¯qssc-\bar{q}q structure. As a result, the energy of the previous quasi-bound state Ωcω\Omega_{c}\omega is pushed above the corresponding threshold by a reaction, which causes the narrow resonance state to disappear after coupling with the qssq¯cqss-\bar{q}c structure. The same thing happens in the phase shift of the open channel ΞcK¯\Xi_{c}^{\prime}\bar{K}. Therefore, the narrow resonance state we just discussed is not a genuine resonance state.

Refer to caption
Figure 3: The phase shifts of different open channels with JP=12J^{P}=\frac{1}{2}^{-}.

III.2 JP=32J^{P}=\frac{3}{2}^{-} sector

The single-channel energies of sscq¯qssc\bar{q}q system with JP=3/2J^{P}=3/2^{-} are listed in the Table 5. Two bound states are obtained in the Ωcω\Omega_{c}\omega and Ωcω\Omega^{*}_{c}\omega channel, while the energies of other channels are all above the corresponding thresholds. The binding energies of the Ωcω\Omega_{c}\omega and Ωcω\Omega^{*}_{c}\omega state are -2 MeV and -4 MeV, respectively.

Table 5: The single-channel energies of the sscq¯qssc\bar{q}q pentaquark system with JP=32J^{P}=\frac{3}{2}^{-} (unit: MeV).
   Structure     χfi\chi^{f_{i}}       χσj\chi^{\sigma_{j}}  Channel       EthTheoE_{th}^{Theo}     EscE_{sc}      EBE_{B}      EthExpE_{th}^{Exp}      EE^{\prime}
qssq¯cqss-\bar{q}c i=2i=2 j=4j=4 ΞD\Xi D^{*} 3319 3323 ub 3325 3329
i=2i=2 j=5j=5 ΞD\Xi^{*}D 3357 3362 ub 3405 3410
i=2i=2 j=6j=6 ΞD\Xi^{*}D^{*} 3441 3446 ub 3543 3548
qscq¯sqsc-\bar{q}s i=2i=2 j=4j=4 ΞcK¯\Xi^{\prime}_{c}\bar{K}^{*} 3449 3457 ub 3469 3477
i=2i=2 j=4j=4 ΞcK¯\Xi_{c}\bar{K}^{*} 3379 3386 ub 3359 3366
i=2i=2 j=5j=5 ΞcK¯\Xi_{c}^{*}\bar{K} 3147 3153 ub 3140 3146
i=2i=2 j=6j=6 ΞcK¯\Xi^{*}_{c}\bar{K}^{*} 3466 3472 ub 3537 3543
sscq¯qssc-\bar{q}q i=1i=1 j=4j=4 Ωcω\Omega_{c}\omega 3548 3546 -2 3477 3475
i=1i=1 j=6j=6 Ωcω\Omega_{c}^{*}\omega 3558 3554 -4 3548 3544

For the sscq¯qssc\bar{q}q system with JP=3/2J^{P}=3/2^{-}, channel coupling of various structures is also considered, which is listed in Table 6. Similar to the previous section with JP=1/2J^{P}=1/2^{-}, we first carry out the channel coupling with the same spatial structure. Single structure coupling qssq¯cqss-\bar{q}c and qscq¯sqsc-\bar{q}s are all unbound according to the numerical results. In addition, the sscq¯qssc-\bar{q}q structure coupling slightly depresses the energy of Ωcω\Omega_{c}\omega, although it is not numerically significant.

Table 6: The coupled-channel energies of the sscq¯qssc\bar{q}q pentaquark system with JP=32J^{P}=\frac{3}{2}^{-} (unit: MeV).
    Coupled-structure        EthTheoE_{th}^{Theo} (Channel)       EccE_{cc}        EBE_{B}       EthExpE_{th}^{Exp}      EE^{\prime}
qssq¯cqss-\bar{q}c 3319 (ΞD\Xi D^{*}) 3322 ub 3325 3328
qscq¯sqsc-\bar{q}s 3147 (ΞcK¯\Xi_{c}^{*}\bar{K}) 3150 ub 3140 3143
sscq¯qssc-\bar{q}q 3548 (Ωcω\Omega_{c}\omega) 3546 -2 3477 3475
qssq¯c,sscq¯qqss-\bar{q}c,~{}ssc-\bar{q}q 3319 (ΞD\Xi D^{*}) 3321 ub 3325 3327
qssq¯c,qscq¯s,sscq¯qqss-\bar{q}c,~{}qsc-\bar{q}s,~{}ssc-\bar{q}q 3147 (ΞcK¯\Xi_{c}^{*}\bar{K}) 3145 -2 3140 3138

After calculating two different structure coupling, we continue to add the third structure into the coupling. As one can see, after coupling all three structures, the lowest energy of the whole system is 2 MeV lower than the energy of the threshold ΞcK¯\Xi_{c}^{*}\bar{K}. Since the ΞcK¯\Xi_{c}^{*}\bar{K} is the lowest threshold of the sscq¯qssc\bar{q}q system with JP=3/2J^{P}=3/2^{-}, a stable bound state is obtained and its corrected mass is 3138 MeV. Besides, the bound state conclusion can also be confirmed in the scattering process. In Fig 4, as the incident energy approaches 0 MeV, the phase shift of the open channel ΞcK¯\Xi_{c}^{*}\bar{K} tends to 180 degrees, which conforms to the characteristics of a bound state. According to the further calculation, this state is dominated by ΞcK¯\Xi_{c}^{*}\bar{K} and the RMS calculation is 1.8 fm. The mass is close to the mass of Ωc(3120)\Omega_{c}(3120), which is 3119.1±0.3±0.9±0.33119.1\pm 0.3\pm 0.9\pm 0.3 MeV. In addition, the bound state ΞcK¯\Xi_{c}^{*}\bar{K} can still decay to some DD-wave channels, such as ΞcK¯\Xi_{c}\bar{K}, through the tensor force coupling, which is the next step of our research in the future. However, the decay width of this type of decay is usually very narrow, according to our previous research Chen:2011zzb . This corresponds to the decay width of Ωc(3120)\Omega_{c}(3120), which is 0.60±0.630.60\pm 0.63 MeV. In this case, Ωc(3120)\Omega_{c}(3120) could be interpreted as a ΞcK¯\Xi_{c}^{*}\bar{K} molecular state with JP=3/2J^{P}=3/2^{-} in present calculation.

Refer to caption
Figure 4: The phase shift of the open channel ΞcK¯\Xi_{c}^{*}\bar{K} with JP=32J^{P}=\frac{3}{2}^{-}.

Furthermore, the scattering process is studied to examine whether Ωcω\Omega_{c}\omega and Ωcω\Omega_{c}^{*}\omega can form resonance states. The phase shifts of different SS-wave open channels with channel coupling are shown in Fig 4 and Fig 5. However, the phase shifts of all open channels do not show a sharp increase around the energies of the quasi-bound state Ωcω\Omega_{c}\omega or Ωcω\Omega_{c}^{*}\omega. The result shows that the Ωcω\Omega_{c}\omega and Ωcω\Omega_{c}^{*}\omega become scattering states rather than resonance states after being coupled to other channels.

Refer to caption
Figure 5: The phase shifts of different open channels with JP=32J^{P}=\frac{3}{2}^{-}.

III.3 JP=52J^{P}=\frac{5}{2}^{-} sector

For the sscq¯qssc\bar{q}q system with JP=5/2J^{P}=5/2^{-}, there is three channels ΞD\Xi^{*}D^{*}, ΞcK¯\Xi_{c}^{*}\bar{K}^{*} and Ωcω\Omega_{c}^{*}\omega. The energies obtained in the single-channel calculation are presented in Table 7. The Ωcω\Omega_{c}^{*}\omega forms a bound state, which will be examined later to see if it is a resonance state.

Table 7: The single-channel energies of the sscq¯qssc\bar{q}q pentaquark system with JP=52J^{P}=\frac{5}{2}^{-} (unit: MeV).
   Structure     χfi\chi^{f_{i}}       χσj\chi^{\sigma_{j}}  Channel       EthTheoE_{th}^{Theo}     EscE_{sc}      EBE_{B}      EthExpE_{th}^{Exp}      EE^{\prime}
qssq¯cqss-\bar{q}c i=2i=2 j=7j=7 ΞD\Xi^{*}D^{*} 3441 3444 ub 3543 3546
qscq¯sqsc-\bar{q}s i=2i=2 j=7j=7 ΞcK¯\Xi^{*}_{c}\bar{K}^{*} 3466 3474 ub 3537 3545
sscq¯qssc-\bar{q}q i=1i=1 j=7j=7 Ωcω\Omega_{c}^{*}\omega 3558 3555 -3 3548 3545

As is shown in Table 8, since each structure has only one channel, the channel coupling of one structure is not needed here. After coupling the qssq¯cqss-\bar{q}c and the sscq¯qssc-\bar{q}q structure, the energy obtained is still above the threshold. Besides, after coupling all three channels, a bound state is formed. The corrected mass of this state is 3527 MeV and the value of RMS of this state is 1.7 fm. According to the RMS of this state, it tends to be molecular structure and its main composition is ΞcK¯\Xi^{*}_{c}\bar{K}^{*}. Therefore, a JP=5/2J^{P}=5/2^{-} sscq¯qssc\bar{q}q pentaquark state is predicted here, whose mass is 3527 MeV. Although it can decay to some DD-wave channels, such as ΞD\Xi D and ΞcK¯\Xi_{c}^{\prime}\bar{K}, it is still possible to be a resonance, which is worthy of experimental search and research.

Table 8: The coupled-channel energies of the sscq¯qssc\bar{q}q pentaquark system with JP=52J^{P}=\frac{5}{2}^{-} (unit: MeV).
    Coupled-structure        EthTheoE_{th}^{Theo} (Channel)       EccE_{cc}        EBE_{B}       EthExpE_{th}^{Exp}      EE^{\prime}
qssq¯s,sscq¯qqss-\bar{q}s,~{}ssc-\bar{q}q 3466 (ΞcK¯\Xi^{*}_{c}\bar{K}^{*}) 3469 ub 3537 3540
qssq¯c,qscq¯s,sscq¯qqss-\bar{q}c,~{}qsc-\bar{q}s,~{}ssc-\bar{q}q 3441 (ΞD\Xi^{*}D^{*}) 3430 -11 3537 3527

The scattering process is studied to examine whether Ωcω\Omega_{c}^{*}\omega could be a resonance state. The phase shifts of the SS-wave open channels ΞD\Xi^{*}D^{*} and ΞcK¯\Xi_{c}^{*}\bar{K}^{*} are shown in Fig 6. However, there is no sharp increase structure of phase shift around the energy of the Ωcω\Omega_{c}^{*}\omega single channel. This indicates that the Ωcω\Omega_{c}^{*}\omega does not form a resonance state, but rather a scattering state. In addition, when the incident energy approaches zero, the behavior phase shift also confirms the existence of the bound state.

Refer to caption
Figure 6: The phase shifts of different open channels with JP=52J^{P}=\frac{5}{2}^{-}.

Considering that there have been a few theoretical works on the newly reported Ωc0(3185)\Omega_{c}^{0}(3185) and Ωc0(3327)\Omega_{c}^{0}(3327) states, we make a brief review here. For the Ωc0(3185)\Omega_{c}^{0}(3185) state, Refs. Yu:2023bxn ; Karliner:2023okv ; Jakhad:2023mni interpret it as a three-quark excited state. The quantum number assignment JP(nL)J^{P}~{}(nL) for the Ωc0(3185)\Omega_{c}^{0}(3185) state could be: JP=3/2+(2SJ^{P}=3/2^{+}~{}(2SYu:2023bxn ; Jakhad:2023mni and JP=1/2+(2SJ^{P}=1/2^{+}~{}(2SKarliner:2023okv . On the other hand, the explanation of the Ωc0(3185)\Omega_{c}^{0}(3185) as a ΞD\Xi D molecular state with JP=1/2J^{P}=1/2^{-} can be found in Refs. Yan:2023ttx ; Xin:2023gkf .

As for the Ωc0(3327)\Omega_{c}^{0}(3327) state, the three-quark excitation explanation can be found in Refs. Luo:2023sra ; Yu:2023bxn ; Wang:2023wii ; Karliner:2023okv ; Jakhad:2023mni . The quantum number assignment for the Ωc0(3327)\Omega_{c}^{0}(3327) state could be: JP=5/2+(1DJ^{P}=5/2^{+}~{}(1DLuo:2023sra , JP=3/2+(1DJ^{P}=3/2^{+}~{}(1DYu:2023bxn ; Jakhad:2023mni , JP=1/2+,3/2+J^{P}=1/2^{+},3/2^{+} or 5/2+5/2^{+} (DD-wave) Wang:2023wii and JP=3/2+(2SJ^{P}=3/2^{+}~{}(2SKarliner:2023okv . Refs. Feng:2023ixl ; Yan:2023ttx ; Xin:2023gkf also support the Ωc0(3327)\Omega_{c}^{0}(3327) state to be interpreted as a ΞD\Xi D^{*} molecular state with JP=3/2J^{P}=3/2^{-}. The conclusions of the studies on the two newly discovered Ωc\Omega_{c} states from different theoretical groups are summarized in Table 9. According to our calculation, the Ωc0(3185)\Omega_{c}^{0}(3185) can be well interpreted as a ΞD\Xi D molecular state with JP=1/2J^{P}=1/2^{-}, whereas Ωc(3327)\Omega_{c}(3327) is not found within the multi-quark framework. Therefore, we propose to explain Ωc(3327)\Omega_{c}(3327) from the perspective of the three-quark excitation, and at the same time, the investigation of these states in an unquenched picture could be beneficial.

Table 9: The conclusions of the studies on the two newly discovered Ωc\Omega_{c} states.
Ωc0(3185)\Omega_{c}^{0}(3185) Ωc0(3327)\Omega_{c}^{0}(3327)
 Ref three-quark  molecular  three-quark  molecular
Ref. Luo:2023sra \checkmark
Ref. Yu:2023bxn \checkmark \checkmark
Ref. Wang:2023wii \checkmark
Ref. Feng:2023ixl \checkmark \checkmark
Ref. Karliner:2023okv \checkmark \checkmark
Ref. Yan:2023ttx \checkmark \checkmark
Ref. Jakhad:2023mni \checkmark \checkmark
Ref. Xin:2023gkf \checkmark \checkmark
This Work \checkmark

In addition to exploring the pentaquark explanation of the two newly discovered Ωc\Omega_{c} states, the study of the sscq¯qssc\bar{q}q system has also led to some other results. In this work, three states are obtained, including one resonance state and two bound states. We have summarized the obtained states in Table 10. Considering that the resonance energy of ΞD\Xi D is obtained in the scattering phase shift, the resonance energies obtained in different open channels are not exactly the same. Therefore, the mass of ΞD\Xi D state has a range. One may notice that there is no value for the decay widths of ΞcK¯\Xi_{c}^{*}\bar{K} and ΞcK¯\Xi^{*}_{c}\bar{K}^{*} in Table 10. Since ΞcK¯\Xi_{c}^{*}\bar{K} and ΞcK¯\Xi^{*}_{c}\bar{K}^{*} cannot decay to SS-wave channels, the decay process of the two states to DD-wave channels will be studied in our future works. In addition, the decay width to the DD-wave channels is usually narrow according to our previous research Chen:2011zzb .

Table 10: The states obtained in this work.
 JPJ^{P}   Main Composition   Corrected Mass  decay width
1/21/2^{-} ΞD\Xi D 3174\sim3182 MeV 42 MeV
3/23/2^{-} ΞcK¯\Xi_{c}^{*}\bar{K} 3138 MeV
5/25/2^{-} ΞcK¯\Xi^{*}_{c}\bar{K}^{*} 3527 MeV

IV Summary

In this work, we investigate the excited Ωc\Omega_{c} states from the pentaquark perspective. The SS-wave pentaquark systems sscq¯qssc\bar{q}q with II = 0, JP=1/2J^{P}=1/2^{-}, 3/23/2^{-} and 5/25/2^{-} are studied in the framework of the QDCSM. The dynamic bound state calculation is carried out to search for bound states in the sscq¯qssc\bar{q}q systems. Both the single-channel and the coupled-channel calculations are performed to explore the effect of the multi-channel coupling. Meanwhile, the study of the scattering process of the open channels is carried out to confirm possible resonance states. We also calculate the RMS of cluster spacing to further study the structure of the obtained states.

The numerical results show that a ΞD\Xi D resonance state with JP=1/2J^{P}=1/2^{-} and two bound states with JP=3/2J^{P}=3/2^{-} and 5/25/2^{-} are obtained. The mass and the decay width of the ΞD\Xi D resonance state is 3174\sim3182 MeV and 42 MeV, respectively, which are close to the reported Ωc0(3185)\Omega_{c}^{0}(3185). The RMS of the ΞD\Xi D supports the molecular structure of this state. So the recently reported Ωc0(3185)\Omega_{c}^{0}(3185) can be explained as the molecular ΞD\Xi D state with JP=1/2J^{P}=1/2^{-}. It would be very anticipated to see the next experimental steps to determine the spin and parity of it. A bound molecular state we obtained is ΞcK¯\Xi_{c}^{*}\bar{K} with JP=3/2J^{P}=3/2^{-} and a mass of 3138 MeV, which can be used to interpret the reported Ωc0(3120)\Omega_{c}^{0}(3120). Besides, a new molecular state ΞcK¯\Xi^{*}_{c}\bar{K}^{*} with JP=5/2J^{P}=5/2^{-} and a mass of 3527 MeV is predicted to exist, which is worth searching in the future. However, other reported Ωc\Omega_{c} states cannot be well described in the framework of pentaquark systems in present work. The three-quark excitation, or the unquenched picture may be a good explanation, which is worth further exploration.

In addition, the present study shows that the channel coupling effect has to be considered in describing the multi-quark system. Especially for the possible resonance state, the coupling to the open channels will shift the mass of the resonance state, or even destroy it. The Ωcω\Omega_{c}\omega and Ωcω\Omega_{c}^{*}\omega bound states are obtained in the single-channel calculation. However, the energies of Ωcω\Omega_{c}\omega and Ωcω\Omega_{c}^{*}\omega are elevated by coupling to open channels, leading to the disappearance of these two states. Based on this, we would like to emphasize the importance of channel coupling effect in studying exotic hadron states.

Acknowledgements.
This work is supported partly by the National Science Foundation of China under Contract Nos. 11675080, 11775118, 11535005 and 11865019.

Appendix A: Resonating group method for bound-state and scattering process

The resonating group method (RGM) RGM1 ; RGM and generating coordinates method GCM1 ; GCM2 are used to carry out a dynamical calculation. The main feature of the RGM for two-cluster systems is that it assumes that two clusters are frozen inside, and only considers the relative motion between the two clusters. So the conventional ansatz for the two-cluster wave functions is

ψ5q=𝒜[[ϕBϕM][σ]ISχ(𝑹)]J,\psi_{5q}={\cal A}\left[[\phi_{B}\phi_{M}]^{[\sigma]IS}\otimes\chi(\boldsymbol{R})\right]^{J}, (A1)

where the symbol 𝒜{\cal A} is the anti-symmetrization operator, and 𝒜=1P14P24P34{\cal A}=1-P_{14}-P_{24}-P_{34}. [σ]=[222][\sigma]=[222] gives the total color symmetry and all other symbols have their usual meanings. ϕB\phi_{B} and ϕM\phi_{M} are the q3q^{3} and q¯q\bar{q}q cluster wave functions, respectively. From the variational principle, after variation with respect to the relative motion wave function χ(𝐑)=LχL(𝐑)\chi(\boldsymbol{\mathbf{R}})=\sum_{L}\chi_{L}(\boldsymbol{\mathbf{R}}), one obtains the RGM equation:

H(𝐑,𝐑)χ(𝐑)𝑑𝐑=EN(𝐑,𝐑)χ(𝐑)𝑑𝐑,\int H(\boldsymbol{\mathbf{R}},\boldsymbol{\mathbf{R^{\prime}}})\chi(\boldsymbol{\mathbf{R^{\prime}}})d\boldsymbol{\mathbf{R^{\prime}}}=E\int N(\boldsymbol{\mathbf{R}},\boldsymbol{\mathbf{R^{\prime}}})\chi(\boldsymbol{\mathbf{R^{\prime}}})d\boldsymbol{\mathbf{R^{\prime}}}, (A2)

where H(𝐑,𝐑)H(\boldsymbol{\mathbf{R}},\boldsymbol{\mathbf{R^{\prime}}}) and N(𝐑,𝐑)N(\boldsymbol{\mathbf{R}},\boldsymbol{\mathbf{R^{\prime}}}) are Hamiltonian and norm kernels. By solving the RGM equation, we can get the energies EE and the wave functions. In fact, it is not convenient to work with the RGM expressions. Then, we expand the relative motion wave function χ(𝐑)\chi(\boldsymbol{\mathbf{R}}) by using a set of gaussians with different centers

χ(𝑹)=\displaystyle\chi(\boldsymbol{R})= 14π(65πb2)3/4i,L,MCi,L\displaystyle\frac{1}{\sqrt{4\pi}}\left(\frac{6}{5\pi b^{2}}\right)^{3/4}\sum_{i,L,M}C_{i,L}
exp[35b2(𝑹𝑺i)2]YL,M(𝑺^i)dΩ𝑺i\displaystyle\cdot\int\exp\left[-\frac{3}{5b^{2}}\left(\boldsymbol{R}-\boldsymbol{S}_{i}\right)^{2}\right]Y_{L,M}\left(\hat{\boldsymbol{S}}_{i}\right)d\Omega_{\boldsymbol{S}_{i}} (A3)

where LL is the orbital angular momentum between two clusters, and 𝑺𝒊\boldsymbol{S_{i}}, i=1,2,,ni=1,2,...,n are the generator coordinates, which are introduced to expand the relative motion wave function. By including the center of mass motion:

ϕC(𝑹C)=(5πb2)3/4e5𝑹C22b2,\phi_{C}(\boldsymbol{R}_{C})=(\frac{5}{\pi b^{2}})^{3/4}e^{-\frac{5\boldsymbol{R}^{2}_{C}}{2b^{2}}}, (A4)

the ansatz Eq. (A1) can be rewritten as

ψ5q=\displaystyle\psi_{5q}= 𝒜i,LCi,LdΩ𝑺i4πα=13ϕα(𝑺i)β=45ϕβ(𝑺i)\displaystyle\mathcal{A}\sum_{i,L}C_{i,L}\int\frac{d\Omega_{\boldsymbol{S}_{i}}}{\sqrt{4\pi}}\prod_{\alpha=1}^{3}\phi_{\alpha}\left(\boldsymbol{S}_{i}\right)\prod_{\beta=4}^{5}\phi_{\beta}\left(-\boldsymbol{S}_{i}\right)
[[χI1S1(B)χI2S2(M)]ISYLM(𝑺^i)]J\displaystyle\cdot\left[\left[\chi_{I_{1}S_{1}}\left(B\right)\chi_{I_{2}S_{2}}\left(M\right)\right]^{IS}Y_{LM}\left(\hat{\boldsymbol{S}}_{i}\right)\right]^{J}
[χc(B)χc(M)][σ],\displaystyle\cdot\left[\chi_{c}\left(B\right)\chi_{c}\left(M\right)\right]^{[\sigma]}, (A5)

where χI1S1\chi_{I_{1}S_{1}} and χI2S2\chi_{I_{2}S_{2}} are the product of the flavor and spin wave functions, and χc\chi_{c} is the color wave function. These will be shown in detail later. ϕα(𝑺i)\phi_{\alpha}(\boldsymbol{S}_{i}) and ϕβ(𝑺i)\phi_{\beta}(-\boldsymbol{S}_{i}) are the single-particle orbital wave functions with different reference centers:

ϕα(𝑺i)\displaystyle\phi_{\alpha}\left(\boldsymbol{S}_{i}\right) =(1πb2)3/4e12b2(rα25𝑺i)2,\displaystyle=\left(\frac{1}{\pi b^{2}}\right)^{3/4}e^{-\frac{1}{2b^{2}}\left(r_{\alpha}-\frac{2}{5}\boldsymbol{S}_{i}\right)^{2}},
ϕβ(𝑺i)\displaystyle\phi_{\beta}\left(\boldsymbol{-S}_{i}\right) =(1πb2)3/4e12b2(rβ+35𝑺i)2.\displaystyle=\left(\frac{1}{\pi b^{2}}\right)^{3/4}e^{-\frac{1}{2b^{2}}\left(r_{\beta}+\frac{3}{5}\boldsymbol{S}_{i}\right)^{2}}. (A6)

With the reformulated ansatz Eq. (A5), the RGM Eq. (A2) becomes an algebraic eigenvalue equation:

jCjHi,j=EjCjNi,j,\sum_{j}C_{j}H_{i,j}=E\sum_{j}C_{j}N_{i,j}, (A7)

where Hi,jH_{i,j} and Ni,jN_{i,j} are the Hamiltonian matrix elements and overlaps, respectively. By solving the generalized eigen problem, we can obtain the energy and the corresponding wave functions of the pentaquark systems.

For a scattering problem, the relative wave function is expanded as

χL(𝐑)\displaystyle\chi_{L}(\mathbf{R}) =iCiu~L(𝑹,𝑺i)𝑹YL,M(𝑹^),\displaystyle=\sum_{i}C_{i}\frac{\tilde{u}_{L}\left(\boldsymbol{R},\boldsymbol{S}_{i}\right)}{\boldsymbol{R}}Y_{L,M}(\hat{\boldsymbol{R}}), (A8)

with

u~L(𝑹,𝑺i)\displaystyle\tilde{u}_{L}\left(\boldsymbol{R},\boldsymbol{S}_{i}\right) ={αiuL(𝑹,𝑺i),𝑹𝑹C[hL(𝒌,𝑹)sihL+(𝒌,𝑹)]RAB,𝑹𝑹C\displaystyle=\left\{\begin{array}[]{ll}\alpha_{i}u_{L}\left(\boldsymbol{R},\boldsymbol{S}_{i}\right),&\boldsymbol{R}\leq\boldsymbol{R}_{C}\\ {\left[h_{L}^{-}(\boldsymbol{k},\boldsymbol{R})-s_{i}h_{L}^{+}(\boldsymbol{k},\boldsymbol{R})\right]R_{AB},}&\boldsymbol{R}\geq\boldsymbol{R}_{C}\end{array}\right. (A11)

where

uL(𝑹,𝑺i)=\displaystyle u_{L}\left(\boldsymbol{R},\boldsymbol{S}_{i}\right)= 4π(65πb2)3/4𝐑e35b2(𝑹𝑺i)2\displaystyle\sqrt{4\pi}\left(\frac{6}{5\pi b^{2}}\right)^{3/4}\mathbf{R}e^{-\frac{3}{5b^{2}}\left(\boldsymbol{R}-\boldsymbol{S}_{i}\right)^{2}}
iLjL(i65b2Si).\displaystyle\cdot i^{L}j_{L}\left(-i\frac{6}{5b^{2}}S_{i}\right). (A12)

hL±h^{\pm}_{L} is the LL-th spherical Hankel functions, kk is the momentum of the relative motion with k=2μEiek=\sqrt{2\mu E_{ie}}, μ\mu is the reduced mass of two hadrons of the open channel, EieE_{ie} is the incident energy of the relevant open channels, which can be written as Eie=EtotalEthE_{ie}=E_{total}-E_{th} where EtotalE_{total} denotes the total energy and EthE_{th} represents the threshold of open channel. RCR_{C} is a cutoff radius beyond which all the strong interaction can be disregarded. Besides, αi\alpha_{i} and sis_{i} are complex parameters that are determined by the smoothness condition at R=RCR=R_{C} and CiC_{i} satisfy iCi=1\sum_{i}C_{i}=1. After performing the variational procedure, a LL-th partial-wave equationfor the scattering problem can be deduced as

jijLCj\displaystyle\sum_{j}\mathcal{L}_{ij}^{L}C_{j} =iL(i=0,1,,n1),\displaystyle=\mathcal{M}_{i}^{L}(i=0,1,\ldots,n-1), (A13)

with

ijL\displaystyle\mathcal{L}_{ij}^{L} =𝒦ijL𝒦i0L𝒦0jL+𝒦00L,\displaystyle=\mathcal{K}_{ij}^{L}-\mathcal{K}_{i0}^{L}-\mathcal{K}_{0j}^{L}+\mathcal{K}_{00}^{L},
iL\displaystyle\mathcal{M}_{i}^{L} =𝒦00L𝒦i0L,\displaystyle=\mathcal{K}_{00}^{L}-\mathcal{K}_{i0}^{L}, (A14)

and

𝒦ijL=\displaystyle\mathcal{K}_{ij}^{L}= ϕ^Aϕ^Bu~L(𝑹,𝑺i)𝑹YL,M(𝑹)|HE|\displaystyle\left\langle\hat{\phi}_{A}\hat{\phi}_{B}\frac{\tilde{u}_{L}\left(\boldsymbol{R}^{\prime},\boldsymbol{S}_{i}\right)}{\boldsymbol{R}^{\prime}}Y_{L,M}\left(\boldsymbol{R}^{\prime}\right)|H-E|\right.
𝒜[ϕ^Aϕ^Bu~L(𝑹,𝑺j)𝑹YL,M(𝑹)].\displaystyle\left.\cdot\mathcal{A}\left[\hat{\phi}_{A}\hat{\phi}_{B}\frac{\tilde{u}_{L}\left(\boldsymbol{R},\boldsymbol{S}_{j}\right)}{\boldsymbol{R}}Y_{L,M}(\boldsymbol{R})\right]\right\rangle. (A15)

By solving Eq. (A11), we can obtain the expansion coefficients CiC_{i}, then the SS-matrix element SLS_{L} and the phase shifts δL\delta_{L} are given by

SL\displaystyle S_{L} =e2iδL=iCisi.\displaystyle=e^{2i\delta_{L}}=\sum_{i}C_{i}s_{i}. (A16)

Resonances are unstable particles usually observed as bell-shaped structures in scattering cross sections of their open channels. For a simple narrow resonance, its fundamental properties correspond to the visible cross-section features: mass MM is at the peak position, and decay width Γ\Gamma is the half-width of the bell shape. The cross-section σL\sigma_{L} and the scattering phase shifts δL\delta_{L} have relations:

σL\displaystyle\sigma_{L} =4πk2(2L+1)sin2δL.\displaystyle=\frac{4\pi}{k^{2}}(2L+1)\sin^{2}\delta_{L}. (A17)

Therefore, resonances can also usually be observed in the scattering phase shift, where the phase shift of the scattering channels rises through π2\frac{\pi}{2} at a resonance mass. We can obtain a resonance mass at the position of the phase shift of π2\frac{\pi}{2}. The decay width is the mass difference between the phase shift of 3π4\frac{3\pi}{4} and π4\frac{\pi}{4}.

Appendix B: Constructing wave functions

For the spin wave function, we first construct the spin wave functions of the q3q^{3} and q¯q\bar{q}q clusters with SU(2) algebra, and then the total spin wave function of the pentaquark system is obtained by coupling the spin wave functions of two clusters together. The spin wave functions of the q3q^{3} and q¯q\bar{q}q clusters are Eq. (A16) and Eq. (A17), respectively

χ32,32σ(3)\displaystyle\chi_{\frac{3}{2},\frac{3}{2}}^{\sigma}(3) =ααα,\displaystyle=\alpha\alpha\alpha,
χ32,12σ(3)\displaystyle\chi_{\frac{3}{2},\frac{1}{2}}^{\sigma}(3) =ααβ,\displaystyle=\alpha\alpha\beta,
χ32,12σ(3)\displaystyle\chi_{\frac{3}{2},-\frac{1}{2}}^{\sigma}(3) =αββ,\displaystyle=\alpha\beta\beta,
χ32,32σ(3)\displaystyle\chi_{\frac{3}{2},-\frac{3}{2}}^{\sigma}(3) =βββ,\displaystyle=\beta\beta\beta,
χ12,12σ1(3)\displaystyle\chi_{\frac{1}{2},\frac{1}{2}}^{\sigma 1}(3) =16(2ααβαβαβαα),\displaystyle=\frac{1}{\sqrt{6}}(2\alpha\alpha\beta-\alpha\beta\alpha-\beta\alpha\alpha),
χ12,12σ2(3)\displaystyle\chi_{\frac{1}{2},\frac{1}{2}}^{\sigma 2}(3) =12(αβαβαα),\displaystyle=\frac{1}{\sqrt{2}}(\alpha\beta\alpha-\beta\alpha\alpha),
χ12,12σ1(3)\displaystyle\chi_{\frac{1}{2},-\frac{1}{2}}^{\sigma 1}(3) =16(αββ+βαβ2ββα),\displaystyle=\frac{1}{\sqrt{6}}(\alpha\beta\beta+\beta\alpha\beta-2\beta\beta\alpha),
χ12,12σ2(3)\displaystyle\chi_{\frac{1}{2},-\frac{1}{2}}^{\sigma 2}(3) =12(αβββαβ).\displaystyle=\frac{1}{\sqrt{2}}(\alpha\beta\beta-\beta\alpha\beta). (A18)
χ1,1σ(2)\displaystyle\chi_{1,1}^{\sigma}(2) =αα,\displaystyle=\alpha\alpha,
χ1,0σ(2)\displaystyle\chi_{1,0}^{\sigma}(2) =12(αβ+βα),\displaystyle=\frac{1}{\sqrt{2}}(\alpha\beta+\beta\alpha),
χ1,1σ(2)\displaystyle\chi_{1,-1}^{\sigma}(2) =ββ,\displaystyle=\beta\beta,
χ0,0σ(2)\displaystyle\chi_{0,0}^{\sigma}(2) =12(αββα).\displaystyle=\frac{1}{\sqrt{2}}(\alpha\beta-\beta\alpha). (A19)

For pentaquark system, the total spin quantum number can be 1/2, 3/2 or 5/2. Considering that the Hamiltonian does not contain an interaction which can distinguish the third component of the spin quantum number, so the wave function of each spin quantum number can be written as follows

χ12,12σ1(5)=\displaystyle\chi_{\frac{1}{2},\frac{1}{2}}^{\sigma 1}(5)= χ12,12σ(3)χ0,0σ(2),\displaystyle\chi_{\frac{1}{2},\frac{1}{2}}^{\sigma}(3)\chi_{0,0}^{\sigma}(2),
χ12,12σ2(5)=\displaystyle\chi_{\frac{1}{2},\frac{1}{2}}^{\sigma 2}(5)= 23χ12,12σ(3)χ1,1σ(2)+13χ12,12σ(3)χ1,0σ(2),\displaystyle-\sqrt{\frac{2}{3}}\chi_{\frac{1}{2},-\frac{1}{2}}^{\sigma}(3)\chi_{1,1}^{\sigma}(2)+\sqrt{\frac{1}{3}}\chi_{\frac{1}{2},\frac{1}{2}}^{\sigma}(3)\chi_{1,0}^{\sigma}(2),
χ12,12σ3(5)=\displaystyle\chi_{\frac{1}{2},\frac{1}{2}}^{\sigma 3}(5)= 16χ32,12σ(3)χ1,1σ(2)13χ32,12σ(3)χ1,0σ(2)\displaystyle\sqrt{\frac{1}{6}}\chi_{\frac{3}{2},-\frac{1}{2}}^{\sigma}(3)\chi_{1,1}^{\sigma}(2)-\sqrt{\frac{1}{3}}\chi_{\frac{3}{2},\frac{1}{2}}^{\sigma}(3)\chi_{1,0}^{\sigma}(2)
+12χ32,32σ(3)χ1,1σ(2),\displaystyle+\sqrt{\frac{1}{2}}\chi_{\frac{3}{2},\frac{3}{2}}^{\sigma}(3)\chi_{1,-1}^{\sigma}(2),
χ32,32σ4(5)=\displaystyle\chi_{\frac{3}{2},\frac{3}{2}}^{\sigma 4}(5)= χ12,12σ(3)χ1,1σ(2),\displaystyle\chi_{\frac{1}{2},\frac{1}{2}}^{\sigma}(3)\chi_{1,1}^{\sigma}(2),
χ32,32σ5(5)=\displaystyle\chi_{\frac{3}{2},\frac{3}{2}}^{\sigma 5}(5)= χ32,32σ(3)χ0,0σ(2),\displaystyle\chi_{\frac{3}{2},\frac{3}{2}}^{\sigma}(3)\chi_{0,0}^{\sigma}(2),
χ32,32σ6(5)=\displaystyle\chi_{\frac{3}{2},\frac{3}{2}}^{\sigma 6}(5)= 35χ32,32σ(3)χ1,0σ(2)25χ32,12σ(3)χ1,1σ(2),\displaystyle\sqrt{\frac{3}{5}}\chi_{\frac{3}{2},\frac{3}{2}}^{\sigma}(3)\chi_{1,0}^{\sigma}(2)-\sqrt{\frac{2}{5}}\chi_{\frac{3}{2},\frac{1}{2}}^{\sigma}(3)\chi_{1,1}^{\sigma}(2),
χ52,52σ7(5)=\displaystyle\chi_{\frac{5}{2},\frac{5}{2}}^{\sigma 7}(5)= χ32,32σ(3)χ1,1σ(2).\displaystyle\chi_{\frac{3}{2},\frac{3}{2}}^{\sigma}(3)\chi_{1,1}^{\sigma}(2). (A20)

Similar to constructing spin wave functions, we first write down the flavor wave functions of the q3q^{3} clusters, which are

χ0,0f1(3)\displaystyle\chi_{0,0}^{f1}(3) =16(2sscscscss),\displaystyle=\frac{1}{\sqrt{6}}(2ssc-scs-css),
χ0,0f2(3)\displaystyle\chi_{0,0}^{f2}(3) =12(scscss),\displaystyle=\frac{1}{\sqrt{2}}(scs-css),
χ0,0f3(3)\displaystyle\chi_{0,0}^{f3}(3) =13(ssc+scs+css),\displaystyle=\frac{1}{\sqrt{3}}(ssc+scs+css),
χ12,12f1(3)\displaystyle\chi_{\frac{1}{2},\frac{1}{2}}^{f1}(3) =16(uss+sus2ssu),\displaystyle=\sqrt{\frac{1}{6}}(uss+sus-2ssu),
χ12,12f2(3)\displaystyle\chi_{\frac{1}{2},\frac{1}{2}}^{f2}(3) =12(usssus),\displaystyle=\sqrt{\frac{1}{2}}(uss-sus),
χ12,12f3(3)\displaystyle\chi_{\frac{1}{2},\frac{1}{2}}^{f3}(3) =13(uss+sus+ssu),\displaystyle=\sqrt{\frac{1}{3}}(uss+sus+ssu),
χ12,12f4(3)\displaystyle\chi_{\frac{1}{2},\frac{1}{2}}^{f4}(3) =112(2usc+2succsuucscusscu),\displaystyle=\sqrt{\frac{1}{12}}(2usc+2suc-csu-ucs-cus-scu),
χ12,12f5(3)\displaystyle\chi_{\frac{1}{2},\frac{1}{2}}^{f5}(3) =14(ucs+scucsucus),\displaystyle=\sqrt{\frac{1}{4}}(ucs+scu-csu-cus),
χ12,12f6(3)\displaystyle\chi_{\frac{1}{2},\frac{1}{2}}^{f6}(3) =14(ucs+cuscsuscu),\displaystyle=\sqrt{\frac{1}{4}}(ucs+cus-csu-scu),
χ12,12f7(3)\displaystyle\chi_{\frac{1}{2},\frac{1}{2}}^{f7}(3) =112(2usc2suc+csu+ucscusscu),\displaystyle=\sqrt{\frac{1}{12}}(2usc-2suc+csu+ucs-cus-scu),
χ12,12f8(3)\displaystyle\chi_{\frac{1}{2},\frac{1}{2}}^{f8}(3) =16(usc+suc+csu+ucs+cus+scu),\displaystyle=\sqrt{\frac{1}{6}}(usc+suc+csu+ucs+cus+scu),
χ12,12f1(3)\displaystyle\chi_{\frac{1}{2},-\frac{1}{2}}^{f1}(3) =16(dss+sds2ssd),\displaystyle=\sqrt{\frac{1}{6}}(dss+sds-2ssd),
χ12,12f2(3)\displaystyle\chi_{\frac{1}{2},-\frac{1}{2}}^{f2}(3) =12(dsssds),\displaystyle=\sqrt{\frac{1}{2}}(dss-sds),
χ12,12f3(3)\displaystyle\chi_{\frac{1}{2},-\frac{1}{2}}^{f3}(3) =13(dss+sds+ssd),\displaystyle=\sqrt{\frac{1}{3}}(dss+sds+ssd),
χ12,12f4(3)\displaystyle\chi_{\frac{1}{2},-\frac{1}{2}}^{f4}(3) =112(2dsc+2sdccsddcscdsscd),\displaystyle=\sqrt{\frac{1}{12}}(2dsc+2sdc-csd-dcs-cds-scd),
χ12,12f5(3)\displaystyle\chi_{\frac{1}{2},-\frac{1}{2}}^{f5}(3) =14(dcs+scdcsdcds),\displaystyle=\sqrt{\frac{1}{4}}(dcs+scd-csd-cds),
χ12,12f6(3)\displaystyle\chi_{\frac{1}{2},-\frac{1}{2}}^{f6}(3) =14(dcs+cdscsdscd),\displaystyle=\sqrt{\frac{1}{4}}(dcs+cds-csd-scd),
χ12,12f7(3)\displaystyle\chi_{\frac{1}{2},-\frac{1}{2}}^{f7}(3) =112(2dsc2sdc+csd+dcscdsscd),\displaystyle=\sqrt{\frac{1}{12}}(2dsc-2sdc+csd+dcs-cds-scd),
χ12,12f8(3)\displaystyle\chi_{\frac{1}{2},-\frac{1}{2}}^{f8}(3) =16(dsc+sdc+csd+dcs+cds+scd).\displaystyle=\sqrt{\frac{1}{6}}(dsc+sdc+csd+dcs+cds+scd).

Here, both the light and heavy quarks are considered as identical particles with the SU(4) extension. Then, the flavor wave functions of q¯q\bar{q}q clusters are

χ1,1f(2)\displaystyle\chi_{1,1}^{f}(2) =d¯u,\displaystyle=\bar{d}u,
χ1,0f(2)\displaystyle\chi_{1,0}^{f}(2) =12(d¯du¯u),\displaystyle=\sqrt{\frac{1}{2}}(\bar{d}d-\bar{u}u),
χ1,1f(2)\displaystyle\chi_{1,-1}^{f}(2) =u¯d,\displaystyle=-\bar{u}d,
χ0,0f(2)\displaystyle\chi_{0,0}^{f}(2) =12(d¯d+u¯u),\displaystyle=\sqrt{\frac{1}{2}}(\bar{d}d+\bar{u}u),
χ12,12f(2)\displaystyle\chi_{\frac{1}{2},\frac{1}{2}}^{f}(2) =d¯s,\displaystyle=\bar{d}s,
χ12,12f(2)\displaystyle\chi_{\frac{1}{2},-\frac{1}{2}}^{f}(2) =u¯s,\displaystyle=-\bar{u}s,
χ12,12f(2)\displaystyle\chi_{\frac{1}{2},\frac{1}{2}}^{f}(2) =d¯c,\displaystyle=\bar{d}c,
χ12,12f(2)\displaystyle\chi_{\frac{1}{2},-\frac{1}{2}}^{f}(2) =u¯c.\displaystyle=-\bar{u}c. (A22)

As for the flavor degree of freedom, the isospin II of pentaquark systems we investigated in this work is I=0I=0. The flavor wave functions of pentaquark systems can be expressed as

χ0,0f1(5)\displaystyle\chi_{0,0}^{f1}(5) =12χ12,12f(3)χ12,12f(2)12χ12,12f(3)χ12,12f(2),\displaystyle=\sqrt{\frac{1}{2}}\chi_{\frac{1}{2},\frac{1}{2}}^{f}(3)\chi_{\frac{1}{2},-\frac{1}{2}}^{f}(2)-\sqrt{\frac{1}{2}}\chi_{\frac{1}{2},-\frac{1}{2}}^{f}(3)\chi_{\frac{1}{2},\frac{1}{2}}^{f}(2),
χ0,0f2(5)\displaystyle\chi_{0,0}^{f2}(5) =χ0,0(3)χ0,0f(2).\displaystyle=\chi_{0,0}(3)\chi_{0,0}^{f}(2). (A23)

For the color-singlet channel (two clusters are color-singlet), the color wave function can be obtained by 111\otimes 1:

χc=\displaystyle\chi^{c}= 16(rgbrbg+gbrgrb+brgbgr)\displaystyle\frac{1}{\sqrt{6}}(rgb-rbg+gbr-grb+brg-bgr)
13(r¯r+g¯g+b¯b).\displaystyle\cdot\frac{1}{\sqrt{3}}(\bar{r}r+\bar{g}g+\bar{b}b). (A24)

Finally, we can acquire the total wave functions by combining the wave functions of the orbital, spin, flavor and color parts together according to the quantum numbers of the pentaquark systems.

References

  • (1) B. Knapp, W. Y. Lee, P. Leung, S. D. Smith, A. Wijangco, J. Knauer, D. Yount, J. Bronstein, R. Coleman and G. Gladding, et al. Phys. Rev. Lett. 37, 882 (1976).
  • (2) H. Albrecht et al. [ARGUS], Phys. Lett. B 317, 227 (1993).
  • (3) K. W. Edwards et al. [CLEO], Phys. Rev. Lett. 74, 3331 (1995).
  • (4) H. Albrecht et al. [ARGUS], Phys. Lett. B 402, 207 (1997).
  • (5) P. L. Frabetti et al. [E687], Phys. Rev. Lett. 72, 961 (1994).
  • (6) M. Artuso et al. [CLEO], Phys. Rev. Lett. 86, 4479 (2001).
  • (7) R. Aaij et al. [LHCb], JHEP 05, 030 (2017).
  • (8) B. Aubert et al. [BaBar], Phys. Rev. Lett. 98, 012001 (2007).
  • (9) J. Yelton et al. [Belle], Phys. Rev. D 104, 052003 (2021).
  • (10) S. H. Lee et al. [Belle], Phys. Rev. D 89, 091102 (2014).
  • (11) V. V. Ammosov, I. L. Vasilev, A. A. Ivanilov, P. V. Ivanov, V. I. Konyushko, V. M. Korablev, V. A. Korotkov, V. V. Makeev, A. G. Myagkov and A. Y. Polyarush, et al. JETP Lett. 58, 247 (1993).
  • (12) G. Brandenburg et al. [CLEO], Phys. Rev. Lett. 78, 2304 (1997).
  • (13) R. Mizuk et al. [Belle], Phys. Rev. Lett. 94, 122002 (2005).
  • (14) Y. B. Li et al. [Belle], Phys. Rev. Lett. 130, 031901 (2023).
  • (15) R. Aaij et al. [LHCb], Phys. Rev. D 102, 071101 (2020).
  • (16) S. Acharya et al. [ALICE], Phys. Rev. Lett. 127, 272001 (2021).
  • (17) J. Yelton et al. [Belle], Phys. Rev. D 94, 052011 (2016).
  • (18) C. P. Jessop et al. [CLEO], Phys. Rev. Lett. 82, 492 (1999).
  • (19) Y. Kato et al. [Belle], Phys. Rev. D 89, 052003 (2014).
  • (20) J. Yelton et al. [Belle], Phys. Rev. D 102, 071103 (2020).
  • (21) R. Aaij et al. [LHCb], Phys. Rev. Lett. 124, 222001 (2020).
  • (22) T. J. Moon et al. [Belle], Phys. Rev. D 103, L111101 (2021).
  • (23) Y. Kato et al. [Belle], Phys. Rev. D 94, 032002 (2016).
  • (24) Y. Li et al. [Belle], Phys. Rev. D 104, 052005 (2021).
  • (25) B. Aubert et al. [BaBar], Phys. Rev. Lett. 97, 232001 (2006).
  • (26) R. Aaij et al. [LHCb], Phys. Rev. D 104, L091102 (2021).
  • (27) J. Yelton et al. [Belle], Phys. Rev. D 97, 051102 (2018).
  • (28) R. Aaij et al. [LHCb], Phys. Rev. Lett. 118, 182001 (2017).
  • (29) H. X. Chen, W. Chen, X. Liu and S. L. Zhu, Phys. Rept. 639, 1 (2016).
  • (30) E. S. Swanson, Phys. Rept. 429, 243 (2006).
  • (31) M. B. Voloshin, Prog. Part. Nucl. Phys. 61, 455 (2008).
  • (32) A. Esposito, A. Pilloni and A. D. Polosa, Phys. Rept. 668, 1 (2017).
  • (33) R. Chen, X. Liu and S. L. Zhu, Nucl. Phys. A 954, 406 (2016).
  • (34) H. X. Huang, C. R. Deng, X. J. Liu, Y. Tan and J. L. Ping, Symmetry 15, 1298 (2023).
  • (35) R. F. Lebed, R. E. Mitchell and E. S. Swanson, Prog. Part. Nucl. Phys. 93, 143 (2017).
  • (36) F. K. Guo, C. Hanhart, U. G. Meißner, Q. Wang, Q. Zhao and B. S. Zou, Rev. Mod. Phys. 90, no.1, 015004 (2018).
  • (37) M. Padmanath and N. Mathur, Phys. Rev. Lett. 119, 042001 (2017).
  • (38) H. Bahtiyar, K. U. Can, G. Erkol, P. Gubler, M. Oka and T. T. Takahashi, Phys. Rev. D 102, n054513 (2020).
  • (39) S. S. Agaev, K. Azizi and H. Sundu, EPL 118, 61001 (2017).
  • (40) Z. G. Wang, Eur. Phys. J. C 77, 325 (2017).
  • (41) T. M. Aliev, S. Bilmis and M. Savci, Mod. Phys. Lett. A 35, 1950344 (2020).
  • (42) S. S. Agaev, K. Azizi and H. Sundu, Eur. Phys. J. C 77, 395 (2017).
  • (43) Z. G. Wang, X. N. Wei and Z. H. Yan, Eur. Phys. J. C 77, 832 (2017).
  • (44) H. X. Chen, Q. Mao, W. Chen, A. Hosaka, X. Liu and S. L. Zhu, Phys. Rev. D 95, 094008 (2017).
  • (45) T. M. Aliev, S. Bilmis and M. Savci, Adv. High Energy Phys. 2018, 3637824 (2018).
  • (46) H. Y. Cheng and C. W. Chiang, Phys. Rev. D 95, 094018 (2017).
  • (47) J. Oudichhya, K. Gandhi and A. K. Rai, Phys. Rev. D 103, 114030 (2021).
  • (48) J. Oudichhya and A. K. Rai, Eur. Phys. J. A 59, 123 (2023).
  • (49) G. Yang and J. Ping, Phys. Rev. D 97, 034023 (2018).
  • (50) K. L. Wang, L. Y. Xiao, X. H. Zhong and Q. Zhao, Rev. D 95, 116010 (2017).
  • (51) K. L. Wang, Y. X. Yao, X. H. Zhong and Q. Zhao, Phys. Rev. D 96, 116016 (2017).
  • (52) Y. X. Yao, K. L. Wang and X. H. Zhong, Phys. Rev. D 98, 076015 (2018).
  • (53) W. Wang and R. L. Zhu, Phys. Rev. D 96, 014024 (2017).
  • (54) A. Ali, L. Maiani, A. V. Borisov, I. Ahmed, M. Jamil Aslam, A. Y. Parkhomenko, A. D. Polosa and A. Rehman, Eur. Phys. J. C 78, (2018).
  • (55) B. Chen and X. Liu, Phys. Rev. D 96, 094015 (2017).
  • (56) Z. Zhao, D. D. Ye and A. Zhang, Phys. Rev. D 95, 114024 (2017).
  • (57) H. Garcia-Tecocoatzi, A. Giachino, J. Li, A. Ramirez-Morales and E. Santopinto, Phys. Rev. D 107, 034031 (2023).
  • (58) H. C. Kim, M. V. Polyakov and M. Praszałowicz, Phys. Rev. D 96, 014009 (2017).
  • (59) H. C. Kim, M. V. Polyakov, M. Praszalowicz and G. S. Yang, Phys. Rev. D 96, 094021 (2017).
  • (60) Y. Liu and I. Zahed, Phys. Rev. D 96, 056027 (2017).
  • (61) J. Sonnenschein and D. Weissman, Nucl. Phys. B 927, 368 (2018).
  • (62) E. Santopinto, A. Giachino, J. Ferretti, H. García-Tecocoatzi, M. A. Bedolla, R. Bijker and E. Ortiz-Pacheco, Eur. Phys. J. C 79, 1012 (2019).
  • (63) C. K. Chua, Phys. Rev. D 100, 034025 (2019).
  • (64) D. Jia, J. H. Pan and C. Q. Pang, Eur. Phys. J. C 81, 434 (2021).
  • (65) S. Q. Luo and X. Liu, Phys. Rev. D 107, 074041 (2023).
  • (66) P. Jakhad, J. Oudichhya, K. Gandhi and A. K. Rai, Phys. Rev. D 108, 014011 (2023).
  • (67) M. Karliner and J. L. Rosner, Phys. Rev. D 95, 114012 (2017).
  • (68) E. Ortiz-Pacheco, R. Bijker, A. Giachino and E. Santopinto, J. Phys. Conf. Ser. 1610, 012011 (2020).
  • (69) Z. G. Wang and J. X. Zhang, Eur. Phys. J. C 78, 503 (2018).
  • (70) H. J. Wang, Z. Y. Di and Z. G. Wang, Commun. Theor. Phys. 73, 035201 (2021).
  • (71) H. Huang, J. Ping and F. Wang, Phys. Rev. D 97, 034027 (2018).
  • (72) C. S. An and H. Chen, Phys. Rev. D 96, 034012 (2017).
  • (73) V. V. Anisovich, M. A. Matveev, J. Nyiri and A. N. Semenova, Mod. Phys. Lett. A 32, 1750154 (2017).
  • (74) J. Nieves, R. Pavao and L. Tolos, Eur. Phys. J. C 78, 114 (2018).
  • (75) M. Z. Liu, T. W. Wu, J. J. Xie, M. Pavon Valderrama and L. S. Geng, Phys. Rev. D 98, 014014 (2018).
  • (76) G. Montaña, À. Ramos and A. Feijoo, Springer Proc. Phys. 238, 729 (2020).
  • (77) G. Montaña, A. Feijoo and À. Ramos, Eur. Phys. J. A 54, 64 (2018).
  • (78) A. Ramos, A. Feijoo, Q. Llorens and G. Montaña, Few Body Syst. 61, 34 (2020).
  • (79) M. Praszałowicz and M. Kucab, Phys. Rev. D 107, 034011 (2023).
  • (80) V. R. Debastiani, J. M. Dias, W. H. Liang and E. Oset, Phys. Rev. D 97, 094035 (2018).
  • (81) V. R. Debastiani, J. M. Dias, W. H. Liang and E. Oset, Phys. Rev. D 98, 094022 (2018).
  • (82) C. Wang, L. L. Liu, X. W. Kang, X. H. Guo and R. W. Wang, Eur. Phys. J. C 78, 407 (2018).
  • (83) Y. Huang, C. j. Xiao, Q. F. Lü, R. Wang, J. He and L. Geng, Phys. Rev. D 97, 094013 (2018).
  • (84) J. T. Zhu, S. Y. Kong, L. Q. Song and J. He, Phys. Rev. D 105, 094036 (2022).
  • (85) R. Aaij et al. [LHCb].
  • (86) S. Q. Luo and X. Liu, Phys. Rev. D 107, 074041 (2023).
  • (87) G. L. Yu, Y. Meng, Z. Y. Li, Z. G. Wang and L. Jie, [arXiv:2302.11758 [hep-ph]].
  • (88) Z. G. Wang, F. Lu and Y. Liu, [arXiv:2303.13976 [hep-ph]].
  • (89) J. Feng, C. Cheng, F. Yang and Y. Huang, [arXiv:2303.17770 [hep-ph]].
  • (90) M. Karliner and J. L. Rosner, Phys. Rev. D 108, 014006 (2023).
  • (91) M. J. Yan, F. Z. Peng and M. Pavon Valderrama, [arXiv:2304.14855 [hep-ph]].
  • (92) P. Jakhad, J. Oudichhya, K. Gandhi and A. K. Rai, Phys. Rev. D 108, 014011 (2023).
  • (93) Q. Xin, X. S. Yang and Z. G. Wang, [arXiv:2307.08926 [hep-ph]].
  • (94) G. H. Wu, L. J. Teng, J. L. Ping, F. Wang and J. T. Goldman, Phys. Rev. C 53, 1161 (1996).
  • (95) J. L. Ping, F. Wang and J. T. Goldman, Nucl. Phys. A 657, 95 (1999).
  • (96) G. h. Wu, J. L. Ping, L. j. Teng, F. Wang and J. T. Goldman, Nucl. Phys. A 673, 279 (2000).
  • (97) H. R. Pang, J. L. Ping, F. Wang and J. T. Goldman, Phys. Rev. C 65, 014003 (2002).
  • (98) J. L. Ping, F. Wang and J. T. Goldman, Phys. Rev. C 65, 044003 (2002).
  • (99) L. Z. Chen, H. R. Pang, H. X. Huang, J. L. Ping and F. Wang, Phys. Rev. C 76, 014001 (2007).
  • (100) H. Huang, P. Xu, J. Ping and F. Wang, Phys. Rev. C 84, 064001 (2011).
  • (101) Y. Yan, X. Hu, Y. Wu, H. Huang, J. Ping and Y. Yang, Eur. Phys. J. C 83, 524 (2023).
  • (102) A. De Rujula, H. Georgi and S. L. Glashow, Phys. Rev. D 12, 147 (1975).
  • (103) N. Isgur and G. Karl, Phys. Rev. D 18, 4187 (1978).
  • (104) N. Isgur and G. Karl, Phys. Rev. D 19, 2653 (1979).
  • (105) N. Isgur and G. Karl, Phys. Rev. D 20, 1191 (1979).
  • (106) J. l. Ping, F. Wang and J. T. Goldman, Nucl. Phys. A 688, 871 (2001).
  • (107) J. L. Ping, H. X. Huang, H. R. Pang, F. Wang and C. W. Wong, Phys. Rev. C 79, 024001 (2009).
  • (108) M. Chen, H. X. Huang, J. L. Ping and F. Wang, Phys. Rev. C 83, 015202 (2011).
  • (109) H. X. Huang, C. R. Deng, J. L. Ping and F. Wang, Eur. Phys. J. C 76, 624 (2016).
  • (110) H. X. Huang and J. L. Ping, Phys. Rev. D 99, 014010 (2019).
  • (111) P. A. Zyla et al. [Particle Data Group], PTEP 2020, 083C01 (2020).
  • (112) M. M. Xu, M. Yu and L. S. Liu, Phys. Rev. Lett. 100, 092301 (2008).
  • (113) M. Chen, H. Huang, J. Ping and F. Wang, Phys. Rev. C 83, 015202 (2011).
  • (114) J. A. Wheeler, Phys. Rev. 52, 1083 (1937).
  • (115) M. Kamimura, Prog. Theor. Phys. Suppl. 62, 236 (1977).
  • (116) D. L. Hill and J. A. Wheeler, Phys. Rev. 89, 1102 (1953).
  • (117) J. J. Griffin and J. A. Wheeler, Phys. Rev. 108, 311 (1957).