This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Isoperimetric relations for inner parallel bodies

M. A. Hernández Cifre Departamento de Matemáticas, Universidad de Murcia, Campus de Espinardo, 30100-Murcia, Spain mhcifre@um.es  and  E. Saorín Gómez ALTA institute for Algebra, Geometry, Topology and their Applications, Universität Bremen, 28334-Bremen, Germany esaoring@uni-bremen.de
Abstract.

We analyze aspects of the behavior of the family of inner parallel bodies of a convex body for the isoperimetric quotient and deficit of arbitrary quermassintegrals. By means of technical boundary properties of the so-called form body of a convex body and similar constructions for inner parallel bodies, we point out an erroneous use of a relation between the latter bodies in two different works. We correct these results, limiting them to convex bodies having a very precise boundary structure.

Key words and phrases:
Inner parallel bodies, form body, isoperimetric quotient, isoperimetric deficit, extreme vector, quermassintegrals
2010 Mathematics Subject Classification:
Primary 52A20, 52A39; Secondary 52A40
This research is a result of the activity developed within the framework of the Programme in Support of Excellence Groups of the Región de Murcia, Spain, by Fundación Séneca, Science and Technology Agency of the Región de Murcia. The work is partially supported by MICINN/FEDER project PGC2018-097046-B-I00 and Fundación Séneca project 19901/GERM/15

1. Introduction

Inner parallel bodies of convex bodies have been object of recent studies with different flavors [6, 12, 13, 14, 15, 16, 17]. More classical existing literature on them (e.g. [1, 3, 4, 9, 10, 21]) along with its role in the proofs of fundamental results in the theory of convex bodies, make inner parallel bodies an essential object not only within classical Convex Geometry (see [22, Section 7.5]), but also in other related fields (see e.g. [7, 11, 20] and the references in [22, Note 3 for Section 3.1] and [6]).

In [6] and [16] the authors study the behavior of the isoperimetric quotient for the family of inner parallel bodies, and provide a lower bound for the perimeter of the inner parallel bodies of a convex body, respectively. However, in both articles they happen to make an erroneous use of the relation KKλ+|K|KλK\subseteq K_{\lambda}+\left|K\right|K_{\lambda}^{*} between the inner parallel bodies KλK_{\lambda} of a convex body, their form bodies KλK_{\lambda}^{*} and the original convex body KK (see (2.4) and Section 2 for the proper definitions). This relation, which holds, for example, under technical properties of the boundary of the involved convex bodies (see (2.3)), is, however, not true without further conditions. To the best of the authors’ knowledge, a full characterization of the conditions under which the above inclusion holds is not known.

The purpose of this paper is two-sided. On the one hand, we describe the error contained in the two mentioned references, providing with examples proving these have to be adjusted with further hypotheses in order to hold. On the other hand, we provide alternative proofs to those results under suitable restrictions of the boundaries of the involved convex bodies, and further, we extend the results concerning inner parallel bodies in [6] to a more general setting.

The paper is organized as follows. In Section 2 we introduce the notions and basic results, which are needed throughout the paper. In Section 3 we analyze the problems in the proof of the main result in [6], providing an example where the used methods do not hold. In Section 4 we obtain new results concerning the behavior of the isoperimetric quotient and deficit under assumptions on the boundary of the involved convex bodies. Finally in Section 5 we point out an error -of the same spirit of the one found in [6]- in one of the proofs of [16] and discuss it.

2. Background

Let 𝒦n\mathcal{K}^{n} be the set of all convex bodies, i.e., nonempty compact convex subsets of the Euclidean space n\mathbb{R}^{n}, and let 𝒦nn\mathcal{K}^{n}_{n} the subset of convex bodies having interior points. A convex body KK is called regular if all its boundary points are regular, i.e., the supporting hyperplane to KK at any boundary point is unique. Let Bn\mathrm{B}_{n} be the nn-dimensional Euclidean unit ball and 𝕊n1\mathbb{S}^{n-1} the corresponding unit sphere. The volume of a measurable set MnM\subset\mathbb{R}^{n}, i.e., its nn-dimensional Lebesgue measure, is denoted by vol(M)\mathrm{vol}(M), and the measure of its boundary, i.e., its surface area (also called perimeter), is represented by S(M)\mathrm{S}(M). Furthermore, the closure of MM is denoted by clM\mathop{\mathrm{cl}}\nolimits M. For K𝒦nK\in\mathcal{K}^{n} and u𝕊n1u\in\mathbb{S}^{n-1}, h(K,u)=sup{x,u:xK}h(K,u)=\sup\bigl{\{}\langle x,u\rangle:x\in K\bigr{\}} stands for the support function of KK (see e.g. [22, Section 1.7]).

The vectorial or Minkowski addition of two sets K,LnK,L\subset\mathbb{R}^{n} is given by

K+L={x+y:xK,yL},K+L=\{x+y:x\in K,\,y\in L\},

whereas the Minkowski difference of K,LnK,L\subset\mathbb{R}^{n} is given by

KL={xn:x+LK}.K\sim L=\{x\in\mathbb{R}^{n}\,:\,x+L\subseteq K\}.

We notice that (KL)+LK(K\sim L)+L\subseteq K, and the inequality may be strict.

Let K𝒦nK\in\mathcal{K}^{n} and E𝒦nnE\in\mathcal{K}^{n}_{n}. The inradius r(K;E)\mathrm{r}(K;E) of KK relative to EE is the radius of one of the largest dilations of EE which fits inside KK, i.e.,

r(K;E)=sup{r0:xn with x+rEK}.\mathrm{r}(K;E)=\sup\{r\geq 0:\exists\,x\in\mathbb{R}^{n}\text{ with }x+rE\subseteq K\}.

For r(K;E)λ0-\mathrm{r}(K;E)\leq\lambda\leq 0 the inner parallel body of KK at distance |λ|\left|\lambda\right| is the Minkowski difference of KK and |λ|E\left|\lambda\right|E, i.e.,

Kλ:=K|λ|E={xn:x+|λ|EK}𝒦n.K_{\lambda}:=K\sim\left|\lambda\right|E=\bigl{\{}x\in\mathbb{R}^{n}:x+\left|\lambda\right|E\subseteq K\bigr{\}}\in\mathcal{K}^{n}.

Notice that if E=BnE=B_{n}, then Kr(K;Bn)K_{-\mathrm{r}(K;\mathrm{B}_{n})} is the set of incenters of KK, which is usually called the kernel of KK, and its dimension is strictly less than nn (see [2, p. 59]). Equivalently (see [22, Section 3.1]), the inner parallel body KλK_{\lambda} of KK, r(K;E)λ0-\mathrm{r}(K;E)\leq\lambda\leq 0, can be defined using the support functions of KK and EE as

(2.1) Kλ={xn:x,uh(K,u)|λ|h(E,u),u𝕊n1}.K_{\lambda}=\bigl{\{}x\in\mathbb{R}^{n}:\langle x,u\rangle\leq h(K,u)-\left|\lambda\right|h(E,u),u\in\mathbb{S}^{n-1}\bigr{\}}.

A vector u𝕊n1u\in\mathbb{S}^{n-1} is a 0-extreme normal vector (or just extreme vector) of KK if it cannot be written as a linear combination of two linearly independent normal vectors at one and the same boundary point of KK. We denote by 𝒰(K)\mathcal{U}(K) the set of 0-extreme normal vectors of KK, which play a key role in the study of convex bodies. For instance, 𝒰(K)\mathcal{U}(K) is the smallest set one can use so that

(2.2) K={xn:x,uh(K,u),u𝒰(K)}K=\bigl{\{}x\in\mathbb{R}^{n}:\langle x,u\rangle\leq h(K,u),u\in\mathcal{U}(K)\bigr{\}}

(see e.g. [22, Corollary 1.4.5 or page 386]), and thus, the inner parallel bodies of KK can be expressed as (cf. (2.1))

Kλ={xn:x,uh(K,u)|λ|h(E,u),u𝒰(K)}K_{\lambda}=\bigl{\{}x\in\mathbb{R}^{n}:\langle x,u\rangle\leq h(K,u)-\left|\lambda\right|h(E,u),u\in\mathcal{U}(K)\bigr{\}}

for r(K;E)λ0-\mathrm{r}(K;E)\leq\lambda\leq 0.

The (relative) form body of a convex body K𝒦nnK\in\mathcal{K}^{n}_{n} with respect to E𝒦nnE\in\mathcal{K}^{n}_{n}, denoted by KK^{*}, is defined as (see e.g. [3])

K={xn:x,uh(E,u),u𝒰(K)}.K^{*}=\bigl{\{}x\in\mathbb{R}^{n}:\langle x,u\rangle\leq h(E,u),u\in\mathcal{U}(K)\bigr{\}}.

We notice that KK^{*} strongly depends on the body EE. Nevertheless, and for the sake of simplicity, we omit EE in the notation.

The form body of K𝒦nnK\in\mathcal{K}^{n}_{n} (with respect to an arbitrary E𝒦nn)E\in\mathcal{K}^{n}_{n}) is always a tangential body of EE. We recall that a convex body K𝒦nK\in\mathcal{K}^{n} containing a convex body E𝒦nE\in\mathcal{K}^{n}, is called a tangential body of EE, if through each boundary point of KK there exists a support hyperplane to KK that also supports EE. We notice that if KK is a tangential body of EE, then r(K;E)=1\mathrm{r}(K;E)=1.

There is also a very close connection between inner parallel bodies and tangential bodies. The next result enlighten it.

Theorem 2.1.

[22, Lemma 3.1.14] Let K,E𝒦nnK,E\in\mathcal{K}^{n}_{n} and let r(K;E)<λ<0-\mathrm{r}(K;E)<\lambda<0. Then KλK_{\lambda} is homothetic to KK if and only if KK is homothetic to a tangential body of EE.

Remark 2.2.

The proof of Theorem 2.1 shows that if KK is a tangential body of EE then Kλ=(1+λ)KK_{\lambda}=(1+\lambda)K for 1<λ0-1<\lambda\leq 0.

In the following, we collect some standard properties of inner parallel bodies, form bodies and extreme vectors, together with other relations through the Minkowski sum, which will be needed later on. There exist further relations, in a stronger form, through the so-called Riemann-Minkowski integral, for which we refer to [5] and [21, Lemma 3.2].

Lemma 2.3.

Let K,L𝒦nK,L\in\mathcal{K}^{n} and E𝒦nnE\in\mathcal{K}^{n}_{n}. The following properties hold:

  1. (i)

    𝒰(Kλ)𝒰(K)\mathcal{U}(K_{\lambda})\subseteq\mathcal{U}(K) for r(K;E)<λ0-\mathrm{r}(K;E)<\lambda\leq 0 (see [21, Lemma 4.5]).

  2. (ii)

    If K𝒦nnK\in\mathcal{K}^{n}_{n} and EE is regular then cl𝒰(K)=𝒰(K)\mathop{\mathrm{cl}}\nolimits\mathcal{U}(K)=\mathcal{U}(K^{*}) (see [21, Lemma 2.6] and [12, Lemma 2.1]).

  3. (iii)

    𝒰(K)𝒰(L)𝒰(K+L)=𝒰(K+μL)\mathcal{U}(K)\cup\mathcal{U}(L)\subseteq\mathcal{U}(K+L)=\mathcal{U}(K+\mu L) for μ>0\mu>0. The inclusion may be strict (see [21, Lemma 2.4] and [14, Lemma 3.1]).

  4. (iv)

    Kλ+|λ|EKK_{\lambda}+\left|\lambda\right|E\subseteq K for r(K;E)λ0-\mathrm{r}(K;E)\leq\lambda\leq 0 (see [21, (4.1)]).

  5. (v)

    If K𝒦nnK\in\mathcal{K}^{n}_{n} then Kλ+|λ|KKK_{\lambda}+\left|\lambda\right|K^{*}\subseteq K for r(K;E)λ0-\mathrm{r}(K;E)\leq\lambda\leq 0 (see [21, Lemma 4.8]).

Remark 2.4.

The equality cases in Lemma 2.3 (iv) and (v) are well-known:

  1. (i)

    Equality holds in (iv) for all r(K;E)λ0-\mathrm{r}(K;E)\leq\lambda\leq 0 if and only if K=Kr(K;E)+r(K;E)EK=K_{-\mathrm{r}(K;E)}+\mathrm{r}(K;E)E (see [21, p. 81]).

  2. (ii)

    If EE is regular, equality holds in (v) for all r(K;E)λ0-\mathrm{r}(K;E)\leq\lambda\leq 0 if and only if KK is a tangential body of Kr(K;E)+r(K;E)EK_{-\mathrm{r}(K;E)}+\mathrm{r}(K;E)E satisfying 𝒰(K)=𝒰(Kλ+K)\mathcal{U}(K)=\mathcal{U}(K_{\lambda}+K^{*}) for all r(K;E)λ0-\mathrm{r}(K;E)\leq\lambda\leq 0 (see [14, Theorem 2.2]).

Let K,E𝒦nnK,E\in\mathcal{K}^{n}_{n}. From now on we will write Kλ=(Kλ)K_{\lambda}^{*}=(K_{\lambda})^{*} to denote the form body of the inner parallel body of KK at distance |λ|\left|\lambda\right|, r(K;E)<λ0-\mathrm{r}(K;E)<\lambda\leq 0. The following counterpart of the relations contained in Lemma 2.3 (v), can be found in [21, Corollary to Lemma 4.8] (see also Lemma 2.3 (ii)).

Proposition 2.5 ([21, Corollary to Lemma 4.8]).

Let K,E𝒦nnK,E\in\mathcal{K}^{n}_{n}, with EE regular. Assume that, for some r(K;E)<λ<0-\mathrm{r}(K;E)<\lambda<0, the relation

(2.3) 𝒰(Kλ)=𝒰(Kλ+Kλ)\mathcal{U}(K_{\lambda}^{*})=\mathcal{U}(K_{\lambda}+K_{\lambda}^{*})

holds. Then,

(2.4) KKλ+|λ|Kλ.K\subseteq K_{\lambda}+\left|\lambda\right|K_{\lambda}^{*}.

For n=2n=2 there is equality in (2.4) for all K𝒦22K\in\mathcal{K}^{2}_{2}.

Condition (2.3) deserves further observations. On the one hand, it is similar to the identity 𝒰(Kλ+K)=𝒰(K)\mathcal{U}(K_{\lambda}+K^{*})=\mathcal{U}(K^{*}), which is a direct consequence of the relation 𝒰(Kλ+K)=𝒰(K)\mathcal{U}(K_{\lambda}+K^{*})=\mathcal{U}(K) needed in [14, Theorem 2.2] (see Remark 2.4), together with Lemma 2.3 (ii) and (iii). However, since examples of convex bodies for which 𝒰(Kλ)𝒰(K)\mathcal{U}(K_{\lambda})\subset\mathcal{U}(K) (strictly) are easily constructed, both conditions are different. On the other hand, Lemma 2.3 (iii) yields 𝒰(Kλ)𝒰(Kλ+Kλ)\mathcal{U}(K_{\lambda}^{*})\subseteq\mathcal{U}(K_{\lambda}+K_{\lambda}^{*}); however, the inclusion may be strict (see Section 3).

3. Convex bodies not satisfying the inclusion KKλ+|λ|KλK\subseteq K_{\lambda}+\left|\lambda\right|K_{\lambda}^{*}

Let K𝒦nK\in\mathcal{K}^{n} be a convex body. In [6] the authors study the isoperimetric quotient I(Kλ):=vol(Kλ)/S(Kλ)n/(n1)I(K_{-\lambda}):=\mathrm{vol}(K_{-\lambda})/\mathrm{S}(K_{-\lambda})^{n/(n-1)} of the family of inner parallel bodies KλK_{-\lambda}, 0λ<r(K;Bn)0\leq\lambda<\mathrm{r}(K;\mathrm{B}_{n}), when E=BnE=\mathrm{B}_{n}, and analyze the behavior of the function I(λ)=I(Kλ)I(\lambda)=I(K_{-\lambda}): in Theorem 1 they prove that the isoperimetric quotient function I(λ)I(\lambda) is non-increasing in 0λ<r(K;Bn)0\leq\lambda<\mathrm{r}(K;\mathrm{B}_{n}) for all convex bodies. However, as we mentioned in the introduction, the proof of this result is erroneous.

The main idea of the proof is to bound from below the quotient defining I(λ)I(\lambda). To this end, the numerator vol(Kλ)\mathrm{vol}(K_{\lambda}) is bounded using Lemma 2.3 (iv) and the property (Kλ)μ=Kλμ(K_{-\lambda})_{-\mu}=K_{-\lambda-\mu} for 0λ,μλ+μ<r(K;Bn)0\leq\lambda,\mu\leq\lambda+\mu<\mathrm{r}(K;\mathrm{B}_{n}) (see [22, (3.17)]). More precisely, and following the notation in [6], for 0tt0<r(K;Bn)0\leq t\leq t_{0}<\mathrm{r}(K;\mathrm{B}_{n}),

vol(Kt)vol(Kt0+|tt0|Bn).\mathrm{vol}(K_{-t})\geq\mathrm{vol}\bigl{(}K_{-t_{0}}+\left|t-t_{0}\right|\mathrm{B}_{n}\bigr{)}.

In order to bound the denominator S(Kt)\mathrm{S}(K_{-t}), the authors make use of the monotonicity of the surface area applied to the content (2.4), namely,

KtKt0+|tt0|Kt0K_{-t}\subseteq K_{-t_{0}}+\left|t-t_{0}\right|K_{-t_{0}}^{*}

for 0tt0<r(K;Bn)0\leq t\leq t_{0}<\mathrm{r}(K;\mathrm{B}_{n}). However, this inclusion is not true without further conditions (as, for instance, the equality 𝒰(Kt0)=𝒰(Kt0+Kt0)\mathcal{U}(K_{-t_{0}}^{*})=\mathcal{U}(K_{-t_{0}}+K_{-t_{0}}^{*}), see Proposition 2.5). Indeed, in the next, we prove that the content KKλ+|λ|KλK\subseteq K_{\lambda}+\left|\lambda\right|K_{\lambda}^{*}, r(K;E)<λ0-\mathrm{r}(K;E)<\lambda\leq 0, is not valid in its full generality.

For K𝒦nnK\in\mathcal{K}^{n}_{n} and μ0\mu\geq 0, we consider the following convex body:

(3.1) K(μ):={xn:x,uh(K,u)+μh(E,u),u𝒰(K)}.K(\mu):=\bigl{\{}x\in\mathbb{R}^{n}:\langle x,u\rangle\leq h(K,u)+\mu h(E,u),u\in\mathcal{U}(K)\bigr{\}}.

This construction appeared already in [16, 17, 21]. Indeed, in [21] the following result was proven.

Proposition 3.1.

[21] Let K,E𝒦nnK,E\in\mathcal{K}^{n}_{n} and let μ0\mu\geq 0. Then

  1. (i)

    K+μEK+μKK(μ)K+\mu E\subseteq K+\mu K^{*}\subseteq K(\mu).

  2. (ii)

    r(K(μ);E)=μ+r(K;E)\mathrm{r}\bigl{(}K(\mu);E\bigr{)}=\mu+\mathrm{r}(K;E).

  3. (iii)

    For r(K;E)μλ0-\mathrm{r}(K;E)-\mu\leq\lambda\leq 0 we have

    K(μ)λ={K(μ+λ) for μλ0,Kλ+μ for r(K;E)μλμ.K(\mu)_{\lambda}=\left\{\begin{array}[]{ll}K(\mu+\lambda)&\;\text{ for }-\mu\leq\lambda\leq 0,\\[2.84526pt] K_{\lambda+\mu}&\;\text{ for }-\mathrm{r}(K;E)-\mu\leq\lambda\leq-\mu.\end{array}\right.

We will also need the following additional result.

Lemma 3.2.

Let K𝒦nK\in\mathcal{K}^{n} and let E𝒦nnE\in\mathcal{K}^{n}_{n} be regular. Then, for any μ0\mu\geq 0,

(3.2) 𝒰(K(μ))=cl𝒰(K).\mathcal{U}\bigl{(}K(\mu)\bigr{)}=\mathop{\mathrm{cl}}\nolimits\mathcal{U}(K).
Proof.

It is enough to observe that, from the definition of K(μ)K(\mu), it follows that K(μ)K(\mu) is the form body of KK with respect to E=K+μEE^{\prime}=K+\mu E. Since EE is regular, so is K+μE=EK+\mu E=E^{\prime}, and hence the identity follows from Lemma 2.3 (ii). ∎

We are now in a position to prove the announced non-validity of the inclusion (2.4) without further assumptions. Next result will be proven when the body E=BnE=\mathrm{B}_{n}, although it holds true for any regular E𝒦nnE\in\mathcal{K}^{n}_{n}.

Proposition 3.3.

There exists K𝒦nnK\in\mathcal{K}^{n}_{n} such that KKλ+|λ|KλK\supset K_{\lambda}+\left|\lambda\right|K_{\lambda}^{*} strictly for some r(K;Bn)<λ<0-\mathrm{r}(K;\mathrm{B}_{n})<\lambda<0.

Proof.

For any K𝒦nnK\in\mathcal{K}^{n}_{n} and μ0\mu\geq 0, since K=K(μ)μK=K(\mu)_{-\mu} is an inner parallel body of K(μ)K(\mu) (see Proposition 3.1 (iii)), item (i) of Proposition 3.1 yields

(3.3) K(μ)μ+μK(μ)μ=K+μKK(μ).K(\mu)_{-\mu}+\mu K(\mu)_{-\mu}^{*}=K+\mu K^{*}\subseteq K(\mu).

So, we have to find a convex body KK (and μ>0\mu>0) such that the above inclusion is strict.

If we assume, to the contrary, that K(μ)μ+μK(μ)μ=K(μ)K(\mu)_{-\mu}+\mu K(\mu)_{-\mu}^{*}=K(\mu) for all K𝒦nnK\in\mathcal{K}^{n}_{n} and μ0\mu\geq 0, then we have, in particular, that K(μ)=K+μKK(\mu)=K+\mu K^{*}. Then, since 𝒰(K)=cl𝒰(K)𝒰(K)\mathcal{U}(K^{*})=\mathop{\mathrm{cl}}\nolimits\mathcal{U}(K)\supseteq\mathcal{U}(K) (Lemma 2.3 (ii)), we can use Lemma 2.3 (iii) and Lemma 3.2 to get

𝒰(K)=𝒰(K)𝒰(K)𝒰(K+K)=𝒰(K(μ))=cl𝒰(K)=𝒰(K).\mathcal{U}(K^{*})=\mathcal{U}(K)\cup\mathcal{U}(K^{*})\subseteq\mathcal{U}(K+K^{*})=\mathcal{U}\bigl{(}K(\mu)\bigr{)}=\mathop{\mathrm{cl}}\nolimits\mathcal{U}(K)=\mathcal{U}(K^{*}).

Hence

(3.4) 𝒰(K)=𝒰(K+K).\mathcal{U}(K^{*})=\mathcal{U}(K+K^{*}).

Now, it will be enough to find a convex body for which the latter equality does not hold, and so we will get the desired contradiction. The following polytope PP makes the job (see Figure 1; we notice that it coincides with the polytope P(12)P(12) used in [17, Proposition 5.1]). Let

(3.5) P={(x1x2x3)3:±12x1+35x3432,±12x2+5x360,x30}.P=\left\{\begin{pmatrix}x_{1}\\ x_{2}\\ x_{3}\end{pmatrix}\in\mathbb{R}^{3}:\begin{array}[c]{rcl}\pm 12x_{1}+35x_{3}&\leq&432,\\ \pm 12x_{2}+5x_{3}&\leq&60,\\ x_{3}&\geq&0\\ \end{array}\right\}.
Refer to caption
Figure 1. A polytope such that P(μ)P(μ)μ+μP(μ)μP(\mu)\supset P(\mu)_{-\mu}+\mu P(\mu)_{-\mu}^{*} strictly, μ>0\mu>0.

On the one hand, since

P={(x1x2x3)3:±12x1+35x337,±12x2+5x313,x31}P^{*}=\left\{\begin{pmatrix}x_{1}\\ x_{2}\\ x_{3}\end{pmatrix}\in\mathbb{R}^{3}:\begin{array}[c]{rcl}\pm 12x_{1}+35x_{3}&\leq&37,\\ \pm 12x_{2}+5x_{3}&\leq&13,\\ x_{3}&\geq&-1\\ \end{array}\right\}

then

𝒰(P)={(±1237,0,3537),(0,±1213,513),(0,0,1)}.\mathcal{U}(P^{*})=\left\{\left(\pm\frac{12}{37},0,\frac{35}{37}\right)^{\intercal},\left(0,\pm\frac{12}{13},\frac{5}{13}\right)^{\intercal},(0,0,-1)^{\intercal}\right\}.

On the other hand, the polytope P+PP+P^{*} has a facet with unit outer normal vector (0,0,1)𝒰(P)(0,0,1)^{\intercal}\not\in\mathcal{U}(P^{*}), which arises from the edge of PP determined by the straight line {x2=0,x3=12}\{x_{2}=0,x_{3}=12\}, and the edge of PP^{*} corresponding to the line {x1=0,x3=37/35}\{x_{1}=0,x_{3}=37/35\}. Therefore 𝒰(P)𝒰(P+P)\mathcal{U}(P^{*})\subset\mathcal{U}(P+P^{*}) strictly, which contradicts (3.4) and concludes the proof. ∎

Remark 3.4.

Unfortunately, the previous polytope PP does not provide us with a counterexample for the non-increasing behavior of the isoperimetric quotient function I(λ)I(\lambda). Thus, except for particular families of convex bodies (see Section 4) it is not known yet whether the isoperimetric quotient function is non-increasing for an arbitrary convex body.

4. Isoperimetric quotients and deficits

We start pointing out that unlike the authors in [6], we are going to consider the family of inner parallel bodies defined in the range r(K;E)λ0-\mathrm{r}(K;E)\leq\lambda\leq 0, which will reverse the behavior of the isoperimetric quotient function (in the original paper [6] the range is 0λr(K;Bn)0\leq\lambda\leq\mathrm{r}(K;\mathrm{B}_{n}) what makes the behavior of I(λ)I(\lambda) non-increasing). Furthermore, since we will also work with the isoperimetric deficit, we will consider the isoperimetric quotient in the usual way, namely, S(Kλ)n/vol(Kλ)n1\mathrm{S}(K_{\lambda})^{n}/\mathrm{vol}(K_{\lambda})^{n-1}, in order to compare the behavior in both cases.

In this section we are going to obtain new results concerning the behavior of the isoperimetric quotient (and also of the isoperimetric deficit) under assumptions on the boundary of the involved convex bodies. The first condition we can impose is, actually, the boundary condition necessary to validate the proof of Theorem 1 in [6], namely:

Theorem 4.1 ([6, Theorem 1] revised).

Let K𝒦nnK\in\mathcal{K}^{n}_{n}. If

𝒰(Kλ)=𝒰(Kλ+Kλ) for r(K;Bn)λ0,\mathcal{U}(K_{\lambda}^{*})=\mathcal{U}(K_{\lambda}+K_{\lambda}^{*})\quad\text{ for }-\mathrm{r}(K;\mathrm{B}_{n})\leq\lambda\leq 0,

then the isoperimetric quotient S(Kλ)n/vol(Kλ)n1\mathrm{S}(K_{\lambda})^{n}/\mathrm{vol}(K_{\lambda})^{n-1} is non-increasing.

The proof of this result is exactly the proof of [6, Theorem 1], where the use of (2.4) is justified by assuming (2.3).

Next we prove that under different conditions to (2.3), the isoperimetric quotient function is also non-decreasing. In fact, we will get a more general result for all the quermassintegrals of a convex body KK (relative to an arbitrary E𝒦nnE\in\mathcal{K}^{n}_{n}), which we define next.

Given K𝒦nK\in\mathcal{K}^{n} and E𝒦nnE\in\mathcal{K}^{n}_{n}, the so-called relative Steiner formula states that the volume of the Minkowski addition K+μEK+\mu E, μ0\mu\geq 0, is a polynomial of degree nn in μ\mu,

vol(K+λE)=i=0n(ni)Wi(K;E)λi.\mathrm{vol}(K+\lambda E)=\sum_{i=0}^{n}\binom{n}{i}\mathrm{W}_{i}(K;E)\lambda^{i}.

The coefficients Wi(K;E)\mathrm{W}_{i}(K;E) are called (relative) quermassintegrals of KK, and they are just a special case of the more general mixed volumes, for which we refer to [22, s. 5.1]. In particular, we have W0(K;E)=vol(K)\mathrm{W}_{0}(K;E)=\mathrm{vol}(K) and Wn(K;E)=vol(E)\mathrm{W}_{n}(K;E)=\mathrm{vol}(E). Moreover, if E=BnE=\mathrm{B}_{n}, the polynomial in the right hand side becomes the classical Steiner polynomial, see [23], and nW1(K;Bn)=S(K)n\mathrm{W}_{1}(K;\mathrm{B}_{n})=\mathrm{S}(K) is the usual surface area of KK.

Let Wi(λ):=Wi(Kλ;E)\mathrm{W}_{i}(\lambda):=\mathrm{W}_{i}(K_{\lambda};E) for r(K;E)λ0-\mathrm{r}(K;E)\leq\lambda\leq 0. From the concavity of the family of inner parallel bodies (see [22, Lemma 3.1.13]) and the general Brunn-Minkowski theorem for relative quermassintegrals (see e.g. [22, Theorem 7.4.5]), it is obtained that

Wi(λ)Wi(λ)(ni)Wi+1(λ){}^{\prime}\mathrm{W}_{i}(\lambda)\geq\mathrm{W}_{i}^{\prime}(\lambda)\geq(n-i)\mathrm{W}_{i+1}(\lambda)

for i=0,,n1i=0,\dots,n-1 and for r(K;E)λ0-\mathrm{r}(K;E)\leq\lambda\leq 0. Here Wi{}^{\prime}\mathrm{W}_{i} and Wi\mathrm{W}_{i}^{\prime} denote, respectively, the left and right derivatives of the function Wi(λ)\mathrm{W}_{i}(\lambda), and for λ=r(K;E)\lambda=-\mathrm{r}(K;E) (respectively, λ=0\lambda=0) only the right (left) derivative is considered (Wi\mathrm{W}_{i}^{\prime} will also denote the full derivative of Wi\mathrm{W}_{i} when the function is differentiable). In [12] the following definition was introduced.

Definition 4.2.

Let E𝒦nnE\in\mathcal{K}^{n}_{n} and let 0pn10\leq p\leq n-1. A convex body K𝒦nK\in\mathcal{K}^{n} belongs to the class p\mathcal{R}_{p} if, for all 0ip0\leq i\leq p and for r(K;E)λ0-\mathrm{r}(K;E)\leq\lambda\leq 0,

(4.1) Wi(λ)=Wi(λ)=(ni)Wi+1(λ).^{\prime}\mathrm{W}_{i}(\lambda)=\mathrm{W}_{i}^{\prime}(\lambda)=(n-i)\mathrm{W}_{i+1}(\lambda).

Notice that the class p\mathcal{R}_{p} depends on the fixed convex body EE. Nevertheless, and for the sake of simplicity, we will also omit EE in the notation.

Since the volume is always differentiable with respect to λ\lambda and vol(λ)=nW1(λ)\mathrm{vol}^{\prime}(\lambda)=n\mathrm{W}_{1}(\lambda) (see e.g. [1, 18]), the class 0\mathcal{R}_{0} consists of all convex bodies, i.e., 0=𝒦n\mathcal{R}_{0}=\mathcal{K}^{n}. From the definition we get pp+1\mathcal{R}_{p}\supset\mathcal{R}_{p+1}, p=0,,n2p=0,\dots,n-2, and all these inclusions are strict (particular tangential bodies show it; see [12]). The problem of determining the convex bodies belonging to the class p\mathcal{R}_{p} was studied by Bol [1] and Hadwiger [9] in the 3-dimensional case when E=BnE=\mathrm{B}_{n}. In [12] and [15] the general classes n1\mathcal{R}_{n-1} and n2\mathcal{R}_{n-2}, respectively, were characterized. The cases p=1,,n3p=1,\dots,n-3 remains open.

Finally, we recall the following inequalities for quermassintegrals, which can be deduced from the well-known Aleksandrov-Fenchel inequalities for mixed volumes (see e.g. [22, Sections 7.3 and 7.4]). They motivate and are also needed to prove our results. Let K𝒦nK\in\mathcal{K}^{n} and E𝒦nnE\in\mathcal{K}^{n}_{n}. Then

(4.2) Wi(K;E)Wj(K;E)Wk(K;E)Wl(K;E),  0l<ij<kn,\mathrm{W}_{i}(K;E)\mathrm{W}_{j}(K;E)\geq\mathrm{W}_{k}(K;E)\mathrm{W}_{l}(K;E),\;\;0\leq l<i\leq j<k\leq n,

and

(4.3) Wj(K;E)niWi(K;E)njvol(E)ji,0ijn.\mathrm{W}_{j}(K;E)^{n-i}\geq\mathrm{W}_{i}(K;E)^{n-j}\mathrm{vol}(E)^{j-i},\quad 0\leq i\leq j\leq n.

We notice that the last inequality, for E=BnE=\mathrm{B}_{n} and i=0i=0, j=1j=1, yields the well-known isoperimetric inequality S(K)nnnvol(Bn)vol(K)n1\mathrm{S}(K)^{n}\geq n^{n}\mathrm{vol}(\mathrm{B}_{n})\mathrm{vol}(K)^{n-1}.

4.1. Non-decreasing isoperimetric quotients

Inspired on the families of inequalities (4.3), we consider the isoperimetric quotient (up to the constant vol(E)ji\mathrm{vol}(E)^{j-i}) Wj(K;E)ni/Wi(K;E)nj\mathrm{W}_{j}(K;E)^{n-i}/\mathrm{W}_{i}(K;E)^{n-j} and study its behavior for the family of inner parallel bodies.

We start proving that for convex bodies lying in the suitable class p\mathcal{R}_{p}, the above isoperimetric quotients for inner parallel bodies are non-increasing in the range r(K;E)<λ0-\mathrm{r}(K;E)<\lambda\leq 0.

Proposition 4.3.

Let 0i<j<n0\leq i<j<n, and let KjK\in\mathcal{R}_{j} and E𝒦nnE\in\mathcal{K}^{n}_{n}. Then the isoperimetric quotient function Wj(λ)ni/Wi(λ)nj\mathrm{W}_{j}(\lambda)^{n-i}/\mathrm{W}_{i}(\lambda)^{n-j} is non-increasing for r(K;E)<λ0-\mathrm{r}(K;E)<\lambda\leq 0. In particular,

Wj(Kλ;E)niWi(Kλ;E)njWj(K;E)niWi(K;E)nj.\frac{\mathrm{W}_{j}(K_{\lambda};E)^{n-i}}{\mathrm{W}_{i}(K_{\lambda};E)^{n-j}}\geq\frac{\mathrm{W}_{j}(K;E)^{n-i}}{\mathrm{W}_{i}(K;E)^{n-j}}.
Proof.

We consider the function

ϕ(λ):=Wj(λ)niWi(λ)nj for r(K;E)<λ0.\phi(\lambda):=\frac{\mathrm{W}_{j}(\lambda)^{n-i}}{\mathrm{W}_{i}(\lambda)^{n-j}}\quad\text{ for }\;-\mathrm{r}(K;E)<\lambda\leq 0.

Taking derivatives with respect to λ\lambda, and since KjiK\in\mathcal{R}_{j}\subset\mathcal{R}_{i} because i<ji<j, we can use the relations Wi(λ)=(ni)Wi+1(λ)\mathrm{W}_{i}^{\prime}(\lambda)=(n-i)\mathrm{W}_{i+1}(\lambda) and Wj(λ)=(nj)Wj+1(λ)\mathrm{W}_{j}^{\prime}(\lambda)=(n-j)\mathrm{W}_{j+1}(\lambda) to get

ϕ(λ)=Wj(λ)ni1Wi(λ)nj+1[(ni)Wi(λ)Wj(λ)(nj)Wj(λ)Wi(λ)]=(ni)(nj)Wj(λ)ni1Wi(λ)nj+1[Wi(λ)Wj+1(λ)Wj(λ)Wi+1(λ)].\begin{split}\phi^{\prime}(\lambda)&=\frac{\mathrm{W}_{j}(\lambda)^{n-i-1}}{\mathrm{W}_{i}(\lambda)^{n-j+1}}\Bigl{[}(n-i)\mathrm{W}_{i}(\lambda)\mathrm{W}_{j}^{\prime}(\lambda)-(n-j)\mathrm{W}_{j}(\lambda)\mathrm{W}_{i}^{\prime}(\lambda)\Bigr{]}\\ &=\frac{(n-i)(n-j)\mathrm{W}_{j}(\lambda)^{n-i-1}}{\mathrm{W}_{i}(\lambda)^{n-j+1}}\Bigl{[}\mathrm{W}_{i}(\lambda)\mathrm{W}_{j+1}(\lambda)-\mathrm{W}_{j}(\lambda)\mathrm{W}_{i+1}(\lambda)\Bigr{]}.\end{split}

The Aleksandrov-Fenchel inequalities (4.2) yield ϕ(λ)0\phi^{\prime}(\lambda)\leq 0, i.e., ϕ(λ)\phi(\lambda) is non-increasing when r(K;E)<λ0-\mathrm{r}(K;E)<\lambda\leq 0. ∎

We note that if KK is a tangential body of EE then, since Kλ=(1+λ)KK_{\lambda}=(1+\lambda)K (Remark 2.2) and the ii-th quermassintegral is homogeneous of degree nin-i in its first argument (see e.g. [8, Theorem 6.13]), the isoperimetric quotient function

ϕ(λ)=Wj(λ)niWi(λ)nj=Wj((1+λ)K;E)niWi((1+λ)K;E)nj=Wj(K;E)niWi(K;E)nj\phi(\lambda)=\frac{\mathrm{W}_{j}(\lambda)^{n-i}}{\mathrm{W}_{i}(\lambda)^{n-j}}=\frac{\mathrm{W}_{j}\bigl{(}(1+\lambda)K;E\bigr{)}^{n-i}}{\mathrm{W}_{i}\bigl{(}(1+\lambda)K;E\bigr{)}^{n-j}}=\frac{\mathrm{W}_{j}(K;E)^{n-i}}{\mathrm{W}_{i}(K;E)^{n-j}}

is constant in 1<λ0-1<\lambda\leq 0 for all 0i<j<n0\leq i<j<n (without additional assumptions on the classes p\mathcal{R}_{p}).

Remark 4.4.

For λ0\lambda\geq 0, denoting by Wi(λ)=Wi(K+λE)\mathrm{W}_{i}(\lambda)=\mathrm{W}_{i}(K+\lambda E), 0in10\leq i\leq n-1, one has Wi(λ)=(ni)Wi+1(λ)\mathrm{W}_{i}^{\prime}(\lambda)=(n-i)\mathrm{W}_{i+1}(\lambda) for all i=0,,n1i=0,\dots,n-1 directly from the Steiner formula for quermassintegrals (see [22, (5.29) and p. 225]); here, for λ=0\lambda=0 only the right derivative is considered. This yields that the isoperimetric quotient function ϕ\phi defined for λ0\lambda\geq 0 satisfies ϕ(λ)0\phi^{\prime}(\lambda)\leq 0 too, and thus, ϕ\phi is non-increasing in the full range (r(K;E),)\bigl{(}-\mathrm{r}(K;E),\infty\bigr{)}. We observe that, when λ0\lambda\geq 0, no examples of constant ϕ\phi, apart from K=EK=E, are known to the authors.

The case i=0i=0, j=1j=1 (and E=BnE=\mathrm{B}_{n}) in Proposition 4.3 provides us with an alternative result on the monotonicity of the classical isoperimetric quotient with respect to the family of inner parallel bodies, now under a different assumption on KK (cf. Theorem 4.1):

Corollary 4.5.

Let K𝒦nnK\in\mathcal{K}^{n}_{n}. If K1K\in\mathcal{R}_{1} then the isoperimetric quotient S(Kλ)n/vol(Kλ)n1\mathrm{S}(K_{\lambda})^{n}/\mathrm{vol}(K_{\lambda})^{n-1} is a non-increasing function for r(K;Bn)<λ0-\mathrm{r}(K;\mathrm{B}_{n})<\lambda\leq 0. In particular,

S(Kλ)nvol(Kλ)n1S(K)nvol(K)n1.\frac{\mathrm{S}(K_{\lambda})^{n}}{\mathrm{vol}(K_{\lambda})^{n-1}}\geq\frac{\mathrm{S}(K)^{n}}{\mathrm{vol}(K)^{n-1}}.

4.2. Isoperimetric deficit

Next we consider the isoperimetric deficit, instead of the quotient, of the inequality (4.3). As we will see, the behavior is the opposite.

Proposition 4.6.

Let 0i<j<n0\leq i<j<n, and let KiK\in\mathcal{R}_{i} and E𝒦nnE\in\mathcal{K}^{n}_{n}. Then the isoperimetric deficit function Wj(λ)niWi(λ)njvol(E)ji\mathrm{W}_{j}(\lambda)^{n-i}-\mathrm{W}_{i}(\lambda)^{n-j}\mathrm{vol}(E)^{j-i} is non-decreasing for r(K;E)<λ0-\mathrm{r}(K;E)<\lambda\leq 0. In particular,

Wj(Kλ;E)niWi(Kλ;E)njvol(E)jiWj(K;E)niWi(K;E)njvol(E)ji.\begin{split}\mathrm{W}_{j}(K_{\lambda};E)^{n-i}&-\mathrm{W}_{i}(K_{\lambda};E)^{n-j}\mathrm{vol}(E)^{j-i}\\ &\leq\mathrm{W}_{j}(K;E)^{n-i}-\mathrm{W}_{i}(K;E)^{n-j}\mathrm{vol}(E)^{j-i}.\end{split}
Proof.

We consider the function

ψ(λ)=Wj(λ)niWi(λ)njvol(E)ji for r(K;E)<λ0.\psi(\lambda)=\mathrm{W}_{j}(\lambda)^{n-i}-\mathrm{W}_{i}(\lambda)^{n-j}\mathrm{vol}(E)^{j-i}\quad\text{ for }-\mathrm{r}(K;E)<\lambda\leq 0.

Since KiK\in\mathcal{R}_{i}, we know that Wi(λ)\mathrm{W}_{i}(\lambda) is differentiable and Wi(λ)=(ni)Wi+1(λ)\mathrm{W}_{i}^{\prime}(\lambda)=(n-i)\mathrm{W}_{i+1}(\lambda); however, for Wj(λ)\mathrm{W}_{j}^{\prime}(\lambda) we can only take one-side derivatives, which satisfy Wj(λ)Wj(λ)(nj)Wj+1(λ){}^{\prime}\mathrm{W}_{j}(\lambda)\geq\mathrm{W}_{j}^{\prime}(\lambda)\geq(n-j)\mathrm{W}_{j+1}(\lambda). Thus, taking the right derivative of ψ(λ)\psi(\lambda) with respect to λ\lambda and using the above relations, we obtain that

ψ(λ)=(ni)Wj(λ)ni1Wj(λ)(nj)Wi(λ)nj1Wi(λ)vol(E)ji(nj)(ni)[Wj(λ)ni1Wj+1(λ)Wi(λ)nj1Wi+1(λ)vol(E)ji].\begin{split}\psi^{\prime}(\lambda)&=(n-i)\mathrm{W}_{j}(\lambda)^{n-i-1}\mathrm{W}_{j}^{\prime}(\lambda)-(n-j)\mathrm{W}_{i}(\lambda)^{n-j-1}\mathrm{W}_{i}^{\prime}(\lambda)\mathrm{vol}(E)^{j-i}\\ &\geq(n-j)(n-i)\Bigl{[}\mathrm{W}_{j}(\lambda)^{n-i-1}\mathrm{W}_{j+1}(\lambda)-\mathrm{W}_{i}(\lambda)^{n-j-1}\mathrm{W}_{i+1}(\lambda)\mathrm{vol}(E)^{j-i}].\end{split}

Next we prove that

(4.4) Wj(λ)ni1Wj+1(λ)Wi(λ)nj1Wi+1(λ)vol(E)ji.\mathrm{W}_{j}(\lambda)^{n-i-1}\mathrm{W}_{j+1}(\lambda)\geq\mathrm{W}_{i}(\lambda)^{n-j-1}\mathrm{W}_{i+1}(\lambda)\mathrm{vol}(E)^{j-i}.

Since i<ji<j, we can use the relation Wj(λ)ni1Wi+1(λ)njvol(E)ji1\mathrm{W}_{j}(\lambda)^{n-i-1}\geq\mathrm{W}_{i+1}(\lambda)^{n-j}\mathrm{vol}(E)^{j-i-1} (cf. (4.3)), and thus, in order to prove (4.4) it suffices to show that

(4.5) Wi+1(λ)nj1Wj+1(λ)Wi(λ)nj1vol(E).\mathrm{W}_{i+1}(\lambda)^{n-j-1}\mathrm{W}_{j+1}(\lambda)\geq\mathrm{W}_{i}(\lambda)^{n-j-1}\mathrm{vol}(E).

If j=n1j=n-1, (4.5) holds trivially; so, we assume that jn2j\leq n-2.

The family of inequalities given in (4.3) has a more general version, namely, Wskl(K;E)Wlks(K;E)Wksl(K;E)\mathrm{W}_{s}^{k-l}(K;E)\geq\mathrm{W}_{l}^{k-s}(K;E)\mathrm{W}_{k}^{s-l}(K;E) for 0lskn0\leq l\leq s\leq k\leq n (see e.g. [22, (7.63)]). Then, since i<i+1nj+i1i<i+1\leq n-j+i-1, we can write

Wi+1(λ)nj1Wi(λ)nj2Wnj+i1(λ),\mathrm{W}_{i+1}(\lambda)^{n-j-1}\geq\mathrm{W}_{i}(\lambda)^{n-j-2}\mathrm{W}_{n-j+i-1}(\lambda),

and hence, using also the Aleksandrov-Fenchel inequalities (4.2) we get

Wi+1(λ)nj1Wj+1(λ)Wi(λ)nj2Wnj+i1(λ)Wj+1(λ)Wi(λ)nj2Wi(λ)vol(E)=Wi(λ)nj1vol(E).\begin{split}\mathrm{W}_{i+1}(\lambda)^{n-j-1}\mathrm{W}_{j+1}(\lambda)&\geq\mathrm{W}_{i}(\lambda)^{n-j-2}\mathrm{W}_{n-j+i-1}(\lambda)\mathrm{W}_{j+1}(\lambda)\\ &\geq\mathrm{W}_{i}(\lambda)^{n-j-2}\mathrm{W}_{i}(\lambda)\mathrm{vol}(E)=\mathrm{W}_{i}(\lambda)^{n-j-1}\mathrm{vol}(E).\end{split}

It shows (4.5) and hence (4.4) holds.

So, we have that the right derivative ψ(λ)0\psi^{\prime}(\lambda)\geq 0 for each λ(r(K;E),0)\lambda\in\bigl{(}-\mathrm{r}(K;E),0\bigr{)}. Since ψ\psi is a continuous function in the interval [r(K;E),0]\bigl{[}-\mathrm{r}(K;E),0\bigr{]}, [19, Theorem 1] yields that ψ(λ)\psi(\lambda) is non-decreasing when r(K;E)<λ0-\mathrm{r}(K;E)<\lambda\leq 0, which conclude the proof. ∎

We point out that in Proposition 4.3 we need that the convex bodies lie in the class j\mathcal{R}_{j} whereas for Proposition 4.6 the assumption is weaker: the convex body has to lie in i\mathcal{R}_{i}, and ji\mathcal{R}_{j}\subset\mathcal{R}_{i} because i<ji<j. Therefore, in the case of the classical isoperimetric deficit, i.e., i=0i=0, j=1j=1, since 0=𝒦n\mathcal{R}_{0}=\mathcal{K}^{n}, no hypothesis is needed:

Corollary 4.7.

For every K𝒦nK\in\mathcal{K}^{n}, the isoperimetric deficit S(Kλ)nnnvol(Bn)vol(Kλ)n1\mathrm{S}(K_{\lambda})^{n}-n^{n}\mathrm{vol}(\mathrm{B}_{n})\mathrm{vol}(K_{\lambda})^{n-1} is a non-decreasing function for r(K;Bn)<λ0-\mathrm{r}(K;\mathrm{B}_{n})<\lambda\leq 0. In particular,

S(Kλ)nnnvol(Bn)vol(Kλ)n1S(K)nnnvol(Bn)vol(K)n1.\mathrm{S}(K_{\lambda})^{n}-n^{n}\mathrm{vol}(\mathrm{B}_{n})\mathrm{vol}(K_{\lambda})^{n-1}\leq\mathrm{S}(K)^{n}-n^{n}\mathrm{vol}(\mathrm{B}_{n})\mathrm{vol}(K)^{n-1}.

Again if we define the isoperimetric deficit function for positive values of λ\lambda, namely, ψ(λ)=Wj(K+λE;E)niWi(K+λE;E)njvol(E)ji\psi(\lambda)=\mathrm{W}_{j}(K+\lambda E;E)^{n-i}-\mathrm{W}_{i}(K+\lambda E;E)^{n-j}\mathrm{vol}(E)^{j-i}, λ0\lambda\geq 0, we also get the same monotonicity, and thus ψ(λ)\psi(\lambda) is non-decreasing in the full range (r(K;E),)\bigl{(}-\mathrm{r}(K;E),\infty\bigr{)}.

5. On the perimeter of inner parallel bodies

In [16, Theorem 1.2] the author provides a lower bound for the surface area of the inner parallel bodies of a convex body KK (with respect to Bn\mathrm{B}_{n}); following our notation, it is shown that

(5.1) S(Kλ)(1+λr(K;Bn))n1S(K).\mathrm{S}(K_{\lambda})\geq\left(1+\frac{\lambda}{\mathrm{r}(K;\mathrm{B}_{n})}\right)^{n-1}\mathrm{S}(K).

For the proof of the above inequality, the author uses an auxiliary result ([16, Lemma 2.1]) which states that, for K𝒦nnK\in\mathcal{K}^{n}_{n} and r(K;Bn)λ0-\mathrm{r}(K;\mathrm{B}_{n})\leq\lambda\leq 0, among all convex bodies L𝒦nL\in\mathcal{K}^{n} satisfying that Lλ=KλL_{\lambda}=K_{\lambda}, the set L=Kλ+|λ|KL=K_{\lambda}+\left|\lambda\right|K^{*} has maximal surface area.

The proof of this lemma runs with the implicit assumption of a condition closely related to (2.3), namely,

(5.2) 𝒰(K+K)=𝒰(K),\mathcal{U}(K+K^{*})=\mathcal{U}(K),

which is necessary to have the following equality, last step in the proof:

u𝒰(K){xn:x,uh(K+|λ|K,u)}=K+|λ|K\bigcap_{u\in\mathcal{U}(K)}\Bigl{\{}x\in\mathbb{R}^{n}:\langle x,u\rangle\leq h\bigl{(}K+\left|\lambda\right|K^{*},u\bigr{)}\Bigr{\}}=K+\left|\lambda\right|K^{*}

(cf. (2.2)). Unfortunately, condition (5.2) is not satisfied for all convex bodies K𝒦nnK\in\mathcal{K}^{n}_{n}: indeed, although 𝒰(K)𝒰(K+K)\mathcal{U}(K)\subseteq\mathcal{U}(K+K^{*}) always holds (Lemma 2.3 (iii)), the reverse inclusion needs not be true in general, as the polytope PP given in (3.5) shows; we notice that 𝒰(P)=𝒰(P)𝒰(P+P)\mathcal{U}(P)=\mathcal{U}(P^{*})\subset\mathcal{U}(P+P^{*}) strictly.

The proof of Lemma 2.1 in [16] actually yields that for K𝒦nnK\in\mathcal{K}^{n}_{n} and r(K;Bn)λ0-\mathrm{r}(K;\mathrm{B}_{n})\leq\lambda\leq 0, among all convex bodies L𝒦nL\in\mathcal{K}^{n} satisfying that Lλ=KλL_{\lambda}=K_{\lambda}, exactly the set L=K(λ)L=K(\lambda) (cf. (3.1)) has maximal surface area. For the sake of completeness we state it as a result.

Lemma 5.1 ([16, Lemma 2.1] revised).

Let K𝒦nnK\in\mathcal{K}^{n}_{n} and r(K;Bn)λ0-\mathrm{r}(K;\mathrm{B}_{n})\leq\lambda\leq 0. Among all convex bodies L𝒦nL\in\mathcal{K}^{n} satisfying that Lλ=KλL_{\lambda}=K_{\lambda}, exactly the set

K(λ)={xn:x,uh(K,u)+|λ|h(E,u),u𝒰(K)}K(\lambda)=\bigl{\{}x\in\mathbb{R}^{n}:\langle x,u\rangle\leq h(K,u)+\left|\lambda\right|h(E,u),u\in\mathcal{U}(K)\bigr{\}}

has maximal surface area.

We conclude this note pointing out that, although the proof of Theorem 1.2 in [16] is partially based on a not correct lemma, the result itself is valid: the proof of (5.1) follows from [21, Lemma 2.9], which states that

Kλ(1+λr(K;Bn))K,K_{\lambda}\supseteq\left(1+\frac{\lambda}{\mathrm{r}(K;\mathrm{B}_{n})}\right)K,

and the monotonicity and (n1n-1)-homogeneity of the surface area.

Acknowledgements. The authors would like to thank J. Yepes Nicolás for pointing out to us the existence of results concerning the behaviour of the isoperimetric quotient, in particular [6].

References

  • [1] G. Bol, Beweis einer Vermutung von H. Minkowski, Abh. Math. Sem. Univ. Hamburg 15 (1943), 37–56.
  • [2] T. Bonnesen and W. Fenchel, Theorie der konvexen Körper. Springer, Berlin, 1934, 1974. English translation: Theory of convex bodies. Edited by L. Boron, C. Christenson and B. Smith. BCS Associates, Moscow, ID, 1987.
  • [3] A. Dinghas, Bemerkung zu einer Verschärfung der isoperimetrischen Ungleichung durch H. Hadwiger, Math. Nachr. 1 (1948), 284–286.
  • [4] A. Dinghas, Über eine neue isoperimetrische Ungleichung für konvexe Polyeder, Math. Ann. 120 (1949), 533–538.
  • [5] A. Dinghas, Zum Minkowskischen Integralbegriff abgeschlossener Mengen, Math. Zeitschr. 66 (1956), 173–188.
  • [6] G. Domokos, Z. Lángi, The isoperimetric quotient of a convex body decreases monotonically under the Eikonal abrasion model, Mathematika 65 (1), 119–129.
  • [7] R. Gardner, M. Kiderlen, A solution to Hammer’s X-ray reconstruction problem, Adv. Math. 214 (1) (2007), 323–343.
  • [8] P. M. Gruber, Convex and Discrete Geometry. Springer, Berlin Heidelberg, 2007.
  • [9] H. Hadwiger, Altes und Neues über konvexe Körper. Birkhäuser Verlag, Basel und Stuttgart, 1955.
  • [10] H. Hadwiger, Vorlesungen über Inhalt, Oberfläche und Isoperimetrie. Springer-Verlag, Berlin-Göttingen-Heidelberg, 1957.
  • [11] M. Henk, J. M. Wills, A Blichfeldt-type inequality for the surface area, Monatsh. Math. 154 (2008), 135–144.
  • [12] M. A. Hernández Cifre, E. Saorín, On differentiability of quermassintegrals, Forum Math. 22 (1) (2010), 115–126.
  • [13] M. A. Hernández Cifre, E. Saorín, On the volume of inner parallel bodies, Adv. Geom. 10 (2) (2010), 275–286.
  • [14] M. A. Hernández Cifre, E. Saorín, On inner parallel bodies and quermassintegrals, Israel J. Math. 177 (2010), 29–48.
  • [15] M. A. Hernández Cifre, E. Saorín, Differentiability of quermassintegrals: a classification of convex bodies, Trans. Amer. Math. Soc. 366 (2014), 591–609.
  • [16] S. Larson, A bound for the perimeter of inner parallel bodies, J. Funct. Anal. 271 (2016), 610-619.
  • [17] E. Linke, E. Saorín Gómez, Decomposition of polytopes using inner parallel bodies, Monatsh. Math. 176 (4), 575–588.
  • [18] G. Matheron, La formule de Steiner pour les érosions, J. Appl. Prob. 15 (1978), 126–135.
  • [19] A. D. Miller, R. Vyborny, Some remarks on functions with one-sided derivatives, Amer. Mat. Month. 93 (6) (1986), 471–475.
  • [20] J. H. Rolfes, F. Vallentin, Covering compact metric spaces greedily, Acta Math. Hung. 155 (1) (2018), 130–140.
  • [21] J. R. Sangwine-Yager, Inner Parallel Bodies and Geometric Inequalities. Ph.D. Thesis Dissertation, University of California Davis, 1978.
  • [22] R. Schneider, Convex bodies: The Brunn-Minkowski theory, 2nd expanded ed. Encyclopedia of Mathematics and its Applications, 151. Cambridge: Cambridge University Press, 2014.
  • [23] J. Steiner, Über parallele Flächen, Monatsber. Preuss. Akad. Wiss. (1840), 114–118, [Ges. Werke, Vol II (Reimer, Berlin, 1882) 245–308].