This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Iterated Radical Expansions and Convergence

Steven Finch
(November 5, 2024)
Abstract

We treat three recurrences involving square roots, the first of which arises from an infinite simple radical expansion for the Golden mean, whose precise convergence rate was made famous by Richard Bruce Paris in 1987.  A never-before-seen proof of an important formula is given.  The other recurrences are non-exponential yet equally interesting.  Asymptotic series developed for each of these two examples feature a constant, dependent on the initial condition but otherwise intrinsic to the function at hand.

00footnotetext: Copyright © 2024 by Steven R. Finch. All rights reserved.

From the intricacies of nonlinear recurrences emerge a plethora of constants.  Our work builds on what we began in [1, 2].

1 The Map x1+xx\mapsto\sqrt{1+x}

As kk\rightarrow\infty, the recurrence

x1=1,x_{1}=1, xk=1+xk1x_{k}=\sqrt{1+x_{k-1}} for k2k\geq 2
        

approaches the Golden mean [3]:

φ=1+52,φ2=φ+1,1φ=φ1\begin{array}[c]{ccccc}\varphi=\dfrac{1+\sqrt{5}}{2},&&\varphi^{2}=\varphi+1,&&\dfrac{1}{\varphi}=\varphi-1\end{array}

from below and enjoys exponential convergence [4]:

0<limn(2φ)n(φxn)=2k=22φφ+xk<.0<\lim_{n\rightarrow\infty}\,(2\varphi)^{n}(\varphi-x_{n})=2\,{\displaystyle\prod\limits_{k=2}^{\infty}}\,\frac{2\varphi}{\varphi+x_{k}}<\infty.

We shall prove this formula using entirely elementary techniques.

First, notice that 1xk<φ1\leq x_{k}<\varphi for all kk by induction (xk1x_{k}\geq 1 is obvious; supposing 1xk1<φ1\leq x_{k-1}<\varphi, we obtain

xk=1+xk1<1+φ=1+φ21=φx_{k}=\sqrt{1+x_{k-1}}<\sqrt{1+\varphi}=\sqrt{1+\varphi^{2}-1}=\varphi

).  Now, writing yk=φxky_{k}=\varphi-x_{k}, we have y1=φ1=1/φy_{1}=\varphi-1=1/\varphi, 0<ykφ1<φ20<y_{k}\leq\varphi-1<\varphi^{2} and

yk\displaystyle y_{k} =φ1+xk1\displaystyle=\varphi-\sqrt{1+x_{k-1}}
=φ1+φyk1\displaystyle=\varphi-\sqrt{1+\varphi-y_{k-1}}
=φφ2yk1\displaystyle=\varphi-\sqrt{\varphi^{2}-y_{k-1}}
<yk1φ<yk2φ2<yk3φ3\displaystyle<\dfrac{y_{k-1}}{\varphi}<\dfrac{y_{k-2}}{\varphi^{2}}<\dfrac{y_{k-3}}{\varphi^{3}}

because

yk1φ<φ,i.e.,yk1φ2<1\begin{array}[c]{ccccc}\dfrac{y_{k-1}}{\varphi}<\varphi,&&\text{i.e.,}&&\dfrac{y_{k-1}}{\varphi^{2}}<1\end{array}

hence

0<φyk1φ,i.e.,yk12φ2<yk1\begin{array}[c]{ccccc}0<\varphi-\dfrac{y_{k-1}}{\varphi},&&\text{i.e.,}&&\dfrac{y_{k-1}^{2}}{\varphi^{2}}<y_{k-1}\end{array}

hence

φyk1φ=φ22yk1+yk12φ2<φ2yk1\varphi-\dfrac{y_{k-1}}{\varphi}=\sqrt{\varphi^{2}-2y_{k-1}+\dfrac{y_{k-1}^{2}}{\varphi^{2}}}<\sqrt{\varphi^{2}-y_{k-1}}

hence

φφ2yk1<yk1φ;\varphi-\sqrt{\varphi^{2}-y_{k-1}}<\dfrac{y_{k-1}}{\varphi};

thus

yk<y1φk1=1φky_{k}<\dfrac{y_{1}}{\varphi^{k-1}}=\frac{1}{\varphi^{k}}

for all kk.

From xk1=φyk1x_{k-1}=\varphi-y_{k-1}, we observe

xk2=1+xk1=1+φyk1=φ2yk1x_{k}^{2}=1+x_{k-1}=1+\varphi-y_{k-1}=\varphi^{2}-y_{k-1}

hence

yk1=φ2xk2=(φxk)(φ+xk)=yk(φ+xk)y_{k-1}=\varphi^{2}-x_{k}^{2}=(\varphi-x_{k})(\varphi+x_{k})=y_{k}(\varphi+x_{k})

hence

2φφ+xk=2φykyk1\frac{2\varphi}{\varphi+x_{k}}=2\varphi\,\frac{y_{k}}{y_{k-1}}

hence

k=2n2φφ+xk=k=2n 2φykyk1=(2φ)n1yny1=(2φ)n2yn{\displaystyle\prod\limits_{k=2}^{n}}\,\frac{2\varphi}{\varphi+x_{k}}={\displaystyle\prod\limits_{k=2}^{n}}\,2\varphi\,\frac{y_{k}}{y_{k-1}}=(2\varphi)^{n-1\,}\frac{y_{n}}{y_{1}}=\frac{(2\varphi)^{n}}{2}y_{n}

hence

φxn2=yn2=1(2φ)nk=2n2φφ+xk\frac{\varphi-x_{n}}{2}=\frac{y_{n}}{2}=\frac{1}{(2\varphi)^{n}}\,{\displaystyle\prod\limits_{k=2}^{n}}\,\frac{2\varphi}{\varphi+x_{k}}

because y1=1/φy_{1}=1/\varphi; therefore

C=limn(2φ)nφxn2=k=22φφ+xkC=\lim_{n\rightarrow\infty}\,(2\varphi)^{n}\,\frac{\varphi-x_{n}}{2}={\displaystyle\prod\limits_{k=2}^{\infty}}\,\frac{2\varphi}{\varphi+x_{k}}

exists and is nonzero since

k=2(2φφ+xk1)=k=2φxkφ+xk<k=2yk<k=21φk{\displaystyle\sum\limits_{k=2}^{\infty}}\left(\frac{2\varphi}{\varphi+x_{k}}-1\right)={\displaystyle\sum\limits_{k=2}^{\infty}}\,\frac{\varphi-x_{k}}{\varphi+x_{k}}<{\displaystyle\sum\limits_{k=2}^{\infty}}\,y_{k}<{\displaystyle\sum\limits_{k=2}^{\infty}}\,\frac{1}{\varphi^{k}}

converges.  This completes the proof.  The numerically-efficient expression for

C=1.0986419643941564857346689=12(2.1972839287883129714693378)C=1.0986419643941564857346689...=\frac{1}{2}\left(2.1972839287883129714693378...\right)

as an infinite product did not appear in [4], but was subsequently found by Philippe Flajolet & Paul Zimmermann several years later [5].  No trace of their derivation has survived; the above proof is new.  Other calculations of CC are exhibited in [6, 7].

In contrast, an analysis of the recurrence

x1=0,x_{1}=0, xk=12+12xk1x_{k}=\sqrt{\dfrac{1}{2}+\dfrac{1}{2}x_{k-1}} for k2k\geq 2
  

is trivial [8]:

xk=cos(π2k),xk1,limk 4k(1xk)=π22.\begin{array}[c]{ccccc}x_{k}=\cos\left(\dfrac{\pi}{2^{k}}\right),&&x_{k}\rightarrow 1^{-},&&\lim\limits_{k\rightarrow\infty}\,4^{k}(1-x_{k})=\dfrac{\pi^{2}}{2}.\end{array}

Finally, the recurrence

x1=1,x_{1}=1, xk= 2+2xk1x_{k}=\sqrt{\,2+2x_{k-1}} for k2k\geq 2
  

approaches 1+31+\sqrt{3}, but higher-order asymptotics (akin to [4]) await discovery.

2 The Map x1+4x2+12x\mapsto\dfrac{1+\sqrt{4x^{2}+1}}{2}

Given the recurrence

x0=1,xk=1+4xk12+12for k1\begin{array}[c]{ccccc}x_{0}=1,&&x_{k}=\dfrac{1+\sqrt{4x_{k-1}^{2}+1}}{2}&&\text{for }k\geq 1\end{array}

we start with asymptotics [9]

xk12k+14ln(k)+Cx_{k}\sim\frac{1}{2}k+\frac{1}{4}\ln(k)+C

valid as kk\rightarrow\infty, for some constant C=C(x0)C=C(x_{0}).  On the basis of numerical experimentation, we hypothesize that the next terms of the asymptotic series must be of the form

p1ln(k)k+p0k+q2ln(k)2k2+q1ln(k)k2+q0k2+r3ln(k)3k3+r2ln(k)2k3\displaystyle p_{1}\,\frac{\ln(k)}{k}+\frac{p_{0}}{k}+q_{2}\,\frac{\ln(k)^{2}}{k^{2}}+q_{1}\,\frac{\ln(k)}{k^{2}}+\frac{q_{0}}{k^{2}}+r_{3}\,\frac{\ln(k)^{3}}{k^{3}}+r_{2}\,\frac{\ln(k)^{2}}{k^{3}}
+r1ln(k)k3+r0k3+s4ln(k)4k4+s3ln(k)3k4+s2ln(k)2k4+s1ln(k)k4+s0k4.\displaystyle+r_{1}\,\frac{\ln(k)}{k^{3}}+\frac{r_{0}}{k^{3}}+s_{4}\,\frac{\ln(k)^{4}}{k^{4}}+s_{3}\,\frac{\ln(k)^{3}}{k^{4}}+s_{2}\,\frac{\ln(k)^{2}}{k^{4}}+s_{1}\,\frac{\ln(k)}{k^{4}}+\frac{s_{0}}{k^{4}}.

The challenge is to express each coefficient pjp_{j}, qjq_{j}, rjr_{j}, sjs_{j} as a polynomial in CC.  To find these, we replace kk by k+1k+1 everywhere:

12(k+1)+14ln(k+1)+C+p1ln(k+1)k+1++s0(k+1)4\frac{1}{2}(k+1)+\frac{1}{4}\ln(k+1)+C+p_{1}\,\frac{\ln(k+1)}{k+1}+\cdots+\frac{s_{0}}{(k+1)^{4}}

and expand in powers of kk and ln(k)\ln(k):

ln(k+1)1k12k2+13k314k4+15k5+,\ln(k+1)\sim\frac{1}{k}-\frac{1}{2k^{2}}+\frac{1}{3k^{3}}-\frac{1}{4k^{4}}+\frac{1}{5k^{5}}-+\cdots,
ln(k+1)k+1=(1k1k2+1k31k4+1k5+)ln(k)+(1k232k3+116k42512k5+),\frac{\ln(k+1)}{k+1}=\left(\frac{1}{k}-\frac{1}{k^{2}}+\frac{1}{k^{3}}-\frac{1}{k^{4}}+\frac{1}{k^{5}}-+\cdots\right)\ln(k)+\left(\frac{1}{k^{2}}-\frac{3}{2k^{3}}+\frac{11}{6k^{4}}-\frac{25}{12k^{5}}+-\cdots\right),
1k+11k1k2+1k31k4+1k5+,\frac{1}{k+1}\sim\frac{1}{k}-\frac{1}{k^{2}}+\frac{1}{k^{3}}-\frac{1}{k^{4}}+\frac{1}{k^{5}}-+\cdots,
ln(k+1)2(k+1)2(1k22k3+3k44k5+)ln(k)2+(2k35k4+263k5)ln(k)+(1k43k5+),\frac{\ln(k+1)^{2}}{(k+1)^{2}}\sim\left(\frac{1}{k^{2}}-\frac{2}{k^{3}}+\frac{3}{k^{4}}-\frac{4}{k^{5}}+\cdots\right)\ln(k)^{2}+\left(\frac{2}{k^{3}}-\frac{5}{k^{4}}+\frac{26}{3k^{5}}-\cdots\right)\ln(k)+\left(\frac{1}{k^{4}}-\frac{3}{k^{5}}+\cdots\right),
ln(k+1)(k+1)2(1k22k3+3k44k5+)ln(k)+(1k352k4+133k5+),\frac{\ln(k+1)}{(k+1)^{2}}\sim\left(\frac{1}{k^{2}}-\frac{2}{k^{3}}+\frac{3}{k^{4}}-\frac{4}{k^{5}}+-\cdots\right)\ln(k)+\left(\frac{1}{k^{3}}-\frac{5}{2k^{4}}+\frac{13}{3k^{5}}-+\cdots\right),
1(k+1)21k22k3+3k44k5+,\frac{1}{(k+1)^{2}}\sim\frac{1}{k^{2}}-\frac{2}{k^{3}}+\frac{3}{k^{4}}-\frac{4}{k^{5}}+-\cdots,
ln(k+1)3(k+1)3(1k33k4+6k5+)ln(k)3+(3k4212k5+)ln(k)2+(3k5+)ln(k),\frac{\ln(k+1)^{3}}{(k+1)^{3}}\sim\left(\frac{1}{k^{3}}-\frac{3}{k^{4}}+\frac{6}{k^{5}}-+\cdots\right)\ln(k)^{3}+\left(\frac{3}{k^{4}}-\frac{21}{2k^{5}}-+\cdots\right)\ln(k)^{2}+\left(\frac{3}{k^{5}}+-\cdots\right)\ln(k),
ln(k+1)2(k+1)3(1k33k4+6k5+)ln(k)2+(2k47k5+)ln(k)+(1k5+),\frac{\ln(k+1)^{2}}{(k+1)^{3}}\sim\left(\frac{1}{k^{3}}-\frac{3}{k^{4}}+\frac{6}{k^{5}}-+\cdots\right)\ln(k)^{2}+\left(\frac{2}{k^{4}}-\frac{7}{k^{5}}+-\cdots\right)\ln(k)+\left(\frac{1}{k^{5}}-+\cdots\right),
ln(k+1)(k+1)3(1k33k4+6k5+)ln(k)+(1k472k5+),\frac{\ln(k+1)}{(k+1)^{3}}\sim\left(\frac{1}{k^{3}}-\frac{3}{k^{4}}+\frac{6}{k^{5}}-+\cdots\right)\ln(k)+\left(\frac{1}{k^{4}}-\frac{7}{2k^{5}}+-\cdots\right),
1(k+1)31k33k4+6k5+,\frac{1}{(k+1)^{3}}\sim\frac{1}{k^{3}}-\frac{3}{k^{4}}+\frac{6}{k^{5}}-+\cdots,
ln(k+1)4(k+1)4(1k44k5+)ln(k)4+(4k5+)ln(k)3,\frac{\ln(k+1)^{4}}{(k+1)^{4}}\sim\left(\frac{1}{k^{4}}-\frac{4}{k^{5}}+-\cdots\right)\ln(k)^{4}+\left(\frac{4}{k^{5}}-+\cdots\right)\ln(k)^{3},
ln(k+1)3(k+1)4(1k44k5+)ln(k)3+(3k5+)ln(k)2,\frac{\ln(k+1)^{3}}{(k+1)^{4}}\sim\left(\frac{1}{k^{4}}-\frac{4}{k^{5}}+-\cdots\right)\ln(k)^{3}+\left(\frac{3}{k^{5}}-+\cdots\right)\ln(k)^{2},
ln(k+1)2(k+1)4(1k44k5+)ln(k)2+(2k5+)ln(k),\frac{\ln(k+1)^{2}}{(k+1)^{4}}\sim\left(\frac{1}{k^{4}}-\frac{4}{k^{5}}+-\cdots\right)\ln(k)^{2}+\left(\frac{2}{k^{5}}-+\cdots\right)\ln(k),
ln(k+1)(k+1)4(1k44k5+)ln(k)+(1k5+),\frac{\ln(k+1)}{(k+1)^{4}}\sim\left(\frac{1}{k^{4}}-\frac{4}{k^{5}}+-\cdots\right)\ln(k)+\left(\frac{1}{k^{5}}-+\cdots\right),
1(k+1)41k44k5+.\frac{1}{(k+1)^{4}}\sim\frac{1}{k^{4}}-\frac{4}{k^{5}}+-\cdots.

To avoid dealing with the radical in

2xk+11=4xk2+12x_{k+1}-1=\sqrt{4x_{k}^{2}+1}

square both sides, obtaining

4xk+124xk+1+1=4xk2+14x_{k+1}^{2}-4x_{k+1}+1=4x_{k}^{2}+1

i.e.,

xk+12xk+1=xk2.x_{k+1}^{2}-x_{k+1}=x_{k}^{2}.

Upon rearrangement, relevant terms (in decreasing order of significance) of xk+12xk+1x_{k+1}^{2}-x_{k+1} become

(18p1+p02+2p1C+q1)ln(k)k+(18+p1p0+C2+2p0C+q0)1k\displaystyle\left(\frac{1}{8}-p_{1}+\frac{p_{0}}{2}+2p_{1}C+q_{1}\right)\frac{\ln(k)}{k}+\left(-\frac{1}{8}+p_{1}-p_{0}+\frac{C}{2}+2p_{0}C+q_{0}\right)\frac{1}{k}
+(p12+p12+r22q2+2q2C+q12)ln(k)2k2\displaystyle+\left(-\frac{p_{1}}{2}+p_{1}^{2}+r_{2}-2q_{2}+2q_{2}C+\frac{q_{1}}{2}\right)\frac{\ln(k)^{2}}{k^{2}}
+(116+2p1p02+2p1p02p1C+r1+2q22q1+2q1C+q02)ln(k)k2\displaystyle+\left(-\frac{1}{16}+2p_{1}-\frac{p_{0}}{2}+2p_{1}p_{0}-2p_{1}C+r_{1}+2q_{2}-2q_{1}+2q_{1}C+\frac{q_{0}}{2}\right)\frac{\ln(k)}{k^{2}}
+(7483p12+3p02+p02C4+2p1C2p0C+r0+q12q0+2q0C)1k2\displaystyle+\left(\frac{7}{48}-\frac{3p_{1}}{2}+\frac{3p_{0}}{2}+p_{0}^{2}-\frac{C}{4}+2p_{1}C-2p_{0}C+r_{0}+q_{1}-2q_{0}+2q_{0}C\right)\frac{1}{k^{2}}
+(s33r3+2r3C+r22q2+2p1q2)ln(k)3k3\displaystyle+\left(s_{3}-3r_{3}+2r_{3}C+\frac{r_{2}}{2}-q_{2}+2p_{1}q_{2}\right)\frac{\ln(k)^{3}}{k^{3}}
+(p122p12+s2+3r33r2+2r2C+r12+9q22+2p0q24q2Cq1+2p1q1)ln(k)2k3\displaystyle+\left(\frac{p_{1}}{2}-2p_{1}^{2}+s_{2}+3r_{3}-3r_{2}+2r_{2}C+\frac{r_{1}}{2}+\frac{9q_{2}}{2}+2p_{0}q_{2}-4q_{2}C-q_{1}+2p_{1}q_{1}\right)\frac{\ln(k)^{2}}{k^{3}}
+(1245p12+2p12+p024p1p0+2p1C+s1+2r23r1+2r1C+r025q2\displaystyle+\left(\frac{1}{24}-\frac{5p_{1}}{2}+2p_{1}^{2}+\frac{p_{0}}{2}-4p_{1}p_{0}+2p_{1}C+s_{1}+2r_{2}-3r_{1}+2r_{1}C+\frac{r_{0}}{2}-5q_{2}\right.
+4q2C+4q1+2p0q14q1Cq0+2p1q0)ln(k)k3\displaystyle\left.\;\;\;\;\;+4q_{2}C+4q_{1}+2p_{0}q_{1}-4q_{1}C-q_{0}+2p_{1}q_{0}\right)\frac{\ln(k)}{k^{3}}
+(18+7p137p04+2p1p02p02+C63p1C+2p0C+s0+r13r0\displaystyle+\left(-\frac{1}{8}+\frac{7p_{1}}{3}-\frac{7p_{0}}{4}+2p_{1}p_{0}-2p_{0}^{2}+\frac{C}{6}-3p_{1}C+2p_{0}C+s_{0}+r_{1}-3r_{0}\right.
+2r0C+q25q12+2q1C+7q02+2p0q04q0C)1k3\displaystyle\left.\;\;\;\;\;+2r_{0}C+q_{2}-\frac{5q_{1}}{2}+2q_{1}C+\frac{7q_{0}}{2}+2p_{0}q_{0}-4q_{0}C\right)\frac{1}{k^{3}}
+(4s4+2s4C+s323r32+2p1r3+q22)ln(k)4k4\displaystyle+\left(-4s_{4}+2s_{4}C+\frac{s_{3}}{2}-\frac{3r_{3}}{2}+2p_{1}r_{3}+q_{2}^{2}\right)\frac{\ln(k)^{4}}{k^{4}}
+(4s44s3+2s3C+s22+8r3+2p0r36r3C3r22+2p1r2+3q226p1q2+2q2q1)ln(k)3k4\displaystyle+\left(4s_{4}-4s_{3}+2s_{3}C+\frac{s_{2}}{2}+8r_{3}+2p_{0}r_{3}-6r_{3}C-\frac{3r_{2}}{2}+2p_{1}r_{2}+\frac{3q_{2}}{2}-6p_{1}q_{2}+2q_{2}q_{1}\right)\frac{\ln(k)^{3}}{k^{4}}
+(p12+3p12+3s34s2+2s2C+s1221r32+6r3C+15r22+2p0r26r2C3r12\displaystyle+\left(-\frac{p_{1}}{2}+3p_{1}^{2}+3s_{3}-4s_{2}+2s_{2}C+\frac{s_{1}}{2}-\frac{21r_{3}}{2}+6r_{3}C+\frac{15r_{2}}{2}+2p_{0}r_{2}-6r_{2}C-\frac{3r_{1}}{2}\right.
+2p1r131q24+6p1q26p0q2+6q2C+3q126p1q1+q12+2q2q0)ln(k)2k4\displaystyle\left.\;\;\;\;\;+2p_{1}r_{1}-\frac{31q_{2}}{4}+6p_{1}q_{2}-6p_{0}q_{2}+6q_{2}C+\frac{3q_{1}}{2}-6p_{1}q_{1}+q_{1}^{2}+2q_{2}q_{0}\right)\frac{\ln(k)^{2}}{k^{4}}
+(132+17p165p12p02+6p1p02p1C+2s24s1+2s1C+s02+3r37r2+4r2C\displaystyle+\left(-\frac{1}{32}+\frac{17p_{1}}{6}-5p_{1}^{2}-\frac{p_{0}}{2}+6p_{1}p_{0}-2p_{1}C+2s_{2}-4s_{1}+2s_{1}C+\frac{s_{0}}{2}+3r_{3}-7r_{2}+4r_{2}C\right.
+7r1+2p0r16r1C3r02+2p1r0+61q26+4p0q210q2C13q12\displaystyle\left.\;\;\;\;\;+7r_{1}+2p_{0}r_{1}-6r_{1}C-\frac{3r_{0}}{2}+2p_{1}r_{0}+\frac{61q_{2}}{6}+4p_{0}q_{2}-10q_{2}C-\frac{13q_{1}}{2}\right.
+4p1q16p0q1+6q1C+3q026p1q0+2q1q0)ln(k)k4\displaystyle\left.\;\;\;\;\;+4p_{1}q_{1}-6p_{0}q_{1}+6q_{1}C+\frac{3q_{0}}{2}-6p_{1}q_{0}+2q_{1}q_{0}\right)\frac{\ln(k)}{k^{4}}
+(10396037p112+p12+23p0125p1p0+3p02C8+11p1C32p0C+s14s0+2s0C\displaystyle+\left(\frac{103}{960}-\frac{37p_{1}}{12}+p_{1}^{2}+\frac{23p_{0}}{12}-5p_{1}p_{0}+3p_{0}^{2}-\frac{C}{8}+\frac{11p_{1}C}{3}-2p_{0}C+s_{1}-4s_{0}+2s_{0}C\right.
+r27r12+2r1C+13r02+2p0r06r0C3q2+2q2C+29q16+2p0q1\displaystyle\left.\;\;\;\;\;+r_{2}-\frac{7r_{1}}{2}+2r_{1}C+\frac{13r_{0}}{2}+2p_{0}r_{0}-6r_{0}C-3q_{2}+2q_{2}C+\frac{29q_{1}}{6}+2p_{0}q_{1}\right.
5q1C21q04+2p1q06p0q0+6q0C+q02)1k4.\displaystyle\left.\;\;\;\;\;-5q_{1}C-\frac{21q_{0}}{4}+2p_{1}q_{0}-6p_{0}q_{0}+6q_{0}C+q_{0}^{2}\right)\frac{1}{k^{4}}.

Performing an analogous substitution in xkx_{k}, the corresponding terms of xk2x_{k}^{2} become

(p02+2p1C+q1)ln(k)k+(2p0C+q0)1k+(p12+r2+2q2C+q12)ln(k)2k2\displaystyle\left(\frac{p_{0}}{2}+2p_{1}C+q_{1}\right)\frac{\ln(k)}{k}+\left(2p_{0}C+q_{0}\right)\frac{1}{k}+\left(p_{1}^{2}+r_{2}+2q_{2}C+\frac{q_{1}}{2}\right)\frac{\ln(k)^{2}}{k^{2}}
+(2p1p0+r1+2q1C+q02)ln(k)k2+(p02+r0+2q0C)1k2\displaystyle+\left(2p_{1}p_{0}+r_{1}+2q_{1}C+\frac{q_{0}}{2}\right)\frac{\ln(k)}{k^{2}}+\left(p_{0}^{2}+r_{0}+2q_{0}C\right)\frac{1}{k^{2}}
+(s3+2r3C+r22+2p1q2)ln(k)3k3+(s2+2r2C+r12+2p0q2+2p1q1)ln(k)2k3\displaystyle+\left(s_{3}+2r_{3}C+\frac{r_{2}}{2}+2p_{1}q_{2}\right)\frac{\ln(k)^{3}}{k^{3}}+\left(s_{2}+2r_{2}C+\frac{r_{1}}{2}+2p_{0}q_{2}+2p_{1}q_{1}\right)\frac{\ln(k)^{2}}{k^{3}}
+(s1+2r1C+r02+2p0q1+2p1q0)ln(k)k3+(s0+2r0C+2p0q0)1k3\displaystyle+\left(s_{1}+2r_{1}C+\frac{r_{0}}{2}+2p_{0}q_{1}+2p_{1}q_{0}\right)\frac{\ln(k)}{k^{3}}+\left(s_{0}+2r_{0}C+2p_{0}q_{0}\right)\frac{1}{k^{3}}
+(2s4C+s32+2p1r3+q22)ln(k)4k4+(2s3C+s22+2p0r3+2p1r2+2q2q1)ln(k)3k4\displaystyle+\left(2s_{4}C+\frac{s_{3}}{2}+2p_{1}r_{3}+q_{2}^{2}\right)\frac{\ln(k)^{4}}{k^{4}}+\left(2s_{3}C+\frac{s_{2}}{2}+2p_{0}r_{3}+2p_{1}r_{2}+2q_{2}q_{1}\right)\frac{\ln(k)^{3}}{k^{4}}
+(2s2C+s12+2p0r2+2p1r1+q12+2q2q0)ln(k)2k4\displaystyle+\left(2s_{2}C+\frac{s_{1}}{2}+2p_{0}r_{2}+2p_{1}r_{1}+q_{1}^{2}+2q_{2}q_{0}\right)\frac{\ln(k)^{2}}{k^{4}}
+(2s1C+s02+2p0r1+2p1r0+2q1q0)ln(k)k4+(2s0C+2p0r0+q02)1k4.\displaystyle+\left(2s_{1}C+\frac{s_{0}}{2}+2p_{0}r_{1}+2p_{1}r_{0}+2q_{1}q_{0}\right)\frac{\ln(k)}{k^{4}}+\left(2s_{0}C+2p_{0}r_{0}+q_{0}^{2}\right)\frac{1}{k^{4}}.

Matching coefficients, we obtain

p1=18,p0=12C\begin{array}[c]{ccc}p_{1}=\dfrac{1}{8},&&p_{0}=\dfrac{1}{2}C\end{array}

which are consistent with [10] and

q2=132,q1=(14C116),q0=(12C214C196),\begin{array}[c]{ccccc}q_{2}=-\dfrac{1}{32},&&q_{1}=-\left(\dfrac{1}{4}C-\dfrac{1}{16}\right),&&q_{0}=-\left(\dfrac{1}{2}C^{2}-\dfrac{1}{4}C-\dfrac{1}{96}\right),\end{array}
r3=196,r2=18C364,r1=12C238C+148,\begin{array}[c]{ccccc}r_{3}=\dfrac{1}{96},&&r_{2}=\dfrac{1}{8}C-\dfrac{3}{64},&&r_{1}=\dfrac{1}{2}C^{2}-\dfrac{3}{8}C+\dfrac{1}{48},\end{array}
r0=23C334C2+112C+7576,r_{0}=\frac{2}{3}C^{3}-\dfrac{3}{4}C^{2}+\dfrac{1}{12}C+\dfrac{7}{576},
s4=1256,s3=(116C11384),s2=(38C21132C+5128),\begin{array}[c]{ccccc}s_{4}=-\dfrac{1}{256},&&s_{3}=-\left(\dfrac{1}{16}C-\dfrac{11}{384}\right),&&s_{2}=-\left(\dfrac{3}{8}C^{2}-\dfrac{11}{32}C+\dfrac{5}{128}\right),\end{array}
s1=(C3118C2+516C+1128),s0=(C4116C3+58C2+132C475760)\begin{array}[c]{ccc}s_{1}=-\left(C^{3}-\dfrac{11}{8}C^{2}+\dfrac{5}{16}C+\dfrac{1}{128}\right),&&s_{0}=-\left(C^{4}-\dfrac{11}{6}C^{3}+\dfrac{5}{8}C^{2}+\dfrac{1}{32}C-\dfrac{47}{5760}\right)\end{array}

which are new (as far as is known).

These fourteen parameter values allow us to estimate the constant CC.  Our simple procedure involves computing a10000000000a_{10000000000} exactly via recursion, setting this equal to our series (up to s0/k4s_{0}/k^{4}) and then solving:

C=0.8232354508791921603541165.C=0.8232354508791921603541165....

Note that the estimate 2C1.64647072\,C\approx 1.6464707 appears in [11].  We find the implicit representation

xk+1(xk+11)=xk2x_{k+1}(x_{k+1}-1)=x_{k}^{2}

to be intriguing: the left-hand side echoes the logistic map ξ(1ξ)\xi\,(1-\xi) but only somewhat: it is off by a sign.  In the following section, a comparable implicit representation leads to a surprising outcome.

3 The Map xx+x2+42x\mapsto\dfrac{x+\sqrt{x^{2}+4}}{2}

Given the recurrence

x0=0,xk=xk1+xk12+42for k1\begin{array}[c]{ccccc}x_{0}=0,&&x_{k}=\dfrac{x_{k-1}+\sqrt{x_{k-1}^{2}+4}}{2}&&\text{for }k\geq 1\end{array}

we start with conjectured asymptotics (with no known theoretical basis)

xk2k142ln(k)k1/2Ck1/2x_{k}\sim\sqrt{2k}-\frac{1}{4\sqrt{2}}\frac{\ln(k)}{k^{1/2}}-\frac{C}{k^{1/2}}

as kk\rightarrow\infty, for some constant C=C(x0)C=C(x_{0}).  It is reasonable to hypothesize that the next terms of this series are

p2ln(k)2k3/2+p1ln(k)k3/2+p0k3/2+q3ln(k)3k5/2+q2ln(k)2k5/2+q1ln(k)k5/2+q0k5/2.p_{2}\,\frac{\ln(k)^{2}}{k^{3/2}}+p_{1}\,\frac{\ln(k)}{k^{3/2}}+\frac{p_{0}}{k^{3/2}}+q_{3}\,\frac{\ln(k)^{3}}{k^{5/2}}+q_{2}\,\frac{\ln(k)^{2}}{k^{5/2}}+q_{1}\,\frac{\ln(k)}{k^{5/2}}+\frac{q_{0}}{k^{5/2}}.

To find pjp_{j}, qjq_{j} we replace kk by k+1k+1 everywhere:

2(k+1)142ln(k+1)(k+1)1/2+C(k+1)1/2+p2ln(k+1)2(k+1)3/2++q0(k+1)5/2\sqrt{2(k+1)}-\frac{1}{4\sqrt{2}}\frac{\ln(k+1)}{(k+1)^{1/2}}+\frac{C}{(k+1)^{1/2}}+p_{2}\,\frac{\ln(k+1)^{2}}{(k+1)^{3/2}}+\cdots+\frac{q_{0}}{(k+1)^{5/2}}

and expand in powers of kk and ln(k)\ln(k):

(k+1)1/2k1/2+12k1/218k3/2+116k5/25128k7/2+7256k9/2+,(k+1)^{1/2}\sim k^{1/2}+\frac{1}{2k^{1/2}}-\frac{1}{8k^{3/2}}+\frac{1}{16k^{5/2}}-\frac{5}{128k^{7/2}}+\frac{7}{256k^{9/2}}-+\cdots,
ln(k+1)(k+1)1/2\displaystyle\frac{\ln(k+1)}{(k+1)^{1/2}} (1k1/212k3/2+38k5/2516k7/2+35128k9/2+)ln(k)\displaystyle\sim\left(\frac{1}{k^{1/2}}-\frac{1}{2k^{3/2}}+\frac{3}{8k^{5/2}}-\frac{5}{16k^{7/2}}+\frac{35}{128k^{9/2}}-+\cdots\right)\ln(k)
+(1k3/21k5/2+2324k7/21112k9/2+),\displaystyle+\left(\frac{1}{k^{3/2}}-\frac{1}{k^{5/2}}+\frac{23}{24k^{7/2}}-\frac{11}{12k^{9/2}}+-\cdots\right),
1(k+1)1/21k1/212k3/2+38k5/2516k7/2+35128k9/2+,\frac{1}{(k+1)^{1/2}}\sim\frac{1}{k^{1/2}}-\frac{1}{2k^{3/2}}+\frac{3}{8k^{5/2}}-\frac{5}{16k^{7/2}}+\frac{35}{128k^{9/2}}-+\cdots,
ln(k+1)2(k+1)3/2\displaystyle\frac{\ln(k+1)^{2}}{(k+1)^{3/2}} (1k3/232k5/2+158k7/23516k9/2+)ln(k)2\displaystyle\sim\left(\frac{1}{k^{3/2}}-\frac{3}{2k^{5/2}}+\frac{15}{8k^{7/2}}-\frac{35}{16k^{9/2}}+-\cdots\right)\ln(k)^{2}
+(2k5/24k7/2+7112k9/2+)ln(k)+(1k7/252k9/2+),\displaystyle+\left(\frac{2}{k^{5/2}}-\frac{4}{k^{7/2}}+\frac{71}{12k^{9/2}}-+\cdots\right)\ln(k)+\left(\frac{1}{k^{7/2}}-\frac{5}{2k^{9/2}}+-\cdots\right),
ln(k+1)(k+1)3/2(1k3/232k5/2+158k7/23516k9/2+)ln(k)+(1k5/22k7/2+7124k9/2),\frac{\ln(k+1)}{(k+1)^{3/2}}\sim\left(\frac{1}{k^{3/2}}-\frac{3}{2k^{5/2}}+\frac{15}{8k^{7/2}}-\frac{35}{16k^{9/2}}+\cdots\right)\ln(k)+\left(\frac{1}{k^{5/2}}-\frac{2}{k^{7/2}}+\frac{71}{24k^{9/2}}-\cdots\right),
1(k+1)3/21k3/232k5/2+158k7/23516k9/2+,\frac{1}{(k+1)^{3/2}}\sim\frac{1}{k^{3/2}}-\frac{3}{2k^{5/2}}+\frac{15}{8k^{7/2}}-\frac{35}{16k^{9/2}}+-\cdots,
ln(k+1)3(k+1)5/2\displaystyle\frac{\ln(k+1)^{3}}{(k+1)^{5/2}} (1k5/252k7/2+358k9/2+)ln(k)3\displaystyle\sim\left(\frac{1}{k^{5/2}}-\frac{5}{2k^{7/2}}+\frac{35}{8k^{9/2}}-+\cdots\right)\ln(k)^{3}
+(3k7/29k9/2+)ln(k)2+(3k9/2+)ln(k),\displaystyle+\left(\frac{3}{k^{7/2}}-\frac{9}{k^{9/2}}+-\cdots\right)\ln(k)^{2}+\left(\frac{3}{k^{9/2}}-+\cdots\right)\ln(k),
ln(k+1)2(k+1)5/2(1k5/252k7/2+358k9/2)ln(k)2+(2k7/26k9/2+)ln(k)+(1k9/2),\frac{\ln(k+1)^{2}}{(k+1)^{5/2}}\sim\left(\frac{1}{k^{5/2}}-\frac{5}{2k^{7/2}}+\frac{35}{8k^{9/2}}-\cdots\right)\ln(k)^{2}+\left(\frac{2}{k^{7/2}}-\frac{6}{k^{9/2}}+\cdots\right)\ln(k)+\left(\frac{1}{k^{9/2}}-\cdots\right),
ln(k+1)(k+1)5/2(1k5/252k7/2+358k9/2+)ln(k)+(1k7/23k9/2+),\frac{\ln(k+1)}{(k+1)^{5/2}}\sim\left(\frac{1}{k^{5/2}}-\frac{5}{2k^{7/2}}+\frac{35}{8k^{9/2}}-+\cdots\right)\ln(k)+\left(\frac{1}{k^{7/2}}-\frac{3}{k^{9/2}}+-\cdots\right),
1(k+1)5/21k5/252k7/2+358k9/2+.\frac{1}{(k+1)^{5/2}}\sim\frac{1}{k^{5/2}}-\frac{5}{2k^{7/2}}+\frac{35}{8k^{9/2}}-+\cdots.

To avoid dealing with the radical in

2xk+1xk=xk2+42x_{k+1}-x_{k}=\sqrt{x_{k}^{2}+4}

square both sides, obtaining

4xk+124xk+1xk+xk2=xk2+44x_{k+1}^{2}-4x_{k+1}x_{k}+x_{k}^{2}=x_{k}^{2}+4

i.e.,

xk+121=xk+1xkx_{k+1}^{2}-1=x_{k+1}x_{k}

i.e.,

xk+11xk+1=xk.x_{k+1}-\frac{1}{x_{k+1}}=x_{k}.

Upon rearrangement, the terms of xk+11/xk+1x_{k+1}-1/x_{k+1} involving either k5/2k^{5/2} or k7/2k^{7/2} become most relevant.  Performing an analogous substitution in xkx_{k}, we match coefficients as before.  The terms containing k5/2k^{5/2} give

p2=1642,p1=4C232,p0=82C28C+232\begin{array}[c]{ccccc}p_{2}=-\dfrac{1}{64\sqrt{2}},&&p_{1}=-\dfrac{4C-\sqrt{2}}{32},&&p_{0}=-\dfrac{8\sqrt{2}C^{2}-8C+\sqrt{2}}{32}\end{array}

and the terms containing k7/2k^{7/2} give

q3=15122,q2=3C2128,q1=242C232C+52256,\begin{array}[c]{ccccc}q_{3}=-\dfrac{1}{512\sqrt{2}},&&q_{2}=-\dfrac{3C-\sqrt{2}}{128},&&q_{1}=-\dfrac{24\sqrt{2}C^{2}-32C+5\sqrt{2}}{256},\end{array}
q0=192C31922C2+120C112768.q_{0}=-\frac{192C^{3}-192\sqrt{2}C^{2}+120C-11\sqrt{2}}{768}.

It is astonishing that we have seen these coefficients before – review our analysis [2] of the recurrence

ξk+1=ξk+1ξk\xi_{k+1}=\xi_{k}+\frac{1}{\xi_{k}}

which yields the identical seven expressions – although the signs preceding each coefficient may differ.  This is very surprising!  While the sequences behave distinctly, there is a hidden commonality in structure, captured by the polynomials in CC.

These seven parameter values allow us to estimate the constant CC.  Our simple procedure involves computing a10000000000a_{10000000000} exactly via recursion, setting this equal to our series (up to q0/k5/2q_{0}/k^{5/2}) and then solving:

C=0.4117221539745403446660605.\begin{array}[c]{c}C=0.4117221539745403446660605....\end{array}

Note that the estimate C/20.291131527C/\sqrt{2}\approx 0.291131527 appears in [12].

The seemingly arbitrary maps in Sections 2 & 3 turn out to be curiously linked: setting y=1/xy=1/x, we have

1+4x2+12=xy+y2+42=xf(y),\dfrac{1+\sqrt{4x^{2}+1}}{2}=x\,\dfrac{y+\sqrt{y^{2}+4}}{2}=x\,f(y),
x+x2+42=x1+4y2+12=xg(y).\,\dfrac{x+\sqrt{x^{2}+4}}{2}=x\,\dfrac{1+\sqrt{4y^{2}+1}}{2}=x\,g(y).

Their appearance on a digital bulletin board [11, 12] by different participants three years apart would suggest that there is no connection.  The mystics among us, however, might insist that there are no coincidences.

4 Acknowledgements

My proof in Section 1 is original, but it follows the outline of a related proof that Robert Israel and Anthony Quas gave long ago (reproduced in [1]). I am thankful for helpful correspondence with Paul Zimmermann and Michael Somos. My attempts to reach Dumitru Popa [9, 10] have regrettably failed.  In the statement of Theorem 5 on page 21 of [10], the lead coefficient 1/21/2 of the 1/n1/n term should be 1/41/4.  This particular theorem provides us rigorously with the “seed” (initial terms) from which the asymptotic series in Section 2 grows.  It does not cover the example in Section 3 – the reason is that the derivative g(0)=0g^{\prime}(0)=0 – a generalization over-and-beyond the archetypal scenario f(0)0f^{\prime}(0)\neq 0 will be needed to fill the gap.

5 Addendum: xx(x+1)x\mapsto\sqrt{x(x+1)}

We’ve discovered that the expressions

x+x2+42andx+1x\begin{array}[c]{ccccc}\dfrac{x+\sqrt{x^{2}+4}}{2}&&\text{and}&&x+\dfrac{1}{x}\end{array}

enjoy a certain kindredship, in the sense that iterations based on these functions possess strikingly similar asymptotic series.  The same turns out to be true for

1+4x2+12andx(x+1).\begin{array}[c]{ccccc}\dfrac{1+\sqrt{4x^{2}+1}}{2}&&\text{and}&&\sqrt{x(x+1)}.\end{array}

Consider the recurrence x0=1x_{0}=1, xk=xk1(xk1+1)x_{k}=\sqrt{x_{k-1}(x_{k-1}+1)} for k1k\geq 1.  We find

xk\displaystyle x_{k} 12k14ln(k)C+18ln(k)k+C21k+132ln(k)2k2+(14C116)ln(k)k2\displaystyle\sim\frac{1}{2}k-\frac{1}{4}\ln(k)-C+\frac{1}{8}\frac{\ln(k)}{k}+\frac{C}{2}\frac{1}{k}+\frac{1}{32}\frac{\ln(k)^{2}}{k^{2}}+\left(\frac{1}{4}C-\frac{1}{16}\right)\frac{\ln(k)}{k^{2}}
+(12C214C196)1\k2+196ln(k)3k3+(18C364)ln(k)2k3\displaystyle+\left(\dfrac{1}{2}C^{2}-\dfrac{1}{4}C-\dfrac{1}{96}\right)\frac{1^{\backslash}}{k^{2}}+\frac{1}{96}\frac{\ln(k)^{3}}{k^{3}}+\left(\frac{1}{8}C-\frac{3}{64}\right)\frac{\ln(k)^{2}}{k^{3}}
+(12C238C+148)ln(k)k3+(23C334C2+112C+7576)1k3\displaystyle+\left(\dfrac{1}{2}C^{2}-\dfrac{3}{8}C+\dfrac{1}{48}\right)\frac{\ln(k)}{k^{3}}+\left(\frac{2}{3}C^{3}-\dfrac{3}{4}C^{2}+\dfrac{1}{12}C+\dfrac{7}{576}\right)\frac{1}{k^{3}}
+1256ln(k)4k4+(116C11384)ln(k)3k4+(38C21132C+5128)ln(k)2k4\displaystyle+\dfrac{1}{256}\frac{\ln(k)^{4}}{k^{4}}+\left(\dfrac{1}{16}C-\dfrac{11}{384}\right)\frac{\ln(k)^{3}}{k^{4}}+\left(\dfrac{3}{8}C^{2}-\dfrac{11}{32}C+\dfrac{5}{128}\right)\frac{\ln(k)^{2}}{k^{4}}
+(C3118C2+516C+1128)ln(k)k4+(C4116C3+58C2+132C475760)1k4\displaystyle+\left(C^{3}-\dfrac{11}{8}C^{2}+\dfrac{5}{16}C+\dfrac{1}{128}\right)\frac{\ln(k)}{k^{4}}+\left(C^{4}-\dfrac{11}{6}C^{3}+\dfrac{5}{8}C^{2}+\dfrac{1}{32}C-\dfrac{47}{5760}\right)\frac{1}{k^{4}}

and, unlike the alternating blocks of positive & negative signs in Section 2, here all signs are positive (except for the earliest ln(k)\ln(k)CC terms).  More on this phenomenon is given in [13].  Using the same procedure as before, we obtain

C=1.1751774424585571398132856.C=-1.1751774424585571398132856....

The commonality in structure between two functions does not assist in the numerical calculation of constants.  No relationship between 0.8230.823... and 1.175-1.175... is observed (nor was any expected).

References

  • [1] S. R. Finch, A deceptively simple quadratic recurrence, arXiv:2409.03510.
  • [2] S. R. Finch, Generalized logistic maps and convergence, arXiv:2409.15175.
  • [3] S. R. Finch, The Golden mean, Mathematical Constants, Cambridge Univ. Press, 2003, pp. 5–11; MR2003519.
  • [4] R. B. Paris, An asymptotic approximation connected with the golden number, Amer. Math. Monthly 94 (1987) 272–278; MR0883295.
  • [5] S. Plouffe, The Paris constant, http://plouffe.fr/simon/constants/paris.txt; the numerical estimate of CC here is accurate only to 48 digits.
  • [6] N. J. A. Sloane, Decimal expansion of the Paris constant (accurate to 100 digits), http://oeis.org/A105415.
  • [7] M. Somos, contribution to thread about recursion xn+1=xn+1x_{n+1}=\sqrt{x_{n}+1}, x1=1x_{1}=1, http://math.stackexchange.com/questions/4508647/closed-form-of-a-n1-sqrta-n1-a-1-1/4508737#4508737.
  • [8] J D.’Aurizio, contribution to thread about recursion xn+1=xn+2x_{n+1}=\sqrt{x_{n}+2}, x0=0x_{0}=0, http://math.stackexchange.com/questions/1304500/recurrence-relations-solving-for-b-n.
  • [9] D. Popa, Recurrent sequences and the asymptotic expansion of a function, Gazeta Mat. Ser. A, v. 37 (2019) n. 3-4, 1–16; http://ssmr.ro/gazeta/gma/2019/gma3-4-2019-continut.pdf.
  • [10] D. Popa, Refined asymptotic expansions for some recurrent sequences, Gazeta Mat. Ser. A, v. 41 (2023) n. 1-2, 18–26; http://ssmr.ro/gazeta/gma/2023/gma1-2-2023-continut.pdf.
  • [11] M. Somos, contribution to thread about recursion xn+1=(1+4xn2+1)/2x_{n+1}=\left(1+\sqrt{4x_{n}^{2}+1}\right)/2, x0=1x_{0}=1, http://math.stackexchange.com/questions/4245022/deriving-an-approximation-for-a-recursive-sequence/4359477#4359477.
  • [12] M. Somos, contribution to thread about recursion xn+1=(xn+xn2+4)/2x_{n+1}=\left(x_{n}+\sqrt{x_{n}^{2}+4}\right)/2, x0=0x_{0}=0, http://math.stackexchange.com/questions/2914208/what-is-this-function-related-with-continued-fractions/2914395#2914395.
  • [13] S. R. Finch, What do sin(x)\sin(x) and arcsinh(x)\operatorname{arcsinh}(x) have in common? arXiv:2411.01591.
    Steven Finch
    MIT Sloan School of Management
    Cambridge, MA, USA
    steven_finch_math@outlook.com