This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Iwasawa Invariants for elliptic curves over p\mathbb{Z}_{p}-extensions and Kida’s Formula

Debanjana Kundu Department of Mathematics
University of British Columbia
Vancouver BC, V6T 1Z2, Canada.
dkundu@math.ubc.ca
 and  Anwesh Ray Department of Mathematics
University of British Columbia
Vancouver BC, V6T 1Z2, Canada.
anweshray@math.ubc.ca
Abstract.

This paper aims at studying the Iwasawa λ\lambda-invariant of the pp-primary Selmer group. We study the growth behaviour of pp-primary Selmer groups in pp-power degree extensions over non-cyclotomic p\mathbb{Z}_{p}-extensions of a number field. We prove a generalization of Kida’s formula in such a case. Unlike the cyclotomic p\mathbb{Z}_{p}-extension, where all primes are finitely decomposed, in the p\mathbb{Z}_{p}-extensions we consider, primes may be infinitely decomposed. In the second part of the paper, we study the relationship of Iwasawa invariants with respect to congruences, obtaining refinements of the results of R. Greenberg–V. Vatsal and K. Kidwell. As an application, we provide an algorithm for constructing elliptic curves with large anticyclotomic λ\lambda-invariant. Our results are illustrated by explicit computation.

Key words and phrases:
λ\lambda-invariant, Kida’s formula
2010 Mathematics Subject Classification:
Primary 11R23

1. Introduction

The classical Riemann–Hurwitz formula describes the relationship of the Euler characteristics of two surfaces when one is a ramified covering of the other. Suppose π:R1R2\pi\mathrel{\mathop{\ordinarycolon}}R_{1}\rightarrow R_{2} is an nn-fold covering of compact, connected Riemann surfaces and g1,g2g_{1},\ g_{2} are their respective genus. The classical Riemann–Hurwitz formula is the statement

2g22=(2g12)n+(e(P2)1)2g_{2}-2=(2g_{1}-2)n+\sum\left(e(P_{2})-1\right)

where the sum is over all points P2P_{2} on R2R_{2} and e(P2)e(P_{2}) denotes the ramification index of P2P_{2} for the covering π\pi (see [Sil09, Chapter II Theorem 5.9]). An analogue of the above formula for algebraic number fields was proven by Y. Kida in [Kid80]. Kida’s formula describes the change of (cyclotomic) Iwasawa λ\lambda-invariants in a pp-extension in terms of the degree and the ramification index. In [Iwa81], K. Iwasawa proved this formula using the theory of Galois cohomology for extensions of \mathbb{Q} which are not necessarily finite. More precisely,

Theorem 1 ([Iwa81, Theorem 6]).

Let p2p\geq 2 and KK be a number field. Let KcycK^{\operatorname{cyc}} be the cyclotomic p\mathbb{Z}_{p}-extension of KK and /Kcyc\mathcal{L}/K^{\operatorname{cyc}} be a cyclic extension of degree pp, unramified at every infinite place of KcycK_{\operatorname{cyc}}. Assume that the classical μ\mu-invariant, μ(Kcyc)=0\mu(K^{\operatorname{cyc}})=0. Then

λ()=pλ(Kcyc)+w(e(w|v)1)+(p1)(h2h1).\lambda(\mathcal{L})=p\lambda(K^{\operatorname{cyc}})+\sum_{w^{\prime}}\left(e(w^{\prime}|v^{\prime})-1\right)+(p-1)(h_{2}-h_{1}).

The sum is over all primes ww^{\prime} of \mathcal{L} (above vv^{\prime} in KcycK^{\operatorname{cyc}}) not above pp, hih_{i} is the rank of the abelian group Hi(/Kcyc,U())H^{i}(\mathcal{L}/K_{\operatorname{cyc}},U(\mathcal{L})), and U()U(\mathcal{L}) is the group of all units of \mathcal{L}.

In the study of rational points of elliptic curves, the Selmer group plays a crucial role. In [Maz72], B. Mazur initiated the study of the growth of the pp-primary Selmer group in p\mathbb{Z}_{p}-extension of number fields. In [HM99], Y. Hachimori and K. Matsuno proved an analogue of Theorem 1 for pp-primary Selmer groups of elliptic curves in pp-power extensions of a (fixed) number field over the cyclotomic p\mathbb{Z}_{p}-extension. This result has been generalized in several directions. For modular forms over the cyclotomic p\mathbb{Z}_{p}-extension, analogous results have been worked out for signed Selmer groups at non-ordinary primes by J. Hatley–A. Lei, see [HL19, Theorem 6.7]. It has been extended to a general class of Galois representations over the cyclotomic p\mathbb{Z}_{p}-extension, including the case of pp-ordinary Hilbert modular forms and pp-supersingular modular forms by R. Pollack–T. Weston in [PW06]. The first named author studied Kida-type formula for fine Selmer groups of elliptic curves over the cyclotomic p\mathbb{Z}_{p}-extension of totally real number fields in [Kun21]. Kida-type formulae for pp-primary Selmer groups of elliptic curves have also been proven over special classes of non-abelian pp-adic Lie extensions containing the cyclotomic p\mathbb{Z}_{p}-extension by A. Bhave in [Bha07]. In the first part of this article, we prove a Kida-like formula for pp-primary Selmer groups of elliptic curves in more general p\mathbb{Z}_{p}-extensions (see Theorem 4.3).

For ease of exposition, in the introduction, we state our main result in a simplified setting. Let p5p\geq 5 be a fixed rational prime. Let E/E_{/\mathbb{Q}} be an elliptic curve without complex multiplication and with good ordinary reduction at pp. Let KK be a fixed imaginary quadratic field and KacK^{\operatorname{ac}} denote the anticyclotomic p\mathbb{Z}_{p}-extension of KK. Let L/KL/K be a Galois extension of pp-power degree disjoint from KacK^{\operatorname{ac}} and LL_{\infty} be the compositum LKacL\cdot K^{\operatorname{ac}}. Suppose that the pp-primary Selmer group over KacK^{\operatorname{ac}} (and LL_{\infty}) is cofinitely generated as a p\mathbb{Z}_{p}-module. Then our result relates their respective λ\lambda-invariants.

Theorem 2.

With the setting as above,

λ(E/L)=[L:Kac]λ(E/Kac)+w𝒫1(e(w|v)1)+w𝒫22(e(w|v)1)\lambda(E/L_{\infty})=[L_{\infty}\mathrel{\mathop{\ordinarycolon}}K^{\operatorname{ac}}]\lambda(E/K^{\operatorname{ac}})+\sum_{w^{\prime}\in\mathcal{P}_{1}}\left(e(w^{\prime}|v^{\prime})-1\right)+\sum_{w^{\prime}\in\mathcal{P}_{2}}2\left(e(w^{\prime}|v^{\prime})-1\right)

where e(w|v)e(w^{\prime}|v^{\prime}) is the ramification index of ww^{\prime} above a prime vv^{\prime} (in KacK^{\operatorname{ac}}) and the sets 𝒫1,𝒫2\mathcal{P}_{1},\ \mathcal{P}_{2} are as in Definition 4.1.

We remark that the pp-primary Selmer group need not always be Λ\Lambda-cotorsion over the anticyclotomic p\mathbb{Z}_{p}-extension, KacK^{\operatorname{ac}} (see [Ber95, Cor02, Vat03]). However, by the work of Vatsal [Vat02], M. Bertolini–H. Darmon [BD05], and Pollack–Weston [PW11, Theorem 5.3], it is known that if some natural conditions are satisfied, then the pp-primary Selmer group is not only Λ\Lambda-cotorsion, but also cofinitely generated as a p\mathbb{Z}_{p}-module. We show (in Corollary 4.9) that this property propagates to all pp-power extensions LL of KK (which are disjoint from KacK^{\operatorname{ac}}) satisfying the additional condition that if EE has split multiplicative reduction at \ell and v|v|\ell is inert in KK, then vv splits completely in LL. We expect that the aforementioned result can be extended to the case of plus/minus Selmer groups when pp is a prime of supersingular reduction under reasonable hypotheses introduced by B. D. Kim in [Kim13].

Two elliptic curves E1E_{1} and E2E_{2} over a number field KK are said to be pp-congruent if their associated residual representations are isomorphic, i.e., E1[p]E_{1}[p] and E2[p]E_{2}[p] are isomorphic as Gal(K¯/K)\operatorname{Gal}({}\mkern 3.0mu\overline{\mkern-3.0muK}/K)-modules. There is much interest in investigating the behaviour of Iwasawa invariants for congruent Galois representations. Such investigations were initiated by Greenberg–Vatsal in [GV00]. They considered the case when both E1E_{1} and E2E_{2} are defined over \mathbb{Q}, and showed how the (cyclotomic) Iwasawa μ\mu and λ\lambda-invariants for the pp-primary Selmer groups of E1E_{1} and E2E_{2} are related. Let 𝔗\mathfrak{T} be the set of primes vpv\nmid p of KK at which E1E_{1} or E2E_{2} has bad reduction. Over KcycK^{\operatorname{cyc}}, Greenberg–Vatsal compare the 𝔗\mathfrak{T}-imprimitive Selmer groups of E1E_{1} and E2E_{2}. These results were conditionally generalized by Kidwell for p\mathbb{Z}_{p}-extensions of number fields (see [Kid18, Theorem 6.1]). This requires a finiteness assumption, which is satisfied if primes in 𝔗\mathfrak{T} are finitely decomposed in the p\mathbb{Z}_{p}-extension, KK_{\infty}. We refine the results of Greenberg–Vatsal and Kidwell in two ways. We show that the set of primes 𝔗\mathfrak{T} can be replaced by a smaller set Ω0\Omega_{0} (see Definition 6.1). Having a smaller set of primes Ω0\Omega_{0} to consider makes for a more refined relationship between λ\lambda-invariants for the Selmer groups of E1E_{1} and E2E_{2}. We show that

(1.1) λ(E1/K)λ(E2/K)=vΩ0(σE2(v)σE1(v)),\lambda(E_{1}/K_{\infty})-\lambda(E_{2}/K_{\infty})=\sum_{v\in\Omega_{0}}\left(\sigma_{E_{2}}^{(v)}-\sigma_{E_{1}}^{(v)}\right),

where σEi(v)\sigma_{E_{i}}^{(v)} is the corank of a certain locally defined Λ\Lambda-module (see Definition 6.16). We also clarify the assumptions on the splitting of primes in p\mathbb{Z}_{p}-extensions. These assumptions apply only to the smaller set of primes Ω0\Omega_{0} and not to the set 𝔗\mathfrak{T}. The approach used here is similar to that of the second named author and R. Sujatha, who prove such results for the cyclotomic p\mathbb{Z}_{p}-extension in [RS20].

As an application of our results on congruences, we provide an algorithm for constructing elliptic curves whose Selmer group has a large λ\lambda-invariant. Such elliptic curves are considered over the anticyclotomic p\mathbb{Z}_{p}-extension of an imaginary quadratic field. In [Mat07], this question has been studied for some small primes (i.e., p7p\leq 7 or p=13p=13) for elliptic curves with good ordinary reduction at pp, over the cyclotomic p\mathbb{Z}_{p}-extension (of \mathbb{Q}). In [Kim09], elliptic curves over \mathbb{Q} with supersingular reduction at p=3p=3 and arbitrarily large (plus/minus) λ\lambda-invariant are constructed. The latter method is more amenable for generalization to our setting. In Section 7, we fix the elliptic curve E=32a2E=32a2 (Cremona label) and the prime p=5p=5. Using the work of K. Rubin–A. Silverberg (see [RS95]), we have an algorithm to produce elliptic curves which are 5-congruent to EE with large anticyclotomic λ\lambda-invariant over K=(1)K=\mathbb{Q}(\sqrt{-1}). Here, we crucially use the formula (1.1), which relates λ\lambda-invariants of the Selmer groups of elliptic curves in Rubin–Silverberg family. We illustrate our algorithm via explicit computation.

2. Basic Notions

Throughout this article, let p5p\geq 5 be a fixed prime number and KK be a number field. Let KK_{\infty} be any p\mathbb{Z}_{p}-extension of KK. Two examples of interest are as follows:

  1. (1)

    KK is a number field and K=KcycK_{\infty}=K^{\operatorname{cyc}} is the cyclotomic p\mathbb{Z}_{p}-extension of KK. This is the unique p\mathbb{Z}_{p}-extension of KK contained in K(μp)K(\mu_{p^{\infty}}).

  2. (2)

    KK is an imaginary quadratic field and K=KacK_{\infty}=K^{\operatorname{ac}} is an anticyclotomic p\mathbb{Z}_{p}-extension of KK. This is a p\mathbb{Z}_{p}-extension of KK which is Galois and pro-dihedral over \mathbb{Q}. More generally, KK_{\infty} may be chosen to be an anticyclotomic p\mathbb{Z}_{p}-extension over any CM field, KK.

If KK is any number field with signature (r1,r2)(r_{1},r_{2}), the Leopoldt’s conjecture predicts that the p\mathbb{Z}_{p}-rank of the maximal abelian pro-pp extension of KK unramified away from primes above pp is 1+r21+r_{2}. In other words, it predicts that there are 1+r21+r_{2} independent p\mathbb{Z}_{p}-extensions of KK. For an imaginary quadratic field, the cyclotomic and anticyclotomic extensions together generate a p2\mathbb{Z}_{p}^{2}-extension, containing infinitely many p\mathbb{Z}_{p}-extensions that are unramified at all primes vpv\nmid p and not Galois over \mathbb{Q}.

Set Γ:=Gal(K/K)p\Gamma\mathrel{\mathop{\ordinarycolon}}=\operatorname{Gal}(K_{\infty}/K)\simeq\mathbb{Z}_{p} and Γn:=Gal(K/Kn)\Gamma_{n}\mathrel{\mathop{\ordinarycolon}}=\operatorname{Gal}(K_{\infty}/K_{n}). The Iwasawa algebra Λ\Lambda is the completed group ring limnpΓ/Γn\varprojlim_{n}\mathbb{Z}_{p}\llbracket\Gamma/\Gamma_{n}\rrbracket. Choose a topological generator γΓ\gamma\in\Gamma. There is an isomorphism ΛpT\Lambda\simeq\mathbb{Z}_{p}\llbracket T\rrbracket associating the formal variable TT with γ1\gamma-1.

For a discrete pp-primary abelian group MM, set M:=Homcnts(M,p/p)M^{\vee}\mathrel{\mathop{\ordinarycolon}}=\operatorname{Hom}_{\operatorname{cnts}}(M,\mathbb{Q}_{p}/\mathbb{Z}_{p}) to denote its Pontryagin dual. We say that MM is a cofinitely generated (resp. cotorsion) Λ\Lambda-module if MM^{\vee} is finitely generated (resp. torsion) as a Λ\Lambda-module. For a cofinitely generated and cotorsion Λ\Lambda-module MM, the Structure Theorem of Λ\Lambda-modules asserts that MM^{\vee} is pseudo-isomorphic to a finite direct sum of cyclic Λ\Lambda-modules, i.e., there is a map of Λ\Lambda-modules

M(i=1sΛ/(pmi))(j=1tΛ/(hj(T)))M^{\vee}\longrightarrow\left(\bigoplus_{i=1}^{s}\Lambda/(p^{m_{i}})\right)\oplus\left(\bigoplus_{j=1}^{t}\Lambda/(h_{j}(T))\right)

with finite kernel and cokernel. Here, mi>0m_{i}>0 and hj(T)h_{j}(T) is a distinguished polynomial (i.e., a monic polynomial with non-leading coefficients divisible by pp). The characteristic ideal of MM^{\vee} is (up to a unit) generated by the characteristic element,

fM(p)(T):=pimijhj(T).f_{M}^{(p)}(T)\mathrel{\mathop{\ordinarycolon}}=p^{\sum_{i}m_{i}}\prod_{j}h_{j}(T).

The μ\mu-invariant of MM is defined as the power of pp in fM(p)(T)f_{M}^{(p)}(T). More precisely,

μ(M):={0 if s=0i=1smi if s>0.\mu(M)\mathrel{\mathop{\ordinarycolon}}=\begin{cases}0&\textrm{ if }s=0\\ \sum_{i=1}^{s}m_{i}&\textrm{ if }s>0.\end{cases}

The λ\lambda-invariant of MM is the degree of the characteristic element, i.e.

λ(M):=j=1tdeghj(T).\lambda(M)\mathrel{\mathop{\ordinarycolon}}=\sum_{j=1}^{t}\deg h_{j}(T).
Remark 2.1.

Write Σ\Sigma for the set of primes of KK that are finitely decomposed in KK_{\infty}. For K=KcycK_{\infty}=K^{\operatorname{cyc}}, all primes are finitely decomposed, i.e., Σ\Sigma consists of all primes.

Consider the case when KK is an imaginary quadratic field and K=KacK_{\infty}=K^{\operatorname{ac}}. Let \ell be a rational prime and v|v|\ell be a prime of KK. Then, there are finitely many primes ww of KacK^{\operatorname{ac}} lying above vv if and only if either =p\ell=p or \ell splits in KK (see for example [Bri07]). Thus, by the Cheboratev density theorem, Σ\Sigma consists of 50%50\% of the primes of KK.

Henceforth, we fix a number field KK and a p\mathbb{Z}_{p}-extension KK_{\infty} over KK. Let E/KE_{/K} be an elliptic curve with good ordinary reduction at pp. We now define our module of interest, the pp-primary Selmer group over KK_{\infty}. Let SS be a finite set of primes vv of KK containing the primes above pp and the primes of bad reduction of EE. Denote by KSK_{S} the maximal algebraic extension of KK which is unramified at the primes vSv\notin S. For any finite extension FF of KK such that FKSF\subseteq K_{S} and a prime vSv\in S, define

Jv(E/F):=w|vH1(Fw,E)[p]J_{v}(E/F)\mathrel{\mathop{\ordinarycolon}}=\prod_{w|v}H^{1}\left(F_{w},E\right)[p^{\infty}]

where the product is over all primes ww of FF lying above vv. The pp-primary Selmer group over FF is defined as follows

Sel(E/F):=ker{H1(KS/F,E[p])vSJv(E/F)}.\operatorname{Sel}(E/F)\mathrel{\mathop{\ordinarycolon}}=\ker\left\{H^{1}\left(K_{S}/F,E[p^{\infty}]\right)\longrightarrow\bigoplus_{v\in S}J_{v}(E/F)\right\}.

The pp-primary Selmer group Sel(E/K)\operatorname{Sel}(E/K_{\infty}) is the direct limit of Sel(E/F)\operatorname{Sel}(E/F) as FF ranges over all finite extensions of KK contained in KK_{\infty}. The μ\mu and λ\lambda-invariants of Sel(E/K)\operatorname{Sel}(E/K_{\infty}) are denoted by μ(E/K)\mu(E/K_{\infty}) and λ(E/K)\lambda(E/K_{\infty}). We make the following assumption.

Assumption 2.2.

Sel(E/K)\operatorname{Sel}(E/K_{\infty}) is a cotorsion Λ\Lambda-module with μ(E/K)=0\mu(E/K_{\infty})=0.

Remark 2.3.

Such an assumption is expected to hold in the special cases of interest.

  1. (1)

    Consider the case when EE is an elliptic curve defined over \mathbb{Q} and K=KcycK_{\infty}=K^{\operatorname{cyc}} for an abelian extension K/K/\mathbb{Q}. The pp-primary Selmer group Sel(E/K)\operatorname{Sel}(E/K_{\infty}) is a cotorsion Λ\Lambda-module; see [Kat04]. When EE is an elliptic curve for which the residual Galois representation ρ¯:Gal(¯/)GL2(𝔽p)\overline{\rho}\mathrel{\mathop{\ordinarycolon}}\operatorname{Gal}({}\mkern 3.0mu\overline{\mkern-3.0mu\mathbb{Q}}/\mathbb{Q})\rightarrow\operatorname{GL}_{2}(\mathbb{F}_{p}) is irreducible, it is conjectured by Greenberg that the μ(E/cyc)=0\mu(E/\mathbb{Q}^{\operatorname{cyc}})=0 (see [Gre99, Conjecture 1.11]).

  2. (2)

    Consider the case when E/E_{/\mathbb{Q}} is an elliptic curve of conductor NN, KK is an imaginary quadratic number field, and K=KacK_{\infty}=K^{\operatorname{ac}}. Write N=N+NN=N^{+}N^{-}, where N+N^{+} (resp. NN^{-}) is divisible by primes that split (resp. are inert) in KK. Let ρ¯:GGL2(𝔽p)\overline{\rho}\mathrel{\mathop{\ordinarycolon}}\operatorname{G}_{\mathbb{Q}}\rightarrow\operatorname{GL}_{2}(\mathbb{F}_{p}) be the residual Galois representation on the pp-torsion points E[p]E[p]. Suppose that the following conditions are satisfied

    1. (a)

      ρ¯\overline{\rho} is surjective,

    2. (b)

      if qq is a prime such that q|Nq|N^{-} and q±1modpq\equiv\pm 1\mod{p}, then ρ¯\overline{\rho} is ramified at qq,

    3. (c)

      the number of primes dividing NN^{-} is odd.

    4. (d)

      the pp-th Fourier coefficient ap±1(modp)a_{p}\not\equiv\pm 1\pmod{p}.

    Then [PW11, Theorem 5.3] (see also [KPW17, Remark 1.4]) asserts that Assumption 2.2 holds.

3. Preliminary Results

As before, let p5p\geq 5 be a prime number and KK be a number field. Let LL be a finite Galois extension of KK with the order of the Galois group G=Gal(L/K)G=\operatorname{Gal}(L/K) a power of pp. Let KK_{\infty} be a p\mathbb{Z}_{p}-extension of KK and L=KLL_{\infty}=K_{\infty}\cdot L. The field diagram is drawn below

\mathbb{Q}.KKLLKK_{\infty}LL_{\infty}Gp\mathbb{Z}_{p}         

In the two examples of special interest, we know the following.

  1. (1)

    When KK is a number field and K=KcycK_{\infty}=K^{\operatorname{cyc}} is the cyclotomic p\mathbb{Z}_{p}-extension of KK, LL_{\infty} is identified with the cyclotomic p\mathbb{Z}_{p}-extension of LL, namely LcycL^{\operatorname{cyc}}.

  2. (2)

    When KK is an imaginary quadratic field and K=KacK_{\infty}=K^{\operatorname{ac}} is an anticyclotomic p\mathbb{Z}_{p}-extension of KK, the p\mathbb{Z}_{p}-extension, LL_{\infty} over LL is a non-cyclotomic extension (but it is not an anticyclotomic extension).

In this section, we record some preliminary results required in the proof of Theorem 2. For the remainder of this discussion, we assume the following.

Assumption 3.1.
  1. (1)

    EE has good ordinary reduction at the primes of KK above pp.

  2. (2)

    At least one of the following hold

    1. (a)

      EE does not have complex multiplication,

    2. (b)

      E(L)[p]=0E(L)[p]=0.

The assumption of E(L)[p]=0E(L)[p]=0 is weaker than insisting that the residual representation ρ¯:Gal(L¯/L)GL2(𝔽p)\overline{\rho}\mathrel{\mathop{\ordinarycolon}}\operatorname{Gal}({}\mkern 3.0mu\overline{\mkern-3.0muL}/L)\rightarrow\operatorname{GL}_{2}(\mathbb{F}_{p}) on E[p]E[p] is irreducible.

Lemma 3.2.

Let KK be a number field and E/KE_{/K} be an elliptic curve without complex multiplication. Let /K\mathcal{L}/K be any algebraic extension which is Galois over KK. Then, either

  1. (a)

    E()[p]=E[p]E(\mathcal{L})[p^{\infty}]=E[p^{\infty}] or

  2. (b)

    E()[p]E(\mathcal{L})[p^{\infty}] is finite.

Proof.

Set M=E()[p]M=E(\mathcal{L})[p^{\infty}] and Tp(M)=limnM[pn]T_{p}(M)=\varprojlim_{n}M[p^{n}]. Note that Vp(M):=Tp(M)ppV_{p}(M)\mathrel{\mathop{\ordinarycolon}}=T_{p}(M)\otimes_{\mathbb{Z}_{p}}\mathbb{Q}_{p} is a submodule of Vp(E):=Tp(E)ppV_{p}(E)\mathrel{\mathop{\ordinarycolon}}=T_{p}(E)\otimes_{\mathbb{Z}_{p}}\mathbb{Q}_{p} where Tp(E)T_{p}(E) is the (usual) Tate module of EE. Since EE is an elliptic curve without complex multiplication, by a theorem of Serre (see [Ser97, IV, Theorem 2.1(a)]) we know that Vp(E)V_{p}(E) (hence Vp(M)V_{p}(M)) is irreducible. Thus, Vp(M)V_{p}(M) is either trivial or equal to Vp(E)V_{p}(E). Since dimVp(M)=corankpM\dim V_{p}(M)=\operatorname{corank}_{\mathbb{Z}_{p}}M, it follows that Vp(M)=0V_{p}(M)=0 if and only if MM is finite. But, E[p]E[p^{\infty}] is cofree, so Vp(M)=Vp(E)V_{p}(M)=V_{p}(E) if and only if M=E[p]M=E[p^{\infty}]. This completes the proof of the lemma. ∎

Corollary 3.3.

Let KK be a number field and KK_{\infty} be a p\mathbb{Z}_{p}-extension of KK. Let E/KE_{/K} be an elliptic curve. Assume that either of the following conditions are satisfied

  1. (1)

    EE does not have complex multiplication,

  2. (2)

    E(K)[p]=0E(K)[p]=0.

Then, E(K)[p]E(K_{\infty})[p^{\infty}] is finite.

Proof.
  1. (1)

    When EE does not have complex multiplication, it follows from Serre’s big image theorem that the field K(E[p])K(E[p^{\infty}]) is not a solvable extension of KK. Therefore, E(K)[p]E[p]E(K_{\infty})[p^{\infty}]\neq E[p^{\infty}]. The assertion follows from Lemma 3.2.

  2. (2)

    Since Γp\Gamma\simeq\mathbb{Z}_{p} is pro-pp, it follows that E(K)[p]=0E(K_{\infty})[p]=0 (see for example [NSW13, I.6.13]). Hence, E(K)[p]=0E(K_{\infty})[p^{\infty}]=0.

The following lemma is an analogue of [HM99, Proposition 2.3] in the current setting (see also [How98, Proposition 5.30]). In proving the following lemma, we crucially use the hypothesis introduced in Assumption 3.1(1) that pp has good ordinary reduction at pp. Note that Lemma 3.2 and Corollary 3.3 do not require this assumption.

Lemma 3.4.

Let EE be an elliptic curve with good ordinary reduction at the primes of KK above pp. Suppose that Sel(E/K)\operatorname{Sel}(E/K_{\infty}) is Λ\Lambda-cotorsion and E(K)[p]E(K_{\infty})[p^{\infty}] is finite. Then the map

(3.1) H1(KS/K,E[p])vSJv(E/K)H^{1}\left(K_{S}/K_{\infty},E[p^{\infty}]\right)\longrightarrow\bigoplus_{v\in S}J_{v}(E/K_{\infty})

is surjective. Furthermore, H2(KS/K,E[p])=0H^{2}\left(K_{S}/K_{\infty},E[p^{\infty}]\right)=0.

Proof.

Recall the Cassels–Poitou–Tate sequence (see for example [CS00, p. 9])

0Sel(E/K)\displaystyle 0\rightarrow\operatorname{Sel}(E/K_{\infty}) H1(KS/K,E[p])𝜃vSJv(E/K)\displaystyle\rightarrow H^{1}\left(K_{S}/K_{\infty},E[p^{\infty}]\right)\xrightarrow{\theta}\bigoplus_{v\in S}J_{v}(E/K_{\infty})
(limn𝔖p(E/Kn))H2(KS/K,E[p])0.\displaystyle\rightarrow\left(\varprojlim_{n}\mathfrak{S}_{p}(E/K_{n})\right)^{\vee}\rightarrow H^{2}\left(K_{S}/K_{\infty},E[p^{\infty}]\right)\rightarrow 0.

Here 𝔖p(E/Kn):=limmSelpm(E/Kn)\mathfrak{S}_{p}(E/K_{n})\mathrel{\mathop{\ordinarycolon}}=\varprojlim_{m}\operatorname{Sel}_{p^{m}}(E/K_{n}), and the inverse limit is taken with respect to the maps induced by multiplication by pp. The inverse limit of 𝔖p(E/Kn)\mathfrak{S}_{p}(E/K_{n}) is taken with respect to the corestriction map. In order to prove the result, it suffices to show that limn𝔖p(E/Kn)=0\varprojlim_{n}\mathfrak{S}_{p}(E/K_{n})=0.

Consider the exact sequence (see [CS00, Lemma 1.8])

0E(Kn)[p]𝔖p(E/Kn)Homp(Sel(E/Kn),p)0.0\rightarrow E(K_{n})[p^{\infty}]\rightarrow\mathfrak{S}_{p}(E/K_{n})\rightarrow\operatorname{Hom}_{\mathbb{Z}_{p}}\left(\operatorname{Sel}(E/K_{n})^{\vee},\mathbb{Z}_{p}\right)\rightarrow 0.

Taking inverse limits, we have an exact sequence

limnE(Kn)[p]limn𝔖p(E/Kn)limnHomp(Sel(E/Kn),p).\varprojlim_{n}E(K_{n})[p^{\infty}]\rightarrow\varprojlim_{n}\mathfrak{S}_{p}(E/K_{n})\rightarrow\varprojlim_{n}\operatorname{Hom}_{\mathbb{Z}_{p}}\left(\operatorname{Sel}(E/K_{n})^{\vee},\mathbb{Z}_{p}\right).

Here, the inverse limit limnE(Kn)[p]\varprojlim_{n}E(K_{n})[p^{\infty}] is taken with respect to norm maps. Since E(K)[p]E(K_{\infty})[p^{\infty}] finite, it follows that limnE(Kn)[p]=0\varprojlim_{n}E(K_{n})[p^{\infty}]=0. Therefore, we have an injection

limn𝔖p(E/Kn)limnHomp(Sel(E/Kn),p).\varprojlim_{n}\mathfrak{S}_{p}(E/K_{n})\hookrightarrow\varprojlim_{n}\operatorname{Hom}_{\mathbb{Z}_{p}}\left(\operatorname{Sel}(E/K_{n})^{\vee},\mathbb{Z}_{p}\right).

Set Γn=Gal(K/Kn)\Gamma_{n}=\operatorname{Gal}\left(K_{\infty}/K_{n}\right). By an application of the Control Theorem, (see [Gre01, Theorem 4.1] or [Gre03, Theorem 1]) we have an injection

limn𝔖p(E/Kn)limnHomp(Sel(E/K)Γn,p).\varprojlim_{n}\mathfrak{S}_{p}(E/K_{n})\hookrightarrow\varprojlim_{n}\operatorname{Hom}_{\mathbb{Z}_{p}}\left(\operatorname{Sel}(E/K_{\infty})^{\vee}_{\Gamma_{n}},\mathbb{Z}_{p}\right).

The above injection requires that ker(Sel(E/Kn)Sel(E/K)Γn)\ker\left(\operatorname{Sel}(E/K_{n})\rightarrow\operatorname{Sel}(E/K_{\infty})^{\Gamma_{n}}\right) is finite (but not necessarily bounded). For a Λ\Lambda-module MM, set MιM^{\iota} for the Λ\Lambda-module with the same underlying p\mathbb{Z}_{p}-module and inverse Γ\Gamma-action. By [PR87, §2 Lemme 4(i)]), there is an isomorphism

limnHomp(Sel(E/K)Γn,p)HomΛ(Sel(E/K),Λ)ι.\varprojlim_{n}\operatorname{Hom}_{\mathbb{Z}_{p}}\left(\operatorname{Sel}(E/K_{\infty})^{\vee}_{\Gamma_{n}},\mathbb{Z}_{p}\right)\simeq\operatorname{Hom}_{\Lambda}\left(\operatorname{Sel}(E/K_{\infty})^{\vee},\Lambda\right)^{\iota}.

Since Sel(E/K)\operatorname{Sel}(E/K_{\infty}) is a cotorsion Λ\Lambda-module, it follows that HomΛ(Sel(E/K),Λ)ι=0\operatorname{Hom}_{\Lambda}\left(\operatorname{Sel}(E/K_{\infty})^{\vee},\Lambda\right)^{\iota}=0. Therefore, limn𝔖p(E/Kn)=0\varprojlim_{n}\mathfrak{S}_{p}(E/K_{n})=0. The assertion of the lemma follows. ∎

4. Generalizations of Kida’s formula

In this section, we state a generalization of Kida’s formula which applies to more general p\mathbb{Z}_{p}-extensions. Recall that p5p\geq 5 is a fixed prime number. Let KK be a number field and KK_{\infty} be any p\mathbb{Z}_{p}-extension over KK such that all primes above pp are ramified in KK_{\infty}. Let LL be a finite Galois extension of KK with Galois group G=Gal(L/K)G=\operatorname{Gal}(L/K) of pp-power order. Let E/KE_{/K} be an elliptic curve such that the Assumption 3.1 holds. Recall that SS is a finite set of primes of KK containing the primes above pp and the primes of bad reduction of EE. For our discussion on generalized Kida-type formula, we choose the set SS to be the primes vv in KK satisfying at least one of the following conditions

  1. (1)

    v|pv|p,

  2. (2)

    EE has bad reduction at vv,

  3. (3)

    vv ramifies in the extension L/KL/K.

Let LL_{\infty} denote the composite KLK_{\infty}\cdot L. We define two sets of primes 𝒫1\mathcal{P}_{1} and 𝒫2\mathcal{P}_{2} in LL_{\infty}, which play a crucial role in the generalization of Kida’s formula.

Definition 4.1.

For i=1,2i=1,2, the set 𝒫i\mathcal{P}_{i} consists of primes wpw^{\prime}\nmid p in LL_{\infty} such that

  1. (1)

    w𝒫1w^{\prime}\in\mathcal{P}_{1} if EE has split multiplicative reduction at ww^{\prime},

  2. (2)

    w𝒫2w^{\prime}\in\mathcal{P}_{2} if all of the following conditions are satisfied

    1. (a)

      ww^{\prime} is ramified above a prime vv^{\prime} in KK_{\infty},

    2. (b)

      EE has good reduction at ww^{\prime}

    3. (c)

      E(L,w)E(L_{\infty,w^{\prime}}) possesses a point of order pp.

Recall that Σ\Sigma denotes the set of primes of KK that are finitely decomposed in KK_{\infty}. We introduce an important assumption.

Assumption 4.2.

Assume that each prime w𝒫1𝒫2w^{\prime}\in\mathcal{P}_{1}\cup\mathcal{P}_{2} lies above a prime vΣv\in\Sigma.

By assumption, any prime w𝒫1𝒫2w^{\prime}\in\mathcal{P}_{1}\cup\mathcal{P}_{2} must lie above a prime vSΣv\in S\cap\Sigma. The above assumption guarantees that the sets 𝒫i\mathcal{P}_{i} are finite for i=1,2i=1,2. Our choice of 𝒫1\mathcal{P}_{1} is the same as that in [HM99], and 𝒫2\mathcal{P}_{2} bears the additional condition that the primes w𝒫2w^{\prime}\in\mathcal{P}_{2} are ramified over KK_{\infty}. This does not make an actual difference in terms in the formula relating the λ\lambda-invariants.

For any algebraic extension \mathcal{L} of KK, and a set of primes TT of KK, we write T()T(\mathcal{L}) to denote the set of primes of ww of \mathcal{L} such that w|vw|v for primes vTv\in T. For a prime vv of KK, we write v()v(\mathcal{L}) for the set of primes w|vw|v of \mathcal{L}.

We record our first main result; its proof will occupy this section and the next.

Theorem 4.3.

For each prime ww^{\prime} of LL_{\infty}, write ew(L/K)e_{w^{\prime}}(L_{\infty}/K_{\infty}) for the ramification index of ww^{\prime} for the extension L/KL_{\infty}/K_{\infty}. The λ\lambda-invariant of Sel(E/L)\operatorname{Sel}(E/L_{\infty}) is given by the formula

λ(E/L)=[L:K]λ(E/K)+w𝒫1(ew1)+w𝒫22(ew1).\lambda(E/L_{\infty})=[L_{\infty}\mathrel{\mathop{\ordinarycolon}}K_{\infty}]\lambda(E/K_{\infty})+\sum_{w^{\prime}\in\mathcal{P}_{1}}\left(e_{w^{\prime}}-1\right)+\sum_{w^{\prime}\in\mathcal{P}_{2}}2\left(e_{w^{\prime}}-1\right).

Since GG is a pp-group, it is solvable. Let L0L1LML_{0}\subset L_{1}\subset\cdots\subset L_{M} be a filtration of LL such that Li+1L_{i+1} is Galois over LiL_{i} with Galois group Gal(Li+1/Li)/p\operatorname{Gal}(L_{i+1}/L_{i})\simeq\mathbb{Z}/p\mathbb{Z}. It is easy to show that it suffices to prove Theorem 4.3 when #G=p\#G=p (see for example [Mat00, Lemma 3.5]). Without loss of generality, we assume from here on that G/pG\simeq\mathbb{Z}/p\mathbb{Z}.

Lemma 4.4.

Let KK be a number field and KK_{\infty} be a p\mathbb{Z}_{p}-extension of KK. Let vpv\nmid p be a prime of KK and v|vv^{\prime}|v a prime of KK_{\infty}. The following assertions hold

  1. (1)

    if vv is finitely decomposed in KK_{\infty}, then the localization K,v=KvcycK_{\infty,v^{\prime}}=K_{v}^{\operatorname{cyc}}.

  2. (2)

    if there exists a Galois pp-extension of KvK_{v}, then KvK_{v} contains μp\mu_{p}.

Proof.
  1. (1)

    Since vv is finitely decomposed in KK_{\infty}, we see that K,vK_{\infty,v^{\prime}} is a p\mathbb{Z}_{p}-extension of KK. Since vpv\nmid p, we know that vv is unramified in KK_{\infty} (see [Was97, Proposition 13.2]). By local class field theory, there is a unique unramified pro-extension of KvK_{v} and therefore K,v=KvcycK_{\infty,v^{\prime}}=K_{v}^{\operatorname{cyc}}.

  2. (2)

    This statement is a direct consequence of local class field theory.

We keep the notation introduced at the start of this section. Let vv (resp. ww) be primes above \ell in KK (resp. LL) such that w|vw|v. Let w|ww^{\prime}|w be a prime of LL_{\infty} and v:=wKv^{\prime}\mathrel{\mathop{\ordinarycolon}}=w^{\prime}_{\restriction K_{\infty}}. The diagram below depicts the labelling of primes

.\ell.vvwwvv^{\prime}ww^{\prime}
Lemma 4.5.

Let vSSpv\in S\setminus S_{p} and w𝒫1𝒫2w^{\prime}\notin\mathcal{P}_{1}\cup\mathcal{P}_{2} be a prime of LL_{\infty} above vv. Set vv^{\prime} and ww be as in the diagram above. Then at least one of the following assertions hold.

  1. (1)

    L,w=K,vL_{\infty,w^{\prime}}=K_{\infty,v^{\prime}},

  2. (2)

    E(L,w)[p]=0E(L_{\infty,w^{\prime}})[p^{\infty}]=0.

Proof.

Suppose that L,wK,vL_{\infty,w^{\prime}}\neq K_{\infty,v^{\prime}}, then it follows that LwL_{w} is a nontrivial pp-extension of KvK_{v} which is Galois over KvK_{v}. Therefore by local class field theory, μp\mu_{p} is contained in KvK_{v}. Since vSSpv\in S\setminus S_{p}, either vv is ramified in LL or EE has bad reduction at vv. If EE has good reduction at vv, then vv is ramified in LL. Since vpv\nmid p, it is unramified in KK_{\infty} (see [Was97, Proposition 13.2]). Therefore, L,w/K,vL_{\infty,w^{\prime}}/K_{\infty,v^{\prime}} is a ramified extension. Recall that 𝒫2\mathcal{P}_{2} is the set of primes ww^{\prime} of LL_{\infty} at which all of the following assumptions are satisfied

  1. (1)

    L,w/K,vL_{\infty,w^{\prime}}/K_{\infty,v^{\prime}} is a ramified extension,

  2. (2)

    EE has good reduction at ww^{\prime} and E(L,w)[p]0E(L_{\infty,w^{\prime}})[p^{\infty}]\neq 0.

Note that since EE has good reduction at vv, it also has good reduction at ww^{\prime}. Since L,w/K,vL_{\infty,w^{\prime}}/K_{\infty,v^{\prime}} is a ramified extension and w𝒫2w^{\prime}\notin\mathcal{P}_{2}, it follows that E(L,w)[p]=0E(L_{\infty,w^{\prime}})[p^{\infty}]=0.

When EE has bad reduction at vv, there are two possible subcases

  1. (i)

    EE has good reduction at ww^{\prime} or

  2. (ii)

    EE has bad reduction at ww^{\prime}.

If EE has good reduction at ww^{\prime}, it is easy to see from the Neron-Ogg-Shafarevich criterion that L,w/KvL_{\infty,w^{\prime}}/K_{v} is ramified. Since vv is unramified in KK_{\infty}, it follows that L,w/K,vL_{\infty,w^{\prime}}/K_{\infty,v^{\prime}} is a ramified extension. In this setting the same argument as in the previous case applies.

One is left with the case when EE has bad reduction at ww^{\prime}. Since w𝒫1w^{\prime}\notin\mathcal{P}_{1}, we have by assumption that EE either has non-split multiplicative reduction or additive reduction at ww^{\prime}. In this setting, [HM99, Proposition 5.1 (iii)] applies. Since p5p\geq 5, it follows that E(L,w)[p]=0E(L_{\infty,w^{\prime}})[p^{\infty}]=0. This result may be applied since μp\mu_{p} is contained in KvK_{v}, which is one of the required hypotheses. This has been shown to hold in the beginning of the proof. ∎

Lemma 4.6.

Let vv be any prime is SSpS\setminus S_{p}. Then the kernel of the map

γv:Jv(E/K)Jv(E/L)\gamma_{v}\mathrel{\mathop{\ordinarycolon}}J_{v}(E/K_{\infty})\rightarrow J_{v}(E/L_{\infty})

is finite.

Proof.

Recalling that vpv\nmid p may be infinitely decomposed in K/KK_{\infty}/K, i.e., the set v(K)v(K_{\infty}) may be infinite. At each prime vv(K)v^{\prime}\in v(K_{\infty}), choose a prime ww^{\prime} of LL_{\infty} such that w|vw^{\prime}|v^{\prime}. It follows from the inflation-restriction sequence that

(4.1) kerγvvv(K)H1(L,w/K,v,E(L,w))[p],\ker\gamma_{v}\subseteq\prod_{v^{\prime}\in v(K_{\infty})}H^{1}\left(L_{\infty,w^{\prime}}/K_{\infty,v^{\prime}},E(L_{\infty,w^{\prime}})\right)[p^{\infty}],

the right hand side of which may possibly be an infinite product. Since vpv^{\prime}\nmid p, we know that (see for example [Gre01, Theorem 2.4(i)])

E(K,v)p/p=0.E(K_{\infty,v^{\prime}})\otimes\mathbb{Q}_{p}/\mathbb{Z}_{p}=0.

The following isomorphism is immediate from the Kummer sequence,

(4.2) H1(L,w/K,v,E(L,w))[p]H1(L,w/K,v,E(L,w)[p]).H^{1}\left(L_{\infty,w^{\prime}}/K_{\infty,v^{\prime}},E(L_{\infty,w^{\prime}})\right)[p^{\infty}]\simeq H^{1}\left(L_{\infty,w^{\prime}}/K_{\infty,v^{\prime}},E(L_{\infty,w^{\prime}})[p^{\infty}]\right).

Since E(L,w)[p]E(L_{\infty,w^{\prime}})[p^{\infty}] is a cofinite p\mathbb{Z}_{p}-module and G=Gal(L/K)G=\operatorname{Gal}(L/K) is finite, the right hand side of (4.2) is a finite group. To prove the lemma, we consider two cases
Case 1: vΣv\in\Sigma. By definition of Σ\Sigma, the set v(K)v(K_{\infty}) is finite. The result is immediate.
Case 2: vΣv\notin\Sigma. Assumption 4.2 implies that w𝒫1𝒫2w^{\prime}\notin\mathcal{P}_{1}\cup\mathcal{P}_{2}. By Lemma 4.5 we have that

(4.3) H1(L,w/K,v,E(L,w)[p])=0.H^{1}\left(L_{\infty,w^{\prime}}/K_{\infty,v^{\prime}},E(L_{\infty,w^{\prime}})[p^{\infty}]\right)=0.

Therefore, kerγv\ker\gamma_{v} is zero when vΣv\nmid\Sigma. ∎

Lemma 4.7.

Let vSpv\in S_{p} and consider the restriction map

γv:Jv(E/K)Jv(E/L).\gamma_{v}\mathrel{\mathop{\ordinarycolon}}J_{v}(E/K_{\infty})\rightarrow J_{v}(E/L_{\infty}).

The kernel of γv\gamma_{v} is trivial.

Proof.

Recall that each of the primes vSpv\in S_{p} is assumed to be ramified in KK_{\infty}. It follows that if v|vv^{\prime}|v is a prime in KK_{\infty}, the extension K,v/KvK_{\infty,v^{\prime}}/K_{v} is deeply ramified in the sense of Coates–Greenberg (see [CG96, p. 130]). For each vv(K)v^{\prime}\in v(K_{\infty}), choose a prime ww^{\prime} of LL_{\infty} such that w|vw^{\prime}|v^{\prime}. We have the isomorphism

kerγvvv(K)H1(L,w/K,v,E(L,w))[p].\ker\gamma_{v}\simeq\bigoplus_{v^{\prime}\in v(K_{\infty})}H^{1}\left(L_{\infty,w^{\prime}}/K_{\infty,v^{\prime}},E(L_{\infty,w^{\prime}})\right)[p^{\infty}].

We will show that H1(L,w/K,v,E(L,w))=0H^{1}\left(L_{\infty,w^{\prime}}/K_{\infty,v^{\prime}},E(L_{\infty,w^{\prime}})\right)=0 for vv(K)v^{\prime}\in v(K_{\infty}).

Let \mathcal{F} denote the formal group attached to EE. Let 𝔪w\mathfrak{m}_{w^{\prime}} denote the maximal ideal of (the ring of integers of) L,wL_{\infty,w^{\prime}} and lwl_{w^{\prime}} be the residue field. Let E~\widetilde{E} denote the reduction of EE modulo 𝔪w\mathfrak{m}_{w^{\prime}}. Consider the short exact sequence of GG-modules (see [Sil09, p. 124])

0(𝔪w)E(L,w)E~(lw)0.0\rightarrow\mathcal{F}(\mathfrak{m}_{w^{\prime}})\rightarrow E(L_{\infty,w^{\prime}})\rightarrow\widetilde{E}(l_{w^{\prime}})\rightarrow 0.

Since K,vK_{\infty,v^{\prime}} is a deeply ramified extension, it follows from [CG96, Theorem 3.1] that

Hi(G,(𝔪w))=0 for i=1,2.H^{i}\left(G,\mathcal{F}(\mathfrak{m}_{w^{\prime}})\right)=0\quad\textrm{ for }i=1,2.

A connected commutative algebraic group over a finite field is cohomologically trivial (see result of S. Lang in [Maz72, p. 204]). Therefore,

Hi(G,E~(lw))=0 for i=1,2.H^{i}\left(G,\widetilde{E}(l_{w^{\prime}})\right)=0\quad\textrm{ for }i=1,2.

The lemma is now immediate. ∎

Proposition 4.8.

With setting as above, the kernel and cokernel of the restriction map

α:Sel(E/K)Sel(E/L)G\alpha\mathrel{\mathop{\ordinarycolon}}\operatorname{Sel}(E/K_{\infty})\rightarrow\operatorname{Sel}(E/L_{\infty})^{G}

are finite.

Proof.

The map α\alpha fits into a diagram

0{0}Sel(E/K){\operatorname{Sel}(E/K_{\infty})}H1(KS/K,E[p]){H^{1}\left(K_{S}/K_{\infty},E[p^{\infty}]\right)}vSJv(E/K){\bigoplus_{v\in S}J_{v}(E/K_{\infty})}0{0}0{0}Sel(E/L)G{\operatorname{Sel}(E/L_{\infty})^{G}}H1(KS/L,E[p])G{H^{1}\left(K_{S}/L_{\infty},E[p^{\infty}]\right)^{G}}vSJv(E/L).{\bigoplus_{v\in S}J_{v}(E/L_{\infty}).}α\scriptstyle{\alpha}β\scriptstyle{\beta}γ\scriptstyle{\gamma}

The map γ\gamma decomposes into a direct sum of local maps

γv:Jv(E/K)Jv(E/L).\gamma_{v}\mathrel{\mathop{\ordinarycolon}}J_{v}(E/K_{\infty})\rightarrow J_{v}(E/L_{\infty}).

By the snake lemma, it suffices to show the following

  1. (1)

    the kernel and cokernel of β\beta are both finite,

  2. (2)

    the kernel of each map γv\gamma_{v} is finite (resp. trivial) when v|v|\ell such that \ell is finitely decomposed (resp. \ell splits completely) in K/KK_{\infty}/K.

By the inflation-restriction sequence, the map β\beta fits in an exact sequence

0H1(G,E(L)[p])H1(KS/K,E[p])𝛽H1(KS/L,E[p])GH2(G,E(L)[p]).\begin{split}0&\rightarrow H^{1}\left(G,E(L_{\infty})[p^{\infty}]\right)\rightarrow H^{1}\left(K_{S}/K_{\infty},E[p^{\infty}]\right)\xrightarrow{\beta}H^{1}\left(K_{S}/L_{\infty},E[p^{\infty}]\right)^{G}\\ &\rightarrow H^{2}\left(G,E(L_{\infty})[p^{\infty}]\right)\rightarrow\dots\end{split}.

Since E(L)[p]E(L_{\infty})[p^{\infty}] is of cofinite type, the cohomology groups Hi(G,E(L)[p])H^{i}\left(G,E(L_{\infty})[p^{\infty}]\right) are finite for i=1,2i=1,2. Therefore, the kernel and cokernel of β\beta are both finite. The result follows from the analysis of the local kernel (see Lemmas 4.6 and 4.7). ∎

The next corollary is a generalization of [HM99, Corollary 3.4].

Corollary 4.9.

Let E/KE_{/K} be an elliptic curve such that Sel(E/K)\operatorname{Sel}(E/K_{\infty}) is a Λ\Lambda-cotorsion module with μ(E/K)=0\mu(E/K_{\infty})=0. If L/KL/K is a Galois extension such that Lemma 4.8 holds, then Sel(E/L)\operatorname{Sel}(E/L_{\infty}) is a Λ\Lambda-cotorsion module with μ(E/L)=0\mu(E/L_{\infty})=0.

Proof.

Note that Sel(E/K)\operatorname{Sel}(E/K_{\infty}) is a cotorsion Λ\Lambda-module with μ=0\mu=0 if and only if it is cofinitely generated as a p\mathbb{Z}_{p}-module. It follows from Proposition 4.8 that Sel(E/L)G\operatorname{Sel}(E/L_{\infty})^{G} is also a cofinitely generated p\mathbb{Z}_{p}-module. Equivalently, the GG-coinvariant of Sel(E/L)\operatorname{Sel}(E/L_{\infty})^{\vee} is finitely generated as a p\mathbb{Z}_{p}-module. Since G/pG\simeq\mathbb{Z}/p\mathbb{Z}, the group ring p[G]\mathbb{Z}_{p}[G] is local. By Nakayama’s Lemma, Sel(E/L)\operatorname{Sel}(E/L_{\infty})^{\vee} is finitely generated as a p[G]\mathbb{Z}_{p}[G]-module and hence finitely generated as a p\mathbb{Z}_{p}-module. This completes the proof of the lemma. ∎

Since Assumption 2.2 holds, it follows from Proposition 4.8 and Corollary 4.9 that

λ(E/K)\displaystyle\lambda(E/K_{\infty}) =corankpSel(E/K)=corankpSel(E/L)G,\displaystyle=\operatorname{corank}_{\mathbb{Z}_{p}}\operatorname{Sel}(E/K_{\infty})=\operatorname{corank}_{\mathbb{Z}_{p}}\operatorname{Sel}(E/L_{\infty})^{G},
λ(E/L)\displaystyle\lambda(E/L_{\infty}) =corankpSel(E/L).\displaystyle=\operatorname{corank}_{\mathbb{Z}_{p}}\operatorname{Sel}(E/L_{\infty}).
Definition 4.10.

Let GG be a pp-group and MM be a divisible p[G]\mathbb{Z}_{p}[G]-module of cofinite type. Then the Herbrand quotient of MM is defined as

hG(M)=#H2(G,M)#H1(G,M).h_{G}(M)=\frac{\#H^{2}(G,M)}{\#H^{1}(G,M)}.

When G=/pG=\mathbb{Z}/p\mathbb{Z} and M=Sel(E/L)M=\operatorname{Sel}(E/L_{\infty}), it is straightforward to see from the work of Iwasawa that (cf. [HM99, p. 589])

(4.4) λ(E/L)=pλ(E/K)+(p1)ordp(hG(Sel(E/L))).\lambda(E/L_{\infty})=p\lambda(E/K_{\infty})+(p-1)\operatorname{ord}_{p}\left(h_{G}\left(\operatorname{Sel}(E/L_{\infty})\right)\right).

5. Herbrand Quotient Calculations

Let E/KE_{/K} be an elliptic curve. Throughout this section, we suppose that Assumptions 2.2, 3.1 and 4.2 are satisfied. It follows from (4.4) that to complete the proof of Theorem 4.3, we need to calculate the Herbrand quotient hG(Sel(E/L))h_{G}\left(\operatorname{Sel}(E/L_{\infty})\right). We carry out the calculation in this section, thereby completing the proof of the theorem.

5.1. Simplification of the Herbrand quotient

Corollary 4.9 asserts that Sel(E/L)\operatorname{Sel}(E/L_{\infty}) is Λ\Lambda-cotorsion with μ(E/L)=0\mu(E/L_{\infty})=0. Next, by Corollary 3.3 that E(L)[p]E(L_{\infty})[p^{\infty}] is finite. Using an argument identical to Lemma 3.4, the Cassels–Poitou–Tate sequence becomes

0Sel(E/L)H1(KS/L,E[p])vSJv(E/L)0.0\rightarrow\operatorname{Sel}(E/L_{\infty})\rightarrow H^{1}\left(K_{S}/L_{\infty},E[p^{\infty}]\right)\rightarrow\bigoplus_{v\in S}J_{v}(E/L_{\infty})\rightarrow 0.

It follows that

hG(Sel(E/L))=hG(H1(KS/L,E[p]))vShG(Jv(E/L)).h_{G}\left(\operatorname{Sel}(E/L_{\infty})\right)=\frac{h_{G}\left(H^{1}(K_{S}/L_{\infty},E[p^{\infty}])\right)}{\prod_{v\in S}h_{G}\left(J_{v}(E/L_{\infty})\right)}.

Let vSSpv\in S\setminus S_{p}. Write v(L)v^{*}(L_{\infty}) for the set of primes wv(L)w^{\prime}\in v(L_{\infty}) satisfying both conditions

  1. (1)

    ww^{\prime} is a ramified prime above vv(K)v^{\prime}\in v(K_{\infty}).

  2. (2)

    w𝒫1𝒫2w^{\prime}\in\mathcal{P}_{1}\cup\mathcal{P}_{2}.

It follows from Assumption 4.2 that v(L)v^{*}(L_{\infty}) is finite. Since LL_{\infty} is a Galois extension of KK, it follows that either v(L)=v^{*}(L_{\infty})=\emptyset or v(L)=v(L)v^{*}(L_{\infty})=v(L_{\infty}).

Lemma 5.1.

The following assertions hold.

  1. (1)

    The Herbrand quotient

    hG(H1(KS/L,E[p]))=hG(E(L)[p])=1.h_{G}\left(H^{1}\left(K_{S}/L_{\infty},E[p^{\infty}]\right)\right)=h_{G}\left(E(L_{\infty})[p^{\infty}]\right)=1.
  2. (2)

    The local Herbrand quotient is expressed as follows

    hG(Jv(E/L))=wv(L)hG(E(L,w)[p]).h_{G}\left(J_{v}(E/L_{\infty})\right)=\prod_{w^{\prime}\in v^{*}(L_{\infty})}h_{G}\left(E(L_{\infty,w^{\prime}})[p^{\infty}]\right).

    In the above, the empty product is taken to be 11.

Proof.
  1. (1)

    This assertion follows from [HM99, Lemma 4.1].

  2. (2)

    By [HM99, Lemmas 4.2 and 4.3],

    hG(Jv(E/L))=wv(L)hG(E(L,w)[p]).h_{G}\left(J_{v}(E/L_{\infty})\right)=\prod_{w^{\prime}\in v(L_{\infty})}h_{G}\left(E(L_{\infty,w^{\prime}})[p^{\infty}]\right).

    If w|pw^{\prime}|p, the Herbrand quotient hG(E(L,w)[p])=1h_{G}\left(E(L_{\infty,w^{\prime}})[p^{\infty}]\right)=1 by [HM99, Lemma 4.3], which generalizes verbatim to our setting. Next, assume that vSSpv\in S\setminus S_{p}. To prove the claim, we show that hG(E(L,w)[p])=1h_{G}\left(E(L_{\infty,w^{\prime}})[p^{\infty}]\right)=1 for wv(L)w^{\prime}\notin v^{*}(L_{\infty}). When wv(L)w^{\prime}\notin v^{*}(L_{\infty}), either of the following conditions is satisfied

    1. (a)

      L,w/K,vL_{\infty,w^{\prime}}/K_{\infty,v^{\prime}} is unramified,

    2. (b)

      w𝒫1𝒫2w^{\prime}\notin\mathcal{P}_{1}\cup\mathcal{P}_{2}.

    If w𝒫1𝒫2w^{\prime}\notin\mathcal{P}_{1}\cup\mathcal{P}_{2}, then it follows from Lemma 4.5 that

    hG(E(L,w)[p])=0.h_{G}\left(E(L_{\infty,w^{\prime}})[p^{\infty}]\right)=0.

    Therefore, assume that w𝒫1𝒫2w^{\prime}\in\mathcal{P}_{1}\cup\mathcal{P}_{2}. Thus, L,w/K,vL_{\infty,w^{\prime}}/K_{\infty,v^{\prime}} must be an unramified extension. By Assumption 4.2, since w𝒫1𝒫2w^{\prime}\in\mathcal{P}_{1}\cup\mathcal{P}_{2}, the prime vΣv\in\Sigma and is finitely decomposed in KK_{\infty}. Since vpv\nmid p, it follows that K,v=KvcycK_{\infty,v^{\prime}}=K_{v}^{\operatorname{cyc}}, the unique unramified pro-pp extension of KvK_{v}. Since L,w/K,vL_{\infty,w^{\prime}}/K_{\infty,v^{\prime}} is unramified, it follows that

    L,w=K,v=Kvcyc.L_{\infty,w^{\prime}}=K_{\infty,v^{\prime}}=K_{v}^{\operatorname{cyc}}.

    In this case, it is clear that the Herbrand quotient

    hG(E(L,w)[p])=1h_{G}\left(E(L_{\infty,w^{\prime}})[p^{\infty}]\right)=1

    since the group Gal(L,w/K,v)\operatorname{Gal}(L_{\infty,w^{\prime}}/K_{\infty,v^{\prime}}) is trivial.

Corollary 5.2.

With notation as above,

ordp(hG(Sel(E/L)))=vS(wv(L)ordp(hG(E(L,w)[p]))).\operatorname{ord}_{p}\left(h_{G}\left(\operatorname{Sel}(E/L_{\infty})\right)\right)=-\sum_{v\in S}\left(\sum_{w^{\prime}\in v^{*}(L_{\infty})}\operatorname{ord}_{p}\left(h_{G}(E(L_{\infty,w^{\prime}})[p^{\infty}])\right)\right).
Proof of Theorem 4.3.

Recall that it suffices to prove the theorem when #G=p\#G=p. It is known that (see [HM99, Corollary 5.2])

ordp(hG(E(L,w)[p]))={1 if w𝒫1,2 if w𝒫2.\operatorname{ord}_{p}\left(h_{G}\left(E\left(L_{\infty,w^{\prime}}\right)[p^{\infty}]\right)\right)=\begin{cases}-1\text{ if }w^{\prime}\in\mathcal{P}_{1},\\ -2\text{ if }w^{\prime}\in\mathcal{P}_{2}.\end{cases}

The result follows from (4.4) and Corollary 5.2. ∎

6. Elliptic Curves with Congruent Galois representations

In this section, we study the pp-primary Selmer groups of pp-congruent elliptic curves over (general) p\mathbb{Z}_{p}-extensions. We show that for two pp-congruent elliptic curves, the pp-primary Selmer group of one is a finitely generated p\mathbb{Z}_{p}-module if and only if the same is true for the other elliptic curve (see Theorem 6.14 for the precise statement). Using this result, we can compare the λ\lambda-invariants of these Selmer groups (see Proposition 6.19). This is accomplished by introducing imprimitive Selmer groups for general p\mathbb{Z}_{p}-extensions. Proposition 6.19 is the key tool which allows us to construct elliptic curves with large λ\lambda-invariants in Section 7.

Assume throughout this section that p5p\geq 5. Consider elliptic curves E1E_{1} and E2E_{2} defined over any number field KK such that

  1. (1)

    both E1E_{1} and E2E_{2} have good ordinary reduction at the primes vSpv\in S_{p},

  2. (2)

    the elliptic curves are pp-congruent, i.e., there is a Gal(K¯/K)\operatorname{Gal}({}\mkern 3.0mu\overline{\mkern-3.0muK}/K)-equivariant isomorphism E1[p]E2[p]E_{1}[p]\simeq E_{2}[p],

  3. (3)

    E1(K)[p]=0E_{1}(K)[p]=0 (or equivalently E2(K)[p]=0E_{2}(K)[p]=0). Recall that this condition is automatically satisfied when the residual representation is irreducible.

Since Ei[p]=0E_{i}[p]=0, by an application of Nakayama’s lemma, Ei(K)[p]=0E_{i}(K_{\infty})[p^{\infty}]=0. For i=1,2i=1,2, let NiN_{i} be the conductor of EiE_{i} and let N¯i{}\mkern 3.0mu\overline{\mkern-3.0muN}_{i} be the Artin conductor of the residual representation Ei[p]E_{i}[p]. Note that N¯i{}\mkern 3.0mu\overline{\mkern-3.0muN}_{i} divides NiN_{i} for i=1,2i=1,2. Since E1E_{1} and E2E_{2} are pp-congruent, we have that N¯1=N¯2{}\mkern 3.0mu\overline{\mkern-3.0muN}_{1}={}\mkern 3.0mu\overline{\mkern-3.0muN}_{2}. Let KK_{\infty} be any p\mathbb{Z}_{p}-extension of KK and for i=1,2i=1,2 denote by Sel(Ei/K)\operatorname{Sel}(E_{i}/K_{\infty}) the pp-primary Selmer group of EiE_{i} over KK_{\infty}.

Definition 6.1.

Recall that we denote by 𝔗\mathfrak{T} the set of primes vv of KK at which either E1E_{1} or E2E_{2} (or both) have bad reduction. For i=1,2i=1,2, let Ω(Ei)\Omega(E_{i}) be the set of primes v𝔗v\in\mathfrak{T} satisfying either of the following conditions.

  1. (1)

    The elliptic curve EiE_{i} has good reduction at vv and

    #Ei(𝔽v)[p]0,\#E_{i}(\mathbb{F}_{v})[p]\neq 0,

    where 𝔽v\mathbb{F}_{v} is the residue field at vv.

  2. (2)

    The elliptic curve EiE_{i} has bad reduction at vv. Furthermore, setting K:=K(μp)K^{\prime}\mathrel{\mathop{\ordinarycolon}}=K(\mu_{p}), the elliptic curve EiE_{i} has split multiplicative reduction at all primes wvw\mid v of KK^{\prime}.

Remark 6.2.

Note that the second condition above implies that if KvK_{v} contains μp\mu_{p}, then, EiE_{i} has split multiplicative reduction at vv.

Let Ω0\Omega_{0} denote the set Ω(E1)Ω(E2)\Omega(E_{1})\cup\Omega(E_{2}). Since EiE_{i} have good reduction at vSpv\in S_{p}, note that SpΩ0=S_{p}\cap\Omega_{0}=\emptyset. Write Ω\Omega for the set Ω0Sp\Omega_{0}\cup S_{p} and Ω~\widetilde{\Omega} be the set of primes vv for which vSpv\in S_{p} or one of the elliptic curves E1E_{1} or E2E_{2} has bad reduction at vv. Thus, Ω~\widetilde{\Omega} contains the set Ω\Omega. Recall that Σ\Sigma is the set of primes of KK that are finitely decomposed in KK_{\infty}.

For the remainder of the section we make the following assumption for E1E_{1} and E2E_{2}.

Assumption 6.3.

For i=1,2i=1,2, assume that Ω(Ei)Σ\Omega(E_{i})\subset\Sigma.

Throughout, we write EE to denote either of the elliptic curves, E1E_{1} or E2E_{2}.

Lemma 6.4.

Suppose that Sel(E/K)\operatorname{Sel}(E/K_{\infty}) is Λ\Lambda-cotorsion and that E(K)[p]E(K_{\infty})[p^{\infty}] is finite. Then H1(KΩ~/K,E[p])H^{1}(K_{\widetilde{\Omega}}/K_{\infty},E[p^{\infty}]) has no proper Λ\Lambda-submodules of finite index.

Proof.

When K=KcycK_{\infty}=K^{\operatorname{cyc}}, the result is proven by Greenberg (see [Gre99, Proposition 4.9]). The proof crucially uses the surjectivity of the restriction map (3.1). The argument generalizes verbatim. ∎

We recall an equivalent definition of the Selmer group due to Greenberg. The pp-primary Selmer group can also be defined as the kernel of the following global-to-local map

H1(KΩ~/K,E[p])vΩ~v(E/K).H^{1}(K_{\widetilde{\Omega}}/K_{\infty},E[p^{\infty}])\rightarrow\prod_{v\in\widetilde{\Omega}}\mathcal{H}_{v}(E/K_{\infty}).

Here for each finite prime vΩ~Spv\in\widetilde{\Omega}\setminus S_{p}, the local term is defined as follows

v(E/K)=v|vH1(K,v,E[p]),\mathcal{H}_{v}(E/K_{\infty})=\prod_{v^{\prime}|v}H^{1}\left({K_{\infty}}_{,v^{\prime}},E[p^{\infty}]\right),

where K,vK_{\infty,v^{\prime}} is the union of all completions of number fields contained in KK_{\infty}. The local condition at primes vSpv\in S_{p} is more subtle. Since EE has good ordinary reduction at all primes vSpv\in S_{p}, its pp-adic Tate module TT fits into a short exact sequence of GKv\operatorname{G}_{K_{v}}-modules

0T+TT00\rightarrow T^{+}\rightarrow T\rightarrow T^{-}\rightarrow 0

such that T+T^{+} and TT^{-} are free of rank 11 over p\mathbb{Z}_{p}, and TT^{-} is unramified. Identifying E[p]E[p^{\infty}] with Tp/pT\otimes\mathbb{Q}_{p}/\mathbb{Z}_{p}, write D=Tp/pD=T^{-}\otimes\mathbb{Q}_{p}/\mathbb{Z}_{p}. For vSpv\in S_{p}, define

v(E/K)=v|vH1(K,v,E[p])/Lv\mathcal{H}_{v}(E/K_{\infty})=\bigoplus_{v^{\prime}|v}H^{1}\left({K_{\infty}}_{,v^{\prime}},E[p^{\infty}]\right)/L_{v^{\prime}}

with

Lv=ker(H1(K,v,E[p])H1(Iv,D)).L_{v^{\prime}}=\ker\left(H^{1}\left({K_{\infty}}_{,v^{\prime}},E[p^{\infty}]\right)\rightarrow H^{1}\left(I_{v^{\prime}},D\right)\right).

Here IvI_{v^{\prime}} denotes the inertia group at vv^{\prime}. This definition of the Selmer group is more useful to work with when proving results about congruent Galois representations. The following result shows that the above definition of the Selmer group (due to Greenberg) matches the usual Selmer group. Thus, we do not distinguish between them in this paper.

Lemma 6.5.

Let vΩ~v\in\widetilde{\Omega}, then

v(E/K)=Jv(E/K).\mathcal{H}_{v}(E/K_{\infty})=J_{v}(E/K_{\infty}).
Proof.

Suppose that vSpv\notin S_{p}. Let p\ell\neq p be a rational prime and LL be any algebraic extension of \mathbb{Q}_{\ell}. Then, [Gre99, Proposition 2.1] asserts that E(L)p/p=0E(L)\otimes\mathbb{Q}_{p}/\mathbb{Z}_{p}=0. In particular, we have that E(K,v)p/p=0E(K_{\infty,v^{\prime}})\otimes\mathbb{Q}_{p}/\mathbb{Z}_{p}=0, for v|vv^{\prime}|v. Thus, v(E/K)=Jv(E/K)\mathcal{H}_{v}(E/K_{\infty})=J_{v}(E/K_{\infty}). When vSpv\in S_{p}, the result follows from [Gre99, Proposition 2.4]. ∎

We now introduce the Ω0\Omega_{0}-imprimitive Selmer group. It is a generalized Selmer group obtained by imposing conditions only at primes vΩ~Ω0v\in\widetilde{\Omega}\setminus\Omega_{0}.

Definition 6.6.

The Ω0\Omega_{0} imprimitive Selmer group is defined as follows

SelΩ0(E/K):=ker(H1(KΩ~/K,E[p])θ0vΩ~Ω0v(E/K)).\operatorname{Sel}^{\Omega_{0}}(E/K_{\infty})\mathrel{\mathop{\ordinarycolon}}=\ker\left(H^{1}\left(K_{\widetilde{\Omega}}/K_{\infty},E[p^{\infty}]\right)\xrightarrow{\theta_{0}}\bigoplus_{v\in\widetilde{\Omega}\setminus\Omega_{0}}\mathcal{H}_{v}(E/K_{\infty})\right).
Lemma 6.7.

Let vΩ0v\in\Omega_{0}, then v(E/K)\mathcal{H}_{v}(E/K_{\infty}) is a cofinitely generated and cotorsion Λ\Lambda-module with μ\mu-invariant equal to 0. Equivalently, it is a cofinitely generated p\mathbb{Z}_{p}-module.

Proof.

We refer the reader to the standard argument on [GV00, pp. 37–38]. ∎

We now define the reduced classical and imprimitive Selmer groups. These are denoted by Sel(E[p]/K)\operatorname{Sel}(E[p]/K_{\infty}) and SelΩ0(E[p]/K)\operatorname{Sel}^{\Omega_{0}}(E[p]/K_{\infty}), respectively. Define

v(E[p]/K):={v|vH1(K,v,E[p]) if vΩ~Spv|vH1(K,v,E[p])/L¯v if vSp\mathcal{H}_{v}(E[p]/K_{\infty})\mathrel{\mathop{\ordinarycolon}}=\begin{cases}\prod_{v^{\prime}|v}H^{1}\left({K_{\infty}}_{,v^{\prime}},E[p]\right)&\ \textrm{ if }v\in\widetilde{\Omega}\setminus S_{p}\\ \bigoplus_{v^{\prime}|v}H^{1}(K_{\infty,v^{\prime}},E[p])/\overline{L}_{v^{\prime}}&\ \textrm{ if }v\in S_{p}\end{cases}

where

L¯v=ker(H1(K,v,E[p])H1(Iv,D[p])).\overline{L}_{v^{\prime}}=\ker\left(H^{1}\left({K_{\infty}}_{,v^{\prime}},E[p]\right)\rightarrow H^{1}\left(I_{v^{\prime}},D[p]\right)\right).
Definition 6.8.

The residual imprimitive Selmer group is defined as follows

SelΩ0(E[p]/K):=ker(H1(KΩ~/K,E[p])θ¯0vΩ~Ω0v(E[p]/K)).\operatorname{Sel}^{\Omega_{0}}(E[p]/K_{\infty})\mathrel{\mathop{\ordinarycolon}}=\operatorname{ker}\left(H^{1}\left(K_{\widetilde{\Omega}}/K_{\infty},E[p]\right)\xrightarrow{\overline{\theta}_{0}}\bigoplus_{v\in\widetilde{\Omega}\setminus\Omega_{0}}\mathcal{H}_{v}(E[p]/K_{\infty})\right).
Lemma 6.9.

Let GG and MM be finite abelian groups of pp-power order such that GG acts on MM. Suppose that MG=0M^{G}=0, then M=0M=0.

Proof.

The result follows from [NSW13, Proposition 1.6.12]. ∎

Lemma 6.10.

Choosing an index i{1,2}i\in\{1,2\}, set E:=EiE\mathrel{\mathop{\ordinarycolon}}=E_{i}. Given a prime vΩ~\Ω0v\in\tilde{\Omega}\backslash\Omega_{0}, the natural map

ιv:v(E[p]/K)v(E[p]/K)[p],\iota_{v}\mathrel{\mathop{\ordinarycolon}}\mathcal{H}_{v}(E[p]/K_{\infty})\rightarrow\mathcal{H}_{v}(E[p^{\infty}]/K_{\infty})[p],

induced by inclusion of E[p]E[p] into E[p]E[p^{\infty}], is injective.

Proof.

Recall that Ω~\tilde{\Omega} is the set of primes 𝔗Sp\mathfrak{T}\cup S_{p}, where 𝔗\mathfrak{T} is the set of vv of KK at which either E1E_{1} or E2E_{2} or both have bad reduction. The definition of Ω(Ei)\Omega(E_{i}) is given in Definition 6.1. Since vΩ(Ei)v\nmid\Omega(E_{i}), we have a number of cases to consider.

  1. (1)

    First, consider the case when vSpv\in S_{p}. We consider the commutative square with injective horizontal maps

    v(E[p]/K){\mathcal{H}_{v}(E[p]/K_{\infty})}v|vH1(Iv,D[p]){\bigoplus_{v^{\prime}|v}H^{1}\left(I_{v^{\prime}},D[p]\right)}v(E[p]/K)[p]{\mathcal{H}_{v}(E[p^{\infty}]/K_{\infty})[p]}v|vH1(Iv,D)[p].{\bigoplus_{v^{\prime}|v}H^{1}\left(I_{v^{\prime}},D\right)[p].}ιv\scriptstyle{\iota_{v}}jv\scriptstyle{j_{v}}

    Since DD is unramified for primes vSpv\in S_{p}, it follows that H0(Iv,D)=DH^{0}(I_{v^{\prime}},D)=D is divisible. Thus,

    ker(jv)=H0(Iv,D)/p=0.\ker(j_{v})=H^{0}(I_{v^{\prime}},D)/p=0.

    Therefore, jvj_{v} is injective, and so is ιv\iota_{v}.

  2. (2)

    Next, suppose that v𝔗v\in\mathfrak{T} is a prime at which EE has good reduction. Since vΩ0v\notin\Omega_{0}, and hence vΩ(E)v\notin\Omega(E), by assumption, we have that E(𝔽v)[p]=0E(\mathbb{F}_{v})[p^{\infty}]=0. Since vv is a prime in 𝔗\mathfrak{T}, it follows that vpv\nmid p and thus the kernel of the reduction map

    E(Kv)E(𝔽v)E(K_{v})\rightarrow E(\mathbb{F}_{v})

    is pro-\ell for p\ell\neq p. Hence, E(𝔽v)[p]=0E(\mathbb{F}_{v})[p^{\infty}]=0 implies that E(Kv)[p]=0E(K_{v})[p^{\infty}]=0. Since K/KK_{\infty}/K is a pro-pp extension and E(Kv)[p]=0E(K_{v})[p^{\infty}]=0, it follows from Lemma 6.9 that E(K,v)[p]=0E(K_{\infty,v^{\prime}})[p^{\infty}]=0 as well for any prime v|vv^{\prime}|v of KK_{\infty}. Therefore, it follows from the Kummer sequence that the map ιv\iota_{v} must be injective.

  3. (3)

    Finally, consider the case when v𝔗v\in\mathfrak{T} is a prime at which EE has bad reduction. Setting K:=K(μp)K^{\prime}\mathrel{\mathop{\ordinarycolon}}=K(\mu_{p}), we denote by KK^{\prime}_{\infty} the composite of KK_{\infty} with KK^{\prime}. Since we assume that vΩ(E)v\notin\Omega(E), there is a prime w|vw|v of KK^{\prime} such that EE does not have split multiplicative reduction at ww. Since EE has bad reduction at vv, and vv is unramified in KK^{\prime}, it follows that EE has bad reduction at ww. Hence, we deduce that EE has either non-split multiplicative reduction, or additive reduction at ww.

    Choose any prime vv^{\prime} of KK_{\infty} that lies above vv, and consider the map

    αv:H1(K,v,E[p])H1(K,v,E[p])[p]\alpha_{v^{\prime}}\mathrel{\mathop{\ordinarycolon}}H^{1}(K_{\infty,v^{\prime}},E[p])\rightarrow H^{1}(K_{\infty,v^{\prime}},E[p^{\infty}])[p]

    which is induced by inclusion of E[p]E[p] into E[p]E[p^{\infty}]. Let ww^{\prime} be the unique prime of KK^{\prime}_{\infty} that lies above both ww and vv^{\prime}. Consider the map

    βw:H1(K,w,E[p])H1(K,w,E[p])[p],\beta_{w^{\prime}}\mathrel{\mathop{\ordinarycolon}}H^{1}(K^{\prime}_{\infty,w^{\prime}},E[p])\rightarrow H^{1}(K^{\prime}_{\infty,w^{\prime}},E[p^{\infty}])[p],

    also induced by inclusion of E[p]E[p] into E[p]E[p^{\infty}]. Note that these maps fit into a commutative square

    H1(K,v,E[p]){H^{1}(K_{\infty,v^{\prime}},E[p])}H1(K,w,E[p]){H^{1}(K^{\prime}_{\infty,w^{\prime}},E[p])}H1(K,v,E[p])[p]{H^{1}(K_{\infty,v^{\prime}},E[p^{\infty}])[p]}H1(K,w,E[p])[p].{H^{1}(K^{\prime}_{\infty,w^{\prime}},E[p^{\infty}])[p].}αv\scriptstyle{\alpha_{v^{\prime}}}βw\scriptstyle{\beta_{w^{\prime}}}

    To show that ιv\iota_{v} is injective, it suffices to prove that αv\alpha_{v^{\prime}} is injective for all v|vv^{\prime}|v. In the above diagram, the horizontal maps are restriction maps. Since K/KK^{\prime}/K has degree coprime to pp, it follows that K,w/K,vK^{\prime}_{\infty,w^{\prime}}/K_{\infty,v^{\prime}} also has degree coprime to pp. Therefore, from the inflation-restriction sequence, the horizontal restriction maps in the above diagram maps are injective. As a consequence, if we show that βw\beta_{w^{\prime}} is injective, then it shall follow that αv\alpha_{v^{\prime}} is also injective. Note that the kernel of βw\beta_{w^{\prime}} is H0(K,w,E[p])/pH^{0}(K^{\prime}_{\infty,w^{\prime}},E[p^{\infty}])/p. Thus, it suffices to show that E(K,w)[p]E(K^{\prime}_{\infty,w^{\prime}})[p^{\infty}] is pp-divisible. Since KK^{\prime} contains μp\mu_{p} and p5p\geq 5, it follows from [HM99, Proposition 5.1] that

    E(K,w)[p]=0,E(K^{\prime}_{\infty,w^{\prime}})[p^{\infty}]=0,

    and the result follows from this.

Proposition 6.11.

Let EE be either E1E_{1} or E2E_{2} and assume that E(K)[p]=0E(K)[p]=0. Then,

SelΩ0(E[p]/K)SelΩ0(E/K)[p].\operatorname{Sel}^{\Omega_{0}}(E[p]/K_{\infty})\simeq\operatorname{Sel}^{\Omega_{0}}(E/K_{\infty})[p].
Proof.

Recall that Ω~\widetilde{\Omega} consists of a finite set of primes containing the primes above pp and the primes at which either E1E_{1} or E2E_{2} has bad reduction. In particular, Ω0\Omega_{0} is contained in Ω~\widetilde{\Omega}. Consider the diagram relating the two Selmer groups

0{0}SelΩ0(E[p]/K){\operatorname{Sel}^{\Omega_{0}}(E[p]/K_{\infty})}H1(KΩ~/K,E[p]){H^{1}(K_{\widetilde{\Omega}}/K_{\infty},E[p])}imθ¯0{\operatorname{im}\overline{\theta}_{0}}0{0}0{0}SelΩ0(E/K)[p]{\operatorname{Sel}^{\Omega_{0}}(E/K_{\infty})[p]}H1(KΩ~/K,E[p])[p]{H^{1}(K_{\widetilde{\Omega}}/K_{\infty},E[p^{\infty}])[p]}(imθ0)[p]{\left(\operatorname{im}\theta_{0}\right)[p]}0,{0,}f\scriptstyle{f}g\scriptstyle{g}h\scriptstyle{h}

where the vertical maps are induced by the Kummer sequence. Note that

0=H0(K,E[p])=H0(K,E[p])Γ.0=H^{0}(K,E[p])=H^{0}(K_{\infty},E[p])^{\Gamma}.

Since K/KK_{\infty}/K is a pro-pp extension, it follows from Lemma 6.9 that H0(K,E[p])=0H^{0}(K_{\infty},E[p^{\infty}])=0. Therefore gg (and hence ff) is injective. On the other hand, it is clear that gg is surjective. By an application of the snake lemma, it suffices to show that hh is injective. This follows from Lemma 6.10. ∎

Lemma 6.12.

The isomorphism E1[p]E2[p]E_{1}[p]\simeq E_{2}[p] of Galois modules induces an isomorphism of residual Selmer groups

SelΩ0(E1[p]/K)SelΩ0(E2[p]/K).\operatorname{Sel}^{\Omega_{0}}(E_{1}[p]/K_{\infty})\simeq\operatorname{Sel}^{\Omega_{0}}(E_{2}[p]/K_{\infty}).
Proof.

Let TiT_{i} be the pp-adic Tate module of EiE_{i} and identify Ei[p]E_{i}[p^{\infty}] with Tip/pT_{i}\otimes\mathbb{Q}_{p}/\mathbb{Z}_{p}. Note that Ei[p]E_{i}[p] fits into a short exact sequence

0Ci[p]Ei[p]Di[p]0,0\rightarrow C_{i}[p]\rightarrow E_{i}[p]\rightarrow D_{i}[p]\rightarrow 0,

where Ci=Ti+p/pC_{i}=T_{i}^{+}\otimes\mathbb{Q}_{p}/\mathbb{Z}_{p} and Di=Tip/pD_{i}=T_{i}^{-}\otimes\mathbb{Q}_{p}/\mathbb{Z}_{p}. The action of Gp\operatorname{G}_{\mathbb{Q}_{p}} on CiC_{i} is via χγi\chi\gamma_{i}, where γi\gamma_{i} is an unramified character and χ\chi is the pp-adic cyclotomic character. On the other hand, the action on DiD_{i} is via the unramified character γi1\gamma_{i}^{-1}.

Let Φ:E1[p]E2[p]\Phi\mathrel{\mathop{\ordinarycolon}}E_{1}[p]\xrightarrow{\sim}E_{2}[p] be a choice of isomorphism of Galois modules. It induces an isomorphism H1(KΩ~/K,E1[p])H1(KΩ~/K,E2[p])H^{1}(K_{\widetilde{\Omega}}/K_{\infty},E_{1}[p])\xrightarrow{\sim}H^{1}(K_{\widetilde{\Omega}}/K_{\infty},E_{2}[p]). To prove the lemma, it suffices to show that for vΩ~Ω0v\in\widetilde{\Omega}\setminus\Omega_{0}, the isomorphism Φ\Phi induces an isomorphism

v(E1[p]/K)v(E2[p]/K).\mathcal{H}_{v}(E_{1}[p]/K_{\infty})\xrightarrow{\sim}\mathcal{H}_{v}(E_{2}[p]/K_{\infty}).

This is clear for vpv\neq p. For v=pv=p, this follows from the fact that Φ\Phi induces an isomorphism D1[p]D2[p]D_{1}[p]\xrightarrow{\sim}D_{2}[p]. ∎

Corollary 6.13.

With notation as above,

SelΩ0(E1/K)[p]SelΩ0(E2/K)[p].\operatorname{Sel}^{\Omega_{0}}(E_{1}/K_{\infty})[p]\simeq\operatorname{Sel}^{\Omega_{0}}(E_{2}/K_{\infty})[p].
Theorem 6.14.

Let E1E_{1} and E2E_{2} be pp-congruent elliptic curves defined over KK such that

  1. (1)

    E1(K)[p]=0E_{1}(K)[p]=0, or equivalently, E2(K)[p]=0E_{2}(K)[p]=0.

  2. (2)

    Assumption 6.3 is satisfied.

Then,

Sel(E1/K) is Λ-cotorsion with μ=0Sel(E2/K) is Λ-cotorsion with μ=0.\begin{split}&\operatorname{Sel}(E_{1}/K_{\infty})\text{ is }\Lambda\text{-cotorsion with }\mu=0\\ \Leftrightarrow&\operatorname{Sel}(E_{2}/K_{\infty})\text{ is }\Lambda\text{-cotorsion with }\mu=0.\end{split}
Proof.

For i=1,2i=1,2, we have a left exact sequence

0Sel(Ei/K)SelΩ0(Ei/K)vΩ0v(Ei/K).0\rightarrow\operatorname{Sel}(E_{i}/K_{\infty})\rightarrow\operatorname{Sel}^{\Omega_{0}}(E_{i}/K_{\infty})\rightarrow\bigoplus_{v\in\Omega_{0}}\mathcal{H}_{v}(E_{i}/K_{\infty}).

By Lemma 6.7, we know that for vΩ0v\in\Omega_{0}, the cohomology group v(Ei/K)\mathcal{H}_{v}(E_{i}/K_{\infty}) is a cotorsion Λ\Lambda-module with μ=0\mu=0. Therefore,

Sel(Ei/K) is Λ-cotorsion with μ=0SelΩ0(Ei/K) is Λ-cotorsion with μ=0.\begin{split}&\operatorname{Sel}(E_{i}/K_{\infty})\text{ is }\Lambda\text{-cotorsion with }\mu=0\\ \Leftrightarrow&\operatorname{Sel}^{\Omega_{0}}(E_{i}/K_{\infty})\text{ is }\Lambda\text{-cotorsion with }\mu=0.\end{split}

Using an argument identical to [KR22, Proposition 3.10], we can show that

SelΩ0(Ei/K) is Λ-cotorsion with μ=0SelΩ0(Ei/K)[p] is finite.\begin{split}&\operatorname{Sel}^{\Omega_{0}}(E_{i}/K_{\infty})\text{ is }\Lambda\text{-cotorsion with }\mu=0\\ \Leftrightarrow&\operatorname{Sel}^{\Omega_{0}}(E_{i}/K_{\infty})[p]\text{ is finite.}\end{split}

By Corollary 6.13, we have the isomorphism

SelΩ0(E1/K)[p]SelΩ0(E2/K)[p].\operatorname{Sel}^{\Omega_{0}}(E_{1}/K_{\infty})[p]\simeq\operatorname{Sel}^{\Omega_{0}}(E_{2}/K_{\infty})[p].

Thus, the assertion follows. ∎

For the rest of this section we assume that the conditions of Theorem 6.14 are satisfied for both E1E_{1} and E2E_{2}. Furthermore, we impose the following assumption.

Assumption 6.15.

The pp-primary Selmer group, Sel(E1/K)\operatorname{Sel}(E_{1}/K_{\infty}) (or equivalently, Sel(E2/K)\operatorname{Sel}(E_{2}/K_{\infty})) is a finitely generated p\mathbb{Z}_{p}-module.

We now show that λ\lambda-invariants of SelΩ0(E1/K)\operatorname{Sel}^{\Omega_{0}}(E_{1}/K_{\infty}) and SelΩ0(E2/K)\operatorname{Sel}^{\Omega_{0}}(E_{2}/K_{\infty}) coincide. As before, we write EE to denote either E1E_{1} or E2E_{2}. Recall that in Lemma 3.4, we showed that the map defining the (classical) Selmer group is surjective. It follows that

(6.1) SelΩ0(E/K)/Sel(E/K)vΩ0v(E/K).\operatorname{Sel}^{\Omega_{0}}(E/K_{\infty})/\operatorname{Sel}(E/K_{\infty})\simeq\bigoplus_{v\in\Omega_{0}}\mathcal{H}_{v}(E/K_{\infty}).

For vΩ0v\in\Omega_{0}, Assumption 6.3 guarantees that there are finitely many primes v|vv^{\prime}|v in KK_{\infty}. Hence, for vΩ0v\in\Omega_{0}, we have that v(E/K)\mathcal{H}_{v}(E/K_{\infty}) is a direct sum over a finite set of primes.

Definition 6.16.

Let σE(v)\sigma_{E}^{(v)} denote the p\mathbb{Z}_{p}-corank of v(E/K)\mathcal{H}_{v}(E/K_{\infty}) for vΩ0v\in\Omega_{0}.

Let λΩ0(E/K)\lambda^{\Omega_{0}}(E/K_{\infty}) be the λ\lambda-invariant of SelΩ0(E/K)\operatorname{Sel}^{\Omega_{0}}(E/K_{\infty}). Therefore,

(6.2) λΩ0(E/K)=corankp(SelΩ0(E/K))=λ(E/K)+vΩ0σE(v).\lambda^{\Omega_{0}}(E/K_{\infty})=\operatorname{corank}_{\mathbb{Z}_{p}}\left(\operatorname{Sel}^{\Omega_{0}}(E/K_{\infty})\right)=\lambda(E/K_{\infty})+\sum_{v\in\Omega_{0}}\sigma_{E}^{(v)}.

The first equality follows from the structure theory of Λ\Lambda-modules, and the second equality follows from (6.1).

Lemma 6.17.

Let EE be either E1E_{1} or E2E_{2}. Then, p(E/K)\mathcal{H}_{p}(E/K_{\infty}) is Λ\Lambda-cofree.

Proof.

The reader is referred to [GV00, p. 23] for the argument. ∎

Proposition 6.18.

Let EE be either E1E_{1} or E2E_{2}. Suppose that

  1. (1)

    Assumptions 6.3 and 6.15 hold,

  2. (2)

    E(K)[p]=0E(K)[p]=0.

Then, the Selmer group SelΩ0(E/K)\operatorname{Sel}^{\Omega_{0}}(E/K_{\infty}) contains no proper finite index Λ\Lambda-submodules.

Proof.

We adapt the proof of [Gre99, Proposition 4.14], which is due to Greenberg. Recall that Ω~\widetilde{\Omega} is a finite set of primes containing SpS_{p} and the primes at which E1E_{1} or E2E_{2} has bad reduction. Consider the strict and relaxed pp-primary Selmer groups defined as follows

Selrel(E/K):=ker{H1(KΩ~/K,E[p])vΩ~(Ω0Sp)v(K,E[p])},\operatorname{Sel}^{\operatorname{rel}}(E/K_{\infty})\mathrel{\mathop{\ordinarycolon}}=\operatorname{ker}\left\{H^{1}(K_{\widetilde{\Omega}}/K_{\infty},E[p^{\infty}])\rightarrow\bigoplus_{v\in\widetilde{\Omega}\setminus(\Omega_{0}\cup S_{p})}\mathcal{H}_{v}(K_{\infty},E[p^{\infty}])\right\},
Selstr(E/K):=ker{Selrel(E/K)vΩ0Spv|vH1(K,v,E[p])}.\operatorname{Sel}^{\operatorname{str}}(E/K_{\infty})\mathrel{\mathop{\ordinarycolon}}=\operatorname{ker}\left\{\operatorname{Sel}^{\operatorname{rel}}(E/K_{\infty})\rightarrow\bigoplus_{v\in\Omega_{0}\cup S_{p}}\prod_{v^{\prime}|v}H^{1}(K_{\infty,v^{\prime}},E[p^{\infty}])\right\}.

Lemma 3.4 asserts that the restriction map

H1(KΩ~/K,E[p])vΩ~v(K,E[p])H^{1}(K_{\widetilde{\Omega}}/K_{\infty},E[p^{\infty}])\rightarrow\bigoplus_{v\in\widetilde{\Omega}}\mathcal{H}_{v}(K_{\infty},E[p^{\infty}])

is surjective. Therefore, the restriction map

Selrel(E/K)vΩ0Spv(K,E[p])\operatorname{Sel}^{\operatorname{rel}}(E/K_{\infty})\rightarrow\bigoplus_{v\in\Omega_{0}\cup S_{p}}\mathcal{H}_{v}(K_{\infty},E[p^{\infty}])

is also surjective. Observe that the kernel of the restriction map

Selrel(E/K)vSpv(K,E[p])\operatorname{Sel}^{\operatorname{rel}}(E/K_{\infty})\rightarrow\bigoplus_{v\in S_{p}}\mathcal{H}_{v}(K_{\infty},E[p^{\infty}])

is SelΩ0(E/K)\operatorname{Sel}^{\Omega_{0}}(E/K_{\infty}). Therefore,

Selrel(E/K)/SelΩ0(E/K)vSpv(K,E[p])\operatorname{Sel}^{\operatorname{rel}}(E/K_{\infty})/\operatorname{Sel}^{\Omega_{0}}(E/K_{\infty})\simeq\bigoplus_{v\in S_{p}}\mathcal{H}_{v}(K_{\infty},E[p^{\infty}])

is a cofree Λ\Lambda-module by Lemma 6.17. By [GV00, Lemma 2.6], to complete the proof of the proposition, it suffices to show that Selrel(E/K)\operatorname{Sel}^{\operatorname{rel}}(E/K_{\infty}) has no proper finite index Λ\Lambda-submodules But, Selstr(E/K)\operatorname{Sel}^{\operatorname{str}}(E/K_{\infty})^{\vee} is a quotient of SelΩ0(E/K)\operatorname{Sel}^{\Omega_{0}}(E/K_{\infty})^{\vee}; so it must also be Λ\Lambda-torsion.

Recall that χ\chi denotes the pp-adic cyclotomic character. Let ω\omega be the Teichmüller lift of the mod-pp cyclotomic character and κ:=ω1χ\kappa\mathrel{\mathop{\ordinarycolon}}=\omega^{-1}\chi. For ss\in\mathbb{Z}, let AsA_{s} denote the twisted Galois module E[p]κsE[p^{\infty}]\otimes\kappa^{s}. Since E(K)[p]=0E(K)[p]=0 by assumption, Corollary 3.3 asserts that H0(K,E[p])=0H^{0}(K_{\infty},E[p^{\infty}])=0. Further, since AsA_{s} and E[p]E[p^{\infty}] are isomorphic as Gal(K¯/K)\operatorname{Gal}({}\mkern 3.0mu\overline{\mkern-3.0muK}/K_{\infty})-modules, it follows that H0(K,As)=0H^{0}(K_{\infty},A_{s})=0. For any subfield 𝒦\mathcal{K} of KK_{\infty}, and vv a prime of KK which does not divide pp, set

v(𝒦,As)=η|vH1(𝒦η,As)/(As(𝒦η)p/p),\mathcal{H}_{v}(\mathcal{K},A_{s})=\prod_{\eta|v}H^{1}(\mathcal{K}_{\eta},A_{s})/(A_{s}(\mathcal{K}_{\eta})\otimes\mathbb{Q}_{p}/\mathbb{Z}_{p}),

where η\eta ranges over the primes of 𝒦\mathcal{K} above vv. Define the products

PΩ~,rel(𝒦,As)\displaystyle P^{\widetilde{\Omega},\operatorname{rel}}(\mathcal{K},A_{s}) :=vΩ~(Ω0Sp)v(𝒦,As),\displaystyle\mathrel{\mathop{\ordinarycolon}}=\bigoplus_{v\in\widetilde{\Omega}\setminus(\Omega_{0}\cup S_{p})}\mathcal{H}_{v}(\mathcal{K},A_{s}),
PΩ~,str(𝒦,As)\displaystyle P^{\widetilde{\Omega},\operatorname{str}}(\mathcal{K},A_{s}) :=vΩ~(Ω0Sp)v(𝒦,As)×vΩ0Sp{η|vH1(𝒦η,As)}.\displaystyle\mathrel{\mathop{\ordinarycolon}}=\bigoplus_{v\in\widetilde{\Omega}\setminus(\Omega_{0}\cup S_{p})}\mathcal{H}_{v}(\mathcal{K},A_{s})\times\bigoplus_{v\in\Omega_{0}\cup S_{p}}\left\{\prod_{\eta|v}H^{1}(\mathcal{K}_{\eta},A_{s})\right\}.

Let SAsrel(𝒦)S_{A_{s}}^{\operatorname{rel}}(\mathcal{K}) and SAsstr(𝒦)S_{A_{s}}^{\operatorname{str}}(\mathcal{K}) be the Selmer groups defined as follows

SAsrel(𝒦)\displaystyle S_{A_{s}}^{\operatorname{rel}}(\mathcal{K}) :=ker(H1(KΩ~/𝒦,As)PΩ~,rel(𝒦,As)),\displaystyle\mathrel{\mathop{\ordinarycolon}}=\ker\left(H^{1}(K_{\widetilde{\Omega}}/\mathcal{K},A_{s})\rightarrow P^{\widetilde{\Omega},\operatorname{rel}}(\mathcal{K},A_{s})\right),
SAsstr(𝒦)\displaystyle S_{A_{s}}^{\operatorname{str}}(\mathcal{K}) :=ker(H1(KΩ~/𝒦,As)PΩ~,str(𝒦,As)).\displaystyle\mathrel{\mathop{\ordinarycolon}}=\ker\left(H^{1}(K_{\widetilde{\Omega}}/\mathcal{K},A_{s})\rightarrow P^{\widetilde{\Omega},\operatorname{str}}(\mathcal{K},A_{s})\right).

Since Selstr(E/K)\operatorname{Sel}^{\operatorname{str}}(E/K_{\infty}) is Λ\Lambda-cotorsion, we have that SAsstr(K)ΓS_{A_{s}}^{\operatorname{str}}(K_{\infty})^{\Gamma} is finite for all but finitely many values of ss. Hence, SAsstr(K)S_{A_{s}}^{\operatorname{str}}(K) is finite for all but finitely many values of ss. As in the proof of [Gre99, Proposition 4.14], write M=AsM=A_{s} and M=AsM^{*}=A_{-s}. Write SM(K)S_{M}(K) for the Selmer group SAsrel(K)S_{A_{s}}^{\operatorname{rel}}(K). By the discussion in [Gre99, p. 100], we have that SM(K)S_{M^{*}}(K) is the strict Selmer group SAsstr(K)S_{A_{-s}}^{\operatorname{str}}(K). Let ss be an integer such that SM(K)S_{M^{*}}(K) is finite. Since SM(K)S_{M^{*}}(K) is finite and M(K)=0M^{*}(K)=0, the map H1(KΩ~/K,M)PΩ~,rel(K,M)H^{1}(K_{\widetilde{\Omega}}/K,M)\rightarrow P^{\widetilde{\Omega},\operatorname{rel}}(K,M) is surjective (see [Gre99, Proposition 4.13]). Arguing as in [Gre99, Proposition 4.14], we see that Selrel(E/K)\operatorname{Sel}^{\operatorname{rel}}(E/K_{\infty}) has no proper finite index Λ\Lambda-submodules. This completes the proof. ∎

Proposition 6.19.

Let E1E_{1} and E2E_{2} be pp-congruent elliptic curves over KK such that

  1. (1)

    Assumptions 6.3 and 6.15 are satisfied,

  2. (2)

    E1(K)[p]=0E_{1}(K)[p]=0 (or equivalently, E2(K)[p]=0E_{2}(K)[p]=0).

Then the imprimitive λ\lambda-invariants coincide, i.e.,

λΩ0(E1/K)=λΩ0(E2/K).\lambda^{\Omega_{0}}(E_{1}/K_{\infty})=\lambda^{\Omega_{0}}(E_{2}/K_{\infty}).

Equivalently,

λ(E1/K)+vΩ0σE1(v)=λ(E2/K)+vΩ0σE2(v).\lambda(E_{1}/K_{\infty})+\sum_{v\in\Omega_{0}}\sigma_{E_{1}}^{(v)}=\lambda(E_{2}/K_{\infty})+\sum_{v\in\Omega_{0}}\sigma_{E_{2}}^{(v)}.
Proof.

By Assumption 6.15, SelΩ0(Ei/K)[p]\operatorname{Sel}^{\Omega_{0}}(E_{i}/K_{\infty})[p] is finite for i=1,2i=1,2, and by Corollary 6.13,

(6.3) SelΩ0(E1/K)[p]SelΩ0(E2/K)[p].\operatorname{Sel}^{\Omega_{0}}(E_{1}/K_{\infty})[p]\simeq\operatorname{Sel}^{\Omega_{0}}(E_{2}/K_{\infty})[p].

Proposition 6.18 assets that SelΩ0(Ei/K)\operatorname{Sel}^{\Omega_{0}}(E_{i}/K_{\infty}) has no proper Λ\Lambda-submodules of finite index for i=1,2i=1,2. Hence they are cofree p\mathbb{Z}_{p}-modules. Therefore,

SelΩ0(Ei/K)(p/p)λi,\operatorname{Sel}^{\Omega_{0}}(E_{i}/K_{\infty})\simeq(\mathbb{Q}_{p}/\mathbb{Z}_{p})^{\lambda_{i}},

where λi:=λΩ0(Ei/K)\lambda_{i}\mathrel{\mathop{\ordinarycolon}}=\lambda^{\Omega_{0}}(E_{i}/K_{\infty}). As a result,

λΩ0(Ei/K)=dim𝔽p(SelΩ0(Ei/K)[p]).\lambda^{\Omega_{0}}(E_{i}/K_{\infty})=\operatorname{dim}_{\mathbb{F}_{p}}\left(\operatorname{Sel}^{\Omega_{0}}(E_{i}/K_{\infty})[p]\right).

The proposition follows from (6.3). ∎

7. Large λ\lambda-Invariant

In this section, we use results from the previous section to construct elliptic curves with large 55-adic (anti-cyclotomic) λ\lambda-invariants. All computations in this section can be found at the following hyperlink. Throughout this section, we work in the following setting. Let K=(1)K=\mathbb{Q}(\sqrt{-1}), p=5p=5, and KacK^{\operatorname{ac}} be the anticyclotomic 5\mathbb{Z}_{5}-extension of KK. Recall that Σ\Sigma is the set of primes in KK that are finitely decomposed in KacK^{\operatorname{ac}}. Moreover, a prime v5v\nmid 5 lies in Σ\Sigma if and only if it is a split prime in KK. If vΣ{5}v\in\Sigma\setminus\{5\} and vv(Kac)v^{\prime}\in v(K^{\operatorname{ac}}), then KvacK^{\operatorname{ac}}_{v^{\prime}} is an unramified 5\mathbb{Z}_{5}-extension of vv. Therefore, Kvac=KvcycK^{\operatorname{ac}}_{v^{\prime}}=K_{v}^{\operatorname{cyc}}.

Lemma 7.1.

Let E1E_{1} and E2E_{2} be 55-congruent elliptic curves defined over KK. Let v5v\nmid 5 be a prime such that vΣv\in\Sigma. Then the following assertions hold

  1. (1)

    If E1E_{1} has good reduction at vv and E2E_{2} has bad reduction at vv, then

    corankpv(Kac,E1[5])corankpv(Kac,E2[5])0.\operatorname{corank}_{\mathbb{Z}_{p}}\mathcal{H}_{v}\left(K^{\operatorname{ac}},E_{1}[5^{\infty}]\right)-\operatorname{corank}_{\mathbb{Z}_{p}}\mathcal{H}_{v}\left(K^{\operatorname{ac}},E_{2}[5^{\infty}]\right)\geq 0.
  2. (2)

    Furthermore, if Frobv\operatorname{Frob}_{v} acts trivially on E1[5]E_{1}[5], then

    corankpv(Kac,E1[5])corankpv(Kac,E2[5])>0.\operatorname{corank}_{\mathbb{Z}_{p}}\mathcal{H}_{v}\left(K^{\operatorname{ac}},E_{1}[5^{\infty}]\right)-\operatorname{corank}_{\mathbb{Z}_{p}}\mathcal{H}_{v}\left(K^{\operatorname{ac}},E_{2}[5^{\infty}]\right)>0.

    Furthermore, E2E_{2} has split multiplicative reduction at vv.

Proof.

For (1) and the first assertion of (2), we refer the reader to the proof of [Kim09, Lemma 3.1]. For the second assertion of (2), it follows from [AAS17, Lemma 2.3] that E2E_{2} cannot have additive reduction at vv. Moreover, by [AAS17, Lemma 2.11], if E2E_{2} has non-split multiplicative reduction at vv, then,

corank5v(Kac,E1[5])=corank5v(Kac,E2[5]).\operatorname{corank}_{\mathbb{Z}_{5}}\mathcal{H}_{v}\left(K^{\operatorname{ac}},E_{1}[5^{\infty}]\right)=\operatorname{corank}_{\mathbb{Z}_{5}}\mathcal{H}_{v}\left(K^{\operatorname{ac}},E_{2}[5^{\infty}]\right).

Hence, the strict inequality forces EE to have split multiplicative reduction at vv. ∎

Consider the elliptic curve E:y2=x3xE\mathrel{\mathop{\ordinarycolon}}y^{2}=x^{3}-x. This is the elliptic curve 32a2 (Cremona label). This is a rank 0 elliptic curve with good ordinary reduction at p=5p=5 and CM by 𝒪K\mathcal{O}_{K}. Rubin has proved that for all primes qq, the qq-part of the Selmer group is trivial (cf. [Kim09, p. 188]). Over KK, the elliptic curve EE has Mordell-Weil rank equal to 0 and (E/K)[5]=0\Sha(E/K)[5^{\infty}]=0. Since E(K)[5]=0E(K)[5]=0, it follows that Sel(E/K)=0\operatorname{Sel}(E/K)=0.

Lemma 7.2.

The 5-primary Selmer group Sel(E/Kac)\operatorname{Sel}(E/K^{\operatorname{ac}}) is equal to 0.

Proof.

To prove the lemma we show that the natural map

Sel(E/K)Sel(E/Kac)Γ\operatorname{Sel}(E/K)\rightarrow\operatorname{Sel}(E/K^{\operatorname{ac}})^{\Gamma}

is surjective. It suffices to show that the local map

γv:Jv(E/K)Jv(E/Kac)\gamma_{v}\mathrel{\mathop{\ordinarycolon}}J_{v}(E/K)\rightarrow J_{v}(E/K^{\operatorname{ac}})

is injective at all primes. For v5v\nmid 5, the kernel of γv\gamma_{v} has order at most cv(5)c_{v}^{(5)}, where cvc_{v} is the Tamagawa number and cv(5)c_{v}^{(5)} its 55-primary part, see [Gre03, Proposition 4.1]. For the given elliptic curve EE, one checks that cv(5)=0c_{v}^{(5)}=0 for all primes vv. Next, consider kerγv\ker\gamma_{v} when v|5v|5. If E~(𝔽v)[5]=0\widetilde{E}(\mathbb{F}_{v})[5]=0, then the map γv\gamma_{v} is injective (see [CS00, Proposition 3.5]). Since 55 splits in KK, so 𝔽v=𝔽5\mathbb{F}_{v}=\mathbb{F}_{5}. One can check that E~(𝔽5)/2×/4\widetilde{E}(\mathbb{F}_{5})\simeq\mathbb{Z}/2\times\mathbb{Z}/4, so γv\gamma_{v} is injective. Thus, Sel(E/Kac)Γ=0\operatorname{Sel}(E/K^{\operatorname{ac}})^{\Gamma}=0. The assertion follows from an application of Nakayama’s Lemma. ∎

In [RS95, Theorem 5.3], Rubin and Silverberg have shown that for every rational number tt, there exist explicit polynomials a(t)a(t), b(t)b(t), and c(t)c(t) such that

Et:y2\displaystyle E_{t}\mathrel{\mathop{\ordinarycolon}}y^{2} =x3+a(t)x2+b(t)x+c(t)\displaystyle=x^{3}+a(t)x^{2}+b(t)x+c(t)
=x3+(t9t)x2+(3125t2039583t18+11875t1695000t14+61750t12\displaystyle=x^{3}+\left(t^{9}-t\right)x^{2}+\Big{(}-3125t^{20}-39583t^{18}+11875t^{16}-95000t^{14}+61750t^{12}
+41166t10+12350t83800t6+95t463t21)x+(521875t291355787t27\displaystyle+41166t^{10}+12350t^{8}-3800t^{6}+95t^{4}-63t^{2}-1\Big{)}x+\Big{(}-521875t^{29}-1355787t^{27}
7366875t25+9635000t238315875t213678639t1910560675t17+30400t15\displaystyle-7366875t^{25}+9635000t^{23}-8315875t^{21}-3678639t^{19}-10560675t^{17}+30400t^{15}
+2091615t13+134479t11+62583t914200t7+2327t5+107t3+7t)\displaystyle+2091615t^{13}+134479t^{11}+62583t^{9}-14200t^{7}+2327t^{5}+107t^{3}+7t\Big{)}

is an elliptic curve defined over \mathbb{Q}, with good reduction at p=5p=5, discriminant

Δ(Et)=43(5t42t2+1)5(25t8100t6210t420t2+1)5,\Delta(E_{t})=4^{3}\left(5t^{4}-2t^{2}+1\right)^{5}\left(25t^{8}-100t^{6}-210t^{4}-20t^{2}+1\right)^{5},

and the additional property that Et[5]E[5]E_{t}[5]\simeq E[5].

Let f(t)=(5t42t2+1)(25t8100t6210t420t2+1)f(t)=(5t^{4}-2t^{2}+1)(25t^{8}-100t^{6}-210t^{4}-20t^{2}+1). We can check that gcd(f(t),f(t))=1\gcd(f(t),f^{\prime}(t))=1. Let 𝒜\mathcal{A} be the set of prime numbers >5\ell>5 such that f(t)f(t) and f(t)f^{\prime}(t) are prime to each other modulo \ell. Let 𝒜\mathcal{A}^{\prime} be the subset of 𝒜\mathcal{A} consisting of those primes which split completely in K(E[5])K(E[5]). By the Chebotarev density theorem, the set 𝒜\mathcal{A}^{\prime} is infinite with positive density. Note that primes in 𝒜\mathcal{A}^{\prime} must split completely in KK. Hence, these primes are finitely decomposed in Kac/KK^{\operatorname{ac}}/K.

Given a positive integer kk, choose 1,,k𝒜\ell_{1},\ldots,\ell_{k}\in\mathcal{A}^{\prime}. Then, for all 1ik1\leq i\leq k and v|iv|\ell_{i} in KK, the Frobenius, denote by Frobv\operatorname{Frob}_{v}, acts trivially on E[5]E[5]. By arguments similar to [Kim09, p. 189], there exists tt for which EtE_{t} satisfies both the properties

  1. (1)

    E[5]Et[5]E[5]\simeq E_{t}[5].

  2. (2)

    EtE_{t} has bad reduction at each i\ell_{i}.

Lemma 7.3.

With notation as above, suppose that Ω(Et)Σ\Omega(E_{t})\subseteq\Sigma. Then, the 5-primary Selmer group Sel(Et/K)\operatorname{Sel}(E_{t}/K) is Λ\Lambda-cotorsion with μ=0\mu=0.

Proof.

Recall that E(K)[5]=0E(K)[5]=0. The elliptic curve EE has additive reduction at the only prime of bad reduction, which is 2. Computations on Sage show that the Kodaira type at v|2v|2 is I2I_{2}^{*}. It follows from [DD13, Theorem 3(2)] that EE has additive reduction of type I2I_{2}^{*} at the primes w|vw|v of KK^{\prime}. Therefore, Ω(E)\Omega(E) is empty. By assumption, Ω(Et)Σ\Omega(E_{t})\subseteq\Sigma. Thus, we can apply Theorem 6.14. The claim follows from Lemma 7.2. ∎

Using Proposition 6.19 and (6.2), we can compare λ\lambda-invariants of Sel(E/Kac)\operatorname{Sel}(E/K^{\operatorname{ac}}) and Sel(Et/Kac)\operatorname{Sel}(E_{t}/K^{\operatorname{ac}}). We obtain that,

λ(Et/Kac)=λ(E/Kac)+vΩ0(σE(v)σEt(v))λ(E/Kac)+vΩ(Et)(σE(v)σEt(v))\lambda(E_{t}/K^{\operatorname{ac}})=\lambda(E/K^{\operatorname{ac}})+\sum_{v\in\Omega_{0}}\left(\sigma_{E}^{(v)}-\sigma_{E_{t}}^{(v)}\right)\geq\lambda(E/K^{\operatorname{ac}})+\sum_{v\in\Omega(E_{t})}\left(\sigma_{E}^{(v)}-\sigma_{E_{t}}^{(v)}\right)

where σE(v)\sigma_{E}^{(v)} (resp. σEt(v)\sigma_{E_{t}}^{(v)}) denotes the p\mathbb{Z}_{p}-corank of v(E/K)\mathcal{H}_{v}(E/K_{\infty}) (resp. v(Et/K)\mathcal{H}_{v}(E_{t}/K_{\infty})). It follows from our discussion that for any given integer kk, we can construct an elliptic curve EtE_{t} with bad reduction at 1,,k\ell_{1},\ldots,\ell_{k} such that

λ(Et/Kac)λ(E/Kac)+i=1kv|i(σE(v)σEt(v))λ(E/Kac)+2k2k.\lambda(E_{t}/K^{\operatorname{ac}})\geq\lambda(E/K^{\operatorname{ac}})+\sum_{i=1}^{k}\sum_{v|\ell_{i}}\left(\sigma_{E}^{(v)}-\sigma_{E_{t}}^{(v)}\right)\geq\lambda(E/K^{\operatorname{ac}})+2k\geq 2k.

We remark that we have used the fact that the rational primes i\ell_{i} split in KK.

Example

We work out an explicit example when p=5p=5. The number field (E[5])\mathbb{Q}(E[5]) is defined by the polynomial

x3240x31+12000x2910760x28266800x27+11468000x261096600000x255566913400x24+142092440000x23+4369939320000x22378135400000x21257156918536000x206566363103320000x1968617519071000000x18+71545316608000000x17+10219246387427710000x16+120765118794306400000x15+1192541074750776000000x14+11957464808846300000000x13+82847553195104300000000x12+1265538538816402500000000x11+17074052628101627500000000x10+172311923953883400000000000x9+1455441332493456906250000000x8+9447284167114381875000000000x7+49318124991568150000000000000x6+129093097413215156250000000000x52350246524757890625000000000x4682311431690296875000000000000x3475786411839253906250000000000x2+246274993230703125000000000000x+1450426905571313476562500000000.\begin{split}&x^{32}-40x^{31}+12000x^{29}-10760x^{28}-266800x^{27}+11468000x^{26}\\ &-1096600000x^{25}-5566913400x^{24}+142092440000x^{23}+4369939320000x^{22}\\ &-378135400000x^{21}-257156918536000x^{20}-6566363103320000x^{19}\\ &-68617519071000000x^{18}+71545316608000000x^{17}+10219246387427710000x^{16}\\ &+120765118794306400000x^{15}+1192541074750776000000x^{14}\\ &+11957464808846300000000x^{13}+82847553195104300000000x^{12}\\ &+1265538538816402500000000x^{11}+17074052628101627500000000x^{10}\\ &+172311923953883400000000000x^{9}+1455441332493456906250000000x^{8}\\ &+9447284167114381875000000000x^{7}+49318124991568150000000000000x^{6}\\ &+129093097413215156250000000000x^{5}-2350246524757890625000000000x^{4}\\ &-682311431690296875000000000000x^{3}-475786411839253906250000000000x^{2}\\ &+246274993230703125000000000000x+1450426905571313476562500000000.\end{split}

Since the extension is rather large it becomes difficult to find primes which split in it via direct calculation. We appeal to known results about the splitting of primes in fields of the form (E[N])\mathbb{Q}(E[N]). The conductor of EE is 25=322^{5}=32 and hence all prime numbers 2\ell\neq 2 are unramified in (E[5])\mathbb{Q}(E[5]). If \ell is a prime number, different from 2 and 5, which splits in (E[5])\mathbb{Q}(E[5]), then indeed it is easy to see that the mod-55 characteristic polynomial of Frob\operatorname{Frob}_{\ell} must equal (X1)2=X22X+1(X-1)^{2}=X^{2}-2X+1. This is equivalent to requiring that

  1. (1)

    1mod5\ell\equiv 1\mod{5}, and

  2. (2)

    a(E)2mod5a_{\ell}(E)\equiv 2\mod{5}, where a(E):=+1#E(𝔽)a_{\ell}(E)\mathrel{\mathop{\ordinarycolon}}=\ell+1-\#E(\mathbb{F}_{\ell}).

This is however not a sufficient condition for \ell to split in (E[5])\mathbb{Q}(E[5]). Let Φ5(X,Y)\Phi_{5}(X,Y) be the modular function (see [Cox11, Section 11] for a precise definition). Define

Φ5E(X):=Φ5(X,j(E))=Φ5(X,1728).\Phi_{5}^{E}(X)\mathrel{\mathop{\ordinarycolon}}=\Phi_{5}(X,j(E))=\Phi_{5}(X,1728).

A prime \ell splits in (E[5])\mathbb{Q}(E[5]) if in addition to the above two conditions,

  1. (3)

    Φ5E(X)\Phi_{5}^{E}(X) splits in 𝔽[X]\mathbb{F}_{\ell}[X] into distinct linear factors.

We refer the reader to [Ade04, Proposition 5.6.3] for a proof of the claim. For the calculation of Φ5E(X)\Phi_{5}^{E}(X), we refer the reader to [Cox11, Section 13]. Implementing the algorithms in [BLS12, BOS16], the modular polynomials may be calculated. The calculation was performed by A. Sutherland and has been obtained from his website (see this link).

We thus have that in particular

Φ5(X,Y)=141359947154721358697753474691071362751004672000+53274330803424425450420160273356509151232000X264073457076620596259715790247978782949376XY+6692500042627997708487149415015068467200X2+36554736583949629295706472332656640000X2Y+5110941777552418083110765199360000X2Y2+280244777828439527804321565297868800X3192457934618928299655108231168000X3Y+26898488858380731577417728000X3Y2441206965512914835246100X3Y3+1284733132841424456253440X4+128541798906828816384000X4Y+383083609779811215375X4Y2+107878928185336800X4Y3+1665999364600X4Y4+1963211489280X5246683410950X5Y+2028551200X5Y24550940X5Y3+3720X5Y4X5Y5+X6.\begin{split}&\Phi_{5}(X,Y)\\ =&141359947154721358697753474691071362751004672000\\ &+53274330803424425450420160273356509151232000X\\ &-264073457076620596259715790247978782949376XY\\ &+6692500042627997708487149415015068467200X^{2}\\ &+36554736583949629295706472332656640000X^{2}Y\\ &+5110941777552418083110765199360000X^{2}Y^{2}\\ &+280244777828439527804321565297868800X^{3}\\ &-192457934618928299655108231168000X^{3}Y\\ &+26898488858380731577417728000X^{3}Y^{2}-441206965512914835246100X^{3}Y^{3}\\ &+1284733132841424456253440X^{4}+128541798906828816384000X^{4}Y\\ &+383083609779811215375X^{4}Y^{2}+107878928185336800X^{4}Y^{3}\\ &+1665999364600X^{4}Y^{4}+1963211489280X^{5}-246683410950X^{5}Y\\ &+2028551200X^{5}Y^{2}-4550940X^{5}Y^{3}+3720X^{5}Y^{4}-X^{5}Y^{5}+X^{6}.\end{split}

Recall that primes in the set 𝒜\mathcal{A}^{\prime} also split in K=(1)K=\mathbb{Q}(\sqrt{-1}), i.e., they satisfy

  1. (4)

    1mod4\ell\equiv 1\mod 4.

Using SageMath [Sag20], we find primes (105\leq 10^{5}) satisfying conditions (1)(4)(1)-(4). There are two primes, namely 1=63241\ell_{1}=63241 and 2=63901\ell_{2}=63901. The factorization of the modular polynomial in the corresponding polynomial rings is as follows

Φ5E(X)\displaystyle\Phi_{5}^{E}(X) =(x+9130)(x+26600)(x+28822)(x+31643)(x+37410)(x+60303) in 𝔽63241(X),\displaystyle=(x+9130)(x+26600)(x+28822)(x+31643)(x+37410)(x+60303)\textrm{ in }\mathbb{F}_{63241}(X),
Φ5E(X)\displaystyle\Phi_{5}^{E}(X) =(x+15646)(x+16523)(x+16743)(x+31583)(x+36229)(x+58255) in 𝔽63901(X).\displaystyle=(x+15646)(x+16523)(x+16743)(x+31583)(x+36229)(x+58255)\textrm{ in }\mathbb{F}_{63901}(X).

There exists t=1059545078t=1059545078, such that

  1. (i)

    E[5]Et[5]E[5]\simeq E_{t}[5].

  2. (ii)

    EtE_{t} has bad reduction at the primes above 1\ell_{1} and 2\ell_{2}.

The Weierstrass equation of EtE_{t} is given by

E1059545078:y2\displaystyle E_{1059545078}\mathrel{\mathop{\ordinarycolon}}y^{2} =x3+a(1059545078)x2+b(1059545078)x+c(1059545078)\displaystyle=x^{3}+a(1059545078)x^{2}+b(1059545078)x+c(1059545078)
=x3+168296446137189087194501767921833910783492001998159631069\displaystyle=x^{3}+168296446137189087194501767921833910783492001998159631069
7153199761832534651819530x299366224513122955264858859328518\displaystyle\ \ \ \ 7153199761832534651819530x^{2}-99366224513122955264858859328518
66745867676250607317503754405604484994604040262265914871891763\displaystyle\ \ \ \ 66745867676250607317503754405604484994604040262265914871891763
67949528696260899356431612520935180977428921937667494177305190\displaystyle\ \ \ \ 67949528696260899356431612520935180977428921937667494177305190
6053441051323218105644624301x279273806942198208191162128630\displaystyle\ \ \ \ 6053441051323218105644624301x-279273806942198208191162128630
62552373448346890426050059883907340261159020802156537659423817\displaystyle\ \ \ \ 62552373448346890426050059883907340261159020802156537659423817
30770268443471585676947896166109727494303843884645456030625365\displaystyle\ \ \ \ 30770268443471585676947896166109727494303843884645456030625365
28979753424554225598656831724236790266467819045996204975383860\displaystyle\ \ \ \ 28979753424554225598656831724236790266467819045996204975383860
9933396090752989113892249177868807612498499698298014.\displaystyle\ \ \ \ 9933396090752989113892249177868807612498499698298014.

For this value of tt, we find that

f(t)=\displaystyle f(t)= 13×401×63241×63901×21068381440942021×23007701426021875081\displaystyle 13\times 401\times 63241\times 63901\times 21068381440942021\times 23007701426021875081
×24504438741475825204304998173516406719475833143478257969366221.\displaystyle\times 24504438741475825204304998173516406719475833143478257969366221.

Each of the prime factors of f(1059545078)f(1059545078) are of the form 1(mod4)1\pmod{4}. Recall that these primes factors are the primes of bad reduction of E1059545078E_{1059545078}. Therefore, we see that all the primes of bad reduction of E1059545078E_{1059545078} split completely in KK, and hence are finitely decomposed in KacK^{\operatorname{ac}}.

Lemma 7.4.

With respect to notation above, let p=5p=5, E1=EE_{1}=E and E2=E1059545078E_{2}=E_{1059545078}. The Assumptions 6.3 and 6.15 are satisfied in this example.

Proof.

In Lemma 7.3 we have already checked that Ω(E1)=\Omega(E_{1})=\emptyset. Note that all primes 2\ell\neq 2 at which E2E_{2} has bad reduction are of the form 1mod4\ell\equiv 1\mod{4}. Thus, they split in KK and the primes v|v|\ell lie in Σ\Sigma. Thus, the only prime v𝔗\Σv\in\mathfrak{T}\backslash\Sigma is v=(1+i)v=(1+i), the unique prime of KK that lies above 22. We show that v=(1+i)v=(1+i) is not contained in Ω0\Omega_{0}. Computations on Sage show that E2E_{2} has additive reduction at vv of Kodaira type I2I_{2}^{*}. By [DD13, Theorem 3(2)], E2E_{2} has additive reduction of type I2I_{2}^{*} at the primes w|vw|v of KK^{\prime}. Hence, by Definition 6.1, we have that vv is not contained in Ω0\Omega_{0}. In particular, Ω0Σ\Omega_{0}\subset\Sigma. This proves that Assumption 6.3 is satisfied.

Assumption 6.15 follows from Lemma 7.3 and the fact that Ω0\Omega_{0} is contained in Σ\Sigma. ∎

Each of the primes 1\ell_{1} and 2\ell_{2} split in KK, and thus give rise to 44 primes for which Lemma 7.1 applies. The elliptic curve E1E_{1} has good reduction at these primes, and E2E_{2} has bad reduction at them, and we obtain that

λ(E1059545078/Kac)λ(E/Kac)+44\lambda(E_{1059545078}/K^{\operatorname{ac}})\geq\lambda(E/K^{\operatorname{ac}})+4\geq 4

since we know that Sel(E/Kac)=0\operatorname{Sel}(E/K^{\operatorname{ac}})=0.

Remark 7.5.

It was possible to find primes up to 10710^{7} satisfying properties (1)(4)(1)-(4), and there are 24 such primes: 1=63241\ell_{1}=63241, 2=63901\ell_{2}=63901, 3=514561\ell_{3}=514561, 4=1311341\ell_{4}=1311341, 5=2399081\ell_{5}=2399081, 6=2502301\ell_{6}=2502301, 7=2620301\ell_{7}=2620301, 8=2790461\ell_{8}=2790461, 9=3325121\ell_{9}=3325121, 10=3436501\ell_{10}=3436501, 11=4046401\ell_{11}=4046401, 12=4050281\ell_{12}=4050281, 13=4559101\ell_{13}=4559101, 14=4800421\ell_{14}=4800421, 15=5403361\ell_{15}=5403361, 16=5609321\ell_{16}=5609321, 17=6660221\ell_{17}=6660221, 18=7601861\ell_{18}=7601861, 19=7959521\ell_{19}=7959521, 20=8942501\ell_{20}=8942501, 21=8959921\ell_{21}=8959921, 22=9181901\ell_{22}=9181901, 23=9187081\ell_{23}=9187081, and 24=9437321\ell_{24}=9437321. However, the next part of the computation (i.e., finding tt satisfying (i)(i) and (ii)(ii)) becomes difficult (for us) with k3k\geq 3. This is due to the product i=1ki\prod_{i=1}^{k}\ell_{i} being large when k3k\geq 3.

Acknowledgments

The first named author acknowledges the support of the PIMS Postdoctoral Fellowship. We thank the referee for carefully reading our manuscript.

References

  • [AAS17] Suman Ahmed, Chandrakant Aribam, and Sudhanshu Shekhar. Root numbers and parity of local Iwasawa invariants. J. Number Theory, 177:285–306, 2017.
  • [Ade04] Clemens Adelmann. The decomposition of primes in torsion point fields. Springer, 2004.
  • [BD05] Massimo Bertolini and Henri Darmon. Iwasawa’s main conjecture for elliptic curves over anticyclotomic p\mathbb{Z}_{p}-extensions. Ann. Math., pages 1–64, 2005.
  • [Ber95] Massimo Bertolini. Selmer groups and Heegner points in anticyclotomic p\mathbb{Z}_{p}-extensions. Compos. Math., 99(2):153–182, 1995.
  • [Bha07] Amala Bhave. Analogue of Kida’s formula for certain strongly admissible extensions. J. Number Theory, 122(1):100–120, 2007.
  • [BLS12] Reinier Bröker, Kristin Lauter, and Andrew Sutherland. Modular polynomials via isogeny volcanoes. Math. Comp., 81(278):1201–1231, 2012.
  • [BOS16] Jan Hendrik Bruinier, Ken Ono, and Andrew V Sutherland. Class polynomials for nonholomorphic modular functions. J. Number Theory, 161:204–229, 2016.
  • [Bri07] David Brink. Prime decomposition in the anti-cyclotomic extension. Math. Comp., 76(260):2127–2138, 2007.
  • [CG96] John Coates and Ralph Greenberg. Kummer theory for abelian varieties over local fields. Invent. Math., 124(1):129–174, 1996.
  • [Cor02] Christophe Cornut. Mazur’s conjecture on higher Heegner points. Invent. Math., 148(3):495–523, 2002.
  • [Cox11] David A Cox. Primes of the form x2+ny2x^{2}+ny^{2}: Fermat, class field theory, and complex multiplication, volume 34. John Wiley & Sons, 2011.
  • [CS00] John Coates and Ramdorai Sujatha. Galois cohomology of elliptic curves. Narosa, 2000.
  • [DD13] Tim Dokchitser and Vladimir Dokchitser. A remark on Tate’s algorithm and Kodaira types. Acta Arith., 160(1):95–100, 2013.
  • [Gre99] Ralph Greenberg. Iwasawa theory for elliptic curves. In Arithmetic theory of elliptic curves (Cetraro, 1997), volume 1716, pages 51–144. Springer, 1999.
  • [Gre01] Ralph Greenberg. Introduction to Iwasawa theory for elliptic curves. In IAS/Park City Mathematics Series, volume 9, pages 407–464, 2001.
  • [Gre03] Ralph Greenberg. Galois theory for the Selmer group of an abelian variety. Compos. Math., 136(3):255–297, 2003.
  • [GV00] Ralph Greenberg and Vinayak Vatsal. On the Iwasawa invariants of elliptic curves. Invent. math., 142(1):17–63, 2000.
  • [HL19] Jeffrey Hatley and Antonio Lei. Arithmetic properties of signed Selmer groups at non-ordinary primes. Ann. de l’Institut Fourier, 69(3):1259–1294, 2019.
  • [HM99] Yoshitaka Hachimori and Kazuo Matsuno. An analogue of Kida’s formula for the Selmer groups of elliptic curves. J. Alg. Geom., 8(3):581–601, 1999.
  • [How98] Susan Howson. Iwasawa theory of Elliptic Curves for p-adic Lie extensions. PhD thesis, University of Cambridge, 1998.
  • [Iwa81] Kenkichi Iwasawa. Riemann-Hurwitz formula and pp-adic Galois representations for number fields. Tohoku Math. J., Second Series, 33(2):263–288, 1981.
  • [Kat04] Kazuya Kato. pp-adic Hodge theory and values of zeta functions of modular forms. Astérisque, 295:117–290, 2004.
  • [Kid80] Yûji Kida. \ell-extensions of CM-fields and cyclotomic invariants. J. Number Theory, 12:519–528, 1980.
  • [Kid18] Keenan Kidwell. On the structure of Selmer groups of pp-ordinary modular forms over p\mathbb{Z}_{p}-extensions. J. Number Theory, 187:296–331, 2018.
  • [Kim09] Byoung Du Kim. The Iwasawa invariants of the plus/minus Selmer groups. Asian J. Math, 13(2):181–190, 2009.
  • [Kim13] Byoung Du Kim. The plus/minus Selmer groups for supersingular primes. J. Aust. Math. Soc., 95(2):189–200, 2013.
  • [KPW17] Chan-Ho Kim, Robert Pollack, and Tom Weston. On the freeness of anticyclotomic Selmer groups of modular forms. Int. J. Number Theory, 13(06):1443–1455, 2017.
  • [KR22] Debanjana Kundu and Anwesh Ray. Anticyclotomic μ\mu-invariants of residually reducible Galois representations. J. Number Theory, 234:476–498, 2022.
  • [Kun21] Debanjana Kundu. An analogue of Kida’s formula for fine Selmer groups of elliptic curves. J. Number Theory, 222:249–261, 2021.
  • [Mat00] Kazuo Matsuno. An analogue of Kida’s formula for the pp-adic L{L}-functions of modular elliptic curves. J. Number Theory, 84(1):80–92, 2000.
  • [Mat07] Kazuo Matsuno. Construction of elliptic curves with large Iwasawa λ\lambda-invariants and large Tate–Shafarevich groups. Manuscripta Math., 122(3):289–304, 2007.
  • [Maz72] Barry Mazur. Rational points of abelian varieties with values in towers of number fields. Invent. Math., 18(3-4):183–266, 1972.
  • [NSW13] Jürgen Neukirch, Alexander Schmidt, and Kay Wingberg. Cohomology of number fields, volume 323 of Graduate Texts in Mathematics. Springer, 2013.
  • [PR87] Bernadette Perrin-Riou. Fonctions L{L} pp-adiques, théorie d’Iwasawa et points de Heegner. Bulletin de la Société Mathématique de France, 115:399–456, 1987.
  • [PW06] Robert Pollack and Tom Weston. Kida’s formula and congruences. Doc. Math., Special, 2006:615–630, 2006.
  • [PW11] Robert Pollack and Tom Weston. On anticyclotomic μ\mu-invariants of modular forms. Compos. Math., 147(5):1353–1381, 2011.
  • [RS95] Karl Rubin and Alice Silverberg. Families of elliptic curves with constant mod pp representations. Elliptic curves, modular forms, & Fermat’s last theorem (Hong Kong, 1993), pages 148–161, 1995.
  • [RS20] Anwesh Ray and R Sujatha. Euler characteristics and their congruences for multi-signed Selmer groups. Canadian J. Math., pages 1–25, 2020.
  • [Sag20] Sage Developers. SageMath, the Sage Mathematics Software System (Version 9.2), 2020. https://www.sagemath.org.
  • [Ser97] Jean-Pierre Serre. Abelian \ell-adic representations and elliptic curves. CRC Press, 1997.
  • [Sil09] Joseph H Silverman. The arithmetic of elliptic curves, volume 106 of Graduate Texts in Mathematics. Springer, 2009.
  • [Vat02] Vinayak Vatsal. Uniform distribution of Heegner points. Invent. math., 148(1):1–46, 2002.
  • [Vat03] Vinayak Vatsal. Special values of anticyclotomic L{L}-functions. Duke Math., 116(2):219–261, 2003.
  • [Was97] Lawrence C Washington. Introduction to cyclotomic fields, volume 83 of Graduate Texts in Mathematics. Springer, 1997.