This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

PHENIX Collaboration

Jet modification via π0\pi^{0}-hadron correlations in Au++Au collisions at sNN=200\sqrt{s_{{}_{NN}}}=200 GeV

N.J. Abdulameer Debrecen University, H-4010 Debrecen, Egyetem tér 1, Hungary HUN-REN ATOMKI, H-4026 Debrecen, Bem tér 18/c, Hungary    U. Acharya Georgia State University, Atlanta, Georgia 30303, USA    A. Adare University of Colorado, Boulder, Colorado 80309, USA    S. Afanasiev Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region, Russia    C. Aidala Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003-9337, USA Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040, USA    N.N. Ajitanand Deceased Chemistry Department, Stony Brook University, SUNY, Stony Brook, New York 11794-3400, USA    Y. Akiba akiba@rcf.rhic.bnl.gov RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198, Japan RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973-5000, USA    H. Al-Bataineh New Mexico State University, Las Cruces, New Mexico 88003, USA    J. Alexander Chemistry Department, Stony Brook University, SUNY, Stony Brook, New York 11794-3400, USA    M. Alfred Department of Physics and Astronomy, Howard University, Washington, DC 20059, USA    K. Aoki KEK, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801, Japan Kyoto University, Kyoto 606-8502, Japan RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198, Japan    N. Apadula Iowa State University, Ames, Iowa 50011, USA Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA    L. Aphecetche SUBATECH (Ecole des Mines de Nantes, CNRS-IN2P3, Université de Nantes) BP 20722-44307, Nantes, France    J. Asai RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198, Japan    H. Asano Kyoto University, Kyoto 606-8502, Japan RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198, Japan    E.T. Atomssa Laboratoire Leprince-Ringuet, Ecole Polytechnique, CNRS-IN2P3, Route de Saclay, F-91128, Palaiseau, France    R. Averbeck Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA    T.C. Awes Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA    B. Azmoun Physics Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA    V. Babintsev IHEP Protvino, State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, 142281, Russia    M. Bai Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA    G. Baksay Florida Institute of Technology, Melbourne, Florida 32901, USA    L. Baksay Florida Institute of Technology, Melbourne, Florida 32901, USA    A. Baldisseri Dapnia, CEA Saclay, F-91191, Gif-sur-Yvette, France    N.S. Bandara Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003-9337, USA    B. Bannier Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA    K.N. Barish University of California-Riverside, Riverside, California 92521, USA    P.D. Barnes Deceased Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA    B. Bassalleck University of New Mexico, Albuquerque, New Mexico 87131, USA    A.T. Basye Abilene Christian University, Abilene, Texas 79699, USA    S. Bathe Baruch College, City University of New York, New York, New York, 10010 USA University of California-Riverside, Riverside, California 92521, USA RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973-5000, USA    S. Batsouli Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA    V. Baublis PNPI, Petersburg Nuclear Physics Institute, Gatchina, Leningrad region, 188300, Russia    C. Baumann Physics Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA Institut für Kernphysik, University of Münster, D-48149 Münster, Germany    A. Bazilevsky Physics Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA    M. Beaumier University of California-Riverside, Riverside, California 92521, USA    S. Beckman University of Colorado, Boulder, Colorado 80309, USA    S. Belikov Deceased Physics Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA    R. Belmont University of Colorado, Boulder, Colorado 80309, USA Physics and Astronomy Department, University of North Carolina at Greensboro, Greensboro, North Carolina 27412, USA    R. Bennett Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA    A. Berdnikov Saint Petersburg State Polytechnic University, St. Petersburg, 195251 Russia    Y. Berdnikov Saint Petersburg State Polytechnic University, St. Petersburg, 195251 Russia    L. Bichon Vanderbilt University, Nashville, Tennessee 37235, USA    A.A. Bickley University of Colorado, Boulder, Colorado 80309, USA    B. Blankenship Vanderbilt University, Nashville, Tennessee 37235, USA    D.S. Blau National Research Center “Kurchatov Institute”, Moscow, 123098 Russia National Research Nuclear University, MEPhI, Moscow Engineering Physics Institute, Moscow, 115409, Russia    J.G. Boissevain Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA    J.S. Bok New Mexico State University, Las Cruces, New Mexico 88003, USA    H. Borel Dapnia, CEA Saclay, F-91191, Gif-sur-Yvette, France    V. Borisov Saint Petersburg State Polytechnic University, St. Petersburg, 195251 Russia    K. Boyle RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973-5000, USA Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA    M.L. Brooks Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA    J. Bryslawskyj Baruch College, City University of New York, New York, New York, 10010 USA University of California-Riverside, Riverside, California 92521, USA    H. Buesching Physics Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA    V. Bumazhnov IHEP Protvino, State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, 142281, Russia    G. Bunce Physics Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973-5000, USA    S. Butsyk Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA    C.M. Camacho Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA    S. Campbell Columbia University, New York, New York 10027 and Nevis Laboratories, Irvington, New York 10533, USA Iowa State University, Ames, Iowa 50011, USA Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA    B.S. Chang Yonsei University, IPAP, Seoul 120-749, Korea    W.C. Chang Institute of Physics, Academia Sinica, Taipei 11529, Taiwan    J.L. Charvet Dapnia, CEA Saclay, F-91191, Gif-sur-Yvette, France    C.-H. Chen RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973-5000, USA Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA    D. Chen Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA    S. Chernichenko IHEP Protvino, State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, 142281, Russia    M. Chiu Physics Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA    C.Y. Chi Columbia University, New York, New York 10027 and Nevis Laboratories, Irvington, New York 10533, USA    I.J. Choi University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA Yonsei University, IPAP, Seoul 120-749, Korea    J.B. Choi Deceased Jeonbuk National University, Jeonju, 54896, Korea    R.K. Choudhury Bhabha Atomic Research Centre, Bombay 400 085, India    T. Chujo Tomonaga Center for the History of the Universe, University of Tsukuba, Tsukuba, Ibaraki 305, Japan    P. Chung Chemistry Department, Stony Brook University, SUNY, Stony Brook, New York 11794-3400, USA    A. Churyn IHEP Protvino, State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, 142281, Russia    V. Cianciolo Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA    Z. Citron Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA Weizmann Institute, Rehovot 76100, Israel    B.A. Cole Columbia University, New York, New York 10027 and Nevis Laboratories, Irvington, New York 10533, USA    M. Connors Georgia State University, Atlanta, Georgia 30303, USA RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973-5000, USA    P. Constantin Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA    R. Corliss Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA    M. Csanád ELTE, Eötvös Loránd University, H-1117 Budapest, Pázmány P. s. 1/A, Hungary    T. Csörgő Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Hungarian Academy of Sciences (Wigner RCP, RMKI) H-1525 Budapest 114, POBox 49, Budapest, Hungary    D. d’Enterria Laboratoire Leprince-Ringuet, Ecole Polytechnique, CNRS-IN2P3, Route de Saclay, F-91128, Palaiseau, France    T. Dahms Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA    S. Dairaku Kyoto University, Kyoto 606-8502, Japan RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198, Japan    T.W. Danley Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701, USA    K. Das Florida State University, Tallahassee, Florida 32306, USA    A. Datta University of New Mexico, Albuquerque, New Mexico 87131, USA    M.S. Daugherity Abilene Christian University, Abilene, Texas 79699, USA    G. David Physics Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA    K. DeBlasio University of New Mexico, Albuquerque, New Mexico 87131, USA    K. Dehmelt Florida Institute of Technology, Melbourne, Florida 32901, USA Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA    A. Denisov IHEP Protvino, State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, 142281, Russia    A. Deshpande RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973-5000, USA Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA    E.J. Desmond Physics Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA    O. Dietzsch Universidade de São Paulo, Instituto de Física, Caixa Postal 66318, São Paulo CEP05315-970, Brazil    A. Dion Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA    P.B. Diss University of Maryland, College Park, Maryland 20742, USA    M. Donadelli Universidade de São Paulo, Instituto de Física, Caixa Postal 66318, São Paulo CEP05315-970, Brazil    V. Doomra Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA    J.H. Do Yonsei University, IPAP, Seoul 120-749, Korea    O. Drapier Laboratoire Leprince-Ringuet, Ecole Polytechnique, CNRS-IN2P3, Route de Saclay, F-91128, Palaiseau, France    A. Drees Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA    K.A. Drees Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA    A.K. Dubey Weizmann Institute, Rehovot 76100, Israel    J.M. Durham Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA    A. Durum IHEP Protvino, State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, 142281, Russia    D. Dutta Bhabha Atomic Research Centre, Bombay 400 085, India    V. Dzhordzhadze University of California-Riverside, Riverside, California 92521, USA    Y.V. Efremenko Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA    F. Ellinghaus University of Colorado, Boulder, Colorado 80309, USA    H. En’yo RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198, Japan RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973-5000, USA    T. Engelmore Columbia University, New York, New York 10027 and Nevis Laboratories, Irvington, New York 10533, USA    A. Enokizono Lawrence Livermore National Laboratory, Livermore, California 94550, USA RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198, Japan Physics Department, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima, Tokyo 171-8501, Japan    R. Esha Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA    K.O. Eyser Physics Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA University of California-Riverside, Riverside, California 92521, USA    B. Fadem Muhlenberg College, Allentown, Pennsylvania 18104-5586, USA    N. Feege Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA    D.E. Fields University of New Mexico, Albuquerque, New Mexico 87131, USA RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973-5000, USA    M. Finger, Jr Charles University, Faculty of Mathematics and Physics, 180 00 Troja, Prague, Czech Republic    M. Finger Charles University, Faculty of Mathematics and Physics, 180 00 Troja, Prague, Czech Republic    D. Firak Debrecen University, H-4010 Debrecen, Egyetem tér 1, Hungary Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA    D. Fitzgerald Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040, USA    F. Fleuret Laboratoire Leprince-Ringuet, Ecole Polytechnique, CNRS-IN2P3, Route de Saclay, F-91128, Palaiseau, France    S.L. Fokin National Research Center “Kurchatov Institute”, Moscow, 123098 Russia    Z. Fraenkel Deceased Weizmann Institute, Rehovot 76100, Israel    J.E. Frantz Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701, USA Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA    A. Franz Physics Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA    A.D. Frawley Florida State University, Tallahassee, Florida 32306, USA    K. Fujiwara RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198, Japan    Y. Fukao Kyoto University, Kyoto 606-8502, Japan RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198, Japan    T. Fusayasu Nagasaki Institute of Applied Science, Nagasaki-shi, Nagasaki 851-0193, Japan    P. Gallus Czech Technical University, Zikova 4, 166 36 Prague 6, Czech Republic    C. Gal Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA    P. Garg Department of Physics, Banaras Hindu University, Varanasi 221005, India Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA    I. Garishvili Lawrence Livermore National Laboratory, Livermore, California 94550, USA University of Tennessee, Knoxville, Tennessee 37996, USA    H. Ge Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA    F. Giordano University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA    A. Glenn University of Colorado, Boulder, Colorado 80309, USA Lawrence Livermore National Laboratory, Livermore, California 94550, USA    H. Gong Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA    M. Gonin Laboratoire Leprince-Ringuet, Ecole Polytechnique, CNRS-IN2P3, Route de Saclay, F-91128, Palaiseau, France    J. Gosset Dapnia, CEA Saclay, F-91191, Gif-sur-Yvette, France    Y. Goto RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198, Japan RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973-5000, USA    R. Granier de Cassagnac Laboratoire Leprince-Ringuet, Ecole Polytechnique, CNRS-IN2P3, Route de Saclay, F-91128, Palaiseau, France    N. Grau Department of Physics, Augustana University, Sioux Falls, South Dakota 57197, USA Columbia University, New York, New York 10027 and Nevis Laboratories, Irvington, New York 10533, USA    S.V. Greene Vanderbilt University, Nashville, Tennessee 37235, USA    M. Grosse Perdekamp University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973-5000, USA    T. Gunji Center for Nuclear Study, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan    T. Guo Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA    H.-Å. Gustafsson Deceased Department of Physics, Lund University, Box 118, SE-221 00 Lund, Sweden    T. Hachiya Physics Program and International Institute for Sustainability with Knotted Chiral Meta Matter (SKCM2), Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198, Japan RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973-5000, USA    A. Hadj Henni SUBATECH (Ecole des Mines de Nantes, CNRS-IN2P3, Université de Nantes) BP 20722-44307, Nantes, France    J.S. Haggerty Physics Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA    K.I. Hahn Ewha Womans University, Seoul 120-750, Korea    H. Hamagaki Center for Nuclear Study, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan    H.F. Hamilton Abilene Christian University, Abilene, Texas 79699, USA    J. Hanks Columbia University, New York, New York 10027 and Nevis Laboratories, Irvington, New York 10533, USA Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA    R. Han Peking University, Beijing 100871, People’s Republic of China    S.Y. Han Ewha Womans University, Seoul 120-750, Korea Korea University, Seoul 02841, Korea    E.P. Hartouni Lawrence Livermore National Laboratory, Livermore, California 94550, USA    K. Haruna Physics Program and International Institute for Sustainability with Knotted Chiral Meta Matter (SKCM2), Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan    S. Hasegawa Advanced Science Research Center, Japan Atomic Energy Agency, 2-4 Shirakata Shirane, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195, Japan    T.O.S. Haseler Georgia State University, Atlanta, Georgia 30303, USA    K. Hashimoto RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198, Japan Physics Department, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima, Tokyo 171-8501, Japan    E. Haslum Department of Physics, Lund University, Box 118, SE-221 00 Lund, Sweden    R. Hayano Center for Nuclear Study, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan    M. Heffner Lawrence Livermore National Laboratory, Livermore, California 94550, USA    T.K. Hemmick Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA    T. Hester University of California-Riverside, Riverside, California 92521, USA    X. He Georgia State University, Atlanta, Georgia 30303, USA    J.C. Hill Iowa State University, Ames, Iowa 50011, USA    A. Hodges Georgia State University, Atlanta, Georgia 30303, USA University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA    M. Hohlmann Florida Institute of Technology, Melbourne, Florida 32901, USA    R.S. Hollis University of California-Riverside, Riverside, California 92521, USA    W. Holzmann Chemistry Department, Stony Brook University, SUNY, Stony Brook, New York 11794-3400, USA    K. Homma Physics Program and International Institute for Sustainability with Knotted Chiral Meta Matter (SKCM2), Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan    B. Hong Korea University, Seoul 02841, Korea    T. Horaguchi Center for Nuclear Study, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198, Japan Department of Physics, Tokyo Institute of Technology, Oh-okayama, Meguro, Tokyo 152-8551, Japan    D. Hornback University of Tennessee, Knoxville, Tennessee 37996, USA    T. Hoshino Physics Program and International Institute for Sustainability with Knotted Chiral Meta Matter (SKCM2), Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan    N. Hotvedt Iowa State University, Ames, Iowa 50011, USA    J. Huang Physics Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA    T. Ichihara RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198, Japan RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973-5000, USA    R. Ichimiya RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198, Japan    H. Iinuma Kyoto University, Kyoto 606-8502, Japan RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198, Japan    Y. Ikeda Tomonaga Center for the History of the Universe, University of Tsukuba, Tsukuba, Ibaraki 305, Japan    K. Imai Advanced Science Research Center, Japan Atomic Energy Agency, 2-4 Shirakata Shirane, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195, Japan Kyoto University, Kyoto 606-8502, Japan RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198, Japan    J. Imrek Debrecen University, H-4010 Debrecen, Egyetem tér 1, Hungary    M. Inaba Tomonaga Center for the History of the Universe, University of Tsukuba, Tsukuba, Ibaraki 305, Japan    A. Iordanova University of California-Riverside, Riverside, California 92521, USA    D. Isenhower Abilene Christian University, Abilene, Texas 79699, USA    M. Ishihara RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198, Japan    T. Isobe Center for Nuclear Study, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198, Japan    M. Issah Chemistry Department, Stony Brook University, SUNY, Stony Brook, New York 11794-3400, USA    A. Isupov Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region, Russia    D. Ivanishchev PNPI, Petersburg Nuclear Physics Institute, Gatchina, Leningrad region, 188300, Russia    B.V. Jacak Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA    M. Jezghani Georgia State University, Atlanta, Georgia 30303, USA    X. Jiang Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA    J. Jin Columbia University, New York, New York 10027 and Nevis Laboratories, Irvington, New York 10533, USA    Z. Ji Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA    B.M. Johnson Physics Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA Georgia State University, Atlanta, Georgia 30303, USA    K.S. Joo Myongji University, Yongin, Kyonggido 449-728, Korea    D. Jouan IPN-Orsay, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, BP1, F-91406, Orsay, France    D.S. Jumper Abilene Christian University, Abilene, Texas 79699, USA University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA    F. Kajihara Center for Nuclear Study, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan    S. Kametani RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198, Japan    N. Kamihara RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973-5000, USA    J. Kamin Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA    S. Kanda Center for Nuclear Study, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan    J.H. Kang Yonsei University, IPAP, Seoul 120-749, Korea    J. Kapustinsky Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA    D. Kawall Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003-9337, USA RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973-5000, USA    A.V. Kazantsev National Research Center “Kurchatov Institute”, Moscow, 123098 Russia    T. Kempel Iowa State University, Ames, Iowa 50011, USA    J.A. Key University of New Mexico, Albuquerque, New Mexico 87131, USA    V. Khachatryan Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA    A. Khanzadeev PNPI, Petersburg Nuclear Physics Institute, Gatchina, Leningrad region, 188300, Russia    K.M. Kijima Physics Program and International Institute for Sustainability with Knotted Chiral Meta Matter (SKCM2), Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan    J. Kikuchi Waseda University, Advanced Research Institute for Science and Engineering, 17 Kikui-cho, Shinjuku-ku, Tokyo 162-0044, Japan    B. Kimelman Muhlenberg College, Allentown, Pennsylvania 18104-5586, USA    B.I. Kim Korea University, Seoul 02841, Korea    C. Kim Korea University, Seoul 02841, Korea    D.H. Kim Myongji University, Yongin, Kyonggido 449-728, Korea    D.J. Kim Helsinki Institute of Physics and University of Jyväskylä, P.O.Box 35, FI-40014 Jyväskylä, Finland Yonsei University, IPAP, Seoul 120-749, Korea    E. Kim Department of Physics and Astronomy, Seoul National University, Seoul 151-742, Korea    E.-J. Kim Jeonbuk National University, Jeonju, 54896, Korea    G.W. Kim Ewha Womans University, Seoul 120-750, Korea    M. Kim Department of Physics and Astronomy, Seoul National University, Seoul 151-742, Korea    S.H. Kim Yonsei University, IPAP, Seoul 120-749, Korea    E. Kinney University of Colorado, Boulder, Colorado 80309, USA    K. Kiriluk University of Colorado, Boulder, Colorado 80309, USA    Á. Kiss ELTE, Eötvös Loránd University, H-1117 Budapest, Pázmány P. s. 1/A, Hungary    E. Kistenev Physics Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA    R. Kitamura Center for Nuclear Study, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan    J. Klatsky Florida State University, Tallahassee, Florida 32306, USA    J. Klay Lawrence Livermore National Laboratory, Livermore, California 94550, USA    C. Klein-Boesing Institut für Kernphysik, University of Münster, D-48149 Münster, Germany    D. Kleinjan University of California-Riverside, Riverside, California 92521, USA    P. Kline Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA    T. Koblesky University of Colorado, Boulder, Colorado 80309, USA    L. Kochenda PNPI, Petersburg Nuclear Physics Institute, Gatchina, Leningrad region, 188300, Russia    B. Komkov PNPI, Petersburg Nuclear Physics Institute, Gatchina, Leningrad region, 188300, Russia    M. Konno Tomonaga Center for the History of the Universe, University of Tsukuba, Tsukuba, Ibaraki 305, Japan    J. Koster University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA    D. Kotov PNPI, Petersburg Nuclear Physics Institute, Gatchina, Leningrad region, 188300, Russia Saint Petersburg State Polytechnic University, St. Petersburg, 195251 Russia    L. Kovacs ELTE, Eötvös Loránd University, H-1117 Budapest, Pázmány P. s. 1/A, Hungary    A. Kozlov Weizmann Institute, Rehovot 76100, Israel    A. Kravitz Columbia University, New York, New York 10027 and Nevis Laboratories, Irvington, New York 10533, USA    A. Král Czech Technical University, Zikova 4, 166 36 Prague 6, Czech Republic    G.J. Kunde Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA    B. Kurgyis ELTE, Eötvös Loránd University, H-1117 Budapest, Pázmány P. s. 1/A, Hungary Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA    K. Kurita RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198, Japan Physics Department, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima, Tokyo 171-8501, Japan    M. Kurosawa RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198, Japan RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973-5000, USA    M.J. Kweon Korea University, Seoul 02841, Korea    Y. Kwon University of Tennessee, Knoxville, Tennessee 37996, USA Yonsei University, IPAP, Seoul 120-749, Korea    G.S. Kyle New Mexico State University, Las Cruces, New Mexico 88003, USA    Y.S. Lai Columbia University, New York, New York 10027 and Nevis Laboratories, Irvington, New York 10533, USA    J.G. Lajoie Iowa State University, Ames, Iowa 50011, USA    D. Layton University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA    A. Lebedev Iowa State University, Ames, Iowa 50011, USA    D.M. Lee Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA    K.B. Lee Korea University, Seoul 02841, Korea    S. Lee Yonsei University, IPAP, Seoul 120-749, Korea    S.H. Lee Iowa State University, Ames, Iowa 50011, USA Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA    T. Lee Department of Physics and Astronomy, Seoul National University, Seoul 151-742, Korea    M.J. Leitch Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA    M.A.L. Leite Universidade de São Paulo, Instituto de Física, Caixa Postal 66318, São Paulo CEP05315-970, Brazil    B. Lenzi Universidade de São Paulo, Instituto de Física, Caixa Postal 66318, São Paulo CEP05315-970, Brazil    P. Liebing RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973-5000, USA    S.H. Lim Yonsei University, IPAP, Seoul 120-749, Korea    A. Litvinenko Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region, Russia    H. Liu New Mexico State University, Las Cruces, New Mexico 88003, USA    M.X. Liu Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA    T. Liška Czech Technical University, Zikova 4, 166 36 Prague 6, Czech Republic    X. Li Science and Technology on Nuclear Data Laboratory, China Institute of Atomic Energy, Beijing 102413, People’s Republic of China    S. Lokos ELTE, Eötvös Loránd University, H-1117 Budapest, Pázmány P. s. 1/A, Hungary    D.A. Loomis Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040, USA    B. Love Vanderbilt University, Nashville, Tennessee 37235, USA    D. Lynch Physics Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA    C.F. Maguire Vanderbilt University, Nashville, Tennessee 37235, USA    Y.I. Makdisi Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA    M. Makek Department of Physics, Faculty of Science, University of Zagreb, Bijenička c. 32 HR-10002 Zagreb, Croatia    A. Malakhov Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region, Russia    M.D. Malik University of New Mexico, Albuquerque, New Mexico 87131, USA    A. Manion Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA    V.I. Manko National Research Center “Kurchatov Institute”, Moscow, 123098 Russia    E. Mannel Physics Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA Columbia University, New York, New York 10027 and Nevis Laboratories, Irvington, New York 10533, USA    Y. Mao Peking University, Beijing 100871, People’s Republic of China RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198, Japan    H. Masui Tomonaga Center for the History of the Universe, University of Tsukuba, Tsukuba, Ibaraki 305, Japan    F. Matathias Columbia University, New York, New York 10027 and Nevis Laboratories, Irvington, New York 10533, USA    L. Mašek Charles University, Faculty of Mathematics and Physics, 180 00 Troja, Prague, Czech Republic Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 182 21 Prague 8, Czech Republic    M. McCumber Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA    P.L. McGaughey Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA    D. McGlinchey University of Colorado, Boulder, Colorado 80309, USA Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA    C. McKinney University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA    N. Means Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA    A. Meles New Mexico State University, Las Cruces, New Mexico 88003, USA    M. Mendoza University of California-Riverside, Riverside, California 92521, USA    B. Meredith University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA    Y. Miake Tomonaga Center for the History of the Universe, University of Tsukuba, Tsukuba, Ibaraki 305, Japan    A.C. Mignerey University of Maryland, College Park, Maryland 20742, USA    P. Mikeš Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 182 21 Prague 8, Czech Republic    K. Miki Tomonaga Center for the History of the Universe, University of Tsukuba, Tsukuba, Ibaraki 305, Japan    A. Milov Physics Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA Weizmann Institute, Rehovot 76100, Israel    D.K. Mishra Bhabha Atomic Research Centre, Bombay 400 085, India    M. Mishra Department of Physics, Banaras Hindu University, Varanasi 221005, India    J.T. Mitchell Physics Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA    M. Mitrankova Saint Petersburg State Polytechnic University, St. Petersburg, 195251 Russia Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA    Iu. Mitrankov Saint Petersburg State Polytechnic University, St. Petersburg, 195251 Russia Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA    S. Miyasaka RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198, Japan Department of Physics, Tokyo Institute of Technology, Oh-okayama, Meguro, Tokyo 152-8551, Japan    S. Mizuno RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198, Japan Tomonaga Center for the History of the Universe, University of Tsukuba, Tsukuba, Ibaraki 305, Japan    A.K. Mohanty Bhabha Atomic Research Centre, Bombay 400 085, India    P. Montuenga University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA    T. Moon Korea University, Seoul 02841, Korea Yonsei University, IPAP, Seoul 120-749, Korea    Y. Morino Center for Nuclear Study, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan    A. Morreale University of California-Riverside, Riverside, California 92521, USA    D.P. Morrison Physics Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA    T.V. Moukhanova National Research Center “Kurchatov Institute”, Moscow, 123098 Russia    D. Mukhopadhyay Vanderbilt University, Nashville, Tennessee 37235, USA    B. Mulilo Korea University, Seoul 02841, Korea RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198, Japan Department of Physics, School of Natural Sciences, University of Zambia, Great East Road Campus, Box 32379, Lusaka, Zambia    T. Murakami Kyoto University, Kyoto 606-8502, Japan RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198, Japan    J. Murata RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198, Japan Physics Department, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima, Tokyo 171-8501, Japan    A. Mwai Chemistry Department, Stony Brook University, SUNY, Stony Brook, New York 11794-3400, USA    S. Nagamiya KEK, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801, Japan RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198, Japan    K. Nagashima Physics Program and International Institute for Sustainability with Knotted Chiral Meta Matter (SKCM2), Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan    J.L. Nagle University of Colorado, Boulder, Colorado 80309, USA    M. Naglis Weizmann Institute, Rehovot 76100, Israel    M.I. Nagy ELTE, Eötvös Loránd University, H-1117 Budapest, Pázmány P. s. 1/A, Hungary    I. Nakagawa RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198, Japan RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973-5000, USA    H. Nakagomi RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198, Japan Tomonaga Center for the History of the Universe, University of Tsukuba, Tsukuba, Ibaraki 305, Japan    Y. Nakamiya Physics Program and International Institute for Sustainability with Knotted Chiral Meta Matter (SKCM2), Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan    T. Nakamura Physics Program and International Institute for Sustainability with Knotted Chiral Meta Matter (SKCM2), Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan    K. Nakano RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198, Japan Department of Physics, Tokyo Institute of Technology, Oh-okayama, Meguro, Tokyo 152-8551, Japan    C. Nattrass University of Tennessee, Knoxville, Tennessee 37996, USA    P.K. Netrakanti Bhabha Atomic Research Centre, Bombay 400 085, India    J. Newby Lawrence Livermore National Laboratory, Livermore, California 94550, USA    M. Nguyen Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA    T. Niida Tomonaga Center for the History of the Universe, University of Tsukuba, Tsukuba, Ibaraki 305, Japan    S. Nishimura Center for Nuclear Study, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan    R. Nouicer Physics Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973-5000, USA    N. Novitzky Helsinki Institute of Physics and University of Jyväskylä, P.O.Box 35, FI-40014 Jyväskylä, Finland Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA    T. Novák MATE, Laboratory of Femtoscopy, Károly Róbert Campus, H-3200 Gyöngyös, Mátraiút 36, Hungary Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Hungarian Academy of Sciences (Wigner RCP, RMKI) H-1525 Budapest 114, POBox 49, Budapest, Hungary    G. Nukazuka RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198, Japan RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973-5000, USA    A.S. Nyanin National Research Center “Kurchatov Institute”, Moscow, 123098 Russia    E. O’Brien Physics Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA    S.X. Oda Center for Nuclear Study, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan    C.A. Ogilvie Iowa State University, Ames, Iowa 50011, USA    K. Okada RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973-5000, USA    M. Oka Tomonaga Center for the History of the Universe, University of Tsukuba, Tsukuba, Ibaraki 305, Japan    Y. Onuki RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198, Japan    J.D. Orjuela Koop University of Colorado, Boulder, Colorado 80309, USA    M. Orosz Debrecen University, H-4010 Debrecen, Egyetem tér 1, Hungary HUN-REN ATOMKI, H-4026 Debrecen, Bem tér 18/c, Hungary    J.D. Osborn Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040, USA Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA    A. Oskarsson Department of Physics, Lund University, Box 118, SE-221 00 Lund, Sweden    M. Ouchida Physics Program and International Institute for Sustainability with Knotted Chiral Meta Matter (SKCM2), Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan    K. Ozawa Center for Nuclear Study, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan KEK, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801, Japan Tomonaga Center for the History of the Universe, University of Tsukuba, Tsukuba, Ibaraki 305, Japan    R. Pak Physics Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA    A.P.T. Palounek Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA    V. Pantuev Institute for Nuclear Research of the Russian Academy of Sciences, prospekt 60-letiya Oktyabrya 7a, Moscow 117312, Russia Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA    V. Papavassiliou New Mexico State University, Las Cruces, New Mexico 88003, USA    J. Park Department of Physics and Astronomy, Seoul National University, Seoul 151-742, Korea    J.S. Park Department of Physics and Astronomy, Seoul National University, Seoul 151-742, Korea    S. Park Mississippi State University, Mississippi State, Mississippi 39762, USA RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198, Japan Department of Physics and Astronomy, Seoul National University, Seoul 151-742, Korea Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA    W.J. Park Korea University, Seoul 02841, Korea    M. Patel Iowa State University, Ames, Iowa 50011, USA    S.F. Pate New Mexico State University, Las Cruces, New Mexico 88003, USA    H. Pei Iowa State University, Ames, Iowa 50011, USA    J.-C. Peng University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA    H. Pereira Dapnia, CEA Saclay, F-91191, Gif-sur-Yvette, France    D.V. Perepelitsa Physics Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA University of Colorado, Boulder, Colorado 80309, USA    G.D.N. Perera New Mexico State University, Las Cruces, New Mexico 88003, USA    V. Peresedov Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region, Russia    D.Yu. Peressounko National Research Center “Kurchatov Institute”, Moscow, 123098 Russia    J. Perry Iowa State University, Ames, Iowa 50011, USA    R. Petti Physics Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA    C. Pinkenburg Physics Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA    R. Pinson Abilene Christian University, Abilene, Texas 79699, USA    R.P. Pisani Physics Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA    M. Potekhin Physics Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA    M.L. Purschke Physics Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA    A.K. Purwar Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA    H. Qu Georgia State University, Atlanta, Georgia 30303, USA    A. Rakotozafindrabe Laboratoire Leprince-Ringuet, Ecole Polytechnique, CNRS-IN2P3, Route de Saclay, F-91128, Palaiseau, France    J. Rak Helsinki Institute of Physics and University of Jyväskylä, P.O.Box 35, FI-40014 Jyväskylä, Finland University of New Mexico, Albuquerque, New Mexico 87131, USA    B.J. Ramson Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040, USA    I. Ravinovich Weizmann Institute, Rehovot 76100, Israel    K.F. Read Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA University of Tennessee, Knoxville, Tennessee 37996, USA    S. Rembeczki Florida Institute of Technology, Melbourne, Florida 32901, USA    K. Reygers Institut für Kernphysik, University of Münster, D-48149 Münster, Germany    D. Reynolds Chemistry Department, Stony Brook University, SUNY, Stony Brook, New York 11794-3400, USA    V. Riabov National Research Nuclear University, MEPhI, Moscow Engineering Physics Institute, Moscow, 115409, Russia PNPI, Petersburg Nuclear Physics Institute, Gatchina, Leningrad region, 188300, Russia    Y. Riabov PNPI, Petersburg Nuclear Physics Institute, Gatchina, Leningrad region, 188300, Russia Saint Petersburg State Polytechnic University, St. Petersburg, 195251 Russia    D. Richford Baruch College, City University of New York, New York, New York, 10010 USA United States Merchant Marine Academy, Kings Point, New York 11024, USA    T. Rinn Iowa State University, Ames, Iowa 50011, USA    D. Roach Vanderbilt University, Nashville, Tennessee 37235, USA    G. Roche Deceased LPC, Université Blaise Pascal, CNRS-IN2P3, Clermont-Fd, 63177 Aubiere Cedex, France    S.D. Rolnick University of California-Riverside, Riverside, California 92521, USA    M. Rosati Iowa State University, Ames, Iowa 50011, USA    S.S.E. Rosendahl Department of Physics, Lund University, Box 118, SE-221 00 Lund, Sweden    P. Rosnet LPC, Université Blaise Pascal, CNRS-IN2P3, Clermont-Fd, 63177 Aubiere Cedex, France    Z. Rowan Baruch College, City University of New York, New York, New York, 10010 USA    J.G. Rubin Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040, USA    P. Rukoyatkin Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region, Russia    P. Ružička Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 182 21 Prague 8, Czech Republic    V.L. Rykov RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198, Japan    B. Sahlmueller Institut für Kernphysik, University of Münster, D-48149 Münster, Germany Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA    N. Saito KEK, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801, Japan Kyoto University, Kyoto 606-8502, Japan RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198, Japan RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973-5000, USA    T. Sakaguchi Physics Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA    S. Sakai Tomonaga Center for the History of the Universe, University of Tsukuba, Tsukuba, Ibaraki 305, Japan    K. Sakashita RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198, Japan Department of Physics, Tokyo Institute of Technology, Oh-okayama, Meguro, Tokyo 152-8551, Japan    H. Sako Advanced Science Research Center, Japan Atomic Energy Agency, 2-4 Shirakata Shirane, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195, Japan    V. Samsonov National Research Nuclear University, MEPhI, Moscow Engineering Physics Institute, Moscow, 115409, Russia PNPI, Petersburg Nuclear Physics Institute, Gatchina, Leningrad region, 188300, Russia    M. Sarsour Georgia State University, Atlanta, Georgia 30303, USA    S. Sato Advanced Science Research Center, Japan Atomic Energy Agency, 2-4 Shirakata Shirane, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195, Japan KEK, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801, Japan    T. Sato Tomonaga Center for the History of the Universe, University of Tsukuba, Tsukuba, Ibaraki 305, Japan    S. Sawada KEK, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801, Japan    B. Schaefer Vanderbilt University, Nashville, Tennessee 37235, USA    B.K. Schmoll University of Tennessee, Knoxville, Tennessee 37996, USA    K. Sedgwick University of California-Riverside, Riverside, California 92521, USA    J. Seele University of Colorado, Boulder, Colorado 80309, USA    R. Seidl University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198, Japan RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973-5000, USA    A.Yu. Semenov Iowa State University, Ames, Iowa 50011, USA    V. Semenov IHEP Protvino, State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, 142281, Russia Institute for Nuclear Research of the Russian Academy of Sciences, prospekt 60-letiya Oktyabrya 7a, Moscow 117312, Russia    A. Sen Iowa State University, Ames, Iowa 50011, USA University of Tennessee, Knoxville, Tennessee 37996, USA    R. Seto University of California-Riverside, Riverside, California 92521, USA    P. Sett Bhabha Atomic Research Centre, Bombay 400 085, India    A. Sexton University of Maryland, College Park, Maryland 20742, USA    D. Sharma Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA Weizmann Institute, Rehovot 76100, Israel    I. Shein IHEP Protvino, State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, 142281, Russia    T.-A. Shibata RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198, Japan Department of Physics, Tokyo Institute of Technology, Oh-okayama, Meguro, Tokyo 152-8551, Japan    K. Shigaki Physics Program and International Institute for Sustainability with Knotted Chiral Meta Matter (SKCM2), Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan    M. Shimomura Iowa State University, Ames, Iowa 50011, USA Nara Women’s University, Kita-uoya Nishi-machi Nara 630-8506, Japan Tomonaga Center for the History of the Universe, University of Tsukuba, Tsukuba, Ibaraki 305, Japan    K. Shoji Kyoto University, Kyoto 606-8502, Japan RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198, Japan    P. Shukla Bhabha Atomic Research Centre, Bombay 400 085, India    A. Sickles Physics Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA    C.L. Silva Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA Universidade de São Paulo, Instituto de Física, Caixa Postal 66318, São Paulo CEP05315-970, Brazil    D. Silvermyr Department of Physics, Lund University, Box 118, SE-221 00 Lund, Sweden Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA    C. Silvestre Dapnia, CEA Saclay, F-91191, Gif-sur-Yvette, France    K.S. Sim Korea University, Seoul 02841, Korea    B.K. Singh Department of Physics, Banaras Hindu University, Varanasi 221005, India    C.P. Singh Deceased Department of Physics, Banaras Hindu University, Varanasi 221005, India    V. Singh Department of Physics, Banaras Hindu University, Varanasi 221005, India    M. Slunečka Charles University, Faculty of Mathematics and Physics, 180 00 Troja, Prague, Czech Republic    K.L. Smith Florida State University, Tallahassee, Florida 32306, USA Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA    M. Snowball Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA    A. Soldatov IHEP Protvino, State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, 142281, Russia    R.A. Soltz Lawrence Livermore National Laboratory, Livermore, California 94550, USA    W.E. Sondheim Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA    S.P. Sorensen University of Tennessee, Knoxville, Tennessee 37996, USA    I.V. Sourikova Physics Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA    F. Staley Dapnia, CEA Saclay, F-91191, Gif-sur-Yvette, France    P.W. Stankus Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA    E. Stenlund Department of Physics, Lund University, Box 118, SE-221 00 Lund, Sweden    M. Stepanov Deceased Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003-9337, USA New Mexico State University, Las Cruces, New Mexico 88003, USA    A. Ster Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Hungarian Academy of Sciences (Wigner RCP, RMKI) H-1525 Budapest 114, POBox 49, Budapest, Hungary    S.P. Stoll Physics Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA    T. Sugitate Physics Program and International Institute for Sustainability with Knotted Chiral Meta Matter (SKCM2), Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan    C. Suire IPN-Orsay, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, BP1, F-91406, Orsay, France    A. Sukhanov Physics Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA    T. Sumita RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198, Japan    J. Sun Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA    Z. Sun Debrecen University, H-4010 Debrecen, Egyetem tér 1, Hungary HUN-REN ATOMKI, H-4026 Debrecen, Bem tér 18/c, Hungary Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA    J. Sziklai Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Hungarian Academy of Sciences (Wigner RCP, RMKI) H-1525 Budapest 114, POBox 49, Budapest, Hungary    E.M. Takagui Universidade de São Paulo, Instituto de Física, Caixa Postal 66318, São Paulo CEP05315-970, Brazil    A. Taketani RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198, Japan RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973-5000, USA    R. Tanabe Tomonaga Center for the History of the Universe, University of Tsukuba, Tsukuba, Ibaraki 305, Japan    Y. Tanaka Nagasaki Institute of Applied Science, Nagasaki-shi, Nagasaki 851-0193, Japan    K. Tanida Advanced Science Research Center, Japan Atomic Energy Agency, 2-4 Shirakata Shirane, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195, Japan RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198, Japan RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973-5000, USA Department of Physics and Astronomy, Seoul National University, Seoul 151-742, Korea    M.J. Tannenbaum Physics Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA    S. Tarafdar Vanderbilt University, Nashville, Tennessee 37235, USA Weizmann Institute, Rehovot 76100, Israel    A. Taranenko National Research Nuclear University, MEPhI, Moscow Engineering Physics Institute, Moscow, 115409, Russia Chemistry Department, Stony Brook University, SUNY, Stony Brook, New York 11794-3400, USA    P. Tarján Debrecen University, H-4010 Debrecen, Egyetem tér 1, Hungary    H. Themann Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA    T.L. Thomas University of New Mexico, Albuquerque, New Mexico 87131, USA    R. Tieulent Georgia State University, Atlanta, Georgia 30303, USA IPNL, CNRS/IN2P3, Univ Lyon, Université Lyon 1, F-69622, Villeurbanne, France    A. Timilsina Iowa State University, Ames, Iowa 50011, USA    T. Todoroki RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198, Japan RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973-5000, USA Tomonaga Center for the History of the Universe, University of Tsukuba, Tsukuba, Ibaraki 305, Japan    M. Togawa Kyoto University, Kyoto 606-8502, Japan RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198, Japan    A. Toia Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA    Y. Tomita Tomonaga Center for the History of the Universe, University of Tsukuba, Tsukuba, Ibaraki 305, Japan    L. Tomášek Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 182 21 Prague 8, Czech Republic    M. Tomášek Czech Technical University, Zikova 4, 166 36 Prague 6, Czech Republic Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 182 21 Prague 8, Czech Republic    H. Torii Physics Program and International Institute for Sustainability with Knotted Chiral Meta Matter (SKCM2), Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198, Japan    C.L. Towell Abilene Christian University, Abilene, Texas 79699, USA    R. Towell Abilene Christian University, Abilene, Texas 79699, USA    R.S. Towell Abilene Christian University, Abilene, Texas 79699, USA    V-N. Tram Laboratoire Leprince-Ringuet, Ecole Polytechnique, CNRS-IN2P3, Route de Saclay, F-91128, Palaiseau, France    I. Tserruya Weizmann Institute, Rehovot 76100, Israel    Y. Tsuchimoto Physics Program and International Institute for Sustainability with Knotted Chiral Meta Matter (SKCM2), Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan    B. Ujvari Debrecen University, H-4010 Debrecen, Egyetem tér 1, Hungary HUN-REN ATOMKI, H-4026 Debrecen, Bem tér 18/c, Hungary    C. Vale Iowa State University, Ames, Iowa 50011, USA    H. Valle Vanderbilt University, Nashville, Tennessee 37235, USA    H.W. van Hecke Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA    A. Veicht Columbia University, New York, New York 10027 and Nevis Laboratories, Irvington, New York 10533, USA University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA    J. Velkovska Vanderbilt University, Nashville, Tennessee 37235, USA    A.A. Vinogradov National Research Center “Kurchatov Institute”, Moscow, 123098 Russia    M. Virius Czech Technical University, Zikova 4, 166 36 Prague 6, Czech Republic    V. Vrba Czech Technical University, Zikova 4, 166 36 Prague 6, Czech Republic Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 182 21 Prague 8, Czech Republic    E. Vznuzdaev PNPI, Petersburg Nuclear Physics Institute, Gatchina, Leningrad region, 188300, Russia    R. Vértesi Debrecen University, H-4010 Debrecen, Egyetem tér 1, Hungary Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Hungarian Academy of Sciences (Wigner RCP, RMKI) H-1525 Budapest 114, POBox 49, Budapest, Hungary    X.R. Wang New Mexico State University, Las Cruces, New Mexico 88003, USA RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973-5000, USA    Y. Watanabe RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198, Japan RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973-5000, USA    Y.S. Watanabe Center for Nuclear Study, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan KEK, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801, Japan    F. Wei Iowa State University, Ames, Iowa 50011, USA New Mexico State University, Las Cruces, New Mexico 88003, USA    J. Wessels Institut für Kernphysik, University of Münster, D-48149 Münster, Germany    A.S. White Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040, USA    S.N. White Physics Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA    D. Winter Columbia University, New York, New York 10027 and Nevis Laboratories, Irvington, New York 10533, USA    C.P. Wong Physics Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA Georgia State University, Atlanta, Georgia 30303, USA Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA    C.L. Woody Physics Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA    M. Wysocki University of Colorado, Boulder, Colorado 80309, USA Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA    B. Xia Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701, USA    W. Xie RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973-5000, USA    L. Xue Georgia State University, Atlanta, Georgia 30303, USA    S. Yalcin Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA    Y.L. Yamaguchi Center for Nuclear Study, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA Waseda University, Advanced Research Institute for Science and Engineering, 17 Kikui-cho, Shinjuku-ku, Tokyo 162-0044, Japan    K. Yamaura Physics Program and International Institute for Sustainability with Knotted Chiral Meta Matter (SKCM2), Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan    R. Yang University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA    A. Yanovich IHEP Protvino, State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, 142281, Russia    J. Ying Georgia State University, Atlanta, Georgia 30303, USA    S. Yokkaichi RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198, Japan RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973-5000, USA    I. Yoon Department of Physics and Astronomy, Seoul National University, Seoul 151-742, Korea    J.H. Yoo Korea University, Seoul 02841, Korea    G.R. Young Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA    I. Younus Physics Department, Lahore University of Management Sciences, Lahore 54792, Pakistan University of New Mexico, Albuquerque, New Mexico 87131, USA    I.E. Yushmanov National Research Center “Kurchatov Institute”, Moscow, 123098 Russia    H. Yu New Mexico State University, Las Cruces, New Mexico 88003, USA Peking University, Beijing 100871, People’s Republic of China    W.A. Zajc Columbia University, New York, New York 10027 and Nevis Laboratories, Irvington, New York 10533, USA    O. Zaudtke Institut für Kernphysik, University of Münster, D-48149 Münster, Germany    A. Zelenski Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA    C. Zhang Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA    S. Zhou Science and Technology on Nuclear Data Laboratory, China Institute of Atomic Energy, Beijing 102413, People’s Republic of China    L. Zolin Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region, Russia    L. Zou University of California-Riverside, Riverside, California 92521, USA
Abstract

High-momentum two-particle correlations are a useful tool for studying jet-quenching effects in the quark-gluon plasma. Angular correlations between neutral-pion triggers and charged hadrons with transverse momenta in the range 4–12 GeV/cc and 0.5–7 GeV/cc, respectively, have been measured by the PHENIX experiment in 2014 for Au++Au collisions at sNN=200\sqrt{s_{{}_{NN}}}=200 GeV. Suppression is observed in the yield of high-momentum jet fragments opposite the trigger particle, which indicates jet suppression stemming from in-medium partonic energy loss, while enhancement is observed for low-momentum particles. The ratio and differences between the yield in Au++Au collisions and pp++pp collisions, IAAI_{AA} and ΔAA\Delta_{AA}, as a function of the trigger-hadron azimuthal separation, Δϕ\Delta\phi, are measured for the first time at the Relativistic Heavy Ion Collider. These results better quantify how the yield of low-pTp_{T} associated hadrons is enhanced at wide angle, which is crucial for studying energy loss as well as medium-response effects.

I Introduction

Jets, collimated sprays of energetic particles originating from the fragmentation of hard-scattered partons, are an important probe of the quark-gluon plasma (QGP) created in ultra-relativistic collisions of heavy ions, such as those at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC) [1]. In particular, these hard-scattered partons interact with the QGP and lose energy when traveling through the medium before fragmenting into final-state jet particles. This partonic energy loss gives rise to jets that have been modified relative to jets that are measured in pp++pp collisions, where no QGP medium is formed. The momentum distribution as well as the spatial distribution of particles within the resulting jets in particular are seen to be modified [2, 3, 4, 5, 6]. Measurements of jet modification allow for direct quantification of the energy transport properties of the medium [7]. Once the parton shower interacts with the QGP, the jets and medium particles are intrinsically coupled to one another. Therefore, the observed modifications can also embody a response from the QGP, which is often referred to as a medium response [8, 9].

High-transverse-momentum neutral pions, π0\pi^{0}, can be reconstructed via their two-photon decay channel and used as jet proxies as they carry a large fraction of the jet momentum. Measuring the angular correlations between the π0\pi^{0} and charged hadrons in the event, reveals how charged hadrons are distributed in the jet triggered by the π0\pi^{0} as well as the opposing jet that appears 180 degrees away from the π0\pi^{0}. This phenomenon is depicted in Fig. 1. The angle, Δϕ\Delta\phi, measures the azimuthal separation between the trigger π0\pi^{0} and each associated particle. The jet containing the trigger π0\pi^{0} labeled “near side” shows the trigger π0\pi^{0} itself at Δϕ=0\Delta\phi=0, surrounded by “near side” associated particles. The recoil jet labeled “away side” shows the associated particles with Δϕπ\Delta\phi\approx\pi. The abundance of neutral pions, which can be reconstructed using the high-granularity PHENIX electromagnetic calorimeter (EMCal) out to high pTp_{T}, are great candidates for trigger particles. Two-particle correlations, such as π0\pi^{0}-hadron correlations, are preferred over full-jet reconstruction for dijet measurements in PHENIX to overcome the limited PHENIX acceptance.

The previous π0\pi^{0}-hadron correlations results from PHENIX [10] used an earlier and smaller data set from 2007. In subtraction of the underlying event, the third- and fourth-order harmonics, v3v_{3} and v4v_{4}, were not considered. Therefore, the correlations related to jets were not fully decoupled from correlations with the underlying event. The 2014 results presented here use the largest Au++Au data set ever collected by PHENIX and include underlying event subtraction using updated measurements of the higher-order harmonic terms. The improved statistical precision and purity of the measurement enables comparisons of the away-side correlation yield in Au++Au to that in pp++pp as a function of Δϕ\Delta\phi, which provides insight into how the distribution of particles correlated with the jet is modified.

Refer to caption
Figure 1: Cartoon of two back-to-back jets as a spray of particles. The indicated angle, Δϕ\Delta\phi, measures the azimuthal separation between the trigger π0\pi^{0} and each associated particle. The jet labeled “near side” contains the trigger π0\pi^{0} at Δϕ\Delta\phi=0. The jet labeled “away side” shows the constituents of the recoil jet at Δϕπ\Delta\phi\approx\pi.

II Experiment

Figure 2 shows the 2014 detector configuration. In this study, the PHENIX collaboration processed 5 billion minimum-bias events triggered by the PHENIX beam-beam counters [11] and collected by the central-arm detectors [12] for Au++Au collisions at sNN=200{\sqrt{s_{{}_{NN}}}=200} GeV. The pp++pp-collision data at sNN=200{\sqrt{s_{{}_{NN}}}=200} GeV were collected by PHENIX in 2006 and used 3.2 million high-pTp_{T} photon-triggered events for baseline measurements [10].

Refer to caption
Figure 2: Configuration of PHENIX central arm detector in 2014.

III Data Analysis

The π0\pi^{0}’s, which are used as a jet proxy in this analysis, are reconstructed from their decay photons by pairing together EMCal clusters with an energy of 1 GeV or greater. To remove contamination from charged particles, EMCal clusters are required to be greater than 8 cm away from the closest track projection from the drift chambers to the EMCal. Additionally, a cut is made on the cluster shape to remove further potential contamination from hadrons. The photon pairs must have an energy asymmetry (α=|Eγ1Eγ2|Eγ1+Eγ2{\alpha=\frac{|E_{\gamma_{1}}-E_{\gamma_{2}}|}{E_{\gamma_{1}}+E_{\gamma_{2}}}}, where Eγ1E_{\gamma_{1}} and Eγ2E_{\gamma_{2}} are the energies of the first and second photon, respectively) of less than 80%80\% of the sum of the photon energy. Finally, each reconstructed π0\pi^{0} is required to have an invariant mass between 0.120.12 and 0.160.16 GeV/c2c^{2}. Reconstructed π0\pi^{0}’s used as jet proxies in this analysis have transverse momenta, pT,π0p_{T,\pi^{0}}, of 4–12 GeV/cc.

Reconstructed π0\pi^{0}’s are then paired with reconstructed charged tracks. Reconstructed tracks are required to have 0.5pT,h70.5\leq p_{T,h}\leq 7 GeV/cc, where the upper limit of 77 GeV/cc is chosen to limit contamination from secondaries produced by high-pTp_{T} hadrons within the detector that are misreconstructed as high-pTp_{T} tracks.

The Δϕ\Delta\phi correlation functions between π0\pi^{0}’s and associated charged hadrons are normalized by the number of π0\pi^{0}’s, Nπ0N_{\pi^{0}} and then corrected for the single-hadron reconstruction efficiency, ϵ\epsilon, and the detector acceptance via simulation and event mixing. To obtain the correlation functions purely from jets, correlations due to the underlying event and flow are subtracted from the correlation functions. Then, the jet function, which is the differential yield of jet-associated π0\pi^{0}-hadron pairs per number of π0\pi^{0}’s in a given π0\pi^{0} pTp_{T} bin, Nπ0hN_{\pi^{0}-h}, with respect to Δϕ\Delta\phi, can be written as

1Nπ0dNπ0hdΔϕ\displaystyle\frac{1}{N_{\pi^{0}}}\frac{dN_{\pi^{0}-h}}{d\Delta\phi} =\displaystyle= 1Nπ0Nπ0hϵ𝑑Δϕ{dNπ0hsame/dΔϕdNπ0hmix/dΔϕ\displaystyle\frac{1}{N_{\pi^{0}}}\frac{N_{\pi^{0}-h}}{\epsilon\int{d\Delta\phi}}\Bigg{\{}\frac{dN^{\rm same}_{\pi^{0}-h}/d\Delta\phi}{dN^{\rm mix}_{\pi^{0}-h}/d\Delta\phi}
\displaystyle- b0[1+2n=24vnπ0vnhcos(nΔϕ)]}\displaystyle b_{0}\left[1+2\sum^{4}_{n=2}\langle{}v^{\pi^{0}}_{n}v^{h}_{n}\rangle\cos(n\cdot\Delta\phi)\right]\Bigg{\}}

where Nπ0hsameN^{\rm same}_{\pi^{0}-h} and Nπ0hmixN^{\rm mix}_{\pi^{0}-h} are the number of same-event and mixed-event π0\pi^{0}-hadron pairs, respectively.

The contribution to the correlation due to flow appears in the second term of Eq. (III) as a Fourier series in terms of the azimuthal correlation angle. The coefficient b0b_{0} of the Fourier series is the magnitude of the underlying event estimated using zero-yield-at-minimum method (ZYAM) and absolute background normalization method (ABS) [13] in low pT,h<1{p_{T,h}<1} GeV/cc and high pT,h1{p_{T,h}\geq 1} GeV/cc, respectively. To improve the purity of the extracted jet-hadron correlation signal, the second to the fourth-order harmonics are subtracted (v2v4{v_{2}-v_{4}}). The first-order harmonic (v1v_{1}) is not accounted for because its contribution is expected to be negligible at midrapidity [14, 15]. The nnth-order flow-harmonic coefficients are factorized to vnπ0v^{\pi^{0}}_{n} and vnhv^{h}_{n} for π0\pi^{0}’s and charged hadrons, respectively.

The π0\pi^{0} v2π0v^{\pi^{0}}_{2} and charged hadron vnhv^{h}_{n} in Au++Au collisions at 200200 GeV come from previous PHENIX measurements [16, 17]. However, the higher-order π0\pi^{0} flow-harmonic coefficients n=3,4n=3,4 in these momentum ranges have not been measured at RHIC energies. Thus, to estimate v3π0v^{\pi^{0}}_{3} and v4π0v^{\pi^{0}}_{4}, acoustic scaling [18] is applied. Acoustic scaling is the observation that there is a pTp_{T}-independent relation between different powers of the various flow harmonics given by the scaling factors, gng_{n}, defined as:

gn=vn(v2)n/2.\displaystyle g_{n}=\frac{v_{n}}{(v_{2})^{n/2}}. (2)

Assuming the scaling factors of π0\pi^{0}’s and charged hadron are approximately equal due to isospin symmetry (i.e. gnh=gnπ0g^{h}_{n}=g^{\pi^{0}}_{n}), v3π0v^{\pi^{0}}_{3} and v4π0v^{\pi^{0}}_{4} can then be approximated by rearranging Eq. (2) to become:

vnπ0=gnh(v2π0)n/2.\displaystyle v^{\pi^{0}}_{n}=g^{h}_{n}\cdot(v^{\pi^{0}}_{2})^{n/2}{\rm.} (3)

Modification to the per-jet, integrated yield of hadrons is quantified by the yield-modification factor IAAI_{AA}, defined as:

IAA(pT,h)=π/23π/2[dNπ0hAuAu/dΔϕ]𝑑Δϕπ/23π/2[dNπ0hpp/dΔϕ]𝑑Δϕ.I_{AA}(p_{T,h})=\frac{\int^{3\pi/2}_{\pi/2}[dN^{\rm AuAu}_{\pi^{0}-h}/d\Delta\phi]\cdot d\Delta\phi}{\int^{3\pi/2}_{\pi/2}[dN^{pp}_{\pi^{0}-h}/d\Delta\phi]\cdot d\Delta\phi}. (4)

The IAAI_{AA} is defined as the ratio of the integrated per-trigger yield of the away-side jet function within π2Δϕ3π2{\frac{\pi}{2}\leq\Delta\phi\leq\frac{3\pi}{2}} in Au++Au to that measured in pp++pp collisions. Additionally, for the first time at RHIC, the IAAI_{AA} as a function of Δϕ\Delta\phi, has been measured and is defined as the point-by-point ratio of per-trigger yield of the away-side jet function in Au++Au and pp++pp, that is,

IAA(Δϕ)=dNπ0hAuAu/dΔϕdNπ0hpp/dΔϕ.\displaystyle I_{AA}(\Delta\phi)=\frac{dN^{\rm AuAu}_{\pi^{0}-h}/d\Delta\phi}{dN^{pp}_{\pi^{0}-h}/d\Delta\phi}{\rm.} (5)

Downward fluctuations can cause negative yield at a particular Δϕ\Delta\phi bin. In such cases, the IAAI_{AA} point is not shown. Additionally, for clarity, data points with a relative statistical or systematic uncertainty equal to or greater than 100100% are also not shown.

Because IAA(Δϕ)I_{AA}(\Delta\phi) in regions with small yield in Au++Au can be inflated through dividing by yields in pp++pp close to zero, a complimentary observable that can also be extracted is the difference between the yields in Au++Au and pp++pp, that is,

ΔAA(Δϕ)=dNπ0hAuAudΔϕdNπ0hppdΔϕ.\displaystyle\Delta_{AA}(\Delta\phi)=\frac{dN^{\rm AuAu}_{\pi^{0}-h}}{d\Delta\phi}-\frac{dN^{pp}_{\pi^{0}-h}}{d\Delta\phi}. (6)

IV Systematic Uncertainty

Seven sources of systematic uncertainty are considered in this analysis. The first three arise from the second- to fourth-order flow-harmonic coefficients. The fourth is the estimation of the underlying event magnitude, b0b_{0}, using either ZYAM or ABS. The fifth arises from π0\pi^{0} reconstruction. The sixth source is the single particle efficiency, which is represented by a global scale uncertainty of 6.96.9%. The seventh and final source of systematic uncertainty comes from the pp++pp measurement used in this analysis, which is discussed in detail in Ref. [10].

The uncertainties from flow-harmonic coefficients are estimated by setting the coefficients to their upper and lower limits individually (including the uncertainty of the corresponding scaling factor), re-extracting the jet functions, and then re-calculating the observable of interest. The relative uncertainties from the flow-harmonic coefficients are within a few percent at pT,h>1p_{T,h}>1 GeV/cc. Note that, the even-order-flow-harmonic coefficients do not contribute to the integrated-yield-modification measurements because the integral of the even cosine terms equals zero. However, in the lowest pT,hp_{T,h} bin where ZYAM is used in the flow subtraction, b0b_{0} is allowed to vary in the uncertainties analyses due to flow-harmonic coefficients causing larger uncertainty ranges between 10%–30% in both differential and integrated yield-modification measurements.

The uncertainties arising from b0b_{0} itself are estimated by varying the b0b_{0} obtained from ZYAM and ABS to its upper and lower limits. These relative uncertainties are dominant at pT,h<3p_{T,h}<3 GeV/cc. The relative uncertainties from ABS ranges within 10% at pT,h>1p_{T,h}>1 GeV/cc, while the relative uncertainty from ZYAM ranges between 10%–50% at the lowest pT,hp_{T,h} bin.

The uncertainty from π0\pi^{0} reconstruction is estimated for each pT,π0pT,hp_{T,\pi^{0}}\otimes p_{T,h} bin via side-band analysis which involves remeasuring the jet functions using photon pairs with an invariant mass within 0.65–0.11 GeV/c2c^{2} or 0.165–0.2 GeV/c2c^{2}, instead of the nominal π0\pi^{0} mass window, 0.12–0.16 GeV/c2c^{2}. The π0\pi^{0} reconstruction contribution becomes one of the dominant sources of uncertainty as pT,hp_{T,h} increases. The relative uncertainty from π0\pi^{0} reconstruction rises from a few percent to 20%.

Another dominant source of uncertainty at high pT,hp_{T,h} comes from the pp++pp collision data. The relative uncertainty from that increases from a few percent at 2<pT,h<3{2<p_{T,h}<3} GeV/cc to 20% at 5<pT,h<7{5<p_{T,h}<7} GeV/cc.

Except the global scaled uncertainty from single particle efficiency, uncertainties from other sources are correlated data-point-to-data-point. Note that, because the uncertainty from π0\pi^{0} reconstruction is estimated as a function of pTp_{T}, it is a correlated uncertainty for IAA(pT){I_{AA}(p_{T})}, but a global scaled uncertainty for IAA(Δϕ){I_{AA}(\Delta\phi)} and ΔAA(Δϕ){\Delta_{AA}(\Delta\phi)}.

V Results

Figure 3 shows the jet functions after subtracting the underlying event from the correlation functions in the 5<pT,π0<70.5<pT,h<1{5<p_{T,\pi^{0}}<7\otimes 0.5<p_{T,h}<1} GeV/cc and 5<pT,π0<72<pT,h<4{5<p_{T,\pi^{0}}<7\otimes 2<p_{T,h}<4} GeV/cc momentum bins going left to right, and in the 0%–20% and 20%–40% going from top to bottom. The away-side jet peaks shown in Fig. 3 appear closer to a Gaussian function compared to previous PHENIX results [10], where there were pronounced peaks appearing to the left and right of the away-side jet peak, a phenomenon often attributed to a “mach-cone” effect created by super-sonic traversal of the QGP by hard-scattered partons. However, such an effect is no longer seen once contamination from the third and fourth harmonics is removed. These changes are more pronounced at low pT,hp_{T,h} where the underlying event is large.

Refer to caption
Figure 3: Per-trigger jet-pair yield as a function of Δϕ\Delta\phi for selected π0\pi^{0} trigger and charged-hadron-associated pTp_{T} combinations (pT,π0pT,h{p_{T,\pi^{0}}\otimes p_{T,h}}) in Au++Au collisions. Statistical and systematic uncertainties are drawn as vertical lines and boxes, respectively. A global scaling uncertainty of 6.96.9% is not shown.

The away-side IAAI_{AA} as a function of the associated-hadron momentum, IAA(pT,h){I_{AA}(p_{T,h})}, is shown in Fig. 4 for four π0\pi^{0} momentum ranges and in two centrality classes.

In each π0\pi^{0} momentum range, the IAA(pT,h)I_{AA}(p_{T,h}) is above unity at low pT,hp_{T,h}, but falls as pT,hp_{T,h} increases, eventually reaching below unity at high pT,hp_{T,h}. The behavior of the IAAI_{AA} at low-associated hadron momentum indicates that there is an enhancement in the yield of soft particles in central Au++Au collisions, whereas the sub-unity of the IAAI_{AA} at high pTp_{T} is consistent with a suppression in the yield high-momentum associated hadrons. The current understanding of jet-medium interactions indicates that in-medium energy loss by high-energy partons is the cause of the suppression in the yield of high-momentum hadrons. However, as shown in [2], models can reproduce the enhancement measured at low momentum by including a mechanism by which energy embedded into the medium by hard partons is redistributed into the production of soft particles as a medium response. Unlike in Ref. [2], in which the IAA(pT,h)I_{AA}(p_{T,h}) is measured as a function of ξ=ln(zT)\xi=-ln(z_{T}), where zTz_{T} is the fraction of pTp_{T} carried by the final hadron relative to the hard-scattered parton, the transition from enhancement to suppression is shown in Fig. 4 to occur at a consistent pT,hp_{T,h} of 1–2 GeV/cc in each π0\pi^{0} momentum range. This indicates a constant medium response that is independent of the jet energy.

Refer to caption
Figure 4: Integrated away-side IAAI_{AA} as a function of pT,hp_{T,h}. The π0\pi^{0} trigger pT,π0p_{T,\pi^{0}} range is shown at the top of each panel. Statistical and systematic uncertainties are drawn as vertical lines and boxes, respectively. A global scaling uncertainty of 6.9% is drawn as a blue box on the right of each panel at IAA=1I_{AA}=1.

Lastly, the integrated away-side IAAI_{AA} is measured in the 0%–20% and 20%–40% centrality bins, which are shown in Fig. 4 as circle [black] and diamond [red] points, respectively. There is no significant centrality dependence observed but for pT,h>2{p_{T,h}>2} GeV/cc, the IAA(pT,h)I_{AA}(p_{T,h}) in the 20%–40% bin is systematically closer to unity than in the 0%–20% bin. This difference in suppression levels could be attributed to a greater overall pathlength traversed by hard-scattered partons in the more central collisions, which in turn leads to greater energy loss, and a lower IAA(pT,h)I_{AA}(p_{T,h}) value. This result is qualitatively in agreement with results from both the STAR [3] and ALICE [19] collaborations. The difference in the magnitude of the enhancement measured by the ALICE experiment (a factor of 5\approx 5) vs here (a factor of 2\approx 2) could arise due to differences in the plasmas created at the LHC and RHIC, such as the mean pathlength traversed by hard partons being larger, leading to an increased production of low-pTp_{T} hadrons. Similarly, the large enhancement measured in this result versus that seen by the STAR experiment Ref. [3] is due to the fact that this measurement extends down to a hadron momentum of 0.5 GeV/cc, where the enhancement is very strong; whereas the threshold is at 1.2 GeV/cc in the STAR result, where the IAAI_{AA} is closer to unity.

Refer to caption
Refer to caption
Figure 5: Differential away-side IAAI_{AA} as a function of Δϕ\Delta\phi in (a) to (d) 0%–20% and (e) to (h) 20%–40% centrality classes. The π0\pi^{0} trigger pT,π0p_{T,\pi^{0}} range is shown at the top of each panel. Statistical and systematic uncertainties are drawn as vertical lines and boxes, respectively. A global uncertainty of 6.9% is not shown.

Figure 5 shows the IAAI_{AA} as a function of Δϕ\Delta\phi, IAA(Δϕ)I_{AA}(\Delta\phi), for three pT,hp_{T,h} ranges, four pT,π0p_{T,\pi^{0}} ranges, and two centrality classes. This observable allows for quantification of the modification to the jet yield at different distances from the away-side jet axis (Δϕπ{\Delta\phi\approx\pi}). The IAA(Δϕ){I_{AA}(\Delta\phi)} shows an enhancement in the yield of low-momentum hadrons across the away-side jet peak, although this enhancement is strongest at wide angles relative to the peak. The away-side peak is also the first region where the IAA(Δϕ){I_{AA}(\Delta\phi)} begins to fall beneath unity as shown by the 1.0pT,h<2.0{1.0\leq p_{T,h}<2.0} GeV/cc (red diamonds) in both the 0%–20% and 20%–40% centrality bins. In the highest momentum bin reported, 3.0pT,h<5.03.0\leq p_{T,h}<5.0 GeV/cc, the yield of charged hadrons is suppressed across all angles shown, a result of the partonic energy loss induced by parton-medium interactions. In contrast, the enhancement is most severe at wide angles relative to the away-side jet peak similar to what is seen in Ref. [2].

Figure 6 shows the difference between Au++Au and pp++pp in the per-trigger yield, ΔAA\Delta_{AA}, as a function of Δϕ\Delta\phi for hadrons with 0.5<pT<10.5<p_{T}<1 GeV/cc. The enhancement (where the difference between the Au++Au and pp++pp yields is positive) is again observed over a wide range of angles. The enhancement increases when moving away from the away-side jet axis, that is Δϕ=π{\Delta\phi=\pi}. The enhancement seen at wider angles is also consistent with the phenomena of jet broadening. It is notable that the enhancement is observed near the Δϕ=π/2\Delta\phi=\pi/2 region because, as shown in Fig. 3, that is the minimum of the per-trigger jet-pair yield. One key advantage of taking the difference in Au++Au and pp++pp over computing the IAAI_{AA} is that it is less sensitive than the IAAI_{AA} to the pp++pp yields fluctuating close to zero, particularly near Δϕ=π/2\Delta\phi=\pi/2. This approach provides stronger constraints on theoretical models than the IAAI_{AA} in these regions. The modification seen in Fig. 6 is further explored by observing how the measurement changes as a function of hadron pTp_{T}.

Refer to caption
Refer to caption
Figure 6: (a)–(c): Differential away-side ΔAA\Delta_{AA} in 0%–20% (circles [black]) and 20%–40% (diamonds [red]) centrality classes for π/2<Δϕ<π{\pi/2<\Delta\phi<\pi}. (d)–(f): Differential away-side ΔAA\Delta_{AA} in 0%–20% centrality class for the same Δϕ\Delta\phi range compared to hybrid models with “Wake” (backward [red] slashes) and “No wake” (forward [blue] slashes). A global uncertainty of 6.96.9% is not shown.

Figure 6 shows the difference in the per-trigger yields between Au++Au and pp++pp as a function of Δϕ\Delta\phi for different pT,hp_{T,h} bins associated with 4–5 GeV/cc π0\pi^{0}, which clearly demonstrates the transition from enhancement at low pT,hp_{T,h} to suppression at high pT,hp_{T,h}. In particular, the suppression in the per-trigger yield is most severe near the jet axis (Δϕπ{\Delta\phi\approx\pi}). This suppression pattern differs slightly from that seen in measurements at the LHC, such as in [20], where the yield of hadrons within a jet is found to be almost unmodified at the jet axis, regardless of the momentum range. However, for these RHIC results the IAAI_{AA} and ΔAA\Delta_{AA} vs Δϕ\Delta\phi are measured from the recoil jet opposite the jet containing the trigger π0\pi^{0}, which imposes almost no bias on the recoil jet. Note that anti-kTk_{T} jets like those measured in Ref. [20] have more stringent requirements and could bias the sample of reconstructed jets in Au++Au to be more similar to those in pp++pp collisions.

Figure 6 plots (d) to (f) show the Au++Au and pp++pp yield differences versus Δϕ\Delta\phi for selected pT,π0pT,h{p_{T,\pi^{0}}\otimes p_{T,h}} bins overlaid with calculations from the HYBRID model [9] (all available pT,π0pT,h{p_{T,\pi^{0}}\otimes p_{T,h}} bins are shown in Figs. 7 and 8). This model uses a combination of perturbative quantum chromodynamics and anti-de Sitter/conformal field theory to handle hard and soft interactions within the medium, respectively. One can see that at high pT,hp_{T,h}, the HYBRID model reproduces the data well within the uncertainty of the model. Two versions of the model are presented, differentiated by how they handle the medium response to the embedded partonic energy by the hard-scattered parton. The curve labeled “Wake” models a medium response to the lost energy as a hydrodynamic wake of soft particles, which well reproduces the wide-angle enhancement seen in the data at low pT,hp_{T,h}. The curve labeled “No wake” does not include this effect, and, thus, fails to reproduce the data at low pT,hp_{T,h}. The success of this model at low pT,hp_{T,h} relies on a qualitatively similar mechanism as the CoLBT-Hydro model shown in Ref. [2]. Both models include hydrodynamic responses from the medium that contribute to the creation of an excess of soft particles in the final-state particle distribution.

Refer to caption
Figure 7: Differential away-side ΔAA\Delta_{AA} in 0%–20% centrality for π/2<Δϕ<π{\pi/2<\Delta\phi<\pi} for various π0\pi^{0} trigger and charged-hadron-associated pTp_{T} combinations (pT,π0pT,hp_{T,\pi^{0}}\otimes p_{T,h}). As in Fig. 6(d)–(f), the “Wake” and “No wake” hybrid models are overlaid as backward [red] slashes and forward [blue] slashes.
Refer to caption
Figure 8: Differential away-side ΔAA\Delta_{AA} as a function of Δϕ\Delta\phi in 20%–40% centrality for various π0\pi^{0} trigger and charged-hadron-associated pTp_{T} combinations (pT,π0pT,hp_{T,\pi^{0}}\otimes p_{T,h}).

VI Summary

The PHENIX collaboration presented a new π0\pi^{0}-hadron correlation measurement in Au++Au collision at 200200 GeV with data taken in 2014 at RHIC. With the enhanced statistics of the 2014 data set and improved background subtraction that accounts for contributions from flow up to the fourth-order flow coefficient, the results presented here are an improvement over previous PHENIX measurements. These jet functions and their integrated yields are then used to calculate both the quotient, IAAI_{AA}, and the difference, ΔAA\Delta_{AA}, between Au++Au and pp++pp yields vs Δϕ\Delta\phi (as well as the IAAI_{AA}) as a function of the associated-hadron pTp_{T}.

The integrated per-trigger-yield modification, IAAI_{AA} as a function of pT,hp_{T,h}, is indicative of partonic energy loss by hard partons via parton-medium interactions, leading to the suppression of hard jet particles and enhancement of soft jet particles. The new observables, differential per-trigger-yield modifications as a function of Δϕ\Delta\phi, show the modifications are angularly dependent within the recoil jets. The angular dependence of IAAI_{AA} and ΔAA\Delta_{AA}, also changes with jet-particle transverse momentum. The transition from enhancement of low-momentum particles to suppression at higher momentum is consistent with models such as the Hybrid model that include medium response. The differential IAAI_{AA} is sensitive to the small modification at the edge of the jets, while the differential ΔAA\Delta_{AA} is less sensitive to statistical fluctuations. Using a variety of jet related observables will further constrain the models in the study of jet modifications, allowing for a more precise determination of QGP properties.

Acknowledgements.
We thank the staff of the Collider-Accelerator and Physics Departments at Brookhaven National Laboratory and the staff of the other PHENIX participating institutions for their vital contributions. We acknowledge support from the Office of Nuclear Physics in the Office of Science of the Department of Energy, the National Science Foundation, a sponsored research grant from Renaissance Technologies LLC, Abilene Christian University Research Council, Research Foundation of SUNY, and Dean of the College of Arts and Sciences, Vanderbilt University (U.S.A), Ministry of Education, Culture, Sports, Science, and Technology and the Japan Society for the Promotion of Science (Japan), Conselho Nacional de Desenvolvimento Científico e Tecnológico and Fundação de Amparo à Pesquisa do Estado de São Paulo (Brazil), Natural Science Foundation of China (People’s Republic of China), Croatian Science Foundation and Ministry of Science and Education (Croatia), Ministry of Education, Youth and Sports (Czech Republic), Centre National de la Recherche Scientifique, Commissariat à l’Énergie Atomique, and Institut National de Physique Nucléaire et de Physique des Particules (France), Bundesministerium für Bildung und Forschung, Deutscher Akademischer Austausch Dienst, and Alexander von Humboldt Stiftung (Germany), J. Bolyai Research Scholarship, EFOP, HUN-REN ATOMKI, NKFIH, and OTKA (Hungary), Department of Atomic Energy and Department of Science and Technology (India), Israel Science Foundation (Israel), Basic Science Research and SRC(CENuM) Programs through NRF funded by the Ministry of Education and the Ministry of Science and ICT (Korea). Physics Department, Lahore University of Management Sciences (Pakistan), Ministry of Education and Science, Russian Academy of Sciences, Federal Agency of Atomic Energy (Russia), VR and Wallenberg Foundation (Sweden), University of Zambia, the Government of the Republic of Zambia (Zambia), the U.S. Civilian Research and Development Foundation for the Independent States of the Former Soviet Union, the Hungarian American Enterprise Scholarship Fund, the US-Hungarian Fulbright Foundation, and the US-Israel Binational Science Foundation.

References

  • Connors et al. [2018] M. Connors, C. Nattrass, R. Reed, and S. Salur, Jet measurements in heavy ion physics, Rev. Mod. Phys. 90, 025005 (2018).
  • Acharya et al. [2020] U. Acharya et al. (PHENIX Collaboration), Measurement of jet-medium interactions via direct photon-hadron correlations in Au++Au and dd++Au collisions at sNN=200\sqrt{s_{NN}}=200 GeV, Phys. Rev. C 102, 054910 (2020).
  • Adamczyk et al. [2016] L. Adamczyk et al. (STAR Collaboration), Jet-like correlations with direct-photon and neutral-pion triggers at sNN=200\sqrt{s_{NN}}=200 GeV, Phys. Lett. B 760, 689 (2016).
  • Adam et al. [2015] J. Adam et al. (ALICE Collaboration), Measurement of jet suppression in central Pb-Pb collisions at sNN\sqrt{s_{\rm NN}}=2.76 TeV, Phys. Lett. B 746, 1 (2015).
  • Aad et al. [2010] G. Aad et al. (ATLAS Collaboration), Observation of a Centrality-Dependent Dijet Asymmetry in Lead-Lead Collisions at sNN=2.77\sqrt{s_{NN}}=2.77 TeV with the ATLAS Detector at the LHC, Phys. Rev. Lett. 105, 252303 (2010).
  • Chatrchyan et al. [2011] S. Chatrchyan et al. (CMS Collaboration), Observation and studies of jet quenching in PbPb collisions at nucleon-nucleon center-of-mass energy = 2.76 TeV, Phys. Rev. C 84, 024906 (2011).
  • Burke et al. [2014] K. M. Burke, A. Buzzatti, N. Chang, C. Gale, M. Gyulassy, U. Heinz, S. Jeon, A. Majumder, B. Müller, G.-Y. Qin, B. Schenke, C. Shen, X.-N. Wang, J. Xu, C. Young, and H. Zhang (JET Collaboration), Extracting the jet transport coefficient from jet quenching in high-energy heavy-ion collisions, Phys. Rev. C 90, 014909 (2014).
  • Chen et al. [2021] W. Chen, Z. Yang, Y. He, W. Ke, L. G. Pang, and X.-N. Wang, Search for the Elusive Jet-Induced Diffusion Wake in Z/γZ/\gamma-Jets with 2D Jet Tomography in High-Energy Heavy-Ion Collisions, Phys. Rev. Lett. 127, 082301 (2021).
  • Casalderrey-Solana et al. [2014] J. Casalderrey-Solana, D. C. Gulhan, J. G. Milhano, D. Pablos, and K. Rajagopal, A Hybrid Strong/Weak Coupling Approach to Jet Quenching, J, High Energy Phys. 10, 019 (2014), [Erratum: J, High Energy Phys. 09 (2015), 175].
  • Adare et al. [2010a] A. Adare et al. (PHENIX Collaboration), Transition in Yield and Azimuthal Shape Modification in Dihadron Correlations in Relativistic Heavy Ion Collisions, Phys. Rev. Lett. 104, 252301 (2010a).
  • Allen et al. [2003] M. Allen et al. (PHENIX Collaboration), PHENIX inner detectors, Nucl. Instrum. Methods Phys. Res., Sec. A 499, 549 (2003).
  • Adcox et al. [2003] K. Adcox et al. (PHENIX Collaboration), PHENIX central arm tracking detectors, Nucl. Instrum. Methods Phys. Res., Sec. A 499, 489 (2003).
  • Sickles et al. [2010] A. Sickles, M. P. McCumber, and A. Adare, Extraction of correlated jet pair signals in relativistic heavy ion collisions, Phys. Rev. C 81, 014908 (2010).
  • Abelev et al. [2008] B. I. Abelev et al. (STAR Collaboration), System-Size Independence of Directed Flow Measured at the BNL Relativistic Heavy-Ion Collider, Phys. Rev. Lett. 101, 252301 (2008).
  • Adamczyk et al. [2014] L. Adamczyk et al. (STAR Collaboration), Beam-Energy Dependence of the Directed Flow of Protons, Antiprotons, and Pions in Au+Au Collisions, Phys. Rev. Lett. 112, 162301 (2014).
  • Adare et al. [2019] A. Adare et al. (PHENIX Collaboration), Measurement of two–particle correlations with respect to second– and third–order event planes in Au+Au collisions at s𝑁𝑁=200\sqrt{{s}_{\mathit{NN}}}=200 GeV, Phys. Rev. C 99, 054903 (2019).
  • Adare et al. [2010b] A. Adare et al. (PHENIX Collaboration), Azimuthal Anisotropy of π0\pi^{0} Production in Au++Au Collisions at sNN=200\sqrt{s_{NN}}=200 GeV: Path-Length Dependence of Jet Quenching and the Role of Initial Geometry, Phys. Rev. Lett. 105, 142301 (2010b).
  • Lacey et al. [2011] R. A. Lacey, A. Taranenko, N. N. Ajitanand, and J. M. Alexander, Scaling of the higher-order flow harmonics: implications for initial-eccentricity models and the ’viscous horizon’ (2011), arXiv:1105.3782.
  • Adam et al. [2016] J. Adam et al. (ALICE Collaboration), Jet-like correlations with neutral pion triggers in pppp and central Pb-Pb collisions at 2.76 TeV, Phys. Lett. B 763, 238 (2016).
  • Aad et al. [2019] G. Aad et al. (ATLAS Collaboration), Measurement of angular and momentum distributions of charged particles within and around jets in Pb++Pb and pppp collisions at sNN=5.02\sqrt{s_{NN}}=5.02 TeV with the ATLAS detector, Phys. Rev. C 100, 064901 (2019).