This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Jet power extracted from ADAFs and the application to Fermi BL Lacertae objects

Yongyun Chen(陈永云)1, Qiusheng Gu(顾秋生)2, Junhui Fan(樊军辉)3, Xiaoling Yu (俞效龄)1 E-mail: ynkmcyy@yeah.netE-mail: qsgu@nju.edu.cn    Nan Ding(丁楠)4, Xiaotong Guo (郭晓通)5, Dingrong Xiong(熊定荣)6
1College of Physics and Electronic Engineering, Qujing Normal University, Qujing 655011, P.R. China
2School of Astronomy and Space Science, Nanjing University, Nanjing 210093, P. R. China
3Center for Astrophysics,Guang zhou University,Guang zhou510006, China
4School of Physical Science and Technology, Kunming University 650214, P. R. China
5School of mathematics and physics, Anqing Normal University 246011, P. R. China
6Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011, China
(Accepted XXX. Received YYY; in original form ZZZ)
Abstract

We calculate the jet power of the Blandford-Znajek (BZ) model and the hybrid model based on the self-similar solution of advection-dominated accretion flows (ADAFs). We study the formation mechanism of the jets of BL Lacs with known redshifts detected by the Fermi satellite after 10 yr of data (4FGL-DR2). The kinetic power of the jets of Fermi BL Lacs is estimated through radio luminosity. The main results are as follows. (1) We find that the jet kinetic power of about 72% intermediate peak frequency BL Lacs (IBL) and 94% high-frequency peak BL Lacs (HBL) can be explained by the hybrid jet model based on ADAFs surrounding Kerr black holes. However, the jet kinetic power of about 74% LBL cannot be explained by the BZ jet model or the hybrid model. (2) The LBL has a higher accretion rate than IBL and HBL. About 14% IBL and 62% HBL have pure optically thin ADAFs. However, 7% LBL may have a hybrid structure consisting of an standard thin disk (SS) plus optically thin ADAFs. (3) After excluding the redshift dependence, there is a weak correlation between the jet kinetic power and the accretion disk luminosity for Fermi BL Lacs. (4) There is a significant correlation between inverse Compton luminosity and synchrotron luminosity for Fermi BL Lacs. The slope of the relation between inverse Compton luminosity and synchrotron luminosity for Fermi BL Lacs is consistent with the synchrotron self-Compton (SSC) process. The result may suggest that the high-energy components of Fermi BL Lacs are dominated by the SSC process.

keywords:
galaxies:active–BL Lacertae objects:general–galaxies:jets–gamma-rays:general
pubyear: 2023pagerange: Jet power extracted from ADAFs and the application to Fermi BL Lacertae objectsA

1 Introduction

BL Lacertae objects (BL Lacs) are a subclass of the blazar, an extreme type of active galactic nuclei (AGN), whose jets point to observer (e.g., Blandford & Rees, 1978). The difference between BL Lacs and their sibling flat-spectrum radio quasars (FSRQs) is that the spectra of BL Lacs lack emission lines with an equivalent width less than 5Å  (e.g., Urry & Padovani, 1995). BL Lacs usually have only weak or non-existent emission lines. The lack of strong emission lines may be attributed to an ineffective accretion process, which does not produce sufficient energy to photoionize the broad line region (BLR) clouds (e.g., Ghisellini et al., 2011; Sbarrato et al., 2014). Ghisellini et al. (2011) found that the BL Lacs have a low ratio of the luminosity of the broad-line region (BLR) to the Eddington luminosity, LBLR/LEdd5×104L_{\rm BLR}/L_{\rm Edd}\leq 5\times 10^{-4}. Sbarrato et al. (2014) also found that the BL Lacs have LBLR/LEdd<103L_{\rm BLR}/L_{\rm Edd}<10^{-3}. These results show that the BL Lacs have a low accretion rate.

According to the frequency at which the synchrotron component of the spectral energy distribution (SED) peaks, BL Lacs can be divided into different subcategories, namely, low-frequency peak BL Lacs (LBL), intermediate peak frequency BL Lacs (IBL) and high-frequency peak BL Lacs (HBL; Padovani & Giommi (1996)), and set the boundaries as logνp<14\log\nu_{\rm p}<14 Hz for LBL, 14 Hz<logνp<15<\log\nu_{\rm p}<15 Hz for IBL, and logνp>15\log\nu_{\rm p}>15 Hz for HBL (e.g., Abdo et al., 2010). Since July 2008, the large area telescope on the Fermi Gamma-Ray Space Telescope (LAT, Atwood et al. (2009)) has scanned the entire gamma-ray sky about every three hours. Many blazars have been detected to have high-energy gamma-ray emissions, and the research of blazars has entered a new era. The LAT AGN catalog shows that the BL Lacs are the largest group of γ\gamma-ray sources (Abdollahi et al., 2020; Ajello et al., 2020). The most recent LAT AGN catalog contains 1207 BL Lacs (4FGL-DR2, Abdollahi et al. (2020); Ajello et al. (2020); Foschini et al. (2022)), which makes it possible to study the physical properties of a γ\gamma-ray selected sample of BL Lacs. Li et al. (2010) studied the relationship between optical-to-X-ray (αox\alpha_{\rm ox}) and X-ray-to-γ\gamma-ray (αxγ\alpha_{\rm x\gamma}) composite spectral indices and found that FSRQs and LBL occupy the same region by using 54 Fermi blazars. They suggested that FSRQs and LBL have similar spectral properties.

By now, several questions have been raised about BL Lacs, for example, what is the formation mechanism of the jets of BL Lacs? There are three theories of jet formation. The first is the Blandford-Znajek (BZ) mechanism (Blandford & Znajek, 1977), in which jets extract the rotational energy of black holes. The second is the Blandford-Payne (BP) mechanism (Blandford & Payne, 1982), in which the jet extracts the rotational energy of the accretion disk. In the above two cases, it should be maintained by matter accreting on the black hole, which leads to an expected relationship between accretion disk luminosity and jet power (Maraschi & Tavecchio, 2003). Many authors have confirmed this relationship (e.g., Rawlings & Saunders, 1991; Cao & Jiang, 1999; Wang et al., 2004; Ghisellini et al., 2009; Gu et al., 2009; Ghisellini et al., 2010; Ghisellini et al., 2011; Sbarrato et al., 2012, 2014; Xiong & Zhang, 2014; Chen et al., 2015b; Paliya et al., 2017, 2019; Xiao et al., 2022; Zhang et al., 2022). The third is the hybrid model, that is, the combination of BZ and BP mechanisms (Meier, 1999, 2001; Garofalo et al., 2010). Garofalo et al. (2010) used a hybrid model to speculate the differences observed in AGN with relativistic jets. Cao (2003) calculated the maximal jet power of BP mechanism and BZ mechanism for a standard thin accretion disk. Comparing with the jet kinetic power of 29 BL Lacs, they found that the BZ and BP mechanisms could not explain the jet kinetic power of BL Lacs. These results imply that the accretion disks in most BL Lacs should not be standard accretion disks. Deng et al. (2021) used the one-zone Leptonic jet model to get the jet kinetic power of two HBLs (Mrk 421 and Mrk 501). Compared with the maximum jet power of the BZ mechanism and the BP mechanism for a thin disk, they found that the BZ mechanism may explain the jet kinetic power of Mrk 421, while the jet kinetic power of Mrk 501 may be explained by the BP mechanism or the BZ mechanism. Xiao et al. (2022) found a significant correlation between jet power and normalized disk luminosity (Ldisk/LEddL_{\rm disk}/L_{\rm Edd}) for 16 BL Lacs. They suggested that the jet powers of 16 BL Lacs are powered by BZ mechanism. Although there are some studies on the jet mechanism of BL Lacs, however, no author has used a large sample of BL Lacs to study their jet mechanism in the case of ADAFs.

The SED contains two emission components, namely the synchrotron component and inverse Compton (IC) component (e.g., Ghisellini et al., 1997; Massaro et al., 2004, 2006). In the Leptonic model, it is generally believed that the low energy peak is generated by the synchrotron emission of relativistic electrons from the jet and the high energy peak is generated by IC scattering (e.g., Massaro et al., 2004, 2006; Meyer et al., 2012). However, there are disagreements regarding the origin of soft photons scattered by IC. (1) They come from synchrotron emission, called synchrotron self Compton (SSC) process (e.g., Rees, 1967; Jones et al., 1974; Marscher & Gear, 1985; Maraschi et al., 1992; Sikora et al., 1994; Bloom & Marscher, 1996). (2) They come from the outside of the jet, called the external Compton (EC) process. There are three possible sources of EC soft photons: accretion disk photons entering the jets directly (Dermer et al., 1992; Dermer & Schlickeiser, 1993); broad-line region (BLR) photons entering the jets (Sikora et al., 1994; Dermer et al., 1997); and infrared radiation photons from the dust torus entering the jet (Błażejowski et al., 2000; Arbeiter et al., 2002). Ghisellini (1996) obtains two relationships between synchrotron luminosity and IC luminosity, which determines whether the IC component is dominated by the EC process or the SSC process (LECLsyn1.5L_{\rm EC}\sim L_{\rm syn}^{1.5}, LSSCLsyn1.0L_{\rm SSC}\sim L_{\rm syn}^{1.0}).

In this work, we study the physical properties of the jets of BL Lacs. Section 2 describes the sample. Section 3 is the jet model. In Section 4, we describe the results and discussion. Section 5 is the conclusion. Throughout this article, a standard concordance cosmology was assumed (H0=70H_{0}=70 km s-1Mpc-1, ΩM=1ΩA=0.27\Omega_{\rm M}=1-\Omega_{\rm A}=0.27).

2 The Fermi BL Lacs sample

We try to select a large sample of Fermi BL Lacs with reliable redshift, black hole mass, and accretion disk luminosity. For this, we consider the sample of Paliya et al. (2021), who used 1077 blazars detected with the Fermi Large Area Telescope (4FGL-DR2) to study the central engines of Fermi blazars.

2.1 The black hole mass

For the case of BL Lac objects that lack strong broad emission lines, Paliya et al. (2021) obtained the black hole mass (MBHM_{\rm BH}) through the following two methods.

First, the black hole mass is calculated by using the stellar velocity dispersion (σ\sigma_{*}). The formula is as follows (Gültekin et al., 2009),

log(MBHM)=(8.12±0.08)+(4.24±0.41)×log(σ200kms1).\log\left(\frac{M_{\rm BH}}{M_{\odot}}\right)=(8.12\pm 0.08)+(4.24\pm 0.41)\times\log\left(\frac{\sigma_{*}}{200\rm km~{}s^{-1}}\right). (1)

Second, Paliya et al. (2021) used the bulge luminosity to estimate the black hole mass. The formula is as follows (Graham, 2007),

log(MBHM)={(0.38±0.06)(MR+21)+(8.11±0.11),(0.38±0.06)(MK+24)+(8.26±0.11).\log\left(\frac{M_{\rm BH}}{M_{\odot}}\right)=\left\{\begin{array}[]{cc}(-0.38\pm 0.06)(M_{\rm R}+21)+(8.11\pm 0.11),\\ (-0.38\pm 0.06)(M_{\rm K}+24)+(8.26\pm 0.11).\end{array}\right. (2)

where MRM_{\rm R} and MKM_{\rm K} are the absolute magnitudes of the host galaxy bulge in the RR and KK bands, respectively.

We also note that the black hole mass of our sample is obtained by different methods. The uncertainty of the black hole mass estimated by stellar velocity dispersion is small, \leq 0.25 dex. The uncertainty of the black hole mass estimated by the bulge luminosity is 0.6 dex.

2.2 The accretion disk luminosity

Due to the lack of detection of emission lines, it is impossible to use emission lines to infer the BLR luminosity. Therefore, Paliya et al. (2021) derived a 3σ\sigma upper limit in the Hβ\beta (or Mg II, depending on the source redshift and wavelength coverage) line luminosity. Paliya et al. (2021) calculated the BLR luminosity by scaling several strong emission lines to the quasar template spectrum of Francis et al. (1991) and Celotti et al. (1997), using Lyα\alpha as a reference and giving the total BLR fraction <LBLR>=555.77<L_{\rm BLR}>=555.77. The BLR luminosity is estimated through the following formula,

LBLR=Lline×<LBLR>Lref.frac.,L_{\rm BLR}=L_{\rm line}\times\frac{<L_{\rm BLR}>}{L_{\rm ref.frac.}}, (3)

where LlineL_{\rm line} is the emission-line luminosity and Lref.frac.L_{\rm ref.frac.} is the ratio: 22 and 34 for Hβ\beta/Lyα\alpha and Mg II/Lyα\alpha (Francis et al., 1991; Celotti et al., 1997), respectively. When more than one line luminosity measurements were available, Paliya et al. (2021) took their geometric mean to derive the average LBLRL_{\rm BLR}. The accretion disk luminosity is estimated by using Ldisk=10LBLRL_{\rm disk}=10L_{\rm BLR} (e.g., Baldwin & Netzer, 1978), with an average uncertainty of a factor 2 (Calderone et al., 2013; Ghisellini et al., 2014).

We carefully examined the samples of Paliya et al. (2021) and compared them with the classification of the sources of Abdollahi et al. (2020) and Foschini et al. (2022). We only consider that these sources with 1.4 GHz radio flux comes from the The FIRST Survey Catalog (Becker et al., 1995): 14Dec17 Version111http://sundog.stsci.edu/first/catalogs/readme.html. Finally, we get 276 Fermi BL Lacs (57 LBL, 43 IBL, and 176 HBL). The relevant data is listed in Table 1.

2.3 The jet kinetic power

Komossa et al. (2018) used the following formula to estimate the jet kinetic power (PkinP_{\rm kin}) in AGN (Bîrzan et al., 2008)

logPkin=0.35(±0.07)logP1.4+1.85(±0.10)\log P_{\rm kin}=0.35(\pm 0.07)\log P_{1.4}+1.85(\pm 0.10) (4)

where PkinP_{\rm kin} is in units of 104210^{42} erg s-1, and P1.4P_{1.4} is the 1.4 GHz radio luminosity in units of 104010^{40} erg s-1, P1.4=4πdL2νSνP_{1.4}=4\pi d_{L}^{2}\nu S_{\nu}. The scatter for this relation is σ=0.85\sigma=0.85 dex. We make a K-correction for the observed flux using Sν=Sνobs(1+z)α1S_{\nu}=S_{\nu}^{obs}(1+z)^{\alpha-1}, where α\alpha is the spectral index and ν\nu is the frequencies, and α=0\alpha=0 is adopted (Abdo et al., 2010; Komossa et al., 2018). The SνobsS_{\nu}^{obs} is the observed flux. The dLd_{L} is the distance of luminosity, dL(z)=cH0(1+z)0z[ΩA+ΩM(1+z)3]1/2𝑑zd_{L}(z)=\frac{c}{H_{0}}(1+z)\int_{0}^{z}[\Omega_{\rm A}+\Omega_{\rm M}(1+z^{{}^{\prime}})^{3}]^{-1/2}dz^{{}^{\prime}} (Venters et al., 2009). Most galaxies have a central supermassive black hole, which may coevolve with the host galaxy, resulting in correlations between bulge luminosity, stellar velocity dispersion, and central black hole mass (e.g., Kormendy & Richstone, 1995; Magorrian et al., 1998). Models show that these correlations are caused by galaxy merging and feedback from AGN (e.g., Silk & Rees, 1998; Kauffmann & Haehnelt, 2000). Around the time of these discoveries, the Chandra X-ray observation found direct evidence of AGN feedback, when observations revealed cavities and shock fronts in X-ray emission gas around many massive galaxies (e.g., Fabian et al., 2000; McNamara et al., 2000). The X-ray cavity provides a direct measurement of the mechanical energy released by the AGN through the work done on the hot, gaseous halo around them (McNamara et al., 2000). This energy is expected to heat the gas and prevent it from cooling and forming stars (Churazov et al., 2001). Studies on X-ray cavities show that AGN feedback provides enough energy to regulate star formation and inhibit the cooling of the hot halos of galaxies and clusters (e.g., Bîrzan et al., 2008; Komossa et al., 2018). Komossa et al. (2018) believes that if the relationship of Cavagnolo et al. (2010) is used to calculate jet kinetic power, the high value of jet kinetic power is predicted up to an order of magnitude. At the same time, all of our samples have a 1.4 GHz radio flux, but there is almost no low-frequency radio flux (for example 150 MHz). We cannot use low-frequency radio flux to calculate jet kinetic power. Therefore, we follow the method of Komossa et al. (2018) and use equation (1) to calculate the jet kinetic power. We note that the total jet power (PjetP_{\rm jet}) is given by the sum of two components i.e., the radiation power (PradP_{\rm rad}) and the kinetic power (PkinP_{\rm kin}). The jet power of radiation is believed to be about 10% of the jet kinetic power (Nemmen et al., 2012; Ghisellini et al., 2014), namely Pkin10PradP_{\rm kin}\sim 10P_{\rm rad}. Since the total jet power is mainly dominated by the jet kinetic power, the value of the total jet power can be approximately equal to the jet kinetic power.

Table 1: The sample of Fermi BL Lacs.
4FGL name RA DEC Type Redshift logM\rm{\log M} logLdisk\log L_{\rm disk} fνf_{\nu} logPkin\log P_{\rm kin} logLsy\log L_{\rm sy} logLic\log L_{\rm ic}
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
J0003.2+2207 0.8058 22.1302 HBL 0.1 8.10 42.74 0.0087 43.84 43.23 42.55
J0006.3-0620 1.5992 -6.3493 LBL 0.347 8.92 44.52 2.051 45.12 45.74 44.79
J0013.9-1854 3.4804 -18.9118 HBL 0.095 9.65 43.27 0.0295 44.01 44.02 42.94
J0014.1+1910 3.5368 19.1713 LBL 0.477 7.47 44.32 0.154 44.86 45.46 45.61
J0014.2+0854 3.5695 8.9114 HBL 0.163 8.85 43.37 0.326 44.55 43.75 43.38
J0015.6+5551 3.9071 55.8636 HBL 0.217 9.68 44.05 0.0849 44.45 44.67 44.21
J0017.8+1455 4.4711 14.9228 IBL 0.303 8.27 44.16 0.0595 44.52 44.84 44.53
J0021.6-0855 5.4115 -8.9174 IBL 0.648 8.54 44.63 0.0472 44.82 45.33 45.43
J0022.0+0006 5.5154 0.1134 HBL 0.306 8.02 43.79 0.0042 44.13 44.57 44.06
J0032.4-2849 8.1076 -28.8224 LBL 0.324 8.47 44.02 0.161 44.70 44.95 45.05
J0040.4-2340 10.1012 -23.6704 IBL 0.213 8.68 43.75 0.0536 44.38 44.00 43.74
J0045.7+1217 11.4309 12.292 HBL 0.255 8.82 44.18 0.104 44.54 44.78 44.65
J0049.0+2252 12.252 22.8735 IBL 0.264 9.04 43.63 0.076 44.51 44.09 43.88
J0056.3-0935 14.0874 -9.5997 HBL 0.103 8.96 43.22 0.201 44.32 43.92 43.52
J0059.3-0152 14.8361 -1.8725 HBL 0.144 8.63 43.52 0.018 44.07 44.15 43.68
J0103.5+1526 15.8786 15.4348 IBL 0.246 9.02 43.78 0.226 44.65 44.25 43.94
J0103.8+1321 15.969 13.3536 HBL 0.49 9.69 44.41 0.0519 44.70 45.33 44.92
J0105.1+3929 16.2913 39.4963 LBL 0.44 8.17 44.34 0.0915 44.74 45.76 46.05
J0111.4+0534 17.8573 5.5761 HBL 0.347 8.47 44.06 0.0165 44.38 44.82 43.97
J0115.8+2519 18.9539 25.3324 HBL 0.376 9.03 44.53 0.0382 44.54 45.31 45.16
J0127.9+4857 21.9777 48.9536 LBL 0.065 7.23 42.92 0.206 44.18 43.95 43.65
J0137.9+5814 24.4957 58.2494 HBL 0.275 9.55 44.32 0.171 44.65 45.18 44.78
J0139.0+2601 24.7581 26.0298 IBL 0.347 8.10 44.25 0.129 44.70 44.78 44.37
J0146.9-5202 26.729 -52.0477 IBL 0.098 9.17 43.41 1.07 44.56 43.63 43.28
J0148.2+5201 27.0594 52.0243 HBL 0.437 9.75 44.74 0.0444 44.63 45.77 45.15
J0151.3+8601 27.8381 86.0194 IBL 0.15 9.25 43.54 0.0959 44.34 44.13 44.06
J0152.6+0147 28.1614 1.7894 HBL 0.08 9.34 42.92 0.0619 44.06 44.24 43.54
J0201.1+0036 30.2779 0.6029 HBL 0.298 8.19 43.93 0.0132 44.29 44.88 44.03
J0203.7+3042 30.9327 30.7139 LBL 0.761 8.41 45.01 0.175 45.10 46.32 46.69
J0204.0-3334 31.0238 -33.5731 HBL 0.617 9.29 44.34 0.0063 44.49 45.84 45.06
J0209.9+7229 32.4979 72.4877 LBL 0.895 7.76 45.12 0.67 45.39 46.54 46.89
J0219.1-1724 34.7821 -17.402 HBL 0.128 8.61 43.35 0.0625 44.22 44.10 43.36
J0227.3+0201 36.8296 2.0203 HBL 0.457 9.47 44.52 0.0368 44.62 45.25 45.12
J0232.8+2018 38.2139 20.3159 HBL 0.139 10.08 43.18 0.0834 44.29 44.60 43.81
J0237.6-3602 39.4244 -36.0422 HBL 0.411 8.31 44.66 0.0271 44.53 45.43 44.88
J0238.6+1637 39.668 16.6179 LBL 0.94 8.58 45.30 1.94 45.58 47.45 47.88
J0250.6+1712 42.6563 17.2081 HBL 0.243 9.47 44.23 0.07 44.47 44.84 44.51
J0304.5-0054 46.1423 -0.9148 HBL 0.511 9.16 44.68 0.0233 44.60 45.34 44.77
J0305.1-1608 46.2919 -16.1466 HBL 0.311 9.24 44.10 2.71 45.12 44.68 44.56
J0325.5-5635 51.3794 -56.591 HBL 0.06 9.10 42.84 0.0736 44.00 43.42 42.90
J0326.2+0225 51.5724 2.4228 HBL 0.147 9.21 43.51 0.0682 44.28 44.42 44.09
J0334.2-4008 53.5566 -40.145 LBL 1.359 8.67 44.66 1.92 45.81 47.85 48.10
J0338.1-2443 54.5305 -24.7207 HBL 0.251 9.72 43.73 0.0139 44.23 44.46 43.67
J0339.2-1736 54.8119 -17.6003 HBL 0.066 8.98 43.39 0.171 44.15 43.70 43.17
J0403.5-2437 60.8989 -24.6168 LBL 0.357 9.75 43.84 0.167 44.75 45.07 44.88
J0407.5+0741 61.8921 7.6998 LBL 1.139 8.84 45.33 0.296 45.41 46.89 47.32
J0416.9+0105 64.2269 1.088 HBL 0.287 8.40 44.15 0.121 44.61 45.64 44.67
J0420.2+4012 65.0547 40.201 HBL 0.132 9.35 43.77 0.116 44.32 43.85 43.46
J0428.6-3756 67.173 -37.9403 LBL 1.11 8.77 44.90 0.737 45.53 47.52 48.32
J0433.6+2905 68.4107 29.0975 LBL 0.91 8.25 44.93 0.154 45.18 46.02 47.12
J0505.8-3817 76.4749 -38.2965 HBL 0.182 9.01 43.91 0.019 44.16 44.06 43.63
J0516.7-6207 79.1798 -62.1248 LBL 1.3 8.67 45.17 0.418 45.55 47.47 47.77
J0538.8-4405 84.7089 -44.0862 LBL 0.896 8.45 46.22 2.89 45.62 47.81 48.01
J0558.0-3837 89.5233 -38.6317 HBL 0.302 9.81 44.52 0.106 44.61 45.56 44.80
J0629.3-1959 97.3478 -19.9999 LBL 1.718 9.88 45.83 0.677 45.82 48.36 48.37
J0640.0-1253 100.0213 -12.896 HBL 0.137 9.91 44.02 0.225 44.44 44.74 43.96
J0648.7+1516 102.1905 15.2808 HBL 0.179 8.84 44.12 0.0647 44.34 44.97 44.79
J0654.7+4246 103.6856 42.7791 LBL 0.129 7.55 43.02 0.203 44.40 43.77 43.75
Table 2: continued

. 4FGL name RA DEC Type Redshift logM\rm{\log M} logLdisk\log L_{\rm disk} fνf_{\nu} logPkin\log P_{\rm kin} logLsy\log L_{\rm sy} logLic\log L_{\rm ic} (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) J0656.3+4235 104.0918 42.5936 HBL 0.059 9.86 42.93 0.934 44.38 43.19 42.55 J0709.1+2241 107.2769 22.6847 HBL 0.297 9.72 44.39 0.0406 44.46 45.07 44.85 J0710.4+5908 107.6234 59.1352 HBL 0.125 9.75 42.75 0.159 44.35 44.73 44.08 J0710.9+4733 107.7323 47.553 LBL 1.292 8.81 45.70 1.02 45.68 47.01 47.73 J0731.9+2805 112.981 28.0882 HBL 0.248 8.58 43.92 0.0721 44.48 44.56 43.94 J0740.9+3203 115.2335 32.0581 IBL 0.179 8.46 43.53 0.077 44.37 44.04 43.61 J0744.1+7434 116.0345 74.5778 HBL 0.315 9.94 44.15 0.0233 44.40 45.40 44.78 J0749.2+2314 117.3217 23.2337 HBL 0.174 8.71 43.36 0.0547 44.31 43.99 43.47 J0758.9+2703 119.7258 27.0653 IBL 0.099 8.50 43.08 0.0691 44.15 43.50 43.39 J0803.2-0337 120.8247 -3.6189 HBL 0.365 6.96 43.95 0.232 44.81 44.91 45.24 J0809.6+3455 122.4215 34.9252 HBL 0.082 8.80 43.00 0.223 44.26 43.83 42.99 J0809.8+5218 122.4617 52.3143 HBL 0.138 8.55 43.85 0.183 44.41 44.96 44.63 J0811.4+0146 122.861 1.7756 LBL 1.148 8.71 44.98 0.599 45.52 47.09 47.43 J0812.0+0237 123.0094 2.6285 HBL 0.173 9.66 43.57 0.123 44.43 44.21 44.04 J0814.4+2941 123.6104 29.6857 LBL 0.374 8.58 44.96 0.0047 44.22 44.54 44.81 J0818.4+2816 124.6076 28.2738 IBL 0.225 8.09 43.97 0.064 44.42 44.50 44.02 J0820.9+2353 125.2255 23.89 HBL 0.402 8.46 44.26 0.0487 44.61 44.99 44.88 J0823.3+2224 125.8443 22.4093 LBL 0.951 7.96 44.13 2.27 45.61 46.70 46.37 J0828.3+4152 127.0877 41.879 HBL 0.154 8.58 43.68 0.091 44.34 44.05 43.36 J0829.0+1755 127.2747 17.9233 HBL 0.089 8.38 42.92 0.336 44.35 43.62 42.91 J0831.8+0429 127.9732 4.4941 LBL 0.174 7.00 43.48 1.24 44.78 45.10 45.01 J0832.4+4912 128.1078 49.2127 LBL 0.548 8.07 44.17 0.344 45.04 45.88 45.92 J0837.3+1458 129.3461 14.9677 HBL 0.152 7.74 43.43 0.0541 44.26 44.65 43.30 J0842.5+0251 130.6331 2.8662 HBL 0.425 8.27 44.32 0.0168 44.47 44.94 44.56 J0847.2+1134 131.8119 11.5692 HBL 0.198 8.04 43.75 0.0332 44.28 44.95 44.44 J0850.5+3455 132.6378 34.9285 HBL 0.145 8.67 43.82 0.0312 44.16 43.89 43.54 J0854.0+2753 133.5155 27.884 HBL 0.494 8.52 44.32 0.0144 44.51 44.92 44.08 J0901.4+4542 135.3691 45.707 IBL 0.288 7.83 43.89 0.021 44.35 44.40 44.10 J0909.7+3104 137.4477 31.0818 HBL 0.272 8.91 43.96 0.196 44.66 44.85 43.98 J0910.8+3859 137.7091 38.9999 IBL 0.199 7.73 43.76 0.0103 44.10 44.41 43.88 J0912.9-2102 138.2274 -21.0446 HBL 0.198 9.53 43.93 0.329 44.63 45.16 44.53 J0916.7+5238 139.1906 52.6454 IBL 0.19 8.60 43.66 0.139 44.48 44.44 43.76 J0917.3-0342 139.3339 -3.7035 HBL 0.308 9.34 44.09 0.0321 44.44 44.81 44.25 J0930.5+4951 142.6254 49.8577 HBL 0.187 8.87 43.64 0.0214 44.19 44.73 43.90 J0932.7+1041 143.1802 10.6903 HBL 0.361 9.16 44.12 0.0336 44.51 44.90 44.53 J0940.4+6148 145.1207 61.8156 HBL 0.211 8.63 43.66 0.0128 44.15 44.43 43.96 J0942.3+2842 145.5806 28.7091 HBL 0.366 8.60 43.92 0.022 44.45 44.25 44.18 J0945.7+5759 146.432 57.9871 IBL 0.229 8.62 43.90 0.112 44.51 44.64 44.15 J0946.2+0104 146.5672 1.0701 HBL 0.128 7.70 43.43 0.154 44.36 43.88 43.45 J0955.1+3551 148.7816 35.8584 HBL 0.557 8.92 44.44 0.0078 44.47 45.53 44.67 J0959.4+2120 149.8712 21.3459 HBL 0.365 8.28 44.16 0.0408 44.54 45.27 44.48 J1001.1+2911 150.2938 29.188 LBL 0.556 7.78 44.68 0.146 44.92 46.01 45.95 J1010.2-3119 152.5716 -31.3207 HBL 0.143 9.97 43.57 0.0743 44.28 44.66 44.02 J1023.8+3002 155.9608 30.0458 HBL 0.433 9.06 44.43 0.009 44.38 45.01 44.75 J1026.9+0608 156.7322 6.1431 HBL 0.449 9.20 44.40 0.0105 44.42 45.28 44.75 J1031.1+7442 157.7925 74.7019 LBL 0.123 7.87 43.88 0.209 44.39 44.18 44.22 J1031.3+5053 157.8454 50.8839 HBL 0.36 8.07 44.14 0.0379 44.52 45.83 45.41 J1033.5+4221 158.3827 42.3507 HBL 0.211 8.65 43.52 0.0448 44.35 43.90 43.41 J1035.6+4409 158.9225 44.1609 IBL 0.444 7.76 44.06 0.0429 44.63 44.47 45.02 J1041.7+3902 160.4411 39.0426 HBL 0.208 8.73 43.74 0.0223 44.23 44.05 43.62 J1041.9-0557 160.4774 -5.9528 HBL 0.39 8.54 44.18 0.0836 44.68 45.24 44.70 J1043.2+2408 160.8053 24.146 LBL 0.559 8.63 44.89 0.325 45.04 46.02 45.94 J1046.8-2534 161.7027 -25.5749 HBL 0.254 9.94 43.77 0.0141 44.24 44.97 44.25 J1049.5+1548 162.3892 15.8086 IBL 0.326 8.25 44.41 0.0506 44.53 45.09 44.86 J1049.7+5011 162.4334 50.1836 HBL 0.402 8.49 44.01 0.0078 44.33 44.80 44.45 J1051.4+3942 162.8702 39.7159 HBL 0.497 9.10 44.48 0.0108 44.47 45.56 45.03 J1051.9+0103 162.9886 1.0647 IBL 0.265 7.61 43.69 0.0163 44.28 44.14 43.80 J1053.7+4930 163.4253 49.5081 HBL 0.14 8.74 43.46 0.0646 44.26 44.16 43.61 J1057.8-2754 164.454 -27.9016 HBL 0.091 9.36 43.69 0.0638 44.11 43.74 43.06 J1058.4+0133 164.624 1.5641 LBL 0.892 9.50 45.74 3.22 45.63 47.26 47.48

Table 3: continued

. 4FGL name RA DEC Type Redshift logM\rm{\log M} logLdisk\log L_{\rm disk} fνf_{\nu} logPkin\log P_{\rm kin} logLsy\log L_{\rm sy} logLic\log L_{\rm ic} (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) J1058.6+5627 164.6652 56.4634 HBL 0.143 8.33 43.90 0.229 44.46 44.81 44.55 J1058.6-8003 164.66 -80.064 LBL 0.581 8.64 45.49 0.77 45.19 46.37 46.35 J1104.4+3812 166.1187 38.207 HBL 0.033 9.05 42.18 0.769 44.16 44.62 44.51 J1105.8+3944 166.4589 39.7426 LBL 0.099 8.29 42.67 0.045 44.08 43.71 42.86 J1109.6+3735 167.4092 37.5868 HBL 0.398 8.96 44.16 0.0044 44.24 44.79 44.59 J1112.4+1751 168.1132 17.8509 HBL 0.421 8.46 44.45 0.0143 44.44 45.24 44.73 J1117.0+2013 169.2708 20.2294 HBL 0.138 8.51 43.71 0.103 44.32 44.52 44.43 J1119.6-3047 169.9245 -30.7962 HBL 0.412 9.75 44.03 0.0094 44.37 44.84 44.48 J1124.4+2308 171.102 23.137 LBL 0.795 7.86 44.87 0.154 45.10 45.55 45.88 J1125.5-3557 171.3929 -35.9581 LBL 0.284 7.28 43.55 0.208 44.69 44.87 44.82 J1130.5-3137 172.6499 -31.6219 HBL 0.151 9.24 43.43 0.0265 44.15 43.92 43.64 J1130.8+1016 172.7192 10.2728 IBL 0.172 8.41 44.01 0.0136 44.09 44.23 44.11 J1131.4+5809 172.8555 58.151 IBL 0.36 8.42 44.21 0.0444 44.55 45.19 44.94 J1136.4+6736 174.1179 67.6127 HBL 0.134 8.67 43.49 0.0458 44.19 44.56 44.10 J1136.8+2550 174.2171 25.8463 HBL 0.154 9.46 43.53 0.0163 44.08 44.31 43.20 J1140.5+1528 175.129 15.4824 HBL 0.244 8.70 43.97 0.07 44.47 44.98 44.02 J1147.0-3812 176.76 -38.2006 LBL 1.053 8.69 45.38 1.8 45.64 47.27 47.31 J1149.4+2441 177.3713 24.6873 HBL 0.402 8.21 44.32 0.00758 44.33 45.70 44.62 J1152.1+2837 178.0309 28.6293 HBL 0.441 9.06 44.37 0.0246 44.54 45.20 44.67 J1153.7+3822 178.4464 38.3684 LBL 0.41 8.11 44.26 0.15 44.79 45.08 44.31 J1154.0-0010 178.5103 -0.1787 HBL 0.254 8.13 43.75 0.0106 44.19 44.65 44.19 J1202.4+4442 180.61 44.7147 IBL 0.297 8.80 44.11 0.106 44.60 44.40 44.24 J1203.1+6031 180.7881 60.518 IBL 0.065 8.40 43.20 0.191 44.17 43.84 43.18 J1203.4-3925 180.852 -39.4257 HBL 0.227 8.88 43.64 0.0646 44.43 44.24 44.22 J1204.0+1146 181.0204 11.7761 HBL 0.296 8.37 43.89 0.0151 44.31 45.01 44.46 J1212.0+2242 183.0146 22.709 HBL 0.453 8.16 44.50 0.0202 44.53 45.48 44.52 J1215.1+0731 183.7895 7.5222 HBL 0.136 8.89 43.49 0.138 44.36 44.04 43.48 J1216.1+0930 184.0415 9.5096 HBL 0.094 8.95 42.97 0.209 44.30 43.71 43.18 J1219.7-0313 184.9334 -3.2217 HBL 0.299 8.45 44.18 0.0289 44.41 44.77 44.63 J1221.3+3010 185.3449 30.1677 HBL 0.184 9.00 44.17 0.0715 44.37 45.19 45.10 J1221.5+2814 185.3784 28.2382 IBL 0.102 8.55 43.81 0.732 44.52 44.71 44.58 J1223.9+7954 185.9854 79.9025 HBL 0.375 9.53 44.32 0.0315 44.51 44.44 44.15 J1224.4+2436 186.1161 24.6142 HBL 0.219 8.29 44.11 0.0259 44.28 45.10 44.62 J1231.5+1421 187.8771 14.3532 IBL 0.256 8.73 44.07 0.05 44.43 44.59 44.38 J1231.6+6415 187.9012 64.2535 HBL 0.163 8.96 43.49 0.0588 44.29 44.26 43.80 J1233.6+5027 188.4105 50.4606 IBL 0.207 8.32 43.59 0.283 44.62 44.27 44.04 J1236.3+3858 189.0894 38.9814 IBL 0.389 8.54 44.15 0.037 44.55 44.79 44.49 J1237.8+6256 189.457 62.9342 HBL 0.297 8.64 43.86 0.0125 44.28 44.60 43.84 J1244.5+1616 191.1361 16.2803 HBL 0.456 8.76 44.23 0.154 44.84 44.78 44.77 J1246.3+0112 191.5786 1.2166 IBL 0.386 7.57 44.14 0.045 44.58 44.63 44.39 J1248.7+5127 192.1805 51.463 IBL 0.351 8.24 44.21 0.115 44.68 44.98 44.46 J1250.6+0217 192.6513 2.2876 LBL 0.954 8.69 45.08 0.341 45.33 46.22 46.43 J1251.2+1039 192.821 10.6536 IBL 0.245 7.62 43.89 0.154 44.59 44.44 44.10 J1254.9-4426 193.728 -44.4441 LBL 0.041 8.95 42.91 0.368 44.12 42.78 42.70 J1256.2-1146 194.0632 -11.7755 HBL 0.058 8.94 43.06 0.0544 43.94 43.53 42.99 J1257.6+2413 194.4191 24.2199 HBL 0.141 8.56 43.33 0.0147 44.03 44.19 43.15 J1258.3+6121 194.5879 61.3622 HBL 0.224 7.90 43.91 0.0102 44.14 43.95 43.77 J1319.5+1404 199.8979 14.0708 IBL 0.573 8.31 44.94 0.077 44.84 45.64 45.26 J1321.9+3219 200.4801 32.3313 IBL 0.396 8.73 43.90 0.0164 44.44 45.00 44.53 J1322.9+0437 200.7372 4.6308 HBL 0.224 8.94 43.70 0.037 44.34 44.36 43.93 J1326.1+1232 201.5493 12.5348 HBL 0.204 8.75 43.70 0.0574 44.37 44.50 43.72 J1331.0+5653 202.7577 56.894 HBL 0.27 8.63 43.75 0.00516 44.11 44.50 43.91 J1331.2-1325 202.8192 -13.4282 LBL 0.251 7.80 43.52 0.0512 44.43 44.26 45.01 J1335.3-2949 203.8475 -29.8295 HBL 0.513 9.78 44.32 0.0106 44.48 45.76 45.05 J1336.2+2320 204.051 23.3349 HBL 0.267 7.64 43.76 0.0134 44.25 44.46 44.02 J1340.8-0409 205.2171 -4.1612 HBL 0.223 9.60 43.96 0.027 44.29 44.46 44.13 J1341.2+3958 205.3209 39.9738 HBL 0.171 8.91 43.45 0.0878 44.37 44.52 43.71 J1341.6+5515 205.4087 55.254 HBL 0.207 8.17 43.56 0.0379 44.31 44.06 43.09 J1342.7+0505 205.6851 5.0904 IBL 0.136 8.56 43.37 1.6 44.73 44.57 43.90 J1351.9+2847 207.9959 28.7964 HBL 0.268 8.55 43.76 0.011 44.22 44.05 43.62

Table 4: continued

. 4FGL name RA DEC Type Redshift logM\rm{\log M} logLdisk\log L_{\rm disk} fνf_{\nu} logPkin\log P_{\rm kin} logLsy\log L_{\rm sy} logLic\log L_{\rm ic} (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) J1353.2+3740 208.3049 37.682 HBL 0.216 8.99 43.61 0.0343 44.31 44.35 43.81 J1353.4+5600 208.3602 56.0024 HBL 0.404 8.29 44.26 0.0149 44.43 44.89 44.30 J1402.6+1600 210.6584 16.0016 IBL 0.245 7.30 43.66 0.85 44.85 44.64 43.92 J1403.4+4319 210.8684 43.3225 HBL 0.493 8.16 44.27 0.0205 44.57 44.74 44.65 J1404.8+6554 211.2158 65.9048 HBL 0.363 8.41 44.26 0.0154 44.39 44.92 44.66 J1406.9+1643 211.742 16.7206 HBL 0.603 8.90 44.77 0.0083 44.52 45.89 45.28 J1410.3+1438 212.5908 14.6434 IBL 0.144 8.37 43.33 0.494 44.57 43.98 43.65 J1411.8+5249 212.9692 52.8278 HBL 0.076 8.82 42.78 0.848 44.44 43.43 42.63 J1412.1+7427 213.0383 74.45 IBL 0.436 6.35 43.45 0.107 44.76 44.93 45.28 J1415.5+4830 213.8992 48.5142 HBL 0.496 7.73 44.65 0.0287 44.62 45.27 45.03 J1416.1-2417 214.0334 -24.2982 HBL 0.136 9.21 43.48 0.0729 44.26 44.43 43.45 J1417.9+2543 214.494 25.7238 HBL 0.236 8.17 43.59 0.0887 44.49 45.30 44.42 J1419.8+5423 214.955 54.3937 LBL 0.152 9.12 44.17 0.789 44.66 45.15 44.42 J1424.1-1750 216.0294 -17.8447 HBL 0.082 8.59 43.27 0.013 43.83 43.43 42.90 J1428.5+4240 217.1286 42.6776 HBL 0.129 8.59 43.59 0.032 44.12 44.88 44.39 J1439.3+3932 219.8299 39.538 HBL 0.344 8.79 44.65 0.0442 44.53 45.50 44.86 J1440.9+0609 220.242 6.1631 HBL 0.396 9.49 43.35 0.0902 44.70 45.42 45.16 J1442.6-4623 220.6605 -46.3869 HBL 0.103 9.25 43.25 0.0964 44.21 44.13 43.38 J1442.7+1200 220.698 12.0126 HBL 0.163 8.74 43.64 0.06 44.30 44.77 44.06 J1443.6+2515 220.9028 25.2631 HBL 0.529 8.13 44.49 0.0067 44.43 45.21 44.94 J1503.5+4759 225.8955 47.9959 IBL 0.345 7.97 44.51 0.106 44.66 45.08 45.51 J1506.4+4331 226.6221 43.5257 IBL 0.47 9.03 44.37 0.0291 44.60 44.85 44.67 J1507.2+1721 226.8207 17.3519 HBL 0.565 8.19 44.48 0.0234 44.65 45.36 45.34 J1508.8+2708 227.2045 27.1407 HBL 0.27 8.30 43.95 0.0374 44.41 45.26 44.32 J1516.8+2918 229.2126 29.3123 IBL 0.13 8.79 43.24 0.0746 44.25 44.18 44.01 J1517.7-2422 229.4254 -24.373 LBL 0.048 9.09 43.15 2.04 44.43 44.19 43.93 J1518.6+4044 229.6606 40.7449 HBL 0.065 8.25 42.65 0.0409 43.93 43.25 42.72 J1523.2+0533 230.8241 5.5569 HBL 0.176 8.57 43.33 0.0362 44.25 44.08 43.42 J1532.0+3016 233.0159 30.2685 HBL 0.065 8.27 42.69 0.0544 43.97 43.48 42.99 J1533.2+1855 233.3103 18.9201 HBL 0.307 8.27 44.07 0.0229 44.38 45.12 44.57 J1534.8+3716 233.7218 37.2723 HBL 0.143 7.83 43.56 0.0224 44.10 44.01 43.60 J1535.4+3919 233.8741 39.3194 HBL 0.257 8.31 44.13 0.0197 44.29 44.92 44.05 J1540.7+1449 235.1903 14.822 LBL 0.606 8.23 44.18 1.39 45.30 46.09 45.96 J1541.7+1413 235.4469 14.2306 HBL 0.223 7.94 43.80 0.0354 44.33 44.75 43.96 J1548.3+1456 237.0999 14.9461 IBL 0.23 9.32 43.40 0.0244 44.28 44.40 44.81 J1558.9-6432 239.7377 -64.5404 HBL 0.08 8.94 43.39 0.94 44.48 44.08 43.59 J1605.5+5423 241.3848 54.3982 HBL 0.212 7.92 43.43 0.0076 44.08 44.31 43.90 J1606.3+5629 241.5917 56.4975 HBL 0.437 8.48 44.30 0.0157 44.47 45.41 44.80 J1616.7+4107 244.1821 41.1234 LBL 0.267 8.67 43.88 0.0958 44.55 44.69 44.61 J1626.3+3514 246.582 35.2382 HBL 0.498 8.82 44.47 0.0201 44.57 45.28 45.05 J1626.6-7639 246.6553 -76.6502 IBL 0.105 8.92 43.56 0.0065 43.81 43.68 43.43 J1627.3+3148 246.8347 31.814 HBL 0.58 8.41 44.47 0.00369 44.38 45.12 44.99 J1637.6+4548 249.4137 45.8108 HBL 0.192 8.52 43.53 0.019 44.18 44.30 43.47 J1644.2+4546 251.0556 45.776 HBL 0.225 8.97 43.70 0.184 44.58 44.55 43.46 J1647.5+2911 251.8835 29.1837 HBL 0.133 8.77 43.18 0.388 44.51 43.92 43.27 J1647.5+4950 251.8923 49.8336 LBL 0.047 7.98 43.27 0.178 44.05 43.65 43.70 J1653.8+3945 253.4738 39.7595 HBL 0.033 9.91 43.30 1.56 44.27 44.01 43.90 J1658.4+6150 254.62 61.8483 HBL 0.374 7.66 44.15 0.0384 44.54 44.93 44.60 J1704.2+1234 256.0599 12.5752 LBL 0.452 9.45 44.60 0.03 44.59 45.20 45.74 J1730.8+3715 262.7026 37.2641 HBL 0.204 9.71 43.62 0.0631 44.39 44.32 44.06 J1744.0+1935 266.008 19.5956 HBL 0.084 9.69 43.28 0.551 44.41 44.17 43.53 J1745.6+3950 266.4158 39.8412 HBL 0.267 9.52 43.90 0.636 44.84 44.51 43.91 J1751.5+0938 267.8776 9.6456 LBL 0.322 7.98 44.08 0.623 44.91 45.91 45.87 J1754.5-6425 268.639 -64.418 LBL 1.255 8.13 44.91 0.177 45.40 47.17 47.48 J1800.6+7828 270.173 78.4674 LBL 0.691 8.94 45.68 2.22 45.44 46.96 46.93 J1806.8+6949 271.7108 69.827 LBL 0.05 7.10 43.41 1.89 44.43 44.23 43.73 J1853.8+6714 283.4625 67.2487 HBL 0.212 8.96 43.56 0.011 44.13 44.46 43.58 J1911.4-1908 287.8681 -19.1494 HBL 0.138 9.27 43.46 0.44 44.54 44.23 43.94 J1917.7-1921 289.4384 -19.3628 HBL 0.137 9.08 43.82 0.482 44.55 44.69 44.46 J1942.8-3512 295.7173 -35.2012 IBL 0.05 9.01 42.52 0.154 44.05 42.85 42.96

Table 5: continued

. 4FGL name RA DEC Type Redshift logM\rm{\log M} logLdisk\log L_{\rm disk} fνf_{\nu} logPkin\log P_{\rm kin} logLsy\log L_{\rm sy} logLic\log L_{\rm ic} (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) J1954.6-1122 298.6693 -11.3815 LBL 0.683 8.05 44.46 0.367 45.16 46.16 46.74 J2000.0+6508 300.011 65.1479 HBL 0.047 9.07 42.89 0.25 44.10 44.50 43.89 J2014.3-0047 303.599 -0.7922 HBL 0.23 9.18 44.31 0.125 44.53 44.73 44.34 J2032.0+1219 308.004 12.3279 LBL 1.211 8.31 44.94 0.999 45.64 47.29 47.51 J2049.7-0036 312.4456 -0.616 HBL 0.257 8.00 43.66 0.0058 44.11 44.71 43.78 J2054.8+0015 313.7246 0.257 HBL 0.151 8.75 43.40 0.057 44.26 44.19 43.77 J2108.7-0250 317.1788 -2.8449 HBL 0.149 10.10 43.67 0.127 44.38 44.29 43.62 J2115.9-0113 318.9959 -1.2306 HBL 0.305 8.22 44.21 0.069 44.55 44.80 44.53 J2130.2-7320 322.5524 -73.3348 HBL 0.057 9.49 43.00 0.182 44.12 43.26 42.05 J2134.2-0154 323.5699 -1.9042 LBL 1.283 8.75 44.83 1.69 45.75 47.54 47.56 J2150.8+1118 327.7033 11.3149 HBL 0.495 7.24 44.55 0.0099 44.46 45.40 44.94 J2152.5+1737 328.137 17.6173 LBL 0.872 8.61 44.41 0.681 45.38 46.84 46.66 J2153.1-0041 328.2823 -0.6927 HBL 0.342 9.75 44.16 0.0247 44.44 45.31 44.64 J2158.8-3013 329.7141 -30.2251 HBL 0.116 8.91 43.51 0.49 44.50 45.86 45.35 J2202.7+4216 330.6946 42.2821 LBL 0.069 7.81 43.34 6.05 44.71 45.01 44.69 J2202.7-5637 330.6995 -56.6318 HBL 0.049 9.44 42.66 0.0584 43.90 42.91 41.94 J2204.3+0438 331.0832 4.6401 IBL 0.027 7.32 42.75 0.467 44.02 42.87 42.78 J2206.8-0032 331.7087 -0.5461 LBL 1.053 8.58 44.64 0.152 45.26 46.86 46.93 J2209.7-0451 332.4382 -4.8597 HBL 0.397 8.59 44.45 0.0248 44.50 45.08 44.57 J2211.0-0003 332.7625 -0.0635 HBL 0.362 8.55 44.26 0.0255 44.47 45.14 44.37 J2216.9+2421 334.238 24.3575 LBL 1.033 8.44 45.04 0.528 45.44 47.18 47.09 J2220.5+2813 335.1419 28.2322 HBL 0.149 8.62 43.31 0.0488 44.23 44.12 43.51 J2232.8+1334 338.2245 13.5764 HBL 0.214 8.32 43.55 0.0251 44.26 44.98 43.75 J2243.4-2544 340.8654 -25.7363 LBL 0.774 8.47 44.51 1.1 45.39 46.63 46.57 J2250.0+3825 342.5142 38.4247 HBL 0.119 9.44 43.31 0.104 44.27 44.56 44.13 J2252.6+1245 343.1676 12.7543 HBL 0.497 8.08 44.65 0.0463 44.69 45.25 44.63 J2253.7+1405 343.4483 14.091 HBL 0.327 8.49 44.08 0.0116 44.31 44.98 44.30 J2257.5+0748 344.3874 7.8014 LBL 0.19 9.66 43.75 0.394 44.64 44.63 43.99 J2314.0+1445 348.5081 14.7532 HBL 0.164 9.11 43.55 0.0406 44.24 44.57 44.04 J2315.6-5018 348.914 -50.3127 LBL 0.811 8.41 44.71 0.233 45.18 46.66 46.34 J2319.1-4207 349.7763 -42.1173 HBL 0.055 9.41 43.30 1.67 44.44 43.55 42.57 J2322.7+3436 350.6849 34.6125 HBL 0.098 9.55 42.80 0.0957 44.20 44.09 43.28 J2330.3-2948 352.5806 -29.8072 HBL 0.297 8.99 44.20 0.039 44.45 44.54 44.05 J2343.6+3438 355.9063 34.6403 HBL 0.365 8.47 44.19 0.0349 44.52 45.72 45.16 J2346.7+0705 356.6786 7.0931 HBL 0.172 8.79 43.93 0.303 44.56 44.73 44.02 J2347.0+5141 356.7659 51.6966 HBL 0.044 7.71 42.85 0.251 44.08 43.67 43.51 J2357.4-0152 359.3674 -1.8703 LBL 0.816 7.33 43.91 0.234 45.18 45.91 46.12 J2358.3+3830 359.5883 38.5097 IBL 0.2 7.39 43.27 0.0579 44.36 44.30 44.31 Columns (1) is the 4FGL name of sources; Columns (2) is the Right ascension in decimal degrees; Columns (3) is Declination in decimal degrees; Columns (4) is the Class of sources, low-frequency peaked BL Lac objects (LBL), intermediate objects (IBL), and high-frequency peaked BL Lac objects (HBL); Columns (5) is redshift; Columns (6) is the black hole mass; Columns (7) is the disk luminosity in units erg s-1; Columns (8) is the 1.4 GHz radio flux in units jy; Columns (9) is the jet kinetic power in units erg s-1; Columns (10) is the synchrotron peak frequency luminosity in units erg s-1; Columns (11) is the inverse Compton luminosity in units erg s-1. The redshift, black hole mass, accretion disk luminosity, synchrotron peak frequency luminosity and the inverse Compton luminosity comes from the work of Paliya et al. (2021). The 1.4 GHz radio flux comes from the FIRST Survey Catalog: 14Dec17 Version222http://sundog.stsci.edu/first/catalogs/readme.html.

3 JET MODEL

Currently, the most popular theories of jet formation include the BZ mechanism (Blandford & Znajek, 1977) and the BP mechanism (Blandford & Payne, 1982). Recently, some authors have proposed a hybrid jet model (Meier, 1999; Garofalo et al., 2010), that is, the mixture of BZ and BP. Theoretical works on jet power computation in the case of ADAF are often based on the self-similar solution of ADAFs of Narayan & Yi (1995), Meier (2001), and Nemmen et al. (2007). There is some evidence to suggest that accretion flows on low accretion rate AGN (or low jet power, such as BL Lacs, low/hard-state X-ray binaries, and radio galaxies) are best described as ADAFs (e.g., Wu & Cao, 2008; Wu et al., 2011). In addition, the magnitude and structure of the magnetic field related to ADAFs are more favorable for extracting spin energy from the black hole than the magnetic field related to the standard thin disk (e.g., Livio et al., 1999; Nemmen et al., 2007). The BZ phenomenon is the backbone of the jet, and as the accretion increases, the BZ phenomenon becomes increasingly hybridized (Cavaliere & D’Elia, 2002). The jet mechanism becomes hybridized as the accretion rate increases. Tombesi et al. (2010) found that some relatively highly accreting radio galaxies have ultra-fast outflows with v(0.040.15)cv\sim(0.04-0.15)c. Although these winds move at relativistic speeds, their findings indicate that some hydromagnetic windy activity is also present in AGNs with relativistic jets, thus enforcing the idea of a hybrid mechanism (Foschini, 2011). At the same time, our sample has a low accretion rate (see below), which implies that these sources may have ADAFs. Therefore, in this work, we calculate the jet power based on the self-similar solution of ADAFs around the Kerr black hole.

3.1 The BZ jet model

The jet power of BZ mechanism (PjetBZP_{\rm jet}^{\rm BZ}) is estimated by the following formula (MacDonald & Thorne, 1982; Thorne et al., 1986; Ghosh & Abramowicz, 1997; Nemmen et al., 2007)

PjetBZ=132ωF2B2RH2j2c,P_{\rm jet}^{\rm BZ}=\frac{1}{32}\omega_{\rm F}^{2}B_{\perp}^{2}R_{\rm H}^{2}j^{2}c, (5)

where ωFΩF(ΩHΩF)/ΩH2\omega_{\rm F}\equiv\Omega_{\rm F}(\Omega_{\rm H}-\Omega_{\rm F})/\Omega_{\rm H}^{2} depends on the angular velocity of field lines ΩF\Omega_{F} relative to that of the black hole ΩH\Omega_{\rm H}. We assume ωF=1/2\omega_{\rm F}=1/2, which implies the output of maximum power (e.g., MacDonald & Thorne, 1982; Thorne et al., 1986; Nemmen et al., 2007). The BB_{\perp} is assumed to approximate to the poloidal component of the magnetic field BpB_{\rm p}, BBp(Rms)g(Rms)B(Rms)B_{\perp}\approx B_{\rm p}(R_{\rm ms})\approx g(R_{\rm ms})B(R_{\rm ms})(Livio et al., 1999), g=Ω/Ωg=\Omega/\Omega^{{}^{\prime}}. The RmsR_{\rm ms} is the radius of the marginally stable orbit of the accretion disk (see APPENDIX A). The Ω\Omega^{{}^{\prime}} is the angular velocity of the disk. An observer at infinity will see the disk and the magnetic fields near the black hole rotate, in the Boyer–Lindquist coordinate system, not with an angular velocity Ω\Omega^{{}^{\prime}} but Ω=Ω+ω\Omega=\Omega^{{}^{\prime}}+\omega (Bardeen et al., 1972), where ω\omega is the angular velocity of the local metric which is given in Appendix A, equation (A11). The BB is the the magnetic field strength near the black hole (see APPENDIX A). The RH=[1+(1j2)1/2]GMBH/c2R_{\rm H}=[1+(1-j^{2})^{1/2}]GM_{\rm BH}/c^{2} is the horizon radius (e.g., Ghosh & Abramowicz, 1997), where GG is the gravitational constant and MM is the mass of the black hole. The jj is spin of black hole and cc is the speed of light.

3.2 The Hybrid jet model

The jet power of the hybrid model (PjetHybridP_{\rm jet}^{\rm Hybrid}) is estimated by the following formula (Meier, 2001; Nemmen et al., 2007)

PjetHybrid=(BϕHRΩ)2/32c,P_{\rm jet}^{\rm Hybrid}=(B_{\phi}HR\Omega)^{2}/32c, (6)

where BϕB_{\phi} is the azimuthal component of the magnetic field. Meier (2001) related the amplified, azimuthal component of the magnetic field to the unamplified magnetic field strength derived from the self-similar ADAF solution as Bϕ=gBB_{\phi}=gB, and Ω=Ω+ω\Omega=\Omega^{{}^{\prime}}+\omega. The HH is the vertical half-thickness of the disk. In the case of an ADAF, HRH\sim R (Nemmen et al., 2007). Following the method of Nemmen et al. (2007), all physical quantities are estimated at R=RmsR=R_{\rm ms} (see APPENDIX A).

4 Results and Discussion

4.1 Redshift and black hole masses

To better evaluate our results and put them into a context, we studied the distributions of the Fermi BL Lacs of our sample in terms of redshift, black hole mass, jet kinetic power, and accretion disk luminosity. The redshift distribution of Fermi LBL extends to larger values than IBL and HBL (Fig. 1). The average values of redshift are z=0.64z=0.64 for LBL, z=0.26z=0.26 for IBL, and z=0.25z=0.25 for HBL. The range of black hole mass is from 106.510^{6.5} to 1010M10^{10}M_{\odot}. The average values of black hole mass are logMBH=8.39\log M_{\rm BH}=8.39 for LBL, logMBH=8.34\log M_{\rm BH}=8.34 for IBL, and logMBH=8.82\log M_{\rm BH}=8.82 for HBL. Cha et al. (2014) also found that FSRQs and LBL tend to have higher redshift and gamma-ray luminosity than HBL. They suggested that the evolutionary track of Fermi blazars is FSRQs\rightarrowLBL\rightarrowHBL.

4.2 Jet kinetic power and accretion disk luminosity

The range of jet kinetic power is mainly from 1044.010^{44.0} to 1046.010^{46.0} erg s-1. The LBL tends to have higher jet kinetic power than IBL and HBL (Fig. 1). The average values of jet kinetic power are logPkin=45.04\log P_{\rm kin}=45.04 for LBL, logPkin=44.26\log P_{\rm kin}=44.26 for IBL, and logPkin=44.37\log P_{\rm kin}=44.37 for HBL. The scope of accretion disk luminosity is mianly from 1042.010^{42.0} to 1046.010^{46.0} erg s-1. The LBL also tends to have higher accretion disk luminosity than IBL and HBL. The average values of accretion disk luminosity are logLdisk=44.45\log L_{\rm disk}=44.45 for LBL, logLdisk=43.79\log L_{\rm disk}=43.79 for IBL, and logLdisk=43.80\log L_{\rm disk}=43.80 for HBL. Chen et al. (2015a) found that the LBL tends to have higher jet kinetic power and BLR luminosity than HBL and IBL using a smaller sample than the one we consider here (see Figure 7 of Chen et al. (2015a)). Our results are consistent with theirs.

Refer to caption
Figure 1: Distribution of the redshifts, black hole mass, jet kinetic power and accretion disk luminosity for the Fermi BL Lacs of our sample. The red line is LBL. The black dashed line is IBL. The green line is HBL.

4.3 Accretion rates

Paliya et al. (2021) suggested that the physical properties of Fermi blazars are likely to be controlled by the accretion rate in Eddington units. Therefore, we study the accretion rate distribution of Fermi BL Lacs. Using the relative contribution of individual lines to the total BLR luminosity (see Section 2.2), we obtain the total line luminosity LlinesL_{\rm lines}. Wang et al. (2002) defined a "line accretion rate" and its dimensionless form as follows

λ=LlinesLEdd,Llines=ξLdisk.\displaystyle\lambda=\frac{L_{\rm lines}}{L_{\rm Edd}},L_{\rm lines}=\xi L_{\rm disk}. (7)

Assuming that most of the line luminosity (LlinesL_{\rm lines} ) is photoionized by the accretion disk (Netzer, 1990), the LlinesL_{\rm lines} should be proportional to the total luminosity of the accretion disks. Netzer (1990) defined ξ0.1\xi\approx 0.1. The LEddL_{\rm Edd} is Eddington luminosity, LEdd=1.3×1038(MBH/M)ergs1L_{\rm Edd}=1.3\times 10^{38}(M_{\rm BH}/M_{\odot})\rm erg~{}s^{-1}. Wang et al. (2002) got the relation between λ\lambda and the dimensionless accretion rate (m˙\dot{m}) for an optically thin ADAFs as follows

m˙=2.17×102α0.3ξ11/2λ41/2,\dot{m}=2.17\times 10^{-2}\alpha_{0.3}\xi_{-1}^{-1/2}\lambda_{-4}^{1/2}, (8)

where α0.3=α/0.3\alpha_{0.3}=\alpha/0.3, ξ1=ξ/0.1\xi_{-1}=\xi/0.1, and λ4=λ/104\lambda_{-4}=\lambda/10^{-4} (Wang et al., 2003). The viscosity parameters α\alpha is 0.3 (Narayan & Yi, 1995). Narayan et al. (1998) suggested that an optical thin ADAFs appears when m˙α2\dot{m}\leq\alpha^{2}. Equation (8) can then be rewritten as

λ1=1.72×103ξ1α0.32.\lambda_{1}=1.72\times 10^{-3}\xi_{-1}\alpha_{0.3}^{2}. (9)

Optically thin ADAFs require λ<λ1\lambda<\lambda_{1}. The optically thick, geometrically thin disk (SS) obey (Wang et al., 2003)

m˙=10ξ11λ,\dot{m}=10\xi_{-1}^{-1}\lambda, (10)

and the condition 1>m˙α21>\dot{m}\geq\alpha^{2} gives

λ2=9.0×103ξ1α0.32.\lambda_{2}=9.0\times 10^{-3}\xi_{-1}\alpha_{0.3}^{2}. (11)

A standard thin disk satisfies λλ2\lambda\geq\lambda_{2} (Wang et al., 2003). When the accretion rate reaches m˙1\dot{m}\geq 1, we have

λ3=0.1ξ1.\lambda_{3}=0.1\xi_{-1}. (12)

A slim disk requires λλ3\lambda\geq\lambda_{3} (Wang et al., 2002, 2003), namely Super-Eddington accretion (SEA). It is worth noting that in the transition region between λ1\lambda_{1} and λ2\lambda_{2}, the accretion flow may be in a hybrid state, in which the standard disk coexists with ADAFs. Some authors have shown that hybrid states are possible in the accretion disk of AGN (e.g., Quataert et al., 1999; Różańska & Czerny, 2000; Ho et al., 2000). Gu & Lu (2000) suggested that the conversion of a SS disk to an ADAFs is possible through evaporation (Liu et al., 1999). The transition radius depends on accretion rate, black hole mass, and viscosity. However, in such a regime, the disk structure is complex.

Figure 2 shows that the three critical values of λ\lambda define four regimes in accretion states. The average values of λ\lambda for LBL, IBL and HBL are logλ|LBL=3.05\langle\log\lambda\rangle|_{\rm LBL}=-3.05, logλ|IBL=3.67\langle\log\lambda\rangle|_{\rm IBL}=-3.67 and logλ|HBL=4.14\langle\log\lambda\rangle|_{\rm HBL}=-4.14, respectively. We find that the LBL has higher accretion rates than IBL and HBL, which could explain why LBL have more luminous disks and more powerful jets than HBL (see Fig.1). Wang et al. (2002) also found that the HBL has lower accretion rates than LBL. We investigated the differences in the distribution of accretion rates using the parameter T-test, nonparametric Kolmogorov Smirnov (K-S) test, and Kruskal Wallis H test. The parameter T-test is mainly used to test whether there is a difference in the mean accretion rate between two independent samples. The nonparametric K-S test and Kruskal Wallis H test are mainly used to test whether there are differences in the distribution of accretion rates between two independent samples. We assume that there are differences in the three tests at the same time, so there is a significant difference in the accretion rate between the two samples. According to the parameter T-test (P=1.11×1015P=1.11\times 10^{-15}, significant probability P<0.05P<0.05), nonparametric K-S test (P=1.01×1015P=1.01\times 10^{-15}, significant probability P<0.05P<0.05), and Kruskal–Wallis H-test (P=1.99×1014P=1.99\times 10^{-14}, significant probability P<0.05P<0.05), we find that the distributions of accretion rates between LBL and HBL are significantly different. The parameter T-test shows that there is a significant difference of the distributions of accretion rates between IBL and LBL (P=0.0002P=0.0002). Through a nonparametric K-S test (P=0.0006P=0.0006) and a Kruskal–Wallis H-test (P=9.38×105P=9.38\times 10^{-5}), we find that the distributions of accretion rates between IBL and LBL are significantly different. Through a parameter T-test (P=0.0008P=0.0008), nonparametric K-S test (P=0.006P=0.006), and Kruskal–Wallis H-test (P=0.0008P=0.0008), we find that the distributions of accretion rates between IBL and HBL are significantly different.

From Figure 2, we find that about 62% HBL and 14% IBL have pure optically thin ADAFs, while about 7% LBL have ADAFs+SS. Cao (2002) found that the accretion flows in all HBL are in the ADAF state. Wang et al. (2003) also found that the low-power HBLs and LBLs have pure optically thin ADAFs. However, the LBLs also may have a hybrid structure consisting of an SS disk plus optically thin ADAFs. Cao (2003) also found that the BL Lacs have different accretion modes. They proposed that the BL Lacs have ADAFs in the inner region of the disk, and it becomes a standard thin disk in the outer region, i.e., ADAFs+SS scenario.

Refer to caption
Figure 2: The distribution of λ\lambda for the Fermi BL Lacs of our sample. Line styles identify a different class of BL Lacs as in Fig. 1. The cyan dashed lines are λ1\lambda_{1}, λ2\lambda_{2}, and λ3\lambda_{3}, respectively. The distribution of λ\lambda is divided into four regions, corresponding to different states of the accretion disks:(1) λ<λ1\lambda<\lambda_{1} (pure ADAFs); (2) λ1λλ2\lambda_{1}\leq\lambda\leq\lambda_{2} (ADAFs+SS); (3) λ2λλ3\lambda_{2}\leq\lambda\leq\lambda_{3} (SS); (4) λλ3\lambda\geq\lambda_{3} (SEA).

4.4 Relation between jet kinetic power and black hole mass

Because our sample has an accretion rate compatible with an ADAFs regime (Fig 2), we considered the jet power of the BZ mechanism and the jet power of the hybrid model in the ADAFs scenario. The relation between the jet power extracted from the ADAFs for the BZ and hybrid models and the black hole mass is shown in Figure 3. In order to estimate the maximum jet power of BZ model and Hybrid model, we use accretion rates m˙=0.01\dot{m}=0.01, and the disk viscosity parameter α=0.3\alpha=0.3 (Narayan & Yi, 1995). The spin of black hole j=0.98j=0.98 is adopted. The black dashed line is the BZ jet model, and the black solid line is the Hybrid jet model. The red dot is LBL. The black dot is the IBL. The green triangle is HBL. The cyan circle is sources with ADAFs+SS. We find that about 7% LBL, 9% IBL, and 32% HBL are below the maximal BZ jet power expected to be extracted from ADAFs (Fig.3, dashed line). These results show that the jet kinetic power of LBL and IBL can hardly be explained by the BZ jet model. However, about 26% LBLs, 72% IBLs, and 94% HBLs are below the solid line when we consider the hybrid model. These results show that most of the IBL and HBL can be explained by the Hybrid jet model. Most LBLs cannot be explained by the BZ jet model or Hybrid jet model. These sources with ADAFs+SS have high jet power, which makes them unable to be explained by BZ or hybrid models. There are two possible explanations for the jet power of the LBL. One is that these LBLs require other jet models, such as an accretion disk with magnetization-driven outflows (Cao & Spruit, 2013; Li, 2014; Cao, 2016, 2018; Li & Cao, 2022). Cao & Spruit (2013) proposed that if the most angular momentum of the gas in the thin disk is taken away by the magnetically driven outflows, the radial velocity of the disk will increase significantly, so the external field can be significantly enhanced in the inner region of the thin disk with the magnetically driven outflows (Li & Cao, 2019; Cao, 2018). Thereby, the expected jet kinetic power is higher than in the case of the BZ or hybrid model, as we observed in the data. The other is that the LBL has a strong beaming effect. Lister et al. (2011) found that the LBL has generally higher Doppler factors than HBL, which implies that the LBL has a strong beaming effect. Because of the beaming effect, the jet kinetic power could be overestimated. The "real" jet power, in this scenario, may be lower and compatible with models.

It is widely believed that large-scale magnetic fields play a crucial role in the acceleration and collimation of jets and/or outflows (e.g., Pudritz et al., 2007). The origin of the large-scale magnetic field passing through the accretion disk has not been well understood. Some studies suggest that large-scale magnetic fields that accelerate jets or outflows may be formed by weak external field advection (e.g., Bisnovatyi-Kogan & Blinnikov, 1977; Bisnovatyi-Kogan & Ruzmaikin, 1976; Spruit & Uzdensky, 2005). However, Lubow et al. (1994) found that in the geometrically thin accretion disk (H/R \leq 1), the advection in the external field is quite ineffective because of its small radial velocity. This may imply that the field in the inner region of the disk is not much stronger than the external weak field, which cannot accelerate strong jets in radio-loud quasars (Lubow et al., 1994). A few mechanisms were suggested to alleviate the difficulty of field advection in the thin disk (e.g., Spruit & Uzdensky, 2005). Some people believe that the hot corona above the disk can effectively drag the external field inward, that is, the so-called "coronal mechanism" (see Beckwith et al., 2009). The radial velocity of the gas above the disk can be greater than the radial velocity of the mid-plane of the disk, which partly solves the problem of inefficient field advection in the thin disk (Lovelace et al., 2009; Guilet & Ogilvie, 2012, 2013). Recently, Cao (2018) suggested that powerful jets can be accelerated by the coronal magnetic field. Cao (2004) found that the jets are accelerated from the disk coronas for radio-loud quasars. Zhu et al. (2020) found a a close connection between corona-disk-jet for radio-loud quasars. At the same time, some authors found that FSRQs and LBL have similar spectral properties, such as particle acceleration mechanism (e.g., Chen et al., 2021). These results indicate that the jet kinetic power of LBL may also be explained by the coronal magnetic field.

Chen et al. (2023b) found that the jet kinetic power of jetted AGNs are powered by the BZ mechanism based on the relation between jet kinetic power and accretion disk luminosity. Our results are slightly different from those of Chen et al. (2023b). The main reason is that we calculate the maximum jet power of the BZ mechanism and the hybrid model based on the theory, and then compare the maximum jet power of the BZ mechanism and the hybrid model with the observed jet kinetic power. The work of Chen et al. (2023b) is mainly based on whether the slope of the relationship between jet kinetic power and accretion disk luminosity is 1 to judge whether their jet knetic power is dominated by the BZ mechanism. In the work of Chen et al. (2023b), it is assumed that the jet kinetic power of jetted AGN is dominated by Poynting flux, and then it is obtained that the slope of the relationship between the maximum jet power of BZ mechanism and the luminosity of accretion disk is equal to 1 (Ghisellini, 2006). Finally, the slope of the relationship between jet kinetic power and accretion disk luminosity is compared the slope obtained with theory to further judge whether the jet of jetted AGN is dominated by BZ mechanism. However, some studies have found that the jet power of jetted AGN is not dominated by the Poynting flux (e.g., McKinney et al., 2012; Zdziarski et al., 2015; Paliya et al., 2017; Chen et al., 2023a).

Refer to caption
Figure 3: The jet kinetic power versus the black hole mass for the Fermi BL Lacs of our sample. The black dashed line is the maximum jet power expected in the case of BZ jet formation mechanism. The black solid line is the maximum jet power expected in the case of Hybrid jet formation mechanism. The red dot is LBL. The black dot is IBL. The green trangle is HBL. The cyan circle is sources with ADAFs+SS.

In Figure 4, we show the results as in Fig 3, but the dashed lines are Pjet/LEddP_{\rm jet}/L_{\rm Edd} = 0.01, 0.1, 1, respectively. The jet kinetic power of all Fermi BLLacs is less than 1LEddL_{\rm Edd}. We find that about 79% LBL is located in 0.011LEdd\sim 0.01-1L_{\rm Edd}. As a comparison, the jet power expected in case of coronal mechanism is at most 0.05 Eddington (Cao, 2018). Cao & Spruit (2013) suggested that most of the angular momentum of the accretion disk is excluded from magnetization-driven outflows, and the magnetic field will be enhanced compared with the thin disk without outflow. The magnetic field dragged inward by the accretion disc with magnetization-driven outflows may accelerate the jet in source with high jet power. The jet kinetic power of these LBLs may be explained by the magnetization-driven outflows model (Cao, 2018).

We also find that the jet kinetic power of LBL depends on the mass of the black hole, while the jet kinetic power of HBL does not seem to depend on the mass of the black hole. Ghosh & Abramowicz (1997) found that it is possible for the standard disks to find two regimes, which may be radiation pressure dominated (RPD) or gas pressure dominated (GPD). The jet kinetic power depends on the mass of the black hole, indicating that the accretion disk is dominated by radiation pressure. The jet kinetic power depends on the accretion (Lbol/LEddL_{\rm bol}/L_{\rm Edd}), indicating that the accretion disk is dominated by gas pressure (Ghosh & Abramowicz, 1997; Foschini, 2011; Chen et al., 2015a). Our results imply that the accretion disk of LBL may be dominated by radiation pressure, while that of HBL is not dominated by radiation pressure. The accretion disks of HBL may be dominated by gas pressure. In the future, when our source has the bolometric luminosity, we will test these results. Chen et al. (2015a) also found that the accretion disks of FSRQs and LBL are dominated by radiation pressure, while the accretion disks of HBL and IBL seem to be dominated by gas pressure.

Refer to caption
Figure 4: The jet kinetic power versus the black hole mass. The dashed lines are Pjet/LEddP_{\rm jet}/L_{\rm Edd} = 0.01, 0.1, 1, respectively. The different symbols are as in Fig.3.

4.5 Relation between jet kinetic power and accretion disk luminosity

There is evidence that there is a positive correlation between jet power and accretion luminosity in jetted AGN (e.g., Rawlings & Saunders, 1991; Wang et al., 2004; Gu et al., 2009; Ghisellini et al., 2010; Sbarrato et al., 2014; Ghisellini et al., 2014; Paliya et al., 2019). The relation between jet kinetic power and accretion disk luminosity is shown in Figure 5. We find a significant correlation between jet kinetic power and accretion disk luminosity for the whole sample (r=0.74,P=5.10×1050r=0.74,P=5.10\times 10^{-50}). The tests of Spearman (r=0.69,P=1.58×1041r=0.69,P=1.58\times 10^{-41}) and Kendall tau (r=0.52,P=3.81×1037r=0.52,P=3.81\times 10^{-37}) also show a significant correlation between jet kinetic power and accretion disk luminosity for the whole sample. The best fitting equation given by least square linear regression is logPkin=(0.46±0.03)logLdisk+(24.39±1.09)\log P_{\rm kin}=(0.46\pm 0.03)\log L_{\rm disk}+(24.39\pm 1.09). At the same time, we also find that the sources with ADAFs+SS follow the same relation. However, Rajguru & Chatterjee (2022) suggested that the correlations are often driven by the common redshift dependence. They found a weak correlation between jet power and accretion disk luminosity when the redshift was excluded. We test their results. Partial correlation shows a moderately weak correlation between jet kinetic power and accretion disk luminosity when redshift dependence is excluded for the whole sample (r=0.12,P=0.03r=0.12,P=0.03). We use Pearson correlation analysis for other types of AGNs. There is also a significant correlation between jet kinetic power and accretion disk luminosity for the LBL (r=0.81,P=3.51×1014r=0.81,P=3.51\times 10^{-14}). The best fitting equation given by least square linear regression for the LBL is logPkin=(0.48±0.05)logLdisk+(23.46±2.13)\log P_{\rm kin}=(0.48\pm 0.05)\log L_{\rm disk}+(23.46\pm 2.13). Partial correlation shows a moderately weak correlation between jet kinetic power and accretion disk luminosity when redshift dependence is excluded for the LBL (r=0.34,P=0.009r=0.34,P=0.009). There is a significant correlation between jet kinetic power and accretion disk luminosity for the IBL+HBL (r=0.60,P=3.09×1023r=0.60,P=3.09\times 10^{-23}). The best fitting equation given by least square linear regression for the IBL+HBL is logPkin=(0.25±0.02)logLdisk+(33.42±0.98)\log P_{\rm kin}=(0.25\pm 0.02)\log L_{\rm disk}+(33.42\pm 0.98). Partial correlation shows a moderately weak correlation between jet kinetic power and accretion disk luminosity when redshift dependence is excluded for the IBL+HBL (r=0.24,P=0.003r=0.24,P=0.003). We find that the slope of the relation between jet kinetic power and accretion disk luminosity for the LBL is slightly different from that of IBL+HBL, and the slope of LBL is greater than that of IBL+HBL. Paliya et al. (2017) found that the slope of the relation bteween jet power and accretion disk luminosity is 0.46 using both 324 γ\gamma-ray detected and 191 γ\gamma-ray undetected blazars. Chen et al. (2023a) also found that the slope of the relation bteween jet kinetic power and accretion disk luminosity is 0.51±0.180.51\pm 0.18 using 38 gamma-ray-emitting radio galaxies. Our results are similar to the results of Paliya et al. (2017) and Chen et al. (2023a). Ghisellini et al. (2014) found that the slope of the relation bteween jet power and accretion disk luminosity is 0.92 using 217 γ\gamma-ray detected blazars. Chen et al. (2023b) found that the slope of the relation bteween jet kinetic power and accretion disk luminosity is 1.00±0.021.00\pm 0.02 for the whole sample (FSRQs+BL Lacs+gamma-ray-emitting narrow-line Seyfert 1 galaxies), 0.83±0.040.83\pm 0.04 for FSRQs, 1.00±0.051.00\pm 0.05 for BL Lacs, 0.73±0.150.73\pm 0.15 for gamma-ray-emitting narrow-line Seyfert 1 galaxies. Because we mainly use the jet kinetic power to replace the total jet power. Therefore, we also examined all relationships including 10% of jet kinetic power and found that all relationships were valid in our work.

Refer to caption
Figure 5: Relation between jet kinetic power and accretion disk luminosity for the Fermi BL Lacs of our sample. The different symbols are as in Fig.3. The solid line corresponds to the best-fitting linear models. The dashed lines indicate 3σ\sigma confidence bands of the best fits, namely it refers to the significance level a=0.01a=0.01, with a 99% probability that the measured results are within this range.

4.6 Relation between IC Luminosity versus Synchrotron Luminosity

Figure 6 shows a relation between IC luminosity and synchrotron luminosity for Fermi BL Lacs. We find a significant correlation between IC luminosity and synchrotron luminosity for the whole sample (r=0.95,P=2.06×10143r=0.95,P=2.06\times 10^{-143}). The tests of Spearman (r=0.92,P=7.66×10113r=0.92,P=7.66\times 10^{-113}) and Kendall tau (r=0.76,P=3.47×1080r=0.76,P=3.47\times 10^{-80}) also show a significant correlation between IC luminosity and synchrotron luminosity for the whole sample. The best fitting equation given by least square linear regression is logLIC=(1.16±0.02)logLsyn+(7.58±1.00)\log L_{\rm IC}=(1.16\pm 0.02)\log L_{\rm syn}+(-7.58\pm 1.00). We find that the slope of the relation between IC luminosity and synchrotron luminosity is close to 1.0. According to Ghisellini (1996)(LECLsyn1.5L_{\rm EC}\sim L_{\rm syn}^{1.5}, LSSCLsyn1.0L_{\rm SSC}\sim L_{\rm syn}^{1.0}), our results suggest that the IC component of Fermi BL Lacs is dominated by the SSC process. Some authors have confirmed this conclusion (e.g., Celotti & Ghisellini, 2008; Ghisellini et al., 2010; Lister et al., 2011; Ackermann et al., 2012; Wu et al., 2014; Marchesini et al., 2019; La Mura et al., 2022). Xue et al. (2016) found that the slope of the relation between IC luminosity and synchrotron luminosity for 28 Fermi BL Lacs is kBLLacs=1.12±0.10k_{\rm BLLacs}=1.12\pm 0.10. Our work confirms the results of previous studies.

Refer to caption
Figure 6: The inverse Compton luminosity versus synchrotron luminosity for the Fermi BL Lacs of our sample. The different symbols are as in Fig.3. The solid and dashed lines describe the best fit linear model and its uncertainty as in Fig. 5.

5 SUMMARY

We use a large sample of Fermi BL Lacs to study the physical properties of their jets, and the main conclusions are as follows:

(1) We find that that LBL tends to have higher accretion disk luminosity and jet kinetic power than HBL, which could be due to a higher accretion rate.

(2) We find that LBL has a higher accretion rate than IBL and HBL. Almost all IBL and HBL have pure optically thin ADAFs. However, some LBLs may have a hybrid structure consisting of an SS disk plus optically thin ADAFs.

(3) We study the jet power of the BZ mechanism and the hybrid mechanism based on the self-similar solution of the ADAFs around the Kerr black hole. Through the relationship between jet power and black hole mass, we find that the jet kinetic power of about 72% IBL and 94% HBL can be explained by the hybrid model. However, only 7% LBL can be explained by the BZ model, and only 26% LBL can be explained by the hybrid model.

(4) The jet kinetic power of about 79% LBL is located at 0.011LEdd\sim 0.01-1L_{\rm Edd}. The jet kinetic power of these sources may be interpreted by magnetization-driven outflows.

(5) There is a significant correlation between jet kinetic power and accretion disk luminosity for Fermi BL Lacs. However, this correlation becomes weak when excluding the dependence of redshift.

(6) We find a significant correlation between IC luminosity and synchrotron luminosity for Fermi BL Lacs. The slope of the relation between IC luminosity and synchrotron luminosity in Fermi BL Lacs is 1.16±0.021.16\pm 0.02, which implies that the high-energy components of Fermi BL Lacs are dominated by the SSC process.

Acknowledgements

We are very grateful to the referee and Editor for the very helpful report. Yongyun Chen is grateful for financial support from the National Natural Science Foundation of China (No. 12203028). This work was support from the research project of Qujing Normal University (2105098001/094). This work is supported by the youth project of Yunnan Provincial Science and Technology Department (202101AU070146, 2103010006). Yongyun Chen is grateful for funding for the training Program for talents in Xingdian, Yunnan Province. QSGU is supported by the National Natural Science Foundation of China (No. 12192222, 12192220 and 12121003). We also acknowledge the science research grants from the China Manned Space Project with NO. CMS-CSST-2021-A05. This work is supported by the National Natural Science Foundation of China (11733001 and U2031201). D.R.X. acknowledge the science research grants from the China Manned Space Project with No. CMS-CSST- 2021-A06, Yunnan Province Youth Top Talent Project (YNWR-QNBJ-2020-116) and the CAS “Light of West China” Program.

Data Availability

All the data used here are available upon reasonable request. All datas are in Table 1.

References

  • Abdo et al. (2010) Abdo A. A., et al., 2010, ApJ, 716, 30
  • Abdollahi et al. (2020) Abdollahi S., et al., 2020, ApJS, 247, 33
  • Ackermann et al. (2012) Ackermann M., et al., 2012, ApJ, 751, 159
  • Ajello et al. (2020) Ajello M., et al., 2020, ApJ, 892, 105
  • Arbeiter et al. (2002) Arbeiter C., Pohl M., Schlickeiser R., 2002, A&A, 386, 415
  • Atwood et al. (2009) Atwood W. B., et al., 2009, ApJ, 697, 1071
  • Baldwin & Netzer (1978) Baldwin J. A., Netzer H., 1978, ApJ, 226, 1
  • Bardeen et al. (1972) Bardeen J. M., Press W. H., Teukolsky S. A., 1972, ApJ, 178, 347
  • Becker et al. (1995) Becker R. H., White R. L., Helfand D. J., 1995, ApJ, 450, 559
  • Beckwith et al. (2009) Beckwith K., Hawley J. F., Krolik J. H., 2009, ApJ, 707, 428
  • Bîrzan et al. (2008) Bîrzan L., McNamara B. R., Nulsen P. E. J., Carilli C. L., Wise M. W., 2008, ApJ, 686, 859
  • Bisnovatyi-Kogan & Blinnikov (1977) Bisnovatyi-Kogan G. S., Blinnikov S. I., 1977, A&A, 59, 111
  • Bisnovatyi-Kogan & Ruzmaikin (1976) Bisnovatyi-Kogan G. S., Ruzmaikin A. A., 1976, Ap&SS, 42, 401
  • Blandford & Payne (1982) Blandford R. D., Payne D. G., 1982, MNRAS, 199, 883
  • Blandford & Rees (1978) Blandford R. D., Rees M. J., 1978, Phys. Scr., 17, 265
  • Blandford & Znajek (1977) Blandford R. D., Znajek R. L., 1977, MNRAS, 179, 433
  • Błażejowski et al. (2000) Błażejowski M., Sikora M., Moderski R., Madejski G. M., 2000, ApJ, 545, 107
  • Bloom & Marscher (1996) Bloom S. D., Marscher A. P., 1996, ApJ, 461, 657
  • Calderone et al. (2013) Calderone G., Ghisellini G., Colpi M., Dotti M., 2013, MNRAS, 431, 210
  • Cao (2002) Cao X., 2002, ApJ, 570, L13
  • Cao (2003) Cao X., 2003, ApJ, 599, 147
  • Cao (2004) Cao X., 2004, ApJ, 613, 716
  • Cao (2016) Cao X., 2016, ApJ, 833, 30
  • Cao (2018) Cao X., 2018, MNRAS, 473, 4268
  • Cao & Jiang (1999) Cao X., Jiang D. R., 1999, MNRAS, 307, 802
  • Cao & Spruit (2013) Cao X., Spruit H. C., 2013, ApJ, 765, 149
  • Cavagnolo et al. (2010) Cavagnolo K. W., McNamara B. R., Nulsen P. E. J., Carilli C. L., Jones C., Bîrzan L., 2010, ApJ, 720, 1066
  • Cavaliere & D’Elia (2002) Cavaliere A., D’Elia V., 2002, ApJ, 571, 226
  • Celotti & Ghisellini (2008) Celotti A., Ghisellini G., 2008, MNRAS, 385, 283
  • Celotti et al. (1997) Celotti A., Padovani P., Ghisellini G., 1997, MNRAS, 286, 415
  • Cha et al. (2014) Cha Y., Zhang H., Zhang X., Xiong D., Li B., Dong X., Li J., 2014, Ap&SS, 349, 895
  • Chen et al. (2015a) Chen Y.-Y., Zhang X., Xiong D., Yu X., 2015a, AJ, 150, 8
  • Chen et al. (2015b) Chen Y. Y., Zhang X., Zhang H. J., Yu X. L., 2015b, MNRAS, 451, 4193
  • Chen et al. (2021) Chen Y., et al., 2021, ApJ, 906, 108
  • Chen et al. (2023a) Chen Y., Gu Q., Fan J., Yu X., Ding N., Xiong D., Guo X., 2023a, ApJS, 265, 60
  • Chen et al. (2023b) Chen Y., Gu Q., Fan J., Yu X., Ding N., Guo X., Xiong D., 2023b, MNRAS, 519, 6199
  • Churazov et al. (2001) Churazov E., Brüggen M., Kaiser C. R., Böhringer H., Forman W., 2001, ApJ, 554, 261
  • Deng et al. (2021) Deng X.-C., Hu W., Lu F.-W., Dai B.-Z., 2021, MNRAS, 504, 878
  • Dermer & Schlickeiser (1993) Dermer C. D., Schlickeiser R., 1993, ApJ, 416, 458
  • Dermer et al. (1992) Dermer C. D., Schlickeiser R., Mastichiadis A., 1992, A&A, 256, L27
  • Dermer et al. (1997) Dermer C. D., Sturner S. J., Schlickeiser R., 1997, ApJS, 109, 103
  • Esin et al. (1997) Esin A. A., McClintock J. E., Narayan R., 1997, ApJ, 489, 865
  • Fabian et al. (2000) Fabian A. C., et al., 2000, MNRAS, 318, L65
  • Foschini (2011) Foschini L., 2011, Research in Astronomy and Astrophysics, 11, 1266
  • Foschini et al. (2022) Foschini L., et al., 2022, Universe, 8, 587
  • Francis et al. (1991) Francis P. J., Hewett P. C., Foltz C. B., Chaffee F. H., Weymann R. J., Morris S. L., 1991, ApJ, 373, 465
  • Garofalo et al. (2010) Garofalo D., Evans D. A., Sambruna R. M., 2010, MNRAS, 406, 975
  • Ghisellini (1996) Ghisellini G., 1996, in Ekers R. D., Fanti C., Padrielli L., eds, Vol. 175, Extragalactic Radio Sources. p. 413
  • Ghisellini (2006) Ghisellini G., 2006, in VI Microquasar Workshop: Microquasars and Beyond. p. 27.1 (arXiv:astro-ph/0611077), doi:10.22323/1.033.0027
  • Ghisellini et al. (1997) Ghisellini G., et al., 1997, A&A, 327, 61
  • Ghisellini et al. (2009) Ghisellini G., Tavecchio F., Ghirlanda G., 2009, MNRAS, 399, 2041
  • Ghisellini et al. (2010) Ghisellini G., Tavecchio F., Foschini L., Ghirlanda G., Maraschi L., Celotti A., 2010, MNRAS, 402, 497
  • Ghisellini et al. (2011) Ghisellini G., Tavecchio F., Foschini L., Ghirlanda G., 2011, MNRAS, 414, 2674
  • Ghisellini et al. (2014) Ghisellini G., Tavecchio F., Maraschi L., Celotti A., Sbarrato T., 2014, Nature, 515, 376
  • Ghosh & Abramowicz (1997) Ghosh P., Abramowicz M. A., 1997, MNRAS, 292, 887
  • Graham (2007) Graham A. W., 2007, MNRAS, 379, 711
  • Gu & Lu (2000) Gu W.-M., Lu J.-F., 2000, ApJ, 540, L33
  • Gu et al. (2009) Gu M., Cao X., Jiang D. R., 2009, MNRAS, 396, 984
  • Guilet & Ogilvie (2012) Guilet J., Ogilvie G. I., 2012, MNRAS, 424, 2097
  • Guilet & Ogilvie (2013) Guilet J., Ogilvie G. I., 2013, MNRAS, 430, 822
  • Gültekin et al. (2009) Gültekin K., et al., 2009, ApJ, 698, 198
  • Hawley et al. (1995) Hawley J. F., Gammie C. F., Balbus S. A., 1995, ApJ, 440, 742
  • Ho et al. (2000) Ho L. C., Rudnick G., Rix H.-W., Shields J. C., McIntosh D. H., Filippenko A. V., Sargent W. L. W., Eracleous M., 2000, ApJ, 541, 120
  • Jones et al. (1974) Jones T. W., O’Dell S. L., Stein W. A., 1974, ApJ, 188, 353
  • Kauffmann & Haehnelt (2000) Kauffmann G., Haehnelt M., 2000, MNRAS, 311, 576
  • Komossa et al. (2018) Komossa S., Xu D. W., Wagner A. Y., 2018, MNRAS, 477, 5115
  • Kormendy & Richstone (1995) Kormendy J., Richstone D., 1995, ARA&A, 33, 581
  • La Mura et al. (2022) La Mura G., Becerra Gonzalez J., Chiaro G., Ciroi S., Otero-Santos J., 2022, MNRAS, 515, 4810
  • Li (2014) Li S.-L., 2014, ApJ, 788, 71
  • Li & Cao (2019) Li J., Cao X., 2019, ApJ, 872, 149
  • Li & Cao (2022) Li J.-W., Cao X., 2022, ApJ, 926, 11
  • Li et al. (2010) Li H. Z., Xie G. Z., Yi T. F., Chen L. E., Dai H., 2010, ApJ, 709, 1407
  • Lister et al. (2011) Lister M. L., et al., 2011, ApJ, 742, 27
  • Liu et al. (1999) Liu B. F., Yuan W., Meyer F., Meyer-Hofmeister E., Xie G. Z., 1999, ApJ, 527, L17
  • Livio et al. (1999) Livio M., Ogilvie G. I., Pringle J. E., 1999, ApJ, 512, 100
  • Lovelace et al. (2009) Lovelace R. V. E., Rothstein D. M., Bisnovatyi-Kogan G. S., 2009, ApJ, 701, 885
  • Lubow et al. (1994) Lubow S. H., Papaloizou J. C. B., Pringle J. E., 1994, MNRAS, 267, 235
  • MacDonald & Thorne (1982) MacDonald D., Thorne K. S., 1982, MNRAS, 198, 345
  • Magorrian et al. (1998) Magorrian J., et al., 1998, AJ, 115, 2285
  • Maraschi & Tavecchio (2003) Maraschi L., Tavecchio F., 2003, ApJ, 593, 667
  • Maraschi et al. (1992) Maraschi L., Ghisellini G., Celotti A., 1992, ApJ, 397, L5
  • Marchesini et al. (2019) Marchesini E. J., Paggi A., Massaro F., Masetti N., D’Abrusco R., Andruchow I., de Menezes R., 2019, A&A, 631, A150
  • Marscher & Gear (1985) Marscher A. P., Gear W. K., 1985, ApJ, 298, 114
  • Massaro et al. (2004) Massaro E., Perri M., Giommi P., Nesci R., 2004, A&A, 413, 489
  • Massaro et al. (2006) Massaro E., Tramacere A., Perri M., Giommi P., Tosti G., 2006, A&A, 448, 861
  • McKinney et al. (2012) McKinney J. C., Tchekhovskoy A., Blandford R. D., 2012, MNRAS, 423, 3083
  • McNamara et al. (2000) McNamara B. R., et al., 2000, ApJ, 534, L135
  • Meier (1999) Meier D. L., 1999, ApJ, 522, 753
  • Meier (2001) Meier D. L., 2001, ApJ, 548, L9
  • Meyer et al. (2012) Meyer E. T., Fossati G., Georganopoulos M., Lister M. L., 2012, ApJ, 752, L4
  • Narayan & Yi (1995) Narayan R., Yi I., 1995, ApJ, 452, 710
  • Narayan et al. (1998) Narayan R., Mahadevan R., Quataert E., 1998, in Abramowicz M. A., Björnsson G., Pringle J. E., eds, Theory of Black Hole Accretion Disks. pp 148–182 (arXiv:astro-ph/9803141), doi:10.48550/arXiv.astro-ph/9803141
  • Nemmen et al. (2007) Nemmen R. S., Bower R. G., Babul A., Storchi-Bergmann T., 2007, MNRAS, 377, 1652
  • Nemmen et al. (2012) Nemmen R. S., Georganopoulos M., Guiriec S., Meyer E. T., Gehrels N., Sambruna R. M., 2012, Science, 338, 1445
  • Netzer (1990) Netzer H., 1990, in Blandford R. D., Netzer H., Woltjer L., Courvoisier T. J. L., Mayor M., eds, Active Galactic Nuclei. pp 57–160
  • Padovani & Giommi (1996) Padovani P., Giommi P., 1996, MNRAS, 279, 526
  • Paliya et al. (2017) Paliya V. S., Marcotulli L., Ajello M., Joshi M., Sahayanathan S., Rao A. R., Hartmann D., 2017, ApJ, 851, 33
  • Paliya et al. (2019) Paliya V. S., Parker M. L., Jiang J., Fabian A. C., Brenneman L., Ajello M., Hartmann D., 2019, ApJ, 872, 169
  • Paliya et al. (2021) Paliya V. S., Domínguez A., Ajello M., Olmo-García A., Hartmann D., 2021, ApJS, 253, 46
  • Pudritz et al. (2007) Pudritz R. E., Ouyed R., Fendt C., Brandenburg A., 2007, in Reipurth B., Jewitt D., Keil K., eds, Protostars and Planets V. p. 277 (arXiv:astro-ph/0603592), doi:10.48550/arXiv.astro-ph/0603592
  • Quataert et al. (1999) Quataert E., Di Matteo T., Narayan R., Ho L. C., 1999, ApJ, 525, L89
  • Rajguru & Chatterjee (2022) Rajguru G., Chatterjee R., 2022, Phys. Rev. D, 106, 063001
  • Rawlings & Saunders (1991) Rawlings S., Saunders R., 1991, Nature, 349, 138
  • Rees (1967) Rees M. J., 1967, MNRAS, 137, 429
  • Różańska & Czerny (2000) Różańska A., Czerny B., 2000, A&A, 360, 1170
  • Sbarrato et al. (2012) Sbarrato T., Ghisellini G., Maraschi L., Colpi M., 2012, MNRAS, 421, 1764
  • Sbarrato et al. (2014) Sbarrato T., Padovani P., Ghisellini G., 2014, MNRAS, 445, 81
  • Sikora et al. (1994) Sikora M., Begelman M. C., Rees M. J., 1994, ApJ, 421, 153
  • Silk & Rees (1998) Silk J., Rees M. J., 1998, A&A, 331, L1
  • Spruit & Uzdensky (2005) Spruit H. C., Uzdensky D. A., 2005, ApJ, 629, 960
  • Thorne et al. (1986) Thorne K. S., Price R. H., MacDonald D. A., 1986, Black holes: The membrane paradigm
  • Tombesi et al. (2010) Tombesi F., Sambruna R. M., Reeves J. N., Braito V., Ballo L., Gofford J., Cappi M., Mushotzky R. F., 2010, ApJ, 719, 700
  • Urry & Padovani (1995) Urry C. M., Padovani P., 1995, PASP, 107, 803
  • Venters et al. (2009) Venters T. M., Pavlidou V., Reyes L. C., 2009, ApJ, 703, 1939
  • Wang et al. (2002) Wang J.-M., Staubert R., Ho L. C., 2002, ApJ, 579, 554
  • Wang et al. (2003) Wang J. M., Ho L. C., Staubert R., 2003, A&A, 409, 887
  • Wang et al. (2004) Wang J.-M., Luo B., Ho L. C., 2004, ApJ, 615, L9
  • Wu & Cao (2008) Wu Q., Cao X., 2008, ApJ, 687, 156
  • Wu et al. (2011) Wu Q., Cao X., Wang D.-X., 2011, ApJ, 735, 50
  • Wu et al. (2014) Wu Z., Jiang D., Gu M., Chen L., 2014, A&A, 562, A64
  • Xiao et al. (2022) Xiao H., Ouyang Z., Zhang L., Fu L., Zhang S., Zeng X., Fan J., 2022, ApJ, 925, 40
  • Xiong & Zhang (2014) Xiong D. R., Zhang X., 2014, MNRAS, 441, 3375
  • Xue et al. (2016) Xue R., et al., 2016, MNRAS, 463, 3038
  • Zdziarski et al. (2015) Zdziarski A. A., Sikora M., Pjanka P., Tchekhovskoy A., 2015, MNRAS, 451, 927
  • Zhang et al. (2022) Zhang L., Liu Y., Fan J., 2022, ApJ, 935, 4
  • Zhu et al. (2020) Zhu S. F., Brandt W. N., Luo B., Wu J., Xue Y. Q., Yang G., 2020, MNRAS, 496, 245

Appendix A Derivation of the jet power

We list all the equations we use to calculate the jet power depending on α\alpha (viscosity parameter), jj (spin of black hole) and M˙\dot{M} (accretion rate on to the black hole) using the BZ model (Section3.1) and the hybrid model (Section 3.2). To estimate the maximum jet power, α=0.3\alpha=0.3 and j=0.98j=0.98 are adopted. The jet power is given by equation (7) (BZ model) and equation (8) (hybrid model). The self-similar ADAFs structure is described by Narayan & Yi (1995). We use the black hole mass in solar units (m=M/Mm=M_{\bullet}/M_{\odot}), accretion rates in Eddington units (m˙=M˙/M˙Edd\dot{m}=\dot{M}/\dot{M}_{\rm Edd}, M˙Edd\dot{M}_{\rm Edd} is the Eddington accretion rate (MEdd˙22M/(109M)\dot{M_{\rm Edd}}\equiv 22M_{\bullet}/(10^{9}M_{\odot})), m˙=0.01\dot{m}=0.01 is adopted (Narayan & Yi, 1995)) and radii in Schwarzschild units (r=R/(2GM/c2)r=R/(2GM_{\bullet}/c^{2})):

Ω=7.19×104c2m1r3/2s1,\displaystyle\Omega^{\prime}=7.19\times 10^{4}c_{2}m^{-1}r^{-3/2}\;{\rm s}^{-1}, (13)
B=6.55×108α1/2(1β)1/2c11/2c31/4m1/2m˙1/2r5/4G,\displaystyle B=6.55\times 10^{8}\alpha^{-1/2}(1-\beta)^{1/2}c_{1}^{-1/2}c_{3}^{1/4}m^{-1/2}\dot{m}^{1/2}r^{-5/4}\;{\rm G}, (14)
H/R(2.5c3)1/2.\displaystyle H/R\approx(2.5c_{3})^{1/2}. (15)

The Ω\Omega^{{}^{\prime}} is the angular velocity of the disk, BB is the magnetic field strength near the black hole in terms of radius R, GG is the gravitational constant, and HH is the vertical half-thickness of the disk. The constants c1c_{1}, c2c_{2} and c3c_{3} are defined as

c1=5+2ϵ3α2g(α,ϵ),\displaystyle c_{1}=\frac{5+2\epsilon^{\prime}}{3\alpha^{2}}g^{\prime}(\alpha,\epsilon^{\prime}), (16)
c2=[2ϵ(5+2ϵ)9α2g(α,ϵ)]1/2,\displaystyle c_{2}=\left[\frac{2\epsilon^{\prime}(5+2\epsilon^{\prime})}{9\alpha^{2}}g^{\prime}(\alpha,\epsilon^{\prime})\right]^{1/2}, (17)
c3=c22/ϵ,\displaystyle c_{3}=c_{2}^{2}/\epsilon^{\prime}, (18)
ϵ1f(5/3γγ1),\displaystyle\epsilon^{\prime}\equiv\frac{1}{f}\left(\frac{5/3-\gamma}{\gamma-1}\right), (19)
g(α,ϵ)[1+18α2(5+2ϵ)2]1/2.\displaystyle g^{\prime}(\alpha,\epsilon^{\prime})\equiv\left[1+\frac{18\alpha^{2}}{(5+2\epsilon^{\prime})^{2}}\right]^{1/2}. (20)

where advection parameter ff (assumed \approx 1, see Nemmen et al. (2007)), ϵ\epsilon^{\prime} and g(α,ϵ)g^{\prime}(\alpha,\epsilon^{\prime}) are just a variable replacement. The γ\gamma is adiabatic index of the accreting fluid.

The relationship between α\alpha, β\beta and γ\gamma is defined as follows

γ=(5β+8)/3(2+β),\displaystyle\gamma=(5\beta+8)/3(2+\beta), (21)
α0.55/(1+β).\displaystyle\alpha\approx 0.55/(1+\beta). (22)

where α\alpha is viscosity parameter and β\beta is the ratio of gas to magnetic pressure (Esin et al., 1997; Hawley et al., 1995). The angular velocity of the field seen by an outside observer at infinity in the Boyer-Lindquist frame is Ω=Ω+ω\Omega=\Omega^{\prime}+\omega. Bardeen et al. (1972) gave the formula for calculating the angular velocity of the local metric as follows

ω=2jMj2(R+2M)+R3\omega=\frac{2jM_{\bullet}}{j^{2}(R+2M_{\bullet})+R^{3}} (23)

using geometrized units (G=c=1G=c=1). Meier (2001) estimated the field-enhancing shear caused by the Kerr metric using g=Ω/Ωg=\Omega/\Omega^{\prime}, such that the azimuthal component of the field is given by Bϕ=gBB_{\phi}=gB. The poloidal component is related to the azimuthal component following Livio et al. (1999) as BpH/RBϕBϕB_{p}\approx H/R\;B_{\phi}\approx B_{\phi}. In the case of an ADAFs, this yields BpBϕB_{p}\approx B_{\phi} because HRH\sim R. The advection parameter ff is assumed ff\approx1 (Nemmen et al., 2007). We insert all the quantities defined above into Equations (7) and (8), and then evaluate the resulting equations at the marginally stable orbit of the accretion disk RmsR_{\rm ms}. Bardeen et al. (1972) defined the marginally stable orbit of the accretion disk (RmsR_{\rm ms}) as follows

Rms=GM/c2{3+Z2[(3Z1)(3+Z1+2Z2)]1/2},\displaystyle R_{\rm ms}=GM_{\bullet}/c^{2}\{3+Z_{2}-\left[(3-Z_{1})(3+Z_{1}+2Z_{2})\right]^{1/2}\}, (24)
Z11+(1j2)1/3[(1+j)1/3+(1j)1/3],\displaystyle Z_{1}\equiv 1+(1-j^{2})^{1/3}\left[(1+j)^{1/3}+(1-j)^{1/3}\right], (25)
Z2(3j2+Z12)1/2.\displaystyle Z_{2}\equiv(3j^{2}+Z_{1}^{2})^{1/2}. (26)