This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Josephson effect of superconductors with J=3/2J=3/2 electrons

Dakyeong Kim1    Shingo Kobayashi2    Yasuhiro Asano1,3 1 Department of Applied Physics, Hokkaido University, Sapporo 060-8628, Japan
2 RIKEN Center for Emergent Matter Science, Wako, Saitama 351-0198, Japan
3 Center of Topological Science and Technology, Hokkaido University, Sapporo 060-8628, Japan
Abstract

The angular momentum of an electron is characterized well by pseudospin with J=3/2J=3/2 in the presence of strong spin-orbit interactions. We study theoretically the Josephson effect of superconductors in which such two J=3/2J=3/2 electrons form a Cooper pair. Within even-parity symmetry class, pseudospin-quintet pairing states with J=2J=2 can exist as well as pseudospin-singlet state with J=0J=0. We focus especially on the Josephson selection rule among these even-parity superconductors. We find that the selection rule between quintet states is severer than that between spin-triplet states formed by two S=1/2S=1/2 electrons. The effects of a pseudospin-active interface on the selection rule are discussed as well as those of odd-frequency Cooper pairs generated by pseudospin dependent band structures.

I Introduction

Spin-orbit interaction is a source of exotic electronic states realized in topological semimetals, topological insulators and topological superconductors.Hasan and Kane (2010); Qi and Zhang (2011); Tanaka et al. (2011); Ando (2013); Ando and Fu (2015); Sato and Fujimoto (2016); Armitage et al. (2018) Recently, the ternary half Heusler compounds present another platform for systematically studying the coexistence of strong spin-orbit interaction and superconductivity.Butch et al. (2011); Tafti et al. (2013); Bay et al. (2012); Kim et al. (2018) As a result of the strong coupling between spin S=1/2S=1/2 and orbital angular momentum L=1L=1, the total angular momentum of an electron can be J=L+S=3/2J=L+S=3/2. Recent studies have suggested a possibility of superconductivity due to Cooper pairing between two electrons with pseudospin of J=3/2J=3/2.Brydon et al. (2016); Boettcher and Herbut (2016); Savary et al. (2017); Boettcher and Herbut (2018) In the case of a Cooper pair consisting of two spin S=1/2S=1/2 electrons, it is widely accepted that spin-singlet and spin-triplet are possible pairing states for even- and odd-parity symmetry classes, respectively. The pairing states of two J=3/2J=3/2 electrons have richer variety.Agterberg et al. (2017); Venderbos et al. (2018); Kawakami et al. (2018); Yu and Liu (2018) Namely, in addition to a pseudospin-singlet state with J=0J=0, pseudospin-quintet states with J=2J=2 are possible for even-parity class. For odd-parity class, pseudospin-septet states with J=3J=3 are possible as well as pseudospin-triplet states with J=1J=1. Such high angular-momentum pairing states would feature superconducting phenomena of a J=3/2J=3/2 superconductor. At present, however, only little has been known for physics of superconductors with J=3/2J=3/2 electrons.Ghorashi et al. (2017); Kobayashi et al. (2019) In this paper, we discuss a low-energy transport property unique to J=3/2J=3/2-electron superconductors.

The Josephson effect is a fundamental property of all superconducting junctions consisting of more than one superconductor.Josephson (1962) When an insulator separates two superconductors, the dissipationless electric current II flows in the presence of the phase difference φ\varphi across the junction. The internal structure of Cooper pairs can be studied via the Josephson current because it depends sensitively on the pairing symmetries of the two superconductors. Just below the superconducting transition temperature TcT_{c}, the current-phase (IφI-\varphi) relationship (CPR) can be described by

I=I1sinφI2sin2φ,\displaystyle I=I_{1}\sin\varphi-I_{2}\sin 2\varphi, (1)

in all Josephson junctions consisting of time-reversal symmetry respecting materials. The lowest order term I1I_{1} disappears when the Cooper pairing states in the two superconductors are orthogonal to each other. In a case of two spin-triplet superconductors of S=1/2S=1/2 electrons, for instance, I1𝒅L𝒅RI_{1}\propto\bm{d}_{L}\cdot\bm{d}_{R} represents a selection rule for spin-triplet states, where 𝒅j\bm{d}_{j} with j=Lj=L (RR) is 𝒅\bm{d}-vector in the left (right) superconductor. The second term I2I_{2}, on the other hand, is nonzero for most of the Josephson junctions.

In this paper, we will make clear the selection rules among even-parity J=3/2J=3/2 superconducting states. We theoretically calculate the Josephson current between two superconductors, where two J=3/2J=3/2 electrons form an even-parity Cooper pair in each superconductor. The Josephson current is calculated in terms of the anomalous Green’s functions obtained by solving the Gor’kov equation.Mahan (1990) The pairing state on the left(right) superconductor is represented by a vector 𝜼j\bm{\eta}^{j} in five-dimensional pseudospin space with j=L(R)j=L(R). We find the relation I1𝜼L𝜼RI_{1}\propto\bm{\eta}^{L}\cdot\bm{\eta}^{R} represents a severer selection rule of the Josephson effect in J=3/2J=3/2-electron superconductors than that in S=1/2S=1/2-electron superconductors. We also discuss how a magnetically active junction interface relaxes the severe selection rule and how subdominant pairing correlations generated by pseudospin-dependent dispersion affect the Josephson current.

This paper is organized as follows. In Sec. II, we describe a time-reversal superconducting state belonging to even-parity symmetry class for a Cooper pair formed by two J=3/2J=3/2 electrons. We formulate the Josephson current by using tunneling Hamiltonian between two superconductors. In Sec. III, the Josephson selection rule among J=3/2J=3/2 superconducting states is studied. In Sec. IV, we discuss odd-frequency pairs in anisotropic band structure and following subdominant pairing correlations. The conclusion is given in Sec. V. Throughout this paper, we use the units of kB=c==1k_{\mathrm{B}}=c=\hbar=1, where kBk_{\mathrm{B}} is the Boltzmann constant and cc is the speed of light.

II A Cooper pair consisting of two 𝑱=𝟑/𝟐\bm{J=3/2} electrons

II.1 BdG Hamiltonian

Let us consider a superconductor in which two J=3/2J=3/2 electrons form a Cooper pair belonging to even-parity symmetry. Its Hamiltonian of the normal state is given by

N\displaystyle\mathcal{H}_{N} =𝒌Ψ𝒌HN(𝒌)Ψ𝒌,\displaystyle=\sum_{\bm{k}}\Psi_{\bm{k}}^{\dagger}H_{N}(\bm{k})\Psi_{\bm{k}}, (2)
Ψ𝒌\displaystyle\Psi_{\bm{k}} =[c𝒌,3/2,c𝒌,1/2,c𝒌,1/2,c𝒌,3/2]T,\displaystyle=[c_{\bm{k},3/2},c_{\bm{k},1/2},c_{\bm{k},-1/2},c_{\bm{k},-3/2}]^{T}, (3)

where c𝒌,jzc_{\bm{k},j_{z}} is the annihilation operator of an electron with momentum 𝒌\bm{k} and the zz-component of angular momentum being jzj_{z}. The Hamiltonian with spin-orbit coupling is described as

HN(𝒌)\displaystyle H_{N}(\bm{k}) =a1𝒌2+2a2iki2Ji2+a3ijkikjJiJjμ,\displaystyle=a_{1}\bm{k}^{2}+2a_{2}\sum_{i}k_{i}^{2}J_{i}^{2}+a_{3}\sum_{i\neq j}k_{i}k_{j}J_{i}J_{j}-\mu, (4)

with i=13i=1-3.Luttinger (1956) The three matrices describing angular momentum J=3/2J=3/2 are given by

J1\displaystyle J_{1} =12(0300302002030030),\displaystyle=\frac{1}{2}\begin{pmatrix}0&\sqrt{3}&0&0\\ \sqrt{3}&0&2&0\\ 0&2&0&\sqrt{3}\\ 0&0&\sqrt{3}&0\end{pmatrix},
J2\displaystyle J_{2} =i2(0300302002030030),\displaystyle=\frac{i}{2}\begin{pmatrix}0&-\sqrt{3}&0&0\\ \sqrt{3}&0&-2&0\\ 0&2&0&-\sqrt{3}\\ 0&0&\sqrt{3}&0\end{pmatrix},
J3\displaystyle J_{3} =12(3000010000100003).\displaystyle=\frac{1}{2}\begin{pmatrix}3&0&0&0\\ 0&1&0&0\\ 0&0&-1&0\\ 0&0&0&-3\end{pmatrix}. (5)

The pseudospin part of a pairing state is described by γ\gamma matrices,Brydon et al. (2018)

γ0\displaystyle\gamma^{0} =14×4,γ1=(J1J2+J2J1)/3,\displaystyle=1_{4\times 4},\quad\gamma^{1}=\left(J_{1}\,J_{2}+J_{2}\,J_{1}\right)/\sqrt{3},
γ2\displaystyle\gamma^{2} =(J2J3+J3J2)/3,γ3=(J1J3+J3J1)/3,\displaystyle=\left(J_{2}\,J_{3}+J_{3}\,J_{2}\right)/\sqrt{3},\quad\gamma^{3}=\left(J_{1}\,J_{3}+J_{3}\,J_{1}\right)/\sqrt{3},
γ4\displaystyle\gamma^{4} =(J12J22)/3,γ5=(2J32J12J22)/3.\displaystyle=\left(J_{1}^{2}-J_{2}^{2}\right)/\sqrt{3},\quad\gamma^{5}=\left(2J_{3}^{2}-J_{1}^{2}-J_{2}^{2}\right)/3. (6)

The five matrices γν\gamma^{\nu} for ν=15\nu=1-5 anticommute to one another as γμγν+γνγμ=2γ0δμν\gamma^{\mu}\gamma^{\nu}+\gamma^{\nu}\gamma^{\mu}=2\gamma^{0}\delta_{\mu\nu}. The pseudospin matrices can be expressed in terms of γj\gamma^{j},

J1=\displaystyle J_{1}= i2(3γ2γ5+γ1γ3+γ2γ4),\displaystyle\frac{-i}{2}\left(\sqrt{3}\gamma^{2}\,\gamma^{5}+\gamma^{1}\,\gamma^{3}+\gamma^{2}\,\gamma^{4}\right), (7)
J2=\displaystyle J_{2}= i2(3γ3γ5+γ1γ2γ3γ4),\displaystyle\frac{i}{2}\left(\sqrt{3}\gamma^{3}\,\gamma^{5}+\gamma^{1}\,\gamma^{2}-\gamma^{3}\,\gamma^{4}\right), (8)
J3=\displaystyle J_{3}= i2(γ2γ3+2γ1γ4).\displaystyle\frac{i}{2}\left(\gamma^{2}\,\gamma^{3}+2\,\gamma^{1}\,\gamma^{4}\right). (9)

The Hamiltonian in Eq. (4) can be transformed into

HN(𝒌)\displaystyle H_{N}(\bm{k}) =ε0(𝒌)+ν=15εν(𝒌)γνμ=𝔼𝒌,\displaystyle=\varepsilon_{0}(\bm{k})+\sum_{\nu=1}^{5}\varepsilon_{\nu}(\bm{k})\gamma^{\nu}-\mu=\mathbb{E}_{\bm{k}}, (10)

with coefficients,

ε0(𝒌)\displaystyle\varepsilon_{0}(\bm{k}) =|𝒌|22m0,\displaystyle=\frac{|\bm{k}|^{2}}{2m_{0}},
εj=13(𝒌)\displaystyle\varepsilon_{j=1-3}(\bm{k}) =|𝒌|22m1ej=13(𝒌^),\displaystyle=\frac{|\bm{k}|^{2}}{2m_{1}}e_{j=1-3}(\hat{\bm{k}}),
εj=4,5(𝒌)\displaystyle\varepsilon_{j=4,5}(\bm{k}) =|𝒌|22m2ej=4,5(𝒌^),\displaystyle=\frac{|\bm{k}|^{2}}{2m_{2}}e_{j=4,5}(\hat{\bm{k}}),
m0\displaystyle m_{0} =12(a1+54a2)1,\displaystyle=\frac{1}{2}\left(a_{1}+\frac{5}{4}a_{2}\right)^{-1},
m1\displaystyle m_{1} =1a3,m2=12a2.\displaystyle=\frac{1}{a_{3}},\quad m_{2}=\frac{1}{2a_{2}}. (11)

The functions are defined as

e1(𝒌^)\displaystyle e_{1}(\hat{\bm{k}}) =3k^xk^y,e2(𝒌^)=3k^yk^z,\displaystyle=\sqrt{3}\hat{k}_{x}\hat{k}_{y},\quad e_{2}(\hat{\bm{k}})=\sqrt{3}\hat{k}_{y}\hat{k}_{z},
e3(𝒌^)\displaystyle e_{3}(\hat{\bm{k}}) =3k^zk^x,e4(𝒌^)=32(k^x2k^y2),\displaystyle=\sqrt{3}\hat{k}_{z}\hat{k}_{x},\quad e_{4}(\hat{\bm{k}})=\frac{\sqrt{3}}{2}(\hat{k}_{x}^{2}-\hat{k}_{y}^{2}),
e5(𝒌^)\displaystyle e_{5}(\hat{\bm{k}}) =12(2k^z2k^x2k^y2),\displaystyle=\frac{1}{2}(2\hat{k}_{z}^{2}-\hat{k}_{x}^{2}-\hat{k}_{y}^{2}), (12)

where k^i=ki/|𝒌|\hat{k}_{i}=k_{i}/|\bm{k}| and eν(𝒌^)e_{\nu}(\hat{\bm{k}}) is normalized, i.e. ν=15eν2(𝒌^)=1\sum_{\nu=1}^{5}e_{\nu}^{2}(\hat{\bm{k}})=1. Time-reversal symmetry (TRS) of HNH_{N} is represented by

𝒯HN(𝒌)𝒯1\displaystyle\mathcal{T}H_{N}(-\bm{k})\mathcal{T}^{-1} =HN(𝒌),\displaystyle=H_{N}(\bm{k}), (13)
𝒯=UT𝒦,UT\displaystyle\mathcal{T}=U_{T}\mathcal{K},\quad U_{T} =γ1γ2,\displaystyle=\gamma^{1}\gamma^{2}, (14)

where 𝒦\mathcal{K} means the complex conjugation. Under the time-reversal operation, γν\gamma^{\nu} and JiJ_{i} show the relation,

𝒯γν𝒯1=UT(γν)UT=γν,ν=05,\displaystyle\mathcal{T}\,\gamma^{\nu}\,\mathcal{T}^{-1}=-U_{T}\,(\gamma^{\nu})^{\ast}\,U_{T}=\gamma^{\nu},\quad\nu=0-5, (15)
𝒯Ji𝒯1=UT(Ji)UT=Ji,i=13,\displaystyle\mathcal{T}\,J_{i}\,\mathcal{T}^{-1}=-U_{T}\,(J_{i})^{\ast}\,U_{T}=-J_{i},\quad i=1-3, (16)

therefore γν\gamma^{\nu} remains unchanged, whereas JiJ_{i} changes its sign.

A pair potential in even-parity symmetry is classified into two symmetry class in terms of its pseudospin configuration: pseudospin-singlet and pseudospin-quintet. Also, the symmetry class is divided to corresponding representation of crystal symmetry of the superconductor. We list the pair potentials in a cubic symmetric superconductor with on-site (s-wave) symmetry in Table 1.

Table 1: Classification of on-site (s-wave) symmetric Cooper pairs in a J=3/2J=3/2 superconductor with OhO_{h} symmetry, corresponding to the representation to which they belong.Yang et al. (2016); Brydon et al. (2018) The Cooper pair is in pseudospin-singlet(J=0J=0) or -quintet(J=2J=2) state.
J Representation Pair potential
Singlet A1gA_{1g} 14×41_{4\times 4}
Quintet T2gT_{2g} {γ1,γ2,γ3}\{\gamma^{1},\gamma^{2},\gamma^{3}\}
EgE_{g} {γ4,γ5}\{\gamma^{4},\gamma^{5}\}

In this paper, we focus on a superconductor preserving TRS and inversion symmetry. The pair potential of such a superconductor has the formBrydon et al. (2018)

Δ(𝒌)=η𝒌,0UT+𝜼𝒌𝜸UT.\displaystyle\Delta(\bm{k})=\eta_{\bm{k},0}U_{T}+\bm{\eta}_{\bm{k}}\cdot\bm{\gamma}U_{T}. (17)

The first term refers to the pair potential of pseudospin-singlet state and the second term refers to that of pseudospin-quintet states. The amplitudes η𝒌,0\eta_{\bm{k},0} and 𝜼𝒌\bm{\eta}_{\bm{k}} are even in momentum and real in the presence of TRS. It is easy to confirm that Eq. (17) preserves time-reversal symmetry,

𝒯Δ(𝒌)𝒯1=Δ(𝒌),\displaystyle\mathcal{T}\,\Delta(\bm{k})\,\mathcal{T}^{-1}=\Delta(\bm{k}), (18)

due to Eq. (15). Because electrons obey the Fermi-Dirac statistics, the pair potential must be antisymmetric under the permutation of two electrons forming a Cooper pair,

ΔT(𝒌)=Δ(𝒌),\displaystyle\Delta^{\mathrm{T}}(-\bm{k})=-\Delta(\bm{k}), (19)

where the permutation of pseudospin is carried out by taking the transpose of the matrix (T\mathrm{T}). The pair potentials under the consideration are even-parity, [i.e., Δ(𝒌)=Δ(𝒌)]\Delta(\bm{k})=\Delta(-\bm{k})], and odd-pseudospin symmetry. Therefore, the relation

ΔT(𝒌)=Δ(𝒌),\displaystyle\Delta^{\mathrm{T}}(\bm{k})=-\Delta(\bm{k}), (20)

is satisfied because of (γν)T=(γν)(\gamma^{\nu})^{\mathrm{T}}=(\gamma^{\nu})^{\ast} and Eq. (15). We will use an expression 𝔻\mathbb{D} defined by Δ(𝒌)=𝔻𝒌UT\Delta(\bm{k})=\mathbb{D}_{\bm{k}}U_{T}, for simplicity.

The BdG Hamiltonian is expressed in terms of the normal Hamiltonian HNH_{N} and the pair potential Δ(𝒌)\Delta(\bm{k}) as

HˇBdG(𝒌)=[HN(𝒌)Δ(𝒌)Δ(𝒌)HN(𝒌)],\displaystyle\check{H}_{\mathrm{BdG}}(\bm{k})=\begin{bmatrix}H_{N}(\bm{k})&\Delta(\bm{k})\\ -\Delta^{*}(-\bm{k})&-H_{N}^{*}(-\bm{k})\end{bmatrix}, (21)

which preserves particle-hole symmetry,

𝒞HˇBdG(𝒌)𝒞1=HˇBdG(𝒌),𝒞=τ1𝒦,\displaystyle\mathcal{C}\check{H}_{\mathrm{BdG}}(-\bm{k})\mathcal{C}^{-1}=-\check{H}_{\mathrm{BdG}}(\bm{k}),\quad\mathcal{C}=\tau_{1}\mathcal{K}, (22)

where τi\tau_{i} for i=13i=1-3 is the Pauli matrix in the particle-hole space. The Gor’kov equation becomes

[iωnHˇBdG(𝒌)][G(𝒌,iωn)F(𝒌,iωn)F¯(𝒌,iωn)G¯(𝒌,iωn)]=1ˇ8×8,\displaystyle\begin{bmatrix}i{\omega_{n}}-\check{H}_{\mathrm{BdG}}(\bm{k})\end{bmatrix}\begin{bmatrix}{G}(\bm{k},i{\omega_{n}})&{F}(\bm{k},i{\omega_{n}})\\ \underline{{F}}(\bm{k},i{\omega_{n}})&\underline{{G}}(\bm{k},i{\omega_{n}})\end{bmatrix}=\check{1}_{8\times 8}, (23)

where the Matsubara Green’s functions are defined by

G(𝒌,iωn)=\displaystyle G(\bm{k},i\omega_{n})= 01/T𝑑τTτc𝒌,s(τ)c𝒌,seiωnτ,\displaystyle-\int_{0}^{1/T}d\tau\,\left\langle T_{\tau}c_{\bm{k},s}(\tau)c^{\dagger}_{\bm{k},s^{\prime}}\right\rangle\,e^{i\omega_{n}\tau}, (24)
F(𝒌,iωn)=\displaystyle F(\bm{k},i\omega_{n})= 01/T𝑑τTτc𝒌,s(τ)c𝒌,seiωnτ.\displaystyle-\int_{0}^{1/T}d\tau\,\left\langle T_{\tau}c_{\bm{k},s}(\tau)c_{\bm{k},s^{\prime}}\right\rangle\,e^{i\omega_{n}\tau}. (25)

Each Green’s function is a 4×44\times 4 matrix. The relations

G¯(𝒌,iωn)=\displaystyle\underline{G}(\bm{k},i\omega_{n})= G(𝒌,iωn),\displaystyle-G^{\ast}(-\bm{k},i\omega_{n}), (26)
F¯(𝒌,iωn)=\displaystyle\underline{F}(\bm{k},i\omega_{n})= F(𝒌,iωn),\displaystyle-F^{\ast}(-\bm{k},i\omega_{n}), (27)

can be derived due to the particle-hole symmetry of the BdG Hamiltonian. The solution of the BdG equation is given by

[G(𝒌,iωn)F(𝒌,iωn)F¯(𝒌,iωn)G¯(𝒌,iωn)]=[100UT]\displaystyle\left[\begin{array}[]{cc}G_{(}\bm{k},i\omega_{n})&F(\bm{k},i\omega_{n})\\ \underline{F}(\bm{k},i\omega_{n})&\underline{G}(\bm{k},i\omega_{n})\end{array}\right]=\left[\begin{array}[]{cc}1&0\\ 0&-U_{T}\end{array}\right] (32)
×[iωn𝔼𝒌𝔻𝒌𝔻𝒌iωn+𝔼𝒌]1[100UT].\displaystyle\times\left[\begin{array}[]{cc}i\omega_{n}-\mathbb{E}_{\bm{k}}&-\mathbb{D}_{\bm{k}}\\ -\mathbb{D}_{\bm{k}}&i\omega_{n}+\mathbb{E}_{\bm{k}}\end{array}\right]^{-1}\left[\begin{array}[]{cc}1&0\\ 0&U_{T}\end{array}\right]. (37)

The anomalous Green’s functions are calculated as

F(𝒌,iωn)=\displaystyle F(\bm{k},i\omega_{n})= 𝔽(𝒌,iωn)UT,\displaystyle\mathbb{F}(\bm{k},i\omega_{n})\,U_{T}, (38)
F¯(𝒌,iωn)=\displaystyle\underline{F}(\bm{k},i\omega_{n})= UT𝔽(𝒌,iωn),\displaystyle-U_{T}\mathbb{F}(\bm{k},-i\omega_{n}), (39)
𝔽(𝒌,iωn)=\displaystyle\mathbb{F}(\bm{k},i\omega_{n})= {𝔻𝒌+(iωn+𝔼𝒌)𝔻𝒌1(iωn𝔼𝒌)}1.\displaystyle\left\{-\mathbb{D}_{\bm{k}}+(i\omega_{n}+\mathbb{E}_{\bm{k}})\mathbb{D}_{\bm{k}}^{-1}(i\omega_{n}-\mathbb{E}_{\bm{k}})\right\}^{-1}. (40)

Especially, when the dispersion relation is independent of the pseudospin, i.e. 𝔼𝒌=ε0(𝒌)γ0\mathbb{E}_{\bm{k}}=\varepsilon_{0}(\bm{k})\gamma^{0}, Eq. (40) is simplified to

𝔽(𝒌,iωn)\displaystyle\mathbb{F}(\bm{k},i\omega_{n}) =𝔻𝒌ν=05|ην|2+ωn2+ξ𝒌2,\displaystyle=-\frac{\mathbb{D}_{\bm{k}}}{\sum_{\nu=0-5}|\eta_{\nu}|^{2}+\omega_{n}^{2}+\xi_{\bm{k}}^{2}}, (41)
ξ𝒌\displaystyle\xi_{\bm{k}} =ε0(𝒌)μ,\displaystyle=\varepsilon_{0}(\bm{k})-\mu, (42)

for both pseudospin-singlet or pseudospin-quintet states.

II.2 Current formula

We discuss the Josephson effect in a superconductor/insulator/superconductor(SIS) junction consisting of two J=3/2J=3/2 superconductors. The Josephson current flows in the xx direction and the interface is located at x=0x=0 as shown in Fig. 1.

Refer to caption
Figure 1: A schematic view of SIS Josephson junction of two J=3/2J=3/2 superconductors and an insulator. The figure shows a junction consisting of a pseudospin-singlet and a pseudospin-quintet superconductor for instance. The insulating barrier is localized at x=0x=0.

The Hamiltonian of the SIS junction consists of three components,

H\displaystyle H =HL+HR+HT,\displaystyle=H_{L}+H_{R}+H_{T}, (43)
HT\displaystyle H_{T} =β,γ(tγβcγcβ+tβγcβcγ),\displaystyle=\sum_{\beta,\gamma}(t_{\gamma\beta}c_{\gamma}^{\dagger}c_{\beta}+t_{\beta\gamma}c_{\beta}^{\dagger}c_{\gamma}), (44)

where HL(HR)H_{L}(H_{R}) is the BdG Hamiltonian in Eq. (21) of the left (right) superconductor. HTH_{T} is a tunneling Hamiltonian which refers to the interaction between two superconductors, where β={𝒑,s}(γ={𝒌,s})\beta=\{\bm{p},s\}(\gamma=\{\bm{k},s^{\prime}\}) is a combined index for an electron in the left(right) superconductor. To satisfy the Hermicity of the Hamiltonian, tβγ=tγβt_{\beta\gamma}^{*}=t_{\gamma\beta} is required.

The electric Josephson current through the junction is derived within the linear response theory with respect to HTH_{T}.Mahan (1990) The result is expressed as

I\displaystyle I =2eImTωn𝒌,𝒑\displaystyle=2e\,{\mathrm{Im}}\,T\sum_{\omega_{n}}\sum_{\bm{k},\bm{p}}{}^{{}^{\prime}}
×Tr[t𝒑,𝒌F¯R(𝒌,iωn)t𝒌,𝒑FL(𝒑,iωn)],\displaystyle\times{\text{Tr}}\left[t_{-\bm{p},-\bm{k}}^{\ast}\,\underline{F}^{R}(\bm{k},i\omega_{n})\,t_{\bm{k},\bm{p}}\,F^{L}(\bm{p},i\omega_{n})\right], (45)

where Tr\mathrm{Tr} means the summation over the pseudospin space, FL(R)F^{L(R)} is the anomalous Green’s function of the left(right) superconductor and t𝒌,𝒑t_{\bm{k},\bm{p}} represents the tunnel element, {t𝒌,𝒑}s,s=tβγ\{t_{\bm{k},\bm{p}}\}_{s,s^{\prime}}=t_{\beta\gamma}. The wave number 𝒌\bm{k} is decomposed into a component in the xx direction kxk_{x} and those parallel to the interface 𝒌\bm{k}_{\parallel}. The summation 𝒌\sum_{\bm{k}}^{\prime} is carried out over 𝒌\bm{k} for kx>0k_{x}>0. We assume that the tunnel elements are independent of the wave numbers as

t𝒌,𝒑=𝕋+δ𝒌^,𝒑^,𝕋±=t0±i=13tiJi,\displaystyle t_{\bm{k},\bm{p}}=\mathbb{T}_{+}\,\delta_{\hat{\bm{k}},\hat{\bm{p}}},\quad\mathbb{T}_{\pm}=t_{0}\pm\sum_{i=1}^{3}t_{i}J_{i}, (46)

where δ𝒌^,𝒑^\delta_{\hat{\bm{k}},\hat{\bm{p}}} implies the presence of the translation symmetry in the direction parallel to the interface. The tunnel event happens between two states on the Fermi surface : one is a state at kF𝒑^k_{F}\hat{\bm{p}} in the left superconductor and the other is a state at kF𝒌^k_{F}\hat{\bm{k}} in the right superconductor. The coefficients tit_{i} are real numbers for i=03i=0-3. The element t0t_{0} denotes the tunnel amplitude preserving pseudospin, whereas tit_{i} for i=13i=1-3 refer to a Zeeman field which couples angular momentum of an electron. The complex conjugation of the hopping element is represented by

t𝒌,𝒑=UT𝕋+UTδ𝒌^,𝒑^=𝕋δ𝒌^,𝒑^,\displaystyle t_{-\bm{k},-\bm{p}}^{\ast}=-U_{T}\mathbb{T}_{+}\,U_{T}\,\delta_{\hat{\bm{k}},\hat{\bm{p}}}=\mathbb{T}_{-}\,\delta_{\hat{\bm{k}},\hat{\bm{p}}}, (47)

because of Eqs. (15) and (16). When the superconducting phase is φL(φR)\varphi_{L}(\varphi_{R}) on the left(right) superconductor, the Josephson current in Eq. (45) is calculated as

I=\displaystyle I= 2eIm𝒌,𝒑eiφTωn\displaystyle 2e\,\mathrm{Im}{\sum_{\bm{k},\bm{p}}}^{\prime}\,e^{i\varphi}\;T\sum_{\omega_{n}}
×Tr[𝕋𝔽R(𝒌,iωn)𝕋+𝔽L(𝒑,iωn)]δ𝒌^,𝒑^,\displaystyle\times\mathrm{Tr}\left[\mathbb{T}^{\prime}\,\mathbb{F}^{R}(\bm{k},-i\omega_{n})\,\mathbb{T}_{+}\,\mathbb{F}^{L}(\bm{p},i\omega_{n})\right]\delta_{\hat{\bm{k}},\hat{\bm{p}}}, (48)
𝕋\displaystyle\mathbb{T}^{\prime} =UT𝕋UT1=t0+t1J1t2J2+t3J3.\displaystyle=U_{T}\mathbb{T}_{-}U_{T}^{-1}=t_{0}+t_{1}J_{1}-t_{2}J_{2}+t_{3}J_{3}. (49)

We will calculate the lowest order term of Josephson current between two J=3/2J=3/2 superconductors by using Eq. (48) in Sec. III.

III Josephson effect

The Josephson effect is sensitive to relative structures of pair potentials in two superconductors. In S=1/2S=1/2 superconductors, the Josephson current by the lowest order coupling vanishes between a spin-singlet and a spin-triplet superconductor, which is the part of the selection rule due to the spin structures of Cooper pairs. In this section, we discuss the selection rule of the Josephson current between two J=3/2J=3/2 superconductors. We first consider ss-wave superconductors with simple band structure as 𝔼𝒌=ε0(𝒌)μ\mathbb{E}_{\bm{k}}=\varepsilon_{0}(\bm{k})-\mu. Namely, the dispersion is isotropic in the momentum space and is independent of pseudospin. We also assume that the tunneling Hamiltonian is independent of pseudospin for a while, i.e. 𝕋±=t0γ0\mathbb{T}_{\pm}=t_{0}\gamma^{0}.

III.1 Two pseudospin-singlet states

When both superconductors of a Josephson junction are in pseudospin-singlet state, the Josephson current should be represented by the Ambegaokar-Baratoff formula Ambegaokar and Baratoff (1963). We will confirm this feature at the beginning of this section. The s-wave pair potentials are given by

𝔻𝒑L=ΔL,𝔻𝒌R=ΔR,\displaystyle\mathbb{D}^{L}_{\bm{p}}=\Delta^{L},\quad\mathbb{D}^{R}_{\bm{k}}=\Delta^{R}, (50)

for the left and right superconductor, respectively. The Josephson current in Eq. (48) becomes

ISS=\displaystyle I_{\mathrm{SS}}= 8et02sinφTωnK(iωn),\displaystyle 8e\,t_{0}^{2}\,\sin\varphi\,T\sum_{\omega_{n}}\,K(i\omega_{n}), (51)

while the summation over momentum is carried out as follows,

K\displaystyle K (iωn)=𝒑ΔL(ΔL)2+ωn2+ξ𝒑2\displaystyle(i\omega_{n})={\sum_{\bm{p}}}^{\prime}\frac{\Delta^{L}}{(\Delta^{L})^{2}+\omega_{n}^{2}+\xi_{\bm{p}}^{2}}
×𝒌ΔR(ΔR)2+ωn2+ξ𝒌2δ𝒌^,𝒑^,\displaystyle\times\,{\sum_{\bm{k}}}^{\prime}\frac{\Delta^{R}}{(\Delta^{R})^{2}+\omega_{n}^{2}+\xi_{\bm{k}}^{2}}\;\delta_{\hat{\bm{k}},\hat{\bm{p}}}, (52)
=dξkN0(ΔL)2+ωn2+ξk2dξkN0(ΔR)2+ωn2+ξk2\displaystyle=\left\langle\int\frac{d\xi_{k}\,N_{0}}{(\Delta^{L})^{2}+\omega_{n}^{2}+\xi_{k}^{2}}\int\frac{d\xi_{k}\,N_{0}}{(\Delta^{R})^{2}+\omega_{n}^{2}+\xi_{k}^{2}}\right.
×ΔLΔR𝒌^,\displaystyle\times\left.\Delta^{L}\Delta^{R}\right\rangle_{\hat{\bm{k}}}, (53)
=πN0ωn2+(ΔL)2πN0ωn2+(ΔR)2×ΔLΔR.\displaystyle=\frac{\pi N_{0}}{\sqrt{\omega_{n}^{2}+(\Delta^{L})^{2}}}\frac{\pi N_{0}}{\sqrt{\omega_{n}^{2}+(\Delta^{R})^{2}}}\times\Delta^{L}\Delta^{R}. (54)

The summation over the momentum is decomposed into two parts. One part is the summation over its amplitude |𝒌||\bm{k}|, which can be replaced by the integration over ξ𝒌\xi_{\bm{k}}. The density of states at the Fermi level is denoted by N0N_{0}. The details of the integral is summarized in Appendix. A. The other part is summation over the direction of 𝒌\bm{k} on the Fermi surface for kx>0k_{x}>0. It is calculated as the average over the Fermi surface,

X𝒌^=1π0π𝑑θsin2θπ/2π/2𝑑ϕcosϕX(𝒌^),\displaystyle\langle X\rangle_{\hat{\bm{k}}}=\frac{1}{\pi}\int_{0}^{\pi}d\theta\sin^{2}\theta\int_{-\pi/2}^{\pi/2}d\phi\cos\phi\;X(\hat{\bm{k}}), (55)

where kx=kFsinθcosϕ>0k_{x}=k_{F}\sin\theta\cos\phi>0, ky=kFsinθsinϕk_{y}=k_{F}\sin\theta\sin\phi and kz=kFcosθk_{z}=k_{F}\cos\theta. The Fermi momentum is obtained from ε0(kF)μ=0\varepsilon_{0}(k_{F})-\mu=0. Finally the Josephson current is calculated as

ISS=\displaystyle I_{\mathrm{SS}}= I0sinφ,\displaystyle I_{0}\sin\varphi, (56)
I0=\displaystyle I_{0}= πeRNTωn(ΔLωn2+(ΔL)2)(ΔRωn2+(ΔR)2),\displaystyle\frac{\pi}{eR_{N}}\,T\sum_{\omega_{n}}\left(\frac{\Delta^{L}}{\sqrt{\omega_{n}^{2}+(\Delta^{L})^{2}}}\right)\left(\frac{\Delta^{R}}{\sqrt{\omega_{n}^{2}+(\Delta^{R})^{2}}}\right), (57)
RN1=\displaystyle R_{N}^{-1}= 4×2πe2(N0t0)2,\displaystyle 4\times 2\pi e^{2}\left(N_{0}t_{0}\right)^{2}, (58)

where RNR_{N} is the normal resistance of the junction. As the most simple case, we assume that the amplitudes of the two pair potentials are identical to each other, ΔL=ΔR=Δ\Delta^{L}=\Delta^{R}=\Delta. Then the Josephson current results in

ISS=\displaystyle I_{\mathrm{SS}}= πΔ2eRNtanh(Δ2T)sinφ.\displaystyle\frac{\pi\Delta}{2eR_{N}}\,\tanh\left(\frac{\Delta}{2T}\right)\,\sin\varphi. (59)

The expression of the current is identical to the Ambegaokar-Baratoff’s formula Ambegaokar and Baratoff (1963).

III.2 Singlet-quintet states

Secondly, we discuss a junction where a pseudospin-singlet ss-wave superconductor is on the left and a pseudospin-quintet superconductor is on the right side. The pair potentials are given by

𝔻𝒑L=ΔL,𝔻𝒌R=ΔR𝒒𝜸.\displaystyle\mathbb{D}^{L}_{\bm{p}}=\Delta^{L},\quad\mathbb{D}^{R}_{\bm{k}}=\Delta^{R}\bm{q}\cdot\bm{\gamma}. (60)

The vector 𝒒\bm{q} is normalized vectors in five-dimensional pseudospin space, i.e. ν=15|qν|2=1\sum_{\nu=1-5}|q_{\nu}|^{2}=1. When the tunneling elements are independent of pseudospin 𝕋±=t0γ0\mathbb{T}_{\pm}=t_{0}\gamma^{0}, the lowest order of the Josephson current vanishes by the selection rule due to the pseudospin configuration of Cooper pairs. Pseudospin of a Cooper pair is J=0J=0 in a singlet superconductor, whereas it is J=2J=2 in a quintet superconductor. To make the Josephson current finite, an electron must change its angular momentum while tunneling the insulating barrier because of the difference in the angular momentum, δJ=2\delta J=2.

We switch on a weak Zeeman field to make the interface magnetically active. Then the tunnel elements become pseudospin dependent and can have finite ti(t0)t_{i}(\ll t_{0}) for i=13i=1-3 in Eq. (46). The Josephson current is calculated as

ISQ\displaystyle I_{\mathrm{SQ}} =23t1t3q3+3(t12+t22)q4(t12t222t32)q52t02\displaystyle=\frac{2\sqrt{3}t_{1}t_{3}q_{3}+\sqrt{3}(t_{1}^{2}+t_{2}^{2})q_{4}-(t_{1}^{2}-t_{2}^{2}-2t_{3}^{2})q_{5}}{2t_{0}^{2}}
×I0sinφ.\displaystyle\quad\times I_{0}\sin\varphi. (61)

Although the lowest order current can have finite value because of the Zeeman field, the contributions of ν=1,2\nu=1,2 terms vanish. As far as we study, the current-phase relationship is sinusoidal even if a Zeeman field breaks time-reversal symmetry. The results in Eq. (61) imply a possibility of π\pi-junction caused by a magnetically active interface. Also, we find the second order terms in the coefficient tit_{i} of the Josephson current as a feature of J=3/2J=3/2 superconductors. The second order implies that a magnetic field affects a Cooper pair twice during the tunneling. The reason can be explained by considering two facts that the difference in angular momentum of Cooper pairs is δJ=2\delta J=2 and that JiJ_{i} matrices in the tunneling Hamiltonian can change the angular momentum only by δJ=1\delta J=1 for each operation. Therefore, a Zeeman field affects a Cooper pair twice during the tunneling to compensate the difference in the angular momenta of Cooper pairs. In contrast, the Josephson current between S=1/2S=1/2 spin-singlet and triplet superconductor is calculated as I𝒅𝑼MI\propto\bm{d}\cdot\bm{U}_{M}, where 𝑼M\bm{U}_{M} is the magnetic scattering potential (Appendix. B). Thus the current is written in the first order terms in the coefficients of the spin-dependent tunneling Hamiltonian. This implies that a single operation of a Zeeman field can couple the Cooper pairs with difference of the angular momentum, δS=1\delta S=1.

III.3 Two pseudospin-quintet states

In this subsection, we discuss the Josephson effect in a junction consisting of two superconductors in pseudospin-quintet states. First, we consider a junction of two ss-wave pseudospin-quintet superconductors described by

𝔻𝒑L=ΔL𝒒L𝜸,𝔻𝒌R=ΔR𝒒R𝜸.\displaystyle\mathbb{D}^{L}_{\bm{p}}=\Delta^{L}\bm{q}^{L}\cdot\bm{\gamma},\quad\mathbb{D}^{R}_{\bm{k}}=\Delta^{R}\bm{q}^{R}\cdot\bm{\gamma}. (62)

The anomalous Green’s function can be calculated as Eq. (41). By substituting the anomalous Green’s function in Eq. (41) to Eq. (48), the Josephson current is calculated as

IQQ\displaystyle I_{\mathrm{QQ}} =I0sinφ(𝒒R𝒒L).\displaystyle=I_{0}\sin\varphi\left(\bm{q}^{R}\cdot\bm{q}^{L}\right). (63)

The result indicates that the Josephson current is given by the scalar product of two vectors, IQQ𝒒L𝒒RI_{\mathrm{QQ}}\propto\bm{q}^{L}\cdot\bm{q}^{R}, which describes the selection rule due to the pseudospin configuration of Cooper pairs. It is easy to confirm that Josephson current cannot flow between two superconductors with Cooper pairs corresponding to different representations in Table 1. This selection rule is similar to that in two spin-triplet superconductors of S=1/2S=1/2 electrons,

ITT=\displaystyle I_{\mathrm{TT}}= I1𝒅L𝒅R𝒌^dldrsinφ,\displaystyle I_{1}\frac{\Big{\langle}\bm{d}^{L}\cdot\bm{d}^{R}\Big{\rangle}_{\hat{\bm{k}}}}{d_{l}\,d_{r}}\,\sin\varphi, (64)
dl(r)=\displaystyle d_{l(r)}= {𝒅L(R)(𝒌^)}2𝒌^\displaystyle\sqrt{\left\langle\left\{\bm{d}^{L(R)}(\hat{\bm{k}})\right\}^{2}\right\rangle_{\hat{\bm{k}}}} (65)

where 𝒅\bm{d} is the 𝒅\bm{d}-vector in three-dimensional spin space of the spin-triplet Cooper pair with pair potential Δ(𝒌^)=i𝒅(𝒌^)𝝈σ2\Delta(\hat{\bm{k}})=i\bm{d}(\hat{\bm{k}})\cdot\bm{\sigma}\sigma_{2}. By comparing Eq. (63) and (64), we conclude that the selection rule for quintet states is severer than that for triplet states. This is because two vectors can be orthogonal to each other more easily in higher dimension.

Additionally, we study a case with two J=3/2J=3/2 superconductors in which pair potentials are anisotropic in the momentum space. With the general even-parity pair potential

𝔻𝒑L=𝜼𝒑L𝜸,𝔻𝒌R=𝜼𝒌R𝜸,\displaystyle\mathbb{D}^{L}_{\bm{p}}=\bm{\eta}_{\bm{p}}^{L}\cdot\bm{\gamma},\quad\mathbb{D}^{R}_{\bm{k}}=\bm{\eta}_{\bm{k}}^{R}\cdot\bm{\gamma}, (66)

the Josephson current is calculated as

IQQ\displaystyle I_{\mathrm{QQ}} =I1𝜼𝒌R𝜼𝒌L𝒌^ηRηLsinφ,\displaystyle=I_{1}\frac{\left\langle\bm{\eta}_{\bm{k}}^{R}\cdot\bm{\eta}_{\bm{k}}^{L}\right\rangle_{\hat{\bm{k}}}}{\eta^{R}\eta^{L}}\sin\varphi, (67)
I1\displaystyle I_{1} =πeRNTωnηRωn2+(ηR)2ηRωn2+(ηR)2,\displaystyle=\frac{\pi}{eR_{N}}T\sum_{\omega_{n}}\frac{\eta^{R}}{\sqrt{\omega_{n}^{2}+(\eta^{R})^{2}}}\frac{\eta^{R}}{\sqrt{\omega_{n}^{2}+(\eta^{R})^{2}}}, (68)
ηL(R)\displaystyle\eta^{L(R)} =(𝜼𝒌L(R))2𝒌^.\displaystyle=\sqrt{\left\langle\left(\bm{\eta}^{L(R)}_{\bm{k}}\right)^{2}\right\rangle_{\hat{\bm{k}}}}. (69)

The average of 𝜼𝒌R𝜼𝒌L𝒌^\left\langle\bm{\eta}_{\bm{k}}^{R}\cdot\bm{\eta}_{\bm{k}}^{L}\right\rangle_{\hat{\bm{k}}} on the Fermi surface leads to additional selection rule for the pair potentials depending on momenta. For example in a case of 𝜼𝒌Le1(𝒌^)\bm{\eta}_{\bm{k}}^{L}\propto e_{1}(\hat{\bm{k}}) and 𝜼𝒌Re2(𝒌^)\bm{\eta}_{\bm{k}}^{R}\propto e_{2}(\hat{\bm{k}}), the Josephson current vanishes irrespective of relative pseudospin configurations of Cooper pairs in the two superconductors because of the selection rule in momentum space e1(𝒌^)e2(𝒌^)𝒌^=0\left\langle e_{1}(\hat{\bm{k}})e_{2}(\hat{\bm{k}})\right\rangle_{\hat{\bm{k}}}=0.

In this section, we have assumed that electronic structures are independent of pseudospin, i.e., 𝔼𝒌=ε0(𝒌)μ\mathbb{E}_{\bm{k}}=\varepsilon_{0}(\bm{k})-\mu. The effects of a pseudospin-dependent electronic structures on the selection rule will be clarified in the next section.

IV Anisotropic Dispersion and Odd-frequency Pair

In this section, we show that anisotropic dispersion depending on pseudospin generates an odd-frequency Cooper pair and discuss how it affects the Josephson current. For simplicity, we consider a simple superconductor in which the dispersion and the pair potential are described by

𝔼𝒌=ε0(𝒌)+ελ(𝒌)γλμ,𝔻𝒌=η𝒌γν.\displaystyle\mathbb{E}_{\bm{k}}=\varepsilon_{0}(\bm{k})+\varepsilon_{\lambda}(\bm{k})\,\gamma^{\lambda}-\mu,\quad\mathbb{D}_{\bm{k}}=\eta_{\bm{k}}\,\gamma^{\nu}. (70)

Here we assume |ελ||ε0||\varepsilon_{\lambda}|\ll|\varepsilon_{0}|. When λ=ν\lambda=\nu, 𝔼𝒌\mathbb{E}_{\bm{k}} and 𝔻𝒌\mathbb{D}_{\bm{k}} commute to each other. Then the symmetry of the pair potential and that of the anomalous Green’s function are the same because 𝔽(𝒌,iωn)\mathbb{F}(\bm{k},i\omega_{n}) in Eq. (40) satisfies 𝔽γν\mathbb{F}\propto\gamma^{\nu} near the Fermi surface. In this case, the selection rule in Eq. (67) remains valid. In other words, the selection rule should be modified when 𝔼𝒌\mathbb{E}_{\bm{k}} and 𝔻𝒌\mathbb{D}_{\bm{k}} do not commute in each superconductor, i.e. λν\lambda\neq\nu. The anomalous Green’s function is calculated as

𝔽νλ(𝒌,iωn)\displaystyle\mathbb{F}_{\nu\lambda}(\bm{k},i\omega_{n}) =𝔽ν(0)(𝒌,iωn)+δ𝔽νλ(𝒌,iωn),\displaystyle=\mathbb{F}_{\nu}^{(0)}(\bm{k},i\omega_{n})+\delta\mathbb{F}_{\nu\lambda}(\bm{k},i\omega_{n}), (71)
𝔽ν(0)(𝒌,iωn)\displaystyle\mathbb{F}_{\nu}^{(0)}(\bm{k},i\omega_{n}) =1ξ𝒌2+ωn2+η𝒌2η𝒌γν,\displaystyle=-\frac{1}{\xi_{\bm{k}}^{2}+\omega_{n}^{2}+\eta_{\bm{k}}^{2}}\eta_{\bm{k}}\gamma^{\nu}, (72)
δ𝔽νλ(𝒌,iωn)\displaystyle\delta\mathbb{F}_{\nu\lambda}(\bm{k},i\omega_{n}) =2iωnελ(𝒌)(ξ𝒌2+ωn2+η𝒌2)2η𝒌γνγλ.\displaystyle=-2i\omega_{n}\frac{\varepsilon_{\lambda}(\bm{k})}{(\xi_{\bm{k}}^{2}+\omega_{n}^{2}+\eta_{\bm{k}}^{2})^{2}}\eta_{\bm{k}}\gamma^{\nu}\gamma^{\lambda}. (73)

The details of the derivation are shown in Appendix C. The extra term δ𝔽νλ\delta\mathbb{F}_{\nu\lambda} describes an unusual Cooper pairing correlation belonging to odd-frequency symmetry. Since both ελ(𝒌)\varepsilon_{\lambda}(\bm{k}) and η𝒌\eta_{\bm{k}} are even-parity functions, δFνλ(𝒌,iωn)=δ𝔽νλ(𝒌,iωn)UT\delta F_{\nu\lambda}(\bm{k},i\omega_{n})=\delta\mathbb{F}_{\nu\lambda}(\bm{k},i\omega_{n})\,U_{T} is also an even-parity function. The product γνγλUT\gamma^{\nu}\gamma^{\lambda}U_{T} suggests that δFνλ\delta F_{\nu\lambda} is symmetric under the permutation of two pseudospins. To meet the requirement of the Fermi-Dirac statistics of electrons, δFνλ\delta F_{\nu\lambda} must be odd under the permutation of imaginary times. As a result, δFνλ\delta F_{\nu\lambda} is confined to be an odd function of the Matsubara frequency.Berezinskii (1974)

Mathematically speaking, the kinetic Hamiltonian depending on pseudospin, V=ελ(𝒌)γλV=\varepsilon_{\lambda}(\bm{k})\gamma^{\lambda} in Eq. (70), generates an odd-frequency pairing correlation because it does not commute to the pair potential. The existence of an odd-frequency pair in an uniform superconductor was pointed out in a multiband superconductor, where the band hybridization generates an odd-frequency Cooper pair.Black-Schaffer and Balatsky (2013) It has been also well established that such an odd-frequency pair is paramagnetic.Asano and Sasaki (2015); Asano et al. (2011); Suzuki and Asano (2014) A usual (even-frequency) Cooper pair is diamagnetic and excludes magnetic fields. Therefore, a superconductor can maintain its macroscopic phase being uniform in real space and can decrease the condensation energy. A paramagnetic Cooper pair, on the other hand, is unstable thermodynamically because it causes spatial variations in the superconducting phase.Fominov et al. (2015); Mironov et al. (2012); Suzuki and Asano (2014) As a consequence, the appearance of odd-frequency pairing correlations decreases the superconducting transition temperature TcT_{c}.Asano and Sasaki (2015); Triola et al. (2020) Ramires and SigristRamires and Sigrist (2016) showed that a perturbation VV in Hamiltonian decreases the transition temperature of a superconducting order parameter Δ\Delta when

V(𝒌)Δ(𝒌)Δ(𝒌)V(𝒌)0.\displaystyle V(\bm{k})\,\Delta(\bm{k})-\Delta(\bm{k})\,V^{\ast}(-\bm{k})\neq 0. (74)

It is easy to confirm that Eq. (74) corresponds to the condition for the appearance of an odd-frequency pair, λν\lambda\neq\nu.

IV.1 Two identical superconductors

We first consider a junction that consists of two identical superconductors described by Eq. (70) and a barrier with tunnel elements t𝒌,𝒑=t0γ0δ𝒌^,𝒑^t_{\bm{k},\bm{p}}=t_{0}\gamma^{0}\delta_{\hat{\bm{k}},\hat{\bm{p}}}. By substituting the Green’s function in Eq. (71) into Eq. (48), the Josephson current is calculated as

I=\displaystyle I= 2et02sinφTωn𝒌,𝒑Tr[𝔽νR(0)(𝒌,iωn)𝔽νL(0)(𝒑,iωn)\displaystyle 2e\,t_{0}^{2}\,\sin\varphi\,T\sum_{\omega_{n}}{\sum_{\bm{k},\bm{p}}}^{\prime}\,\mathrm{Tr}\left[\mathbb{F}^{R(0)}_{\nu}(\bm{k},-i\omega_{n})\,\mathbb{F}^{L(0)}_{\nu}(\bm{p},i\omega_{n})\right.
+δ𝔽νλR(𝒌,iωn)δ𝔽νλL(𝒑,iωn)],\displaystyle+\left.\delta\mathbb{F}_{\nu\lambda}^{R}(\bm{k},-i\omega_{n})\,\delta\mathbb{F}_{\nu\lambda}^{L}(\bm{p},i\omega_{n})\right], (75)
=\displaystyle= I0sinφ(1ελ(𝒌)𝒌^8η2).\displaystyle I_{0}\sin\varphi\left(1-\frac{\langle\varepsilon_{\lambda}(\bm{k})\rangle_{\hat{\bm{k}}}}{8\eta^{2}}\right). (76)

The details of the derivation are shown in Appendix C. The first term of Eqs. (75)-(76) has been already explained in Sec. III C and it dominates the Josephson current. An induced odd-frequency pair carries the Josephson current at the second term in Eqs. (75)-(76). The contribution of an odd-frequency pair is negative, which is derived from the order of pseudospin matrices in the second term as Tr[γνγλγνγλ]=4\mathrm{Tr}[\gamma^{\nu}\,\gamma^{\lambda}\,\gamma^{\nu}\,\gamma^{\lambda}]=-4. Namely, the coupling between the induced odd-frequency pairing correlations stabilizes the π\pi-state rather than the 0-state because an odd-frequency pair favors phase difference across the junction due to its paramagnetic property.Sasaki et al. (2020) When the amplitude of odd-frequency correlation in Eq. (73) exceeds that of even-frequency component in Eq. (72), the junction may undergo the transition to the π\pi-state. However, such a superconducting state is impossible because an odd-frequency Cooper pair is thermodynamically unstable.

IV.2 Two different superconductors

As shown in Eq. (76), the junction we consider should be always the 0-state because the even-frequency pairing correlations dominate the Josephson current. Simultaneously, it proposes a possibility of a π\pi-junction in the system consisting of time-reversal symmetric components only, if the dominant term could be deleted. In such a context, we consider a Josephson junction where the severer pseudospin selection rule is applied. We choose its left superconductor described by Eq. (70) and the right superconductor described by

𝔼𝒌=ε0+εν(𝒌)γνμ,𝔻𝒌=η𝒌Rγλ.\displaystyle\mathbb{E}_{\bm{k}}=\varepsilon_{0}+\varepsilon_{\nu}(\bm{k})\gamma^{\nu}-\mu,\quad\mathbb{D}_{\bm{k}}=\eta_{\bm{k}}^{R}\,\gamma^{\lambda}. (77)

The anomalous Green’s function of the right superconductor is described by

𝔽λν(𝒌,iωn)=𝔽λ(0)(𝒌,iωn)+δ𝔽λν(𝒌,iωn).\displaystyle\mathbb{F}_{\lambda\nu}(\bm{k},i\omega_{n})=\mathbb{F}_{\lambda}^{(0)}(\bm{k},i\omega_{n})+\delta\mathbb{F}_{\lambda\nu}(\bm{k},i\omega_{n}). (78)

The Josephson current in this junction is calculated as

I=\displaystyle I= 2et02sinφTωn𝒌,𝒑Tr[𝔽νL(0)(𝒑,iωn)𝔽λR(0)(𝒌,iωn)\displaystyle 2e\,t_{0}^{2}\,\sin\varphi\,T\sum_{\omega_{n}}{\sum_{\bm{k},\bm{p}}}^{\prime}\,\mathrm{Tr}\left[\mathbb{F}^{L(0)}_{\nu}(\bm{p},i\omega_{n})\,\mathbb{F}^{R(0)}_{\lambda}(\bm{k},-i\omega_{n})\right.
+δ𝔽νλL(𝒑,iωn)δ𝔽λνR(𝒌,iωn)],\displaystyle+\left.\delta\mathbb{F}_{\nu\lambda}^{L}(\bm{p},i\omega_{n})\,\delta\mathbb{F}_{\lambda\nu}^{R}(\bm{k},-i\omega_{n})\right], (79)
=\displaystyle= πeRNελ(𝒌)εν(𝒌)η𝒌Rη𝒌L𝒌^sinφ\displaystyle\frac{\pi}{eR_{N}}\langle\varepsilon_{\lambda}(\bm{k})\,\varepsilon_{\nu}(\bm{k})\eta_{\bm{k}}^{R}\eta_{\bm{k}}^{L}\rangle_{\hat{\bm{k}}}\,\sin\varphi
×Tωnωn2{ωn2+(ηR)2}3/2{ωn2+(ηL)2}3/2.\displaystyle\times T\sum_{\omega_{n}}\frac{\omega_{n}^{2}}{\{\omega_{n}^{2}+(\eta^{R})^{2}\}^{3/2}\{\omega_{n}^{2}+(\eta^{L})^{2}\}^{3/2}}. (80)

The positive sign of the trace is derived from the order of pseudospin matrices as Tr[γνγλγλγν]=4\mathrm{Tr}[\gamma^{\nu}\,\gamma^{\lambda}\,\gamma^{\lambda}\,\gamma^{\nu}]=4. The first term in Eq. (79) vanishes due to the pseudospin selection rule as expected. The second term is carried by induced odd-frequency and its sign is determined by the momentum dependence of the pair potentials. However, it is calculated as positive or zero if the momentum dependence is ss-wave or dd-wave symmetric. Unfortunately, we cannot draw any physical picture of why an odd-frequency pair stabilizes the 0-state. Even so, the result of the 0-junction is reasonable in the phenomenological point of view. Because all the parts of the Josephson junction preserve time-reversal symmetry as we have discussed at the beginning of this subsection. The superconducting phase should be uniform at the ground state of such a junction.

V Conclusion

In this paper, we discussed the Josephson effect of a superconductor in which an electron with angular momentum J=3/2J=3/2 characterizes the electronic structures near the Fermi level as a result of strong spin-orbit interactions. We assume that a J=3/2J=3/2 superconductor preserves time-reversal and inversion symmetries simultaneously. In the presence of inversion symmetry, J=0J=0 pseudospin-singlet and J=2J=2 pseudospin-quintet state are possible. The latter is described by the combination of five even-parity orbital functions and five pseudospin tensors. The Josephson current within the tunnel Hamiltonian description is calculated in terms of the anomalous Green’s functions on either sides of a junction. We found that the Josephson selection rule for quintet states is stricter than that for well-established S=1S=1 spin-triplet states. A magnetically active junction interface enables the Josephson coupling between a pseudospin-singlet J=0J=0 superconductor and a pseudospin-quintet J=2J=2 superconductor. We also discussed a Josephson current carried by odd-frequency pairing correlations which are generated by the complex commutation relations among pseudospin tensors. We find that the odd-frequency pairing correlation favors the π\pi-state as long as it is a subdominant pairing correlation in a superconductor.

In a J=3/2J=3/2 superconductor, in addition to pseudospin quintet states, pseudospin-septet states with angular momentum J=3J=3 can exist where a Cooper pair belongs to odd-parity symmetry. The physics of such a high angular momentum pair and specification of the pair potential are issues in the future. The physics of topological surface states could be an another open issue.

Acknowledgements.
This work was supported by JSPS KAKENHI (No. JP20H01857), JSPS Core-to-Core Program (A. Advanced Research Networks), and JSPS and Russian Foundation for Basic Research under Japan-Russia Research Cooperative Program Grant No. 19-52-50026. S.K. was supported by JSPS KAKENHI Grants No. JP19K14612 and by the CREST project (JPMJCR16F2, JPMJCR19T2) from Japan Science and Technology Agency (JST).

Appendix A Table for integrals, summations and constants

Here we summarize formulas of integral and summation over the Matsubara frequency, used in this paper.

dxx2+a2=\displaystyle\int_{-\infty}^{\infty}\frac{dx}{x^{2}+a^{2}}= πa,dx(x2+a2)2=π2a3,\displaystyle\frac{\pi}{a},\quad\int_{-\infty}^{\infty}\frac{dx}{(x^{2}+a^{2})^{2}}=\frac{\pi}{2a^{3}}, (81)
Tωn1ωn2+a2=\displaystyle T\sum_{\omega_{n}}\frac{1}{\omega_{n}^{2}+a^{2}}= 12atanh(a2T),\displaystyle\frac{1}{2a}\tanh\left(\frac{a}{2T}\right), (82)
Tωnωn2(ωn2+a2)3=\displaystyle T\sum_{\omega_{n}}\frac{\omega_{n}^{2}}{(\omega_{n}^{2}+a^{2})^{3}}= 116a3[tanh(a2T)a2Tcosh2(a2T)+2(a2T)2tanh(a2T)cosh2(a2T)],\displaystyle\frac{1}{16a^{3}}\left[\tanh\left(\frac{a}{2T}\right)-\frac{a}{2T}\cosh^{-2}\left(\frac{a}{2T}\right)+2\left(\frac{a}{2T}\right)^{2}\frac{\tanh\left(\frac{a}{2T}\right)}{\cosh^{2}\left(\frac{a}{2T}\right)}\right], (83)
\displaystyle\approx 116a3tanh(a2T).\displaystyle\frac{1}{16a^{3}}\tanh\left(\frac{a}{2T}\right). (84)

The last equation is approximated in case TaT\ll a. The average of functions in Eq. (12) over the Fermi surface give constants,

e12(𝒌^)𝒌^=310,e22(𝒌^)𝒌^=18,e32(𝒌^)𝒌^=14,e42(𝒌^)𝒌^=732,e52(𝒌^)𝒌^=532,\displaystyle\left\langle e_{1}^{2}(\hat{\bm{k}})\right\rangle_{\hat{\bm{k}}}=\frac{3}{10},\quad\left\langle e_{2}^{2}(\hat{\bm{k}})\right\rangle_{\hat{\bm{k}}}=\frac{1}{8},\quad\left\langle e_{3}^{2}(\hat{\bm{k}})\right\rangle_{\hat{\bm{k}}}=\frac{1}{4},\quad\left\langle e_{4}^{2}(\hat{\bm{k}})\right\rangle_{\hat{\bm{k}}}=\frac{7}{32},\quad\left\langle e_{5}^{2}(\hat{\bm{k}})\right\rangle_{\hat{\bm{k}}}=\frac{5}{32}, (85)
e1(𝒌^)eλ1(𝒌^)𝒌^=e2(𝒌^)eλ2(𝒌^)𝒌^=e3(𝒌^)eλ3(𝒌^)𝒌^=0,e4(𝒌^)e5(𝒌^)𝒌^=332.\displaystyle\left\langle e_{1}(\hat{\bm{k}})\,e_{\lambda\neq 1}(\hat{\bm{k}})\right\rangle_{\hat{\bm{k}}}=\left\langle e_{2}(\hat{\bm{k}})\,e_{\lambda\neq 2}(\hat{\bm{k}})\right\rangle_{\hat{\bm{k}}}=\left\langle e_{3}(\hat{\bm{k}})\,e_{\lambda\neq 3}(\hat{\bm{k}})\right\rangle_{\hat{\bm{k}}}=0,\quad\left\langle e_{4}(\hat{\bm{k}})\,e_{5}(\hat{\bm{k}})\right\rangle_{\hat{\bm{k}}}=\frac{\sqrt{3}}{32}. (86)

Appendix B The Josephson effect in a spin-singlet/spin-triplet junction

We summarize the selection rule of the Josephson current between two S=1/2S=1/2 superconductors: one is in a spin-singlet state and the other is in a spin-triplet state on the basis of Ref. Brydon et al., 2013. This gives a fine reference to study the selection rule of two J=3/2J=3/2 superconductors. The Josephson junction consists of spin-triplet(singlet) superconductors on the left(right) side and a magnetically active insulator at z=0z=0 (Fig. 2).

Refer to caption
Figure 2: A schematic view of a Josephson junction consisting of a spin-triplet and singlet superconductor and an insulator.Brydon et al. (2013) The insulating barrier is localized at z=0z=0. For simplicity, the xx-direction is set to be parallel to the 𝒅\bm{d}-vector of the spin-triplet state.

The pair potentials are given by ΔL(𝒌)=i𝒅𝒌𝝈^σ^2\Delta^{L}(\bm{k})=i\bm{d}_{\bm{k}}\cdot\hat{\bm{\sigma}}\hat{\sigma}_{2} and ΔR(𝒌)=iΔs,𝒌σ^2eiϕ\Delta^{R}(\bm{k})=i\Delta_{s,\bm{k}}\hat{\sigma}_{2}e^{-i\phi}, respectively. σ^i\hat{\sigma}_{i} is the Pauli matrices in spin space and 𝒅𝒌\bm{d}_{\bm{k}} is the 𝒅\bm{d}-vector of the spin-triplet state. For the barrier potential, V^(𝒓)=(U0σ^0+𝑼M𝝈^)δ(z)\hat{V}(\bm{r})=\left(U_{0}\hat{\sigma}_{0}+\bm{U}_{M}\cdot\hat{\bm{\sigma}}\right)\delta(z) is given where U0U_{0} is the charge scattering potential and 𝑼M=UM(cosα𝒆^x+sinα𝒆^y)\bm{U}_{M}=U_{M}(\cos\alpha\hat{\bm{e}}_{x}+\sin\alpha\hat{\bm{e}}_{y}) is the magnetic scattering potential. α\alpha is the angle between the 𝒅\bm{d}-vector and the magnetization 𝑴\bm{M} in the insulator. Using the tunneling perturbation theory, Brydon et al. calculated the Josephson current II and showed

Icosαcosϕ.\displaystyle I\propto\cos\alpha\cos\phi. (87)

The lowest order term is proportional to cosϕ\cos\phi because the magnetic field breaks time-reversal symmetry. From cosα=(𝑼M𝒅)/(|𝑼M||𝒅|)\cos\alpha=(\bm{U}_{M}\cdot\bm{d})/(|\bm{U}_{M}||\bm{d}|), we find that the current is proportional to the scalar product of 𝒅\bm{d}-vector and 𝑼M\bm{U}_{M}.

Appendix C Odd-frequency pairing

Here we first derive the anomalous Green’s function in a superconductors in the presence of pseudospin-dependent dispersion. Then we show the derivation of the Josephson current. When a superconductor is described by Eq. (70), its anomalous Green’s function is calculated as

𝔽νλ(𝒌,iωn)\displaystyle\mathbb{F}_{\nu\lambda}(\bm{k},i\omega_{n}) =[η𝒌γν+(iωn+ξ𝒌+ελ(𝒌)γλ)(η𝒌γν)1(iωnξ𝒌ελ(𝒌)γλ)]1,\displaystyle=\left[-\eta_{\bm{k}}\gamma^{\nu}+\left(i\omega_{n}+\xi_{\bm{k}}+\varepsilon_{\lambda}(\bm{k})\,\gamma^{\lambda}\right)\left(\eta_{\bm{k}}\gamma^{\nu}\right)^{-1}\left(i\omega_{n}-\xi_{\bm{k}}-\varepsilon_{\lambda}(\bm{k})\,\gamma^{\lambda}\right)\right]^{-1},
=[{η𝒌2+ωn2+ξ𝒌2ελ2(𝒌)η𝒌γ02iωnελ(𝒌)η𝒌γλ}γν]1,\displaystyle=-\left[\left\{\frac{\eta_{\bm{k}}^{2}+\omega_{n}^{2}+\xi_{\bm{k}}^{2}-\varepsilon_{\lambda}^{2}(\bm{k})}{\eta_{\bm{k}}}\gamma^{0}-2i\omega_{n}\frac{\varepsilon_{\lambda}(\bm{k})}{\eta_{\bm{k}}}\gamma^{\lambda}\right\}\gamma^{\nu}\right]^{-1},
η𝒌η𝒌2+ωn2+ξ𝒌2γν2iωnελ(𝒌)η𝒌(η𝒌2+ωn2+ξ𝒌2)2γνγλ.\displaystyle\approx-\frac{\eta_{\bm{k}}}{\eta_{\bm{k}}^{2}+\omega_{n}^{2}+\xi_{\bm{k}}^{2}}\gamma^{\nu}-2i\omega_{n}\frac{\varepsilon_{\lambda}(\bm{k})\eta_{\bm{k}}}{(\eta_{\bm{k}}^{2}+\omega_{n}^{2}+\xi_{\bm{k}}^{2})^{2}}\gamma^{\nu}\gamma^{\lambda}. (88)

At the last line, we assumed |ελ(𝒌)||ε0(𝒌)||\varepsilon_{\lambda}(\bm{k})|\ll|\varepsilon_{0}(\bm{k})| for λ=15\lambda=1-5. The second term refers an odd-frequency pairing.

We construct a Josephson junction with the left superconductor described by Eq. (70) and the right superconductor described by

𝔼𝒌=ε0(𝒌)+ερ(𝒌)γρμ,𝔻𝒌=η𝒌γκ,\displaystyle\mathbb{E}_{\bm{k}}=\varepsilon_{0}(\bm{k})+\varepsilon_{\rho}(\bm{k})\,\gamma^{\rho}-\mu,\quad\mathbb{D}_{\bm{k}}=\eta_{\bm{k}}\,\gamma^{\kappa}, (89)

with ρκ\rho\neq\kappa. When an insulator is magnetically inactive i.e. 𝕋=t0γ0\mathbb{T}=t_{0}\gamma^{0}, the Josephson current becomes

I=\displaystyle I= 2et02sinφT𝒌,𝒑Tr[𝔽ν0(𝒌,iωn)𝔽ν0(𝒑,iωn)+δ𝔽νλ(𝒌,iωn)δ𝔽νλ(𝒑,iωn)]δ𝒌^,𝒑^\displaystyle 2e\,t_{0}^{2}\,\sin\varphi\,T{\sum_{\bm{k},\bm{p}}}^{\prime}\,\mathrm{Tr}\left[\mathbb{F}^{0}_{\nu}(\bm{k},-i\omega_{n})\,\mathbb{F}^{0}_{\nu}(\bm{p},i\omega_{n})+\delta\mathbb{F}_{\nu\lambda}(\bm{k},-i\omega_{n})\,\delta\mathbb{F}_{\nu\lambda}(\bm{p},i\omega_{n})\right]\delta_{\hat{\bm{k}},\hat{\bm{p}}} (90)
=\displaystyle= 8et02sinφTωn[𝒌,𝒑1(η𝒌R)2+ωn2+ξ𝒌21(η𝒑L)2+ωn2+ξ𝒑2η𝒌Rη𝒑Lδνκδ𝒌^,𝒑^\displaystyle 8e\,t_{0}^{2}\,\sin\varphi\,T\sum_{\omega_{n}}\left[{\sum_{\bm{k},\bm{p}}}^{\prime}\frac{1}{(\eta_{\bm{k}}^{R})^{2}+\omega_{n}^{2}+\xi_{\bm{k}}^{2}}\frac{1}{(\eta_{\bm{p}}^{L})^{2}+\omega_{n}^{2}+\xi_{\bm{p}}^{2}}\eta_{\bm{k}}^{R}\eta_{\bm{p}}^{L}\delta_{\nu\kappa}\delta_{\hat{\bm{k}},\hat{\bm{p}}}\right.
4ωn2𝒌,𝒑ερR(𝒌){(η𝒌R)2+ωn2+ξ𝒌2}2ελL(𝒑){(η𝒑L)2+ωn2+ξ𝒑2}2η𝒌Rη𝒑L(δλρδνκδλκδνρ)δ𝒌^,𝒑^]\displaystyle\left.-4\omega_{n}^{2}{\sum_{\bm{k},\bm{p}}}^{\prime}\frac{\varepsilon_{\rho}^{R}(\bm{k})}{\{(\eta_{\bm{k}}^{R})^{2}+\omega_{n}^{2}+\xi_{\bm{k}}^{2}\}^{2}}\frac{\varepsilon_{\lambda}^{L}(\bm{p})}{\{(\eta_{\bm{p}}^{L})^{2}+\omega_{n}^{2}+\xi_{\bm{p}}^{2}\}^{2}}\eta_{\bm{k}}^{R}\eta_{\bm{p}}^{L}(\delta_{\lambda\rho}\delta_{\nu\kappa}-\delta_{\lambda\kappa}\delta_{\nu\rho})\delta_{\hat{\bm{k}},\hat{\bm{p}}}\right] (91)

As shown in the equation, there are two cases where finite Josephson current is allowed, ν=κ\nu=\kappa, or λ=κ\lambda=\kappa and ν=ρ\nu=\rho simultaneously. The condition ν=κ\nu=\kappa corresponds to the selection rule I𝒒L𝒒RI\propto\bm{q}^{L}\cdot\bm{q}^{R}.

For the case ν=κ\nu=\kappa, the Josephson current is calculated as

I=\displaystyle I= 8et02sinφTωn[𝒌,𝒑1(η𝒌R)2+ωn2+ξ𝒌21(η𝒑L)2+ωn2+ξ𝒑2η𝒌Rη𝒑Lδ𝒌^,𝒑^\displaystyle 8e\,t_{0}^{2}\,\sin\varphi\,T\sum_{\omega_{n}}\left[{\sum_{\bm{k},\bm{p}}}^{\prime}\frac{1}{(\eta_{\bm{k}}^{R})^{2}+\omega_{n}^{2}+\xi_{\bm{k}}^{2}}\frac{1}{(\eta_{\bm{p}}^{L})^{2}+\omega_{n}^{2}+\xi_{\bm{p}}^{2}}\eta_{\bm{k}}^{R}\eta_{\bm{p}}^{L}\delta_{\hat{\bm{k}},\hat{\bm{p}}}\right.
4ωn2𝒌,𝒑ερR(𝒌){(η𝒌R)2+ωn2+ξ𝒌2}2ελL(𝒑){(η𝒑L)2+ωn2+ξ𝒑2}2η𝒌Rη𝒑Lδλρδ𝒌^,𝒑^]\displaystyle\left.-4\omega_{n}^{2}{\sum_{\bm{k},\bm{p}}}^{\prime}\frac{\varepsilon_{\rho}^{R}(\bm{k})}{\{(\eta_{\bm{k}}^{R})^{2}+\omega_{n}^{2}+\xi_{\bm{k}}^{2}\}^{2}}\frac{\varepsilon_{\lambda}^{L}(\bm{p})}{\{(\eta_{\bm{p}}^{L})^{2}+\omega_{n}^{2}+\xi_{\bm{p}}^{2}\}^{2}}\eta_{\bm{k}}^{R}\eta_{\bm{p}}^{L}\delta_{\lambda\rho}\delta_{\hat{\bm{k}},\hat{\bm{p}}}\right] (92)
=\displaystyle= πeRNsinφTωn[1(ηR)2+ωn21(ηL)2+ωn2η𝒌Rη𝒑L𝒌^\displaystyle\frac{\pi}{eR_{N}}\sin\varphi\,T\sum_{\omega_{n}}\left[\frac{1}{\sqrt{(\eta^{R})^{2}+\omega_{n}^{2}}}\frac{1}{\sqrt{(\eta^{L})^{2}+\omega_{n}^{2}}}\langle\eta_{\bm{k}}^{R}\eta_{\bm{p}}^{L}\rangle_{\hat{\bm{k}}}\right.
ωn21{(ηR)2+ωn2}3/21{(ηL)2+ωn2}3/2ερR(𝒌)ελL(𝒑)η𝒌Rη𝒑L𝒌^δλρ].\displaystyle\left.-\omega_{n}^{2}\frac{1}{\{(\eta^{R})^{2}+\omega_{n}^{2}\}^{3/2}}\frac{1}{\{(\eta^{L})^{2}+\omega_{n}^{2}\}^{3/2}}\langle\varepsilon_{\rho}^{R}(\bm{k})\varepsilon_{\lambda}^{L}(\bm{p})\eta_{\bm{k}}^{R}\eta_{\bm{p}}^{L}\rangle_{\hat{\bm{k}}}\delta_{\lambda\rho}\right]. (93)

If we assume ηR=ηL=Δ\eta^{R}=\eta^{L}=\Delta, the Josephson current is simplified as

I=\displaystyle I= πΔ2eRNtanh(Δ2T)[η𝒌Rη𝒌L𝒌^Δ2ερR(𝒌)ελL(𝒑)η𝒌Rη𝒑L𝒌^8Δ4δλρ]sinφ.\displaystyle\frac{\pi\Delta}{2eR_{N}}\tanh\left(\frac{\Delta}{2T}\right)\left[\frac{\langle\eta_{\bm{k}}^{R}\eta_{\bm{k}}^{L}\rangle_{\hat{\bm{k}}}}{\Delta^{2}}-\frac{\langle\varepsilon_{\rho}^{R}(\bm{k})\varepsilon_{\lambda}^{L}(\bm{p})\eta_{\bm{k}}^{R}\eta_{\bm{p}}^{L}\rangle_{\hat{\bm{k}}}}{8\Delta^{4}}\delta_{\lambda\rho}\right]\sin\varphi. (94)

The first term is equivalent to the Josephson current without the pseudospin-dependent dispersion, Eq. (67). The second term represents the Josephson current carried by induced odd-frequency pairs in the two superconductors. It is finite for λ=ρ\lambda=\rho, where symmetries of both superconductors are identical. Its negative sign is derived from Tr[γνγλγνγλ]=4\mathrm{Tr}[\gamma^{\nu}\gamma^{\lambda}\gamma^{\nu}\gamma^{\lambda}]=-4.

For λ=κ\lambda=\kappa and ν=ρ\nu=\rho, the Josephson junction consists of two superconductors described by Eq. (70) for the left and Eq. (77) for the right side. The Josephson current is calculated as

I=\displaystyle I= πeRNsinφTωn[ωn21{(ηR)2+ωn2}3/21{(ηL)2+ωn2}3/2ερR(𝒌)ελL(𝒑)η𝒌Rη𝒑L𝒌^]\displaystyle\frac{\pi}{eR_{N}}\sin\varphi\,T\sum_{\omega_{n}}\left[\omega_{n}^{2}\frac{1}{\{(\eta^{R})^{2}+\omega_{n}^{2}\}^{3/2}}\frac{1}{\{(\eta^{L})^{2}+\omega_{n}^{2}\}^{3/2}}\langle\varepsilon_{\rho}^{R}(\bm{k})\varepsilon_{\lambda}^{L}(\bm{p})\eta_{\bm{k}}^{R}\eta_{\bm{p}}^{L}\rangle_{\hat{\bm{k}}}\right] (95)
=\displaystyle= πΔ2eRNtanh(Δ2T)ερR(𝒌)ελL(𝒑)η𝒌Rη𝒑L𝒌^8Δ4sinφ.\displaystyle\frac{\pi\Delta}{2eR_{N}}\tanh\left(\frac{\Delta}{2T}\right)\frac{\langle\varepsilon_{\rho}^{R}(\bm{k})\varepsilon_{\lambda}^{L}(\bm{p})\eta_{\bm{k}}^{R}\eta_{\bm{p}}^{L}\rangle_{\hat{\bm{k}}}}{8\Delta^{4}}\,\sin\varphi. (96)

For the last line, we assumed ηR=ηL=Δ\eta^{R}=\eta^{L}=\Delta. The positive sign is from Tr[γνγλγλγν]=4\mathrm{Tr}[\gamma^{\nu}\,\gamma^{\lambda}\,\gamma^{\lambda}\,\gamma^{\nu}]=4.

References

  • Hasan and Kane (2010) M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
  • Qi and Zhang (2011) X.-L. Qi and S.-C. Zhang, Reviews of Modern Physics 83, 1057 (2011).
  • Tanaka et al. (2011) Y. Tanaka, M. Sato,  and N. Nagaosa, Journal of the Physical Society of Japan 81, 011013 (2011).
  • Ando (2013) Y. Ando, Journal of the Physical Society of Japan 82, 102001 (2013).
  • Ando and Fu (2015) Y. Ando and L. Fu, Annu. Rev. Condens. Matter Phys. 6, 361 (2015).
  • Sato and Fujimoto (2016) M. Sato and S. Fujimoto, Journal of the Physical Society of Japan 85, 072001 (2016).
  • Armitage et al. (2018) N. Armitage, E. Mele,  and A. Vishwanath, Reviews of Modern Physics 90, 015001 (2018).
  • Butch et al. (2011) N. P. Butch, P. Syers, K. Kirshenbaum, A. P. Hope,  and J. Paglione, Physical Review B 84, 220504 (2011).
  • Tafti et al. (2013) F. Tafti, T. Fujii, A. Juneau-Fecteau, S. R. de Cotret, N. Doiron-Leyraud, A. Asamitsu,  and L. Taillefer, Physical Review B 87, 184504 (2013).
  • Bay et al. (2012) T. Bay, T. Naka, Y. Huang,  and A. de Visser, Physical Review B 86, 064515 (2012).
  • Kim et al. (2018) H. Kim, K. Wang, Y. Nakajima, R. Hu, S. Ziemak, P. Syers, L. Wang, H. Hodovanets, J. D. Denlinger, P. M. Brydon, et al., Science advances 4, eaao4513 (2018).
  • Brydon et al. (2016) P. Brydon, L. Wang, M. Weinert,  and D. Agterberg, Physical review letters 116, 177001 (2016).
  • Boettcher and Herbut (2016) I. Boettcher and I. F. Herbut, Physical Review B 93, 205138 (2016).
  • Savary et al. (2017) L. Savary, J. Ruhman, J. W. Venderbos, L. Fu,  and P. A. Lee, Physical Review B 96, 214514 (2017).
  • Boettcher and Herbut (2018) I. Boettcher and I. F. Herbut, Physical review letters 120, 057002 (2018).
  • Agterberg et al. (2017) D. Agterberg, P. Brydon,  and C. Timm, Physical review letters 118, 127001 (2017).
  • Venderbos et al. (2018) J. W. Venderbos, L. Savary, J. Ruhman, P. A. Lee,  and L. Fu, Physical Review X 8, 011029 (2018).
  • Kawakami et al. (2018) T. Kawakami, T. Okamura, S. Kobayashi,  and M. Sato, Physical Review X 8, 041026 (2018).
  • Yu and Liu (2018) J. Yu and C.-X. Liu, Physical Review B 98, 104514 (2018).
  • Ghorashi et al. (2017) S. A. A. Ghorashi, S. Davis,  and M. S. Foster, Physical Review B 95, 144503 (2017).
  • Kobayashi et al. (2019) S. Kobayashi, A. Yamakage, Y. Tanaka,  and M. Sato, Phys. Rev. Lett. 123, 097002 (2019).
  • Josephson (1962) B. Josephson, Physics Letters 1, 251 (1962).
  • Mahan (1990) G. D. Mahan, Many-Particle Physics (Plenum Press, New York, 1990).
  • Luttinger (1956) J. Luttinger, Physical review 102, 1030 (1956).
  • Brydon et al. (2018) P. Brydon, D. Agterberg, H. Menke,  and C. Timm, Physical Review B 98, 224509 (2018).
  • Yang et al. (2016) W. Yang, Y. Li,  and C. Wu, Physical review letters 117, 075301 (2016).
  • Ambegaokar and Baratoff (1963) V. Ambegaokar and A. Baratoff, Physical Review Letters 10, 486 (1963).
  • Berezinskii (1974) V. L. Berezinskii, JETP Lett. 20, 287 (1974).
  • Black-Schaffer and Balatsky (2013) A. M. Black-Schaffer and A. V. Balatsky, Phys. Rev. B 88, 104514 (2013).
  • Asano and Sasaki (2015) Y. Asano and A. Sasaki, Phys. Rev. B 92, 224508 (2015).
  • Asano et al. (2011) Y. Asano, A. A. Golubov, Y. V. Fominov,  and Y. Tanaka, Phys. Rev. Lett. 107, 087001 (2011).
  • Suzuki and Asano (2014) S.-I. Suzuki and Y. Asano, Phys. Rev. B 89, 184508 (2014).
  • Fominov et al. (2015) Y. V. Fominov, Y. Tanaka, Y. Asano,  and M. Eschrig, Phys. Rev. B 91, 144514 (2015).
  • Mironov et al. (2012) S. Mironov, A. Mel’nikov,  and A. Buzdin, Phys. Rev. Lett. 109, 237002 (2012).
  • Triola et al. (2020) C. Triola, J. Cayao,  and A. M. Black-schaffer, Annalen der Physik 532, 1900298 (2020).
  • Ramires and Sigrist (2016) A. Ramires and M. Sigrist, Phys. Rev. B 94, 104501 (2016).
  • Sasaki et al. (2020) A. Sasaki, S. Ikegaya, T. Habe, A. A. Golubov,  and Y. Asano, Phys. Rev. B 101, 184501 (2020).
  • Brydon et al. (2013) P. Brydon, W. Chen, Y. Asano,  and D. Manske, Physical Review B 88, 054509 (2013).