This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Justification for zeta function regularization

F. R. Pratama.1 pratama@flex.phys.tohoku.ac.jp    M. Shoufie Ukhtary1,2    Riichiro Saito1 1Department of Physics, Tohoku University, Sendai 980-8578, Japan
2Research Center for Physics, Indonesian Institute of Sciences (LIPI), Tangerang Selatan 15314, Indonesia
Abstract

Using the fact that a finite sum of power series are given by the difference between two zeta functions, we justify the usage of the zeta function with a negative variable in physical problems to avoid the divergence of the infinite sum. We will show that in the case of magnetization of graphene, the zeta function with negative variable arises as a result of cut-off energy between two consecutive Landau levels. Furthermore, similar justification can be applied to the case of zero temperature Casimir force in parallel-plate geometry.

The Riemann zeta function Riemann (1859); Elizalde (2012, 2021), ζ(x)\zeta(x), gives a non-physical value for x0x\leqslant 0. For example, ζ(1)\zeta(-1) is given by

ζ(1)=1+2+3+4+=112\zeta(-1)=1+2+3+4+\cdots=-\frac{1}{12} (1)

in which infinite sum of positive integers gives a negative fraction. For a diverging summation that appears in physics, if we adopt zeta function like Eq. (1), we can solve the physics problem, which is called zeta function regularization. We usually hesitate to adopt the zeta function regularization. However, the non-physical values of zeta function, which can be understood mathematically by analytical continuation in the complex plane Riemann (1859), or by introducing a slowly decaying function in the diverging summation Tao (2013), works surprisingly well for explaining the experimentally observed results. Thus we need justification of zeta function regularization.

One of the well-known examples of the application of zeta function regularization in physics is the Casimir force Casimir (1948); Lamoreaux (1997); Klimchitskaya et al. (2009); Rodriguez et al. (2011); Sushkov et al. (2011), which is observed in the cavity between two metallic plates Bressi et al. (2002); Decca et al. (2007). The Casimir force between two perfectly conducting plates at zero temperature (T=0KT=0~{}\mathrm{K}) is given by zeta function Hawking (1977); Escobar et al. (2020) to regularize infinite summation of zero-point energy Dalvit et al. (2011), in which a slowly decaying function is introduced to avoid divergence in the summation Casimir (1948); Hawking (1977); Svaiter and Svaiter (1993); Escobar et al. (2020). Another example of zeta function regularization is magnetization of grapheneGhosal et al. (2007); Pratama et al. (2021), where the summation of the Landau levels (LLs) is diverging. Ghosal Ghosal et al. (2007) calculated magnetization of graphene at the zero temperature by adopting zeta function regularization to avoid the divergence of thermodynamic potential. Recently, we also have adopted the zeta function regularization for calculating magnetization of the Dirac fermion as a function of magnetic field, temperature, and energy band gap Pratama et al. (2021), which reproduces the observed experimental results Li et al. (2015). However, the zeta function regularization does not physically justify the reason why we can use the zeta function except for the fact that the calculated results reproduces the experimental results.

In this Letter, using the fact that a finite sum of power series can be represented by a difference between two zeta functions, we justify the zeta function regularization. The zeta functions appears only in the finite sum in the discussion. The present treatment can be generally used for any physics that has a divergence in the summation.

Magnetization of undoped graphene, MM is given by the derivative of thermodynamic potential per unit area as follows:

M(B)=ΔΩ(B)B,M(B)=-\frac{\partial\Delta\Omega(B)}{\partial B}, (2)

where ΔΩ(B)\Delta\Omega(B) is the difference of thermodynamic potentials at a finite magnetic field BB, Ω(B)\Omega(B), from that for B=0B=0, denoted by Ω(0)\Omega^{(0)}, as follows:

ΔΩ(B)Ω(B)Ω(0).\Delta\Omega(B)\equiv\Omega(B)-\Omega^{(0)}. (3)

Since Ω(0)\Omega^{(0)} is not a function of BB, we do not need to differentiate Ω(0)\Omega^{(0)} by BB in Eq. (2). If we adopt the divergent summation in Ω(B)\Omega(B) as a zeta function like Eq. (1), we obtain a finite value for Ω(B)\Omega(B), which corresponds to the zeta function regularization. The role of Ω(0)\Omega^{(0)} is to avoid the divergence of ΔΩ(B)\Delta\Omega(B) as a reference of energy. It is clear from Eq. (3) that ΔΩ(0)=0\Delta\Omega(0)=0. We will show that ΔΩ(B)\Delta\Omega(B) does not diverge for any value of BB, though Ω(B)\Omega(B) and Ω(0)\Omega^{(0)} diverge.

The LLs for graphene within the approximation of the linear energy dispersion is given byPratama et al. (2021)

ϵn=sgn(n)2|n|vFBsgn(n)|n|(B),\epsilon_{n}=\mathrm{sgn}(n)\sqrt{2|n|}\frac{\hbar v_{F}}{\ell_{B}}\equiv\mathrm{sgn}(n)\sqrt{|n|}\mathcal{E}(B), (4)

where β=1/(kBT)\beta=1/(k_{B}T) (kBk_{B} is the Boltzmann constant), B/(eB)\ell_{B}\equiv\sqrt{\hbar/(eB)} is the magnetic length, and 2vF/B\mathcal{E}\equiv\sqrt{2}\hbar v_{F}/\ell_{B} is the n=1n=1 LL energy. Let us first consider the case of strong field and low temperature (kBT\mathcal{E}\gg k_{B}T) in undoped graphene. Here, we only need to consider ϵn\epsilon_{n} with n0n\leqslant 0 for Ω(B)\Omega(B) as follows:

Ω(B)=4βeB2hln2+4eBhn=1ϵnΩS(B)CBn=1n,\begin{split}\Omega(B)&=-\frac{4}{\beta}\frac{eB}{2h}\mathrm{ln}~{}2+\frac{4eB}{h}\sum_{n=-\infty}^{-1}\epsilon_{n}\\ &\equiv\Omega_{S}(B)-C_{B}\sum_{n=1}^{\infty}\sqrt{n},\end{split} (5)

where CBC_{B} is defined by CB=2/(πB2)(B)C_{B}=2/(\pi{\ell_{B}}^{2})\mathcal{E}(B) and has the unit of energy density [J/m2\mathrm{J/m^{2}}]. ΩS\Omega_{S} is the contribution of the zeroth LL to Ω(B)\Omega(B). ΩS\Omega_{S} is associated with with entropy Pratama et al. (2021) because of the linear dependence to TT. For Ω(0)\Omega^{(0)}, we need to integrate states of electron at the valence band as follows:

Ω(0)=0ϵD(ϵ)𝑑ϵ,\Omega^{(0)}=\int_{-\infty}^{0}\epsilon D(\epsilon)d\epsilon, (6)

where ϵ=vFk\epsilon=\hbar v_{F}k, and D(ϵ)=(2|ϵ|/π)/(vF)2D(\epsilon)=(2|\epsilon|/\pi)/(\hbar v_{F})^{2} are the energy dispersion and the density of states per unit area of graphene in the absence of the magnetic field, respectively.

Refer to caption
Figure 1: Schematic definitions of Ω(0)(B,m)\Omega^{(0)}(B,m), Ω(B,m)\Omega(B,m), and ΩS\Omega_{S} for kBT\mathcal{E}\gg k_{B}T, where the cut-off index c=(m+1/2)c=-(m+1/2) for Ω(0)(B,m)\Omega^{(0)}(B,m). In the case of kBT\mathcal{E}\ll k_{B}T, we also include electronic states at the conduction bands, where the limits of integration for Ω(0)(B,m)\Omega^{(0)}(B,m) is ϵmxϵϵm+x\epsilon_{-m-x}\leqslant\epsilon\leqslant\epsilon_{m+x}. Similarly, Ω(B,m)\Omega(B,m) includes LLs mnm{-m}\leqslant n\leqslant{m}.

Since ΔΩ(B)\Delta\Omega(B) has one of mathematically indeterminate form such as ΔΩ(B)=\Delta\Omega(B)=\infty-\infty, we can not say that ΔΩ(B)\Delta\Omega(B) gives a finite value. In order to avoid the divergence of Ω(B)\Omega(B) and Ω(0)\Omega^{(0)}, let us consider the energy cut-off for Ω(B)\Omega(B) up to the mm-th LL. The finite number of summation on n=1n=1 to mm in the second term of Eq. (5) is given by the zeta functions as follows:

Ω(B,m)ΩS(B)CBn=1mn=ΩS(B)CB{ζ(12)ζ(12,m+1)}\begin{split}\Omega(B,m)&\equiv\Omega_{S}(B)-C_{B}\sum_{n=1}^{m}\sqrt{n}\\ &=\Omega_{S}(B)-C_{B}\Big{\{}\zeta\Big{(}-\frac{1}{2}\Big{)}-\zeta\Big{(}-\frac{1}{2},m+1\Big{)}\Big{\}}\end{split} (7)

where ζ(s)\zeta(s) and ζ(s,a)\zeta(s,a) denote Riemann’s and Hurwitz’s zeta functions, respectively.Olver et al. (2010). The second term of Eq. (7) can be checked to be correct for any integer values of mm by numerical calculation. Practically, it is sufficient to check up to m=10,000m=10,000.

For m1m\gg 1, we adopted the asymptotic expansion of ζ(1/2,m+1)\zeta(-1/2,m+1) as follows Olver et al. (2010):

ζ(12,m+1)=23m3212m12124m12+𝒪(m32)\displaystyle\zeta\Big{(}-\frac{1}{2},m+1\Big{)}=-\frac{2}{3}m^{\frac{3}{2}}-\frac{1}{2}m^{\frac{1}{2}}-\frac{1}{24}m^{-\frac{1}{2}}+\mathcal{O}(m^{-\frac{3}{2}}) (8)

Further, we take an integration of Eq. (6) with an energy cut-off ϵc\epsilon_{c} for Ω(0)\Omega^{(0)}, where c(m+x)c\equiv-(m+x) as illustrated by Fig. 1. When we choose x=1/2x=1/2, the finite integral of Ω(0)\Omega^{(0)} from ϵc\epsilon_{c} to 0 becomes BB dependent because of the BB dependece of ϵc\epsilon_{c} as follows,

Ω(0)(B,m)ϵc0ϵD(ϵ)𝑑ϵ=23CB(m+12)3/2.\Omega^{(0)}(B,m)\equiv\int_{\epsilon_{c}}^{0}\epsilon D(\epsilon)d\epsilon=-\frac{2}{3}C_{B}\left(m+\frac{1}{2}\right)^{3/2}.\\ (9)

The factor (m+1/2)3/2(m+1/2)^{3/2} can be expanded by

(m+12)3/2=m3/2+34m1/2+332m1/2+𝒪(m3/2)\Big{(}m+\frac{1}{2}\Big{)}^{3/2}=m^{3/2}+\frac{3}{4}m^{1/2}+\frac{3}{32}m^{-1/2}+\mathcal{O}(m^{-3/2}) (10)

Using Eqs.  (7) to (10), we obtain ΔΩ(B,m)Ω(B,m)Ω(0)(B,m)\Delta\Omega(B,m)\equiv\Omega(B,m)-\Omega^{(0)}(B,m) as follows:

ΔΩ(B,m)=\displaystyle\Delta\Omega(B,m)= ΩS(B)CB[ζ(12)148m1/2\displaystyle\Omega_{S}(B)-C_{B}\Bigg{[}\zeta\Big{(}-\frac{1}{2}\Big{)}-\frac{1}{48}m^{-1/2}
+𝒪(m3/2)].\displaystyle+\mathcal{O}(m^{-3/2})\Bigg{]}. (11)

Since the two terms that are proportional to m3/2m^{3/2} and m1/2m^{1/2} are cancelled to each other, the second term of ΔΩ(B,m)\Delta\Omega(B,m) are converged to a finite value of CBζ(1/2)-C_{B}\zeta(-1/2) in the limit of mm\to\infty. From Eq. (11), we obtain that MM of graphene for kBT\mathcal{E}\gg k_{B}T is given by M(B)=𝒞1T+𝒞2BM(B)=\mathcal{C}_{1}T+\mathcal{C}_{2}\sqrt{B}, where 𝒞1\mathcal{C}_{1} and 𝒞2\mathcal{C}_{2} are constants Pratama et al. (2021); Li et al. (2015).

It is important to note that we do not use zeta function regularization in Eq. (11). The value of zeta function ζ(1/2)\zeta(-1/2) appears in the finite summation in Eq. (7). The role of Ω(0)(B,m)\Omega^{(0)}(B,m) is to cancel the terms proportional to m3/2m^{3/2} and m1/2m^{1/2} as a reference of energy. Thus we can justify the zeta function regularization for Ω(B)\Omega(B) in which we do not need to consider Ω(0)\Omega^{(0)} in Eq. (2). It should be mentioned that the selection of x=1/2x=1/2 in Eq. (9) is essential to cancel the m3/2m^{3/2} and m1/2m^{1/2} terms. Generally, xx depends on mm, which we discuss next.

Now, let us consider the case of weak-BB and high-TT limit for MM (kBT\mathcal{E}\ll k_{B}T). In this limit, we need to consider the LLs from both valence and conduction bands. The Ω(B,m)\Omega(B,m) and Ω(0,m)\Omega(0,m) for kBT\mathcal{E}\ll k_{B}T are given by [See derivation in Section S1 B of the supplemental material]

Ω(B,m)=2ΩS(μ)+=0C[ζ()ζ(,m+1)]\begin{split}\Omega(B,m)&=2\Omega_{S}^{(\mu)}+\sum_{\ell=0}^{\infty}C_{\ell}\left[\zeta(-\ell)-\zeta(-\ell,m+1)\right]\end{split} (12)

and

Ω(0)(B,m)==0C(m+x)+1+1\begin{split}\Omega^{(0)}(B,m)&=\sum_{\ell=0}^{\infty}C_{\ell}\frac{(m+x)^{\ell+1}}{\ell+1}\end{split} (13)

where ΩS(μ)=ln[1+exp(βμ)]/(πB2β)\Omega_{S}^{(\mu)}=\ln{[1+\exp{(\beta\mu)}]}/(\pi{\ell_{B}}^{2}\beta) and CC_{\ell} is defined by

C=4πB2β(β)2(2)!Li12(eβμ),\displaystyle C_{\ell}=\frac{4}{\pi{\ell_{B}}^{2}\beta}\frac{(\beta\mathcal{E})^{2\ell}}{(2\ell)!}\mathrm{Li}_{1-2\ell}(-e^{\beta\mu}), (14)

where Lis(x)\mathrm{Li}_{s}(x) is polylogarithmic function. Therefore, the ΔΩ(B,m)\Delta\Omega(B,m) is given by a sum on \ell,

ΔΩ(B,m)=\displaystyle\Delta\Omega(B,m)= 2ΩS(μ)+=0C[ζ()\displaystyle~{}2\Omega_{S}^{(\mu)}+\sum_{\ell=0}^{\infty}C_{\ell}\Big{[}\zeta(-\ell)
ζ(,m+1)(m+x)+1+1].\displaystyle-\zeta(-\ell,m+1)-\frac{(m+x)^{\ell+1}}{\ell+1}\Big{]}. (15)

Similar to Eq. (8), we expand ζ(,m+1)\zeta(-\ell,m+1) in terms of mm as follows Olver et al. (2010):

ζ(,m+1)\displaystyle\zeta(-\ell,m+1)\sim m+1+112m\displaystyle-\frac{m^{\ell+1}}{\ell+1}-\frac{1}{2}m^{\ell}
+k=1(+2k22k1)2k2km+12k,\displaystyle+\sum_{k=1}^{\infty}\begin{pmatrix}-\ell+2k-2\\ 2k-1\end{pmatrix}\frac{\mathcal{B}_{2k}}{2k}m^{\ell+1-2k}, (16)

where 2k\mathcal{B}_{2k} is the Bernoulli number. In order to cancel the terms mαm^{\alpha} for α0\alpha\geqslant 0 while keeping ζ()\zeta(-\ell), we obtain xx as a function of mm in the finite region of 0<x(m)<10<x(m)<1 that satisfies the following equation for each \ell, (=0,1,2,)\ell=0,1,2,\ldots),

j=0(+1j)mj+1x+1j12m\displaystyle\sum_{j=0}^{\ell}\begin{pmatrix}\ell+1\\ j\end{pmatrix}\frac{m^{j}}{\ell+1}x^{\ell+1-j}-\frac{1}{2}m^{\ell}
+k=1+12(+2k22k1)2k2km+12k\displaystyle+\sum_{k=1}^{\lfloor\frac{\ell+1}{2}\rfloor}\begin{pmatrix}-\ell+2k-2\\ 2k-1\end{pmatrix}\frac{\mathcal{B}_{2k}}{2k}m^{\ell+1-2k} =0.\displaystyle=0. (17)

If there exists a common solution of x(m)x(m) for all \ell’s in Eq. (17), the zeta function regularization would be justified, which is not a trivial problem. As shown in Supplemental materials, the solutions of x(m)x(m) for each \ell are not the same. However, we always find any x(m)x(m) in the region of 0<x(m)<10<x(m)<1 for all \ell’s and if we take a limit of mm\rightarrow\infty, the solutions of x(m)x(m) for all \ell’s are converging as follows

x(m)12forall,m,\displaystyle x(m)\rightarrow\frac{1}{2}~{}~{}~{}\mathrm{for~{}all}~{}\ell,~{}~{}m\rightarrow\infty, (18)

[See Eqs. (S7) - (S16) of the supplemental material]. The meaning of Eq. (18) is that we can have the common xx in the limit of mm\to\infty. By using Eq. (15), magnetization of graphene for kBT\mathcal{E}\ll k_{B}T is given by a linear response M(B)(B/T)sech2(βμ/2)M(B)\propto-(B/T)\mathrm{sech}^{2}(\beta\mu/2) whose result Pratama et al. (2021) is consistent with the formula of orbital susceptibilityMcClure (1956).

Refer to caption
Figure 2: The illustration for V(d)V(d) and V(0)V^{(0)} given in Eq. (20). The summation for V(d)V(d) is taken up from n=0n=0 to mm, while the integration for V(0)V^{(0)} is taken from n=0n=0 to m+xm+x, which is shown by the shaded region, to cancel the divergent terms in V(d)V(d).

Now let us discuss the justification for the case of the Casimir force. The Casimir force is given by the derivative of the summation of zero-point energy of electro-magnetic wave between two metallic plates separated by a distance dd,

FC=ΔV(d)d,F_{\textrm{C}}=-\frac{\partial\Delta V(d)}{\partial d}, (19)

Similar to Eq. (2), the summation of zero-point energy is given by ΔV(d)V(d)V(0)\Delta V(d)\equiv V(d)-V^{(0)}, where V(d)V(d) is the summation of zero-point energy when dd is sufficiently small compared with the one edge of the plates, LL. V(0)V^{(0)} is the reference energy of the vacuum. Similar to Ω(0)\Omega^{(0)}, the role of V(0)V^{(0)} is to avoid the divergence for obtaining FCF_{\textrm{C}}. The ΔV(d)\Delta V(d) is expressed by [See Section S2 of the supplemental material for more detail derivation],

ΔV(d)\displaystyle\Delta V(d) =V(d)V(0)\displaystyle=V(d)-V^{(0)}
=Cd3(n=0mn30m+x𝑑nn3),\displaystyle=-\frac{C}{d^{3}}\left(\sum\limits_{n=0}^{m}n^{3}-\int\limits_{0}^{m+x}dn~{}n^{3}\right), (20)

where constant CC is given by,

C=L2π2c6.\displaystyle C=\frac{L^{2}\pi^{2}\hbar c}{6}. (21)

In Fig. 2, we illustrate for the summation in V(d)V(d) and the integration in V(0)V^{(0)}, which is given by the shaded region. Similar to the cases of magnetization, we use the cut-off index mm in the summation and integration of Eq. (20). The xx in the cut-off for integration in Eq. (20) is determined so that the ΔV\Delta V does not diverge for large mm. Similar with the case of magnetization, we can consider the finite summation of Eq. (20) as the subtraction of the two zeta functions as follows:

n=0mn3\displaystyle\sum\limits_{n=0}^{m}n^{3} =ζ(3)ζ(3,m+1)\displaystyle=\zeta(-3)-\zeta(-3,m+1)
=ζ(3)+m44+m32+m22,\displaystyle=\zeta(-3)+\frac{m^{4}}{4}+\frac{m^{3}}{2}+\frac{m^{2}}{2}, (22)

where Eq. (22) is obtained when we use the fact that mm\rightarrow\infty in evaluating the ζ(3,m+1)\zeta(-3,m+1). However, the divergent terms in V(d)V(d) and V(0)V^{(0)} are cancelled to each other when we select x=m+m1+1/m1/2+𝒪(m1)x=-m+m\sqrt{1+1/m}\approx 1/2+\mathcal{O}(m^{-1}). In order to show how ΔV(d)\Delta V(d) is converged in the limit of mm\to\infty, the xx is expanded for 1/m11/m\ll 1 up to fourth order [See Eq. (S23) of the supplemental material]. Finally we get ΔV(d)\Delta V(d) as follows:

ΔV(d)=Cd3[ζ(3)+7256m+𝒪(m2)],\displaystyle\Delta V(d)=-\frac{C}{d^{3}}\left[\zeta(-3)+\frac{7}{256m}+\mathcal{O}\left({m^{-2}}\right)\right], (23)

where the terms in the bracket converge to ζ(3)\zeta(-3) for increasing mm. Therefore, the FCF_{\textrm{C}} is obtained from Eq. (19) as follows:

FC=3Cd4ζ(3),\displaystyle F_{\textrm{C}}=-\frac{3C}{d^{4}}\zeta(-3), (24)

where ζ(3)=1/120\zeta(-3)=1/120. Thus, the two values of zeta functions in Eq. (22) has a physical meaning of the force. Once again, we do not use the zeta function regularization for obtaining the Casimir force, instead we consider a finite summation on n3n^{3} in Eq. (22).

It is noted that the energies are measured from reference energies in the both cases of magnetization ΔΩ\Delta\Omega and Casimir effect ΔV\Delta V. The reference energies are expressed by integration. In the Section S3 of the supplemental material, we also justify the zeta-function regularization when we use the definition of differential coefficient at a finite BB

M(B)=Ω(B)B|B=limδB0Ω(B+δB)Ω(B)δB.M(B)=-\left.\frac{\partial\Omega(B)}{\partial B}\right|_{B}=-\lim_{\delta B\to 0}\frac{\Omega(B+\delta B)-\Omega(B)}{\delta B}. (25)

We can show that the ΔΩ(B)\Delta\Omega(B) (or ΔV(d)\Delta V(d)) also converge to the corresponding zeta function by similar treatment.

In conclusion, zeta function regularization is justified by using the finite summation of energy up to finite discrete number mm that is subtracted by the reference energy. The zeta function appears as the remaining term when we subtract two diverging energies. The present treatment can be generally applied for any divergent summation in physics, which should be useful for understanding the zeta function regularization.

FRP acknowledges MEXT scholarship. MSU and RS acknowledge JSPS KAKENHI Grant Number JP18H01810.

References

  • Riemann (1859) B. Riemann, Ges. Math. Werke und Wissenschaftlicher Nachlaß 2, 145 (1859).
  • Elizalde (2012) E. Elizalde, Ten physical applications of spectral zeta functions, Vol. 855 (Springer, 2012).
  • Elizalde (2021) E. Elizalde, Universe 7, 5 (2021).
  • Tao (2013) T. Tao, Compactness and contradiction (American Mathematical Society Providence, RI, 2013).
  • Casimir (1948) H. B. Casimir, in Proc. Kon. Ned. Akad. Wet., Vol. 51 (1948) p. 793.
  • Lamoreaux (1997) S. K. Lamoreaux, Physical Review Letters 78, 5 (1997).
  • Klimchitskaya et al. (2009) G. Klimchitskaya, U. Mohideen,  and V. Mostepanenko, Reviews of Modern Physics 81, 1827 (2009).
  • Rodriguez et al. (2011) A. W. Rodriguez, F. Capasso,  and S. G. Johnson, Nature photonics 5, 211 (2011).
  • Sushkov et al. (2011) A. Sushkov, W. Kim, D. Dalvit,  and S. Lamoreaux, Nature Physics 7, 230 (2011).
  • Bressi et al. (2002) G. Bressi, G. Carugno, R. Onofrio,  and G. Ruoso, Physical review letters 88, 041804 (2002).
  • Decca et al. (2007) R. Decca, D. López, E. Fischbach, G. Klimchitskaya, D. Krause,  and V. Mostepanenko, Physical Review D 75, 077101 (2007).
  • Hawking (1977) S. W. Hawking, in Euclidean quantum gravity (World Scientific, 1977) pp. 114–129.
  • Escobar et al. (2020) C. Escobar, E. Chan-López,  and A. Martín-Ruiz, Physical Review D 101, 046023 (2020).
  • Dalvit et al. (2011) D. Dalvit, P. Milonni, D. Roberts,  and F. Da Rosa, Casimir physics, Vol. 834 (Springer, 2011).
  • Svaiter and Svaiter (1993) B. Svaiter and N. Svaiter, Physical Review D 47, 4581 (1993).
  • Ghosal et al. (2007) A. Ghosal, P. Goswami,  and S. Chakravarty, Physical Review B 75, 115123 (2007).
  • Pratama et al. (2021) F. Pratama, M. S. Ukhtary,  and R. Saito, Physical Review B 103, 245408 (2021).
  • Li et al. (2015) Z. Li, L. Chen, S. Meng, L. Guo, J. Huang, Y. Liu, W. Wang,  and X. Chen, Physical Review B 91, 094429 (2015).
  • Olver et al. (2010) F. W. Olver, D. W. Lozier, R. F. Boisvert,  and C. W. Clark, NIST handbook of mathematical functions hardback and CD-ROM (Cambridge university press, 2010).
  • McClure (1956) J. McClure, Physical Review 104, 666 (1956).