This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Kac-Ward solution of the 2D classical and 1D quantum Ising models

Georgios Athanasopoulos Department of Mathematics, University of Warwick, Coventry, CV4 7AL, United Kingdom Georgios.Athanasopoulos@warwick.ac.uk  and  Daniel Ueltschi Department of Mathematics, University of Warwick, Coventry, CV4 7AL, United Kingdom daniel@ueltschi.org
Abstract.

We give a rigorous derivation of the free energy of (i) the classical Ising model on the triangular lattice with translation-invariant coupling constants, and (ii) the one-dimensional quantum Ising model. We use the method of Kac and Ward. The novel aspect is that the coupling constants may have negative signs. We describe the logarithmic singularity of the specific heat of the classical model and the validity of the Cimasoni–Duminil-Copin–Li formula for the critical temperature. We also discuss the quantum phase transition of the quantum model.

1991 Mathematics Subject Classification:
82B05; 82B20; 82B23
© 2024 by the authors. This paper may be reproduced, in its entirety, for non-commercial purposes.

1. Introduction

Onsager’s calculation in 1944 of the free energy of the Ising model on the square lattice was a remarkable achievement [22]. It helped to characterise the nature of the phase transition and yielded some critical exponents. Onsager’s method was algebraic in nature and was simplified by Kaufman [17]. The formula for the Ising free energy on the triangular lattice was first found by Houtappel [10] in 1950; he used a simplified version of Kaufman’s method with more elementary group theory. Further works on the triangular lattice (or its dual, the hexagonal lattice) include Wannier [29], and Husimi and Syozi [11, 12].

After the work of Onsager and Kaufman, people found two alternate approaches: combinatorial and fermionic. The former was proposed in 1952 by Kac and Ward [14]; it was later extended by Kasteleyn who noted the connection with dimer systems [16] (see also Temperley and Fisher [28]). Potts [24] and Stephenson [26] used the Kac-Ward method on the triangular lattice, for the free energy and for correlation functions. The fermionic method was proposed in 1964 by Schultz, Mattis, and Lieb [25].

In this article we use the Kac-Ward approach. It consists of two parts. First is a remarkable identity that relates the partition function of the Ising model to (the square-root of) the determinant of a suitable matrix; this holds for arbitrary planar graphs. Second, one uses the Fourier transform to block-diagonalise the matrix so as to obtain its determinant. The latter step involves a “mild” modification of the matrix to make it periodic; this mild step has been used over the years without mathematical justification. Only recently, careful analyses have been proposed by Kager, Lis, and Meester [15] (see [21] for a clear description) and by Aizenman and Warzel [2] (who elucidate the connection to the graph zeta function). These analyses are restricted to nonnegative coupling constants. Another line of research is the determination of the critical temperature for general two-periodic planar graphs by Li [20] and Cimasoni and Duminil-Copin [6]; this uses the results of Kenyon, Okounkov and Sheffield [18] for dimer systems.

The main goal of this article is to extend the Kac-Ward method to the case of (translation-invariant) coupling constants of arbitrary signs. We work on the triangular lattice, which is the simplest case of frustrated systems with translation-invariant coupling constants. We start with the Cimasoni extension of the Kac-Ward formula to “faithful projections” of non-planar graphs [5] (see also Aizenman and Warzel [2] for a clear exposition). We use it for the torus {1,,L}per×{1,,M}per\{1,\dots,L\}_{\rm per}\times\{1,\dots,M\}_{\rm per} with periodic boundary conditions. The main difficulties involve the non-planarity of the graph. We prove that these difficulties vanish in the limit LL\to\infty for fixed MM. Then we can use the Fourier transform and we obtain the free energy formula for the infinite cylinder ×{1,,M}per{\mathbb{Z}}\times\{1,\dots,M\}_{\rm per}. The Onsager-Houtappel formula immediately follows by taking the limit MM\to\infty.

As is well-known, the exact form of the free energy allows to establish the occurrence of a phase transition characterised by the divergence of the specific heat (the second derivative of the free energy with respect to the temperature). We discuss cases where this phase transition occurs, or fails to occur.

Our result for cylinders allows us to consider the one-dimensional quantum Ising model, whose free energy was first calculated in 1970 by Pfeuty [23]. We refer to [9, 4, 13, 7, 3, 19, 27] for recent studies. The quantum Ising model can be mapped to a 2D classical Ising model in the limit where the extra dimension becomes continuous. We also discuss the occurrence of a “quantum phase transition”.

The paper is organised as follows: We state our main theorem about the free energy of the Ising model on triangular lattices in Section 2.1. We then discuss the possibility of a phase transition in the form of logarithmic singularity of the specific heat in Section 2.2. In Section 2.3 we consider the special case where two coupling constants are equal; we show that the Cimasoni–Duminil-Copin–Li formula (see Eq. (2.20)) may yield the correct critical temperature even when the couplings are not all positive. The derivation of the free energy is described in Section 3. The quantum Ising model is discussed in Section 4; we describe the quantum phase transition at the end of the section.

2. The classical Ising model on the triangular lattice

2.1. The free energy

We view the triangular lattice as a square lattice with additional North-East edges. Let L,ML,M\in{\mathbb{N}}. Let 𝕋L{\mathbb{T}}_{L} be the torus of LL sites, 𝕋LL{\mathbb{T}}_{L}\simeq{\mathbb{Z}}\setminus L{\mathbb{Z}}, and let 𝕋L,M{\mathbb{T}}_{L,M} the two-dimensional torus

𝕋L,M=𝕋L×𝕋M.{\mathbb{T}}_{L,M}={\mathbb{T}}_{L}\times{\mathbb{T}}_{M}. (2.1)

We let L,M=L,MhorL,MverL,Mobl{\mathcal{E}}_{L,M}={\mathcal{E}}_{L,M}^{\rm hor}\cup{\mathcal{E}}_{L,M}^{\rm ver}\cup{\mathcal{E}}_{L,M}^{\rm obl} denote the set of edges of 𝕋L,M{\mathbb{T}}_{L,M} where

L,Mhor={{x,x+e1}:x𝕋L,M}\displaystyle{\mathcal{E}}_{L,M}^{\rm hor}=\bigl{\{}\{x,x+e_{1}\}:x\in{\mathbb{T}}_{L,M}\bigr{\}}\qquad (horizontal edges)
L,Mver={{x,x+e2}:x𝕋L,M}\displaystyle{\mathcal{E}}_{L,M}^{\rm ver}=\bigl{\{}\{x,x+e_{2}\}:x\in{\mathbb{T}}_{L,M}\bigr{\}}\qquad (vertical edges)
L,Mobl={{x,x+e1+e2}:x𝕋L,M}\displaystyle{\mathcal{E}}_{L,M}^{\rm obl}=\bigl{\{}\{x,x+e_{1}+e_{2}\}:x\in{\mathbb{T}}_{L,M}\bigr{\}}\qquad (oblique North-East edges)

This is illustrated in Fig. 1. Let J1,J2,J3J_{1},J_{2},J_{3}\in{\mathbb{R}} be three parameters; we define the coupling constants (Je)eL,M(J_{e})_{e\in{\mathcal{E}}_{L,M}} to be

Je={J1if eL,Mhor,J2if eL,Mver,J3if eL,Mobl.J_{e}=\begin{cases}J_{1}&\text{if }e\in{\mathcal{E}}_{L,M}^{\rm hor},\\ J_{2}&\text{if }e\in{\mathcal{E}}_{L,M}^{\rm ver},\\ J_{3}&\text{if }e\in{\mathcal{E}}_{L,M}^{\rm obl}.\end{cases} (2.2)
Refer to caption
Figure 1. Our lattice is the torus 𝕋L,M{\mathbb{T}}_{L,M} with horizontal, vertical, and North-East edges.

A spin configuration σ\sigma is an assignment of a classical spin ±1\pm 1 to each site of 𝕋L,M{\mathbb{T}}_{L,M}, σ=(σx)x𝕋L,M{1,+1}𝕋L,M\sigma=(\sigma_{x})_{x\in{\mathbb{T}}_{L,M}}\in\{-1,+1\}^{{\mathbb{T}}_{L,M}}. The Ising hamiltonian is the function of spin configurations given by

HL,M(σ)=e={x,y}L,MJeσxσy.H_{L,M}(\sigma)=-\sum_{e=\{x,y\}\in{\mathcal{E}}_{L,M}}J_{e}\sigma_{x}\sigma_{y}. (2.3)

The partition function is

ZL,M(J1,J2,J3)=σeHL,M(σ)Z_{L,M}(J_{1},J_{2},J_{3})=\sum_{\sigma}\,{\rm e}^{-H_{L,M}(\sigma)}\, (2.4)

and the finite-volume free energy density is

fL,M(J1,J2,J3)=1LMlogZL,M(J1,J2,J3).f_{L,M}(J_{1},J_{2},J_{3})=-\frac{1}{LM}\log Z_{L,M}(J_{1},J_{2},J_{3}). (2.5)

We consider two infinite-volume limits, to the infinite cylinder and to the plane. Namely, we define

fM(J1,J2,J3)=limLfL,M(J1,J2,J3);f(J1,J2,J3)=limLfL,L(J1,J2,J3).\begin{split}f_{M}(J_{1},J_{2},J_{3})&=\lim_{L\to\infty}f_{L,M}(J_{1},J_{2},J_{3});\\ f(J_{1},J_{2},J_{3})&=\lim_{L\to\infty}f_{L,L}(J_{1},J_{2},J_{3}).\end{split} (2.6)

As is well-known we can consider arbitrary van Hove sequences of increasing domains, see e.g. [8], and we also get f(J1,J2,J3)f(J_{1},J_{2},J_{3}). The next theorem gives the free energy for the cylinder and for the two-dimensional lattice. The cylinder formula turns out to be convenient and it is useful in the calculation of the 1D quantum Ising model.

Theorem 2.1.

For any J1,J2,J3J_{1},J_{2},J_{3}\in{\mathbb{R}} we have (with k3=k1+k2k_{3}=k_{1}+k_{2}):

  • (a)

    On the cylinder ×𝕋M{\mathbb{Z}}\times{\mathbb{T}}_{M}:

    fM(J1,J2,J3)=log214πMππdk1k2𝕋~Mlog[i=13cosh(2Ji)+i=13sinh(2Ji)i=13sinh(2Ji)coski]f_{M}(J_{1},J_{2},J_{3})=-\log 2-\frac{1}{4\pi M}\int_{-\pi}^{\pi}{\rm d}k_{1}\sum_{k_{2}\in\widetilde{{\mathbb{T}}}_{M}}\log\biggl{[}\prod_{i=1}^{3}\cosh(2J_{i})+\prod_{i=1}^{3}\sinh(2J_{i})\\ -\sum_{i=1}^{3}\sinh(2J_{i})\cos k_{i}\biggr{]}

    where 𝕋~M=2πM𝕋M+πM\widetilde{{\mathbb{T}}}_{M}=\frac{2\pi}{M}{\mathbb{T}}_{M}+\frac{\pi}{M}.

  • (b)

    On the square or triangular lattice:

    f(J1,J2,J3)=log218π2[π,π]2dk1dk2log[i=13cosh(2Ji)+i=13sinh(2Ji)i=13sinh(2Ji)coski].f(J_{1},J_{2},J_{3})=-\log 2-\frac{1}{8\pi^{2}}\int_{[-\pi,\pi]^{2}}{\rm d}k_{1}{\rm d}k_{2}\log\biggl{[}\prod_{i=1}^{3}\cosh(2J_{i})+\prod_{i=1}^{3}\sinh(2J_{i})\\ -\sum_{i=1}^{3}\sinh(2J_{i})\cos k_{i}\biggr{]}.

Setting J3=0J_{3}=0 and J1=J2=JJ_{1}=J_{2}=J we get Onsager’s formula for the isotropic Ising model on the square lattice, namely

f(J,J,0)=log218π2[0,2π]2dk1dk2log[cosh2(2J)sinh(2J)(cosk1+cosk2)].f(J,J,0)=-\log 2-\frac{1}{8\pi^{2}}\int_{[0,2\pi]^{2}}{\rm d}k_{1}{\rm d}k_{2}\log\Big{[}\cosh^{2}(2J)-\sinh(2J)(\cos k_{1}+\cos k_{2})\Big{]}. (2.7)

The proof of part (a) of the theorem can be found at the end of Section 3. The next lemma establishes that ff is equal to the limit MM\to\infty of fMf_{M} so that (b) immediately follows from (a).

Lemma 2.2.

As MM\to\infty the cylinder free energy density converges to the two-dimensional free energy density:

f(J1,J2,J3)=limMfM(J1,J2,J3).f(J_{1},J_{2},J_{3})=\lim_{M\to\infty}f_{M}(J_{1},J_{2},J_{3}).
Proof.

We omit the dependence on coupling constants to alleviate the notation. Let J0=maxi=1,2,3|Ji|J_{0}=\max_{i=1,2,3}|J_{i}|. Writing L=kM+RL=kM+R with R{0,M1}R\in\{0,M-1\} we have

ZM,Mke4J0kM6J0RMZL,MZM,Mke4J0kM+6J0RM.Z_{M,M}^{k}\,{\rm e}^{-4J_{0}kM-6J_{0}RM}\,\leq Z_{L,M}\leq Z_{M,M}^{k}\,{\rm e}^{4J_{0}kM+6J_{0}RM}\,. (2.8)

Taking the logarithm and dividing by LMLM we get

kMLfM,M+4J0k+6J0RLfL,MkMLfM,M4J0k+6J0RL.\tfrac{kM}{L}f_{M,M}+\tfrac{4J_{0}k+6J_{0}R}{L}\geq f_{L,M}\geq\tfrac{kM}{L}f_{M,M}-\tfrac{4J_{0}k+6J_{0}R}{L}. (2.9)

We take the limit LL\to\infty; since kM/L1kM/L\to 1, k/L1/Mk/L\to 1/M, and R/L0R/L\to 0 we obtain

fM,M+4J0MlimLfL,MfM,M4J0M.f_{M,M}+\tfrac{4J_{0}}{M}\geq\lim_{L\to\infty}f_{L,M}\geq f_{M,M}-\tfrac{4J_{0}}{M}. (2.10)

The lemma follows by taking the limit MM\to\infty. ∎

Refer to caption
Refer to caption
Refer to caption
Figure 2. Plots of the free energy 𝖿(β)\mathsf{f}(\beta) and its first and second derivatives for the translation-invariant triangular lattice (J1=J2=J3=1J_{1}=J_{2}=J_{3}=1). The second derivative has a logarithmic singularity at βc=14log3=0.274\beta_{\rm c}=\frac{1}{4}\log 3=0.274....

2.2. Logarithmic singularity of the specific heat

We explore the consequences of the formula of Theorem 2.1 (b) regarding the possibility of phase transitions. More specifically, given fixed parameters J1,J2,J3J_{1},J_{2},J_{3}, we consider the function 𝖿:+{\mathsf{f}}:{\mathbb{R}}_{+}\to{\mathbb{R}}:

𝖿(β)=f(βJ1,βJ2,βJ3).{\mathsf{f}}(\beta)=f(\beta J_{1},\beta J_{2},\beta J_{3}). (2.11)

We are looking for values of β\beta where 𝖿{\mathsf{f}} is not analytic. We show the well-known fact that the second derivative of 𝖿{\mathsf{f}} (which is related to the physical quantity called the specific heat) has a logarithmic singularity at a special value βc\beta_{\rm c}, called the critical point. This is illustrated in Fig. 2, which displays the free energy 𝖿(β){\mathsf{f}}(\beta) and its first and second derivatives in the case of the homogenous triangular lattice (J1=J2=J3=1J_{1}=J_{2}=J_{3}=1). By Theorem 2.1 (b) we have

𝖿(β)=log218π2[π,π]2dk1dk2log[g(β)+h(β;k1,k2)],{\mathsf{f}}(\beta)=-\log 2-\frac{1}{8\pi^{2}}\int_{[-\pi,\pi]^{2}}{\rm d}k_{1}{\rm d}k_{2}\,\log\bigl{[}g(\beta)+h(\beta;k_{1},k_{2})\bigr{]}, (2.12)

where (recalling that k3=k1+k2k_{3}=k_{1}+k_{2})

g(β)=i=13cosh(2βJi)+i=13sinh(2βJi)i=13sinh(2βJi),h(β;k1,k2)=i=13sinh(2βJi)(1coski).\begin{split}&g(\beta)=\prod_{i=1}^{3}\cosh(2\beta J_{i})+\prod_{i=1}^{3}\sinh(2\beta J_{i})-\sum_{i=1}^{3}\sinh(2\beta J_{i}),\\ &h(\beta;k_{1},k_{2})=\sum_{i=1}^{3}\sinh(2\beta J_{i})\,(1-\cos k_{i}).\end{split} (2.13)

It turns out that the term inside the logarithm is always positive.

Lemma 2.3.

For all J1,J2,J3J_{1},J_{2},J_{3}\in{\mathbb{R}}, all β>0\beta>0, and all k1,k2[π,π]k_{1},k_{2}\in[-\pi,\pi], we have

g(β)+h(β;k1,k2)0.g(\beta)+h(\beta;k_{1},k_{2})\geq 0.

There should be a simple direct proof for this lemma but we could not find one (in the case where J1=J2J_{1}=J_{2}, it follows from the proof of Theorem 2.6 below). Instead we obtain it in Section 3 using suitable Kac-Ward identities, see Corollary 3.5 (a). We now give a criterion for the free energy to be analytic in β\beta.

Lemma 2.4.

Assume that g(β0)+h(β0;k1,k2)>0g(\beta_{0})+h(\beta_{0};k_{1},k_{2})>0 for all k1,k2[π,π]k_{1},k_{2}\in[-\pi,\pi]. Then 𝖿(β){\mathsf{f}}(\beta) is analytic in a complex neighbourhood of β0\beta_{0}.

Proof.

This is a standard complex analysis argument. There exists a complex neighbourhood 𝒩{\mathcal{N}} of β0\beta_{0} such that log[g(β)+h(β;k1,k2)]\log[g(\beta)+h(\beta;k_{1},k_{2})] is analytic in β\beta for each k1,k2k_{1},k_{2}. Then γlog[g(β)+h(β;k1,k2)]dβ=0\int_{\gamma}\log[g(\beta)+h(\beta;k_{1},k_{2})]{\rm d}\beta=0 for any contour γ\gamma in 𝒩{\mathcal{N}}. By Fubini’s theorem,

γdβ[π,π]2dk1dk2log[g(β)+h(β;k1,k2)]=[π,π]2dk1dk2γdβlog[g(β)+h(β;k1,k2)]=0,\int_{\gamma}{\rm d}\beta\int_{[-\pi,\pi]^{2}}{\rm d}k_{1}{\rm d}k_{2}\log[g(\beta)+h(\beta;k_{1},k_{2})]\\ =\int_{[-\pi,\pi]^{2}}{\rm d}k_{1}{\rm d}k_{2}\int_{\gamma}{\rm d}\beta\log[g(\beta)+h(\beta;k_{1},k_{2})]=0, (2.14)

so that 𝖿(β){\mathsf{f}}(\beta) is indeed analytic in 𝒩{\mathcal{N}}. ∎

Next we establish a sufficient criterion for the logarithmic divergence of 𝖿′′(β){\mathsf{f}}^{\prime\prime}(\beta). We assume here that the minimum of h(βc;k1,k2)h(\beta_{\rm c};k_{1},k_{2}) is at k1=k2=0k_{1}=k_{2}=0 where this function is 0.

Proposition 2.5.

Assume that there exists βc\beta_{\rm c} such that

g(βc)=0,g′′(βc)>0.g(\beta_{\rm c})=0,\quad g^{\prime\prime}(\beta_{c})>0.

Further, we assume that there exists c>0c>0 such that for all k1,k2[π,π]k_{1},k_{2}\in[-\pi,\pi],

h(βc;k1,k2)c(k12+k22).h(\beta_{\rm c};k_{1},k_{2})\geq c(k_{1}^{2}+k_{2}^{2}).

Then 𝖿{\mathsf{f}} is continuously differentiable at βc\beta_{\rm c}, but its second derivative diverges as log|ββc|\log|\beta-\beta_{\rm c}| when β\beta approaches βc\beta_{\rm c}.

It is not hard to verify that the second condition holds true when sinh(2βcJi)+2sinh(2βcJ3)>0\sinh(2\beta_{\rm c}J_{i})+2\sinh(2\beta_{\rm c}J_{3})>0 for i=1,2i=1,2.

Proof.

We already know that 𝖿(β){\mathsf{f}}(\beta) is concave and therefore continuous. For ββc\beta\neq\beta_{\rm c}, we have

𝖿(β)=18π2dk1dk2g(β)+βh(β;k1,k2)g(β)+h(β;k1,k2).{\mathsf{f}}^{\prime}(\beta)=-\frac{1}{8\pi^{2}}\int{\rm d}k_{1}{\rm d}k_{2}\frac{g^{\prime}(\beta)+\frac{\partial}{\partial\beta}h(\beta;k_{1},k_{2})}{g(\beta)+h(\beta;k_{1},k_{2})}. (2.15)

There exists a constant CC such that

|g(β)+βh(β;k1,k2)g(β)+h(β;k1,k2)|C|ββc|+k12+k22(ββc)2+c(k12+k22).\biggl{|}\frac{g^{\prime}(\beta)+\frac{\partial}{\partial\beta}h(\beta;k_{1},k_{2})}{g(\beta)+h(\beta;k_{1},k_{2})}\biggr{|}\leq C\frac{|\beta-\beta_{\rm c}|+k_{1}^{2}+k_{2}^{2}}{(\beta-\beta_{\rm c})^{2}+c(k_{1}^{2}+k_{2}^{2})}. (2.16)

As a0+a\to 0+, we note that

01rdra2+r2=12log(a2+1)loga|loga|.\int_{0}^{1}\frac{r{\rm d}r}{a^{2}+r^{2}}=\tfrac{1}{2}\log(a^{2}+1)-\log a\sim|\log a|. (2.17)

Writing the integral (2.15) with polar coordinates around 0, and using (2.16) and (2.17), we easily check that 𝖿{\mathsf{f}}^{\prime} is continuous at βc\beta_{\rm c}. For the second derivative we write

𝖿′′(β)=g′′(β)8π2dk1dk2g(β)+h(β;k1,k2)18π2dk1dk222βh(β;k1,k2)g(β)+h(β;k1,k2)+18π2dk1dk2(g(β)+βh(β;k1,k2)g(β)+h(β;k1,k2))2.{\mathsf{f}}^{\prime\prime}(\beta)=-\frac{g^{\prime\prime}(\beta)}{8\pi^{2}}\int\frac{{\rm d}k_{1}{\rm d}k_{2}}{g(\beta)+h(\beta;k_{1},k_{2})}-\frac{1}{8\pi^{2}}\int{\rm d}k_{1}{\rm d}k_{2}\frac{\frac{\partial^{2}}{\partial^{2}\beta}h(\beta;k_{1},k_{2})}{g(\beta)+h(\beta;k_{1},k_{2})}\\ +\frac{1}{8\pi^{2}}\int{\rm d}k_{1}{\rm d}k_{2}\biggl{(}\frac{g^{\prime}(\beta)+\frac{\partial}{\partial\beta}h(\beta;k_{1},k_{2})}{g(\beta)+h(\beta;k_{1},k_{2})}\biggr{)}^{2}. (2.18)

For the first term we use the bounds g(β)<g′′(βc)(ββc)2g(\beta)<g^{\prime\prime}(\beta_{\rm c})(\beta-\beta_{\rm c})^{2} and h(β;k1,k2)<const(k12+k22)h(\beta;k_{1},k_{2})<{\rm const}(k_{1}^{2}+k_{2}^{2}); using polar coordinates and (2.17), this term diverges as log|ββc|\log|\beta-\beta_{c}| when ββc\beta\to\beta_{\rm c}. The second term is easily seen to be bounded uniformly in ββc\beta\to\beta_{\rm c} using the second condition of the proposition and |22βh(β;k1,k2)|<const(k12+k22)|\frac{\partial^{2}}{\partial^{2}\beta}h(\beta;k_{1},k_{2})|<{\rm const}(k_{1}^{2}+k_{2}^{2}). For the third term we use (2.16), and |βh(β;k1,k2)|<const(k12+k22)|\frac{\partial}{\partial\beta}h(\beta;k_{1},k_{2})|<{\rm const}(k_{1}^{2}+k_{2}^{2}). Using polar coordinates, and neglecting constants, we get an upper bound of the form

01(|ββc|+r2(ββc)2+r2)2rdr4(ββc)20|ββc|1/2rdr((ββc)2+r2)2+|ββc|1/21(|ββc|+r2(ββc)2+r2)2rdr.\int_{0}^{1}\biggl{(}\frac{|\beta-\beta_{\rm c}|+r^{2}}{(\beta-\beta_{\rm c})^{2}+r^{2}}\biggr{)}^{2}r{\rm d}r\\ \leq 4(\beta-\beta_{\rm c})^{2}\int_{0}^{|\beta-\beta_{\rm c}|^{1/2}}\frac{r{\rm d}r}{((\beta-\beta_{\rm c})^{2}+r^{2})^{2}}+\int_{|\beta-\beta_{\rm c}|^{1/2}}^{1}\biggl{(}\frac{|\beta-\beta_{\rm c}|+r^{2}}{(\beta-\beta_{\rm c})^{2}+r^{2}}\biggr{)}^{2}r{\rm d}r. (2.19)

The first integral is easily seen to behave as |ββc|1|\beta-\beta_{\rm c}|^{-1} and it is controlled by the prefactor. The integrand of the second integral is a decreasing function of rr; we get an upper bound by replacing rr with |ββc|1/2|\beta-\beta_{\rm c}|^{1/2} which shows that it is bounded.

We have now verified that the only divergent term in (2.18) is the first one, and the divergence is logarithmic indeed. ∎

2.3. Case J1=J2J_{1}=J_{2}

We consider the special case where two coupling constants are identical. By using symmetries (spin flips along alternate rows or columns) we can assume without loss of generality that J1=J20J_{1}=J_{2}\geq 0. Further, by rescaling β\beta, we can take J1=J2=1J_{1}=J_{2}=1.

Theorem 2.6.

Let J1=J2=1J_{1}=J_{2}=1.

  • (a)

    If J3>1J_{3}>-1, there is a unique βc\beta_{\rm c} such that 𝖿(β){\mathsf{f}}(\beta) is analytic in +{βc}{\mathbb{R}}_{+}\setminus\{\beta_{\rm c}\} and 𝖿′′(β){\mathsf{f}}^{\prime\prime}(\beta) has a logarithmic divergence at βc\beta_{\rm c}.

  • (b)

    If J31J_{3}\leq-1, 𝖿(β){\mathsf{f}}(\beta) is analytic in +{\mathbb{R}}_{+}.

The theorem is illustrated with the phase diagram of Fig. 3.

Refer to caption
Figure 3. Phase diagram with J1=J2=1J_{1}=J_{2}=1. The free energy is proved to lack analyticity at the line that separates the “ordered” and “uniqueness” phases. The separation line is the inverse critical temperature βc=βc(J3)\beta_{\rm c}=\beta_{\rm c}(J_{3}); it is solution of the equation tanhβc=j1(J3)\tanh\beta_{\rm c}=j^{-1}(J_{3}) with jj defined in Eq. (2.26). For J30J_{3}\geq 0, the article [6] proves the existence of a unique infinite-volume Gibbs state for β<βc\beta<\beta_{\rm c}, and of several distinct Gibbs states for β>βc\beta>\beta_{\rm c}. For J3<0J_{3}<0, uniqueness is only proved for small β\beta, and the existence of multiple Gibbs states is only proved for large β\beta (using the Pirogov-Sinai theory, see e.g. [8]).

It helps to bring in the Cimasoni–Duminil-Copin–Li formula for the critical density, that was established for two-periodic planar lattices with nonnegative coupling constants [20, 6]. Its general formulation involves sums over even graphs in the periodised cell that generates the lattice (see [6, Theorem 1.1]). In the present situation, this equation is

a(β)=0a(\beta)=0 (2.20)

where the function a(β)a(\beta) is defined as

a(β)=1+tanh2βtanh(βJ3)2tanhβtanh(βJ3)tanh2β2tanhβtanh(βJ3).a(\beta)=1+\tanh^{2}\beta\tanh(\beta J_{3})-2\tanh\beta-\tanh(\beta J_{3})-\tanh^{2}\beta-2\tanh\beta\tanh(\beta J_{3}). (2.21)

In order to make the connection to the free energy (2.12), we remark that

g(β)=cosh2(2β)cosh(2βJ3)a2(β).g(\beta)=\cosh^{2}(2\beta)\cosh(2\beta J_{3})a^{2}(\beta). (2.22)

Then g(β)g(\beta) vanishes precisely when a(β)a(\beta) does; indeed, h(β;k1,k2)h(\beta;k_{1},k_{2}) is nonnegative when the coupling constants are nonnegative, and its minimum is 0. Proposition 2.5 applies, establishing the singularity of the second derivative of the free energy.

We check in the proof below that the Cimasoni–Duminil-Copin–Li formula (2.20) holds whenever J1=J20J_{1}=J_{2}\geq 0, and J3J_{3}\in{\mathbb{R}} is allowed to be negative. One can also check that it does not hold if J1=J2J_{1}=J_{2} change signs; indeed, the free energy is the same due to symmetries (spin flips on a sublattice), but Eq. (2.20) is different and has different solutions.

In addition to the non-analyticity of the free energy, Cimasoni and Duminil-Copin prove that the phase transition involves a change of the number of infinite-volume Gibbs states: There is just one for ββc\beta\leq\beta_{\rm c} and more than one for β>βc\beta>\beta_{\rm c}. The proof relies on the GKS and FKG correlation inequalities, which hold for nonnegative coupling constants only. It would be interesting to extend this to the case of coupling constants with arbitrary signs.

Proof of Theorem 2.6.

When J30J_{3}\geq 0 the theorem is a special case of [6], so we assume now that J30J_{3}\leq 0 (even though the proof applies to positive J3J_{3} with minor changes). We check that there exists a unique βc\beta_{\rm c} that satisfies the conditions of Proposition 2.5.

We first check that g(β)+h(β;k1,k2)g(\beta)+h(\beta;k_{1},k_{2}) can reach 0 only when k1=k2=0k_{1}=k_{2}=0. Let α=sinh(2βJ3)sinh(2β)\alpha=-\frac{\sinh(2\beta J_{3})}{\sinh(2\beta)}. Using trigonometric identities, we have

h(β;k1,k2)=2sinh(2β)+2sinh(2βJ3)+2sinh(2β)[αcos2(k1+k22)cos(k1+k22)cos(k1k22)].h(\beta;k_{1},k_{2})=2\sinh(2\beta)+2\sinh(2\beta J_{3})+2\sinh(2\beta)\bigl{[}\alpha\cos^{2}(\tfrac{k_{1}+k_{2}}{2})-\cos(\tfrac{k_{1}+k_{2}}{2})\cos(\tfrac{k_{1}-k_{2}}{2})\bigr{]}. (2.23)

We can minimise separately on the variables k1+k22\tfrac{k_{1}+k_{2}}{2} and k1k22\tfrac{k_{1}-k_{2}}{2}. There exists a minimiser satisfying cos(k1+k22)0\cos(\tfrac{k_{1}+k_{2}}{2})\geq 0 and cos(k1k22)=1\cos(\tfrac{k_{1}-k_{2}}{2})=1. The minimum is then easily found, namely

mink1,k2h(β;k1,k2)={0if α12,2sinh(2β)(1α14α)if α12.\min_{k_{1},k_{2}}h(\beta;k_{1},k_{2})=\begin{cases}0&\text{if }\alpha\leq\frac{1}{2},\\ 2\sinh(2\beta)(1-\alpha-\frac{1}{4\alpha})&\text{if }\alpha\geq\frac{1}{2}.\end{cases} (2.24)

The first case corresponds to k1=k2=0k_{1}=k_{2}=0. Suppose that α12\alpha\geq\frac{1}{2} and that g(β)+minh(β;k1,k2)=0g(\beta)+\min h(\beta;k_{1},k_{2})=0. This is equivalent to

(1+sinh2(2β))1+α2sinh2(2β)(1+sinh2(2β))αsinh(2β)sinh2(2β)4α=0.(1+\sinh^{2}(2\beta))\sqrt{1+\alpha^{2}\sinh^{2}(2\beta)}-(1+\sinh^{2}(2\beta))\alpha\sinh(2\beta)-\frac{\sinh^{2}(2\beta)}{4\alpha}=0. (2.25)

The solution is α=sinh(2β)21+sinh2(2β)<12\alpha=\frac{\sinh(2\beta)}{2\sqrt{1+\sinh^{2}(2\beta)}}<\frac{1}{2}; this contradicts the assumption that α12\alpha\geq\frac{1}{2}. This proves that, when J1=J2J_{1}=J_{2} and with arbitrary J3J_{3}\in{\mathbb{R}}, the condition for βc\beta_{\rm c} is g(βc)=0g(\beta_{\rm c})=0, which is equivalent to the Cimasoni–Duminil-Copin–Li equation a(βc)=0a(\beta_{\rm c})=0.

Instead of looking for βc\beta_{\rm c} as function of J3J_{3}, it is more convenient to look for J3J_{3} as function of t=tanhβt=\tanh\beta. The equation is then

J3=artanh12tt21+2tt2artanhtj(t).J_{3}=\frac{{\operatorname{artanh\,}}\tfrac{1-2t-t^{2}}{1+2t-t^{2}}}{{\operatorname{artanh\,}}t}\equiv j(t). (2.26)

The derivative of the function j(t)j(t) is

j(t)=(1+t2)artanht+2tartanh12tt21+2tt22t(1t2)artanh2t.j^{\prime}(t)=-\frac{(1+t^{2}){\operatorname{artanh\,}}t+2t\;{\operatorname{artanh\,}}\tfrac{1-2t-t^{2}}{1+2t-t^{2}}}{2t(1-t^{2}){\operatorname{artanh\,}}^{2}t}. (2.27)

It is not hard to check that 12tt21+2tt2t\tfrac{1-2t-t^{2}}{1+2t-t^{2}}\geq-t; it follows that the numerator above is positive so that j(t)<0j^{\prime}(t)<0. Further, j(t)j(t) goes to ++\infty as t0+t\to 0+, and goes to 1-1 as t1t\to 1-. Then j1j^{-1} exists as a function (1,)+(-1,\infty)\to{\mathbb{R}}_{+}; it follows that Eq. (2.26) has a unique solution when J3>1J_{3}>-1 and no solutions otherwise. We also see that βc0\beta_{\rm c}\to 0 as J3J_{3}\to\infty, and βc\beta_{\rm c}\to\infty as J31J_{3}\to-1.

Finally we check that g′′(βc)>0g^{\prime\prime}(\beta_{\rm c})>0. It is enough to check that a(βc)0a^{\prime}(\beta_{\rm c})\neq 0. We have

a(β)=2(1t2)[1+t+(1t)tanh(βJ3)]J3(1+2tt2)[1tanh2(βJ3)].a^{\prime}(\beta)=-2(1-t^{2})\bigl{[}1+t+(1-t)\tanh(\beta J_{3})\bigr{]}-J_{3}(1+2t-t^{2})\bigl{[}1-\tanh^{2}(\beta J_{3})\bigr{]}. (2.28)

At β=βc\beta=\beta_{\rm c} we have tanh(βcJ3)=12tt21+2tt2\tanh(\beta_{\rm c}J_{3})=\frac{1-2t-t^{2}}{1+2t-t^{2}}, where t=tanhβct=\tanh\beta_{\rm c}. It is then possible to write a(βc)a^{\prime}(\beta_{\rm c}) as

a(βc)=4(1t2)(1+t2+2tJ3)1+2tt2.a^{\prime}(\beta_{\rm c})=-\frac{4(1-t^{2})(1+t^{2}+2tJ_{3})}{1+2t-t^{2}}. (2.29)

This is clearly not 0 since t<1t<1 and J3>1J_{3}>-1.

The condition on hh in Proposition 2.5 clearly holds. ∎

3. The Kac-Ward identity

We rely on the extension of the Kac-Ward identity to “faithful projections” of non-planar graphs. It was proposed by Cimasoni [5] and used in [15, 2]. In order to accommodate negative weights we need two faithful projections for 𝕋L,M{\mathbb{T}}_{L,M} with edges between nearest-neighbours. The graphs are G1G_{1} and G2G_{2} and they are illustrated in Fig. 4. Here is a full description of the left graph:

  • The vertices are (i,j)(i,j) with 1iL1\leq i\leq L and 1jM1\leq j\leq M.

  • There are edges represented by straight lines between (i,j)(i,j) and (i+1,j)(i+1,j) for 1iL11\leq i\leq L-1, 1jM1\leq j\leq M; between (i,j)(i,j) and (i,j+1)(i,j+1) for 1iL1\leq i\leq L, 1jM11\leq j\leq M-1; and between (i,j)(i,j) and (i+1,j+1)(i+1,j+1) for 1iL11\leq i\leq L-1, 1jM11\leq j\leq M-1.

  • There are edges represented by “handles” (continuous curves with winding number 1-1) between (L,j)(L,j) and (1,j)(1,j) for 1jM1\leq j\leq M; between (L,j)(L,j) and (1,j+1)(1,j+1) for 1jM11\leq j\leq M-1; between (i,M)(i,M) and (i,1)(i,1) for 1iL1\leq i\leq L; between (i,M)(i,M) and (i+1,1)(i+1,1) for 1iL11\leq i\leq L-1.

  • And there is a self-crossing handle between (L,M)(L,M) and (1,1)(1,1) whose winding number is 2-2.

  • The handles are drawn so that handles starting at (i,M)(i,M) only cross the handles starting at (L,j)(L,j) (and they cross them exactly once); the self-crossing handle belongs to both groups.

The second graph is similar, except that the oblique handle no longer self-crosses but the other horizontal handles all self-cross.

Refer to caption
Refer to caption
Figure 4. Two faithful projections of the graph (𝕋3,3,3,3)({\mathbb{T}}_{3,3},{\mathcal{E}}_{3,3}). The handles cross at non-vertex locations; some handles cross themselves. The matrix K(1)K^{\scriptscriptstyle(1)} is defined on the left graph; the matrix K(2)K^{\scriptscriptstyle(2)} is defined on the right graph.

The Kac-Ward identity involves matrices indexed by directed edges. We denote L,M\vec{\mathcal{E}}_{L,M} the edges of L,M{\mathcal{E}}_{L,M} with direction. The coupling constants defined in Eq. (2.2) can be extended to directed edges by assigning the same value JeJ_{e} to both directions of the same edge; then we let WW to be the diagonal matrix whose element We,eW_{e,e} is equal to tanhJe\tanh J_{e}. We now introduce the Kac-Ward matrix K(1)K^{\scriptscriptstyle(1)} by

Ke,e(1)=1eeei21(e,e)+i21(e),e,eL,M.K_{e,e^{\prime}}^{\scriptscriptstyle(1)}=1_{e\,\triangleright\,e^{\prime}}\,\,{\rm e}^{\frac{{\rm i}}{2}\measuredangle_{1}(e,e^{\prime})+\frac{{\rm i}}{2}\measuredangle_{1}(e)}\,,\quad e,e^{\prime}\in{\mathcal{E}}_{L,M}. (3.1)

Here eee\,\triangleright\,e^{\prime} means that the endpoint of ee is equal to the starting point of ee^{\prime} and also that ee^{\prime} is not equal to the reverse of ee^{\prime} (the matrix is not “backtracking”). 1(e,e):L,M(π,π]\measuredangle_{1}(e,e^{\prime}):\mathcal{E}_{L,M}\rightarrow(-\pi,\pi] is the angle between the end of ee and the start of ee^{\prime} on the the faithful projection G1G_{1}; 1(e):L,M\measuredangle_{1}(e):\mathcal{E}_{L,M}\rightarrow\mathbb{R} is the integrated angle along the planar curve that represents the edge ee.

Following [2] we define an average over even subgraphs: If ff is a function on graphs, let

fL,M=1Z~L,MΓL,M:Γ=f(Γ)w(Γ)\langle f\rangle_{L,M}=\frac{1}{\widetilde{Z}_{L,M}}\sum_{\Gamma\subset{\mathcal{E}}_{L,M}:\partial\Gamma=\emptyset}f(\Gamma)w(\Gamma) (3.2)

where the normalisation is Z~L,M=ΓL,M:Γ=w(Γ)\widetilde{Z}_{L,M}=\sum_{\Gamma\in{\mathcal{E}}_{L,M}:\partial\Gamma=\emptyset}w(\Gamma). The definition of the weight is w(Γ)=eΓtanhJew(\Gamma)=\prod_{e\in\Gamma}\tanh J_{e}. The boundary Γ\partial\Gamma of a graph is the set of vertices whose incidence number is odd; the sum in the right hand side is over even subgraphs. Notice that Z~L,M\widetilde{Z}_{L,M} is always positive as can be seen from its relation to the Ising partition function, see (3.4) below.

With these definition, we have the remarkable Kac-Ward identity [2, Theorem 5.1]:

det(1K(1)W)=Z~L,M(1)n0(1)(Γ)L,M.\sqrt{\det(1-K^{\scriptscriptstyle(1)}W)}=\widetilde{Z}_{L,M}\big{\langle}(-1)^{n^{\scriptscriptstyle(1)}_{0}(\Gamma)}\big{\rangle}_{L,M}. (3.3)

Here n0(1)(Γ)n^{\scriptscriptstyle(1)}_{0}(\Gamma) is the total number of crossings between all edges of Γ\Gamma when the graph is projected on G1G_{1}.

It is worth noting that the right side of (3.3) is a multinomial in (We,e)(W_{e,e}), something that is not apparent in the left side — there are remarkable cancellations indeed. This allows [2] to prove the identity for small (We,e)(W_{e,e}); the extension to larger values is automatic. The determinant cannot be negative and the sign of the square root cannot change.

We define the matrix K(2)K^{\scriptscriptstyle(2)} as in (3.1) but 2(e,e)\measuredangle_{2}(e,e^{\prime}) and 2(e)\measuredangle_{2}(e) are the corresponding angles on the the faithfull projection G2G_{2}. Analogously, we define n0(2)(Γ)n^{\scriptscriptstyle(2)}_{0}(\Gamma) for this projection.

The connection with the Ising model is through the high-temperature expansion, see e.g. [8, Section 3.7.3]. The partition function (2.4) is equal to

ZL,M(J1,J2,J3)=2LM(eL,McoshJe)ΓL,M:Γ=w(Γ)=2LM(eL,McoshJe)Z~L,M.Z_{L,M}(J_{1},J_{2},J_{3})=2^{LM}\biggl{(}\prod_{e\in{\mathcal{E}}_{L,M}}\cosh J_{e}\biggr{)}\sum_{\Gamma\subset{\mathcal{E}}_{L,M}:\partial\Gamma=\emptyset}w(\Gamma)=2^{LM}\biggl{(}\prod_{e\in{\mathcal{E}}_{L,M}}\cosh J_{e}\biggr{)}\widetilde{Z}_{L,M}. (3.4)

The strategy of Aizenman and Warzel [2] is to prove that (1)n0(1)(Γ)L,M1\langle(-1)^{n^{\scriptscriptstyle(1)}_{0}(\Gamma)}\rangle_{L,M}\to 1 as L,ML,M\to\infty. This can be done when the coupling constants are positive, and small enough so the temperature is higher than the 2D critical temperature. (Then duality is used to get the formula for low temperatures.) The presence of negative coupling constants necessitates a different approach. We first show in Lemma 3.1 that a combination of the two faithful projections gives the partition function, up to a correction. We then show in Lemma 3.2 that this correction vanishes in the limit LL\to\infty, for fixed MM. Denote by nh(Γ)n_{\rm h}(\Gamma) the number of horizontal handles of the subgraph Γ\Gamma, that is, the number of handles in Γ\Gamma that connect sites of the form (L,i)(L,i) with sites (1,j)(1,j). Note that the total number of horizontal handles of L,M\mathcal{E}_{L,M} is 2M2M.

Lemma 3.1.

We have

det(1K(1)W)+det(1K(2)W)=2Z~L,M(11nh(Γ)oddL,M).\sqrt{\det(1-K^{\scriptscriptstyle(1)}W)}+\sqrt{\det(1-K^{\scriptscriptstyle(2)}W)}=2\widetilde{Z}_{L,M}\Bigl{(}1-\big{\langle}1_{n_{\rm h}(\Gamma)\,\rm{odd}}\big{\rangle}_{L,M}\Bigr{)}.
Proof.

From Eq. (3.3), we have

det(1K(1)W)+det(1K(2)W)=Z~L,M(1)n0(1)(Γ)+(1)n0(2)(Γ)L,M\sqrt{\det(1-K^{\scriptscriptstyle(1)}W)}+\sqrt{\det(1-K^{\scriptscriptstyle(2)}W)}=\widetilde{Z}_{L,M}\big{\langle}(-1)^{n^{\scriptscriptstyle(1)}_{0}(\Gamma)}+(-1)^{n^{\scriptscriptstyle(2)}_{0}(\Gamma)}\big{\rangle}_{L,M} (3.5)

Let nv(Γ)n_{\rm v}(\Gamma) be the number of handles in Γ\Gamma that connect sites of the form (i,M)(i,M) with sites (j,1)(j,1) (excluding the handle between (L,M)(L,M) and (1,1)(1,1)) and let nhv(Γ)=0,1n_{\rm hv}(\Gamma)=0,1 be the indicator on whether the handle from (L,M)(L,M) and (1,1)(1,1) is present (notice the asymmetric definition of nvn_{\rm v} and nhn_{\rm h}, as the oblique handle is included in nhn_{\rm h} but not in nvn_{\rm v}). We have

1n0(1)(Γ)odd=1nh(Γ)odd(1nhv(Γ)=0 1nv(Γ)odd+1nhv(Γ)=1 1nv(Γ)even);1n0(2)(Γ)odd=1nh(Γ)odd(1nhv(Γ)=0 1nv(Γ)even+1nhv(Γ)=1 1nv(Γ)odd).\begin{split}\quad&1_{n^{\scriptscriptstyle(1)}_{0}(\Gamma)\,\rm{odd}}=1_{n_{\rm h}(\Gamma)\,\rm{odd}}\;\bigl{(}1_{n_{\rm hv}(\Gamma)=0}\;1_{n_{\rm v}(\Gamma)\,{\rm odd}}+1_{n_{\rm hv}(\Gamma)=1}\;1_{n_{\rm v}(\Gamma)\,{\rm even}}\bigr{)};\\ \quad&1_{n^{\scriptscriptstyle(2)}_{0}(\Gamma)\,\rm{odd}}=1_{n_{\rm h}(\Gamma)\,\rm{odd}}\;\bigl{(}1_{n_{\rm hv}(\Gamma)=0}\;1_{n_{\rm v}(\Gamma)\,{\rm even}}+1_{n_{\rm hv}(\Gamma)=1}\;1_{n_{\rm v}(\Gamma)\,{\rm odd}}\bigr{)}.\end{split} (3.6)

It follows that

1n0(1)(Γ)odd+1n0(2)(Γ)odd=1nh(Γ)odd.1_{n^{\scriptscriptstyle(1)}_{0}(\Gamma)\,\rm{odd}}+1_{n^{\scriptscriptstyle(2)}_{0}(\Gamma)\,\rm{odd}}=1_{n_{\rm h}(\Gamma)\,\rm{odd}}. (3.7)

By combining the above relation with (3.5), using (1)n0(i)(Γ)=121n0(i)(Γ)odd(-1)^{n_{0}^{\scriptscriptstyle(i)}(\Gamma)}=1-2\cdot 1_{n_{0}^{\scriptscriptstyle(i)}(\Gamma)\,{\rm odd}}, the lemma follows. ∎

Lemma 3.2.

For any J1,J2,J3J_{1},J_{2},J_{3}\in{\mathbb{R}}, for any MM\in{\mathbb{N}}, we have

limL1nh(Γ)oddL,M=0.\lim_{L\to\infty}\big{\langle}1_{n_{\rm h}(\Gamma)\,\rm{odd}}\big{\rangle}_{L,M}=0.
Proof.

We condition on the horizontal handles (including possibly the self-crossing ones). We denote by 𝔥{\mathfrak{h}} the set of handles that connect sites in the leftmost and rightmost columns:

𝔥={{(1,j1),(L,j1)},,{(1,jk),(L,jk)}}.{\mathfrak{h}}=\bigl{\{}\{(1,j_{1}),(L,j_{1}^{\prime})\},\dots,\{(1,j_{k}),(L,j_{k}^{\prime})\}\bigr{\}}. (3.8)

Then we define the support supp1𝔥{\rm{supp\,}}_{1}{\mathfrak{h}}, resp.  suppL𝔥{\rm{supp\,}}_{L}{\mathfrak{h}}, to be the set of vertices of the form (1,ji)(1,j_{i}), resp.  (L,ji)(L,j_{i}^{\prime}), that appear an odd number of times in 𝔥{\mathfrak{h}}. Let supp𝔥=supp1𝔥suppL𝔥{\rm{supp\,}}{\mathfrak{h}}={\rm{supp\,}}_{1}{\mathfrak{h}}\cup{\rm{supp\,}}_{L}{\mathfrak{h}}. We let ~L,M\tilde{\mathcal{E}}_{L,M} be the set of edges of the cylinder (not the torus) {1,,L}×𝕋M\{1,\dots,L\}\times{\mathbb{T}}_{M}. With 1𝔥=1𝔥(Γ)1_{\mathfrak{h}}=1_{\mathfrak{h}}(\Gamma) the indicator function that the random graph Γ\Gamma has set of handles 𝔥{\mathfrak{h}}, we have

1nh(Γ)oddL,M=|𝔥|odd1𝔥L,M=|𝔥|odd(i=1ktanhJ(1,ji),(L,ji))1Z~L,MΓ~L,M:Γ=supp𝔥w(Γ).\begin{split}\big{\langle}1_{n_{\rm h}(\Gamma)\,\rm{odd}}\big{\rangle}_{L,M}&=\sum_{|{\mathfrak{h}}|\;{\rm odd}}\langle 1_{\mathfrak{h}}\rangle_{L,M}\\ &=\sum_{|{\mathfrak{h}}|\;{\rm odd}}\biggl{(}\prod_{i=1}^{k}\tanh J_{(1,j_{i}),(L,j_{i}^{\prime})}\biggr{)}\frac{1}{\widetilde{Z}_{L,M}}\sum_{\Gamma\subset\tilde{\mathcal{E}}_{L,M}:\partial\Gamma={\rm{supp\,}}{\mathfrak{h}}}w(\Gamma).\end{split} (3.9)

We now consider an Ising model on the cylinder {1,,L}×𝕋M\{1,\dots,L\}\times{\mathbb{T}}_{M}. We have

1Z~L,McylΓ~L,M:Γ=supp𝔥w(Γ)=xsupp𝔥σxL,Mcyl.\frac{1}{\widetilde{Z}_{L,M}^{\rm cyl}}\sum_{\Gamma\subset\tilde{\mathcal{E}}_{L,M}:\partial\Gamma={\rm{supp\,}}{\mathfrak{h}}}w(\Gamma)=\Big{\langle}\prod_{x\in{\rm{supp\,}}{\mathfrak{h}}}\sigma_{x}\Big{\rangle}_{L,M}^{\rm cyl}. (3.10)

Notice that the partition function Z~L,Mcyl\widetilde{Z}_{L,M}^{\rm cyl} is almost equal to Z~L,M\widetilde{Z}_{L,M}; either ratio is less than e2M(|J1|+|J3|)\,{\rm e}^{2M(|J_{1}|+|J_{3}|)}\,. Next we introduce the transfer matrix Tη,ηT_{\eta,\eta^{\prime}} between column configurations η,η{1,+1}M\eta,\eta^{\prime}\in\{-1,+1\}^{M}:

Tη,η=exp{i=1M(J1ηiηi+J2ηiηi+1+J3ηiηi+1)}.T_{\eta,\eta^{\prime}}=\exp\biggl{\{}\sum_{i=1}^{M}\Bigl{(}J_{1}\eta_{i}\eta_{i}^{\prime}+J_{2}\eta_{i}\eta_{i+1}+J_{3}\eta_{i}\eta_{i+1}^{\prime}\Bigr{)}\biggr{\}}. (3.11)

Here we defined ηM+1η1\eta_{M+1}\equiv\eta_{1}. The transfer matrix allows to write the Ising correlations above as

xsupp𝔥σxL,Mcyl=1TLη,ηη|TL1|η(xsupp1𝔥ηx)(ysuppL𝔥ηy)eJ2i=1Mηiηi+1.\Big{\langle}\prod_{x\in{\rm{supp\,}}{\mathfrak{h}}}\sigma_{x}\Big{\rangle}_{L,M}^{\rm cyl}=\frac{1}{T^{L}}\sum_{\eta,\eta^{\prime}}\langle\eta|T^{L-1}|\eta^{\prime}\rangle\Bigl{(}\prod_{x\in{\rm{supp\,}}_{1}{\mathfrak{h}}}\eta_{x}\Bigr{)}\Bigl{(}\prod_{y\in{\rm{supp\,}}_{L}{\mathfrak{h}}}\eta_{y}^{\prime}\Bigr{)}\,{\rm e}^{J_{2}\sum_{i=1}^{M}\eta_{i}^{\prime}\eta_{i+1}^{\prime}}\,. (3.12)

The matrix elements of TT are positive; by the Perron-Frobenius theorem there exist vectors |v,|w|v\rangle,|w\rangle such that

limLTL1TrTL=eλmax|vw|.\lim_{L\to\infty}\frac{T^{L-1}}{{\operatorname{Tr\,}}T^{L}}=\,{\rm e}^{-\lambda_{\rm max}}\,|v\rangle\langle w|. (3.13)

Here λmax\lambda_{\rm max} is the largest eigenvalue of TT (it depends on MM). The vectors |v,|w|v\rangle,|w\rangle can be decomposed in the basis {|η}\{|\eta\rangle\} of column configurations and their coefficients have the spin-flip symmetry. Taking the limit LL\to\infty in (3.12) one gets 0. Indeed, the sum over η\eta is

η(xsupp1𝔥ηx)η|v\sum_{\eta}\Bigl{(}\prod_{x\in{\rm{supp\,}}_{1}{\mathfrak{h}}}\eta_{x}\Bigr{)}\langle\eta|v\rangle (3.14)

which is zero since supp1𝔥{\rm{supp\,}}_{1}{\mathfrak{h}} contains an odd number of vertices; the sum over η\eta^{\prime} also gives zero. ∎

Next we seek to calculate the determinants of 1K(1)W1-K^{\scriptscriptstyle(1)}W and 1K(2)W1-K^{\scriptscriptstyle(2)}W. For this we first make the matrices translation-invariant so we can use the Fourier transform. Let us define K~(i)\widetilde{K}^{\scriptscriptstyle(i)} i=1,2i=1,2 to be as K(i)K^{\scriptscriptstyle(i)} i=1,2i=1,2 but omitting the respective integrated angle of the handles:

K~e,e(i)=1eeei2i(e,e)i=1,2.\widetilde{K}_{e,e^{\prime}}^{\scriptscriptstyle(i)}=1_{e\,\triangleright e^{\prime}}\,{\rm e}^{\frac{{\rm i}}{2}\measuredangle_{i}(e,e^{\prime})}\,\hskip 11.38109pti=1,2. (3.15)

Actually K~e,e(1)=K~e,e(2)\widetilde{K}_{e,e^{\prime}}^{\scriptscriptstyle(1)}=\widetilde{K}_{e,e^{\prime}}^{\scriptscriptstyle(2)} and we shall write K~e,e\widetilde{K}_{e,e^{\prime}} for either K~e,e(1)\widetilde{K}_{e,e^{\prime}}^{\scriptscriptstyle(1)} or K~e,e(2)\widetilde{K}_{e,e^{\prime}}^{\scriptscriptstyle(2)}. Then we define modified diagonal matrices W~e,e(1)\widetilde{W}_{e,e}^{\scriptscriptstyle(1)} and W~e,e(2)\widetilde{W}_{e,e}^{\scriptscriptstyle(2)}; matrix elements now depend on the direction of ee:

W~e,e(1)={We,eeiπ/Lif e=,We,eeiπ/Lif e=,We,eeiπ/Mif e=,We,eeiπ/Mif e=,We,eeiπ(1L+1M)if e=,We,eeiπ(1L+1M)if e=.W~e,e(2)={We,eif e= or ,We,eeiπ/Mif e= or ,We,eeiπ/Mif e= or .\widetilde{W}^{\scriptscriptstyle(1)}_{e,e}=\begin{cases}W_{e,e}\,{\rm e}^{{\rm i}\pi/L}\,&\text{if }e=\rightarrow,\\ W_{e,e}\,{\rm e}^{-{\rm i}\pi/L}\,&\text{if }e=\leftarrow,\\ W_{e,e}\,{\rm e}^{{\rm i}\pi/M}\,&\text{if }e=\uparrow,\\ W_{e,e}\,{\rm e}^{-{\rm i}\pi/M}\,&\text{if }e=\downarrow,\\ W_{e,e}\,{\rm e}^{{\rm i}\pi(\frac{1}{L}+\frac{1}{M})}\,&\text{if }e=\nearrow,\\ W_{e,e}\,{\rm e}^{-{\rm i}\pi(\frac{1}{L}+\frac{1}{M})}\,&\text{if }e=\swarrow.\end{cases}\qquad\widetilde{W}^{\scriptscriptstyle(2)}_{e,e}=\begin{cases}W_{e,e}&\text{if $e=\rightarrow$ or $\leftarrow$},\\ W_{e,e}\,{\rm e}^{{\rm i}\pi/M}\,&\text{if $e=\uparrow$ or $\nearrow$},\\ W_{e,e}\,{\rm e}^{-{\rm i}\pi/M}\,&\text{if $e=\downarrow$ or $\swarrow$}.\end{cases} (3.16)
Lemma 3.3.

We have

det(1K(1)W)=det(1K~W~(1)),det(1K(2)W)=det(1K~W~(2)).\det(1-K^{\scriptscriptstyle(1)}W)=\det(1-\widetilde{K}\widetilde{W}^{\scriptscriptstyle(1)}),\qquad\det(1-K^{\scriptscriptstyle(2)}W)=\det(1-\widetilde{K}\widetilde{W}^{\scriptscriptstyle(2)}).
Proof.

One can expand the determinants as products of directed loops as in [2, Theorem 3.2]. Let γ=(e1,,ek)\gamma=(e_{1},\dots,e_{k}) be a directed loop with \ell handles (the self-crossing handle between (L.M)(L.M) and (1,1)(1,1) is counted twice). We have

i=1kKei,ei+1(1)=(1)i=1kK~ei,ei+1,i=1kW~ei,ei(1)=(1)i=1kWei,ei.\prod_{i=1}^{k}K^{\scriptscriptstyle(1)}_{e_{i},e_{i+1}}=(-1)^{\ell}\,\prod_{i=1}^{k}\widetilde{K}_{e_{i},e_{i+1}},\qquad\prod_{i=1}^{k}\widetilde{W}^{\scriptscriptstyle(1)}_{e_{i},e_{i}}=(-1)^{\ell}\,\prod_{i=1}^{k}W_{e_{i},e_{i}}. (3.17)

Then each loop gives the same contribution in det(1K(1)W)\det(1-K^{\scriptscriptstyle(1)}W) and in det(1K~W~(1))\det(1-\widetilde{K}\widetilde{W}^{\scriptscriptstyle(1)}). The argument for det(1K(2)W)\det(1-K^{\scriptscriptstyle(2)}W) is the same, counting only vertical and oblique handles between sites (i,M)(i,M) and (j,1)(j,1), 1i,j,L1\leq i,j,\leq L. ∎

Lemma 3.4.

Let 𝕋L=2πL𝕋L{\mathbb{T}}_{L}^{*}=\frac{2\pi}{L}{\mathbb{T}}_{L} and recall that 𝕋~L=𝕋L+πL\widetilde{{\mathbb{T}}}_{L}={\mathbb{T}}_{L}^{*}+\frac{\pi}{L}.

  • (a)

    With k3=k1+k2k_{3}=k_{1}+k_{2}, we have

    det(1K~W~(1))=k1𝕋~Lk2𝕋~M[i=13(1+tanh2Ji)+8i=13tanhJi2i=13tanhJi(1tanh2Ji+1)(1tanh2Ji+2)coski].\det(1-\widetilde{K}\widetilde{W}^{\scriptscriptstyle(1)})=\prod_{k_{1}\in\widetilde{{\mathbb{T}}}_{L}}\prod_{k_{2}\in\widetilde{{\mathbb{T}}}_{M}}\bigg{[}\prod_{i=1}^{3}\big{(}1+\tanh^{2}J_{i}\big{)}+8\prod_{i=1}^{3}\tanh J_{i}\\ -2\sum_{i=1}^{3}\tanh J_{i}\big{(}1-\tanh^{2}J_{i+1}\big{)}\big{(}1-\tanh^{2}J_{i+2}\big{)}\cos k_{i}\bigg{]}.
  • (b)

    Again with k3=k1+k2k_{3}=k_{1}+k_{2}, we have

    det(1K~W~(2))=k1𝕋Lk2𝕋~M[i=13(1+tanh2Ji)+8i=13tanhJi2i=13tanhJi(1tanh2Ji+1)(1tanh2Ji+2)coski].\det(1-\widetilde{K}\widetilde{W}^{\scriptscriptstyle(2)})=\prod_{k_{1}\in{\mathbb{T}}_{L}^{*}}\prod_{k_{2}\in\widetilde{{\mathbb{T}}}_{M}}\bigg{[}\prod_{i=1}^{3}\big{(}1+\tanh^{2}J_{i}\big{)}+8\prod_{i=1}^{3}\tanh J_{i}\\ -2\sum_{i=1}^{3}\tanh J_{i}\big{(}1-\tanh^{2}J_{i+1}\big{)}\big{(}1-\tanh^{2}J_{i+2}\big{)}\cos k_{i}\bigg{]}.
Proof.

For (a) we label the set of directed edges as (x,α)(x,\alpha) where x𝕋L,Mx\in{\mathbb{T}}_{L,M} and αA\alpha\in A, with

A={,,,,,}.A=\bigl{\{}\rightarrow,\leftarrow,\uparrow,\downarrow,\nearrow,\swarrow\bigr{\}}. (3.18)

The Fourier coefficients are (k,α)(k,\alpha) with k𝕋L,M=𝕋L×𝕋Mk\in{\mathbb{T}}_{L,M}^{*}={\mathbb{T}}_{L}^{*}\times{\mathbb{T}}_{M}^{*}. The Fourier transform is represented by the unitary matrix UU:

U(k,α),(x,β)=1LMeikxδα,β,U_{(k,\alpha),(x,\beta)}=\frac{1}{\sqrt{LM}}\,{\rm e}^{-{\rm i}kx}\,\delta_{\alpha,\beta}, (3.19)

for x𝕋L,Mx\in{\mathbb{T}}_{L,M}, k𝕋L,Mk\in{\mathbb{T}}_{L,M}^{*}, and α,βA\alpha,\beta\in A. Since W~e,e\widetilde{W}_{e,e} depends only on αA\alpha\in A, we have

(UW~(1)U1))(k,α),(k,β)=W~α(1)δk,kδα,β.(U\widetilde{W}^{\scriptscriptstyle(1)}U^{-1)})_{(k,\alpha),(k^{\prime},\beta)}=\widetilde{W}^{\scriptscriptstyle(1)}_{\alpha}\delta_{k,k^{\prime}}\delta_{\alpha,\beta}. (3.20)

Further, straightforward Fourier calculations give

(UK~U1)(k,α),(k,β)=δk,kx𝕋L,MeikxK~(0,α),(x,β)δk,kK^α,β(k),(U\widetilde{K}U^{-1})_{(k,\alpha),(k^{\prime},\beta)}=\delta_{k,k^{\prime}}\sum_{x\in{\mathbb{T}}_{L,M}}\,{\rm e}^{{\rm i}kx}\,\widetilde{K}_{(0,\alpha),(x,\beta)}\equiv\delta_{k,k^{\prime}}\widehat{K}_{\alpha,\beta}(k), (3.21)

with the matrix K^(k)\widehat{K}(k) given by

K^(k)=(eik1000000eik1000000eik2000000eik2000000ei(k1+k2)000000ei(k1+k2))(10eiπ4eiπ4eiπ8ei3π801eiπ4eiπ4ei3π8eiπ8eiπ4eiπ410eiπ8ei3π8eiπ4eiπ401ei3π8eiπ8eiπ8ei3π8eiπ8ei3π810ei3π8eiπ8ei3π8eiπ801).\widehat{K}(k)=\left(\begin{matrix}\,{\rm e}^{{\rm i}k_{1}}\,\!\!\!&0&0&0&0&0\\ 0&\!\!\!\,{\rm e}^{-{\rm i}k_{1}}\,\!\!\!&0&0&0&0\\ 0&0&\!\!\!\,{\rm e}^{{\rm i}k_{2}}\,\!\!\!&0&0&0\\ 0&0&0&\!\!\!\,{\rm e}^{-{\rm i}k_{2}}\,\!\!\!&0&0\\ 0&0&0&0&\!\!\!\,{\rm e}^{{\rm i}(k_{1}+k_{2})}\,\!\!\!\!&0\\ 0&0&0&0&0&\!\!\!\!\,{\rm e}^{-{\rm i}(k_{1}+k_{2})}\,\end{matrix}\right)\;\left(\begin{matrix}1&0&\!\!\,{\rm e}^{{\rm i}\frac{\pi}{4}}\,\!\!&\!\!\,{\rm e}^{-{\rm i}\frac{\pi}{4}}\,\!\!&\!\!\,{\rm e}^{{\rm i}\frac{\pi}{8}}\,\!\!&\!\!\,{\rm e}^{-{\rm i}\frac{3\pi}{8}}\,\\ 0&1&\!\!\,{\rm e}^{-{\rm i}\frac{\pi}{4}}\,\!\!&\!\!\,{\rm e}^{{\rm i}\frac{\pi}{4}}\,\!\!&\!\!\,{\rm e}^{-{\rm i}\frac{3\pi}{8}}\,\!\!&\!\!\,{\rm e}^{{\rm i}\frac{\pi}{8}}\,\\ \,{\rm e}^{-{\rm i}\frac{\pi}{4}}\,\!\!&\!\!\,{\rm e}^{{\rm i}\frac{\pi}{4}}\,\!\!&1&0&\!\!\,{\rm e}^{-{\rm i}\frac{\pi}{8}}\,\!\!&\!\!\,{\rm e}^{{\rm i}\frac{3\pi}{8}}\,\\ \,{\rm e}^{{\rm i}\frac{\pi}{4}}\,\!\!&\!\!\,{\rm e}^{-{\rm i}\frac{\pi}{4}}\,\!\!&0&1&\!\!\,{\rm e}^{{\rm i}\frac{3\pi}{8}}\,\!\!&\!\!\,{\rm e}^{-{\rm i}\frac{\pi}{8}}\,\\ \,{\rm e}^{-{\rm i}\frac{\pi}{8}}\,\!\!&\!\!\,{\rm e}^{{\rm i}\frac{3\pi}{8}}\,\!\!&\!\!\,{\rm e}^{{\rm i}\frac{\pi}{8}}\,\!\!&\!\!\,{\rm e}^{-{\rm i}\frac{3\pi}{8}}\,\!\!&1&0\\ \,{\rm e}^{{\rm i}\frac{3\pi}{8}}\,\!\!&\!\!\,{\rm e}^{-{\rm i}\frac{\pi}{8}}\,\!\!&\!\!\,{\rm e}^{-{\rm i}\frac{3\pi}{8}}\,\!\!&\!\!\,{\rm e}^{{\rm i}\frac{\pi}{8}}\,\!\!&0&1\end{matrix}\right). (3.22)

Let us define

W^(1)(k):=(t1eik1000000t2eik1000000t2eik2000000t2eik2000000t3ei(k1+k2)000000t3ei(k1+k2))\widehat{W}^{\scriptscriptstyle(1)}(k):=\left(\begin{matrix}t_{1}\,{\rm e}^{{\rm i}k_{1}}\,\!\!\!&0&0&0&0&0\\ 0&\!\!\!t_{2}\,{\rm e}^{-{\rm i}k_{1}}\,\!\!\!&0&0&0&0\\ 0&0&\!\!\!t_{2}\,{\rm e}^{{\rm i}k_{2}}\,\!\!\!&0&0&0\\ 0&0&0&\!\!\!t_{2}\,{\rm e}^{-{\rm i}k_{2}}\,\!\!\!&0&0\\ 0&0&0&0&\!\!\!t_{3}\,{\rm e}^{{\rm i}(k_{1}+k_{2})}\,\!\!\!&0\\ 0&0&0&0&0&\!\!\!t_{3}\,{\rm e}^{-{\rm i}(k_{1}+k_{2})}\,\end{matrix}\right)\; (3.23)

where ti=tanhJit_{i}=\tanh{J_{i}}, i=1,2,3i=1,2,3. Then

det(1K~W~(1))=det(1W~(1)K~)=k𝕋L,Mdet[1W^(1)(k+(πL,πM))K^(0)]=k1𝕋~Lk2𝕋~Mdet[1W^(1)((k1,k2))K^(0))].\begin{split}\det{(1-\widetilde{K}\widetilde{W}^{\scriptscriptstyle(1)})}&=\det{(1-\widetilde{W}^{\scriptscriptstyle(1)}\widetilde{K})}=\prod_{k\in{\mathbb{T}}_{L,M}^{*}}\det\Bigl{[}1-\widehat{W}^{\scriptscriptstyle(1)}\bigl{(}k+(\tfrac{\pi}{L},\tfrac{\pi}{M})\bigr{)}\widehat{K}(0)\Bigr{]}\\ &=\prod_{k_{1}\in\widetilde{{\mathbb{T}}}_{L}}\prod_{k_{2}\in\widetilde{{\mathbb{T}}}_{M}}\det\Bigl{[}1-\widehat{W}^{\scriptscriptstyle(1)}\bigl{(}(k_{1},k_{2})\bigr{)}\widehat{K}(0))\Bigr{]}.\end{split} (3.24)

The first identity follows from a loop expansion, see [2, Theorem 3.2]. A calculation of the determinant by grouping the terms according to k1+k2,k1,k2k_{1}+k_{2},k_{1},k_{2} yields

det[1W^(1)((k1,k2))K^(0))]=i=13(1+tanh2Ji)+8i=13tanhJi2i=13tanhJi(1tanh2Ji+1)(1tanh2Ji+2)coski\det\bigl{[}1-\widehat{W}^{\scriptscriptstyle(1)}\bigl{(}(k_{1},k_{2})\bigr{)}\widehat{K}(0))\bigr{]}=\prod_{i=1}^{3}\big{(}1+\tanh^{2}J_{i}\big{)}+8\prod_{i=1}^{3}\tanh J_{i}\\ -2\sum_{i=1}^{3}\tanh J_{i}\big{(}1-\tanh^{2}J_{i+1}\big{)}\big{(}1-\tanh^{2}J_{i+2}\big{)}\cos k_{i} (3.25)

where k3=k1+k2k_{3}=k_{1}+k_{2}. This gives (a).

The proof of (b) is similar. ∎

Corollary 3.5.
  • (a)

    The determinants are nonnegative, det(1K~W~(1))0\det(1-\widetilde{K}\widetilde{W}^{\scriptscriptstyle(1)})\geq 0 and det(1K~W~(2))0\det(1-\widetilde{K}\widetilde{W}^{\scriptscriptstyle(2)})\geq 0.

  • (b)

    Taking the logarithms, dividing by LL, we have as LL\to\infty

    limL1Llogdet(1K~W~(1))=limL1Llogdet(1K~W~(2))=[π,π]dk1k2𝕋~Mlog[i=13(1+tanh2Ji)+8i=13tanhJii=132tanhJi(1tanh2Ji+1)(1tanh2Ji+2)coski].\begin{split}\lim_{L\to\infty}\frac{1}{L}\log&\det(1-\widetilde{K}\widetilde{W}^{\scriptscriptstyle(1)})=\lim_{L\to\infty}\frac{1}{L}\log\det(1-\widetilde{K}\widetilde{W}^{\scriptscriptstyle(2)})\\ &=\int_{[-\pi,\pi]}{\rm d}k_{1}\sum_{k_{2}\in\widetilde{{\mathbb{T}}}_{M}}\log\biggl{[}\prod_{i=1}^{3}\big{(}1+\tanh^{2}{J_{i}}\big{)}+8\prod_{i=1}^{3}\tanh J_{i}\\ &\qquad-\sum_{i=1}^{3}2\tanh J_{i}\big{(}1-\tanh^{2}J_{i+1}\big{)}\big{(}1-\tanh^{2}J_{i+2}\big{)}\cos k_{i}\biggr{]}.\end{split}
Proof.

(a) By Eq. (3.3) and Lemma 3.3, we obtain that both square roots of the above determinants are real. (b) This is a consequence of Lemma 3.4; taking the logarithm we obtain Riemann sums. ∎

Proof of Theorem 2.1.

(a) From the high temperature expansion (3.4), we observe that the finite volume free energy with periodic boundary conditions satisfies

fL,M(J1,J2,J3)=log2+log[i=13coshJi]+1LMlog[Z~L,M].-f_{L,M}(J_{1},J_{2},J_{3})=\log 2+\log\Big{[}\prod_{i=1}^{3}\cosh J_{i}\Big{]}+\frac{1}{LM}\log\Big{[}\widetilde{Z}_{L,M}\Big{]}. (3.26)

Using Lemma 3.1, Lemma 3.2 and Lemma 3.3, we see that the free energy on the infinite cylinder is

fM(J1,J2,J3)=log2+log[i=13coshJi]+limL1LMlog[det(1K~W~(1))+det(1K~W~(2))]-f_{M}(J_{1},J_{2},J_{3})=\log 2+\log\Big{[}\prod_{i=1}^{3}\cosh{J_{i}}\Big{]}\\ +\lim_{L\to\infty}\frac{1}{LM}\log\Biggl{[}\sqrt{\det(1-\widetilde{K}\widetilde{W}^{\scriptscriptstyle(1)})}+\sqrt{\det(1-\widetilde{K}\widetilde{W}^{\scriptscriptstyle(2)})}\Biggr{]} (3.27)

By Corollary 3.5 (a) we have

logdet(1K~W~(1))log[det(1K~W~(1))+det(1K~W~(2))]maxi=1,2logdet(1K~W~(i))+log2.\begin{split}\log\sqrt{\det(1-\widetilde{K}\widetilde{W}^{\scriptscriptstyle(1)})}&\leq\log\Biggl{[}\sqrt{\det(1-\widetilde{K}\widetilde{W}^{\scriptscriptstyle(1)})}+\sqrt{\det(1-\widetilde{K}\widetilde{W}^{\scriptscriptstyle(2)})}\Biggr{]}\\ &\leq\max_{i=1,2}\log\sqrt{\det(1-\widetilde{K}\widetilde{W}^{\scriptscriptstyle(i)})}+\log 2.\end{split} (3.28)

Dividing by LL, all terms above converge to the same limit as LL\to\infty by Corollary 3.5 (b). We get

f(J1,J2,J3)=log2+log[i=13coshJi]+14πM[0,2π]dk1k2𝕋~Mlog[i=13(1+tanh2Ji)+8i=13tanhJii=132tanhJi(1tanh2Ji+1)(1tanh2Ji+2)coski].-f(J_{1},J_{2},J_{3})=\log 2+\log\Big{[}\prod_{i=1}^{3}\cosh{J_{i}}\Big{]}+\frac{1}{4\pi M}\int_{[0,2\pi]}dk_{1}\sum_{k_{2}\in\widetilde{{\mathbb{T}}}_{M}}\log\bigg{[}\prod_{i=1}^{3}\big{(}1+\tanh^{2}J_{i}\big{)}\\ +8\prod_{i=1}^{3}\tanh J_{i}-\sum_{i=1}^{3}2\tanh J_{i}\big{(}1-\tanh^{2}J_{i+1}\big{)}\big{(}1-\tanh^{2}J_{i+2}\big{)}\cos k_{i}\bigg{]}. (3.29)

In order to get the expression of Theorem 2.1, one should use the hyperbolic identities 1+tanh2x=cosh(2x)cosh2x1+\tanh^{2}x=\frac{\cosh(2x)}{\cosh^{2}x} and tanhx=sinh2x2cosh2x\tanh x=\frac{\sinh 2x}{2\cosh^{2}x}, and extract a factor (icoshJi)1\bigl{(}\prod_{i}\cosh J_{i}\bigr{)}^{-1}. ∎

4. The 1D quantum Ising model

One application of the cylinder formula of Theorem 2.1 (a) deals with the one-dimensional quantum Ising model. It is well-known that it can be mapped to a classical model in 1+11+1 dimensions, the extra dimension being the continuous interval [0,β][0,\beta] with periodic boundary conditions. A phase transition is only possible when both dimensions are infinite, which necessitates taking the limit of zero-temperature β\beta\to\infty. The free energy of the quantum Ising model was first computed by Pfeuty [23] using the fermionic method of [25]. The results of this section are not new, but the Kac-Ward approach may have more appeal to some readers.

We consider the chain {1,,L}\{1,\dots,L\} with periodic boundary conditions. The Hilbert space is L=i=1L2{\mathcal{H}}_{L}=\otimes_{i=1}^{L}{\mathbb{C}}^{2}. Let S(1)S^{\scriptscriptstyle(1)} and S(3)S^{\scriptscriptstyle(3)} denote the spin operators on 2{\mathbb{C}}^{2} whose matrices are

S(1)=12(0110),S(3)=12(1001).S^{\scriptscriptstyle(1)}=\tfrac{1}{2}\biggl{(}\begin{matrix}0&1\\ 1&0\end{matrix}\biggr{)},\qquad S^{\scriptscriptstyle(3)}=\tfrac{1}{2}\biggl{(}\begin{matrix}1&0\\ 0&-1\end{matrix}\biggr{)}. (4.1)

Then we denote Si(j)S_{i}^{\scriptscriptstyle(j)} the spin operators at site ii\in{\mathbb{Z}}. With hh\in{\mathbb{R}} the magnetic field, the hamiltonian is

HL=i=1LSi(3)Si+1(3)hi=1LSi(1).H_{L}=-\sum_{i=1}^{L}S_{i}^{\scriptscriptstyle(3)}S_{i+1}^{\scriptscriptstyle(3)}-h\sum_{i=1}^{L}S_{i}^{\scriptscriptstyle(1)}. (4.2)

Here the site i=L+1i=L+1 is defined as i=1i=1. The partition function is

ZLqu(β,h)=TrΛeβHL.Z_{L}^{\rm qu}(\beta,h)={\operatorname{Tr\,}}_{{\mathcal{H}}_{\Lambda}}\,{\rm e}^{-\beta H_{L}}\,. (4.3)

The finite-volume free energy is

fLqu(β,h)=1βLlogZLqu(β,h).f_{L}^{\rm qu}(\beta,h)=-\frac{1}{\beta L}\log Z_{L}^{\rm qu}(\beta,h). (4.4)

Notice the division by β\beta, which allows to get the ground state energy by taking the limit β\beta\to\infty.

Theorem 4.1.

The infinite-volume free energy of the one-dimensional quantum Ising model is equal to

fqu(β,h)=limLfLqu(β,h)=1βlog212πβππdklogcosh(β41+4h2+4hcosk).f^{\rm qu}(\beta,h)=\lim_{L\to\infty}f_{L}^{\rm qu}(\beta,h)=-\tfrac{1}{\beta}\log 2-\frac{1}{2\pi\beta}\int_{-\pi}^{\pi}{\rm d}k\log\cosh\Bigl{(}\frac{\beta}{4}\sqrt{1+4h^{2}+4h\cos k}\Bigr{)}.

We prove this theorem by invoking the well-known fact that the dd-dimensional quantum Ising model is equivalent to a (d+1)(d+1)-dimensional classical Ising model, the extra dimension being continuous; see Proposition 4.2. We check in Proposition 4.3 that the continuum limit can be taken after the infinite-volume limit. This allows to make direct use of Theorem 2.1. The remaining step is to take the continuum limit and it is not entirely straightforward; the proof of Theorem 4.1 can be found at the end of this section.

Proposition 4.2.

Let us define coupling constants J1(n),J2(n)J_{1}^{\scriptscriptstyle(n)},J_{2}^{\scriptscriptstyle(n)} by

J1(n)=β4n,J2(n)=12logβh2n.J_{1}^{\scriptscriptstyle(n)}=\frac{\beta}{4n},\qquad J_{2}^{\scriptscriptstyle(n)}=-\tfrac{1}{2}\log\frac{\beta h}{2n}.

Then we have the identity

ZLqu(β,h)=limnZL,nqu(β,h)Z_{L}^{\rm qu}(\beta,h)=\lim_{n\to\infty}Z_{L,n}^{\rm qu}(\beta,h)\\

with

ZL,nqu(β,h)=exp{12Lnlogβh2n}ZL,n(J1(n),J2(n)).Z_{L,n}^{\rm qu}(\beta,h)=\exp\Bigl{\{}\tfrac{1}{2}Ln\log\tfrac{\beta h}{2n}\Bigr{\}}\;Z_{L,n}(J_{1}^{\scriptscriptstyle(n)},J_{2}^{\scriptscriptstyle(n)}).

Here ZL,n(J1(n),J2(n))Z_{L,n}(J_{1}^{\scriptscriptstyle(n)},J_{2}^{\scriptscriptstyle(n)}) is the partition function defined in Eq. (2.4) with J3=0J_{3}=0.

Proof.

By the Lie-Trotter formula,

TreβHL=limnTr(eβni=1LSi(3)Si+1(3)i=1L(1+βhnSi(1)))n=limnσ(1),,σ(n)exp{β4ni=1Lk=1nσi(k)σi+1(k)}i=1Lk=1nσi(k)|(1+βhnS(1))|σi(k+1).\begin{split}{\operatorname{Tr\,}}\,{\rm e}^{-\beta H_{L}}\,&=\lim_{n\to\infty}{\operatorname{Tr\,}}\biggl{(}\,{\rm e}^{\frac{\beta}{n}\sum_{i=1}^{L}S_{i}^{\scriptscriptstyle(3)}S_{i+1}^{\scriptscriptstyle(3)}}\,\prod_{i=1}^{L}\bigl{(}1+\tfrac{\beta h}{n}S_{i}^{\scriptscriptstyle(1)}\bigr{)}\biggr{)}^{n}\\ &=\lim_{n\to\infty}\sum_{\sigma^{\scriptscriptstyle(1)},\dots,\sigma^{\scriptscriptstyle(n)}}\exp\biggl{\{}\frac{\beta}{4n}\sum_{i=1}^{L}\sum_{k=1}^{n}\sigma_{i}^{\scriptscriptstyle(k)}\sigma_{i+1}^{\scriptscriptstyle(k)}\biggr{\}}\prod_{i=1}^{L}\prod_{k=1}^{n}\langle\sigma_{i}^{\scriptscriptstyle(k)}|\bigl{(}1+\tfrac{\beta h}{n}S^{\scriptscriptstyle(1)}\bigr{)}|\sigma_{i}^{\scriptscriptstyle(k+1)}\rangle.\end{split} (4.5)

We now observe that

σ|(1+βhnS(1))|σ=eJ2(n)+J2(n)σσ.\langle\sigma|\bigl{(}1+\tfrac{\beta h}{n}S^{\scriptscriptstyle(1)}\bigr{)}|\sigma^{\prime}\rangle=\,{\rm e}^{-J_{2}^{\scriptscriptstyle(n)}+J_{2}^{\scriptscriptstyle(n)}\sigma\sigma^{\prime}}\,. (4.6)

Inserting this identity in (4.5) we get the proposition. ∎

Next we check that we can exchange the infinite-volume and the continuum limits for the free energy. Let us define

fL,nqu(β,h)=1LlogTr(eβni=1LSi(3)Si+1(3)eβhni=1LSi(1))n.f_{L,n}^{\rm qu}(\beta,h)=-\tfrac{1}{L}\log{\operatorname{Tr\,}}\biggl{(}\,{\rm e}^{\frac{\beta}{n}\sum_{i=1}^{L}S_{i}^{\scriptscriptstyle(3)}S_{i+1}^{\scriptscriptstyle(3)}}\,\,{\rm e}^{\frac{\beta h}{n}\sum_{i=1}^{L}S_{i}^{\scriptscriptstyle(1)}}\,\biggr{)}^{n}. (4.7)

We already know that fLqu(β,h)=limnfL,nqu(β,h)f_{L}^{\rm qu}(\beta,h)=\lim_{n\to\infty}f_{L,n}^{\rm qu}(\beta,h) for fixed LL.

Proposition 4.3.
  • (a)

    For fixed nn the limit LL\to\infty of fL,nqu(β,h)f_{L,n}^{\rm qu}(\beta,h) exists (and is denoted f,nqu(β,h)f_{\infty,n}^{\rm qu}(\beta,h)).

  • (b)

    We have

    fqu(β,h)=limLlimnfL,nqu(β,h)=limnlimLfL,nqu(β,h).f^{\rm qu}(\beta,h)=\lim_{L\to\infty}\lim_{n\to\infty}f_{L,n}^{\rm qu}(\beta,h)=\lim_{n\to\infty}\lim_{L\to\infty}f_{L,n}^{\rm qu}(\beta,h).
Proof.

Since the trace of the Lie-Trotter product can be written as a classical partition function, see Proposition 4.2, we can proceed as with the usual proofs of thermodynamic limits, see [8], and we easily obtain (a).

The first equality in (b) is clear. For the second equality we use the following estimates, which again follow from estimates on the classical partition function:

ZL,nqu(β,h)keβk2ZkL,nqu(β,h)ZL,nqu(β,h)keβk2.Z_{L,n}^{\rm qu}(\beta,h)^{k}\,{\rm e}^{-\frac{\beta k}{2}}\,\leq Z_{kL,n}^{\rm qu}(\beta,h)\leq Z_{L,n}^{\rm qu}(\beta,h)^{k}\,{\rm e}^{\frac{\beta k}{2}}\,. (4.8)

Taking kk\to\infty we get

fL,nqu(β,h)+12Lf,nqu(β,h)fL,nqu(β,h)12L.f_{L,n}^{\rm qu}(\beta,h)+\tfrac{1}{2L}\geq f_{\infty,n}^{\rm qu}(\beta,h)\geq f_{L,n}^{\rm qu}(\beta,h)-\tfrac{1}{2L}. (4.9)

The rest of the proof is a standard ε3\frac{{\varepsilon}}{3} argument. For any ε>0{\varepsilon}>0 we can find L=L(ε)L=L({\varepsilon}) large enough so that for all nn, we have

|fqu(β,h)fLqu(β,h)|ε3,|f,nqu(β,h)fL,nqu(β,h)|ε3.\big{|}f^{\rm qu}(\beta,h)-f_{L}^{\rm qu}(\beta,h)\big{|}\leq\tfrac{{\varepsilon}}{3},\qquad\big{|}f_{\infty,n}^{\rm qu}(\beta,h)-f_{L,n}^{\rm qu}(\beta,h)\big{|}\leq\tfrac{{\varepsilon}}{3}. (4.10)

Then we can find n0=n0(ε)n_{0}=n_{0}({\varepsilon}) such that |fLqu(β,h)fL,nqu(β,h)|ε3|f_{L}^{\rm qu}(\beta,h)-f_{L,n}^{\rm qu}(\beta,h)|\leq\frac{{\varepsilon}}{3} for all nn0n\geq n_{0}. Then

|fqu(β,h)f,nqu(β,h)||fqu(β,h)fLqu(β,h)|+|fLqu(β,h)fL,nqu(β,h)|+|fL,nqu(β,h)f,nqu(β,h)|ε.\begin{split}\big{|}f^{\rm qu}(\beta,h)&-f_{\infty,n}^{\rm qu}(\beta,h)\big{|}\leq\big{|}f^{\rm qu}(\beta,h)-f_{L}^{\rm qu}(\beta,h)\big{|}\\ &+\big{|}f_{L}^{\rm qu}(\beta,h)-f_{L,n}^{\rm qu}(\beta,h)\big{|}+\big{|}f_{L,n}^{\rm qu}(\beta,h)-f_{\infty,n}^{\rm qu}(\beta,h)\big{|}\leq{\varepsilon}.\end{split} (4.11)

This holds for any ε>0{\varepsilon}>0 provided nn is large enough. This proves the second identity in (b). ∎

Proof of Theorem 4.1.

We need the following identity:

k2𝕋~Mlog[coth(2J2)cosk2]=Mlog2+MlogcothJ2+2log(1+(cothJ2)M).\sum_{k_{2}\in\widetilde{\mathbb{T}}_{M}}\log\bigl{[}\coth(2J_{2})-\cos k_{2}\bigr{]}=-M\log 2+M\log\coth J_{2}+2\log\bigl{(}1+(\coth J_{2})^{-M}\bigr{)}. (4.12)

It can be obtained by taking the limit J10J_{1}\to 0 in Theorem 2.1 (a), as the expression converges to the free energy of the 1D Ising model in 𝕋M{\mathbb{T}}_{M}. The latter is easily calculated with the 1D transfer matrices, yielding log(2coshJ2)1Mlog(1+tanhMJ2)-\log(2\cosh J_{2})-\frac{1}{M}\log(1+\tanh^{M}J_{2}). We can substitute a=coth(2J2)a=\coth(2J_{2}) in the left side of Eq. (4.12), and cothJ2=a+a21\coth J_{2}=a+\sqrt{a^{2}-1} in the right side.

By Propositions 4.2 and 4.3, the free energy of the quantum Ising model is the limit nn\to\infty of

f,nqu(β,h)=n2log2βhnn2logsinh(logβh2n)14πππdk1k2𝕋~nlog[coshβ2ncoth(logβh2n)sinhβ2nsinh(logβh2n)cosk1cosk2].f_{\infty,n}^{\rm qu}(\beta,h)=-\tfrac{n}{2}\log\tfrac{2\beta h}{n}-\tfrac{n}{2}\log\sinh(-\log\tfrac{\beta h}{2n})\\ -\frac{1}{4\pi}\int_{-\pi}^{\pi}{\rm d}k_{1}\sum_{k_{2}\in\widetilde{\mathbb{T}}_{n}}\log\biggl{[}\cosh\tfrac{\beta}{2n}\coth(-\log\tfrac{\beta h}{2n})-\frac{\sinh\frac{\beta}{2n}}{\sinh(-\log\frac{\beta h}{2n})}\cos k_{1}-\cos k_{2}\biggr{]}. (4.13)

We now use

coshβ2n=1+12(β2n)2+O(1n4).coth(logβh2n)=1+2(βh2n)2+O(1n4).sinhβ2n=β2n+O(1n3).sinh(logβh2n)=12(2nβh)(1+O(1n2)).\begin{split}&\cosh\tfrac{\beta}{2n}=1+\tfrac{1}{2}(\tfrac{\beta}{2n})^{2}+O(\tfrac{1}{n^{4}}).\\ &\coth(-\log\tfrac{\beta h}{2n})=1+2(\tfrac{\beta h}{2n})^{2}+O(\tfrac{1}{n^{4}}).\\ &\sinh\tfrac{\beta}{2n}=\tfrac{\beta}{2n}+O(\tfrac{1}{n^{3}}).\\ &\sinh(-\log\tfrac{\beta h}{2n})=\tfrac{1}{2}(\tfrac{2n}{\beta h})(1+O(\tfrac{1}{n^{2}})).\end{split} (4.14)

Inserting in the previous expression for fn(β,h)f_{n}(\beta,h) we obtain

f,nqu(β,h)=n2log2+O(1n)14πππdk1k2𝕋~nlog[1+12(β2n)2ε(h,k1)2+O(1n3)cosk2],f_{\infty,n}^{\rm qu}(\beta,h)=-\tfrac{n}{2}\log 2+O(\tfrac{1}{n})-\frac{1}{4\pi}\int_{-\pi}^{\pi}{\rm d}k_{1}\sum_{k_{2}\in\widetilde{\mathbb{T}}_{n}}\log\Bigl{[}1+\tfrac{1}{2}(\tfrac{\beta}{2n})^{2}{\varepsilon}(h,k_{1})^{2}+O(\tfrac{1}{n^{3}})-\cos k_{2}\Bigr{]}, (4.15)

where we introduced

ε(h,k1)=1+4h2+4hcosk1.{\varepsilon}(h,k_{1})=\sqrt{1+4h^{2}+4h\cos k_{1}}. (4.16)

We now use the identity (4.12) with a=1+12(β2n)2ε(h,k1)2+O(1n3)a=1+\tfrac{1}{2}(\tfrac{\beta}{2n})^{2}{\varepsilon}(h,k_{1})^{2}+O(\tfrac{1}{n^{3}}), in which case we have a+a21=1+β2nε(h,k1)+O(1n2)a+\sqrt{a^{2}-1}=1+\frac{\beta}{2n}{\varepsilon}(h,k_{1})+O(\frac{1}{n^{2}}). We get

f,nqu(β,h)=n2log2+O(1n)14πππdk1{nlog2+nlog(1+β2nε(h,k1)+O(1n2))+2log(1+(1+β2nε(h,k1)+O(1n2))n)}=O(1n)14πππdk1{β2ε(h,k1)+2log(1+eβ2ε(h,k1))}.\begin{split}f_{\infty,n}^{\rm qu}(\beta,h)&=-\tfrac{n}{2}\log 2+O(\tfrac{1}{n})-\frac{1}{4\pi}\int_{-\pi}^{\pi}{\rm d}k_{1}\Bigl{\{}-n\log 2+n\log\Bigl{(}1+\tfrac{\beta}{2n}{\varepsilon}(h,k_{1})+O(\tfrac{1}{n^{2}})\Bigr{)}\\ &\hskip 142.26378pt+2\log\Bigl{(}1+\bigl{(}1+\tfrac{\beta}{2n}{\varepsilon}(h,k_{1})+O(\tfrac{1}{n^{2}})\bigr{)}^{-n}\Bigr{)}\Bigr{\}}\\ &=O(\tfrac{1}{n})-\frac{1}{4\pi}\int_{-\pi}^{\pi}{\rm d}k_{1}\Bigl{\{}\tfrac{\beta}{2}{\varepsilon}(h,k_{1})+2\log\bigl{(}1+\,{\rm e}^{-\frac{\beta}{2}{\varepsilon}(h,k_{1})}\,\bigr{)}\Bigr{\}}.\end{split} (4.17)

Replacing β2ε(h,k1)\tfrac{\beta}{2}{\varepsilon}(h,k_{1}) by 2logeβ4ε(h,k1)2\log\,{\rm e}^{\frac{\beta}{4}{\varepsilon}(h,k_{1})}\, and combining the logarithms, we obtain the expression of Theorem 4.1. ∎

We finally discuss the “quantum phase transition” of the quantum Ising model. The free energy fqu(β,h)f^{\rm qu}(\beta,h) of the one-dimensional model is clearly analytic for all β>0,h\beta>0,h\in{\mathbb{R}} (and in a complex neighbourhood), but interesting behaviour can happen in the zero-temperature limit. Namely, we consider the ground state energy

e0(h)=limβfqu(β,h).e_{0}(h)=\lim_{\beta\to\infty}f^{\rm qu}(\beta,h). (4.18)

From Theorem 4.1 we get the exact expression

e0(h)=18πππdk1+4h2+4hcosk.e_{0}(h)=-\frac{1}{8\pi}\int_{-\pi}^{\pi}{\rm d}k\,\sqrt{1+4h^{2}+4h\cos k}. (4.19)

One can check that the derivative of e0e_{0} is continuous. The second derivative is

e0′′(h)=12πππdk1+4h2+4hcosk+12πππdk(2h+cosk)2(1+4h2+4hcosk)3/2.e_{0}^{\prime\prime}(h)=-\frac{1}{2\pi}\int_{-\pi}^{\pi}\frac{{\rm d}k}{\sqrt{1+4h^{2}+4h\cos k}}+\frac{1}{2\pi}\int_{-\pi}^{\pi}{\rm d}k\frac{(2h+\cos k)^{2}}{(1+4h^{2}+4h\cos k)^{3/2}}. (4.20)

The integrals are well-behaved except possibly at h=±12h=\pm\frac{1}{2}. While the second integral has a limit as h±12h\to\pm\frac{1}{2}, the first integral diverges logarithmically. Precisely, we can check that

e0′′(h)12πlog|h±12|e_{0}^{\prime\prime}(h)\sim\tfrac{1}{2\pi}\log|h\pm\tfrac{1}{2}| (4.21)

around h=12h=-\frac{1}{2} and h=12h=\frac{1}{2}. As is well-known, there are multiple ground states when |h|<12|h|<\frac{1}{2}, that display long-range order; there is a single disordered ground state when |h|>12|h|>\frac{1}{2}. More information about the quantum Ising model can be found in the recent works [9, 4, 13, 7, 3, 19, 27].

5. Acknowledgements

We acknowledge useful discussions with Michael Aizenman, Jakob Björnberg, David Cimasoni, Søren Fournais, Marcin Lis, Sébastien Ott, Jan Philip Solovej, Yvan Velenik, Simone Warzel, and Nikos Zygouras. We are also grateful to the referee for useful comments. GA is supported by the EPSRC grants EP/V520226/1 and EP/W523793/1. DU is grateful to Chalmers University in Gothenburg, and to the Mathematisches Forschungsinstitut Oberwolfach for hosting him during part of this study.

Conflicts of interest: none.

References

  • [1]
  • [2] M. Aizenman, S. Warzel, Kac–Ward formula and its extension to order–disorder correlators through a graph zeta function, J. Statist. Phys. 173, 1755–1778 (2018)
  • [3] J.E. Björnberg, Vanishing critical magnetization in the quantum Ising model, Commun. Math. Phys. 337, 879–907 (2015)
  • [4] J.E. Björnberg, G.R. Grimmett, The phase Transition of the quantum Ising model is sharp, J. Statist. Phys. 136, 231–273 (2009)
  • [5] D. Cimasoni, A generalized Kac-Ward formula, J. Stat. Mech., P07023 (2010)
  • [6] D. Cimasoni, H. Duminil-Copin, The critical temperature for the Ising model on planar doubly periodic graphs, Electron. J. Probab. 18, 1–18 (2013)
  • [7] N. Crawford, D. Ioffe, Random current representation for transverse field Ising model, Commun. Math. Phys. 296, 447–474 (2010)
  • [8] S. Friedli, Y. Velenik, Statistical Mechanics of Lattice Systems: a Concrete Mathematical Introduction, Cambridge University Press (2017)
  • [9] G.R. Grimmett, Probability on Graphs, Cambridge University Press (2008)
  • [10] R.M.F. Houtappel, Order-disorder in hexagonal lattices, Physica 16, 425–455 (1950)
  • [11] K. Husimi, I. Syozi, The statistics of honeycomb lattice. I., Progr. Theor. Phys. 5, 177–186 (1950)
  • [12] K. Husimi, I. Syozi, The statistics of honeycomb lattice. II., Progr. Theor. Phys. 5, 341–351 (1950)
  • [13] D. Ioffe, Stochastic geometry of classical and quantum Ising models, in Methods of Contemporary Mathematical Statistical Physics, R. Kotecký (ed.), Springer Lect. Notes Math. 1970, pp 87–127 (2009)
  • [14] M. Kac, J.C. Ward, A combinatorial solution of the two-dimensional Ising model, Phys. Rev. 88, 1332-1337 (1952)
  • [15] W. Kager, M. Lis, R. Meester, The signed loop approach to the Ising model: Foundations and critical point, J. Statist. Phys. 152, 353–387 (2013)
  • [16] P.W. Kasteleyn, Dimer statistics and phase transitions, J. Math. Phys. 4, 287–293 (1963)
  • [17] B. Kaufman, Crystal Statistics. II. Partition Function Evaluated by Spinor Analysis, Phys. Rev. 76, 1232–1243 (1949)
  • [18] R. Kenyon, A. Okounkov, S. Sheffield, Dimers and amoebae, Ann. of Math. (2), 163(3), 1019–1056 (2006)
  • [19] J.H. Li, Conformal invariance in the FK-representation of the quantum Ising model and convergence of the interface to the SLE16/3, Probab. Theory Rel. Fields 173, 87–156 (2019)
  • [20] Z. Li, Critical temperature of periodic Ising models, Commun. Math. Phys. 315, 337–381 (2012)
  • [21] M. Lis, A short proof of the Kac-Ward formula, Ann. H. Poincaré D, 3, 45–53 (2015)
  • [22] L. Onsager, Crystal statistics. I. A two-dimensional model with an order-disorder transition, Phys. Rev. 65, 117–149 (1944)
  • [23] P. Pfeuty, The one-dimensional Ising model with a transverse field, Ann. Phys. 57(1), 79–90 (1970)
  • [24] R.B. Potts, Combinatorial Solution of the Triangular Ising Lattice, Proc. Phys. Soc. A 68 145, (1955)
  • [25] T.D. Schultz, D.C. Mattis, E.H. Lieb, Two-dimensional Ising model as a soluble problem of many fermions, Rev. Mod. Phys. 36, 856–870 (1964)
  • [26] J. Stephenson, Ising‐model spin correlations on the triangular lattice, J. Math. Phys. 5, 1009–1024 (1964)
  • [27] H. Tasaki, Physics and Mathematics of Quantum Many-Body Systems, Springer Graduate Texts in Physics (2020)
  • [28] H.N.V. Temperley, M.E. Fisher, Dimer problem in statistical mechanics – an exact result, Philos. Mag. 6, 1061–1063 (1961)
  • [29] G.H. Wannier, Antiferromagnetism. The triangular Ising net., Phys. Rev. 79, 357–364 (1950)