This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Kerr, Faraday, and Magnetoelectric Effects in MnBi2Te4 Thin Films

Chao Lei Department of Physics, The University of Texas at Austin, Austin, Texas 78712, USA leichao.ph@gmail.com    Allan H. MacDonald Department of Physics, The University of Texas at Austin, Austin, Texas 78712, USA
Abstract

The topological magneto-electric effect (TME) is a characteristic property of topological insulators. In this article, we use a simplified coupled-Dirac-cone electronic structure model to theoretically evaluate the THz and far infrared Kerr and Faraday responses of thin films of MnBi2Te4 with up to N=10N=10 septuple layers with the goal of clarifying the relationship between these convenient magneto-optical observables and the TME. We find that for even NN the linear Kerr and Faraday responses to an electric field vanish in the low-frequency limit, even though the magnetoelectric response is large and approximately quantized.

I Introduction

Three-dimensional topological insulators (TIs) [1, 2] have protected surface states with Dirac band-crossings located at time-reversal invariant two-dimensional momenta and characteristic topological magneto-electric (TME) response[3, 4, 5, 6, 7, 8] properties. The TME effect occurs only when the Dirac cones are gapped by introducing magnetic dopants at the surface or by using magnetic TIs like MnBi2Te4, and has been proven to be difficult to measure directly[9, 10]. In the thin-film limit Kerr and Faraday’s optical response coefficients and orbital magnetization, all of which require broken time-reversal symmetry, are closely related quantities that are normally present or absent together. Partly for this reason there has been interest [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21] in using magneto-optical Kerr or Faraday effects as a proxy for magnetization since Kerr and Faraday effect measurements are routinely used as a proxy for magnetization measurements.

The Kerr and Faraday effects of TIs are easily measured [22, 23, 24, 25, 26] when external fields are applied or the magnetization orientations on top and bottom surfaces are parallel, in which case the device Hall conductivity is quantized [27, 28, 29] at a non-zero value and the magnetization is non-zero even in the absence of an electric field. MnBi2Te4 films with an odd number of septuple layers NN in which the surface magnetizations are parallel provide one example of this quantum Hall case. In this article, we exclude the quantum Hall devices from consideration and focus on the case of even NN magnetic topological insulators (and on even layer MnBi2Te4 in particular) instead of surface magnetized non-magnetic TIs since these seem at present to have more reproducible magnetic properties, although our conclusions apply to both cases.

Our interest here is thus in the magnetization response to electric field in MnBi2Te4 films with an even number of septuple layers, in which the TME coefficient is quantized and the total Hall conductivity in the absence of electric and magnetic field is zero. We point out that in this case both the Kerr and the Faraday responses to an electric field differ qualitatively from the magnetization response. Specifically for even NN , the Kerr and Faraday angle response to an electric field vanishes at low frequencies under circumstances where the TME is robust. We explain this difference using a simplified coupled Dirac-cone model [30] of magnetic TI MnBi2Te4. Below we first explain the origin of this difference, and then explore it quantitatively using a simplified model of magnetic topological insulator thin films.

II Faraday, Kerr, and Magnetoelectric Response

Hall effects in two-dimensional insulators can be viewed [31] as measurements of the chemical potential dependence of equilibrium edge currents, dIedge/dμ=σe/hdI_{edge}/d\mu=\sigma e/h, or equivalently of the orbital magnetizations that they produce dMedge/dμ=σAe2/hdM_{edge}/d\mu=\sigma Ae^{2}/h, where ee is the magnitude of the electron charge, hh is Plank’s constant, σ\sigma is an integer and A is the film area. In topological insulator thin films σ\sigma can be non-zero only when time-reversal symmetry is broken, either at the top and bottom surfaces or, as in the case of a magnetic topological insulator [32], throughout the bulk. In a system with A-type bulk antiferromagnetism, the TME occurs when opposite surfaces have opposite magnetizations, e.g. for an even number of magnetic layers. The magnetic configuration with opposite magnetization orientations on opposite surfaces is often referred to in the literature as the axion insulator configuration. Since the edge current at a surface depends only on the value of the chemical potential relative to the mid-gap energies of the local Dirac cones, or some other reference energy, it follows that dMedge/dVedge=dMedge/dμdM_{edge}/dV_{edge}=-dM_{edge}/d\mu. When an electric field is applied across the bulk of the topological insulator with thickness tt, the local electrical potentials on the top and bottom surfaces differ by ezte\mathcal{E}_{z}t, moving the local Dirac bands relative to the chemical potential as illustrated in Fig. LABEL:fig:schematic. This difference yields a net magnetization that is linear in z\mathcal{E}_{z} and proportional to the system volume - the topological magnetoelectric effect. The total Hall conductivity of the axion insulator state, summing over top and bottom surfaces, still vanishes however provided that the chemical potential stays inside the surface state gap.

The TME effect refers to the dc response properties of TIs, but is also approximately manifested at finite frequencies provided they are well below the TI bulk energy gap. Since the gaps of MnBi2Te4 thin films are usually less than 100 meV, typical film thicknesses dd are very small compared to the relevant light wavelength λ\lambda. (For example d150d\sim 150 nm for a N=10N=10 septuple layer MnBi2Te4 thin film is small compared to the vacuum wavelength λ25μ\lambda\sim 25\mum of 5050 meV light.) In the thin film (dλd\ll\lambda) limit we can calculate the Kerr and Faraday responses simply by treating the entire film as an arbitrarily thin two-dimensional interface. The response of light to currents in the 2D film is determined by the electromagnetic boundary condition,

𝐧×(𝐇t𝐇b)=𝐣s.{\mathbf{n}}\times({\mathbf{H}}_{t}-{\mathbf{H}}_{b})={\mathbf{j}}_{s}. (1)

Here 𝐧{\mathbf{n}} is a unit vector oriented from top to bottom and jsj_{s} is the two-dimensional current density, which is related to the two-dimensional conductivity of the film by

jsα=βσαβEβ.j_{s}^{\alpha}=\sum_{\beta}\sigma_{\alpha\beta}E_{\beta}. (2)

When Eq. 1 is combined with the source-free Maxwell’s equations applied outside of the thin film, the in-plane transmitted and reflected fields produced by an incident em wave with an unit electric field are [11]

(ExtEyt)=1𝒩(2n1(n1+n2+2ασxx)4αn1σxy),\displaystyle\begin{pmatrix}E_{x}^{t}\\ E_{y}^{t}\end{pmatrix}=\frac{1}{\mathcal{N}}\begin{pmatrix}2n_{1}(n_{1}+n_{2}+2\alpha\sigma_{xx})\\ -4\alpha n_{1}\sigma_{xy}\end{pmatrix}, (3)
(ExrEyr)=1𝒩(n12(n2+2ασxx)2(2ασxy)24αn1σxy),\displaystyle\begin{pmatrix}E_{x}^{r}\\ E_{y}^{r}\end{pmatrix}=\frac{1}{\mathcal{N}}\begin{pmatrix}n_{1}^{2}-(n_{2}+2\alpha\sigma_{xx})^{2}-(2\alpha\sigma_{xy})^{2}\\ -4\alpha n_{1}\sigma_{xy}\end{pmatrix},

where σxx\sigma_{xx} and σxy\sigma_{xy} are the total longitudinal and Hall conductivities of the film in units of e2/he^{2}/h, α1/137\alpha\approx 1/137 is the fine structure constant, 𝒩(n1+n2+2ασxx)2+(2ασxy)2\mathcal{N}\equiv(n_{1}+n_{2}+2\alpha\sigma_{xx})^{2}+(2\alpha\sigma_{xy})^{2}, and ni2=ϵin_{i}^{2}=\epsilon_{i} are the relative dielectric constants of the materials above and below the interface. The 2D film conductivities should be evaluated by integrating across the film and include contributions from both dissipative and reactive responses of the TI film both at its surfaces and in the interior of the film. The 2D approximation, which has the advantage of allowing us to reach simple conclusions, is strictly speaking valid only in the limit d/λ0d/\lambda\to 0, as discussed further below.

The Faraday and Kerr angles are defined respectively as the rotation angles of linearly polarized incoming light upon transmission and reflection:

θF=(argE+targEt)/2,\displaystyle\theta_{F}=(\arg{E_{+}^{t}}-\arg{E_{-}^{t}})/2, (4)
θK=(argE+rargEr)/2,\displaystyle\theta_{K}=(\arg{E_{+}^{r}}-\arg{E_{-}^{r}})/2,

where E±r/tExr/t±iEyr/tE_{\pm}^{r/t}\equiv E_{x}^{r/t}\pm iE_{y}^{r/t}. Here the values of incoming in-plane polarization can be read from Eq. 3.

For even NN films both the Hall conductivity and the magnetization vanish by symmetry [33, 34] in the absence of external out-of-plane electric field z=0\mathcal{E}_{z}=0 at all frequencies. Because of quantization, the dc Hall conductivity vanishes identically at finite z\mathcal{E}_{z} until the field is strong enough to close the gap; The linear response of the Hall conductivity to z\mathcal{E}_{z} is therefore zero in the dc limit. Under the same conditions, the linear response of the magnetization is quantized at the topologically protected value. We anticipate that the linear response of the Kerr and Faraday effects to external electric field EzE_{z} is strongly suppressed when ω\hbar\omega is well below the bandgap of MnBi2Te4 thin films. In the following we use a simplified model to test this expectation quantitatively.

III Optical Conductivity of MBT
Thin Films

We evaluate the frequency-dependent conductivity tensor of MnBi2Te4 [35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 30] thin films using a coupled-Dirac-cone model [30] that retains two Dirac cones in each MnBi2Te4 septuple layer as low-energy degrees of freedom. The full Hamiltonian in the presence of external out-of-plane electric field reads as [50]:

H=𝐤,ij[(()ivD(z^×σ)𝐤+miσz+Vi)δij+Δij(1δij)]c𝐤ic𝐤j.\begin{split}H=&\sum_{{\mathbf{k}}_{\perp},ij}\Big{[}\Big{(}\,(-)^{i}\hbar v_{{}_{D}}(\hat{z}\times{\mathbf{\sigma}})\cdot{\mathbf{k}}_{\perp}+m_{i}\sigma_{z}+V_{i}\Big{)}\delta_{ij}\\ &+\Delta_{ij}(1-\delta_{ij})\Big{]}c_{{\mathbf{k}}_{\perp}i}^{\dagger}c_{{\mathbf{k}}_{\perp}j}~{}.\end{split} (5)

Here the Dirac cone labels ii and jj are respectively odd and even on the top and bottom surface of each septuple layer, \hbar is the reduced Planck’s constant, vDv_{{}_{D}} is the Dirac-cone velocity and Vi=Vi1+i(zizi1)V_{i}=V_{i-1}+\mathcal{E}_{i}(z_{i}-z_{i-1}) is the self-consistent Hartree potential on surface ii, with ziz_{i} the designed position of the ithi^{th} Dirac cone. The external electric field is calculated with discrete Poisson equation as ϵ~i=ϵ~i1+δρi\tilde{\epsilon}\mathcal{E}_{i}=\tilde{\epsilon}\mathcal{E}_{i-1}+\delta\rho_{i}, here ϵ~\tilde{\epsilon} is the dielectric constant and δρi\delta\rho_{i} are the net surface charge density at surface ii, more details for the calculations of δρi\delta\rho_{i} and related parameters can be found in 50. In the following discussion when the electric field is present, we will always consider the case when the Fermi level lies in the gap, i.e. we will keep the system neutral. The Dirac-cone model describes a topological insulator when the hybridization ΔD\Delta_{D} across the gap between different septuple layers is stronger than the hybridization ΔS\Delta_{S} between top and bottom Dirac cones in the same septuple layer. Each Dirac cone has an exchange splitting mm that is the sum of contributions from the near-neighbor Mn magnetic layers within the same (JSJ_{S}) septuple layer and in the adjacent septuple layer (JD)J_{D}). An NN-septuple layer thin film is reduced by this model to a quasi-2D system with 4N bands. For the calculations we report on below we use the numerical model parameters that provide a minimal description[30] of MnBi2Te4 thin films: Dirac velocity vD=5×105m/s\rm v_{D}=5\times 10^{5}m/s, ΔS=84meV\rm\Delta_{S}=84meV, ΔD=127meV\rm\Delta_{D}=-127meV, JS=36meV\rm J_{S}=36meV, and JD=29meV\rm J_{D}=29meV.

The optical conductivity of the Dirac cone model is calculated by using the Kubo-Greenwood formula[51, 52]:

σαβ(ω)=ie2d𝐤(2π)2nmfn𝐤fm𝐤En𝐤Em𝐤×m𝐤|αH𝐤|n𝐤n𝐤|βH𝐤|m𝐤En𝐤Em𝐤(ω+iη),\begin{split}\sigma_{\alpha\beta}(\omega)=&\frac{ie^{2}}{\hbar}\int\frac{d{\mathbf{k}}}{(2\pi)^{2}}\sum_{nm}\frac{f_{n{\mathbf{k}}}-f_{m{\mathbf{k}}}}{E_{n{\mathbf{k}}}-E_{m{\mathbf{k}}}}\\ &\times\frac{\braket{m{\mathbf{k}}}{\partial_{\alpha}H_{{\mathbf{k}}}}{n{\mathbf{k}}}\braket{n{\mathbf{k}}}{\partial_{\beta}H_{{\mathbf{k}}}}{m{\mathbf{k}}}}{E_{n{\mathbf{k}}}-E_{m{\mathbf{k}}}-(\hbar\omega+i\eta)},\end{split} (6)

where αH𝐤kαH𝐤\partial_{\alpha}H_{{\mathbf{k}}}\equiv\partial_{k_{\alpha}}H_{{\mathbf{k}}}, ω\omega is the optical frequency, \hbar is the reduced Planck’s constant, α,β=x,y\alpha,\beta=x,y are Cartesian tensor labels, n,mn,m are band indices, |n𝐤\ket{n{\mathbf{k}}} is a Bloch state, En𝐤E_{n{\mathbf{k}}} is a band energy, fn𝐤f_{n{\mathbf{k}}} is Fermi-Dirac band occupation probability, and η\eta is a disorder broadening parameter that is set to 0.5 meV. In the Dirac cone model [30] xH𝐤=vDσyτz\partial_{x}H_{{\mathbf{k}}}=\hbar v_{D}\sigma_{y}\tau_{z}, yH𝐤=vDσxτz\partial_{y}H_{{\mathbf{k}}}=-\hbar v_{D}\sigma_{x}\tau_{z} where σα\sigma_{\alpha} is a Pauli matrix acting on spin. The band energies in Eq. 6 depend only on the magnitude of wavevector 𝐤{\mathbf{k}}, and the velocity matrix elements have a simple angle dependence that allows angular integrals to be performed analytically. Our calculations are therefore performed by integrating numerically over the radial direction of 2D k-space after performing the angular integrals analytically. Because we employ continuum Dirac models for the x^y^\hat{x}-\hat{y} planes, the numerical integrals require a k-space cutoff. In our numerical calculations we used an adaptive kk-mesh with a higher density over the range of kk with a large Berry curvature, and a sparse mesh where the Berry curvature is small. In this specific model, the Berry curvatures are mainly contributed around 𝐤=0{\mathbf{k}}=0 and our k-mesh samplings are set as follows:

k{[0,2n]πan=0[2n1,2n]πan=1,2,3,,M,k\in\begin{cases}[0,2^{n}]\frac{\pi}{a}&n=0\\ [2^{n-1},2^{n}]\frac{\pi}{a}&n=1,2,3,...,M\\ \end{cases}, (7)

Here aa is selected so that the Berry curvature is concentrated in the range of [0,π/a][0,\pi/a] and therefore depends on the band gap where band inversion appears. MM determines the cutoff of the wavevector. We normally set M=12M=12 which places any anomalies associated with the cut-offs outside of the range of frequencies that we plot.

In Fig. LABEL:fig:band_conductivity we illustrate the main features of z=0\mathcal{E}_{z}=0 systems by plotting the bandstructure and the frequency-dependent longitudinal and Hall optical conductivities (σxx(ω)\sigma_{xx}(\omega) and σxy(ω)\sigma_{xy}(\omega)) of antiferromagnetic MnBi2Te4 thin films with septuple-layer numbers N=4N=4 and N=5N=5 (The optical conductivities for other antiferromagnetic thin films as shown in Fig. LABEL:fig:conductivity_AF of appendix A). The ground states for N=4N=4 and other even NN films are referred to as axion insulators in the literature, and have similar conductivities. The N=5N=5 case is an example of an odd NN magnetic configuration that supports a quantum anomalous Hall effect and therefore does not have axion electrodynamics. The electronic structure of N=4N=4 thin film is invariant under combined time-reversal (𝒯\mathcal{T}) and inversion (\mathcal{I}) symmetry, which leads, via a generalized Kramer’s theorem, to the doubly degenerate 2D bands [33] shown in Fig. LABEL:fig:band_conductivity (a). In this case, as shown in Fig. LABEL:fig:band_conductivity (b), both real (red solid curve) and imaginary (dashed red curve) parts of longitudinal conductivity (σxx\sigma_{xx}) approach 0 in the low frequency limit and have interband features at 50\approx 50 meV. The Hall conductivity (σxy\sigma_{xy}), and therefore both Kerr and Faraday angles, vanish identically over the entire range of frequencies due to 𝒯\mathcal{T}\mathcal{I} symmetry. For thin films with an odd number of layers, there is no 𝒯\mathcal{T}\mathcal{I} symmetry and the band degeneracy is lifted as shown in Fig. LABEL:fig:band_conductivity (c)). Antiferromagnetic MnBi2Te4 thin films with thickness N>3N>3 are Chern insulators with Chern number C=1C=1 and therefore have quantized dc Hall conductivities as shown in Fig. LABEL:fig:band_conductivity (d). The gap of the N=5N=5 Chern insulator is small (20\sim 20 meV) because the minimum thickness necessary for Hall quantization is only modestly exceeded [50]. In Fig. LABEL:fig:conductivity_FM of the appendix A we summarize the properties of the conductivity tensor in thin films with spin-aligned magnetic configurations, which can be induced in MnBi2Te4 by applying magnetic fields exceeding 5\sim 5 Tesla [37, 41, 42]. Based on these optical conductivities, the corresponding Kerr and Faraday rotations vs. optical frequencies of MnBi2Te4 thin films are estimated as shown in Fig. LABEL:fig:Kerr_Faraday, here we estimate the magneto-optical rotation angles in the 2D limit. The Faraday and Kerr rotations for AF thin films are shown in Fig. LABEL:fig:Kerr_Faraday (a) and (c), from which we see that for thin films with even-number-layers (corresponds to dashed curves), there is no Faraday and Kerr signals as σxy(ω)=0\sigma_{xy}(\omega)=0. For odd N thin films, however, there is a large Faraday and Kerr rotation angle (θF/K\theta_{F/K}) at finite frequencies even though the MnBi2Te4 thin films are trivial insulators, see N=1N=1 or N=3N=3 thin films for example, although θF/K\theta_{F/K} is still 0 in the DC limit. When the thin films are in Chern insulator states, the Faraday and Kerr rotation angles in the DC limit approach to the quantized value, i.e. tan1(1/4πσxy)π/2-tan^{-1}(1/4\pi\Re\sigma_{xy})\approx-\pi/2 for Kerr rotation angle; and tan1(4πσxy)=Ctan1αtan^{-1}(4\pi\Re\sigma_{xy})=Ctan^{-1}\alpha for Faraday rotation angle. Here CC is the Chern number and α\alpha is the fine structure constant.

IV Electric-field dependence of the Faraday and Kerr angles

The 𝒯\mathcal{TI} symmetry that causes the Kerr, Faraday and orbital magnetization responses to simultaneously vanish in axion insulator states is broken by an electric field z\mathcal{E}_{z} applied across the film. Based on Schrödinger-Poisson equation, we calculate the orbital magneto-electric response for MBT thin films with the modern theory of orbital magnetization, which leads to the following expression [53, 54, 55, 56]:

Morb=e21(2π)2d𝐤nfn𝐤Im𝐤un𝐤|×(H𝐤+En𝐤2μ)|𝐤un𝐤,\begin{split}M_{orb}=\frac{e}{2\hbar}\int&\frac{1}{(2\pi)^{2}}d{\mathbf{k}}\sum_{n}f_{n{\mathbf{k}}}\rm{Im}\langle\partial_{{\mathbf{k}}}u_{n{\mathbf{k}}}|\\ &\times(H_{{\mathbf{k}}}+E_{n{\mathbf{k}}}-2\mu)|\partial_{{\mathbf{k}}}u_{n{\mathbf{k}}}\rangle,\end{split} (8)

where fn𝐤f_{n{\mathbf{k}}} is the Fermi-Dirac distribution function, H𝐤H_{\mathbf{k}} is the Hamiltonian introduced in Eq. 5, En𝐤E_{n{\mathbf{k}}} is the eigenvalue of the nthn^{th} subbands, μ\mu is the chemical potential, and the wavevector integrals are over two-dimensional momentum space. The orbital magnetism response to z\mathcal{E}_{z} (denoted as \mathcal{E} in the plots since we consider the electric field only in z-direction), plotted as blue curves in Fig. LABEL:fig:kerr_field_om)(a) and (b), is initially linear with small finite thickness corrections [57] to the quantized response coefficient, which is common to all topological insulators. This topological response is strong, at least compared to that of typical magneto-electric materials like Cr22O3.

We now combine the simplified coupled Dirac cone model and self-consistent Schrödinger-Possion equations[50] to model the effect of z\mathcal{E}_{z} on the magneto-optical response. In Fig. LABEL:fig:kerr_field_om (a) and (b) we show typical 2D limit Kerr and Faraday rotation angles for even-layer thin films calculated from the conductivity tensor of an N=4N=4 axion insulator thin film using a substrate dielectric constant ns=1n_{s}=1. We see that the Kerr and Faraday angles have extremely small linear response coefficients, and that they remain small even when the vertical electric field z\mathcal{E}_{z} [50] is near the critical value at which the film gap vanishes. We attribute these very small values to the approximate locality of the Hall response at top and bottom surfaces. Because the surface magnetizations are opposite the total Hall conductivities nearly vanish at all frequencies even for z0\mathcal{E}_{z}\neq 0. The Kerr and Faraday angles in Fig. LABEL:fig:kerr_field_om (1011\sim 10^{-11} rad) lie below current Kerr angle detection limits[58, 59], to the best of our knowledge. The frequency and electric field dependence of the underlying conductivities is presented in Fig. LABEL:fig:conductivity_xx_field_frequency-LABEL:fig:kerr_field of the appendix B. Because these response coefficients calculated in the 2D limit are practically zero even at z0\mathcal{E}_{z}\neq 0, the finite thickness corrections we examine next are actually dominant.

V Thickness Dependence

Because the Kerr response is so weak in the 2D limit, finite thickness corrections can easily be important. To assess the film thickness dependence of the Kerr and Faraday response, we first model the thin film as two Dirac surfaces that support half-quantized Hall effects of opposite signs and are separated by a dielectric bulk. The electromagnetic wave then scatters at both interfaces. Denote the incoming field as [Eti~Erj~]T[\tilde{E^{ti}}~{}~{}\tilde{E^{rj}}]^{T} and outgoing field as [Eri~Etj~]T[\tilde{E^{ri}}~{}~{}\tilde{E^{tj}}]^{T}, at the interface the incoming and outgoing fields are connected with the scattering matrix SS which reads as:

S=(r¯t¯t¯r¯),S=\begin{pmatrix}\bar{r}&\bar{t^{\prime}}\\ \bar{t}&\bar{r^{\prime}}\\ \end{pmatrix}, (9)

Here r¯\bar{r}^{\prime} and t¯\bar{t}^{\prime}, the reflection and transmission tensors for incidence from the right, are obtained from r¯\bar{r} and (t¯\bar{t}) by reversing the wavevector direction and interchanging the dielectric constants on opposite sides of the interface [11]. r¯\bar{r}, t¯\bar{t} are defined as:

r¯=(rxxrxyrxyryy),t¯=(txxtxytxytyy).\bar{r}=\begin{pmatrix}r_{xx}&r_{xy}\\ -r_{xy}&r_{yy}\end{pmatrix},~{}~{}\bar{t}=\begin{pmatrix}t_{xx}&t_{xy}\\ -t_{xy}&t_{yy}\end{pmatrix}.

This total reflection and transmission tensors r¯\bar{r} and t¯\bar{t} can be composed from the top (TT) and bottom (BB) single-interface scattering matrices:

r¯=r¯T+t¯Tr¯B(1r¯Tr¯B)1t¯T,\displaystyle\bar{r}=\bar{r}_{T}+\bar{t}^{\prime}_{T}\bar{r}_{B}(1-\bar{r}^{\prime}_{T}\bar{r}_{B})^{-1}\bar{t}_{T}, (10)
t¯=t¯B(1r¯Tr¯B)1t¯T.\displaystyle\bar{t}=\bar{t}_{B}(1-\bar{r}^{\prime}_{T}\bar{r}_{B})^{-1}\bar{t}_{T}.

The resulting Kerr and Faraday rotations depend strongly on the dielectric constants experienced by incoming and outgoing light. If we assume that light is incoming from vacuum with relative dielectric constant (n0=1n_{0}=1) and is outgoing to an infinite substrate with relative dielectric constant nsn_{s}, the Faraday rotation angle for an antiferromagnetic thin film is non-zero only when ns1n_{s}\neq 1. In contrast, the Kerr rotation angle is non-zero when ns=n0n_{s}=n_{0}, as illustrated in Fig. LABEL:fig:kerr_vs_dielectric (a) and (b). In Fig. LABEL:fig:kerr_vs_dielectric (c) and (d) the Kerr and Faraday rotation angles for thin films with FM state are plotted.

When the thickness of substrates is considered to be finite, i.e. with substrate thickness dsd_{s}, We can account for both the thickness and the index of refraction (nsn_{s}) of the substrate by replacing t¯B\bar{t}_{B} and r¯B\bar{r}_{B} by t¯S\bar{t}_{S} and r¯S\bar{r}_{S} which can be calculated by composing two single-interface scattering matrices - in this case the interfaces between substrate and sample and between substrate and vacuum:

r¯=r¯T+t¯Tr¯SB(1r¯Tr¯SB)1t¯T,\displaystyle\bar{r}=\bar{r}_{T}+\bar{t}^{\prime}_{T}\bar{r}_{SB}(1-\bar{r}^{\prime}_{T}\bar{r}_{SB})^{-1}\bar{t}_{T}, (11)
t¯=t¯SB(1r¯Tr¯SB)1t¯T,\displaystyle\bar{t}=\bar{t}_{SB}(1-\bar{r}^{\prime}_{T}\bar{r}_{SB})^{-1}\bar{t}_{T},

where rSBr_{SB} and tSBt_{SB} are calculated as:

r¯SB=r¯B+t¯Br¯S(1r¯Br¯S)1t¯B,\displaystyle\bar{r}_{SB}=\bar{r}_{B}+\bar{t}^{\prime}_{B}\bar{r}_{S}(1-\bar{r}^{\prime}_{B}\bar{r}_{S})^{-1}\bar{t}_{B}, (12)
t¯SB=t¯S(1r¯Br¯S)1t¯B.\displaystyle\bar{t}_{SB}=\bar{t}_{S}(1-\bar{r}^{\prime}_{B}\bar{r}_{S})^{-1}\bar{t}_{B}.

Here rBr_{B}/tBt_{B} is the scattering matrix in the interfaces between substrate and sample and rSr_{S}/tSt_{S} is the one between substrate and vacuum.

The Kerr signal can thus also depend on the substrate thickness dsd_{s} when accounting for both the thickness and the index of refraction (nsn_{s}) of the substrate, as illustrated in Fig. LABEL:fig:Kerr_Faraday_Thickness (a). The dependence of the Kerr and Faraday rotation angles on dsd_{s} and nsn_{s} are illustrated in Fig. LABEL:fig:Kerr_Faraday_Thickness (b), for the case of an optical frequency close to the gap (25 meV) and an electric field of 25 meV/nm. This z\mathcal{E}_{z} is smaller than the critical electric field, The substrate index of refractions in Fig. LABEL:fig:Kerr_Faraday_Thickness (b) are ns=3n_{s}=3 a typical value for hexagonal boron nitride, ns=5n_{s}=5 a typical value for silicon dioxide, and ns=10n_{s}=10 a typical value of aluminum oxide. These results demonstrate explicitly that reflection off the substrate-vacuum interface is important whenever the light is not absorbed in the substrate. With the substrate thickness ds=200λd_{s}=200\lambda as an example, the dependence of Kerr and Faraday rotations on the thickness of sample is plotted in Fig. LABEL:fig:Kerr_Faraday_Thickness (c) and (d), which is linearly proportional with the thickness of sample, and the slopes depend on the substrate index of refractions.

Finally we examine the role of imperfect compensation between the half-quantized hall conductivities on the top and bottom surfaces, by fixing the difference of Hall conductivity between the two surfaces at σTσB=e2/h\sigma_{T}-\sigma_{B}=e^{2}/h and allowing the total to be non-zero. Our explicit calculations discussed previously have shown that the total Hall conductivity σxyT\sigma_{xy}^{T} remains extremely small (as illustrated in Fig. LABEL:fig:conductivity_xy_field_frequency) even for z0\mathcal{E}_{z}\neq 0 as long as the 2D system is an insulator. We do expect sizable conductivities to arise, however, when the Fermi level is in the local gap on one side of the film and not on the other. In Fig. LABEL:fig:Kerr_Faraday_Sigma(a) and (b) we plot the Kerr and Faraday angles vs. σxyT\sigma_{xy}^{T} for substrate thickness ds=200λd_{s}=200\lambda for both ns=3n_{s}=3 and ns=10n_{s}=10. In each case we plot results obtained using the 2D approximation and for the thicknesses of N=4N=4 and 88 septuple layer films. These calculations demonstrate that the Kerr and Faraday angles have additive linear contributions from both finite thickness and from a finite value of the total Hall conductivity of the film, and that both angles are sensitive to substrate properties.

VI Discussion

MnBi2Te4 thin films with an odd number NN of septuple layers are two-dimensional insulating ferromagnets that exhibit the quantum anomalous Hall effect. Because they are ferromagnets with strong spin-orbit coupling, they have non-zero spin and orbital magnetizations in the absence of any external fields. Because they exhibit the quantum anomalous Hall effect, the films have large total optical Hall conductivities at frequencies below the gap that lead to substantial Kerr and Faraday effects that are readily observable, and are indirectly related to the topological magneto-electric effect. In this paper we focus on the magneto-electric and magneto-optical response properties of even NN thin films, which are axion insulators. We find that although the dc magnetization response to electric field is quantized, the response of the magneto-optical Faraday and Kerr and angles to an electric field is extremely weak, and what survives might be difficult to disentangle. We predict that at frequencies below the gap, the Kerr and Faraday angles of realistic thin films will have additive small contributions from the finite thicknesses of the MnBi2Te4 samples, and from imperfect compensation between contributions to the total Hall conductivity from the top and bottom of the thin films. The best way to identify the topological magneto-electric effect, we believe, is to do it thermodynamically by measuring the temperature and magnetic-field dependent capacitance of hBN-encapsulated MnBi2Te4 thin films.

VII Acknowledgement

This work was sponsored by the Department of Energy under grant DE-SC0021984.

Appendix A Optical conductivities

The optical conductivities of antiferromagnetic (AF) MnBi2Te4 thin films from N=1N=1 septuple layer to N=10N=10 septuple layers are illustrated in Fig. LABEL:fig:conductivity_AF. The real and imaginary parts of σxx(ω)\sigma_{xx}(\omega) and σxy(ω)\sigma_{xy}(\omega) are plotted separately in panels (a)-(d). In Fig. LABEL:fig:conductivity_AF (a) and (b) we see that both the real and imaginary parts of σxx(ω)\sigma_{xx}(\omega) have typical interband absorption edge features at the NN-dependent gap energy. The real and imaginary parts of σxy(ω)\sigma_{xy}(\omega) vanish identically for all even NN films, as shown in Fig. LABEL:fig:conductivity_AF (a) and (b), due to the combined time-reversal times spacial inversion symmetry. The quantum anomalous Hall (QAH) and trivial insulators are clearly distinguished by the Hall conductivities at frequencies well below the band gap.

For MnBi2Te4 thin films in ferromagnetic (FM) state, the frequency-dependence of longitudinal optical conductivity σxx(ω)\sigma_{xx}(\omega) is similar to the ones in AF state. In Fig. LABEL:fig:conductivity_FM (a) and (b) we show the plots of real and imaginary parts of σxx(ω)\sigma_{xx}(\omega) for MnBi2Te4 thin films with thickness from 5 SLs to 10 SLs, the step-like behaviors of σxx(ω)\Re\sigma_{xx}(\omega) origin from the accumulated exited subbands when the frequency increases. The Hall conductivities, shown in Fig. LABEL:fig:conductivity_FM (c) and (d) where we use the same color to label the same thickness as in panels (a) and (b), have different dependence on optical conductivity compared with the AF state. In the DC limit, a topological phase transition happens when the thickness increases to N9N\geq 9, above the critical thickness the Chern number increases from 1 to 2. σxy(ω)\Im\sigma_{xy}(\omega) shown in Fig. LABEL:fig:conductivity_FM (d) indicates that the frequency dependence differs between N9N\geq 9 and N<9N<9 thin films. Note that σxy(ω)<0\Im\sigma_{xy}(\omega)<0 at low frequencies for N<9N<9 thin films, this is due to the negative Berry curvature close to Γ\Gamma point in 2D bands. The negative Berry curvature also leads to a decrease of σxy(ω)\Re\sigma_{xy}(\omega) shown in Fig. LABEL:fig:conductivity_FM (c).

Appendix B Electric field dependence of optical conductivity

In Fig. LABEL:fig:conductivity_xx_field_frequency the dependence of optical conductivities σxx\sigma_{xx} on electric field and frequency for 4-layer antiferromagnetic thin film are plotted.

The dependence of optical conductivities σxy\sigma_{xy} electric field and frequency are shown in Fig. LABEL:fig:conductivity_xy_field_frequency.

In Fig. LABEL:fig:kerr_field (a) and (b) we show a typical example of Faraday and Kerr rotation angles calculated in 2D limit for a typical even-layer thin films, i.e. N = 4 thin film in AF state. From the plots we see there is a maximized optical response around the critical electric field that drives the axion insulator state to a semimetal state, which is around 25 meV/nm for 4-layer thin film, and when the frequencies exceed the band gap of MnBi2Te4 thin film, which is around 50 meV.

As a comparison, the Faraday and Kerr rotation angles in 2D limit for N = 5 MnBi2Te4 thin film as an example of odd-layer case are shown in Fig. LABEL:fig:kerr_field (c) and (d). We see that the Faraday rotation angles maximize at the DC limit in the absence of electric fields. In the presence of external field the Faraday rotation angles decrease and minimize when the thin film is driven to a semimetal phase, i.e. at the electric field of around 20 meV/nm for 5-layer thin film. Note that this critical field depends on the optical frequencies, that is a positive dependence at low frequencies. Kerr rotation angles have similar dependence on electric field compared with Faraday rotation angles. The Faraday and Kerr rotation signals can thus be used as a detection of the topological phase transition induced by external electric fields.

References

  • Hasan and Kane [2010] M. Z. Hasan and C. L. Kane, Colloquium: Topological insulators, Rev. Mod. Phys. 82, 3045 (2010).
  • Qi and Zhang [2011] X.-L. Qi and S.-C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83, 1057 (2011).
  • Qi et al. [2008] X.-L. Qi, T. L. Hughes, and S.-C. Zhang, Topological field theory of time-reversal invariant insulators, Phys. Rev. B 78, 195424 (2008).
  • Essin et al. [2009] A. M. Essin, J. E. Moore, and D. Vanderbilt, Magnetoelectric polarizability and axion electrodynamics in crystalline insulators, Phys. Rev. Lett. 102, 146805 (2009).
  • Essin et al. [2010] A. M. Essin, A. M. Turner, J. E. Moore, and D. Vanderbilt, Orbital magnetoelectric coupling in band insulators, Phys. Rev. B 81, 205104 (2010).
  • Nomura and Nagaosa [2011] K. Nomura and N. Nagaosa, Surface-quantized anomalous hall current and the magnetoelectric effect in magnetically disordered topological insulators, Phys. Rev. Lett. 106, 166802 (2011).
  • Wang et al. [2015] J. Wang, B. Lian, X.-L. Qi, and S.-C. Zhang, Quantized topological magnetoelectric effect of the zero-plateau quantum anomalous hall state, Phys. Rev. B 92, 081107 (2015).
  • Morimoto et al. [2015] T. Morimoto, A. Furusaki, and N. Nagaosa, Topological magnetoelectric effects in thin films of topological insulators, Phys. Rev. B 92, 085113 (2015).
  • Fijalkowski et al. [2021] K. M. Fijalkowski, N. Liu, M. Hartl, M. Winnerlein, P. Mandal, A. Coschizza, A. Fothergill, S. Grauer, S. Schreyeck, K. Brunner, M. Greiter, R. Thomale, C. Gould, and L. W. Molenkamp, Any axion insulator must be a bulk three-dimensional topological insulator, Phys. Rev. B 103, 235111 (2021).
  • Chen et al. [2023] R. Chen, H.-P. Sun, and B. Zhou, Side-surface-mediated hybridization in axion insulators, Phys. Rev. B 107, 125304 (2023).
  • Tse and MacDonald [2011] W.-K. Tse and A. H. MacDonald, Magneto-optical faraday and kerr effects in topological insulator films and in other layered quantized hall systems, Phys. Rev. B 84, 205327 (2011).
  • Tse and MacDonald [2010a] W.-K. Tse and A. H. MacDonald, Giant magneto-optical kerr effect and universal faraday effect in thin-film topological insulators, Phys. Rev. Lett. 105, 057401 (2010a).
  • Tse and MacDonald [2010b] W.-K. Tse and A. H. MacDonald, Magneto-optical and magnetoelectric effects of topological insulators in quantizing magnetic fields, Phys. Rev. B 82, 161104 (2010b).
  • Wu et al. [2016] L. Wu, M. Salehi, N. Koirala, J. Moon, S. Oh, and N. P. Armitage, Quantized faraday and kerr rotation and axion electrodynamics of a 3d topological insulator, Science 354, 1124–1127 (2016).
  • Dziom et al. [2017] V. Dziom, A. Shuvaev, A. Pimenov, G. Astakhov, C. Ames, K. Bendias, J. Böttcher, G. Tkachov, E. Hankiewicz, C. Brüne, et al., Observation of the universal magnetoelectric effect in a 3d topological insulator, Nature communications 8, 1 (2017).
  • Armitage et al. [2018] N. P. Armitage, E. J. Mele, and A. Vishwanath, Weyl and dirac semimetals in three-dimensional solids, Rev. Mod. Phys. 90, 015001 (2018).
  • Armitage and Wu [2019] N. P. Armitage and L. Wu, On the matter of topological insulators as magnetoelectrics, SciPost Phys. 6, 46 (2019).
  • He et al. [2022] Q. L. He, T. L. Hughes, N. P. Armitage, Y. Tokura, and K. L. Wang, Topological spintronics and magnetoelectronics, Nature Materials 21, 15 (2022).
  • Berger et al. [2022] C. Berger, F. Bayer, L. W. Molenkamp, and T. Kiessling, The topological faraday effect cannot be observed in a realistic sample (2022), arXiv:2212.04716 [cond-mat.mes-hall] .
  • Ahn et al. [2022] J. Ahn, S.-Y. Xu, and A. Vishwanath, Theory of optical axion electrodynamics and application to the kerr effect in topological antiferromagnets, Nature Communications 1310.1038/s41467-022-35248-8 (2022).
  • Ghosh et al. [2023] S. Ghosh, A. Sahoo, and S. Nandy, Theoretical investigations on kerr and faraday rotations in topological multi-weyl semimetals (2023), arXiv:2209.11217 [cond-mat.mes-hall] .
  • Fu and Kane [2007] L. Fu and C. L. Kane, Topological insulators with inversion symmetry, Phys. Rev. B 76, 045302 (2007).
  • Brüne et al. [2011] C. Brüne, C. X. Liu, E. G. Novik, E. M. Hankiewicz, H. Buhmann, Y. L. Chen, X. L. Qi, Z. X. Shen, S. C. Zhang, and L. W. Molenkamp, Quantum hall effect from the topological surface states of strained bulk hgte, Phys. Rev. Lett. 106, 126803 (2011).
  • Kozlov et al. [2014] D. A. Kozlov, Z. D. Kvon, E. B. Olshanetsky, N. N. Mikhailov, S. A. Dvoretsky, and D. Weiss, Transport properties of a 3d topological insulator based on a strained high-mobility hgte film, Phys. Rev. Lett. 112, 196801 (2014).
  • Xu et al. [2014] Y. Xu, I. Miotkowski, C. Liu, J. Tian, H. Nam, N. Alidoust, J. Hu, C.-K. Shih, M. Z. Hasan, and Y. P. Chen, Observation of topological surface state quantum hall effect in an intrinsic three-dimensional topological insulator, Nature Physics 10, 956–963 (2014).
  • Yoshimi et al. [2015] R. Yoshimi, A. Tsukazaki, Y. Kozuka, J. Falson, K. Takahashi, J. Checkelsky, N. Nagaosa, M. Kawasaki, and Y. Tokura, Quantum hall effect on top and bottom surface states of topological insulator (bi1-xSbx)2te3 films, Nature Communications 610.1038/ncomms7627 (2015).
  • Yu et al. [2010] R. Yu, W. Zhang, H.-J. Zhang, S.-C. Zhang, X. Dai, and Z. Fang, Quantized anomalous hall effect in magnetic topological insulators, Science 329, 61 (2010).
  • Liu et al. [2008] C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S.-C. Zhang, Quantum anomalous hall effect in hg1ymnyTe{\mathrm{hg}}_{1-y}{\mathrm{mn}}_{y}\mathrm{Te} quantum wells, Phys. Rev. Lett. 101, 146802 (2008).
  • Chang et al. [2013] C.-Z. Chang, J. Zhang, X. Feng, J. Shen, Z. Zhang, M. Guo, K. Li, Y. Ou, P. Wei, L.-L. Wang, Z.-Q. Ji, Y. Feng, S. Ji, X. Chen, J. Jia, X. Dai, Z. Fang, S.-C. Zhang, K. He, Y. Wang, L. Lu, X.-C. Ma, and Q.-K. Xue, Experimental observation of the quantum anomalous hall effect in a magnetic topological insulator, Science 340, 167 (2013).
  • Lei et al. [2020] C. Lei, S. Chen, and A. H. MacDonald, Magnetized topological insulator multilayers, Proceedings of the National Academy of Sciences 117, 27224–27230 (2020).
  • MacDonald [1995] A. MacDonald, Introduction to the physics of the quantum hall regime, arXiv:cond-mat/9410047  (1995).
  • Mong et al. [2010] R. S. K. Mong, A. M. Essin, and J. E. Moore, Antiferromagnetic topological insulators, Phys. Rev. B 81, 245209 (2010).
  • Lei et al. [2021] C. Lei, O. Heinonen, A. H. MacDonald, and R. J. McQueeney, Metamagnetism of few-layer topological antiferromagnets, Phys. Rev. Materials 5, 064201 (2021).
  • Lei et al. [2022] C. Lei, T. V. Trevisan, O. Heinonen, R. McQueeney, and A. MacDonald, Quantum anomalous hall effect in perfectly compensated collinear antiferromagnetic thin films, Physical Review B 106, 195433 (2022).
  • Otrokov et al. [2017] M. M. Otrokov, T. V. Menshchikova, M. G. Vergniory, I. P. Rusinov, A. Yu Vyazovskaya, Y. M. Koroteev, G. Bihlmayer, A. Ernst, P. M. Echenique, A. Arnau, and et al., Highly-ordered wide bandgap materials for quantized anomalous hall and magnetoelectric effects, 2D Materials 4, 025082 (2017).
  • Eremeev et al. [2017] S. Eremeev, M. Otrokov, and E. Chulkov, Competing rhombohedral and monoclinic crystal structures in MnPn2Ch4\mathrm{MnPn}_{2}\mathrm{Ch}_{4} compounds: An ab-initio study, Journal of Alloys and Compounds 709, 172–178 (2017).
  • Otrokov et al. [2019a] M. M. Otrokov, I. I. Klimovskikh, H. Bentmann, D. Estyunin, A. Zeugner, Z. S. Aliev, S. Gaß, A. U. B. Wolter, A. V. Koroleva, A. M. Shikin, and et al., Prediction and observation of an antiferromagnetic topological insulator, Nature 576, 416–422 (2019a).
  • Otrokov et al. [2019b] M. M. Otrokov, I. P. Rusinov, M. Blanco-Rey, M. Hoffmann, A. Y. Vyazovskaya, S. V. Eremeev, A. Ernst, P. M. Echenique, A. Arnau, and E. V. Chulkov, Unique thickness-dependent properties of the van der waals interlayer antiferromagnet MnBi2Te4\mathrm{MnBi}_{2}\mathrm{Te}_{4} films, Phys. Rev. Lett. 122, 107202 (2019b).
  • Rienks et al. [2019] E. D. L. Rienks, S. Wimmer, J. Sánchez-Barriga, O. Caha, P. S. Mandal, J. Růžička, A. Ney, H. Steiner, V. V. Volobuev, H. Groiss, and et al., Large magnetic gap at the dirac point in Bi2Te3\mathrm{Bi}_{2}\mathrm{Te}_{3}/MnBi2Te4\mathrm{MnBi}_{2}\mathrm{Te}_{4} heterostructures, Nature 576, 423–428 (2019).
  • Chen et al. [2019] Y. J. Chen, L. X. Xu, J. H. Li, Y. W. Li, H. Y. Wang, C. F. Zhang, H. Li, Y. Wu, A. J. Liang, C. Chen, S. W. Jung, C. Cacho, Y. H. Mao, S. Liu, M. X. Wang, Y. F. Guo, Y. Xu, Z. K. Liu, L. X. Yang, and Y. L. Chen, Topological electronic structure and its temperature evolution in antiferromagnetic topological insulator MnBi2Te4\mathrm{MnBi}_{2}\mathrm{Te}_{4}Phys. Rev. X 9, 041040 (2019).
  • Deng et al. [2020] H. Deng, Z. Chen, A. Wołoś, M. Konczykowski, K. Sobczak, J. Sitnicka, I. V. Fedorchenko, J. Borysiuk, T. Heider, Ł. Pluciński, and et al., High-temperature quantum anomalous hall regime in a mnbi2te4/bi2te3 superlattice, Nature Physics 10.1038/s41567-020-0998-2 (2020).
  • Ge et al. [2020] J. Ge, Y. Liu, J. Li, H. Li, T. Luo, Y. Wu, Y. Xu, and J. Wang, High-chern-number and high-temperature quantum hall effect without landau levels, National Science Review 7, 1280–1287 (2020).
  • Li et al. [2019] J. Li, Y. Li, S. Du, Z. Wang, B.-L. Gu, S.-C. Zhang, K. He, W. Duan, and Y. Xu, Intrinsic magnetic topological insulators in van der waals layered MnBi2Te4\mathrm{MnBi}_{2}\mathrm{Te}_{4}-family materials, Science Advances 5, eaaw5685 (2019).
  • Chowdhury et al. [2019] S. Chowdhury, K. F. Garrity, and F. Tavazza, Prediction of weyl semimetal and antiferromagnetic topological insulator phases in Bi2MnSe4\mathrm{Bi}_{2}\mathrm{MnSe}_{4}, npj Computational Materials 510.1038/s41524-019-0168-1 (2019).
  • Li et al. [2020] B. Li, J.-Q. Yan, D. Pajerowski, E. Gordon, A.-M. Nedić, Y. Sizyuk, L. Ke, P. Orth, D. Vaknin, and R. McQueeney, Competing magnetic interactions in the antiferromagnetic topological insulator MnBi2Te4\mathrm{MnBi}_{2}\mathrm{Te}_{4}, Physical Review Letters 12410.1103/physrevlett.124.167204 (2020).
  • Yan et al. [2019] J.-Q. Yan, Q. Zhang, T. Heitmann, Z. Huang, K. Y. Chen, J.-G. Cheng, W. Wu, D. Vaknin, B. C. Sales, and R. J. McQueeney, Crystal growth and magnetic structure of MnBi2Te4\mathrm{MnBi}_{2}\mathrm{Te}_{4}Phys. Rev. Materials 3, 064202 (2019).
  • Zeugner et al. [2019] A. Zeugner, F. Nietschke, A. U. B. Wolter, S. Gaß, R. C. Vidal, T. R. F. Peixoto, D. Pohl, C. Damm, A. Lubk, R. Hentrich, and et al., Chemical aspects of the candidate antiferromagnetic topological insulator MnBi2Te4\mathrm{MnBi}_{2}\mathrm{Te}_{4}Chemistry of Materials 31, 2795–2806 (2019).
  • Zhang et al. [2019] S. Zhang, R. Wang, X. Wang, B. Wei, B. Chen, H. Wang, G. Shi, F. Wang, B. Jia, Y. Ouyang, and et al., Experimental observation of the gate-controlled reversal of the anomalous hall effect in the intrinsic magnetic topological insulator MnBi2Te4\mathrm{MnBi}_{2}\mathrm{Te}_{4} device, Nano Letters 20, 709–714 (2019).
  • Liu et al. [2020] C. Liu, Y. Wang, H. Li, Y. Wu, Y. Li, J. Li, K. He, Y. Xu, J. Zhang, and Y. Wang, Robust axion insulator and chern insulator phases in a two-dimensional antiferromagnetic topological insulator, Nature Materials 19, 522–527 (2020).
  • Lei and MacDonald [2021] C. Lei and A. H. MacDonald, Gate-tunable quantum anomalous hall effects in mnbi2te4{\mathrm{mnbi}}_{2}{\mathrm{te}}_{4} thin films, Phys. Rev. Materials 5, L051201 (2021).
  • Kubo [1957] R. Kubo, Statistical-mechanical theory of irreversible processes. i. general theory and simple applications to magnetic and conduction problems, Journal of the Physical Society of Japan 12, 570 (1957)https://doi.org/10.1143/JPSJ.12.570 .
  • Greenwood [1958] D. A. Greenwood, The boltzmann equation in the theory of electrical conduction in metals, Proceedings of the Physical Society 71, 585 (1958).
  • Xiao et al. [2005] D. Xiao, J. Shi, and Q. Niu, Berry phase correction to electron density of states in solids, Phys. Rev. Lett. 95, 137204 (2005).
  • Ceresoli et al. [2006] D. Ceresoli, T. Thonhauser, D. Vanderbilt, and R. Resta, Orbital magnetization in crystalline solids: Multi-band insulators, chern insulators, and metals, Phys. Rev. B 74, 024408 (2006).
  • Thonhauser et al. [2005] T. Thonhauser, D. Ceresoli, D. Vanderbilt, and R. Resta, Orbital magnetization in periodic insulators, Phys. Rev. Lett. 95, 137205 (2005).
  • Shi et al. [2007] J. Shi, G. Vignale, D. Xiao, and Q. Niu, Quantum theory of orbital magnetization and its generalization to interacting systems, Phys. Rev. Lett. 99, 197202 (2007).
  • Pournaghavi et al. [2021] N. Pournaghavi, A. Pertsova, A. H. MacDonald, and C. M. Canali, Nonlocal sidewall response and deviation from exact quantization of the topological magnetoelectric effect in axion-insulator thin films, Phys. Rev. B 104, L201102 (2021).
  • Xia et al. [2006] J. Xia, Y. Maeno, P. T. Beyersdorf, M. M. Fejer, and A. Kapitulnik, High resolution polar kerr effect measurements of sr2ruo4{\mathrm{sr}}_{2}{\mathrm{ruo}}_{4}: Evidence for broken time-reversal symmetry in the superconducting state, Phys. Rev. Lett. 97, 167002 (2006).
  • Rowe et al. [2017] A. Rowe, I. Zhaksylykova, G. Dilasser, Y. Lassailly, and J. Peretti, Polarizers, optical bridges, and sagnac interferometers for nanoradian polarization rotation measurements, Review of Scientific Instruments 88, 043903 (2017).