This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Koebe uniformization of nondegenerate domains with bounded gap-ratio

Yi Zhong Institute of Mathematical Sciences and Applications, NingboTech University, Ningbo, 315100, China yizhong@zju.edu.cn
Abstract.

Koebe uniformization is a fundemental problem in complex analysis. In this paper, we use transboundary extremal length to show that every nondegenerate and uncountably connected domain with bounded gap-ratio is conformally homeomorphic to a circle domain.

Key words and phrases:
Koebe uniformization, transboundary extremal length, nondegenerate, gap-ratio
2020 Mathematics Subject Classification:
Primary 30C20; Secondary 30C35

1. Introduction

A connected domain Ω\Omega on the Riemannian sphere ^\hat{\mathbb{C}} is called a circle domain if each component of ^Ω\hat{\mathbb{C}}\setminus\Omega is either a closed disk or a point. In 1909, P. Koebe [15] posed the following conjecture, known as the Kreisnormierungsproblem:

Conjecture 1.1 (Koebe’s conjecture).

Any plane domain is conformally homeomorphic to a circle domain in ^\hat{\mathbb{C}}.

In the 1920’s, P. Koebe [16] himself proved the following theorem, which was able to confirm the conjecture in the finitely connected case:

Theorem 1.1.

Let Ω^\Omega\subset\hat{\mathbb{C}} be a finite multi-connected domain. Then Ω\Omega is conformally homeomorphic to a circle domain.

Later, P. Koebe [17] showed that the conjecture is true for a class of domains with some symmetry. For domains with various conditions on the “limit boundary components”, one can see [1, 6, 8, 9, 18, 19, 22, 24, 25].

In 1993, Z.X. He and O. Schramm [12] proved that the Koebe’s conjecture holds for countably connected domains, which is a major breakthrough. Recently, K. Rajala [21] presented a new proof for this case by the idea of exhaustion.

For uncountablly connected cases, O. Schramm [23] introduced the tool of transboundary extremal length, which has played a central role in recent developments on the uniformization of fractal metric spaces, see [2, 4, 5, 10]. Then he prescribed the boundary shapes by studying the so called “cofat domains”:

Definition 1.1.

Let τ>0\tau>0 be some constant. A set A^A\subset\hat{\mathbb{C}} will be called τ\tau-fat, if for every xAx\in A\cap\mathbb{C} and for every disk B=B(x,r)B=B(x,r) centered at xx that does not contain AA we have area(AB)τarea(B)area(A\cap B)\geq\tau\cdot area(B). A connected domain Ω^\Omega\subset\hat{\mathbb{C}} is cofat, if each connected component of its complement is τ\tau-fat for some τ>0\tau>0.

By the tool of transboundary extremal length, Schramm established the following.

Theorem 1.2.

Every cofat domain in ^\hat{\mathbb{C}} is conformally homeomorphic to a circle domain.

Resently X.G. Wang and Y. Zhong demonstrate that any infinitely connected attracting Fatou domain of a geometrically finite rational map is conformally homeomorphic to a cofat domain [26]. More resent results related to the Koebe uniformization problem can be found in [3, 11, 13, 14, 20, 27]. However, the conjecture is still open.

1.1. Main results

Since the boundary components can be quite complicated, domains do not usually satisfy the “cofat” condition. It is natural to study a class of more general domains. We will mention some necessary definitions herein to make the presentation clear and accessible.

Definition 1.2.

Let κ>0\kappa>0 be some constant. A connected set E^E\subset\hat{\mathbb{C}} with positive area is called κ\kappa-nondegenerate if

area(E)κdiam(E)2.area(E)\geq\kappa\cdot\operatorname{diam}(E)^{2}.

A connected domain Ω^\Omega\subset\hat{\mathbb{C}} is called nondegenerate if all its complementary components are κ\kappa-nondegenerate for some κ>0\kappa>0.

Let EE be a nondegenerate connected subset in ^\hat{\mathbb{C}}. We denote

κ(E)=area(E)diam(E)2.\kappa(E)=\frac{area(E)}{\operatorname{diam}(E)^{2}}.

Clearly, κ(E)=π/4\kappa(E)=\pi/4 when EE is a closed disk; otherwise we must have 0<κ(E)<π/40<\kappa(E)<\pi/4. Recall definition 1.1, it is easy to show that a cofat domain is also a nondegenerate domain.


The method used in establishing Koebe uniformization of cofat domains can not be applied directly to nondegenerate domains. The reason for this limitation lies in the more complicated boundary behavior exhibited by the complementary of nondegenerate domains. In section 3, we will introduce a new quentity named gap-ratio to describe the distribution of those complementary components. By using transboundary extremal length and exploring the geometrical properties of such domains, we show that the bounded gap-ratio property will overcome the obstacle induced by its irregular boundary. Consequently, we obtain the main theorem of this paper:

Theorem 1.3.

Every nondegenerate domain in ^\hat{\mathbb{C}} with bounded gap-ratio is conformally homeomorphic to a circle domain.

1.2. Outline of the paper

This paper is organized as follows. In section 2 we provide some preliminaries. Section 3 is devoted to prove that a domain with bounded gap-ratio has well-distributed property, and we established the extended Carathéodory kernel convergence theorem for this case in section 4. The remaining part of the proof, arranged in section 5, will proceed naturally.

The author would like to express his gratitude to Xiaoguang Wang for many useful comments during the formative period of this work in Zhejiang University.

2. Preliminaries

Let Ω^\Omega\subset\hat{\mathbb{C}} be a multi-connected domain and (Ω)=^/\mathcal{E}(\Omega)=\hat{\mathbb{C}}/\sim, where z1z2z_{1}\sim z_{2} if and only if z1z_{1} and z2z_{2} belong to the same connected component of ^Ω\hat{\mathbb{C}}-\Omega. The space (Ω)\mathcal{E}(\Omega) is the ends compactification of Ω\Omega and we define 𝒞(Ω)=(Ω)Ω\mathcal{C}(\Omega)=\mathcal{E}(\Omega)-\Omega as the complementary space of Ω\Omega. Let πΩ:^(Ω)\pi_{\Omega}:\hat{\mathbb{C}}\rightarrow\mathcal{E}(\Omega) be the quotient map. The notation p\ulcorner p\urcorner will stand for πΩ1(p)\pi^{-1}_{\Omega}(p) when p(Ω)p\in\mathcal{E}(\Omega) or p(Ω)p\subset\mathcal{E}(\Omega). We say p𝒞(Ω)p\in\mathcal{C}(\Omega) is a non-trivial complementary component if its diameter diam(p)>0\operatorname{diam}(\ulcorner p\urcorner)>0. Otherwise, pp is a trivial complementary component. The space of trivial and non-trivial complementary components will be denoted by 𝒞t(Ω)\mathcal{C}_{t}(\Omega) and 𝒞nt(Ω)\mathcal{C}_{nt}(\Omega).

2.1. Transboundary extremal length

Let the area measure σ\sigma on the space (Ω)\mathcal{E}(\Omega) be equal to Lebesgue measure on Ω\Omega and equal to counting measure on 𝒞(Ω)\mathcal{C}(\Omega). An extended metric for the domain Ω\Omega is a Borel measurable function m:(Ω)[0,)m:\mathcal{E}(\Omega)\rightarrow[0,\infty). The mm-area of (Ω)\mathcal{E}(\Omega) is

A(m)=(Ω)m2dσ=m22.A(m)=\int_{\mathcal{E}(\Omega)}m^{2}\mathrm{d}\sigma=\parallel m\parallel^{2}_{2}.

The extended metric mm is allowable if A(m)<A(m)<\infty. Let II\subset\mathbb{R} be an interval, define γ:I(Ω)\gamma:I\rightarrow\mathcal{E}(\Omega) be a curve in (Ω)\mathcal{E}(\Omega), then the mm-length of γ\gamma is

Lm(γ)=γ1(Ω)m(γ(t))dγ(t)+p𝒞(Ω)γ(I)m(p).L_{m}(\gamma)=\int_{\gamma^{-1}(\Omega)}m(\gamma(t))\mid\mathrm{d}\gamma(t)\mid+\sum_{p\in\mathcal{C}(\Omega)\cap\gamma(I)}m(p).

Let Γ\Gamma be a collection of curves in (Ω)\mathcal{E}(\Omega). For any extended metric mm, we set

Lm(Γ)=infγΓLm(γ)L_{m}(\Gamma)=\inf_{\gamma\in\Gamma}L_{m}(\gamma)

be the mm-length of Γ\Gamma. Then the transboundary extremal length of Γ\Gamma is defined as

EL(Γ)=supmLm(Γ)2A(m),EL(\Gamma)=\sup_{m}\frac{L_{m}(\Gamma)^{2}}{A(m)},

where the supremum is taken over all allowable extended metrics on (Ω)\mathcal{E}(\Omega).

Lemma 2.1 (Invariance of transboundary extremal length ([23])).

Let f:ΩΩf:\Omega\rightarrow\Omega^{*} be a conformal homeomorphism between domains in ^\hat{\mathbb{C}}, and let Γ\Gamma be a collection of curves in (Ω)\mathcal{E}(\Omega). Set Γ={fγ:γΓ}\Gamma^{*}=\{f\circ\gamma:\gamma\in\Gamma\}. Then EL(Γ)=EL(Γ)EL(\Gamma)=EL(\Gamma^{*}).

2.2. Well-distributed property

Clearly, the transboundary extremal length is a generialization of traditional extremal length. We want to apply it to consider the distance betwenn two subsets in a multi-connected domain.

For each b𝒞(Ω)b\in\mathcal{C}(\Omega) and q(Ω)q\in\mathcal{E}(\Omega), let β(b)\beta(b) be a Jordan curve in Ω{}\Omega-\{\infty\} that separates bb from \infty in (Ω)\mathcal{E}(\Omega), N(Ω,b)N(\Omega,b) be the connected component of (Ω)β(b)\mathcal{E}(\Omega)-\beta(b) that contains bb and ΓΩ(q,b)\Gamma_{\Omega}(q,b) be all the Jordan curves in N(Ω,b){q,b}N(\Omega,b)-\{q,b\} satisfying: (i) γ\gamma separate {q,b}\{q,b\} from \infty; or (ii) γ¯=γ{b}\bar{\gamma}=\gamma\cup\{b\} and γ¯\bar{\gamma} separate qq from \infty. Let ELΩ(q,b)EL_{\Omega}(q,b) be the transboundary extremal length of ΓΩ(q,b)\Gamma_{\Omega}(q,b). We introduce the following definition:

Definition 2.1 (Well-distributed).

Let Ω^\Omega\subset\hat{\mathbb{C}} be a multi-connected domain with Ω\infty\in\Omega. For each b𝒞(Ω)b\in\mathcal{C}(\Omega) and for any ε>0\varepsilon>0, there is some δ>0\delta>0 such that for all q(Ω)q\in\mathcal{E}(\Omega) and all Ω0\Omega_{0}, which is a union of Ω\Omega and some components of ^Ω\hat{\mathbb{C}}-\Omega, the transboundary extremal length ELΩ0(q,b)<εEL_{\Omega_{0}}(q,b)<\varepsilon when the distance between q\ulcorner q\urcorner and b\ulcorner b\urcorner is less than δ\delta. Then we say 𝒞(Ω)\mathcal{C}(\Omega) is well-distributed or Ω\Omega has well-distributed property.

We note that the proof of theorem 1.3 relies on the key observation that under what condition a nondegenerate domain has well-distributed property. In the following section, we will present the notion of gap-ratio and prove that 𝒞(Ω)\mathcal{C}(\Omega) is well-distributed when Ω\Omega is a nondegenerate domain with bounded gap-ratio.

3. Bounded gap-ratio implies well-distributed property

Let us consider a connect compact set KK\subset\mathbb{C} as shown in figure 1. Given some point ww\in\mathbb{C}. If wKw\not\in K, we can use the distance dist(w,K)\operatorname{dist}(w,K) to discribe the relevant location bewteen them. Here we introduce a new quantity to measure the relationship between the shape of KK and the distance from KK to ww. Let

Gr(K,w)=supzKzwinfzKzw.Gr(K,w)=\frac{\displaystyle\sup_{z\in K}\mid z-w\mid}{\displaystyle\inf_{z\in K}\mid z-w\mid}.

We define Gr(K,w)Gr(K,w) as the gap-ratio of KK to ww. It is easy to know that for all KK, we have 1Gr(K,w)<1\leq Gr(K,w)<\infty as dist(w,K)0\operatorname{dist}(w,K)\neq 0. Particularly, Gr(K,w)=1Gr(K,w)=1 if KK is a single point and Gr(K,w)=1Gr(K,w)=1 if KK is a circle or an arc cetered at ww.

Refer to caption
Figure 1.
Definition 3.1.

Let Ω^\Omega\subset\hat{\mathbb{C}} be a multi-connected domain with Ω\infty\in\Omega. For any a,b𝒞(Ω)a,b\in\mathcal{C}(\Omega), the gap-ratio of a\ulcorner a\urcorner to b\ulcorner b\urcorner is

Gr(a,b)=supwb(supzazwinfzazw).Gr(\ulcorner a\urcorner,\ulcorner b\urcorner)=\displaystyle\sup_{w\in\ulcorner b\urcorner}\left(\frac{\displaystyle\sup_{z\in\ulcorner a\urcorner}\mid z-w\mid}{\displaystyle\inf_{z\in\ulcorner a\urcorner}\mid z-w\mid}\right).

Particularly, if we set a\ulcorner a\urcorner and b\ulcorner b\urcorner to be concentric circles, then

Gr(a,b)=Gr(b,a)=1Gr(\ulcorner a\urcorner,\ulcorner b\urcorner)=Gr(\ulcorner b\urcorner,\ulcorner a\urcorner)=1

for arbitrarily small dist(a,b)\operatorname{dist}(\ulcorner a\urcorner,\ulcorner b\urcorner).

Definition 3.2.

Let Ω^\Omega\subset\hat{\mathbb{C}} be a multi-connected domain with Ω\infty\in\Omega. We call Ω\Omega has bounded gap-ratio if for each b𝒞(Ω)b\in\mathcal{C}(\Omega), there is a δ>0\delta>0 such that for all a𝒞(Ω)a\in\mathcal{C}(\Omega) satisfying

dist(a,b)=infza,wbdist(z,w)<δ,\operatorname{dist}(\ulcorner a\urcorner,\ulcorner b\urcorner)=\displaystyle\inf_{z\in\ulcorner a\urcorner,w\in\ulcorner b\urcorner}\operatorname{dist}(z,w)<\delta,

there must be

(3.1) Gr(a,b)ρ,Gr(\ulcorner a\urcorner,\ulcorner b\urcorner)\leq\rho,

where ρ1\rho\geq 1 is a constant.

We note that there is a subtle difference between the conditions of bounded gap-ratio and uniformly relative separation for nondegenerate domains. Let b\ulcorner b\urcorner be fixed and dist(a,b)\operatorname{dist}(\ulcorner a\urcorner,\ulcorner b\urcorner) tend to zero, the uniformly relative separation claims that the diameter of a\ulcorner a\urcorner(diam(a)\operatorname{diam}(\ulcorner a\urcorner)) tends to zero. However, the condition (3.1) allows big diam(a)\operatorname{diam}(\ulcorner a\urcorner). For instance, we take b\ulcorner b\urcorner to be a disk, a\ulcorner a\urcorner to be an anulus sharing the same center of b\ulcorner b\urcorner, then diam(a)\operatorname{diam}(\ulcorner a\urcorner) has a lower bound as dist(a,b)\operatorname{dist}(\ulcorner a\urcorner,\ulcorner b\urcorner) tends to zero.

Theorem 3.1.

Let Ω^\Omega\subset\hat{\mathbb{C}} be a nondegenerate domain with bounded gap-ratio and Ω\infty\in\Omega. Then 𝒞(Ω)\mathcal{C}(\Omega) is well-distributed.

Proof.

Let Ω0\Omega_{0} be an arbitary domain that combined Ω\Omega with some components of ^Ω\hat{\mathbb{C}}-\Omega. For each b𝒞(Ω)b\in\mathcal{C}(\Omega), recall that N(Ω0,b)N(\Omega_{0},b) is the connected component of (Ω0)β(b)\mathcal{E}(\Omega_{0})-\beta(b) containing bb. Take wbw\in\ulcorner b\urcorner and R0>0R_{0}>0, let C(w,R0)C(w,R_{0}) be the circle of radius R0R_{0} cetered at ww such that C(w,R0)N(Ω0,b)C(w,R_{0})\subset\ulcorner N(\Omega_{0},b)\urcorner. Since β(b)Ω{}\beta(b)\in\Omega-\{\infty\}, the complementary components intersecting C(w,R0)C(w,R_{0}) will not intersect β(b)\beta(b). Hence they must be contained in N(Ω0,b)\ulcorner N(\Omega_{0},b)\urcorner. Let R0𝒞nt(Ω)\mathcal{B}_{R_{0}}\subset\mathcal{C}_{nt}(\Omega) be the components that intersect both C(w,R0)C(w,R_{0}) and C(w,R0/2)C(w,R_{0}/2). Clearly, for each aR0a\in\mathcal{B}_{R_{0}}, we have diam(a)R0/2\operatorname{diam}(\ulcorner a\urcorner)\geq R_{0}/2. This implies that area(a)κR02/4area(\ulcorner a\urcorner)\geq\kappa R^{2}_{0}/4. However, the area of N(Ω0,b)\ulcorner N(\Omega_{0},b)\urcorner is limited, we can conclude that R0\mathcal{B}_{R_{0}} is a finite set. Generally, we denote Rj(j=1,2,)\mathcal{B}_{R_{j}}(j=1,2,\ldots) as the collection of complementary components of Ω\Omega that intersect both C(w,Rj)C(w,R_{j}) and C(w,Rj/2)C(w,R_{j}/2), where Rj=minaRj1dist(a,w).R_{j}=\min_{a\in\mathcal{B}_{R_{j-1}}}\operatorname{dist}(\ulcorner a\urcorner,w). The setting of RjR_{j} ensures that there is no complementary component intersecting both C(w,Rj1)C(w,R_{j-1}) and C(w,Rj)C(w,R_{j}).

Now we consider a subset of ΓΩ0(q,b)\Gamma_{\Omega_{0}}(q,b), where q(Ω0)q\in\mathcal{E}(\Omega_{0}). Suppose that q\ulcorner q\urcorner is inside the circle C(w,R2M+1)C(w,R_{2M+1}) for some positive integer MM. We take r(R2M+1,R1)r\in(R_{2M+1},R_{1}) and let C(w,r)C(w,r) be the circle of radius rr centered at ww. Moreover, we let C(w,r)=C(w,r)bC^{\prime}(w,r)=C(w,r)-\ulcorner b\urcorner, then C(w,r)bC^{\prime}(w,r)\cup\ulcorner b\urcorner separates q\ulcorner q\urcorner from \infty. Set γr=πΩ0(C(w,r))\gamma_{r}=\pi_{\Omega_{0}}(C^{\prime}(w,r)), we have {γr:r(RM,R1)}ΓΩ0(q,b)\{\gamma_{r}:r\in(R_{M},R_{1})\}\subset\Gamma_{\Omega_{0}}(q,b). For any extended metric mm on Ω0\Omega_{0} such that l=Lm(ΓΩ0(q,b))>0l=L_{m}(\Gamma_{\Omega_{0}}(q,b))>0, we infer from the definition of mm-length that

(3.2) lLm(γr)C(w,r)Ω0m(z)dz+a𝒞(Ω0){b}χa(C(w,r))m(a),l\leq L_{m}(\gamma_{r})\leq\int_{C(w,r)\cap\Omega_{0}}m(z)\mid\mathrm{d}z\mid+\sum_{a\in\mathcal{C}(\Omega_{0})\setminus\{b\}}\chi_{a}(C(w,r))m(a),

where χa\chi_{a} is defined as χa(A)=1\chi_{a}(A)=1 if aA\ulcorner a\urcorner\cap A\neq\emptyset and χa(A)=0\chi_{a}(A)=0 if aA=\ulcorner a\urcorner\cap A=\emptyset. Let AjA_{j} be the annulus bounded by C(w,Rj)C(w,R_{j}) and C(w,Rj/2)C(w,R_{j}/2). In order to prevent the double counting of complementary components in the subsequent deduction, we integrate (3.2) from r=R2j/2r=R_{2j}/2 to r=R2jr=R_{2j} for j=1,2,j=1,2,\cdots. Then we have

l(R2jR2j/2)\displaystyle l(R_{2j}-R_{2j}/2) R2j2R2jC(w,r)Ω0m(z)|dz|dr+a𝒞(Ω0){b}m(a)R2j2R2jχa(C(w,r))dr\displaystyle\leq\int^{R_{2j}}_{\frac{R_{2j}}{2}}\int_{C(w,r)\cap\Omega_{0}}m(z)|\mathrm{d}z|\mathrm{d}r+\sum_{a\in\mathcal{C}(\Omega_{0})\setminus\{b\}}m(a)\int^{R_{2j}}_{\frac{R_{2j}}{2}}\chi_{a}(C(w,r))\mathrm{d}r
A2jΩ0mdxdy+a𝒞(Ω0){b}m(a)χa(A2j)diam(a)\displaystyle\leq\int_{A_{2j}\cap\Omega_{0}}m\mathrm{d}x\mathrm{d}y+\sum_{a\in\mathcal{C}(\Omega_{0})\setminus\{b\}}m(a)\chi_{a}(A_{2j})\operatorname{diam}(\ulcorner a\urcorner)
A2jΩ0mdxdy+a𝒞(Ω0){b}m(a)χa(A2j)κ1area(a).\displaystyle\leq\int_{A_{2j}\cap\Omega_{0}}m\mathrm{d}x\mathrm{d}y+\sum_{a\in\mathcal{C}(\Omega_{0})\setminus\{b\}}m(a)\chi_{a}(A_{2j})\sqrt{\kappa^{-1}area(\ulcorner a\urcorner)}.

By Cauchy’s inequality,

l2(R2jR2j/2)2\displaystyle l^{2}(R_{2j}-R_{2j}/2)^{2}\leq (A2jΩ0m2dxdy+a𝒞(Ω0){b}m(a)2χa(A2j))\displaystyle\left(\int_{A_{2j}\cap\Omega_{0}}m^{2}\mathrm{d}x\mathrm{d}y+\sum_{a\in\mathcal{C}(\Omega_{0})\setminus\{b\}}m(a)^{2}\chi_{a}(A_{2j})\right)
(A2jΩ0dxdy+a𝒞(Ω0){b}χa(A2j)κ1area(a)).\displaystyle\cdot\left(\int_{A_{2j}\cap\Omega_{0}}\mathrm{d}x\mathrm{d}y+\sum_{a\in\mathcal{C}(\Omega_{0})\setminus\{b\}}\chi_{a}(A_{2j})\kappa^{-1}area(\ulcorner a\urcorner)\right).

Since the complementary components that intersect A2jA_{2j} must be contained in B(w,R2j1)B(w,R_{2j-1}), the sum of their area is controlled by the area of B(w,R2j1)B(w,R_{2j-1}). Then we have

l2R2j24\displaystyle\frac{l^{2}R^{2}_{2j}}{4}\leq (area(B(w,R2j))+κ1area(B(w,R2j1)))\displaystyle\left(area(B(w,R_{2j}))+\kappa^{-1}area(B(w,R_{2j-1}))\right)
(A2jΩ0m2dxdy+a𝒞(Ω0){b}m(a)2χa(A2j))\displaystyle\cdot\left(\int_{A_{2j}\cap\Omega_{0}}m^{2}\mathrm{d}x\mathrm{d}y+\sum_{a\in\mathcal{C}(\Omega_{0})\setminus\{b\}}m(a)^{2}\chi_{a}(A_{2j})\right)
\displaystyle\leq (πR2j2+κ1πR2j12)(A2jΩ0m2dxdy+a𝒞(Ω0){b}m(a)2χa(A2j)).\displaystyle\left(\pi R^{2}_{2j}+\kappa^{-1}\pi R^{2}_{2j-1}\right)\left(\int_{A_{2j}\cap\Omega_{0}}m^{2}\mathrm{d}x\mathrm{d}y+\sum_{a\in\mathcal{C}(\Omega_{0})\setminus\{b\}}m(a)^{2}\chi_{a}(A_{2j})\right).

This implies

l2\displaystyle l^{2}\leq πR2j2+κ1πR2j12R2j2/4(A2jΩ0m2dxdy+a𝒞(Ω0){b}m(a)2χa(A2j))\displaystyle\frac{\pi R^{2}_{2j}+\kappa^{-1}\pi R^{2}_{2j-1}}{R^{2}_{2j}/4}\left(\int_{A_{2j}\cap\Omega_{0}}m^{2}\mathrm{d}x\mathrm{d}y+\sum_{a\in\mathcal{C}(\Omega_{0})\setminus\{b\}}m(a)^{2}\chi_{a}(A_{2j})\right)
\displaystyle\leq 4π(1+κ1)R2j12R2j2(A2jΩ0m2dxdy+a𝒞(Ω0){b}m(a)2χa(A2j)).\displaystyle 4\pi(1+\kappa^{-1})\frac{R^{2}_{2j-1}}{R^{2}_{2j}}\left(\int_{A_{2j}\cap\Omega_{0}}m^{2}\mathrm{d}x\mathrm{d}y+\sum_{a\in\mathcal{C}(\Omega_{0})\setminus\{b\}}m(a)^{2}\chi_{a}(A_{2j})\right).

Recall that

Rj+1=minaRjdist(a,w),j.R_{j+1}=\min_{a\in\mathcal{B}_{R_{j}}}dist(\ulcorner a\urcorner,w),\ \ \ j\in\mathbb{N}.

There is at least one complementary component aRja^{*}\in\mathcal{B}_{R_{j}} intersecting both C(w,Rj)C(w,R_{j}) and C(w,Rj+1)C(w,R_{j+1}), but it does not contain any inner point of the disk bounded by C(w,Rj+1)C(w,R_{j+1}), see figure 2.

Refer to caption
Figure 2.

Since Ω\Omega is a domain with bounded gap-ratio, we take the first R0R_{0} sufficiently small so that the gap-ratios of all complementary components inside B(w,R0)B(w,R_{0}) to bb are uniformly bounded. Hence we have

RjRj+1\displaystyle\frac{R_{j}}{R_{j+1}} supzazwinfzazwmaxaRjsupwb(supzazwinfzazw)\displaystyle\leq\frac{\displaystyle\sup_{z\in\ulcorner a^{*}\urcorner}\mid z-w\mid}{\displaystyle\inf_{z\in\ulcorner a^{*}\urcorner}\mid z-w\mid}\leq\max_{a\in\mathcal{B}_{R_{j}}}\sup_{w\in\ulcorner b\urcorner}\left(\frac{\displaystyle\sup_{z\in\ulcorner a\urcorner}\mid z-w\mid}{\displaystyle\inf_{z\in\ulcorner a\urcorner}\mid z-w\mid}\right)
maxaRjGr(a,b)ρ,\displaystyle\leq\max_{a\in\mathcal{B}_{R_{j}}}Gr(\ulcorner a\urcorner,\ulcorner b\urcorner)\leq\rho,

where ρ1\rho\geq 1 is a constant. It then follows that

(3.3) l24πρ2(1+κ1)(A2jΩ0m2dxdy+a𝒞(Ω0){b}m(a)2χa(A2j)).l^{2}\leq 4\pi\rho^{2}(1+\kappa^{-1})\left(\int_{A_{2j}\cap\Omega_{0}}m^{2}\mathrm{d}x\mathrm{d}y+\sum_{a\in\mathcal{C}(\Omega_{0})-\{b\}}m(a)^{2}\chi_{a}(A_{2j})\right).

We indicate that the complementary components intersecting A2jA_{2j} must be contained in B(w,R2j1)B(w,R2j+1)B(w,R_{2j-1})\setminus B(w,R_{2j+1}), then for each a𝒞(Ω0)a\in\mathcal{C}(\Omega_{0}), there is at most one j{1,2,,M}j\in\{1,2,\cdots,M\} such that aA2j\ulcorner a\urcorner\cap A_{2j}\neq\emptyset. We add (3.3) from j=1j=1 to j=Mj=M, to get

j=1Ml2\displaystyle\sum^{M}_{j=1}l^{2}\leq 4πρ2(1+κ1)j=1M(A2jΩ0m2dxdy+a𝒞(Ω0){b}m(a)2χa(A2j))\displaystyle 4\pi\rho^{2}(1+\kappa^{-1})\sum^{M}_{j=1}\left(\int_{A_{2j}\cap\Omega_{0}}m^{2}\mathrm{d}x\mathrm{d}y+\sum_{a\in\mathcal{C}(\Omega_{0})\setminus\{b\}}m(a)^{2}\chi_{a}(A_{2j})\right)
\displaystyle\leq 4πρ2(1+κ1)(B(w,R2)Ω0m2dxdy+a𝒞(Ω0){b}m(a)2χa(B(w,R1)))\displaystyle 4\pi\rho^{2}(1+\kappa^{-1})\left(\int_{B(w,R_{2})\cap\Omega_{0}}m^{2}\mathrm{d}x\mathrm{d}y+\sum_{a\in\mathcal{C}(\Omega_{0})\setminus\{b\}}m(a)^{2}\chi_{a}(B(w,R_{1}))\right)
\displaystyle\leq 4πρ2(1+κ1)A(m).\displaystyle 4\pi\rho^{2}(1+\kappa^{-1})A(m).

This implies Ml24πρ2(1+κ1)A(m)Ml^{2}\leq 4\pi\rho^{2}(1+\kappa^{-1})A(m). Hence

(3.4) EL(Γ)4πρ2(1+κ1)M1.EL(\Gamma)\leq 4\pi\rho^{2}(1+\kappa^{-1})M^{-1}.

Given ε>0\varepsilon>0, we can choose sufficiently large MM so that the right hand of (3.4) is less than ε\varepsilon. Then we have for each wbw\in\ulcorner b\urcorner, there is a R2M+1>0R_{2M+1}>0 such that EL(Γ)<εEL(\Gamma)<\varepsilon when d(q,w)<R2M+1d(\ulcorner q\urcorner,w)<R_{2M+1}. According to the compactness of b\ulcorner b\urcorner, the proof is completed. ∎

At the end of this section, we have derived from Möbius invariance of fatness([23]) and Möbius invariance of crossratio that:

Theorem 3.2 (Möbius invariance of gap-ratio).

Let Ω^\Omega\subset\hat{\mathbb{C}} be a nondegenerate domain with bounded gap-ratio, and let FF be a Möbius transformation. Then F(Ω)F(\Omega) is also a nondegenerate domain with bounded gap-ratio.

4. The extended Carathéodory kernel convergence theorem

The Carathéodory kernel convergence theorem([7]) tells us what the image f(Ω)f(\Omega) is. However, it does not give much informatin about f(b)\ulcorner f(b)\urcorner for any b𝒞(Ω)b\in\mathcal{C}(\Omega). This section is devoted to establish the extended Carathéodory kernel convergence theorem for nondegenerate domains.

Theorem 4.1.

Let Ω^\Omega\subset\hat{\mathbb{C}} be a κ\kappa-nondegenerate domain with bounded gap-ratio. Given a sequence of conformal maps {fn:Ω^,n=1,2,}\{f_{n}:\Omega\rightarrow\hat{\mathbb{C}},n=1,2,\cdots\} with the limit ff. Suppose that for each n=1,2,n=1,2,\cdots, there is a domain Ωn\Omega_{n} containing Ω\Omega such that

  • Ωn\Omega_{n} is a union of Ω\Omega and a collection of connected components of ^Ω\hat{\mathbb{C}}-\Omega;

  • 𝒞(Ωn)\mathcal{C}(\Omega_{n}) is at most countable;

  • fnf_{n} extends to a conformal mapping f^n:Ωn^\hat{f}_{n}:\Omega_{n}\rightarrow\hat{\mathbb{C}}, and each f^n(Ωn)\hat{f}_{n}(\Omega_{n}) is a κ\kappa-nondegenerate domain.

Let b𝒞(Ω)b\in\mathcal{C}(\Omega). Then f(b)\ulcorner f(b)\urcorner is the complement of the connected component of ^B0\hat{\mathbb{C}}-B_{0}^{*} that contains f(Ω)f(\Omega), where B0B_{0}^{*} is any Hausdorff limit of a subsequence of fn(b)\ulcorner f_{n}(b)\urcorner. Moreover, we have f(b)\ulcorner f(b)\urcorner is a singleton if b\ulcorner b\urcorner is.

Proof.

We first normalize the sequence fnf_{n} by requiring Ω\infty\in\Omega and fn()=f_{n}(\infty)=\infty due to theorem 3.2. Without loss of generality, we assume that B0B_{0}^{*} is the Hausdorff limit of the sequence fn(b)\ulcorner f_{n}(b)\urcorner. Let BB^{*} be the complement of the connected component of ^B0\hat{\mathbb{C}}-B_{0}^{*} that contains \infty. Our goal is to show that B=f(b)B^{*}=\ulcorner f(b)\urcorner. According to the Carathéodory kernel convergence theorem, we have Bf(b)B^{*}\subset\ulcorner f(b)\urcorner. Hence we only need to show that f(b)B\ulcorner f(b)\urcorner\subset B^{*}.


Striving for a contradiction, we assume f(b)B\ulcorner f(b)\urcorner-B^{*}\neq\emptyset. Let pf(b)Bp^{*}\in\ulcorner f(b)\urcorner-B^{*} as shown in figure 3. Set Ωn=f^(Ωn)\Omega^{*}_{n}=\hat{f}(\Omega_{n}), qn=πΩn(p)q^{*}_{n}=\pi_{\Omega^{*}_{n}}(p^{*}) and qn=f^n1(qn)q_{n}=\hat{f}_{n}^{-1}(q_{n}^{*}). (It is possible that qnΩnq_{n}\in\Omega_{n} or qn𝒞(Ωn)q_{n}\in\mathcal{C}(\Omega_{n}).) Since pf(b)p^{*}\in\ulcorner f(b)\urcorner, it follows that the distance in \mathbb{C} between qn\ulcorner q_{n}\urcorner and b\ulcorner b\urcorner tends to zero as nn\rightarrow\infty. (Otherwise, we consider a Jordan curve in Ω\Omega which separates b\ulcorner b\urcorner from qn\ulcorner q_{n}\urcorner for infinite many nn, then the image of this curve under ff will separate f(b)\ulcorner f(b)\urcorner from pp^{*}.)

Refer to caption
Figure 3.

Part I: Prove that EL(Γn)0EL(\Gamma_{n})\rightarrow 0 as nn\rightarrow\infty.

Recall that β(b)Ω{}\beta(b)\subset\Omega-\{\infty\} is a Jordan curve that separates bb from \infty in (Ω)\mathcal{E}(\Omega), and N(Ωn,b)N(\Omega_{n},b) is the connencted component of (Ωn)β(b)\mathcal{E}(\Omega_{n})\setminus\beta(b) that contains bb. Similarly, we let N(Ωn,b)N(\Omega^{*}_{n},b) be the connencted component of (Ωn)fn(β(b))\mathcal{E}(\Omega^{*}_{n})\setminus f_{n}(\beta(b)) that contains fn(b)f_{n}(b). Let Γn=ΓΩn(q,b)\Gamma_{n}=\Gamma_{\Omega_{n}}(q,b) be the collection of all Jordan curves γN(Ωn,b){b,qn}\gamma\subset N(\Omega_{n},b)\setminus\{b,q_{n}\} satisfies either of the following conditions:

  • γ\gamma separates {b,qn}\{b,q_{n}\} from \infty;

  • γ¯=γ{b}\bar{\gamma}=\gamma\cup\{b\} and γ¯\bar{\gamma} separates qnq_{n} from \infty.

Since d(qn,b)d(\ulcorner q_{n}\urcorner,\ulcorner b\urcorner) tends to zero as nn\rightarrow\infty, it follows from theorem 3.1 and definition 2.1 that EL(Γn)EL(\Gamma_{n}) tends to zero as nn\rightarrow\infty.


Let Γn={f^n(γ):γΓn}\Gamma^{*}_{n}=\{\hat{f}_{n}(\gamma):\gamma\in\Gamma_{n}\}.


Part II: Fix an extended metric to get a positive lower bound of EL(Γn)EL(\Gamma^{*}_{n}).

It follows from the normalization fn()=f_{n}(\infty)=\infty that there is some radius RR so that fn(β(b))B(0,R)f_{n}(\beta(b))\subset B(0,R) for all nn. We now define for all zΩnz\in\Omega^{*}_{n}:

mn(z)={1,zΩnB(0,R);0,zΩnB(0,R),m^{*}_{n}(z)=\begin{cases}1,&z\in\Omega^{*}_{n}\cap B(0,R);\\ 0,&z\in\Omega^{*}_{n}-B(0,R),\end{cases}

and for a𝒞(Ωn)a^{*}\in\mathcal{C}(\Omega^{*}_{n}):

mn(a)={diam(a),aB(0,R);0,a^B(0,R).m^{*}_{n}(a^{*})=\begin{cases}\operatorname{diam}(\ulcorner a^{*}\urcorner),&\ulcorner a^{*}\urcorner\subset B(0,R);\\ 0,&\ulcorner a^{*}\urcorner\subset\hat{\mathbb{C}}-B(0,R).\end{cases}

It is clear that mnm^{*}_{n} is an extended metric on (Ωn)\mathcal{E}(\Omega^{*}_{n}). In the following we will show that the ratio Lmn(γ)/A(mn)L_{m^{*}_{n}}(\gamma^{*})/A(m^{*}_{n}) is strictly greater than zero under the metric mnm^{*}_{n} for any nn, so that the transboundary extremal length EL(Γn)EL(\Gamma^{*}_{n}) is bounded away from zero as nn\rightarrow\infty.


Since pBp^{*}\notin B^{*}, there is a curve η^B0\eta\subset\hat{\mathbb{C}}-B^{*}_{0} that connects pp^{*} and \infty as shown in figure 3. Let δ>0\delta^{*}>0 be a number that smaller than the distance from η\eta to B0B^{*}_{0}. It is obvious that for sufficiently large nn we have diam(γ)>δ\operatorname{diam}(\ulcorner\gamma^{*}\urcorner)>\delta^{*} for all γΓn\gamma^{*}\in\Gamma^{*}_{n}.

Let z1,z2γz_{1},z_{2}\in\ulcorner\gamma^{*}\urcorner, and for any zz\in\mathbb{C}, set ϕ(z)=zz1\phi(z)=\mid z-z_{1}\mid. It is easy to know that ϕ(z)\phi(z) is a non-negative real valued function and ϕ(γ)\phi(\ulcorner\gamma^{*}\urcorner) covers the interval [ 0,z1z2][\ 0,\mid z_{1}-z_{2}\mid\ ]. Parametering γ\gamma^{*} as γ:I(Ωn)\gamma^{*}:I\rightarrow\mathcal{E}(\Omega^{*}_{n}), where II is an interval. It is clear that γ1(Ωn)\gamma^{*-1}(\Omega^{*}_{n}) is a collection of connected components of I(γ1(Ωn))I(\gamma^{*-1}(\Omega^{*}_{n})). We denote the collection of connected components as 𝒥\mathcal{J}. Then for each J𝒥J\in\mathcal{J}, we have diam(ϕ(γ(J)))Lmn(γ(J)).\operatorname{diam}(\phi(\gamma^{*}(J)))\leq L_{m^{*}_{n}}(\gamma^{*}(J)).

On the other hand, for each aγ𝒞(Ωn)a^{*}\in\gamma^{*}\cap\mathcal{C}(\Omega^{*}_{n}), it follows that

diam(ϕ(γ(a)))diam(γ(a))=mn(a).\operatorname{diam}(\phi(\ulcorner\gamma^{*}(a^{*})\urcorner))\leq\operatorname{diam}(\ulcorner\gamma^{*}(a^{*})\urcorner)=m^{*}_{n}(a^{*}).

Since the set of such JJ and aa^{*} is countable, and the interval [ 0,z1z2][\ 0,\mid z_{1}-z_{2}\mid\ ] is covered by the sets

{ϕ(γ(J)):J𝒥}{ϕ(γ(a)):aγ𝒞(Ωn)},\{\phi(\gamma^{*}(J)):J\in\mathcal{J}\}\cup\{\phi(\ulcorner\gamma^{*}(a^{*})\urcorner):a^{*}\in\gamma^{*}\cap\mathcal{C}(\Omega^{*}_{n})\},

this implies

z1z2J𝒥Lmn(γ(J))+aγ𝒞(Ωn)mn(a)=Lmn(γ).\mid z_{1}-z_{2}\mid\leq\sum_{J\in\mathcal{J}}L_{m^{*}_{n}}(\gamma^{*}(J))+\sum_{a^{*}\in\gamma^{*}\cap\mathcal{C}(\Omega_{n})}m^{*}_{n}(a^{*})=L_{m^{*}_{n}}(\gamma^{*}).

Since z1,z2z_{1},z_{2} are chosen arbitrarily, we conclude that

(4.1) Lmn(γ)diam(γ)>δ.L_{m^{*}_{n}}(\gamma^{*})\geq\operatorname{diam}(\ulcorner\gamma^{*}\urcorner)>\delta^{*}.

Moreover, we note that f^n(Ωn)\hat{f}_{n}(\Omega_{n}) is κ\kappa-nondegenerate. Then for each non-trival component a𝒞(Ωn)a^{*}\in\mathcal{C}(\Omega^{*}_{n}), we have

(4.2) κ(a)=area(a)diam(a)2κ.\kappa(\ulcorner a^{*}\urcorner)=\frac{area(\ulcorner a^{*}\urcorner)}{\operatorname{diam}(\ulcorner a^{*}\urcorner)^{2}}\geq\kappa.

Thus mn(a)2κ1area(a)m^{*}_{n}(a^{*})^{2}\leq\kappa^{-1}area(\ulcorner a^{*}\urcorner) for aB(0,R)\ulcorner a^{*}\urcorner\subset B(0,R) and mn(a)2=0m^{*}_{n}(a^{*})^{2}=0 for a^B(0,R)\ulcorner a^{*}\urcorner\subset\hat{\mathbb{C}}-B(0,R). Moreover, we have

(4.3) A(mn)area(B(0,R)Ωn)+κ1area(B(0,R))(1+κ1)πR2.A(m^{*}_{n})\leq area(B(0,R)\cap\Omega^{*}_{n})+\kappa^{-1}area(B(0,R))\leq(1+\kappa^{-1})\pi R^{2}.

It then follows from (4.1) and (4.3) that

EL(Γn)(δ)2(1+κ1)πR2,EL(\Gamma^{*}_{n})\geq\frac{(\delta^{*})^{2}}{(1+\kappa^{-1})\pi R^{2}},

which implies that EL(Γn)EL(\Gamma^{*}_{n}) has a positive lower bound.


According to the conformal invariance of transboundary extremal length, we infer from the result in Part I that limnEL(Γn)=0\lim\limits_{n\rightarrow\infty}EL(\Gamma^{*}_{n})=0. This contradiction establishes that f(b)=B\ulcorner f(b)\urcorner=B^{*}.


Part III: Show that f(b)\ulcorner f(b)\urcorner is a singleton if b\ulcorner b\urcorner is.

We first suppose that b\ulcorner b\urcorner is a singleton and nn is a fixed positive integer. Let Γn\Gamma_{n} be the collection of all Jordan curves in N(Ωn,b)N(\Omega_{n},b) that separates bb from \infty and Γn={f^n(γ):γΓ}\Gamma^{*}_{n}=\{\hat{f}_{n}(\gamma):\gamma\in\Gamma\}. We have EL(Γn)=0EL(\Gamma_{n})=0 from definition 2.1. By the invariance of transboundary extremal length, we also have EL(Γn)=0EL(\Gamma^{*}_{n})=0. This implies f^n(b)\ulcorner\hat{f}_{n}(b)\urcorner is a single point. Since this holds for every nn and B0B^{*}_{0} is the Haussdorff limit of fn(b)\ulcorner f_{n}(b)\urcorner, B0B^{*}_{0} must be a single point. Thus we have f(b)\ulcorner f(b)\urcorner is a singleton. ∎

5. Proof of the main theorem

Recall that a circle domain is a connected domain in ^\hat{\mathbb{C}} such that every boundary component is either a cirlce or a point, hence it is π/4\pi/4-nondegenerate.

Proof of theorem 1.3.

Let Ω^\Omega\subset\hat{\mathbb{C}} be a nondegenerate domain with bounded gap-ratio. Due to theorem 3.2, we assume Ω\infty\in\Omega for normalization. It is clear that the space 𝒞nt(Ω)\mathcal{C}_{nt}(\Omega) must be countable. Let 12\mathcal{B}_{1}\subset\mathcal{B}_{2}\subset\cdots be a sequence of finite subsets of 𝒞nt(Ω)\mathcal{C}_{nt}(\Omega) such that n=1n=𝒞nt(Ω)\cup^{\infty}_{n=1}\mathcal{B}_{n}=\mathcal{C}_{nt}(\Omega). For each n=1,2,n=1,2,\ldots, let Ωn=^bnb\Omega_{n}=\hat{\mathbb{C}}-\cup_{b\in\mathcal{B}_{n}}\ulcorner b\urcorner. By Koebe’s finite connected uniformization theorem there is a conformal homeomorphism FnF_{n} such that Fn()=F_{n}(\infty)=\infty and Fn(Ωn)F_{n}(\Omega_{n}) is a circle domain. Let fnf_{n} be the limitation of FnF_{n} on Ω\Omega, thus we obtain a normal family {fn}n=1\{f_{n}\}^{\infty}_{n=1}. Without loss of generality, we assume fnf_{n} converges to ff. It is clear that ff is conformal on Ω\Omega and satisfies the normalization. According to theorem 4.1, we have f(b)\ulcorner f(b)\urcorner is a round disk for each bn=1nb\in\bigcup^{\infty}_{n=1}\mathcal{B}_{n}, and f(b)\ulcorner f(b)\urcorner is a single point for each b𝒞(Ω)n=1nb\in\mathcal{C}({\Omega})-\bigcup^{\infty}_{n=1}\mathcal{B}_{n}. This implies f(Ω)f(\Omega) is a circle domain. ∎

References

  • [1] L. Bers, Uniformization by Beltrami equations, Communications on Pure and Applied Mathematics, 14(3): 215-228, 1961, .
  • [2] M. Bonk, Uniformization of Sierpiński carpets in the plane, Inventiones mathematicae, 186(3): 559-665, 2011, .
  • [3] M. Bonk, Uniformization by square domains, The Journal of Analysis, 24: 103-110, 2016.
  • [4] M. Bonk and S. Merenkov, Quasisymmetric rigidity of square Sierpiński carpets, Annals of Mathematics, 177(2): 591-643, 2013.
  • [5] M. Bonk and S. Merenkov, Square Sierpiński carpets and Lattès maps, Mathematische Zeitschrift, 296: 695-718, 2020.
  • [6] R. Denneberg, Konforme Abbildung einer Klasse unendlich vielfach zusammenhängender schlichter Bereiche auf Kreisbereiche, Diss., Leipziger Berichte, 84: 331-352, 1932.
  • [7] G.M. Goluzin, Geometric Theory of Functions of a Complex Variable, Translations of Mathematical Monographs, American Mathematical Society, 1969.
  • [8] H. Grötzsch, Eine Bemerkung zum Koebeschen Kreisnormierungsprinzip, Leipziger Berichte, 87: 319-324, 1935.
  • [9] A. Haas, Linearization and mappings onto pseudocircle domains, Transactions of the American Mathematical Society, 282(1): 415-429, 1984.
  • [10] H. Hakobyan and W. Li, Quasisymmetric embeddings of slit Sierpiński carpets, Transactions of the American Mathematical Society, 376: 8877-8918, 2023.
  • [11] S. Hildebrandt and H. von der Mosel, Conformal mapping of multuply connected Riemann domains by a variational approach, Advances in Calculus of Variations, 2: 137-183, 2009.
  • [12] Z.-X. He and O. Schramm, Fixed points, Koebe uniformization and circle packings, Annals of Mathematics, 137: 369-406, 1993.
  • [13] Z.-X. He and O. Schramm, Rigidity of circle domains whose boundary has σ\sigma-finite linear measure, Inventiones mathematicae, 115(3): 297-310, 1994,.
  • [14] Z.-X. He and O. Schramm, Koebe Uniformization for “Almost Circle Domains”, American Journal of Mathematics, 117(3): 653-667, 1995.
  • [15] P. Koebe, Über die Uniformisierung beliebiger analytischer Kurven III, Nachr. Ges Wiss. Gott., 337-358, 1908,.
  • [16] P. Koebe, Abhandlungen zur Theorie der Konformen Abbildung: VI. Abbildung mehrfach zusammenhängender Bereiche auf Kreisbereiche, etc., Mathematische Zeitschrift, 7: 235-301, 1920.
  • [17] P. Koebe, Über die Konforme Abbildung Endlich- und Unendlich-Vielfach Zusammenhängender Symmetrischer Bereiche auf Kreisbereiche, Acta Mathematica, 43: 263-287, 1922.
  • [18] H. Meschowski, Über die konformen Abbildung gewisser Bereiche von unendlich hohen Zusammenhang auf Vollkreisbereiche. I, Mathematische Annalen, 123(1): 392-405, 1951.
  • [19] H. Meschowski, Über die konformen Abbildung gewisser Bereiche von unendlich hohen Zusammenhang auf Vollkreisbereiche. II, Mathematische Annalen, 124(1): 178-181, 1952.
  • [20] D. Ntalampekos and M. Younsi, Rigidity theorems for circle domains, Inventiones mathematicae, 220(1): 129-189, 2020.
  • [21] K. Rajala, Uniformization of planar domains by exhaustion, Preprint, arXiv:2111.00845, 2021.
  • [22] L. Sario, Über Riemannsche Flachen mit hebbarem Rand, Annales Academiae Scientiarum Fennicae. Series AI, 50: 1-79, 1948.
  • [23] O. Schramm, Transboundary extremal length, Journal d’Analyse Mathématique, 66: 307-329, 1995.
  • [24] K.L. Sterbel, Über das Kreisnormierungsproblem der konformen Abbildung, Annales Academiae Scientiarum Fennicae, 1: 1-22, 1951.
  • [25] K.L. Sterbel, Über die konformen Abbildung von Gebieten unendlich hohen Zusammenhangs, Commentarii Mathematici Helvetici, 27: 101-127, 1953.
  • [26] X.G. Wang and Y. Zhong, Koebe uniformization for infinitely connected attracting Fatou domains, Preprint, arXiv:2406.13524, 2024.
  • [27] M. Younsi, Removability, rigidity of circle domains and Koebe’s conjecture, Advances in Mathematics, 303: 1300-1318, 2016.