This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

KsK_{s}-band photometry of the Extreme T Subdwarf CWISE J221706.28-145437.6 111Based on observations made with the Gran Telescopio Canarias.

Jerry J.-Y. Zhang (章俊龑) Instituto de Astrofísica de Canarias (IAC), Calle Vía Láctea s/n, E-38200 La Laguna, Tenerife, Spain Departamento de Astrofísica, Universidad de La Laguna (ULL), E-38206 La Laguna, Tenerife, Spain Nicolas Lodieu Instituto de Astrofísica de Canarias (IAC), Calle Vía Láctea s/n, E-38200 La Laguna, Tenerife, Spain Departamento de Astrofísica, Universidad de La Laguna (ULL), E-38206 La Laguna, Tenerife, Spain Eduardo L. Martín Instituto de Astrofísica de Canarias (IAC), Calle Vía Láctea s/n, E-38200 La Laguna, Tenerife, Spain Departamento de Astrofísica, Universidad de La Laguna (ULL), E-38206 La Laguna, Tenerife, Spain Jerry Zhang jzhang@iac.es
Abstract

We present deep KsK_{s}-band imaging of the extreme T subdwarf CWISE J221706.28-145437.6. Using the new photometry, we construct its spectral energy distribution and find this object exhibits exceptionally strong collision-induced absorption in the HH and KK band. The comparison with the nearest benchmark extreme T subdwarf WISEA J181006.18-101000.5 suggests the object would be cooler and more metal-poor than the benchmark.

T dwarfs (1679), T subdwarfs (1680), Brown dwarfs (185), Metallicity (1031), Broad band photometry (184)
facilities: GTCsoftware: PyEMIR222https://pyemir.readthedocs.io/, Photutils (Bradley et al., 2024), Astropy (Astropy Collaboration et al., 2013, 2018, 2022)

1 Introduction

CWISE J221706.28-145437.6 (WISE2217) was discovered by Meisner et al. (2021) in the Backyard Worlds: Planet 9 citizen science project (Kuchner et al., 2017). It was identified as one of the few extreme T subdwarf (esdT) candidates (Meisner et al., 2021; Zhang et al., 2023) because of its large motion, infrared (IR) and optical-IR colors similar to those of two known esdTs WISEA J181006.18-101000.5 (WISE1810) and WISEA J041451.67-585456.7 (Schneider et al., 2020). Its subdwarf nature was supported by ground-based parallax measurements and multi-band colors (Zhang et al., 2025b).

Although no spectroscopy of WISE2217 has been obtained due to its faintness, its spectral energy distribution (SED) can still be reconstructed using available photometry. However, a crucial piece of the SED is missing: no KK-band photometry has been reported to date. This is particularly significant because flux beyond 1.5 microns is a key diagnostic for identifying metal-poor T dwarfs. These subdwarfs exhibit strong collision-induced absorption (CIA) between hydrogen molecules, and between helium atoms and hydrogen molecules in their dense, high-gravity atmospheres, which leads to substantial flux suppression in the HH and KK bands. Hence, KK-band photometry is essential to further constrain the nature and metallicity of WISE2217 through its SED.

2 Observations and Data Reduction

We collected new KsK_{s}-band photometry of WISE2217 with the Espectrografo Multiobjeto Infra-Rojo (EMIR; Garzón et al., 2022) mounted on the 10.4-m Gran Telescopio Canarias (GTC). The data were taken on the second half of the night of 25 July 2024 (MJD 60517.61) in visitor mode under clear skies but with Calima, 0.\farcs5 seeing, and a bright moon. We used a 7-point dithering pattern with a 10″offset, and a 5s individual exposure at each dithering position. The pattern was repeated for 40 times, yielding a total on-source exposure of 1400s.

We reduced the images with the official pipeline PyEMIR (Cardiel et al., 2019). We have a \sim 5-σ\sigma detection of WISE2217 based on its previous position (Zhang et al., 2023) and well-constrained proper motion (Zhang et al., 2025b). We performed aperture photometry using the Photutils package (Bradley et al., 2024) using apertures with a radius of 0.\farcs8, sky annuli with an inner and outer radius of 3″and 5″, respectively. The reference stars are from the VISTA Hemisphere Survey (McMahon et al., 2013, 2021).

Refer to caption
Figure 1: WISE2217’s field (the small panel), photometry (red diamonds and magnitude values), with those of the benchmark esdT WISE1810 (blue circles) and its spectrum (black). The relative photometry of the two objects is aligned in the JJ band. WISE2217’s absolute photometry (yellow diamonds) is also scaled to WISE1810’s JJ-band photometry. The uncertainty of the absolute photometry is mainly from the parallax uncertainty.

3 Result and Discussion

We have a measurement of Ks=20.63±0.27K_{s}=20.63\pm 0.27 mag (Vega). Fig 1 compiled all the photometry of WISE2217 in the optical (Zhang et al., 2023) and IR (Meisner et al., 2023). We compared the SED of WISE2217 with that of the benchmark extreme T subdwarf WISE1810 (Figure 1), which is the nearest T subdwarf (8.9 pc; Lodieu et al., 2022) and has a well-constrained metallicity ([M/H]=1.7±0.2\mathrm{[M/H]}=-1.7\pm 0.2 dex) derived from the NIR methane feature (Zhang et al., 2025a). In comparison, WISE2217 demonstrated a much stronger CIA in the HH and KK bands, indicating a more metal-poor atmosphere. We note that if we take into account the filter difference (Zhang et al., 2023), WISE2217 (Sloan zz^{\prime}) would have a similar zJz-J color as WISE1810 (Pan-STARRS zz). WISE2217 has a redder W1W2W1-W2 color. Considering that the methane absorption gets weaker in the W1W1 band when the metallicity lowers but gets stronger when temperature drops, as well as that the emission peak moves towards W2W2 band for T dwarfs when the temperature drops, a redder W1W2W1-W2 color infers a cooler temperature. This result supports the spectral type assignation for WISE1810 (esdT0–esdT3; Schneider et al., 2020; Burgasser et al., 2025) and WISE2217 (photometrically classified as esdT5.5±\pm1.2, Meisner et al., 2021), if a good classification scheme for esdTs is a monotonic non-increasing function for the effective temperature.

WISE2217 has a parallax of 48±1348\pm 13 mas (Zhang et al., 2025b), yielding that WISE2217’s absolute magnitudes in all bands are fainter than those of WISE1810 by a confidence level of about 3σ\sigma. This lower luminosity could be explained by the synergy between the coldness and the low metallicity in its atmosphere.

In summary, WISE2217 could be the most metal-poor T dwarf up to date, as suggested by Zhang et al. (2025b). It is likely to have a metallicity [M/H] 2.0\lesssim-2.0 dex and a temperature cooler than 1000 K, by comparing with the benchmark esdT WISE1810. A follow-up with a high-quality NIR spectroscopy for WISE2217 is challenging but worthwhile, as we can use the most prominent NIR methane feature and the ATMO2020++ model (Leggett et al., 2021; Meisner et al., 2023) to precisely constrain its metallicity to 0.2 dex or better.

acknowledgments

JYZ and NL acknowledge support from the Agencia Estatal de Investigación del Ministerio de Ciencia, Innovación y Universidades under grant PID2022-137241NB-C41. JYZ and EGE were funded for this research by the European Union ERC AdG SUBSTELLAR grant agreement number 101054354. Based on observations made with the Gran Telescopio Canarias (GTC), in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, on the island of La Palma, under program GTC37-23B (PI Zhang). EMIR has been funded by GRANTECAN S.L. via a procurement contract; by the Spanish funding agency grants AYA2001-1656, AYA2002-10256-E, FIT-020100-2003-587, AYA2003-01186, AYA2006-15698-C02-01, AYA2009-06972, AYA2012-33211, AYA2015-63650-P and AYA2015-70498-C2-1-R; and by the Canarian funding agency grant ACIISI-PI 2008/226.


References

  • Astropy Collaboration et al. (2013) Astropy Collaboration, Robitaille, T. P., Tollerud, E. J., et al. 2013, A&A, 558, A33, doi: 10.1051/0004-6361/201322068
  • Astropy Collaboration et al. (2018) Astropy Collaboration, Price-Whelan, A. M., Sipőcz, B. M., et al. 2018, AJ, 156, 123, doi: 10.3847/1538-3881/aabc4f
  • Astropy Collaboration et al. (2022) Astropy Collaboration, Price-Whelan, A. M., Lim, P. L., et al. 2022, ApJ, 935, 167, doi: 10.3847/1538-4357/ac7c74
  • Bradley et al. (2024) Bradley, L., Sipőcz, B., Robitaille, T., et al. 2024, astropy/photutils: 2.0.2, 2.0.2, Zenodo, doi: 10.5281/zenodo.13989456
  • Burgasser et al. (2025) Burgasser, A. J., Schneider, A. C., Meisner, A. M., et al. 2025, ApJ, 982, 79, doi: 10.3847/1538-4357/adb39f
  • Cardiel et al. (2019) Cardiel, N., Pascual, S., Gallego, J., et al. 2019, in Astronomical Society of the Pacific Conference Series, Vol. 523, Astronomical Data Analysis Software and Systems XXVII, ed. P. J. Teuben, M. W. Pound, B. A. Thomas, & E. M. Warner, 317
  • Garzón et al. (2022) Garzón, F., Balcells, M., Gallego, J., et al. 2022, A&A, 667, A107, doi: 10.1051/0004-6361/202244729
  • Kuchner et al. (2017) Kuchner, M. J., Faherty, J. K., Schneider, A. C., et al. 2017, ApJ, 841, L19, doi: 10.3847/2041-8213/aa7200
  • Leggett et al. (2021) Leggett, S. K., Tremblin, P., Phillips, M. W., et al. 2021, ApJ, 918, 11, doi: 10.3847/1538-4357/ac0cfe
  • Lodieu et al. (2022) Lodieu, N., Zapatero Osorio, M. R., Martín, E. L., Rebolo López, R., & Gauza, B. 2022, A&A, 663, A84, doi: 10.1051/0004-6361/202243516
  • McMahon et al. (2013) McMahon, R. G., Banerji, M., Gonzalez, E., et al. 2013, The Messenger, 154, 35
  • McMahon et al. (2021) —. 2021, VizieR Online Data Catalog: The VISTA Hemisphere Survey (VHS) catalog DR5 (McMahon+, 2020), VizieR On-line Data Catalog: II/367. Originally published in: 2013Msngr.154…35M
  • Meisner et al. (2023) Meisner, A. M., Leggett, S. K., Logsdon, S. E., et al. 2023, AJ, 166, 57, doi: 10.3847/1538-3881/acdb68
  • Meisner et al. (2021) Meisner, A. M., Schneider, A. C., Burgasser, A. J., et al. 2021, ApJ, 915, 120, doi: 10.3847/1538-4357/ac013c
  • Schneider et al. (2020) Schneider, A. C., Burgasser, A. J., Gerasimov, R., et al. 2020, ApJ, 898, 77, doi: 10.3847/1538-4357/ab9a40
  • Zhang et al. (2025a) Zhang, J. J. Y., Lodieu, N., Martín, E. L., et al. 2025a, ApJ, 984, L35, doi: 10.3847/2041-8213/adc91f
  • Zhang et al. (2023) Zhang, J. Y., Lodieu, N., & Martín, E. L. 2023, A&A, 678, A105, doi: 10.1051/0004-6361/202346923
  • Zhang et al. (2025b) Zhang, J. Y., Lodieu, N., Martín, E. L., et al. 2025b, A&A, 698, A141, doi: 10.1051/0004-6361/202453246