This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

L2L^{2} representation of Simpson-Mochizuki’s prolongation of Higgs bundles and the Kawamata-Viehweg vanishing theorem for semistable parabolic Higgs bundles

Chen Zhao czhao@ustc.edu.cn School of Mathematical Sciences, University of Science and Technology of China, Hefei, 230026, China
Abstract.

In this paper, we provide an L2L^{2} fine resolution of the prolongation of a nilpotent harmonic bundle in the sense of Simpson-Mochizuki (an analytic analogue of the Kashiwara-Malgrange filtrations). This is the logarithmic analogue of Cattani-Kaplan-Schmid’s and Kashiwara-Kawai’s results on the L2L^{2} interpretation of the intersection complex. As an application, we give an L2L^{2}-theoretic proof to the Nadel-Kawamata-Viehweg vanishing theorem with coefficients in a nilpotent Higgs bundle.

1. Introduction

1.1. Main result

It has been long realized that the (nonabelian) Hodge theory is closely related to the L2L^{2}-differential forms. Besides the proof of the classical Hodge decomposition theorem using L2L^{2} methods, there are many interesting and deep relations between the various extensions of the polarized variation of Hodge structure and the L2L^{2}-de Rham complexes. For the L2L^{2} interpretation of the intersection complex, readers may see Cattani-Kaplan-Schmid [Cattani_Kaplan_Schmid1987], Kashiwara-Kawai [Kashiwara_Kawai1987], E. Looijenga [Looijenga1988], Saper-Stern [Saper_Stern1990], S. Zucker [Zucker1979] and Shentu-Zhao [SC2021_CGM]. The main purpose of the present paper is to investigate the relavant problem in the context of the nonabelian Hodge theory. The main result is an L2L^{2}-fine resolution of the Simpson-Mochizuki’s prolongation (an analytic analogue of the Kashiwara-Malgrange filtrations [Kashiwara1983]) of nilpotent Higgs bundles (e.g. polarized complex variation of Hodge structure). Before stating the main result, let us fix some notations.

Let XX be a pre-compact open subset of a hermitian manifold (M,ωM)(M,\omega_{M}) and let D=i=1lDiD=\cup_{i=1}^{l}D_{i} be a simple normal crossing divisor on MM. Let σiH0(M,𝒪M(Di))\sigma_{i}\in H^{0}(M,\mathscr{O}_{M}(D_{i})) be the defining section of DiD_{i} and hih_{i} an arbitrary hermitian metric on 𝒪M(Di)\mathscr{O}_{M}(D_{i}). We denote φi=|σi|hi\varphi_{i}=|\sigma_{i}|_{h_{i}}. Let ϕPC(X\D)\phi_{P}\in C^{\infty}(X\backslash D) such that ωP:=1¯ϕP+ωM|X\D\omega_{P}:=\sqrt{-1}\partial\bar{\partial}\phi_{P}+\omega_{M}|_{X\backslash D} is a hermitian metric on X\DX\backslash D which has Poincaré type growth near DXD\cap X. Let (E,θ,h)(E,\theta,h) be a nilpotent harmonic bundle on M\DM\backslash D together with ¯E\bar{\partial}_{E} its holomorphic structure. For every indices 𝐚=(a1,,al)l{\bf a}=(a_{1},\dots,a_{l})\in\mathbb{R}^{l}, denote E𝐚{}_{\bf a}E to be the associated prolongation of (E,θ,h)(E,\theta,h) in the sense of Simpson [Simpson1990] and Mochizuki [Mochizuki20072, Mochizuki20071]. It is a locally free 𝒪X\mathscr{O}_{X}-module consisting of the holomorphic local sections ss of EE such that |s|hi=1lφiaiϵ|s|_{h}\lesssim\prod_{i=1}^{l}\varphi_{i}^{-a_{i}-\epsilon} for every ϵ>0\epsilon>0. The restricted Higgs field θ|E𝐚\theta|_{{}_{\bf a}E} has at most logarithmic poles along DD. We denote by

Dol(𝐚E,θ):=E𝐚E𝐚ΩX(logD){\rm Dol}(_{\bf a}E,\theta):={{}_{\bf a}}E\to{{}_{\bf a}}E\otimes\Omega_{X}(\log D)\to\cdots

the associated logarithmic Dolbeault complex. The main purpose of the present paper is to construct a complex of fine sheaves (consisting of certain locally square integrable differential forms) that is canonically quasi-isomorphic to Dol(𝐚E,θ){\rm Dol}(_{\bf a}E,\theta).

The set of prolongations {𝐚E}𝐚l\{_{\bf a}E\}_{{\bf a}\in\mathbb{R}^{l}} forms a parabolic bundle. In particular, the set of jumping indices along each component DiD_{i}

𝒥Di(E):={a|Gr𝐚ia(i)E:=𝐚iaE/b<aE𝐚ib0,𝐚l}\mathscr{J}_{D_{i}}(E):=\left\{a\in\mathbb{R}\big{|}{\rm Gr}^{(i)}_{{\bf a}\uparrow_{i}a}E:=_{{\bf a}\uparrow_{i}a}E/\cup_{b<a}{{}_{{\bf a}\uparrow_{i}b}}E\neq 0,\forall{\bf a}\in\mathbb{R}^{l}\right\}

is a discrete subset of \mathbb{R} and 𝒥Di(E)+=𝒥Di(E)\mathscr{J}_{D_{i}}(E)+\mathbb{Z}=\mathscr{J}_{D_{i}}(E). Here we denote 𝐚ic{\bf a}\uparrow_{i}c by the indices obtained by deleting the iith component of 𝒂\bm{a} and replacing it with the number cc.

For NN\in\mathbb{Z}, denote hN(𝐚):=heNϕP+i=1l2ailogφih_{N}({\bf a}):=he^{-N\phi_{P}+\sum_{i=1}^{l}2a_{i}\log\varphi_{i}} to be the modified metric on EE. Define the operator D′′=¯E+θD^{\prime\prime}=\bar{\partial}_{E}+\theta. Denote by 𝒟X,ωPk(E,D′′,hN(𝐚))\mathscr{D}^{k}_{X,\omega_{P}}(E,D^{\prime\prime},h_{N}({\bf a})) the sheaf of measurable EE-valued kk-forms α\alpha such that α\alpha and D′′αD^{\prime\prime}\alpha are locally square integrable near every point of XX with respect to ωP\omega_{P} and hN(𝒂)h_{N}(\bm{a}). Denote

𝒟X,ωP(E,D′′,hN(𝐚)):=𝒟X,ωP0(E,D′′,hN(𝐚))D′′𝒟X,ωP1(E,D′′,hN(𝐚))D′′\mathscr{D}^{\bullet}_{X,\omega_{P}}(E,D^{\prime\prime},h_{N}({\bf a})):=\mathscr{D}^{0}_{X,\omega_{P}}(E,D^{\prime\prime},h_{N}({\bf a}))\stackrel{{\scriptstyle D^{\prime\prime}}}{{\to}}\mathscr{D}^{1}_{X,\omega_{P}}(E,D^{\prime\prime},h_{N}({\bf a}))\stackrel{{\scriptstyle D^{\prime\prime}}}{{\to}}\cdots

to be the associated L2L^{2}-Dolbeault complex. There is a natural inclusion

Dol(𝐚E,θ)𝒟X,ωP(E,D′′,hN(𝐚+ϵ)){\rm Dol}(_{\bf a}E,\theta)\to\mathscr{D}^{\bullet}_{X,\omega_{P}}(E,D^{\prime\prime},h_{N}({\bf a}+\bm{\epsilon}))

for every (0,,0)=:𝟎<ϵl(0,\dots,0)=:\bm{0}<\bm{\epsilon}\in\mathbb{R}^{l}111By (a1,,al)<(b1,,bl)(a_{1},\dots,a_{l})<(b_{1},\dots,b_{l}) we mean that ai<bia_{i}<b_{i} for every i=1,,li=1,\dots,l..

For every 𝐚=(a1,,al)l{\bf a}=(a_{1},\dots,a_{l})\in\mathbb{R}^{l}, define

σE,i(ai)=min{|bai||b𝒥Di(E),bai},1il\sigma_{E,i}(a_{i})=\min\{|b-a_{i}||b\in\mathscr{J}_{D_{i}}(E),b\neq a_{i}\},\quad\forall 1\leq i\leq l

and 𝝈E(𝐚)=(σE,1(a1),,σE,l(al))\bm{\sigma}_{E}({\bf a})=(\sigma_{E,1}(a_{1}),\dots,\sigma_{E,l}(a_{l})). The main result of the present paper is

Theorem 1.1.

There is a constant N0N_{0}, depending only on (E,θ,h)(E,\theta,h) and XX (independent of 𝐚\bm{a} and ϵ\bm{\epsilon} in the following), such that the inclusion map

Dol(𝐚E,θ)𝒟X,ωP(E,D′′,hN(𝐚+ϵ)){\rm Dol}(_{{\bf a}}E,\theta)\to\mathscr{D}^{\bullet}_{X,\omega_{P}}(E,D^{\prime\prime},h_{N}({\bf a}+\bm{\epsilon}))

is a quasi-isomorphism for every 𝐚l{\bf a}\in\mathbb{R}^{l}, every N>N0N>N_{0} and every 𝟎<ϵ<𝛔E(𝐚)\bm{0}<\bm{\epsilon}<\bm{\sigma}_{E}({\bf a}).

1.2. Application: vanishing theorems

Besides its own insterests, Theorem 1.1 allows us to prove the following Kawamata-Viehweg type vanishing theorem for stable parabolic higgs bundles.

Theorem 1.2 (=Theorem 5.8).

Let XX be a projective manifold of dimension nn, YY be an analytic space and f:XYf:X\rightarrow Y be a proper surjective holomorphic map. Let D=i=1lDiD=\sum_{i=1}^{l}D_{i} be a normal crossing divisor on XX and ({Eα},θ,h)(\{{{}_{\alpha}}E\},\theta,h) a stable parabolic higgs bundles on X\DX\backslash D where θ\theta is nilpotent. Let LL be a holomorphic line bundle on XX. Suppose that some positive multiple mL=A+F1+F2mL=A+F_{1}+F_{2} where AA is an ample line bundle, F1F_{1} and F2F_{2} are effective divisors supported in DD such that A+F1A+F_{1} is nef. Suppose that F2=i=1lriDiF_{2}=\sum_{i=1}^{l}r_{i}D_{i} with ri0,ir_{i}\in\mathbb{Z}_{\geq 0},\forall i. Denote 𝐫:=(r1,,rl){\bf{r}}:=(r_{1},\dots,r_{l}).

Then

(1.1) Rif(Dol(𝐫m+𝐚E,θ)L)=0\displaystyle R^{i}f_{\ast}({\rm Dol}(_{-\frac{\bf{r}}{m}+{\bf a}}E,\theta)\otimes L)=0

for any i>ni>n and any 𝐚=(a1,,al)l{\bf a}=(a_{1},\dots,a_{l})\in\mathbb{R}^{l} such that |aj|<σE,j(rjm)|a_{j}|<\sigma_{E,j}(-\frac{r_{j}}{m}) for every j=1,,lj=1,\dots,l.

Remark 1.3.

The nilpotentness condition in Theorem 1.2 is not necessary. By using the trick of [AHL2019] we could deduce the relavant vanishing results for an arbitrary tame harmonic bundle to Theorem 1.2.

Theorem 1.2 generalizes several recent vanishing results. When YY is a point and LL is ample, Theorem 1.2 is proved by Arapura-Hao-Li [AHL2019] and Deng-Hao [DF2021], which extends Arapura’s logarithmic Saito-Kodaira vanishing theorem for complex polarized variations of Hodge structure with unipotency condition in [Arapura2019]. When YY is a point, 𝒂=𝟎{\bm{a}}={\bm{0}} and F2=0F_{2}=0, Theorem 1.2 implies J. Suh’s vanishing theorem for the canonical extension of a polarizable variation of Hodge structure [Suh2018] which provides many interesting vanishing results on Shimura varieties. We will come back to this issue in §1.2.2.

The most interesting phenomenon in Theorem 1.2, compared to other vanishing theorems, is the appearance of the parameter 𝐚l{\bf a}\in\mathbb{R}^{l}. There may exist more than one vanishing result in Theorem 1.2 depending on whether rim𝒥Di(E)-\frac{r_{i}}{m}\in\mathscr{J}_{D_{i}}(E) for some i{1,,l}i\in\{1,\dots,l\}. Assume that

𝒥Di(E)={<ci,j1<ci,j<ci,j+1<},1il.\mathscr{J}_{D_{i}}(E)=\{\cdots<c_{i,j-1}<c_{i,j}<c_{i,j+1}<\cdots\},\quad\forall 1\leq i\leq l.

For every 1il1\leq i\leq l, we denote

𝒥E,Di(b)={{ci,j1,ci,j},b=ci,j{ci,j},ci,j<b<ci,j+1.\mathscr{J}_{E,D_{i}}(b)=\begin{cases}\{c_{i,j-1},c_{i,j}\},&b=c_{i,j}\\ \{c_{i,j}\},&c_{i,j}<b<c_{i,j+1}.\end{cases}

Set

𝒥E,D(𝐚)=i=1l𝒥E,Di(ai)\mathscr{J}_{E,D}({\bf a})=\prod_{i=1}^{l}\mathscr{J}_{E,D_{i}}(a_{i})

for each 𝐚=(a1,,al)l{\bf a}=(a_{1},\dots,a_{l})\in\mathbb{R}^{l}. The vanishing result (1.1) is equivalent to the family of vanishing results

(1.2) Rif(Dol(𝐚E,θ)L)=0,i>n,𝐚𝒥E,D(𝐫m).\displaystyle R^{i}f_{\ast}({\rm Dol}(_{{\bf a}}E,\theta)\otimes L)=0,\quad\forall i>n,\quad{\bf a}\in\mathscr{J}_{E,D}(-\frac{\bf{r}}{m}).

1.2.1. Kawamata-Viehweg vanishing theorem and its (i,j)(i,j) version

Notations as in Theorem 1.2. For an easy example, let us consider the trivial Higgs bundle 𝒪X\D\mathscr{O}_{X\backslash D} with vanishing Higgs field. In this case 𝒥Di(𝒪XD)=\mathscr{J}_{D_{i}}(\mathscr{O}_{X\setminus D})=\mathbb{Z} for every i=1,,li=1,\dots,l. Hence

(1.3) 𝒥E,Di(rim)={{rim1,rim},rim{rim}rim.\displaystyle\mathscr{J}_{E,D_{i}}(-\frac{r_{i}}{m})=\begin{cases}\{-\frac{r_{i}}{m}-1,-\frac{r_{i}}{m}\},&\frac{r_{i}}{m}\in\mathbb{Z}\\ \{\lfloor-\frac{r_{i}}{m}\rfloor\}&\frac{r_{i}}{m}\notin\mathbb{Z}\end{cases}.

Let BB be a big and nef \mathbb{Q}-divisor such that L=BL=\lceil B\rceil and F2=BBF_{2}=\lceil B\rceil-B. In this case 0rim<10\leq\frac{r_{i}}{m}<1 for every i=1,,li=1,\dots,l. Since

Dol(E𝐛,θ)j=0nΩXj(logD)(i=1lbiDi)[j],𝒃=(b1,,bl)l,{\rm Dol}({{}_{\bf b}}E,\theta)\simeq\bigoplus_{j=0}^{n}\Omega^{j}_{X}(\log D)(\sum_{i=1}^{l}\lfloor b_{i}\rfloor D_{i})[-j],\quad\forall\bm{b}=(b_{1},\dots,b_{l})\in\mathbb{R}^{l},

we obtain the following Kawamata-Viehweg type vanishing theorem.

Corollary 1.4.

Let XX be a projective manifold of dimension nn, YY be an analytic space and f:XYf:X\rightarrow Y be a proper surjective holomorphic map. Let D=i=1lDiD=\sum_{i=1}^{l}D_{i} be a normal crossing divisor on XX. Let B=A+FB=A+F be a \mathbb{Q}-divisor where BB is nef, AA is an ample \mathbb{Q}-divisor, supp(F)D{\rm supp}(F)\subset D and supp(BB)D{\rm supp}(\lceil B\rceil-B)\subset D. Then

(1.4) Rif(ΩXj(logD)𝒪X(BG))=0,i+j>n\displaystyle R^{i}f_{\ast}(\Omega^{j}_{X}(\log D)\otimes{\mathscr{O}_{X}}(\lceil B\rceil-G))=0,\quad\forall i+j>n

for every reduced effective divisor GG such that supp(BB)GD{\rm supp}(\lceil B\rceil-B)\subset G\subset D.

When j=nj=n, by standard arguments Corollary 1.4 implies the classical Kawamata-Viehweg vanishing theorem for \mathbb{Q}-divisors [Mori1998, Theorem 2.64] which is widely used in birational geometry. When BB is ample and YY is algebraic, (1.4) has been recently proved by Arapura-Matsuki-Patel-Włodarczyk [Arapura2018].

1.2.2. Saito-type vanishing theorems

Notations as in Theorem 1.2. Assume that (E,θ,h)(E,\theta,h) is associated with a polarized \mathbb{C}-variation of Hodge structure (𝒱,,{F},h)(\mathcal{V},\nabla,\{F^{\bullet}\},h) via Simpson’s correspondence [Simpson1988]. For every 𝒂=(a1,,al)l{\bm{a}}=(a_{1},\dots,a_{l})\in\mathbb{R}^{l}, let 𝒱𝐚\mathcal{V}_{\geq\bf{a}} be the unique locally free 𝒪X\mathscr{O}_{X}-module extending 𝒱\mathcal{V} such that \nabla induces a connection with logarithmic singularities :𝒱𝒂𝒱𝒂ΩX(logD)\nabla:\mathcal{V}_{\geq{\bm{a}}}\to\mathcal{V}_{\geq{\bm{a}}}\otimes\Omega_{X}(\log D) whose real parts of the eigenvalues of the residue of \nabla along DiD_{i} belong to [ai,ai+1)[a_{i},a_{i}+1). Let j:X\DXj:X\backslash D\to X be the open immersion. Denote F𝒂p:=jFp𝒱𝒂F^{p}_{\geq{\bm{a}}}:=j_{\ast}F^{p}\cap\mathcal{V}_{\geq{\bm{a}}}. The recent work of Deng [Deng2022] shows that F𝒂pF^{p}_{\geq{\bm{a}}} is a subbundle of 𝒱𝒂\mathcal{V}_{\geq{\bm{a}}} and \nabla induces a complex

F𝒂pF𝒂p1ΩX(logD)F𝒂p2ΩX2(logD),p.F^{p}_{\geq{\bm{a}}}\stackrel{{\scriptstyle\nabla}}{{\to}}F^{p-1}_{\geq{\bm{a}}}\otimes\Omega_{X}(\log D)\stackrel{{\scriptstyle\nabla}}{{\to}}F^{p-2}_{\geq{\bm{a}}}\otimes\Omega^{2}_{X}(\log D)\stackrel{{\scriptstyle\nabla}}{{\to}}\cdots,\quad\forall p.

Denote the graded quotient complex as

DR(X,D)𝐚(𝒱,F):=pF𝒂p/F𝒂p+1GrpF𝒂p1/F𝒂pΩX(logD)Gr.{}_{\bf a}{\rm DR}_{(X,D)}(\mathcal{V},F^{\bullet}):=\bigoplus_{p}F^{p}_{\geq{\bm{a}}}/F^{p+1}_{\geq{\bm{a}}}\stackrel{{\scriptstyle{\rm Gr}\nabla}}{{\to}}\bigoplus_{p}F^{p-1}_{\geq{\bm{a}}}/F^{p}_{\geq{\bm{a}}}\otimes\Omega_{X}(\log D)\stackrel{{\scriptstyle{\rm Gr}\nabla}}{{\to}}\cdots.

By [Simpson1988] one has E=Gr(𝒱)E=Gr_{\mathscr{F}}(\mathcal{V}) and θ=Gr()\theta=Gr_{\mathscr{F}}(\nabla). We obtain that

(1.5) DR(X,D)𝐚(𝒱,F)Dol(𝒂E,θ),𝒂l.{}_{\bf a}{\rm DR}_{(X,D)}(\mathcal{V},F^{\bullet})\simeq{\rm Dol}(_{\bm{a}}E,\theta),\quad\forall\bm{a}\in\mathbb{R}^{l}.

Thus Theorem 1.2 implies the following Saito-type vanishing result.

Corollary 1.5.

Let XX be a projective manifold of dimension nn, YY be an analytic space and f:XYf:X\rightarrow Y be a proper surjective holomorphic map. Let D=i=1lDiD=\sum_{i=1}^{l}D_{i} be a normal crossing divisor on XX. Let (𝒱,,{F},h)(\mathcal{V},\nabla,\{F^{\bullet}\},h) be a polarizable \mathbb{C}-variation of Hodge structure on X\DX\backslash D. Let LL be a holomorphic line bundle on XX. Suppose that some positive multiple mL=A+F1+F2mL=A+F_{1}+F_{2} where AA is an ample line bundle, F1F_{1} and F2F_{2} are effective divisors supported in DD such that A+F1A+F_{1} is a nef holomorphic line bundle. Suppose that F2=i=1lriDiF_{2}=\sum_{i=1}^{l}r_{i}D_{i} with ri0,ir_{i}\in\mathbb{Z}_{\geq 0},\forall i. Denote 𝐫:=(r1,,rl){\bf{r}}:=(r_{1},\dots,r_{l}).

Then

Rif(DR(X,D)𝐫m+𝐚(𝒱,F)L)=0R^{i}f_{\ast}\left({}_{-\frac{\bf{r}}{m}+{\bf a}}{\rm DR}_{(X,D)}(\mathcal{V},F^{\bullet})\otimes L\right)=0

for any i>ni>n and any 𝐚=(a1,,al)l{\bf a}=(a_{1},\dots,a_{l})\in\mathbb{R}^{l} such that |aj|<σE,j(rjm)|a_{j}|<\sigma_{E,j}(-\frac{r_{j}}{m}) for every j=1,,lj=1,\dots,l.

When YY is a point, F2𝒪XF_{2}\simeq\mathscr{O}_{X}, 𝐚=𝟎{\bf a}={\bf 0} and (𝒱,,{F},h)(\mathcal{V},\nabla,\{F^{\bullet}\},h) is an \mathbb{R}-polarized variation of Hodge structure, it is proved by J. Suh [Suh2018] by using the theory of Hodge modules. As noted above, there are actually many other vanishing theorems in the setting of Corollary 1.5 when rim-\frac{r_{i}}{m} is the jumping index with respect to DiD_{i} for some ii. The jumping indices of the set of prolongations {E𝒂|𝒂l}\{{{}_{\bm{a}}}E|{\bm{a}}\in\mathbb{R}^{l}\} are closely related to the monodromies of the flat bundle (𝒱,)(\mathcal{V},\nabla). Let Resi(){\rm Res}_{i}(\nabla) be a residue of the monodromy of (𝒱,)(\mathcal{V},\nabla) along DiD_{i} whose real parts of the eigenvalues lie in [0,1)[0,1). Let

Ji={the real part of an eigenvalue of the residue of (𝒱,) along Di}J_{i}=\{\textrm{the real part of an eigenvalue of the residue of }(\mathcal{V},\nabla)\textrm{ along }D_{i}\}

By Simpson’s table [Simpson1990, p. 720], one obtains that

(1.6) 𝒥Di(E)=Ji+.\displaystyle\mathscr{J}_{D_{i}}(E)=J_{i}+\mathbb{Z}.

Notations:

  • For a holomorphic vector bundle EE on a complex manifold XX, we denote ¯E\bar{\partial}_{E} to be its holomorphic structure. We write it as ¯\bar{\partial} if no ambiguity appears.

  • We say that two metrics ds12ds_{1}^{2} and ds22ds_{2}^{2} are quasi-isometric, i.e., ds12ds22ds_{1}^{2}\sim ds_{2}^{2}, if there exists a constant C>0C>0 such that C1ds12ds22Cds12C^{-1}ds_{1}^{2}\leq ds_{2}^{2}\leq Cds_{1}^{2}. Two hermitian metrics hh and hh^{\prime} of a holomorphic vector bundle on XX are called quasi-isometric if there exits a contant C>0C>0 such that C1h<h<ChC^{-1}h<h^{\prime}<Ch. We denote it by hhh\sim h^{\prime}.

  • Let α\alpha and β\beta be functions, metrics or (1,1)(1,1)-forms. We denote αβ\alpha\lesssim\beta if αCβ\alpha\leq C\beta for some C>0C\in\mathbb{R}_{>0}. We say that α\alpha and β\beta are quasi-isometric if αβ\alpha\lesssim\beta and βα\beta\lesssim\alpha. We denote it by αβ\alpha\sim\beta.

  • For a hermitian vector bundle (E,h)(E,h) on a complex manifold XX, we always denote R(E,h)R(E,h) (or simply R(h)R(h)) to be its Chern curvature.

  • Let ΘA1,1(X,End(E))\Theta\in A^{1,1}(X,{\rm End}(E)) be a real form. Assume locally that

    Θ=1i,jωijeiej\Theta=\sqrt{-1}\sum_{i,j}\omega_{ij}e_{i}\otimes e_{j}^{\ast}

    where ωijAX1,1\omega_{ij}\in A^{1,1}_{X}, (e1,,er)E(e_{1},\dots,e_{r})\in E is an orthogonal local frame of EE and (e1,,er)E(e^{\ast}_{1},\dots,e^{\ast}_{r})\in E^{\ast} is the dual frame. We say that Θ\Theta is Nakano semi-positive, denoting ΘNak0\Theta\geq_{{\rm Nak}}0, if the bilinear form

    θ(u1,u2):=i,jωij(u1i,u2j¯),whereul=iulkekTXE,l=1,2\displaystyle\theta(u_{1},u_{2}):=\sum_{i,j}\omega_{ij}(u_{1i},\overline{u_{2j}}),\quad{\textrm{where}}\quad u_{l}=\sum_{i}u_{lk}\otimes e_{k}\in T_{X}\otimes E,\quad\forall l=1,2

    is semi-positive definite.

    Let Θ1,Θ2A1,1(X,End(E))\Theta_{1},\Theta_{2}\in A^{1,1}(X,{\rm End}(E)) be two real forms. We denote Θ1NakΘ2\Theta_{1}\geq_{{\rm Nak}}\Theta_{2} if Θ1Θ2Nak0\Theta_{1}-\Theta_{2}\geq_{{\rm Nak}}0. (E,h)(E,h) is Nakano semi-positive if 1R(E,h)Nak0\sqrt{-1}R(E,h)\geq_{{\rm Nak}}0.

2. Preliminary

In this section, we review the basic knowledge of Higgs bundles and nilpotent harmonic bundles. References include [Simpson1988, Simpson1990, Simpson1992, Mochizuki20071, Mochizuki20072] and so on.

2.1. Nilpotent harmonic bundles

Definition 2.1.

Let XX be a complex manifold. A Higgs bundle on XX is a pair (E,θ)(E,\theta) where EE is a holomorphic vector bundle on XX together with ¯E\bar{\partial}_{E} its holomorphic structure, and θ:EEΩX1\theta:E\rightarrow E\otimes\Omega_{X}^{1} is a holomorphic one form such that θθ=0\theta\wedge\theta=0 in End\rm End(E)ΩX2(E)\otimes\Omega_{X}^{2}. Here θ\theta is called the Higgs field.

Let XX be a complex manifold and let (E,θ)(E,\theta) be a Higgs bundle on XX. Define an operator D′′=¯E+θD^{\prime\prime}=\bar{\partial}_{E}+\theta. Then D′′2=0D^{\prime\prime 2}=0. Consider a smooth hermitian metric hh on EE. Let h+¯E\partial_{h}+\bar{\partial}_{E} be the Chern connection associated to hh and denote θh\theta_{h}^{\ast} to be the adjoint of θ\theta with respect to hh. Denote Dh:=h+θhD_{h}^{\prime}:=\partial_{h}+\theta_{h}^{\ast}.

Definition 2.2.

A smooth hermitian metric hh on a Higgs bundle (E,θ)(E,\theta) is called harmonic if the operator Dh:=Dh+D′′D_{h}:=D_{h}^{\prime}+D^{\prime\prime} is integrable, that is, Dh2=0D_{h}^{2}=0. A harmonic bundle is a Higgs bundle endowed with a harmonic metric.

Let (E,θ,h)(E,\theta,h) be a harmonic bundle. Then one has the self-dual equation

(2.1) R(h)+[θ,θh]=0.\displaystyle R(h)+[\theta,\theta_{h}^{\ast}]=0.

Let XX be an nn-dimensional complex manifold and D=iIDiD=\cup_{i\in I}D_{i} a simple normal crossing divisor on XX.

Definition 2.3 (Admissible coordinate).

Let pp be a point of XX and {Dj}j=1,,l\{D_{j}\}_{j=1,\dots,l} the components of DD containing pp. An admissible coordinate around pp is the tuple (U,φ)(U,\varphi) (or (U;z1,,zn)(U;z_{1},\dots,z_{n}) if no ambiguity appears) such that

  1. (1)

    UU is an open subset of XX containing pp.

  2. (2)

    φ\varphi is a biholomorphic morphism UΔn={(z1,,zn)n||zi|<1,1in}U\rightarrow\Delta^{n}=\{(z_{1},\dots,z_{n})\in\mathbb{C}^{n}\big{|}|z_{i}|<1,\forall 1\leq i\leq n\} such that φ(p)=(0,,0)\varphi(p)=(0,\dots,0) and φ(Dj)={zj=0}\varphi(D_{j})=\{z_{j}=0\} for any j=1,,lj=1,\dots,l.

Definition 2.4.

Let (E,θ,h)(E,\theta,h) be a harmonic bundle of rank rr defined on X\DX\backslash D. Let pp be any point of XX and (U,φ)(U,\varphi) an admissible coordinate around pp. On UU, we have the description:

(2.2) θ=j=1lfjdlogzj+k=l+1ngkdzk.\displaystyle\theta=\sum_{j=1}^{l}f_{j}\cdot d\log z_{j}+\sum_{k=l+1}^{n}g_{k}\cdot dz_{k}.
  1. (1)

    (tameness) Let tt be a formal variable. We have the polynomials det(tfj)\textrm{det}(t-f_{j}) and det(tgk)\textrm{det}(t-g_{k}) of tt, whose coefficients are holomorphic functions defined over U\j=1lDjU\backslash{\cup_{j=1}^{l}D_{j}}. When the functions are extended to the holomorphic functions over UU, the harmonic bundle is called tame at pp. A harmonic bundle is called tame if it is tame at every point pXp\in X.

  2. (2)

    (nilpotentness) When det(tfj)|UDj=tr\textrm{det}(t-f_{j})|_{U\cap D_{j}}=t^{r}, the harmonic bundle is called nilpotent at pp. When (E,h,θ)(E,h,\theta) is nilpotent at any point pXp\in X, it is called a nilpotent harmonic bundle.

2.2. Boundedness for the Higgs field

Denote Δ\Delta (resp. Δ\Delta^{\ast}) to be the unit disc (resp. punctured unit disc) in \mathbb{C}. A Poincaré metric ωP\omega_{P} on (Δ)l×Δnl(\Delta^{\ast})^{l}\times\Delta^{n-l} is defined as

ωP=j=1l1dzjdz¯j|zj|2(log|zj|2)2+k=l+1n1dzkdz¯k.\omega_{P}=\sum_{j=1}^{l}\frac{\sqrt{-1}dz_{j}\wedge d\bar{z}_{j}}{|z_{j}|^{2}({\log}|z_{j}|^{2})^{2}}+\sum_{k=l+1}^{n}\sqrt{-1}dz_{k}\wedge d\bar{z}_{k}.

It can be defined by a potential function as

ωP=1¯log(j=1l(log|zj|2))+1¯k=l+1n|zk|2.\omega_{P}=-\sqrt{-1}\partial\bar{\partial}\log(\prod_{j=1}^{l}(-\log|{z}_{j}|^{2}))+\sqrt{-1}\partial\bar{\partial}\sum_{k=l+1}^{n}|z_{k}|^{2}.
Definition 2.5 (Poincaré type metric).

A metric ds2ds^{2} on X\DX\backslash D is said to have Poincaré type growth near the divisor DD if, for every point pDp\in D there is a coordinate neighborhood UpXU_{p}\subset X of pp with Up(X\D)(Δ)l×ΔnlU_{p}\cap(X\backslash D)\simeq(\Delta^{\ast})^{l}\times\Delta^{n-l} for some 1ln1\leq l\leq n such that in these coordinates, ds2ds^{2} is quasi-isometric to ωP\omega_{P}.

We will always denote ωP\omega_{P} to be the Poincaré type metric if no ambiguity causes.

Proposition 2.6 ([CG1975, Zucker1979]).

The Poincaré type metric has finite volume, bounded curvature tensor and bounded covariant derivatives.

For nilpotent harmonic bundles, the following important norm estimates lead to the boundedness of the Higgs field θ\theta with respect to the Poincaré type metric.

Theorem 2.7 ([Simpson1990], Theorem 1 and [Mochizuki2002], Proposition 4.1).

Let (E,θ,h)(E,\theta,h) be a nilpotent harmonic bundle on X\DX\backslash D. Let fj,gkf_{j},g_{k} be the matrix valued holomorphic functions as in (2.2). Then there exists a positive constant C>0C>0 such that

|fj|hC(log|zj|2)1,forj=1,,l;|f_{j}|_{h}\leq C(-\log|z_{j}|^{2})^{-1},\quad\quad\textrm{for}\quad j=1,\dots,l;
|gk|hC,fork=l+1,,n.|g_{k}|_{h}\leq C,\quad\quad\textrm{for}\quad k=l+1,\dots,n.

Therefore

|θ|h,ωPC|\theta|_{h,\omega_{P}}\leq C

holds on U\DU\backslash D for some admissible neighborhood UU.

3. L2L^{2} cohomology and L2L^{2} complex

Let (X,ds2)(X,ds^{2}) be a complex hermitian manifold of dimension nn and DD a normal crossing divisor on XX. Let (E,h)(E,h) be a hermitian holomorphic vector bundle on X:=X\DX^{\ast}:=X\backslash D. It gives us an inner product on the vector space of EE-valued (p,q)(p,q)-forms

u,vh,ds2:=X(u,v)h,ds2volds2\langle u,v\rangle_{h,ds^{2}}:=\int_{X^{\ast}}(u,v)_{h,ds^{2}}{\rm vol}_{ds^{2}}

where (u,v)h,ds2(u,v)_{h,ds^{2}} is the pointwise inner product of uu and vv with respect to hh and ds2ds^{2}. The L2L^{2} norm of uu is defined as

uh,ds2=u,uh,ds2.\|u\|_{h,ds^{2}}=\sqrt{\langle u,u\rangle_{h,ds^{2}}}.

Let 𝒜Xp,q\mathscr{A}^{p,q}_{X^{\ast}} denote the sheaf of smooth (p,q)(p,q)-forms on XX^{\ast} for every 0p,qn0\leq p,q\leq n. Denote ¯:EE𝒜X0,1\bar{\partial}:E\to E\otimes\mathscr{A}^{0,1}_{X^{\ast}} to be the canonical ¯\bar{\partial} operator. Let L(2)p,q(X,E;ds2,h)L^{p,q}_{(2)}(X^{\ast},E;ds^{2},h) (resp. L(2)m(X,E;ds2,h)L^{m}_{(2)}(X^{\ast},E;ds^{2},h)) be the space of square integrable EE-valued (p,q)(p,q)-forms (resp. mm-forms) on XX^{\ast} with respect to the metrics ds2ds^{2} and hh. Denote ¯max\bar{\partial}_{\rm max} to be the maximal extension of the ¯\bar{\partial} operator defined on the domains

DX,ds2p,q(E,h):=Domp,q(¯max)={ϕL(2)p,q(X,E;ds2,h)|¯ϕL(2)p,q+1(X,E;ds2,h)}.D^{p,q}_{X^{\ast},ds^{2}}(E,h):=\textrm{Dom}^{p,q}(\bar{\partial}_{\rm max})=\{\phi\in L_{(2)}^{p,q}(X^{\ast},E;ds^{2},h)|\bar{\partial}\phi\in L_{(2)}^{p,q+1}(X^{\ast},E;ds^{2},h)\}.

Here ¯\bar{\partial} is taken in the sense of distribution.

The L2L^{2}-¯\bar{\partial} cohomology H(2),maxp,(X,E;ds2,h)H_{(2),\rm max}^{p,\bullet}(X^{\ast},E;ds^{2},h) is defined as the cohomology of the complex

(3.1) DX,ds2p,(E,h):=DX,ds2p,0(E,h)¯max¯maxDX,ds2p,n(E,h).\displaystyle D^{p,\bullet}_{X^{\ast},ds^{2}}(E,h):=D^{p,0}_{X^{\ast},ds^{2}}(E,h)\stackrel{{\scriptstyle\bar{\partial}_{\rm max}}}{{\to}}\cdots\stackrel{{\scriptstyle\bar{\partial}_{\rm max}}}{{\to}}D^{p,n}_{X^{\ast},ds^{2}}(E,h).

Let UXU\subset X be an open subset. Define LX,ds2p,q(E,h)(U)L_{X,ds^{2}}^{p,q}(E,h)(U) (resp. LX,ds2m(E,h)(U)L_{X,ds^{2}}^{m}(E,h)(U)) to be the space of measurable EE-valued (p,q)(p,q)-forms (resp. mm-forms) α\alpha on U:=U\DU^{\ast}:=U\backslash D such that for every point xUx\in U, there is a neighborhood VxV_{x} of xx so that

VxU|α|ds2,h2volds2<.\int_{V_{x}\cap U^{\ast}}|\alpha|^{2}_{ds^{2},h}{\rm vol}_{ds^{2}}<\infty.

For each pp and qq, we define a sheaf 𝒟X,ds2p,q(E,h)\mathscr{D}_{X,ds^{2}}^{p,q}(E,h) on XX by

𝒟X,ds2p,q(E,h)(U):={σLX,ds2p,q(E,h)(U)|¯maxσLX,ds2p,q+1(E,h)(U)}\mathscr{D}_{X,ds^{2}}^{p,q}(E,h)(U):=\{\sigma\in L_{X,ds^{2}}^{p,q}(E,h)(U)|\bar{\partial}_{\rm max}\sigma\in L_{X,ds^{2}}^{p,q+1}(E,h)(U)\}

for every open subset UXU\subset X. Define the L2L^{2}-Dolbeault complex of sheaves 𝒟X,ds2p,(E,h)\mathscr{D}_{X,ds^{2}}^{p,\bullet}(E,h) as

(3.2) 𝒟X,ds2p,0(E,h)¯𝒟X,ds2p,1(E,h)¯¯𝒟X,ds2p,n(E,h)\displaystyle\mathscr{D}_{X,ds^{2}}^{p,0}(E,h)\stackrel{{\scriptstyle\bar{\partial}}}{{\to}}\mathscr{D}_{X,ds^{2}}^{p,1}(E,h)\stackrel{{\scriptstyle\bar{\partial}}}{{\to}}\cdots\stackrel{{\scriptstyle\bar{\partial}}}{{\to}}\mathscr{D}_{X,ds^{2}}^{p,n}(E,h)

where ¯\bar{\partial} is defined in the sense of distribution.

Lemma 3.1 (fineness of the L2L^{2} sheaf).

Let XX be a compact complex manifold and DD a simple normal crossing divisor on XX. Let ds2ds^{2} be a hermitian metric on X:=X\DX^{\ast}:=X\backslash D which has Poincaré type growth along DD and let (E,h)(E,h) be a holomorphic vector bundle on XX^{\ast} with a possibly singular hermitian metric. Then 𝒟X,ds2p,q(E,h)\mathscr{D}^{p,q}_{X,ds^{2}}(E,h) is a fine sheaf for each pp and qq.

Proof.

Take an open subset UXU\subset X. It suffices to show that ηα𝒟X,ds2p,q(E,h)(U)\eta\alpha\in\mathscr{D}_{X,ds^{2}}^{p,q}(E,h)(U) for every α𝒟X,ds2p,q(E,h)(U)\alpha\in\mathscr{D}_{X,ds^{2}}^{p,q}(E,h)(U) and every ηAcpt0(U)\eta\in A^{0}_{\rm cpt}(U). Due to the asymptotic behavior of ds2ds^{2} (Proposition 2.6), |η||\eta| and |¯η|ds2|\bar{\partial}\eta|_{ds^{2}} are LL^{\infty} bounded on UU. If we assume that α\alpha and ¯α\bar{\partial}\alpha are locally L2L^{2} integrable, then

ηαLX,ds2p,q(E,h)(U),¯(ηα)=¯ηα+η¯αLX,ds2p,q+1(E,h)(U).\eta\alpha\in L_{X,ds^{2}}^{p,q}(E,h)(U),\quad\bar{\partial}(\eta\alpha)=\bar{\partial}\eta\wedge\alpha+\eta\wedge\bar{\partial}\alpha\in L_{X,ds^{2}}^{p,q+1}(E,h)(U).

Thus the lemma is proved. ∎

4. L2L^{2} representation of the prolongation of Higgs bundles

The purpose of this section is to establish a fine L2L^{2} bi-complex resolution of the prolongation of Higgs bundles.

4.1. Prolongation and parabolic structure

Let XX be a complex manifold of dimension nn and DD a normal crossing divisor on XX. Let (E,h)(E,h) be a holomorphic vector bundle on X\DX\backslash D with a smooth hermitian metric hh. Let 𝐚=(a1,,al)l{\bf a}=(a_{1},\dots,a_{l})\in\mathbb{R}^{l} be a tuple of real numbers. For 𝒃=(b1,,bl)l\bm{b}=(b_{1},\dots,b_{l})\in\mathbb{R}^{l}, we denote 𝒃<𝒂\bm{b}<\bm{a} if bi<aib_{i}<a_{i} for every i=1,,li=1,\dots,l.

Definition 4.1.

Let XX be a complex manifold and D=i=1lDiD=\cup_{i=1}^{l}D_{i} a simple normal crossing divisor on XX. A parabolic higgs bundle is a triple ({E𝒂},θ)(\{E_{\bm{a}}\},\theta) where for each 𝒂l\bm{a}\in\mathbb{R}^{l}, E𝒂E_{\bm{a}} is a locally free coherent sheaf such that the following hold.

  • E𝒂+ϵ=E𝒂E_{\bm{a}+\bm{\epsilon}}=E{{}_{\bm{a}}} for any vector ϵ=(ϵ1,,ϵl)\bm{\epsilon}=(\epsilon_{1},\cdots,\epsilon_{l}) with 0<ϵi1,1il0<\epsilon_{i}\ll 1,\forall 1\leq i\leq l.

  • E𝒂𝟏i=E𝒂𝒪(Di)E_{\bm{a}-{\bf 1}_{i}}={E_{\bm{a}}}\otimes\mathscr{O}(-D_{i}) for every 1il1\leq i\leq l. Here 𝟏i{\bf 1}_{i} denotes (0,,0,1,0,,0)(0,\dots,0,1,0,\dots,0) with 1 in the ii-th component.

  • The set of 𝒂\bm{a} such that Gr𝒂E0{\rm Gr}_{\bm{a}}E\neq 0 is discrete in l\mathbb{R}^{l}. Such 𝐚\bf{a} are called the weights.

  • The Higgs field θ\theta has at most logarithmic poles on E𝒂E_{\bm{a}}, that is, θ\theta can be extended to

    (4.1) E𝒂E𝒂ΩX(logD)\displaystyle E_{\bm{a}}\to E_{\bm{a}}\otimes\Omega_{X}(\log D)

    for every 𝒂l\bm{a}\in\mathbb{R}^{l}.

Definition 4.2 (Prolongation).

(Mochizuki[Mochizuki2002], Definition 4.2) Let UU be an open subset of XX admissible to DD. For any section sΓ(U\D,E)s\in\Gamma(U\backslash D,E), let |s|h|s|_{h} denote the norm function of ss with respect to the metric hh. We describe |s|h=O(i=1l|zi|ai)|s|_{h}=O(\prod_{i=1}^{l}|z_{i}|^{-a_{i}}) if there exists a positive number CC such that

|s|hCi=1l|zi|ai.|s|_{h}\leq C\cdot\prod_{i=1}^{l}|z_{i}|^{-a_{i}}.

We call ord(s)𝐚-\rm{ord}(s)\leq\bf{a} if |s|h=O(i=1l|zi|aiϵ)|s|_{h}=O(\prod_{i=1}^{l}|z_{i}|^{-a_{i}-\epsilon}) for any positive number ϵ\epsilon.

The 𝒪X\mathscr{O}_{X}-module E𝒂{}_{\bm{a}}E is defined as follows: For any open subset UXU\subset X,

Γ(U,E𝒂):={sΓ(U\D,E)|ord(s)𝒂}.\Gamma(U,{{}_{\bm{a}}E}):=\{s\in\Gamma(U\backslash D,E)|-\textrm{ord}(s)\leq{\bm{a}}\}.

The sheaf E𝐚{}_{\bf a}E is called the prolongment of EE by an increasing order 𝒂\bm{a}. Denote

(4.2) Gr𝒂E:=E𝒂/𝒃<𝒂E𝒃.\displaystyle{\rm Gr}_{\bm{a}}E:={{}_{\bm{a}}}E/\cup_{\bm{b}<\bm{a}}{{}_{\bm{b}}}E.
Theorem 4.3 ([Mochizuki2009], Proposition 2.53).

Let XX be a complex manifold and D=i=1lDiD=\cup_{i=1}^{l}D_{i} a simple normal crossing divisor on XX. Let (E,θ,h)(E,\theta,h) be a tame harmonic bundle on X\DX\backslash D. Then ({𝐚E},θ)(\{_{\bm{a}}E\},\theta) is a parabolic higgs bundle. The same conclusions hold for the flat bundle (𝒱,,h)(\mathcal{V},\nabla,h) associated with (E,θ,h)(E,\theta,h) via Simpson’s correspondence.

The following norm estimate for meromorphic sections is crucial in the proof of our main theorem.

Theorem 4.4 ([Mochizuki20072], Part 3, Chapter 13).

Let (𝒱,,h)(\mathcal{V},\nabla,h) be a tame harmonic bundle on X=(Δ)l×ΔnlX^{\ast}=(\Delta^{\ast})^{l}\times\Delta^{n-l}. Let

p:l×Δnl(Δ)l×Δnl,p:\mathbb{H}^{l}\times\Delta^{n-l}\to(\Delta^{\ast})^{l}\times\Delta^{n-l},
(z1,,zl,w1,,wnl)(e2π1z1,,e2π1zl,w1,,wnl)(z^{\prime}_{1},\dots,z^{\prime}_{l},w_{1},\dots,w_{n-l})\mapsto(e^{2\pi\sqrt{-1}z^{\prime}_{1}},\dots,e^{2\pi\sqrt{-1}z^{\prime}_{l}},w_{1},\dots,w_{n-l})

be the universal covering. Let 𝐚=(a1,,al)l{\bf a}=(a_{1},\dots,a_{l})\in\mathbb{R}^{l}. Let W(1)=W(N1),,W(n)=W(N1++Nn)W^{(1)}=W(N_{1}),\dots,W^{(n)}=W(N_{1}+\cdots+N_{n}) be the residue weight filtrations on V:=Γ(n,p𝒱)pV:=\Gamma(\mathbb{H}^{n},p^{\ast}\mathcal{V})^{p^{\ast}\nabla}. Then for any vVv\in V such that

0[v]GrlnW(n)Grl1W(1)VGr𝐚𝒱,0\neq[v]\in{\rm Gr}_{l_{n}}^{W^{(n)}}\cdots{\rm Gr}_{l_{1}}^{W^{(1)}}V\cap{\rm Gr}_{\bf a}\mathcal{V},

one has

(4.3) |v|h𝕍|s1|a1|sl|al(log|s1|log|s2|)l1(log|sl|)ln\displaystyle|v|_{h_{\mathbb{V}}}\sim|s_{1}|^{-a_{1}}\cdots|s_{l}|^{-a_{l}}\left(\frac{\log|s_{1}|}{\log|s_{2}|}\right)^{l_{1}}\cdots\left(-\log|s_{l}|\right)^{l_{n}}

over any region of the form

{(s1,,sl,w1,,wnl)(Δ)l×Δnl|log|s1|log|s2|>ϵ,,log|sl|>ϵ,(w1,,wnl)K}\left\{(s_{1},\dots,s_{l},w_{1},\dots,w_{n-l})\in(\Delta^{\ast})^{l}\times\Delta^{n-l}\bigg{|}\frac{\log|s_{1}|}{\log|s_{2}|}>\epsilon,\dots,-\log|s_{l}|>\epsilon,(w_{1},\dots,w_{n-l})\in K\right\}

for any ϵ>0\epsilon>0 and an arbitrary compact subset KΔnlK\subset\Delta^{n-l}. The same conclusion holds for the holomorphic sections in the Higgs bundle (E,θ,h)(E,\theta,h) associated with (𝒱,,h)(\mathcal{V},\nabla,h) via Simpson’s correspondence.

4.2. L2L^{2} representation

Let XX be a pre-compact open subset of a hermitian manifold (M,ωM)(M,\omega_{M}) and let D=i=1lDiD=\cup_{i=1}^{l}D_{i} be a simple normal crossing divisor on MM. Let σiH0(M,𝒪M(Di))\sigma_{i}\in H^{0}(M,\mathscr{O}_{M}(D_{i})) be the defining section of DiD_{i} and hih_{i} an arbitrary hermitian metric on 𝒪M(Di)\mathscr{O}_{M}(D_{i}). We denote φi=|σi|hi\varphi_{i}=|\sigma_{i}|_{h_{i}}. Let ϕPC(X\D)\phi_{P}\in C^{\infty}(X\backslash D) such that ωP:=1¯ϕP+ωM|X\D\omega_{P}:=\sqrt{-1}\partial\bar{\partial}\phi_{P}+\omega_{M}|_{X\backslash D} is a hermitian metric on X\DX\backslash D which has Poincaré type growth near DXD\cap X. Let (E,θ,h)(E,\theta,h) be a nilpotent harmonic bundle on M\DM\backslash D together with ¯E\bar{\partial}_{E} its holomorphic structure. For every indices 𝐚=(a1,,al)l{\bf a}=(a_{1},\dots,a_{l})\in\mathbb{R}^{l}, denote E𝐚{}_{\bf a}E to be the associated prolongation of (E,θ)(E,\theta). We denote by

Dol(𝐚E,θ):=E𝐚E𝐚ΩX(logD){\rm Dol}(_{\bf a}E,\theta):={{}_{\bf a}}E\to{{}_{\bf a}}E\otimes\Omega_{X}(\log D)\to\cdots

the associated logarithmic Dolbeault complex.

For NN\in\mathbb{Z}, denote hN(𝐚):=heNϕP+i=1l2ailogφih_{N}({\bf a}):=he^{-N\phi_{P}+\sum_{i=1}^{l}2a_{i}\log\varphi_{i}} to be a modified metric on EE. Define the operator D′′=¯E+θD^{\prime\prime}=\bar{\partial}_{E}+\theta. Denote by 𝒟X,ωPk(E,D′′,hN(𝐚))\mathscr{D}^{k}_{X,\omega_{P}}(E,D^{\prime\prime},h_{N}({\bf a})) the sheaf of measurable EE-valued kk-forms α\alpha such that α\alpha and D′′αD^{\prime\prime}\alpha are locally square integrable near every point of XX. Denote

𝒟X,ωP(E,D′′,hN(𝐚)):=𝒟X,ωP0(E,D′′,hN(𝐚))D′′𝒟X,ωP1(E,D′′,hN(𝐚))D′′\mathscr{D}^{\bullet}_{X,\omega_{P}}(E,D^{\prime\prime},h_{N}({\bf a})):=\mathscr{D}^{0}_{X,\omega_{P}}(E,D^{\prime\prime},h_{N}({\bf a}))\stackrel{{\scriptstyle D^{\prime\prime}}}{{\to}}\mathscr{D}^{1}_{X,\omega_{P}}(E,D^{\prime\prime},h_{N}({\bf a}))\stackrel{{\scriptstyle D^{\prime\prime}}}{{\to}}\cdots

to be the associated L2L^{2}-Dolbeault complex. There is a natural inclusion

Dol(𝐚E,θ)𝒟X,ωP(E,D′′,hN(𝐚+ϵ)){\rm Dol}(_{\bf a}E,\theta)\to\mathscr{D}^{\bullet}_{X,\omega_{P}}(E,D^{\prime\prime},h_{N}({\bf a}+\bm{\epsilon}))

for every 𝟎<ϵl\bm{0}<\bm{\epsilon}\in\mathbb{R}^{l}.

For every 𝐚=(a1,,al)l{\bf a}=(a_{1},\dots,a_{l})\in\mathbb{R}^{l}, define

σE,i(ai)=min{|bai||b𝒥Di(E),bai},1il\sigma_{E,i}(a_{i})=\min\{|b-a_{i}||b\in\mathscr{J}_{D_{i}}(E),b\neq a_{i}\},\quad\forall 1\leq i\leq l

and 𝝈E(𝐚)=(σE,1(a1),,σE,l(al))\bm{\sigma}_{E}({\bf a})=(\sigma_{E,1}(a_{1}),\dots,\sigma_{E,l}(a_{l})). The main result of this section is the following.

Theorem 4.5.

There is a constant N0N_{0}, depending only on (E,θ,h)(E,\theta,h) and XX (independent of 𝐚\bm{a} and ϵ\bm{\epsilon} in the following), such that the inclusion map

Dol(𝐚E,θ)𝒟X,ωP(E,D′′,hN(𝐚+ϵ)){\rm Dol}(_{{\bf a}}E,\theta)\to\mathscr{D}^{\bullet}_{X,\omega_{P}}(E,D^{\prime\prime},h_{N}({\bf a}+\bm{\epsilon}))

is a quasi-isomorphism for every 𝐚l{\bf a}\in\mathbb{R}^{l}, every N>N0N>N_{0} and every 𝟎<ϵ<𝛔E(𝐚)\bm{0}<\bm{\epsilon}<\bm{\sigma}_{E}({\bf a}).

The proof of the theorem is postponed to the end of this section.

4.3. Local behavior of the metrics

Since the statement of Theorem 4.5 is local, we assume that X1=ΔnX_{1}=\Delta^{n} and D=i=1lDiD=\sum_{i=1}^{l}D_{i} with Di={zi=0}D_{i}=\{z_{i}=0\} for each ii. Let (E,h)(E,h) be a nilpotent harmonic bundle over X1:=X1\DX_{1}^{\ast}:=X_{1}\backslash D.

For any N>0N\in\mathbb{Z}_{>0} and any 𝐚=(a1,,al)l{\bf{a}}=(a_{1},\cdots,a_{l})\in\mathbb{R}^{l}, we define

(4.4) κ(𝐚,N):=N(j=1llog(log|zj|2)k=l+1n|zk|2)j=1lajlog|zj|2.\displaystyle\kappa({\bf{a}},N):=-N(\sum_{j=1}^{l}\log(-\log|z_{j}|^{2})-\sum_{k=l+1}^{n}|z_{k}|^{2})-\sum_{j=1}^{l}a_{j}{\rm{log}}|z_{j}|^{2}.

Set h(𝐚,N):=heκ(𝐚,N)h({\bf{a}},N):=h\cdot e^{-\kappa({\bf{a}},N)}. Then

R(h(𝐚,N))=R(h)+1¯κ(𝐚,N)=R(h)+NωP.R(h({\bf{a}},N))=R(h)+\sqrt{-1}\partial\bar{\partial}\kappa({\bf{a}},N)=R(h)+N\omega_{P}.
Remark 4.6.

For the general settings as in §4.2, the modified hermitian metric hN(𝐚):=h(i=1llog|σi|hi2)Ni=1l|σi|hi2aih_{N}({\bf{a}}):=h\cdot(-\prod_{i=1}^{l}\log|\sigma_{i}|_{h_{i}}^{2})^{N}\cdot\prod_{i=1}^{l}|\sigma_{i}|_{h_{i}}^{2a_{i}} is locally quasi-isometric to h(𝐚,N)h({\bf{a}},N).

For every 1in1\leq i\leq n, let pip_{i} be the projection from (Δ)l×Δnl(\Delta^{\ast})^{l}\times\Delta^{n-l} to its ii-th factor. Note that ΩX1=i=1nLi\Omega_{X_{1}^{\ast}}=\oplus_{i=1}^{n}L_{i} where LiL_{i} is the trivial line bundle defined by Li:=piΩΔL_{i}:=p_{i}^{\ast}\Omega_{\Delta^{\ast}} for i=1,,li=1,...,l and Li=piΩΔL_{i}=p_{i}^{\ast}\Omega_{\Delta} for i=l+1,,ni=l+1,...,n. For any p=0,,np=0,...,n, set hph_{p} to be the hermitian metric on TX1pT_{X_{1}^{\ast}}^{p} induced by ωP\omega_{P}. Then there is a positive constant C(p,l)>0C(p,l)>0 depending only on pp and ll so that |R(hp)|hp,ωPC(p,l)|R(h_{p})|_{h_{p},\omega_{P}}\leq C(p,l). Set C0:=supp=0,,n;l=1,,nC(p,l)C_{0}:=\textrm{sup}_{p=0,...,n;l=1,...,n}C(p,l).

Proposition 4.7.

Let (E,θ,h)(E,\theta,h) be a nilpotent harmonic bundle over X1X_{1}^{\ast}. Then there exists a constant N0>0N_{0}>0 so that the following property holds after a possible shrinking of X1X_{1}. For the vector bundle p:=TX1pE\mathcal{E}_{p}:=T_{X_{1}^{\ast}}^{p}\otimes E endowed with the metric hph_{\mathcal{E}_{p}} induced by h(𝐚,N)h({\bf{a}},N) and ωP\omega_{P}, one has the following estimate

(4.5) 1R(hp)NakωPIdp\displaystyle\sqrt{-1}R(h_{\mathcal{E}_{p}})\geq_{{\rm Nak}}\omega_{P}\otimes{\rm Id}_{\mathcal{E}_{p}}

over X1X_{1}^{\ast} for any NN0N\geq N_{0}. Such N0N_{0} does not depend on the choice of 𝐚{\bf{a}}.

Proof.

Since (E,θ,h)(E,\theta,h) is a nilpotent harmonic bundle, |θ|h,ωP|\theta|_{h,\omega_{P}} is bounded after a possible shrinking of X1X_{1} (Theorem 2.7). This, together with the formula R(h)=[θ,θh]R(h)=-[\theta,\theta_{h}^{\ast}] (2.1), implies that |R(h)|h,ωPC|R(h)|_{h,\omega_{P}}\leq C for some positive constant CC. Therefore

1R(h)NakCωPIdE.\sqrt{-1}R(h)\geq_{\rm Nak}-C\omega_{P}\otimes{\rm Id}_{E}.

We also know from |R(hp)|hp,ωPC0|R(h_{p})|_{h_{p},\omega_{P}}\leq C_{0} that 1R(hp)NakC0ωPIdTX1p\sqrt{-1}R(h_{p})\geq_{\rm Nak}-C_{0}\omega_{P}\otimes{\rm Id}_{T_{X_{1}^{\ast}}^{p}}.

Hence

1R(hph)Nak(C+C0)ωPIdp.\sqrt{-1}R(h_{p}h)\geq_{\rm Nak}-(C+C_{0})\omega_{P}\otimes{\rm Id}_{\mathscr{E}_{p}}.

Modifying the metric hhphh_{p} to h(𝐚,N)hph({\bf a},N)h_{p} on p\mathscr{E}_{p}, we obtain that

1R(hph(𝐚,N))Nak(NCC0)ωPIp.\sqrt{-1}R(h_{p}h({\bf a},N))\geq_{\textrm{Nak}}(N-C-C_{0})\omega_{P}\otimes I_{\mathscr{E}_{p}}.

Taking NN0=C+C0+1N\geq N_{0}=C+C_{0}+1, we get the desired result. ∎

4.4. Fine bi-complex resolution

Since |θ|hN(𝐚),ωP=|θ|h,ωP|\theta|_{h_{N}({\bf a}),\omega_{P}}=|\theta|_{h,\omega_{P}} is bounded by Theorem 2.7,

θ:𝒟X,ωPp,q(E,hN(𝐚))𝒟X,ωPp+1,q(E,hN(𝐚))\theta:\mathscr{D}_{X,\omega_{P}}^{p,q}(E,h_{N}({\bf{a}}))\rightarrow\mathscr{D}_{X,\omega_{P}}^{p+1,q}(E,h_{N}({\bf{a}}))

is bounded for each 0p,qn0\leq p,q\leq n.

There is therefore the decomposition

(4.6) 𝒟X,ωPm(E,D′′,hN(𝐚))=p+q=m𝒟X,ωPp,q(E,hN(𝐚)).\displaystyle\mathscr{D}_{X,\omega_{P}}^{m}(E,D^{\prime\prime},h_{N}({\bf{a}}))=\bigoplus_{p+q=m}\mathscr{D}_{X,\omega_{P}}^{p,q}(E,h_{N}({\bf{a}})).

To construct the L2L^{2} bi-complex resolution, we recall Demailly’s formulation of Hormander estimate to solving ¯\bar{\partial}-equations on an incomplete Kähler manifold that admits a complete Kähler metric.

Theorem 4.8 ([Demailly1982], Theorem 4.1).

Let XX be a complete Kähler manifold with a (possibly) incomplete Kähler metric ω\omega. Let (E,h)(E,h) be a smooth hermitian vector bundle on XX such that

1R(h)NakϵωIdE,\sqrt{-1}R(h)\geq_{{\rm Nak}}\epsilon\omega\otimes{\rm Id}_{\rm E},

where ϵ>0\epsilon>0 is a positive constant. For every q1q\geq 1, assume that gL(2)n,q(X,E;ω,h)g\in L_{(2)}^{n,q}(X,E;\omega,h) such that ¯g=0\bar{\partial}g=0. Then there exists fL(2)n,q1(X,E;ω,h)f\in L_{(2)}^{n,q-1}(X,E;\omega,h) so that ¯f=g\bar{\partial}f=g and

fh,ω21ϵgh,ω2.\|f\|_{h,\omega}^{2}\leq\frac{1}{\epsilon}\|g\|_{h,\omega}^{2}.

Now we are ready to prove the following proposition which gives the fine bi-complex resolution.

Proposition 4.9.

Notations as in §4.3. Let (E,h)(E,h) be a hermitian holomorphic vector bundle on X1X_{1}^{\ast}. Denote by ωP=1¯ϕP\omega_{P}=\sqrt{-1}\partial\bar{\partial}\phi_{P} the Poincaré metric on X1X_{1}^{\ast} as in §2.2. Let h~:=heNϕP+j=1lajlog|zj|2\tilde{h}:=h\cdot e^{-N\phi_{P}+\sum_{j=1}^{l}a_{j}{\log}|z_{j}|^{2}} be a modified metric on EE such that

(4.7) 1R(p,hph~)ωPIdp,0pn.\displaystyle\sqrt{-1}R(\mathscr{E}_{p},h_{p}\otimes\tilde{h})\geq\omega_{P}\otimes{\rm Id}_{\mathscr{E}_{p}},\quad\forall 0\leq p\leq n.

Here p=TX1pE\mathscr{E}_{p}=T_{X_{1}^{\ast}}^{p}\otimes E and hph_{p} is the metric on TX1pT^{p}_{X_{1}^{\ast}} induced by ωP\omega_{P}. Then the complex

DX1,ωPp,0(E,h~)¯DX1,ωPp,1(E,h~)¯¯DX1,ωPp,n(E,h~)D_{X_{1},\omega_{P}}^{p,0}(E,\tilde{h})\xrightarrow{\bar{\partial}}D_{X_{1},\omega_{P}}^{p,1}(E,\tilde{h})\xrightarrow{\bar{\partial}}\cdots\xrightarrow{\bar{\partial}}D_{X_{1},\omega_{P}}^{p,n}(E,\tilde{h})

is exact at each q1q\geq 1 for every pp.

Proof.

First, notice that X1X^{\ast}_{1} admits a complete Kähler metric by modifying ωP\omega_{P} to ωP+1¯i=1n(1|zi|2)1\omega_{P}+\sqrt{-1}\partial\bar{\partial}\sum_{i=1}^{n}(1-|z_{i}|^{2})^{-1}. Notice that

(4.8) L(2)n,q(X1,np;ωP,hnph~)L(2)p,q(X1,E;ωP,h~)\displaystyle L_{(2)}^{n,q}(X_{1}^{\ast},\mathcal{E}_{n-p};\omega_{P},h_{n-p}\otimes\tilde{h})\simeq L_{(2)}^{p,q}(X_{1}^{\ast},E;\omega_{P},\tilde{h})

holds for any 0p,qn0\leq p,q\leq n. For any q1q\geq 1, any gL(2)n,q(X1,np;ωP,hnph~)g\in L_{(2)}^{n,q}(X_{1}^{\ast},\mathcal{E}_{n-p};\omega_{P},h_{n-p}\otimes\tilde{h}) with ¯g=0\bar{\partial}g=0, by Theorem 4.8 and (4.7) there is fL(2)n,q1(X1,np;ωP,hnph~)f\in L_{(2)}^{n,q-1}(X_{1}^{\ast},\mathcal{E}_{n-p};\omega_{P},h_{n-p}\otimes\tilde{h}) so that ¯f=g\bar{\partial}f=g. The proposition therefore follows from (4.8). ∎

The following corollary is a direct consequence of the above proposition.

Corollary 4.10.

Notations as in the beginning of §4.2. There is a constant N0N_{0}, depending only on XX and (E,θ,h)(E,\theta,h), such that complex of sheaves

𝒟X,ωPp,0(E,hN(𝐚))¯𝒟X,ωPp,1(E,hN(𝐚))¯¯𝒟X,ωPp,n(E,hN(𝐚))\mathscr{D}_{X,\omega_{P}}^{p,0}(E,h_{N}({\bf{a}}))\xrightarrow{\bar{\partial}}\mathscr{D}_{X,\omega_{P}}^{p,1}(E,h_{N}({\bf{a}}))\xrightarrow{\bar{\partial}}\cdots\xrightarrow{\bar{\partial}}\mathscr{D}_{X,\omega_{P}}^{p,n}(E,h_{N}({\bf{a}}))

is exact at each q1q\geq 1 for every pp and every N>N0N>N_{0}.

Proof.

If xDx\notin D, we can take an open neighborhood UX\DU\subset X\backslash D of xx which is biholomorphic to a polydisk. Then the corollary follows from the usual L2L^{2} Dolbeault lemma. It is therefore sufficient to consider an arbitrary point xDx\in D. Let (U;z1,,zn)(U;z_{1},\dots,z_{n}) be an admissible coordinate neighborhood which is biholomorphic to Δrn\Delta_{r}^{n} for some r1r\leq 1 such that U\D(Δr)l×ΔrnlU\backslash D\simeq(\Delta_{r}^{\ast})^{l}\times\Delta_{r}^{n-l} for some positive integer ll.

Note that hN(𝐚)h_{N}({\bf a}) is locally quasi-isometric to h~\tilde{h} in Proposition 4.9. Choosing NN large enough that satisfies the conditions in Proposition 4.7, the exactness is obtained from Proposition 4.9. Notice that the compactness of X¯\overline{X} ensures the existence of the uniformed bound N0N_{0}. ∎

4.5. Proof of Theorem 4.5

Choosing hN(𝐚)h_{N}({\bf{a}}) that assures the validity of Corollary 4.10, we denote the sheaf

(ΩmE)(2),N,𝐚:=Ker(𝒟X,ωPm,0(E,hN(𝐚))¯𝒟X,ωPm,1(E,hN(𝐚))),0mn\displaystyle(\Omega^{m}\otimes E)_{(2),N,{\bf a}}:={\rm Ker}\left(\mathscr{D}_{X,\omega_{P}}^{m,0}(E,h_{N}({\bf{a}}))\xrightarrow{\bar{\partial}}\mathscr{D}_{X,\omega_{P}}^{m,1}(E,h_{N}({\bf{a}}))\right),\quad\forall 0\leq m\leq n

and a complex of sheaves

Dol(E)(2),N,𝐚:=(Ω0E)(2),N,𝐚θ(Ω1E)(2),N,𝐚θθ(ΩnE)(2),N,𝐚.Dol(E)^{\bullet}_{(2),N,{\bf a}}:=(\Omega^{0}\otimes E)_{(2),N,{\bf a}}\stackrel{{\scriptstyle{\theta}}}{{\to}}(\Omega^{1}\otimes E)_{(2),N,{\bf a}}\stackrel{{\scriptstyle{\theta}}}{{\to}}\cdots\stackrel{{\scriptstyle{\theta}}}{{\to}}(\Omega^{n}\otimes E)_{(2),N,{\bf a}}.

That is, (ΩmE)(2),N,𝐚(\Omega^{m}\otimes E)_{(2),N,{\bf a}} is the sheaf of germs of holomorphic sections σΩmE\sigma\in\Omega^{m}\otimes E which are locally square integrable with respect to hN(𝐚)h_{N}({\bf{a}}) and ωP\omega_{P}.

Then there exists a quasi-isomorphism

(4.17)

By taking the total complex in (4.6), one gets

Proposition 4.11.

The canonical morphism

(4.18) Dol(E)(2),N,𝐚𝒟X,ωP(E,D′′,hN(𝐚))\displaystyle Dol(E)^{\bullet}_{(2),N,{\bf a}}\to\mathscr{D}^{\bullet}_{X,\omega_{P}}(E,D^{\prime\prime},h_{N}({\bf{a}}))

is a quasi-isomorphism.

Before calculating Dol(E)(2),N,𝐚Dol(E)^{\bullet}_{(2),N,{\bf a}}, we would like to state a simple lemma that will be used.

Lemma 4.12.

When N>1N>1,

Δ12|z|r(log|z|)NvolωP<+\int_{\Delta^{\ast}_{\frac{1}{2}}}|z|^{r}({\rm{log}}|z|)^{N}{\rm vol}_{\omega_{P}}<+\infty

if and only if r>0r>0.

Proof.

Let z=ρeiθz=\rho e^{i\theta}. Then

(4.19) Δ12|z|r(log|z|)NvolωP=π012ρr1(logρ)N2𝑑ρ.\displaystyle\int_{\Delta^{\ast}_{\frac{1}{2}}}|z|^{r}({\rm{log}}|z|)^{N}{\rm vol}_{\omega_{P}}=\pi\int_{0}^{\frac{1}{2}}\rho^{r-1}({\rm{log}}\rho)^{N-2}d\rho.

The right hand side of (4.19) is finite if and only if r>0r>0. ∎

The proof of Theorem 4.5 therefore follows from the following proposition.

Proposition 4.13.

There is a constant N0N_{0}, depending only on (E,θ,h)(E,\theta,h), such that

Dol(E)(2),N,𝐚+ϵ=Dol(E𝐚,θ)Dol(E)^{\bullet}_{(2),N,{\bf a}+\bm{\epsilon}}={\rm Dol}({{}_{{\bf a}}}E,\theta)

for every 𝟎<ϵ<𝛔E(𝐚){\bf 0}<{\bm{\epsilon}}<\bm{\sigma}_{E}({\bf a}) and N>N0N>N_{0}.

Proof.

Notations as in Theorem 4.4. For every 0mn0\leq m\leq n, let v~:=ei1eimv\tilde{v}:=e_{i_{1}}\wedge\cdots\wedge e_{i_{m}}\otimes v be a holomorphic section of ΩmE\Omega^{m}\otimes E such that

0[v]GrlnW(n)Grl1W(1)EGr𝐛E0\neq[v]\in{\rm Gr}_{l_{n}}^{W^{(n)}}\cdots{\rm Gr}_{l_{1}}^{W^{(1)}}E\cap{\rm Gr}_{\bf b}E

for some l1,,lnl_{1},\dots,l_{n}\in\mathbb{Z} and some 𝐛=(b1,,bl)l{\bf b}=(b_{1},\dots,b_{l})\in\mathbb{R}^{l}. Here

(4.20) ej={dzjzj,j=1,,ldzj,j=l+1,,m.\displaystyle e_{j}=\begin{cases}\frac{dz_{j}}{z_{j}},&j=1,\dots,l\\ dz_{j},&j=l+1,\dots,m\end{cases}.

Then one has

(4.21) |v~|hN(𝒂+ϵ),ωP|s1|a1+ϵ1b1|sl|al+ϵlbl|log|s1||N2+l1+δ(1)|log|s2||N2l1+l2+δ(2)|log|sl||N2+ln+δ(n).\displaystyle|\tilde{v}|_{h_{N}(\bm{a}+\bm{\epsilon}),\omega_{P}}\sim|s_{1}|^{a_{1}+\epsilon_{1}-b_{1}}\cdots|s_{l}|^{a_{l}+\epsilon_{l}-b_{l}}\big{|}\log|s_{1}|\big{|}^{\frac{N}{2}+l_{1}+\delta(1)}\big{|}\log|s_{2}|\big{|}^{\frac{N}{2}-l_{1}+l_{2}+\delta(2)}\cdots\big{|}\log|s_{l}|\big{|}^{\frac{N}{2}+l_{n}+\delta(n)}.

Here

(4.22) δ(i)={1,i{i1,,im}{1,,l}0,otherwise.\displaystyle\delta(i)=\begin{cases}1,&i\in\{i_{1},\dots,i_{m}\}\cap\{1,\dots,l\}\\ 0,&{\textrm{otherwise}}\end{cases}.

Taking N0=2max{|li|+2,|lili+1|+2}N_{0}=2\max\{|l_{i}|+2,|l_{i}-l_{i+1}|+2\}. By Lemma 4.12,

|v~|hN(𝒂+ϵ),ωP2volωP<\int|\tilde{v}|_{h_{N}(\bm{a}+\bm{\epsilon}),\omega_{P}}^{2}{\rm vol}_{\omega_{P}}<\infty

if and only if

(4.23) ai+ϵibi>0,i=1,,l.\displaystyle a_{i}+\epsilon_{i}-b_{i}>0,\quad i=1,\dots,l.

This is equivalent to that vE𝐚v\in{{}_{{\bf a}}}E for any 𝟎<ϵ<𝝈E(𝐚){\bf 0}<{\bm{\epsilon}}<\bm{\sigma}_{E}({\bf a}). This shows the proposition. ∎

5. Application: Kawamata-Viehweg type vanishing theorem for Higgs bundles

Let XX be an pre-compact open subset of an nn-dimensional projective Kähler manifold (M,ω)(M,\omega) such that XX is a weakly pseudoconvex manifold and ψ\psi is a smooth exhausted plurisubharmonic function on XX. For every cc\in\mathbb{R}, denote Xc:={xX|ψ(x)<c}X_{c}:=\{x\in X|\psi(x)<c\}. Let D:=i=1lDiD:=\cup_{i=1}^{l}D_{i} be a simple normal crossing divisor on MM and (E,θ,h)(E,\theta,h) a nilpotent harmonic bundle on M\DM\backslash D. Let σiH0(M,𝒪M(Di))\sigma_{i}\in H^{0}(M,\mathscr{O}_{M}(D_{i})) be the defining section of DiD_{i}. For each 1il1\leq i\leq l, fix some smooth hermitian metric hih_{i} for the line bundle 𝒪M(Di)\mathscr{O}_{M}(D_{i}) so that |σi|hi<1|\sigma_{i}|_{h_{i}}<1. Since X¯\overline{X} is compact, the associated curvature tensor R(hi)R(h_{i}) is bounded for every ii. We denote φi=|σi|hi\varphi_{i}=|\sigma_{i}|_{h_{i}}. Let LL be a holomorphic line bundle on MM so that some positive multiple mL=A+F1+F2mL=A+F_{1}+F_{2} where AA is an ample line bundle, F1F_{1} and F2F_{2} are effective divisors supported in DD such that A+F1A+F_{1} is a nef holomorphic line bundle. Suppose that F1=i=1lαiDiF_{1}=\sum_{i=1}^{l}\alpha_{i}D_{i} and F2=i=1lriDiF_{2}=\sum_{i=1}^{l}r_{i}D_{i} where αi,ri0,i\alpha_{i},r_{i}\in\mathbb{Z}_{\geq 0},\forall i. Denote 𝜶:=(α1,,αl),𝐫:=(r1,,rl){\bm{\alpha}}:=(\alpha_{1},\dots,\alpha_{l}),{\bf{r}}:=(r_{1},\dots,r_{l}).

The main technique that we use to prove Theorem 1.2 is Deng-Hao’s L2L^{2} estimate for D′′D^{\prime\prime} operators on Higgs bundles following the pattern of Hormander’s original L2L^{2} estimate for ¯\bar{\partial} operators.

Proposition 5.1 ([DF2021], Corollary 2.7).

Let (X,ω)(X,\omega) be a complete Kähler manifold and (E,θ,h)(E,\theta,h) any harmonic bundle on XX. Let LL be a line bundle on XX equipped with a hermitian metric hLh_{L}. Assume that for some m>0m>0, one has

(5.1) [1R(hL),Λω]f,fωϵ|f|ω2\displaystyle\langle[\sqrt{-1}R(h_{L}),\Lambda_{\omega}]f,f\rangle_{\omega}\geq\epsilon|f|_{\omega}^{2}

for any xXx\in X, any fp,qTX,xf\in\wedge^{p,q}T_{X,x}^{\ast} and any p+q=mp+q=m. Set (E~,θ~,h~):=(EL,θIdL,hhL)(\widetilde{E},\widetilde{\theta},\widetilde{h}):=(E\otimes L,\theta\otimes{\rm{Id}}_{L},h\otimes h_{L}) and D′′~=¯EL+θ~\widetilde{D^{\prime\prime}}=\bar{\partial}_{E\otimes L}+\widetilde{\theta}. Then for any vL(2)m(X,E~;ω,h~)v\in L_{(2)}^{m}(X,\widetilde{E};\omega,\widetilde{h}) such that D′′~v=0\widetilde{D^{\prime\prime}}v=0, there exists uL(2)m1(X,E~;ω,h~)u\in L_{(2)}^{m-1}(X,\widetilde{E};\omega,\widetilde{h}) so that D′′~u=v\widetilde{D^{\prime\prime}}u=v and

u2v2ϵ.\|u\|^{2}\leq\frac{\|v\|^{2}}{\epsilon}.

5.1. Construction of the relavant metrics

Since AA is ample, there exists a positive metric hAh_{A} with weight φA\varphi_{A} such that 1¯φAϵ0ω\sqrt{-1}\partial\bar{\partial}\varphi_{A}\geq\epsilon_{0}\omega for a certain positive constant ϵ0\epsilon_{0}. Since A+F1A+F_{1} is nef, for every positive constant ϵ\epsilon there exists a metric hϵh_{\epsilon} on A+F1A+F_{1} with weight φϵ\varphi_{\epsilon} such that 1¯φϵϵω\sqrt{-1}\partial\bar{\partial}\varphi_{\epsilon}\geq-\epsilon\omega. Let φF1=log|σi|hi2αi\varphi_{F_{1}}=\log|\sigma_{i}|_{h_{i}}^{2\alpha_{i}} (resp. φF2=log|σi|hi2ri\varphi_{F_{2}}=\log|\sigma_{i}|_{h_{i}}^{2r_{i}}) be the weight of a singular metric on 𝒪(F1)\mathscr{O}(F_{1}) (resp. 𝒪(F2)\mathscr{O}(F_{2})).

We define a singular metric hϵ,δh_{\epsilon,\delta} on LL by the weight

φL=1m((1δ)φϵ+δ(φA+φF1)+φF2)\varphi_{L}=\frac{1}{m}\left((1-\delta)\varphi_{\epsilon}+\delta(\varphi_{A}+\varphi_{F_{1}})+\varphi_{F_{2}}\right)

with ϵδ1\epsilon\ll\delta\ll 1, δ\delta rational. Then φL\varphi_{L} has singularities along F1F_{1} and F2F_{2}, and

(5.2) 1¯φL=\displaystyle\sqrt{-1}\partial\bar{\partial}\varphi_{L}= 1m((1δ)¯φϵ+δ¯φA+δ¯φF1+¯φF2)\displaystyle\frac{\sqrt{-1}}{m}\left((1-\delta)\partial\bar{\partial}\varphi_{\epsilon}+\delta\partial\bar{\partial}\varphi_{A}+\delta\partial\bar{\partial}\varphi_{F_{1}}+\partial\bar{\partial}\varphi_{F_{2}}\right)
\displaystyle\geq 1m((1δ)ϵω+δ(ϵ0ω+[F1])+[F2])δmϵω\displaystyle\frac{1}{m}\left(-(1-\delta)\epsilon\omega+\delta(\epsilon_{0}\omega+[F_{1}])+[F_{2}]\right)\geq\frac{\delta}{m}\epsilon\omega

if we choose ϵδϵ0\epsilon\leq\delta\epsilon_{0}. This is a singular metric which is smooth and positively curved outside DD.

Let ψc:=ψ+1cψ\psi_{c}:=\psi+\frac{1}{c-\psi} be a smooth exhausted plurisubharmonic function on XcX_{c} and χ\chi a convex increasing function. Choose a positive constant NN. For any 𝐚=(a1,,al)l{\bf{a}}=(a_{1},\dots,a_{l})\in\mathbb{R}^{l}, we modify the metric hϵ,δh_{\epsilon,\delta} to

(5.3) hϵ,δ(𝐚):=hϵ,δi=1l|σi|hi2ai(i=1llog|σi|hi2)N\displaystyle h_{\epsilon,\delta}({\bf{a}}):=h_{\epsilon,\delta}\cdot\prod_{i=1}^{l}|\sigma_{i}|_{h_{i}}^{2a_{i}}\cdot(-\prod_{i=1}^{l}\log|\sigma_{i}|_{h_{i}}^{2})^{N}

and

(5.4) hϵ,δ,c(𝐚):=hϵ,δ(𝐚)eχ(ψc2).\displaystyle{h}_{\epsilon,\delta,c}({\bf{a}}):={h}_{\epsilon,\delta}({\bf{a}})\cdot e^{-\chi(\psi_{c}^{2})}.

The associated curvatures are

(5.5) 1R(hϵ,δ(𝐚))=\displaystyle\sqrt{-1}R({h}_{\epsilon,\delta}({\bf{a}}))= 1R(hϵ,δ)+N1i=1llog|σi|hi2¯log|σi|hi2(log|σi|hi2)2\displaystyle\sqrt{-1}R(h_{\epsilon,\delta})+N\sqrt{-1}\sum_{i=1}^{l}\frac{\partial\log|\sigma_{i}|_{h_{i}}^{2}\wedge\bar{\partial}\log|\sigma_{i}|_{h_{i}}^{2}}{(\log|\sigma_{i}|_{h_{i}}^{2})^{2}}
+N1i=1lR(hi)log|σi|hi2+1i=1laiR(hi)\displaystyle+N\sqrt{-1}\sum_{i=1}^{l}\frac{R(h_{i})}{\log|\sigma_{i}|_{h_{i}}^{2}}+\sqrt{-1}\sum_{i=1}^{l}a_{i}R(h_{i})

and

(5.6) 1R(hϵ,δ,c(𝐚))=1R(hϵ,δ(𝐚))+1¯χ(ψc2).\displaystyle\sqrt{-1}R({h}_{{\epsilon,\delta},c}({\bf{a}}))=\sqrt{-1}R({h}_{\epsilon,\delta}({\bf{a}}))+\sqrt{-1}\partial\bar{\partial}\chi(\psi_{c}^{2}).

Let 0<γ1(x)γn(x)0<\gamma_{1}(x)\leq\cdot\cdot\cdot\leq\gamma_{n}(x) be the eigenvalues of 1R(hϵ,δ)\sqrt{-1}R(h_{\epsilon,\delta}) with respect to ω\omega on X\DX\backslash D. By the assumptions on hLh_{L}, γiδmϵ\gamma_{i}\geq\frac{\delta}{m}\epsilon holds on X\DX\backslash D for each ii.

Lemma 5.2.

Fixing NN, we can pick 𝐚=(a1,,al)l{\bf{a}}=(a_{1},\dots,a_{l})\in\mathbb{R}^{l} such that |𝐚|:=i=1l|ai||{\bf a}|:=\sum_{i=1}^{l}|a_{i}| is small enough and rescale each hih_{i} by multiplying a small constant so that

  1. (1)
    (5.7) 1R(hϵ,δ(𝐚))1R(hϵ,δ)δϵ2nmω(112n)δϵmω\displaystyle\sqrt{-1}R({h}_{\epsilon,\delta}({\bf{a}}))\geq\sqrt{-1}R(h_{\epsilon,\delta})-\frac{\delta\epsilon}{2nm}\omega\geq(1-\frac{1}{2n})\frac{\delta\epsilon}{m}\omega

    on X:=X\DX^{\ast}:=X\backslash D.

  2. (2)

    The metric

    (5.8) ωN(𝐚):=δϵ2mnω+1R(hϵ,δ(𝐚))\displaystyle\omega_{N}({\bf{a}}):=\frac{\delta\epsilon}{2mn}\omega+\sqrt{-1}R({h}_{\epsilon,\delta}({\bf{a}}))

    is a Kähler metric on XX^{\ast}.

  3. (3)
    (5.9) 1R(hϵ,δ,c(𝐚))1R(hϵ,δ)+1¯χ(ψc2)δϵ2mnω(112n)δϵmω\displaystyle\sqrt{-1}R({h}_{{\epsilon,\delta},c}({\bf{a}}))\geq\sqrt{-1}R(h_{\epsilon,\delta})+\sqrt{-1}\partial\bar{\partial}\chi(\psi_{c}^{2})-\frac{\delta\epsilon}{2mn}\omega\geq(1-\frac{1}{2n})\frac{\delta\epsilon}{m}\omega

    on Xc:=Xc\DX_{c}^{\ast}:=X_{c}\backslash D.

  4. (4)
    (5.10) ωN,c(𝐚):=ωN(𝐚)+1¯χ(ψc2)\displaystyle\omega_{N,c}({\bf{a}}):=\omega_{N}({\bf{a}})+\sqrt{-1}\partial\bar{\partial}\chi(\psi_{c}^{2})

    is a Kähler metric on XcX_{c}^{\ast}.

Proof.

Once (1) is proved, (2) follows immediately. Taking the plurisubarmonicity of χ(ψc2)\chi(\psi_{c}^{2}) into account, (3) and (4) can also be obtained. Therefore it suffices to prove (1).

By (5.5), the possible negative terms should appear in N1i=1lR(hi)log|σi|hi2+1i=1laiR(hi)N\sqrt{-1}\sum_{i=1}^{l}\frac{R(h_{i})}{\log|\sigma_{i}|_{h_{i}}^{2}}+\sqrt{-1}\sum_{i=1}^{l}a_{i}R(h_{i}). Since X¯\overline{X} is compact and NN is fixed, we can pick aia_{i} small enough and perturb hih_{i} to ϵ0hi\epsilon_{0}\cdot h_{i} where ϵ0\epsilon_{0} is a small constant so that

N1i=1lR(hi)log|σi|hi2+1i=1laiR(hi)δϵ2mnω.N\sqrt{-1}\sum_{i=1}^{l}\frac{R(h_{i})}{\log|\sigma_{i}|_{h_{i}}^{2}}+\sqrt{-1}\sum_{i=1}^{l}a_{i}R(h_{i})\geq-\frac{\delta\epsilon}{2mn}\omega.

Thus the lemma is proved. ∎

Remark 5.3.

ωN(𝐚)\omega_{N}({\bf{a}}) is a complete Kähler metric on XX^{\ast} and ωN,c(𝐚)\omega_{N,c}({\bf{a}}) is a complete Kähler metric on XcX_{c}^{\ast}. They are both locally quasi-isometric the Poincaré type metric.

Remark 5.4.

For a harmonic bundle (E,θ,h)(E,\theta,h) on XX^{\ast}, the modified hermitian metric hN,c(𝐚):=hN(𝐚)eχ(ψc2)h_{N,c}({\bf{a}}):=h_{N}({\bf{a}})\cdot e^{-\chi(\psi_{c}^{2})} on EE is locally quasi-isometric to h(𝐚,N)h({\bf{a}},N) in §4.3.

Proposition 5.5.

With the above notations, for every cc\in\mathbb{R} one has

(5.11) [1R(hϵ,δ,c(𝐚)),ΛωN,c(𝐚)]f,fωN,c(𝐚)12|f|ωN,c(𝐚)2\displaystyle\langle[\sqrt{-1}R({h}_{{\epsilon,\delta},c}({\bf a})),\Lambda_{\omega_{N,c}({\bf a})}]f,f\rangle_{\omega_{N,c}({\bf a})}\geq\frac{1}{2}|f|_{\omega_{N,c}({\bf{a}})}^{2}

for any xXcx\in X_{c}^{\ast}, any p+q>np+q>n and any fp,qTXc,xf\in\wedge^{p,q}T_{X_{c}^{\ast},x}^{\ast}.

Proof.

For any point xXcx\in X_{c}^{\ast}, one can choose local coordinates (z1,,zn)(z_{1},\dots,z_{n}) around xx so that at xx, ω=1i=1ndzidz¯i\omega=\sqrt{-1}\sum_{i=1}^{n}dz_{i}\wedge d\bar{z}_{i} and 1R(hϵ,δ,c(𝐚))=1i=1nγ~i(x)dzidz¯i\sqrt{-1}R(h_{\epsilon,\delta,c}({\bf{a}}))=\sqrt{-1}\sum_{i=1}^{n}\tilde{\gamma}_{i}(x)dz_{i}\wedge d\bar{z}_{i} where (112n)δϵmγ~1(x)γ~2(x)γ~n(x)(1-\frac{1}{2n})\frac{\delta\epsilon}{m}\leq\tilde{\gamma}_{1}(x)\leq\tilde{\gamma}_{2}(x)\leq\cdots\leq\tilde{\gamma}_{n}(x) are the eigenvalues of 1R(hϵ,δ,c(𝐚))\sqrt{-1}R(h_{\epsilon,\delta,c}({\bf{a}})) with respect to ω\omega. Also 1¯χ(ψc2)=1i=1nνi(x)dzidz¯i\sqrt{-1}\partial\bar{\partial}\chi(\psi_{c}^{2})=\sqrt{-1}\sum_{i=1}^{n}{\nu}_{i}(x)dz_{i}\wedge d\bar{z}_{i} with 0ν1(x)ν2(x)νn(x)0\leq{\nu}_{1}(x)\leq{\nu}_{2}(x)\leq\cdots\leq{\nu}_{n}(x) the associated eigenvalues with respect to ω\omega.

By (5.9), γ~i(x)γi(x)+νi(x)δϵ2mn\tilde{\gamma}_{i}(x)\geq\gamma_{i}(x)+{\nu}_{i}(x)-\frac{\delta\epsilon}{2mn} for each ii. Let λ1λn\lambda_{1}\leq\cdots\leq\lambda_{n} be the eigenvalues of 1R(hϵ,δ,c(𝐚))\sqrt{-1}R(h_{\epsilon,\delta,c}({\bf{a}})) with respect to ωN,c(𝐚)\omega_{N,c}({\bf{a}}). Then λi=γ~iδϵ2mn+γ~i\lambda_{i}=\frac{\tilde{\gamma}_{i}}{\frac{\delta\epsilon}{2mn}+\tilde{\gamma}_{i}} by (3) and (4) in Lemma 5.2. Thus 2n12nλi<1\frac{2n-1}{2n}\leq\lambda_{i}<1 for each i=1,,ni=1,...,n.

We assume that pqp\geq q without loss of generality. Then

(5.12) [1R(hϵ,δ,c(𝐚)),ΛωN,c(𝐚)]f,fωN,c(𝐚)\displaystyle\langle[\sqrt{-1}R(h_{\epsilon,\delta,c}({\bf{a}})),\Lambda_{\omega_{N,c}({\bf{a}})}]f,f\rangle_{\omega_{N,c}({\bf{a}})}\geq (i=1pλi+j=1qλjλ1λn)|f|ωN,c(𝐚)2\displaystyle(\sum_{i=1}^{p}\lambda_{i}+\sum_{j=1}^{q}\lambda_{j}-\lambda_{1}-\cdot\cdot\cdot-\lambda_{n})|f|_{\omega_{N,c({\bf{a}})}}^{2}
\displaystyle\geq (p(2n12n)(nq))|f|ωN,c(𝐚)2\displaystyle\left(p(\frac{2n-1}{2n})-(n-q)\right)|f|^{2}_{\omega_{N,c}({\bf{a}})}
\displaystyle\geq 12|f|ωN,c(𝐚)2.\displaystyle\frac{1}{2}|f|^{2}_{\omega_{N,c}({\bf{a}})}.

5.2. Fine resolution

Denote D′′~:=¯EL+θIdL\widetilde{D^{\prime\prime}}:=\bar{\partial}_{E\otimes L}+\theta\otimes{\rm Id}_{L} to be the operator on ELE\otimes L. Denote 𝒟X,ωN(𝐚)(EL,D′′~,hN(𝐚)hϵ,δ)\mathscr{D}_{X,\omega_{N}({\bf{a}})}^{\bullet}(E\otimes L,\widetilde{D^{\prime\prime}},h_{N}({\bf{a}})\otimes h_{\epsilon,\delta}) to be the complex

𝒟X,ωN(𝐚)0(EL,D′′~,hN(𝐚)hϵ,δ)D′′~𝒟X,ωN(𝐚)1(EL,D′′~,hN(𝐚)hϵ,δ)D′′~.\mathscr{D}^{0}_{X,\omega_{N}({\bf{a}})}(E\otimes L,\widetilde{D^{\prime\prime}},h_{N}({\bf{a}})\otimes h_{\epsilon,\delta})\xrightarrow{\widetilde{D^{\prime\prime}}}\mathscr{D}^{1}_{X,\omega_{N}({\bf{a}})}(E\otimes L,\widetilde{D^{\prime\prime}},h_{N}({\bf{a}})\otimes h_{\epsilon,\delta})\xrightarrow{\widetilde{D^{\prime\prime}}}\cdots.
Proposition 5.6.

Assume that airim𝒥Di(E)a_{i}-\frac{r_{i}}{m}\notin\mathscr{J}_{D_{i}}(E) for every i=1,,li=1,\dots,l. Then the canonical morphism

(5.13) Dol(𝐫m+𝐚E,θ)L𝒟X,ωN(𝐚)(EL,D′′~,hN(𝐚)hϵ,δ)\displaystyle{\rm Dol}(_{-\frac{\bf r}{m}+{\bf a}}E,\theta)\otimes L\to\mathscr{D}^{\bullet}_{X,\omega_{N}({\bf{a}})}(E\otimes L,\widetilde{D^{\prime\prime}},h_{N}({\bf{a}})\otimes h_{\epsilon,\delta})

is a quasi-isomorphism whenever δ>0\delta>0 is small enough.

Proof.

Since airim𝒥Di(E)a_{i}-\frac{r_{i}}{m}\notin\mathscr{J}_{D_{i}}(E), there exists ϵi>0\epsilon_{i}\in\mathbb{R}_{>0} small enough such that airimϵi𝒥Di(E)a_{i}-\frac{r_{i}}{m}-\epsilon_{i}\notin\mathscr{J}_{D_{i}}(E). Denote ϵ=(ϵ1,,ϵl)>0l\bm{\epsilon}=(\epsilon_{1},\dots,\epsilon_{l})\in\mathbb{R}_{>0}^{l}. Thus Dol(𝐫m+𝐚E,θ)=Dol(𝐫m+𝐚ϵE,θ){\rm Dol}(_{-\frac{\bf r}{m}+{\bf a}}E,\theta)={\rm Dol}(_{-\frac{\bf r}{m}+{\bf a}-\bm{\epsilon}}E,\theta).

By Theorem 4.5, it suffices to show that

(5.14) 𝒟X,ωN(𝐚)(EL,D′′~,hN(𝐚)hϵ,δ)𝒟X,ωN(𝐚)(E,D′′,hN(𝐫+δ𝜶m+𝐚))L\displaystyle\mathscr{D}^{\bullet}_{X,\omega_{N}({\bf{a}})}(E\otimes L,\widetilde{D^{\prime\prime}},h_{N}({\bf{a}})\otimes h_{\epsilon,\delta})\simeq\mathscr{D}^{\bullet}_{X,\omega_{N}({\bf{a}})}(E,D^{\prime\prime},h_{N}(-\frac{{\bf r}+\delta\bm{\alpha}}{m}+{\bf{a}}))\otimes L

when δ\delta is chosen small enough. By constructions one has

hN(𝐚)hϵ,δhN(𝐫+δ𝜶m+𝐚)hLh_{N}({\bf{a}})\otimes h_{\epsilon,\delta}\sim h_{N}(-\frac{{\bf r}+\delta\bm{\alpha}}{m}+{\bf{a}})\otimes h_{L}

for some smooth hermitian metric hLh_{L} on LL. Let β=βeL\beta=\beta^{\prime}\otimes e_{L} be a differential form with value in ELE\otimes L, where β\beta^{\prime} is an EE-valued form and eLe_{L} is a holomorphic local generator of LL. Since |eL|hL1|e_{L}|_{h_{L}}\sim 1 and |θ|ωN(𝒂)|\theta|_{\omega_{N}(\bm{a})} is bounded, one obtains that β<,D′′~(β)<\|\beta\|<\infty,\|\widetilde{D^{\prime\prime}}(\beta)\|<\infty if and only if β<,D′′(β)<\|\beta^{\prime}\|<\infty,\|D^{\prime\prime}(\beta^{\prime})\|<\infty. This proves (5.14).

5.3. Vanishing theorem on weakly pseudoconvex manifolds

Now we are ready to prove the following vanishing theorem.

Theorem 5.7.

Let XX be a pre-compact open subset of an nn-dimensional projective manifold MM such that XX is a weakly pseudoconvex manifold and ψ\psi is a smooth exhausted plurisubharmonic function on XX. Let DD be a simple normal crossing divisor on MM and (E,θ,h)(E,\theta,h) a nilpotent harmonic bundle on M\DM\backslash D. Suppose that some positive multiple mL=A+F1+F2mL=A+F_{1}+F_{2} where AA is an ample line bundle, F1F_{1} and F2F_{2} are effective divisors supported in DD such that A+F1A+F_{1} is a nef holomorphic line bundle. Assume that F2=i=1lriDiF_{2}=\sum_{i=1}^{l}r_{i}D_{i} where ri0,ir_{i}\in\mathbb{Z}_{\geq 0},\forall i. Denote 𝐫:=(r1,,rl){\bf{r}}:=(r_{1},\dots,r_{l}) and denote Xc:={xX|ψ(x)<c}X_{c}:=\{x\in X|\psi(x)<c\} for every cc\in\mathbb{R}. Then

i(Xc,Dol(𝐫m+𝐚E,θ)L)=0\mathbb{H}^{i}(X_{c},{\rm Dol}(_{-\frac{\bf r}{m}+{\bf a}}E,\theta)\otimes L)=0

holds for every cc\in\mathbb{R}, every i>ni>n and every 𝐚=(a1,,al)l{\bf a}=(a_{1},\dots,a_{l})\in\mathbb{R}^{l} such that |aj|<σE,j(rjm)|a_{j}|<\sigma_{E,j}(-\frac{r_{j}}{m}) for every j=1,,lj=1,\dots,l.

Proof.

By Proposition 5.6, there is a quasi-isomorphism

Dol(𝐫m+𝐚E,θ)Lqis𝒟X,ωN(𝐚)(EL,D′′~,hN(𝐚)hϵ,δ){\rm Dol}(_{-\frac{\bf r}{m}+{\bf a}}E,\theta)\otimes L\simeq_{\rm qis}\mathscr{D}_{X,\omega_{N}({\bf{a}})}^{\bullet}(E\otimes L,\widetilde{D^{\prime\prime}},h_{N}({\bf{a}})\otimes h_{\epsilon,\delta})

under the assumption of the theorem. Since 𝒟X,ωN(𝐚)p,q(EL,D′′~,hN(𝐚)hϵ,δ)\mathscr{D}_{X,\omega_{N}({\bf{a}})}^{p,q}(E\otimes L,\widetilde{D^{\prime\prime}},h_{N}({\bf{a}})\otimes h_{\epsilon,\delta}) is a fine sheaf for each pp and qq (Lemma 3.1), by (4.6) we obtain that 𝒟X,ωN(𝐚)i(EL,D′′~,hN(𝐚)hϵ,δ)\mathscr{D}_{X,\omega_{N}({\bf{a}})}^{i}(E\otimes L,\widetilde{D^{\prime\prime}},h_{N}({\bf{a}})\otimes h_{\epsilon,\delta}) is a fine sheaf for each ii. Notice that Xc¯\overline{X_{c}} is always compact since ψ\psi is exausted. For every i>ni>n and every α𝒟Xc,ωN(𝐚)i(EL,D′′~,hN(𝐚)hϵ,δ)(Xc)\alpha\in\mathscr{D}_{X_{c},\omega_{N}({\bf{a}})}^{i}(E\otimes L,\widetilde{D^{\prime\prime}},h_{N}({\bf{a}})\otimes h_{\epsilon,\delta})(X_{c}^{\ast}) such that D′′~α=0\widetilde{D^{\prime\prime}}\alpha=0, it suffices to show that there exists β𝒟Xc,ωN(𝐚)i1(EL,D′′~,hN(𝐚)hϵ,δ)(Xc)\beta\in\mathscr{D}_{X_{c},\omega_{N}({\bf{a}})}^{i-1}(E\otimes L,\widetilde{D^{\prime\prime}},h_{N}({\bf{a}})\otimes h_{\epsilon,\delta})(X_{c}^{\ast}) such that D′′~β=α\widetilde{D^{\prime\prime}}\beta=\alpha.

Note that hN(𝐚)hϵ,δ=hhϵ,δ(𝐚)h_{N}({\bf{a}})\otimes h_{\epsilon,\delta}=h\otimes{h}_{\epsilon,\delta}({\bf{a}}), hN,c(𝐚)hϵ,δ=hhϵ,δ,c(𝐚)h_{N,c}({\bf{a}})\otimes h_{\epsilon,\delta}=h\otimes h_{\epsilon,\delta,c}({\bf{a}}) and ωN(𝐚)\omega_{N}({\bf{a}}) is incomplete on XcX_{c}^{\ast}. To apply Proposition 5.1, we modify the metric ωN(𝐚)\omega_{N}({\bf{a}}) to the complete Kähler metric ωN,c(𝐚)\omega_{N,c}({\bf{a}}). Let χ\chi be a convex increasing function as in [[Demailly2012], Chapter VIII, Lemma (5.7)] such that

(5.15) Xc|α|ωN,c(𝐚),hN,c(𝐚)hϵ,δ2volωN,c(𝐚)\displaystyle\int_{X_{c}^{\ast}}|\alpha|_{\omega_{N,c}({\bf{a}}),h_{N,c}({\bf{a}})\otimes h_{\epsilon,\delta}}^{2}{\rm vol}_{\omega_{N,c}({\bf a})} Xc|α|ωN(𝐚),hN(𝐚)hϵ,δ2eχ(ψc2)(1+χψc2+χ′′ψc2)nvolωN(𝐚)\displaystyle\lesssim\int_{X_{c}^{\ast}}|\alpha|_{\omega_{N}({\bf{a}}),h_{N}({\bf{a}})\otimes h_{\epsilon,\delta}}^{2}e^{-\chi(\psi_{c}^{2})}(1+\chi^{\prime}\circ\psi_{c}^{2}+\chi^{\prime\prime}\circ\psi_{c}^{2})^{n}{\rm vol}_{\omega_{N}({\bf a})}
Xc|α|ωN(𝐚),hN(𝐚)hϵ,δ2volωN(𝐚)<+.\displaystyle\lesssim\int_{X_{c}^{\ast}}|\alpha|_{\omega_{N}({\bf{a}}),h_{N}({\bf{a}})\otimes h_{\epsilon,\delta}}^{2}{\rm vol}_{\omega_{N}({\bf{a}})}<+\infty.

Since ωN,c(𝐚)\omega_{N,c}({\bf{a}}) is a complete Kähler metric on XcX_{c}^{\ast}, it follows from Proposition 5.1 and Proposition 5.5 that there exists βL(2)i1(Xc,EL;ωN,c(𝐚),hN,c(𝐚)hϵ,δ)(Xc)\beta\in L_{(2)}^{i-1}(X_{c}^{\ast},E\otimes L;\omega_{N,c}({\bf{a}}),h_{N,c}({\bf{a}})\otimes h_{\epsilon,\delta})(X_{c}^{\ast}) such that D′′~β=α\widetilde{D^{\prime\prime}}\beta=\alpha. Then β𝒟Xc,ωN(𝐚)i1(EL,D′′~,hN(𝐚)hϵ,δ)(Xc)\beta\in\mathscr{D}_{X_{c},\omega_{N}({\bf{a}})}^{i-1}(E\otimes L,\widetilde{D^{\prime\prime}},h_{N}({\bf{a}})\otimes h_{\epsilon,\delta})(X_{c}^{\ast}) since ωN(𝐚)ωN,c(𝐚)\omega_{N}({\bf{a}})\sim\omega_{N,c}({\bf{a}}) and hN(𝐚)hN,c(𝐚)h_{N}({\bf{a}})\sim h_{N,c}({\bf{a})} locally on XcX_{c}^{\ast}. Thus the theorem is proved. ∎

A relative version of the vanishing theorem follows from the above theorem.

Theorem 5.8.

Let XX be a projective manifold of dimension nn, YY be an analytic space and f:XYf:X\rightarrow Y be a proper surjective smooth map. Let D=i=1lDiD=\sum_{i=1}^{l}D_{i} be a normal crossing divisor on XX. Let (E,θ,h)(E,\theta,h) be a nilpotent harmonic bundle on X\DX\backslash D. Let LL be a holomorphic line bundle on XX. Suppose that some positive multiple mL=A+F1+F2mL=A+F_{1}+F_{2} where AA is an ample line bundle, F1F_{1} and F2F_{2} are effective divisors supported in DD such that A+F1A+F_{1} is a nef holomorphic line bundle. Suppose that F2=i=1lriDiF_{2}=\sum_{i=1}^{l}r_{i}D_{i} with ri0,ir_{i}\in\mathbb{Z}_{\geq 0},\forall i. Denote 𝐫:=(r1,..,rl){\bf{r}}:=(r_{1},..,r_{l}).

Then

Rif(Dol(𝐫m+𝐚E,θ)L)=0R^{i}f_{\ast}({\rm Dol}(_{-\frac{\bf{r}}{m}+{\bf a}}E,\theta)\otimes L)=0

for any i>ni>n and any 𝐚=(a1,,al)l{\bf a}=(a_{1},\dots,a_{l})\in\mathbb{R}^{l} such that |aj|<σE,j(rjm)|a_{j}|<\sigma_{E,j}(-\frac{r_{j}}{m}) for every j=1,,lj=1,\dots,l.

Proof.

Since the problem is local, we may assume that YY admits a non-negative smooth exhausted strictly plurisubharmonic function ψ\psi so that ψ1{0}={y}Y\psi^{-1}\{0\}=\{y\}\subset Y is a point. To achieve this one may embed YY into N\mathbb{C}^{N} as a closed Stein analytic subspace and take ψ=i=1Nzi2\psi=\sum_{i=1}^{N}\|z_{i}\|^{2}. Since ff is proper, fψf^{\ast}\psi is a smooth exhausted plurisubharmonic function on XX.

Fixing c>0c\in\mathbb{R}_{>0}, f1Ycf^{-1}Y_{c} is a weakly pseudoconvex manifold with fψf^{\ast}\psi a smooth exhausted plurisubharmonic function on f1Ycf^{-1}Y_{c} and f1Yc¯\overline{f^{-1}Y_{c}} is compact. It follows from Theorem 5.7 that

(5.16) Hi(f1Yd,Dol(𝐫m+𝐚E,θ)L)=0,i>nand0<d<c.\displaystyle H^{i}(f^{-1}Y_{d},\textrm{Dol}(_{-\frac{\bf{r}}{m}+{\bf a}}E,\theta)\otimes L)=0,\quad\forall i>n\quad\textrm{and}\quad\forall 0<d<c.

Taking d0d\to 0 we acquire that

(5.17) Rif(Dol(𝐫m+𝐚E,θ)L)y=0,i>n.\displaystyle R^{i}f_{\ast}(\textrm{Dol}(_{-\frac{\bf{r}}{m}+{\bf a}}E,\theta)\otimes L)_{y}=0,\quad\forall i>n.

This proves the theorem. ∎

Remark 5.9.

By [Mochizuki2009], a parabolic stable higgs bundle admits a tame harmonic metric such that the parabolic structure coincide with the Simpson-Mochizuki’s parabolic structure. Therefore Theorem 5.8 implies Theorem 1.2.

5.4. Generalization of Suh’s vanishing theorem

In this subsection we generalize Suh’s Kawamata-Viehweg type vanishing theorem with coefficients for the Deligne extension of a variation of Hodge structure ([Suh2018, Theorem 1]). This generalization has two sides: one is that we treat polarized complex variations of Hodge structure rather than \mathbb{Q}-polarized or \mathbb{R}-polarized variations of Hodge structure; the other is that we treat other prolongations so that we obtain the vanishing theorems for line bundles which may not be nef and big.

Definition 5.10.

Let MM be a complex manifold. A polarized complex variation of Hodge structure on MM of weight kk is a harmonic bundle (𝒱,,h)(\mathcal{V},\nabla,h) on MM which consists of a holomorphic flat bundle (𝒱,)(\mathcal{V},\nabla) and a harmonic metric, together with a decomposition 𝒱𝒪M𝒜M0=p+q=k𝒱p,q\mathcal{V}\otimes_{\mathscr{O}_{M}}\mathscr{A}^{0}_{M}=\bigoplus_{p+q=k}\mathcal{V}^{p,q} of CC^{\infty} bundles such that

  1. (1)

    The Griffiths transversality condition

    (5.18) (𝒱p,q)𝒜M0,1(𝒱p+1,q1)𝒜M0,1(𝒱p,q)𝒜M1,0(𝒱p,q)𝒜M1,0(Vp1,q+1)\displaystyle\nabla(\mathcal{V}^{p,q})\subset\mathscr{A}^{0,1}_{M}(\mathcal{V}^{p+1,q-1})\oplus\mathscr{A}^{0,1}_{M}(\mathcal{V}^{p,q})\oplus\mathscr{A}^{1,0}_{M}(\mathcal{V}^{p,q})\oplus\mathscr{A}^{1,0}_{M}(V^{p-1,q+1})

    holds for every pp and qq. Here 𝒜Mi,j(𝒱p,q)\mathscr{A}^{i,j}_{M}(\mathcal{V}^{p,q}) (resp. 𝒜Mk(𝒱p,q)\mathscr{A}^{k}_{M}(\mathcal{V}^{p,q})) denotes the sheaf of CC^{\infty} (i,j)(i,j)-forms (resp. kk-forms) with values in 𝒱p,q\mathcal{V}^{p,q}.

  2. (2)

    The hermitian form QQ which equals (1)ph(-1)^{p}h on 𝒱p,q\mathcal{V}^{p,q} is parallel with respect to \nabla.

We have a decomposition

(5.19) =θ¯+¯++θ\displaystyle\nabla=\overline{\theta}+\bar{\partial}+\partial+\theta

according to (5.18).

Let us fix some notations. For every pp, Fp:=ip𝒱i,kiKer(¯+θ¯)F^{p}:=\oplus_{i\geq p}\mathcal{V}^{i,k-i}\cap{\rm Ker}(\bar{\partial}+\overline{\theta}) is a holomorphic subbundle which satisfies the Griffiths transversality condition that (Fp)Fp1ΩM\nabla(F^{p})\subset F^{p-1}\otimes\Omega_{M} for every pp. In literatures one usually regards (𝒱,,{Fp},h)(\mathcal{V},\nabla,\{F^{p}\},h) as a polarized \mathbb{C}-variation of Hodge structure.

Due to (5.18), the graded quotient (GrF𝒱,GrF)({\rm Gr}_{F}\mathcal{V},{\rm Gr}_{F}\nabla) is a Higgs bundle in the sense of Simpson [Simpson1988, §8]. Denote H:=Ker(¯:𝒱𝒜M1(𝒱))H:={\rm Ker}(\bar{\partial}:\mathcal{V}\to\mathscr{A}^{1}_{M}(\mathcal{V})) and Hp,q:=H𝒱p,qH^{p,q}:=H\cap\mathcal{V}^{p,q}. Then (Hp+q=kHp,q,θ)(H\simeq\oplus_{p+q=k}H^{p,q},\theta) is a Higgs bundle which is canonically isomorphic to (GrF𝒱,GrF)({\rm Gr}_{F}\mathcal{V},{\rm Gr}_{F}\nabla). Hence (GrF𝒱,GrF)({\rm Gr}_{F}\mathcal{V},{\rm Gr}_{F}\nabla) is related to (𝒱,)(\mathcal{V},\nabla) under Simpson’s correspondence between flat connections and semistable Higgs bundles with vanishing Chern classes ([Simpson1992, §4]).

Remark 5.11.

The Higgs bundle associated to a polarized complex variation of Hodge structure is always nilpotent.

Let XX be a complex manifold and D=i=1lDiD=\cup_{i=1}^{l}D_{i} a simple normal crossing divisor on XX. Let (𝒱,,{Fp}p)(\mathcal{V},\nabla,\{F^{p}\}_{p\in\mathbb{Z}}) be a polarizable variation of Hodge structure of weight kk. For every 𝒂=(a1,,al)l{\bm{a}}=(a_{1},\dots,a_{l})\in\mathbb{R}^{l}, let 𝒱𝒂\mathcal{V}_{\geq\bm{a}} be the unique locally free 𝒪X\mathscr{O}_{X}-module extending 𝒱\mathcal{V} such that \nabla induces a connection with logarithmic singularities :𝒱𝒂𝒱𝒂ΩX(logD)\nabla:\mathcal{V}_{\geq{\bm{a}}}\to\mathcal{V}_{\geq{\bm{a}}}\otimes\Omega_{X}(\log D) whose real parts of the eigenvalues of the residue of \nabla along DiD_{i} belong to [ai,ai+1)[{{a}}_{i},{{a}}_{i}+1). Let j:X\DXj:X\backslash D\to X be the open immersion. Denote F𝒂p:=jFp𝒱𝒂F^{p}_{\geq{\bm{a}}}:=j_{\ast}F^{p}\cap\mathcal{V}_{\geq{\bm{a}}}. The recent work of Deng [Deng2022] shows the following theorem, which generalizes the nilpotent orbit theorem of Schmid [Schmid1973] and Cattani-Kaplan-Schmid [Cattani_Kaplan_Schmid1986].

Theorem 5.12.

For every 𝐚l{\bm{a}}\in\mathbb{R}^{l} and every pp\in\mathbb{Z}, F𝐚pF_{\geq{\bm{a}}}^{p} is a subbundle of 𝒱𝐚\mathcal{V}_{\geq{\bm{a}}} and

F𝒂p/F𝒂p+1Hp,kp𝒂,F_{\geq{\bm{a}}}^{p}/F_{\geq{\bm{a}}}^{p+1}\simeq{{}_{{\bm{a}}}}H^{p,k-p},

where Hp,kp𝐚{{}_{{\bm{a}}}}H^{p,k-p} is Mochizuki’s prolongation (a locally free 𝒪X\mathscr{O}_{X}-modules) of the Hodge bundle Hp,kp:=Fp/Fp+1H^{p,k-p}:=F^{p}/F^{p+1}. The connection \nabla admits logarithmic singularities on F𝐚pF_{\geq{\bm{a}}}^{p}, i.e., :FpFp1ΩX\D\nabla:F^{p}\to F^{p-1}\otimes\Omega_{X\backslash D} extends to

:F𝒂pF𝒂p1ΩX(logD).\nabla:F_{\geq{\bm{a}}}^{p}\to F_{\geq{\bm{a}}}^{p-1}\otimes\Omega_{X}(\log D).

Thus one has a logarithmic de Rham complex

𝒱𝒂𝒱𝒂ΩX(logD)𝒱𝒂ΩX2(logD)\mathcal{V}_{\geq{\bm{a}}}\stackrel{{\scriptstyle\nabla}}{{\to}}\mathcal{V}_{\geq{\bm{a}}}\otimes\Omega_{X}(\log D)\stackrel{{\scriptstyle\nabla}}{{\to}}\mathcal{V}_{\geq{\bm{a}}}\otimes\Omega^{2}_{X}(\log D)\stackrel{{\scriptstyle\nabla}}{{\to}}\cdots

and subcomplexes

F𝒂pF𝒂p1ΩX(logD)F𝒂p2ΩX2(logD),p.F^{p}_{\geq{\bm{a}}}\stackrel{{\scriptstyle\nabla}}{{\to}}F^{p-1}_{\geq{\bm{a}}}\otimes\Omega_{X}(\log D)\stackrel{{\scriptstyle\nabla}}{{\to}}F^{p-2}_{\geq{\bm{a}}}\otimes\Omega^{2}_{X}(\log D)\stackrel{{\scriptstyle\nabla}}{{\to}}\cdots,\quad\forall p.

Denote the graded quotient complex as

DR(X,D)𝐚(𝒱,F):=pF𝒂p/F𝒂p+1GrpF𝒂p1/F𝒂pΩX(logD)Gr.{}_{\bf a}{\rm DR}_{(X,D)}(\mathcal{V},F):=\bigoplus_{p}F_{\geq{\bm{a}}}^{p}/F_{\geq{\bm{a}}}^{p+1}\stackrel{{\scriptstyle{\rm Gr}\nabla}}{{\to}}\bigoplus_{p}F_{\geq{\bm{a}}}^{p-1}/F_{\geq{\bm{a}}}^{p}\otimes\Omega_{X}(\log D)\stackrel{{\scriptstyle{\rm Gr}\nabla}}{{\to}}\cdots.

By Theorem 5.12 we have

(5.20) DR(X,D)𝐚(𝒱,F)Dol(H𝒂,θ){}_{\bf a}{\rm DR}_{(X,D)}(\mathcal{V},F)\simeq{\rm Dol}({{}_{\bm{a}}}H,\theta)

where (H,θ,h)(H,\theta,h) is the Higgs bundle associated to (𝒱,,h)(\mathcal{V},\nabla,h). Applying Theorem 1.2 we obtain the following vanishing result.

Theorem 5.13.

Let XX be a projective manifold of dimension nn, YY be an analytic space and f:XYf:X\rightarrow Y be a proper surjective smooth map. Let D=i=1lDiD=\sum_{i=1}^{l}D_{i} be a normal crossing divisor on XX. Let (𝒱,,{𝒱p,q}p+q=k,h)(\mathcal{V},\nabla,\{\mathcal{V}^{p,q}\}_{p+q=k},h) be a polarizable variation of Hodge structure of weight kk on X\DX\backslash D. Let LL be a holomorphic line bundle on XX. Suppose that some positive multiple mL=A+F1+F2mL=A+F_{1}+F_{2} where AA is an ample line bundle, F1F_{1} and F2F_{2} are effective divisors supported in DD such that A+F1A+F_{1} is a nef holomorphic line bundle. Suppose that F2=i=1lriDiF_{2}=\sum_{i=1}^{l}r_{i}D_{i} where ri0,ir_{i}\in\mathbb{Z}_{\geq 0},\forall i. Denote 𝐫:=(r1,,rl){\bf{r}}:=(r_{1},\dots,r_{l}).

Then

Rif(DR(X,D)𝐫m+𝐚(𝒱,F)L)=0R^{i}f_{\ast}\left({}_{-\frac{\bf{r}}{m}+{\bf a}}{\rm DR}_{(X,D)}(\mathcal{V},F)\otimes L\right)=0

for any i>ni>n and any 𝐚=(a1,,al)l{\bf a}=(a_{1},\dots,a_{l})\in\mathbb{R}^{l} such that |aj|<σE,j(rjm)|a_{j}|<\sigma_{E,j}(-\frac{r_{j}}{m}) for every j=1,,lj=1,\dots,l.

To consider the canonical extension of 𝒱\mathcal{V}, let us take 𝒂=(0,,0){\bm{a}}=(0,\dots,0). In this case DR(X,D)𝟎(𝒱,F){}_{\bf{0}}{\rm DR}_{(X,D)}(\mathcal{V},F) is the logarithmic de Rham complex associated with the canonical extension of (𝒱,F)(\mathcal{V},F) considered in [Suh2018]. Taking Y=ptY={\rm pt}, F2=0F_{2}=0 and 𝒂=(0,,0){\bm{a}}=(0,\dots,0), Theorem 5.13 implies Suh’s vanishing theorem ([Suh2018, Theorem 1]).

References