This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Large deviation for small noise path-dependent stochastic differential equations

Liu Xiangdong tliuxd@jnu.edu.cn Hong Shaopeng hsp1999@stu2021.jnu.edu.cn
Abstract

In this paper, we study the asymptotic behavior of randomly perturbed path-dependent stochastic differential equations with small parameter ϑε\vartheta_{\varepsilon}, when ε0\varepsilon\rightarrow 0, ϑε\vartheta_{\varepsilon} goes to 0. When ε0\varepsilon\rightarrow 0, we establish large deviation principle. The proof of the results relies on the weak convergence approach. As an application, we establish the large deviation for functionals of path-dependent SDEs in small time intervals.

keywords:
Path-dependent stochastic differential equations , Large deviation principle , Weak convergence
MSC:
[2010] 60H10, 60F05, 60F10
\affiliation

organization=Department of Statistic and Data Science, School of Economics,addressline=Jinan University, city=Guangzhou, postcode=510632, state=Guangdong, country=PR China

1 Introduction

This paper sheds new light on the asymptotic behaviour of the class of path-dependent stochastic differential equations (PSDEs).

X(t)=X0+0tb(s,Xs)𝑑s+0tσ(s,Xs)𝑑W(s)t[0,T]X(t)=X_{0}+\int_{0}^{t}b(s,X_{s})ds+\int_{0}^{t}\sigma(s,X_{s})dW(s)\quad t\in[0,T] (1)

PSDEs have received increasing attentions by researchers which are much more involved than classical SDEs as the drift and diffusion coefficients depending on path of solution. In a nutshell, this kind of equations plays an important role in characterising non-Markov partial differential equations (PDEs for short). Ekren et al. [6] obtained the viscosity solutions of path-dependent semi-linear parabolic PDEs using backward PSDEs and Non-anticipative analysis [5, 3], and subsequently extended the results to fully nonlinear forms of path-dependent PDEs [7].

It is well known that the key point of large deviation principle (LDP for short) is to show the probability property of rare events. Small noise LDP for SDEs has a long history. The pioneering work of [8] considered rare events induced by Markov diffusions. Recently, an important contribution by [1] was to use the weak convergence method to obtain a significant simplified approach. Their approach avoided proof exponential continuity and tightness estimates. Weakly convergent methods are widely used in proving large deviations of stochastic differential equations and stochastic partial differential equations, see [11, 13, 14] and references therein.

There have been some studies on large deviations of path-dependent SDEs. For example, Gao and Liu [9] stuided such a problem via the sample path LDP method by Freidlin-Wentzell and show the LDP under (r,q)-capacity. And Ma et al. [12] based on PDEs method get the LDP of path-dependent SDEs. In this paper, we use a different line of argument, adapting the weak convergence approach of Budhiraja and Dupuis [1] to the path-dependent case.

Compared with the results mentioned above, the contribution of this paper is to study LDP when the coefficients of PSDEs are all depending on ε\varepsilon, i.e., the solutions of PSDEs possibly degenerate. As an application, we establish the large deviation for functionals of PSDEs in small time intervals.

The paper is organized as follows. In Section 2, we state the weak convergence method for the large deviation principle given in Budhiraja and Dupuis [1]. We give the main theorem and prove it in Section 3. Finally, in Section 4, we show the large deviation principle for the functional of PSDEs in small time interval.

We end this section with some notations. We consider a fixed time horizon T>0T>0, and denote 𝕋:=[0,T]\mathbb{T}:=[0,T]. Let C([0,T];d)C([0,T];\mathbb{R}^{d}) be the Banach space of continuous functions ψ:[0,T]d\psi:[0,T]\rightarrow\mathbb{R}^{d} equipped with the sup-norm ψ:=supt[0,T]|ψ(t)|\|\psi\|:=\sup_{t\in[0,T]}|\psi(t)|, 𝒞01([0,T];d)\mathcal{C}^{1}_{0}([0,T];\mathbb{R}^{d}) as the space of continuous functions on [0,T][0,T] with initial value 0 and has first-order derivative, 𝒞b1([0,T];d)\mathcal{C}^{1}_{b}([0,T];\mathbb{R}^{d})as the space of continuous functions on [0,T][0,T] with initial value 0, has first-order derivative and has a bound. L2L^{2} stands short for L2(𝕋)L^{2}(\mathbb{T}) and 2\|\cdot\|_{2} is the usual L2L^{2} norm.

2 Preliminaries

2.1 Framework

We consider small-noise convolution PSDEs

Xε(t)=X0ε+0tbε(s,Xsε)𝑑s+ϑε0tσε(s,Xsε)𝑑W(s)t[0,T]X^{\varepsilon}(t)=X^{\varepsilon}_{0}+\int_{0}^{t}b_{\varepsilon}(s,X^{\varepsilon}_{s})ds+\vartheta_{\varepsilon}\int_{0}^{t}\sigma_{\varepsilon}(s,X^{\varepsilon}_{s})dW(s)\quad t\in[0,T] (2)

taking values in d\mathbb{R}^{d} with d1d\geq 1, where ε>0\varepsilon>0 and ϑε>0\vartheta_{\varepsilon}>0 tends to zero as ε\varepsilon goes to zero. For each ε>0\varepsilon>0, X0εdX^{\varepsilon}_{0}\in\mathbb{R}^{d}, bε:𝕋×𝒞(𝕋,d)db_{\varepsilon}:\mathbb{T}\times\mathcal{C}\left(\mathbb{T},\mathbb{R}^{d}\right)\rightarrow\mathbb{R}^{d}, σε:𝕋×𝒞(𝕋,d)d×m\sigma_{\varepsilon}:\mathbb{T}\times\mathcal{C}\left(\mathbb{T},\mathbb{R}^{d}\right)\rightarrow\mathbb{R}^{d\times m}are two product measurable maps that are non-anticipative in the sense that they satisfy bε(t,x)=bε(t,xt)b_{\varepsilon}(t,x)=b_{\varepsilon}(t,x_{t}) and σε(t,x)=σε(t,xt)\sigma_{\varepsilon}(t,x)=\sigma_{\varepsilon}(t,x_{t}) for all t𝕋t\in\mathbb{T} and each x𝒞(𝕋,d)x\in\mathcal{C}\left(\mathbb{T},\mathbb{R}^{d}\right), where xtx_{t} denote the path xx stopped at time tt. W(s)W(s) is an m-dimensional Brownian motion on the filtered probability space (Ω,,{t}t𝕋,)\left(\Omega,\mathcal{F},\left\{\mathcal{F}_{t}\right\}_{t\in\mathbb{T}},\mathbb{P}\right) satisfying the usual conditions. We make following assumptions about the coefficients:

  1. A.1

    X0εX^{\varepsilon}_{0} converges to x0dx_{0}\in\mathbb{R}^{d} as ε\varepsilon tends to zero.

  2. A.2

    For all ε>0\varepsilon>0 small enough, the coefficients bεb_{\varepsilon} and σε\sigma_{\varepsilon} are measurable maps on 𝕋×𝒞(𝕋:d)\mathbb{T}\times\mathcal{C}\left(\mathbb{T}:\mathbb{R}^{d}\right) and converge pointwise to bb and σ\sigma as ε\varepsilon goes to zero. Moreover, b(t,)b(t,\cdot) and σ(t,)\sigma(t,\cdot) are continuous on d\mathbb{R}^{d}, uniformly in t𝕋t\in\mathbb{T}.

  3. A.3

    For all ε>0\varepsilon>0 small enough, bεb_{\varepsilon} and σε\sigma_{\varepsilon} have linear growth uniformly in ε\varepsilon and in t𝕋t\in\mathbb{T}. For some L>0L>0

    |bε(t,ω)|+|σε(t,ω)|M(1+supst|ω(s)|+|t|)|b_{\varepsilon}(t,\omega)|+|\sigma_{\varepsilon}(t,\omega)|\leq M\left(1+\sup_{s\leq t}|\omega(s)|+|t|\right) (3)
  4. A.4

    For all ε>0\varepsilon>0 small enough, the coefficients bεb_{\varepsilon} and σε\sigma_{\varepsilon} are locally Lipschitz continuous. For any R>0R>0, there exists LR>0L_{R}>0 such that, for all

    |bε(t,ω)bε(t,ω)|+|σε(t,ω)σε(t,ω)|LR(supst|ω(s)ω(s)|)|b_{\varepsilon}(t,\omega)-b_{\varepsilon}(t,\omega^{\prime})|+|\sigma_{\varepsilon}(t,\omega)-\sigma_{\varepsilon}(t,\omega^{\prime})|\leq L_{R}(\sup_{s\leq t}|\omega(s)-\omega^{\prime}(s)|) (4)

2.2 Abstract sufficient conditions for large deviations

   Defination 1 (Large deviation [4])

A family {Xε}ε>0\left\{X^{\varepsilon}\right\}_{\varepsilon>0} of \mathcal{E}-valued random variable is said to satisfy the large deviation principle on \mathcal{E}, with the good rate function II and with the speed function λ(ε)\lambda(\varepsilon) which is a sequence of positive numbers tending to ++\infty as ε0\varepsilon\rightarrow 0, if the following conditions hold:

  1. 1.

    for each M<M<\infty, the level set {x:I(x)M}\{x\in\mathcal{E}:I(x)\leq M\} is a compact subset of EE;

  2. 2.

    for each closed subset FF of ,lim supε01λ(ε)log(XεF)infxFI(x)\mathcal{E},\limsup_{\varepsilon\rightarrow 0}\frac{1}{\lambda(\varepsilon)}\log\mathbb{P}\left(X^{\varepsilon}\in F\right)\leq-\inf_{x\in F}I(x);

  3. 3.

    for each open subset GG of ,lim infε01λ(ε)log(XεG)infxGI(x)\mathcal{E},\liminf_{\varepsilon\rightarrow 0}\frac{1}{\lambda(\varepsilon)}\log\mathbb{P}\left(X^{\varepsilon}\in G\right)\geq-\inf_{x\in G}I(x).

We recall here several results from Budhiraja and Dupuis [1] which gives an abstract framework of LDP.

Let 𝒜\mathcal{A} denote the class of real-valued {t}\left\{\mathcal{F}_{t}\right\}-predictable processes ν\nu belonging to L2L^{2} a.s. For each NN the spaces of bounded deterministic and stochastic controls

SN:={νL2;0T|ν(s)|2𝑑sN}.S_{N}:=\left\{\nu\in L^{2};\int_{0}^{T}|{\nu}(s)|^{2}ds\leq N\right\}.

SNS_{N} is endowed with the weak topology induced from L2(𝕋×Ω)L^{2}(\mathbb{T}\times\Omega). Define

𝒜N:={ν𝒜;ν(s)SN,-a.s. }.\mathcal{A}_{N}:=\left\{\nu\in\mathcal{A};\nu(s)\in S_{N},\mathbb{P}\text{-a.s. }\right\}.
Theorem 2 (Budhiraja and Dupuis [1])

For any ε>0\varepsilon>0, let 𝒢ε\mathcal{G}^{\varepsilon} be a measurable mapping from C([0,T];)C([0,T];\mathbb{R}) into EE. Suppose that {𝒢ε}ε>0\left\{\mathcal{G}^{\varepsilon}\right\}_{\varepsilon>0} satisfies the following assumptions: there exists a measurable map 𝒢0:C([0,T];)\mathcal{G}^{0}:C([0,T];\mathbb{R})\longrightarrow\mathcal{E} such that

  1. 1.

    for every N<+N<+\infty and any family {νε;ε>0}𝒜N\left\{\nu^{\varepsilon};\varepsilon>0\right\}\subset\mathcal{A}_{N} satisfying that νε\nu^{\varepsilon} converge in distribution as SNS_{N}-valued random elements to ν\nu as ε0,𝒢ε(W.+1ε0νε(s)ds)\varepsilon\rightarrow 0,\mathcal{G}^{\varepsilon}\left(W.+\frac{1}{\sqrt{\varepsilon}}\int_{0}^{\cdot}\nu^{\varepsilon}(s)ds\right) converges in distribution to 𝒢0(0ν(s)𝑑s)\mathcal{G}^{0}\left(\int_{0}^{\cdot}\nu(s)ds\right) as ε0\varepsilon\rightarrow 0;

  2. 2.

    for every N<+N<+\infty, the set {𝒢0(0ν(s)𝑑s);hSN}\left\{\mathcal{G}^{0}\left(\int_{0}^{\cdot}\nu(s)ds\right);h\in S_{N}\right\} is a compact subset of EE.

Then the family {𝒢ε(W())}ε>0\left\{\mathcal{G}^{\varepsilon}(W(\cdot))\right\}_{\varepsilon>0} satisfies a large deviation principle with the good rate function I given by

I(g):=inf{ν;g=𝒢0(0ν(s)𝑑s)}{120T|ν(s)|2𝑑s} for g,I(g):=\inf_{\left\{\nu\in\mathcal{H};g=\mathcal{G}^{0}\left(\int_{0}^{\cdot}\nu(s)ds\right)\right\}}\left\{\frac{1}{2}\int_{0}^{T}|\nu(s)|^{2}ds\right\}\quad\text{ for }g\in\mathcal{E},

with the convention inf=\inf\emptyset=\infty.

3 Main Result and Proof

If A.5 hold, define the functional 𝒢\mathcal{G} as the Borel-measurable map associating the multidimensional Brownian motion WW to the solution of the path dependent stochastic differential systems (2), that is: 𝒢ε(W)=Xε(t)\mathcal{G}^{\varepsilon}\left(W\right)=X^{\varepsilon}(t). For any control ν𝒜N\nu\in\mathcal{A}_{N}, N>0N>0 and any ε>0\varepsilon>0, the process W~=W+ϑε10ν(s)𝑑s\widetilde{W}=W+\vartheta_{\varepsilon}^{-1}\int_{0}^{\cdot}\nu(s)ds is a ~\widetilde{\mathbb{P}}-Brownian motion by Girsanov’s theorem, where

d~d:=exp{1ϑεi=1m0Tν(i)(s)𝑑W(i)(s)12ϑε20T|v(s)|2𝑑s}.\frac{d\widetilde{\mathbb{P}}}{d\mathbb{P}}:=\exp\left\{-\frac{1}{\vartheta_{\varepsilon}}\sum_{i=1}^{m}\int_{0}^{T}\nu^{(i)}(s)dW^{(i)}(s)-\frac{1}{2\vartheta_{\varepsilon}^{2}}\int_{0}^{T}|v(s)|^{2}ds\right\}. (5)

Hence the shifted version Xε,v:=𝒢ε(W~)X^{\varepsilon,v}:=\mathcal{G}^{\varepsilon}(\tilde{W}) appearing in Theorem 2 (1) is the strong unique solution of (2) under ~\widetilde{\mathbb{P}}, with XεX^{\varepsilon} and WW replaced by Xε,vX^{\varepsilon,v} and W~\widetilde{W}. Because \mathbb{P} and ~\widetilde{\mathbb{P}} are equivalent, Xε,vX^{\varepsilon,v} is also the unique strong solution, under \mathbb{P}, of the controlled equation

Xε,v(t)=X0ε+0t[bε(s,Xsε,v)+σε(s,Xsε,v)v(s)]ds+ϑε0tσε(s,Xsε,v)dW(s)X^{\varepsilon,v}(t)=X_{0}^{\varepsilon}+\int_{0}^{t}\left[b_{\varepsilon}\left(s,X_{s}^{\varepsilon,v}\right)+\sigma_{\varepsilon}\left(s,X_{s}^{\varepsilon,v}\right)v(s)\right]\mathrm{d}s+\vartheta_{\varepsilon}\int_{0}^{t}\sigma_{\varepsilon}\left(s,X_{s}^{\varepsilon,v}\right)\mathrm{d}W(s) (6)

Taking ε0\varepsilon\rightarrow 0, the system (6) reduces to the deterministic path dependent ODE

ϕ(t)=x0+0t[b(s,ϕs)+σ(s,ϕs)ν(s)]𝑑s.\phi(t)=x_{0}+\int_{0}^{t}\left[b(s,\phi_{s})+\sigma(s,\phi_{s})\nu(s)\right]ds. (7)
Theorem 3

Under A.1-A.4, the family {Xε}ε>0\left\{X^{\varepsilon}\right\}_{\varepsilon>0}, unique solution of (2), satisfies a Large Deviations Principle with rare function II and speed ϑε2\vartheta_{\varepsilon}^{-2}, where 𝒢0\mathcal{G}^{0} is the solution of (7)

Remark 1

Theorem 3 generalizes the results in Chiarini and Fischer [2]. When the coefficients bεb_{\varepsilon} and σε\sigma_{\varepsilon} do not depend on the path of the process XεX_{\varepsilon}, Theorem 3 and Chiarini and Fischer [2, Theorem 3] are equivalent.

We first show the unique solution of (7) and a uniform estimation.

Lemma 4

Under A.1-A.6, given any νL2\nu\in L^{2}, there is a unique solution ϕ𝒞([0,T];n)\phi\in\mathcal{C}\left([0,T];\mathbb{R}^{n}\right) of (7). Moreover, for ϕ\phi, we have the growth estimate

sup0st|ϕ(s)|(3|x0|2+9M2t(t+ν2)+3M2t3(t+ν2))e9M2(t+ν2)\sup_{0\leq s\leq t}\left|\phi(s)\right|\leq(3|x_{0}|^{2}+9M^{2}t(t+\|\nu\|^{2})+3M^{2}t^{3}(t+\|\nu\|^{2}))e^{9M^{2}(t+\|\nu\|^{2})} (8)
Proof 1

Let ϕ,φ𝒞([0,T];d)\phi,\varphi\in\mathcal{C}\left([0,T];\mathbb{R}^{d}\right) be solutions of (7). We have

|ϕ(t)φ(t)|0t|b(s,ϕs)b(s,φs)|𝑑s+0t|σ(s,ϕs)σ(s,φs)||ν|𝑑s\displaystyle\left|\phi(t)-\varphi(t)\right|\leq\int_{0}^{t}\left|b(s,\phi_{s})-b(s,\varphi_{s})\right|ds+\int_{0}^{t}\left|\sigma(s,\phi_{s})-\sigma(s,\varphi_{s})\right|\left|\nu\right|ds (9)

By assumption A.4, we have for large enough R>0R>0

|ϕ(t)φ(t)|22LR2(T+ν2)0tsup0us|ϕ(u)ϕ(s)|2ds\left|\phi(t)-\varphi(t)\right|^{2}\leq 2L^{2}_{R}\left(T+\|\nu\|^{2}\right)\int_{0}^{t}\sup_{0\leq u\leq s}\left|\phi(u)-\phi(s)\right|^{2}ds

Gronwall’s inequality now entails that ϕ(t)φ(t)=0\|\phi(t)-\varphi(t)\|=0, which yields uniqueness.

By using assumption A.3, we can get that

|ϕ(t)|2\displaystyle\left|\phi(t)\right|^{2} 3|x0|+3t0t|b(s,ϕs)2|𝑑s+3(0t|σ(s,ϕs)||ν|𝑑s)2\displaystyle\leq 3|x_{0}|+3t\int_{0}^{t}\left|b(s,\phi_{s})^{2}\right|ds+3\left(\int_{0}^{t}\left|\sigma(s,\phi_{s})\right||\nu|ds\right)^{2} (10)
3|x0|2+9M2(t+ν2)0t(1+sup0us|ϕ(u)|2+|s|2)𝑑s\displaystyle\leq 3|x_{0}|^{2}+9M^{2}\left(t+\|\nu\|^{2}\right)\int_{0}^{t}\left(1+\sup_{0\leq u\leq s}|\phi(u)|^{2}+|s|^{2}\right)ds
3|x0|2+9M2t(t+ν2)+3M2t3(t+ν2)+9M2(t+ν2)0tsup0us|ϕ(u)|2du\displaystyle\leq 3|x_{0}|^{2}+9M^{2}t(t+\|\nu\|^{2})+3M^{2}t^{3}(t+\|\nu\|^{2})+9M^{2}(t+\|\nu\|^{2})\int_{0}^{t}\sup_{0\leq u\leq s}|\phi(u)|^{2}du

By Gronwalls’ inequality, we can deduce

sup0st|ϕ(s)|(3|x0|2+9M2t(t+ν2)+3M2t3(t+ν2))e9M2(t+ν2)\sup_{0\leq s\leq t}\left|\phi(s)\right|\leq(3|x_{0}|^{2}+9M^{2}t(t+\|\nu\|^{2})+3M^{2}t^{3}(t+\|\nu\|^{2}))e^{9M^{2}(t+\|\nu\|^{2})}

We need some technical preliminary results.

Lemma 5

Under A.1-A.6, for all p2p\geq 2, N>0N>0, ν𝒜N\nu\in\mathcal{A}_{N} and ε>0\varepsilon>0 small enough, there exists a constant c>0c>0 independent of ε\varepsilon, ν\nu, tt such that

𝔼[supt𝕋|Xε,ν(t)|p]c\mathbb{E}\left[\sup_{t\in\mathbb{T}}|X^{\varepsilon,\nu}(t)|^{p}\right]\leq c (11)
Proof 2

Let us fix p2p\geq 2, N>0N>0, ν𝒜N\nu\in\mathcal{A}_{N} and t𝕋t\in\mathbb{T}. Let τn\tau_{n} be the stopping time defined by

τn=inf{t0:|Xε,ν(t)|n}T\tau_{n}=\inf\left\{t\geq 0:|X^{\varepsilon,\nu}(t)|\geq n\right\}\wedge T

We write bsn:=bε(s,Xsε,ν𝟙{sτn})b^{n}_{s}:=b_{\varepsilon}(s,X^{\varepsilon,\nu}_{s}\mathbbm{1}_{\left\{s\leq\tau_{n}\right\}}) and σsn:=σε(s,Xsε,ν𝟙{sτn})\sigma^{n}_{s}:=\sigma_{\varepsilon}\left(s,X^{\varepsilon,\nu}_{s}\mathbbm{1}_{\left\{s\leq\tau_{n}\right\}}\right).

We fix nn\in\mathbb{N} and observe that, almost surely:

𝔼[Xε,ν(t)𝟙tτnp]\displaystyle\mathbb{E}\left[\|X^{\varepsilon,\nu}(t)\mathbbm{1}_{t\leq\tau_{n}}\|^{p}\right] 4p1|X0ε|p+4p1𝔼{[0tbsn𝑑s]p}+4p1𝔼{[0tσsnν(s)𝑑s]p}\displaystyle\leq 4^{p-1}\left|X^{\varepsilon}_{0}\right|^{p}+4^{p-1}\mathbb{E}\left\{\left[\int_{0}^{t}b_{s}^{n}ds\right]^{p}\right\}+4^{p-1}\mathbb{E}\left\{\left[\int_{0}^{t}\sigma_{s}^{n}\nu(s)ds\right]^{p}\right\} (12)
+4p1ϑεp𝔼{[0tσsn𝑑W(s)]p}\displaystyle+4^{p-1}\vartheta_{\varepsilon}^{p}\mathbb{E}\left\{\left[\int_{0}^{t}\sigma^{n}_{s}dW(s)\right]^{p}\right\}
=:4p1(|X0ε|p+I1+I2+I3)\displaystyle=:4^{p-1}\left(\left|X_{0}^{\varepsilon}\right|^{p}+I_{1}+I_{2}+I_{3}\right)

For ε\varepsilon small enough we can bound |X0ε|\left|X^{\varepsilon}_{0}\right| by 2|X0|2\left|X_{0}\right| and ϑε\vartheta_{\varepsilon} by 11. Using Holder’s and Jensen’s inequalities, we obtain the following estimates almost surely:

I1\displaystyle I_{1} 𝔼{[0t(bns)p𝑑s]}\displaystyle\leq\mathbb{E}\left\{\left[\int_{0}^{t}(b_{n}^{s})^{p}ds\right]\right\} (13)

and

I2\displaystyle I_{2} Np2𝔼{[0t(σsn)2𝑑s]p2}Np2𝔼{0t(σsn)p𝑑s}\displaystyle\leq N^{\frac{p}{2}}\mathbb{E}\left\{\left[\int_{0}^{t}(\sigma_{s}^{n})^{2}ds\right]^{\frac{p}{2}}\right\}\leq N^{\frac{p}{2}}\mathbb{E}\left\{\int_{0}^{t}\left(\sigma_{s}^{n}\right)^{p}ds\right\} (14)

By Burkholder-Davis-Gundy (B-D-G) inequality, there exists Cp>0C_{p}>0 such that

𝔼[I3]Cp𝔼{0t(σsn)P𝑑s}\mathbb{E}\left[I_{3}\right]\leq C_{p}\mathbb{E}\left\{\int_{0}^{t}(\sigma_{s}^{n})^{P}ds\right\} (15)

From the linear growth condition on bεb_{\varepsilon} and σε\sigma_{\varepsilon} we deduce that there exists C1>0C_{1}>0 independent of ε\varepsilon, ν\nu, nn and tt such that for all nn\in\mathbb{N}

𝔼[Xε,ν(t)𝟙tτnp]C1+C10t𝔼[Xε,ν(s)𝟙sτnp]𝑑s\mathbb{E}\left[\|X^{\varepsilon,\nu}(t)\mathbbm{1}_{t\leq\tau_{n}}\|^{p}\right]\leq C_{1}+C_{1}\int_{0}^{t}\mathbb{E}\left[\|X^{\varepsilon,\nu}(s)\mathbbm{1}_{s\leq\tau_{n}}\|^{p}\right]ds (16)

Taking nn goes to infinity and using Gronwall’s lemma, we prove this bound.

Lemma 6

{Xε,νε}ε>0\left\{X^{\varepsilon,\nu^{\varepsilon}}\right\}_{\varepsilon>0} is tightness

Proof 3

In view of the Kolmogorov tightness criterion, it suffices to show that there exist strictly positive constants α\alpha, β\beta and γ\gamma such that for all tt, s[0,T]s\in[0,T],

supν𝒮N𝔼[|Xε,νε(t)Xε,νε(s)|α]β|ts|γ\sup_{\nu\in\mathcal{S}_{N}}\mathbb{E}\left[\left|X^{\varepsilon,\nu^{\varepsilon}}(t)-X^{\varepsilon,\nu^{\varepsilon}}(s)\right|^{\alpha}\right]\leq\beta\left|t-s\right|^{\gamma}

Without loss of generality, let s<ts<t. We will write bsn:=bε(s,Xsε,νε𝟙{sτn})b^{n}_{s}:=b_{\varepsilon}(s,X^{\varepsilon,\nu^{\varepsilon}}_{s}\mathbbm{1}_{\left\{s\leq\tau_{n}\right\}}) and σsn:=σε(s,Xsε,νε𝟙{sτn})\sigma^{n}_{s}:=\sigma_{\varepsilon}\left(s,X^{\varepsilon,\nu^{\varepsilon}}_{s}\mathbbm{1}_{\left\{s\leq\tau_{n}\right\}}\right).

𝔼[|Xε,νε(t)Xε,νε(s)|α]\displaystyle\mathbb{E}\left[\left|X^{\varepsilon,\nu^{\varepsilon}}(t)-X^{\varepsilon,\nu^{\varepsilon}}(s)\right|^{\alpha}\right] 3p1(ts)p1𝔼{st|bun|p𝑑u}+3p1𝔼[(st|σun||ν(u)|𝑑u)p]\displaystyle\leq 3^{p-1}(t-s)^{p-1}\mathbb{E}\left\{\int_{s}^{t}\left|b^{n}_{u}\right|^{p}du\right\}+3^{p-1}\mathbb{E}\left[\left(\int_{s}^{t}\left|\sigma_{u}^{n}\right|\left|\nu(u)\right|du\right)^{p}\right] (17)
+3p1ϑεP𝔼[|stσun𝑑W(u)|p]\displaystyle+3^{p-1}\vartheta_{\varepsilon}^{P}\mathbb{E}\left[\left|\int_{s}^{t}\sigma_{u}^{n}dW(u)\right|^{p}\right]
3p1(ts)p1𝔼{st|bun|p𝑑u}+3p1Np2𝔼[st|σun|p𝑑u]\displaystyle\leq 3^{p-1}(t-s)^{p-1}\mathbb{E}\left\{\int_{s}^{t}\left|b^{n}_{u}\right|^{p}du\right\}+3^{p-1}N^{\frac{p}{2}}\mathbb{E}\left[\int_{s}^{t}\left|\sigma^{n}_{u}\right|^{p}du\right]
+3p1Cp𝔼[st|σun|p2𝑑u]\displaystyle+3^{p-1}C_{p}\mathbb{E}\left[\int_{s}^{t}|\sigma^{n}_{u}|^{\frac{p}{2}}du\right]
3p1(ts)p1𝔼{st|bun|p𝑑u}+3p1Np2𝔼[0t|σun|p2𝑑u]\displaystyle\leq 3^{p-1}(t-s)^{p-1}\mathbb{E}\left\{\int_{s}^{t}\left|b^{n}_{u}\right|^{p}du\right\}+3^{p-1}N^{\frac{p}{2}}\mathbb{E}\left[\int_{0}^{t}|\sigma^{n}_{u}|^{\frac{p}{2}}du\right]
+3p1Cp𝔼[st|σun|p2𝑑u]\displaystyle+3^{p-1}C_{p}\mathbb{E}\left[\int_{s}^{t}|\sigma^{n}_{u}|^{\frac{p}{2}}du\right]

From the linear growth condition on bεb_{\varepsilon} and σε\sigma_{\varepsilon} we deduce that there exists sufficiently large β\beta and let α=p\alpha=p, γ=p1\gamma=p-1. Then the hypotheses of Kolmogorov’s criterion are therefore satisfied.

Lemma 7

For any positive N<N<\infty, the set

KN:={𝒢0(0ν(s)𝑑s,ν𝒮N)}K_{N}:=\left\{\mathcal{G}^{0}\left(\int_{0}^{\cdot}\nu(s)ds,\nu\in\mathcal{S}_{N}\right)\right\}

is a compact set in 𝒞([0,T];n)\mathcal{C}\left([0,T];\mathbb{R}^{n}\right)

Proof 4

We first prove 𝒢0\mathcal{G}^{0} is a continuity map form 𝒮N\mathcal{S}_{N} to 𝒞([0,T];)\mathcal{C}\left([0,T];\mathbb{R}\right), then for any positive N<N<\infty, 𝒮N\mathcal{S}_{N} is compact set in weak topology. Since 𝒢0\mathcal{G}^{0} is continuity map, we can show KNK_{N} is a compact set in 𝒞([0,T];)\mathcal{C}\left([0,T];\mathbb{R}\right).

Taking {νn(s)}𝒮N\left\{\nu^{n}(s)\right\}\in\mathcal{S}_{N}, νnν\nu^{n}\rightarrow\nu weakly, let φn=𝒢0(νn)\varphi^{n}=\mathcal{G}^{0}(\nu^{n}), φ=𝒢0(ν)\varphi=\mathcal{G}^{0}(\nu). Then, for t[0,T]t\in[0,T],

φn(t)φ(t)\displaystyle\varphi^{n}(t)-\varphi(t) =0t(b(s,φn)b(s,φ))𝑑s+0t(σ(s,φn)σ(s,φ))νn(s)𝑑s\displaystyle=\int_{0}^{t}\left(b(s,\varphi^{n})-b(s,\varphi)\right)ds+\int_{0}^{t}(\sigma(s,\varphi^{n})-\sigma(s,\varphi))\nu^{n}(s)ds (18)
+0tσ(s,φs)(νn(s)ν(s))𝑑s\displaystyle+\int_{0}^{t}\sigma(s,\varphi_{s})(\nu^{n}(s)-\nu(s))ds

Since νnN\|\nu^{n}\|\leq N, it follows from (8) that R:=supnφφnR:=\sup_{n\in\mathbb{N}}\|\varphi\|\vee\|\varphi^{n}\| is finite. Therefore, using assumption A.4,

sup0st|φn(s)φ(s)|\displaystyle\sup_{0\leq s\leq t}\left|\varphi^{n}(s)-\varphi(s)\right| LR0tsup0us|φn(u)φ(u)|ds+LR0tsup0us|φn(u)φ(u)|νn(s)ds\displaystyle\leq L_{R}\int_{0}^{t}\sup_{0\leq u\leq s}\left|\varphi^{n}(u)-\varphi(u)\right|ds+L_{R}\int_{0}^{t}\sup_{0\leq u\leq s}\left|\varphi^{n}(u)-\varphi(u)\right|\nu^{n}(s)ds (19)
+sup0uT|0uσ(s,φs)(νn(s)ν(s))𝑑s|\displaystyle+\sup_{0\leq u\leq T}\left|\int_{0}^{u}\sigma(s,\varphi_{s})\left(\nu^{n}(s)-\nu(s)\right)ds\right|

Let Δσn=sup0uT|0uσ(s,φs)(νn(s)ν(s))𝑑s|\Delta^{n}_{\sigma}=\sup_{0\leq u\leq T}\left|\int_{0}^{u}\sigma(s,\varphi_{s})\left(\nu^{n}(s)-\nu(s)\right)ds\right|. By Holder’s inequality and since νn2N\|\nu^{n}\|^{2}\leq N for all nn\in\mathbb{N}, it follows that

sup0st|φn(s)φ(s)|3LR2(t+N)0tsup0us|φn(u)φ(u)|2ds+3(Δσn)2\sup_{0\leq s\leq t}\left|\varphi^{n}(s)-\varphi(s)\right|\leq 3L_{R}^{2}(t+N)\int_{0}^{t}\sup_{0\leq u\leq s}\left|\varphi^{n}(u)-\varphi(u)\right|^{2}ds+3(\Delta^{n}_{\sigma})^{2}

By Gronwall’s lemma, we can deduce that

𝒢0(νn)𝒢0(ν)=sup0tT|φn(t)φ(t)|23(Δσn)2e3L2T(T+N)\mathcal{G}^{0}(\nu^{n})-\mathcal{G}^{0}(\nu)=\sup_{0\leq t\leq T}|\varphi^{n}(t)-\varphi(t)|^{2}\leq 3\left(\Delta^{n}_{\sigma}\right)^{2}e^{3L^{2}T(T+N)}

In order to establish continuity of 𝒢0\mathcal{G}^{0} on 𝒮N\mathcal{S}_{N}, it remains to check that Δσn\Delta^{n}_{\sigma} goes to 0 as nn\rightarrow\infty. By A.3, it follows that σ(,φ)νn\sigma(\cdot,\varphi)\nu^{n} converges weakly to σ(,φ)ν\sigma\left(\cdot,\varphi\right)\nu in L2L^{2}. Moreover, the family {σ(,φ)νn}n\left\{\sigma(\cdot,\varphi)\nu^{n}\right\}_{n\in\mathbb{N}} is bounded in L2L^{2} with respect to the L2L^{2}-norm. Hence,

0tσ(s,φs)νn(s)𝑑s0tσ(s,φ)ν(s)𝑑sas n\int_{0}^{t}\sigma(s,\varphi_{s})\nu^{n}(s)ds\rightarrow\int_{0}^{t}\sigma\left(s,\varphi\right)\nu(s)ds\quad\text{as }n\rightarrow\infty

which implies that Δσn0\Delta^{n}_{\sigma}\rightarrow 0 as nn\rightarrow\infty.

Lemma 8

Under A.1-A.6, for every N<+N<+\infty and any family {νε}ε>0𝒜N\left\{\nu^{\varepsilon}\right\}_{\varepsilon>0}\in\mathcal{A}_{N} satisfying that νε\nu^{\varepsilon} converge in distribution as 𝒮N\mathcal{S}_{N}-valued random elements to ν\nu as ε0\varepsilon\rightarrow 0, 𝒢ε(W+1ϑε0νε(s)𝑑s)\mathcal{G}^{\varepsilon}\left(W_{\cdot}+\frac{1}{\vartheta_{\varepsilon}}\int_{0}^{\cdot}\nu^{\varepsilon}(s)ds\right) converges in distribution to 𝒢0(0ν(s)𝑑s)\mathcal{G}^{0}\left(\int_{0}^{\cdot}\nu(s)ds\right) as ε0\varepsilon\rightarrow 0.

Proof 5

By Skorohod representation theorem we can work with almost sure convergence for the purpose of identifying the limit. We follow the technique in Chiarini and Fischer [2].

For t[0,T]t\in[0,T], define Φt:𝒮N×𝒞([0,T];Rn)\Phi_{t}:\mathcal{S}_{N}\times\mathcal{C}\left([0,T];R^{n}\right) as

Φt(ω,f):=|ω(t)x00tb(s,ωs)𝑑s0tσ(s,ωs)f(s)𝑑s|1\Phi_{t}(\omega,f):=\left|\omega(t)-x_{0}-\int_{0}^{t}b(s,\omega_{s})ds-\int_{0}^{t}\sigma(s,\omega_{s})f(s)ds\right|\wedge 1

Φt\Phi_{t} is bounded and we show that it is also continuous. Let ωnω\omega^{n}\rightarrow\omega in 𝒞([0,T];Rn)\mathcal{C}\left([0,T];R^{n}\right) and fnff^{n}\rightarrow f in 𝒮N\mathcal{S}_{N} with respect to the weak topology. A.2 implies the existence of continuous moduli of continuity ρb\rho_{b} and ρσ\rho_{\sigma} for both coefficients such that |b(t,φt)b(t,ϕt)|ρb(φϕ)\left|b(t,\varphi_{t})-b(t,\phi_{t})\right|\leq\rho_{b}\left(\|\varphi-\phi\|\right) and |σ(t,φt)σ(t,ϕt)|ρσ(φϕ)\left|\sigma(t,\varphi_{t})-\sigma(t,\phi_{t})\right|\leq\rho_{\sigma}\left(\|\varphi-\phi\|\right). Using Holder’s inequality we find that

|Φt(ωn,fn)Φt(ωn,f)|\displaystyle\left|\Phi_{t}(\omega^{n},f^{n})-\Phi_{t}(\omega^{n},f)\right| |ωn(t)ω(t)|+0t|b(s,ωsn)b(s,ωs)|𝑑s\displaystyle\leq\left|\omega^{n}(t)-\omega(t)\right|+\int_{0}^{t}\left|b(s,\omega^{n}_{s})-b(s,\omega_{s})\right|ds (20)
+0t|σ(s,ωsn)σ(s,ωs)||fn(s)|𝑑s+|0tσ(s,ωs)(fn(s)f(s))𝑑s|\displaystyle+\int_{0}^{t}\left|\sigma(s,\omega^{n}_{s})-\sigma(s,\omega_{s})\right||f^{n}(s)|ds+\left|\int_{0}^{t}\sigma(s,\omega_{s})(f^{n}(s)-f(s))ds\right|
ωnω+Tρb(ωnω)+NTρσ(ωnω)\displaystyle\leq\|\omega^{n}-\omega\|+T\rho_{b}\left(\|\omega^{n}-\omega\|\right)+\sqrt{NT}\rho_{\sigma}\left(\|\omega^{n}-\omega\|\right)
+σ(,ω)|0t(fn(s)f(s))𝑑s|\displaystyle+\|\sigma(\cdot,\omega)\|\left|\int_{0}^{t}\left(f^{n}(s)-f(s)\right)ds\right|

Since fnf^{n} tends to ff weakly in L2L^{2} then the last integral converges to zero as nn goes to infinity. Moreover limnωnω=0\lim\limits_{n\uparrow\infty}\|\omega^{n}-\omega\|=0, which proves that Φt\Phi_{t} is continuous, and therefore

limn𝔼[Φt(Xn,νn)]=𝔼[Φt(X,ν)]\lim\limits_{n\uparrow\infty}\mathbb{E}\left[\Phi_{t}(X^{n},\nu^{n})\right]=\mathbb{E}\left[\Phi_{t}(X,\nu)\right]

Define bεR:[0,T]×𝒞([0,T];d)b^{R}_{\varepsilon}:\left[0,T\right]\times\mathcal{C}([0,T];\mathbb{R}^{d}) and σεR:[0,T]×𝒞([0,T];d)\sigma^{R}_{\varepsilon}:\left[0,T\right]\times\mathcal{C}([0,T];\mathbb{R}^{d}) by

bεR(s,ωs)={bε(s,ωs)ifωRbε(s,Rωωs)otherwiseσεR(s,ωs)={σε(s,ωs)ifωRσε(s,Rωωs)otherwiseb^{R}_{\varepsilon}(s,\omega_{s})=\left\{\begin{matrix}b_{\varepsilon}(s,\omega_{s})\quad\text{if}\|\omega\|\leq R\\ b_{\varepsilon}(s,\frac{R}{\|\omega\|}\omega_{s})\quad\text{otherwise}\end{matrix}\right.\quad\sigma^{R}_{\varepsilon}(s,\omega_{s})=\left\{\begin{matrix}\sigma_{\varepsilon}(s,\omega_{s})\quad\text{if}\|\omega\|\leq R\\ \sigma_{\varepsilon}(s,\frac{R}{\|\omega\|}\omega_{s})\quad\text{otherwise}\end{matrix}\right.

It is clear that the function bεRb^{R}_{\varepsilon} and σεR\sigma^{R}_{\varepsilon} are globally Lipschitz and bounded. By assumption A.2, bεRbRb^{R}_{\varepsilon}\rightarrow b^{R} and σεRσR\sigma^{R}_{\varepsilon}\rightarrow\sigma^{R} uniformly on [0,T]×𝒞([0,T];n)[0,T]\times\mathcal{C}\left([0,T];\mathbb{R}^{n}\right). In analogy with Φt\Phi_{t}, set

ΦtR(ω,f):=|ω(t)x00tbR(s,ωs)𝑑s0tσR(s,ωs)f(s)𝑑s|1\Phi^{R}_{t}(\omega,f):=\left|\omega(t)-x_{0}-\int_{0}^{t}b^{R}(s,\omega_{s})ds-\int_{0}^{t}\sigma^{R}(s,\omega_{s})f(s)ds\right|\wedge 1

Consider the family {XR,ε,ν}\left\{X^{R,\varepsilon,\nu}\right\} of solutions to the PSDE

XR,ε,v(t)=X0ε+0t[bεR(s,XsR,ε,ν)+σR,εR(s,XsR,ε,ν)v(s)]ds+ϑε0tσR,εR(s,XsR,ε,ν)dW(s)X^{R,\varepsilon,v}(t)=X_{0}^{\varepsilon}+\int_{0}^{t}\left[b^{R}_{\varepsilon}\left(s,X_{s}^{R,\varepsilon,\nu}\right)+\sigma^{R}_{R,\varepsilon}\left(s,X_{s}^{R,\varepsilon,\nu}\right)v(s)\right]\mathrm{d}s+\vartheta_{\varepsilon}\int_{0}^{t}\sigma^{R}_{R,\varepsilon}\left(s,X_{s}^{R,\varepsilon,\nu}\right)\mathrm{d}W(s)

We will show

limε0𝔼[ΦtR(XR,ε,νε,ν)]=0\lim\limits_{\varepsilon\rightarrow 0}\mathbb{E}\left[\Phi_{t}^{R}\left(X^{R,\varepsilon,\nu^{\varepsilon}},\nu\right)\right]=0
𝔼[ΦtR(XR,ε,νε,ν)]\displaystyle\mathbb{E}\left[\Phi_{t}^{R}\left(X^{R,\varepsilon,\nu^{\varepsilon}},\nu\right)\right] |X0εX0|+𝔼[0t|bεR(s,XR,ε,νε)bR(s,XR,ε,νε)|𝑑s]\displaystyle\leq\left|X^{\varepsilon}_{0}-X_{0}\right|+\mathbb{E}\left[\int_{0}^{t}\left|b^{R}_{\varepsilon}(s,X^{R,\varepsilon,\nu^{\varepsilon}})-b^{R}(s,X^{R,\varepsilon,\nu^{\varepsilon}})\right|ds\right] (21)
+𝔼[0t|σεR(s,XR,ε,νε)σR(s,XR,ε,νε)||ν(s)|𝑑s]\displaystyle+\mathbb{E}\left[\int_{0}^{t}\left|\sigma^{R}_{\varepsilon}(s,X^{R,\varepsilon,\nu^{\varepsilon}})-\sigma^{R}(s,X^{R,\varepsilon,\nu^{\varepsilon}})\right||\nu(s)|ds\right]
+ϑε𝔼[|0tσεR(s,XR,ε,νε)𝑑W(s)|]\displaystyle+\vartheta_{\varepsilon}\mathbb{E}\left[\left|\int_{0}^{t}\sigma^{R}_{\varepsilon}\left(s,X^{R,\varepsilon,\nu^{\varepsilon}}\right)dW(s)\right|\right]
|X0εX0|+tbεRbR+σεRσR𝔼[0T|ν(s)|𝑑s]\displaystyle\leq\left|X^{\varepsilon}_{0}-X_{0}\right|+t\|b^{R}_{\varepsilon}-b^{R}\|+\|\sigma^{R}_{\varepsilon}-\sigma^{R}\|\mathbb{E}\left[\int_{0}^{T}|\nu(s)|ds\right]
+ϑε0t𝔼[σεR(s,XR,ε,νε)2]𝑑s\displaystyle+\vartheta_{\varepsilon}\sqrt{\int_{0}^{t}\mathbb{E}\left[\sigma_{\varepsilon}^{R}(s,X^{R,\varepsilon,\nu^{\varepsilon}})^{2}\right]ds}

The last term in the above display tends to 0 since

supν𝒮N0t𝔼[σεR(s,XR,ε,νε)2]𝑑s\displaystyle\sup_{\nu\in\mathcal{S}_{N}}\int_{0}^{t}\mathbb{E}\left[\sigma_{\varepsilon}^{R}(s,X^{R,\varepsilon,\nu^{\varepsilon}})^{2}\right]ds 2supν𝒮N0T𝔼[|σR(s,XR,ε,νε)|2]𝑑s\displaystyle\leq 2\sup_{\nu\in\mathcal{S}_{N}}\int_{0}^{T}\mathbb{E}\left[\left|\sigma^{R}(s,X^{R,\varepsilon,\nu^{\varepsilon}})\right|^{2}\right]ds (22)
+2supν𝒮N0T𝔼[|σεR(s,XR,ε,νε)σR(s,XR,ε,νε)|2]𝑑s\displaystyle+2\sup_{\nu\in\mathcal{S}_{N}}\int_{0}^{T}\mathbb{E}\left[\left|\sigma^{R}_{\varepsilon}(s,X^{R,\varepsilon,\nu^{\varepsilon}})-\sigma^{R}(s,X^{R,\varepsilon,\nu^{\varepsilon}})\right|^{2}\right]ds
2Tsupν𝒮NσεRσR2+2supν𝒮N0T𝔼[|σR(S,XR,ε,νε)|2]𝑑s\displaystyle\leq 2T\sup_{\nu\in\mathcal{S}_{N}}\|\sigma_{\varepsilon}^{R}-\sigma^{R}\|^{2}+2\sup_{\nu\in\mathcal{S}_{N}}\int_{0}^{T}\mathbb{E}\left[\left|\sigma^{R}(S,X^{R,\varepsilon,\nu^{\varepsilon}})\right|^{2}\right]ds
<\displaystyle<\infty

Then, we have

limn𝔼[ΦtR(XR,ε,νε,ν)]=0\lim\limits_{n\rightarrow\infty}\mathbb{E}\left[\Phi_{t}^{R}\left(X^{R,\varepsilon,\nu^{\varepsilon}},\nu\right)\right]=0

For R>0R>0 and ν𝒮N\nu\in\mathcal{S}_{N}, let τnR\tau^{R}_{n} is a stopping time defined by

τnR=inf{t0:Xε,ν(t)R}\tau^{R}_{n}=\inf\left\{t\geq 0:X^{\varepsilon,\nu}(t)\geq R\right\}

We have

(XR,ε,νε(t)=Xε,νε(t)𝟙tτn)=1\mathbb{P}\left(X^{R,\varepsilon,\nu^{\varepsilon}}(t)=X^{\varepsilon,\nu^{\varepsilon}}(t)\mathbbm{1}_{t\leq\tau_{n}}\right)=1

It follows that

𝔼[Φt(Xε,ν,ν)]\displaystyle\mathbb{E}\left[\Phi_{t}(X^{\varepsilon,\nu},\nu)\right] =𝔼[𝟙t<τnΦt(Xε,ν,ν)]+𝔼[𝟙tτnΦt(Xε,ν,ν)]\displaystyle=\mathbb{E}\left[\mathbbm{1}_{t<\tau_{n}}\Phi_{t}(X^{\varepsilon,\nu},\nu)\right]+\mathbb{E}\left[\mathbbm{1}_{t\geq\tau_{n}}\Phi_{t}(X^{\varepsilon,\nu},\nu)\right] (23)
𝔼[ΦtR(XR,ε,νε,ν)]+(tτRn)\displaystyle\leq\mathbb{E}\left[\Phi^{R}_{t}(X^{R,\varepsilon,\nu^{\varepsilon}},\nu)\right]+\mathbb{P}\left(t\geq\tau_{R}^{n}\right)

For all ν𝒮N\nu\in\mathcal{S}_{N}, by Markov’s inequality we have

(tτnR)=(sup0st|XR,ε,νε(s)|R)cR2\mathbb{P}\left(t\geq\tau^{R}_{n}\right)=\mathbb{P}\left(\sup_{0\leq s\leq t}|X^{R,\varepsilon,\nu^{\varepsilon}}(s)|\geq R\right)\leq\frac{c}{R^{2}}

Taking upper limits on both side of (23), we obtain

lim supε0𝔼[Φt(Xε,ν,ν)]lim supn(tτnR)cR\limsup_{\varepsilon\rightarrow 0}\mathbb{E}\left[\Phi_{t}(X^{\varepsilon,\nu},\nu)\right]\leq\limsup_{n\rightarrow\infty}\mathbb{P}\left(t\geq\tau^{R}_{n}\right)\leq\frac{c}{R}

Since R>0R>0 has been chosen arbitrarily, it follows that

limε0𝔼[Φt(Xε,νε,νε)]=0\lim\limits_{\varepsilon\rightarrow 0}\mathbb{E}\left[\Phi_{t}(X^{\varepsilon,\nu^{\varepsilon}},\nu^{\varepsilon})\right]=0
Proof of Theorem 3 1

According to Theorem 2, combined with Lemma 5, 6, 7 and 8 , it can be seen that Theorem 3 holds.

4 Application: Small time large deviation principle for path-dependent stochastic differential equation

In this section, we study the LDP for functional of PSDEs in small time intervals: {X(t),t𝕋}\left\{X(t),t\in\mathbb{T}\right\} as t0t\rightarrow 0, where

X(t)=x0+0tb(s,Xs)𝑑s+0tσ(s,Xs)𝑑W(s)X(t)=x_{0}+\int_{0}^{t}b(s,X_{s})ds+\int_{0}^{t}\sigma(s,X_{s})dW(s)

We rescale the small time problem to a small perturbation problem.

X(εt)\displaystyle X({\varepsilon t}) =x0+0εtb(s,Xs)𝑑s+0εtσ(s,Xs)𝑑W(s)\displaystyle=x_{0}+\int_{0}^{\varepsilon t}b(s,X_{s})ds+\int_{0}^{\varepsilon t}\sigma(s,X_{s})dW(s) (24)
=x0+ε0tb(εt,Xεt)𝑑s+ε0εtσ(εt,Xεt)𝑑W^(s)\displaystyle=x_{0}+\varepsilon\int_{0}^{t}b(\varepsilon t,X_{\varepsilon t})ds+\sqrt{\varepsilon}\int_{0}^{\varepsilon t}\sigma(\varepsilon t,X_{\varepsilon t})d\widehat{W}(s)

Where, W^(s)=1εW(εs)\widehat{W}(s)=\frac{1}{\sqrt{\varepsilon}}W(\varepsilon s). Let U(t)=X(εt)U(t)=X(\varepsilon t), by (24), we have

U(t)=x0=0tbε(s,Us)𝑑s+ε0tσ(s,Us)𝑑W^(s)U(t)=x_{0}=\int_{0}^{t}b_{\varepsilon}(s,U_{s})ds+\sqrt{\varepsilon}\int_{0}^{t}\sigma(s,U_{s})d\widehat{W}(s)

Now, we can use Theorem 3 to obtain the LDP for small time PSDEs.

Theorem 9

The process X(εt)X(\varepsilon t) satisfies LDP as ε0\varepsilon\rightarrow 0 with rate function J1J^{1} and speed ε\varepsilon.

J(g)=infνL2;g=𝒢0(0ν(s)𝑑s){120|ν(s)|2𝑑s}J(g)=\inf_{\nu\in L^{2};g=\mathcal{G}^{0}(\int_{0}^{\cdot}\nu(s)ds)}\left\{\frac{1}{2}\int_{0}^{\cdot}|\nu(s)|^{2}ds\right\}

𝒢0\mathcal{G}^{0} is the solution map of (25)

ϕ(t)=x0+0tσ(s,ϕs)𝑑s\phi(t)=x_{0}+\int_{0}^{t}\sigma(s,\phi_{s})ds (25)

For functional of X(εt)X(\varepsilon t) generally, we have the following result

Theorem 10

Let f𝒞b1(d;m)f\in\mathcal{C}^{1}_{b}(\mathbb{R}^{d};\mathbb{R}^{m}). Then the process f(X(εt))f(X(\varepsilon t)) satisfies a LDP as ε0\varepsilon\rightarrow 0 with rate function JfJ^{f} and speed ε\varepsilon.

Jf(g)=inf{Df(x0)φ=g}J(φ)J^{f}(g)=\inf_{\left\{Df(x_{0})\varphi=g\right\}}{J(\varphi)} (26)
Proof 6

This proof bases on Theorem 3 and the delta method of large deviation[10].

For any fCb1(d;m)f\in C_{b}^{1}\left(\mathbb{R}^{d};\mathbb{R}^{m}\right), define Φ:C01([0,T],d)C01([0,T],m)\Phi:C_{0}^{1}\left([0,T],\mathbb{R}^{d}\right)\rightarrow C_{0}^{1}\left([0,T],\mathbb{R}^{m}\right) as follows:

f(φ)(t)=f(φ(t)),t[0,T].f(\varphi)(t)=f(\varphi(t)),\quad t\in[0,T].

Φ\Phi is Hadamard differentiable and its Hadamard differential at constant function φ\varphi\equiv f(x0)f\left(x_{0}\right) is

Φf(x0)(ψ)=(Df)(x0)ψ,ψC0α([0,T],d)\Phi_{f\left(x_{0}\right)}^{\prime}(\psi)=(Df)\left(x_{0}\right)\psi,\quad\psi\in C_{0}^{\alpha}\left([0,T],\mathbb{R}^{d}\right)

Then the result follows from the delta method.

References

  • Budhiraja and Dupuis [2019] Budhiraja, A., Dupuis, P., 2019. Analysis and Approximation of Rare Events: Representations and Weak Convergence Methods. Springer US, New York, NY.
  • Chiarini and Fischer [2014] Chiarini, A., Fischer, M., 2014. On large deviations for small noise itô processes. Advances in Applied Probability 46, 1126 – 1147.
  • Cont and Fournié [2013] Cont, R., Fournié, D.A., 2013. Functional itô calculus and stochastic integral representation of martingales. The Annals of Probability 41, 109–133.
  • Dembo and Zeitouni [1998] Dembo, A., Zeitouni, O., 1998. Large Deviations Techniques and Applications. Springer Berlin Heidelberg.
  • Dupire [2019] Dupire, B., 2019. Functional Itô calculus. Quantitative Finance 19, 721–729.
  • Ekren et al. [2014] Ekren, I., Keller, C., Touzi, N., Zhang, J., 2014. On viscosity solutions of path dependent pdes. The Annals of Probability 42, 204–236.
  • Ekren et al. [2016] Ekren, I., Touzi, N., Zhang, J., 2016. Viscosity solutions of fully nonlinear parabolic path dependent pdes: Part ii. Annals of Probability 44, 1212–1253.
  • Freidlin and Wentzell [1984] Freidlin, M.I., Wentzell, A.D., 1984. Random Perturbations of Dynamical Systems. Springer Berlin Heidelberg.
  • Gao and Liu [2006] Gao, F., Liu, J., 2006. Large deviations for small perturbations of sdes with non-markovian coefficients and their applications. Stochastics and Dynamics 06, 487–520.
  • Gao and Zhao [2011] Gao, F., Zhao, X., 2011. Delta method in large deviations and moderate deviations for estimators. Annals of Statistics 39, 1211–1240.
  • Jacquier and Pannier [2022] Jacquier, A., Pannier, A., 2022. Large and moderate deviations for stochastic volterra systems. Stochastic Processes and their Applications 149, 142–187.
  • Ma et al. [2014] Ma, J., Ren, Z., Touzi, N., Zhang, J., 2014. Large deviations for non-markovian diffusions and a path-dependent eikonal equation. Annales de l’Institut Henri Poincaré, Probabilités et Statistiques 52, 1196–1216.
  • Róckner et al. [2010] Róckner, M., Zhang, T., Zhang, X., 2010. Large deviations for stochastic tamed 3d navier-stokes equations. Applied Mathematics and Optimization 61, 267–285.
  • Xiong and Zhai [2018] Xiong, J., Zhai, J., 2018. Large deviations for locally monotone stochastic partial differential equations driven by lévy noise. Bernoulli 24, 2842–2874.