This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Large sieve inequalities with power moduli and Waring’s problem

Stephan Baier and Sean B. Lynch

1 Introduction

Let MM be an integer, let NN be a positive integer, and let {zn}\{z_{n}\} be a sequence of complex numbers. Let 𝒮\mathcal{S} be a finite set of real numbers, and let δ1\delta\leq 1 be a positive real number. We write α\lVert\alpha\rVert for the distance from a real number α\alpha to its nearest integer, and we also write e(α)=e2πiαe(\alpha)=e^{2\pi i\alpha}. Moreover, we say that the set 𝒮\mathcal{S} is δ\delta-spaced modulo 1 if αβδ\lVert\alpha-\beta\rVert\geq\delta whenever α\alpha and β\beta are distinct members of 𝒮\mathcal{S}. The general large sieve inequality says that if 𝒮\mathcal{S} is δ\delta-spaced modulo 1, then

α𝒮|n=M+1M+Nzne(nα)|2(δ1+N1)n=M+1M+N|zn|2.\displaystyle\sum_{\alpha\in\mathcal{S}}\left|\sum_{n=M+1}^{M+N}z_{n}e(n\alpha)\right|^{2}\leq(\delta^{-1}+N-1)\sum_{n=M+1}^{M+N}|z_{n}|^{2}. (1)

Montgomery wrote a lovely expository article on this result [Mon78].

Let QQ and kk be positive integers. Then we take the set

𝒮k(Q)={a/qk:a and q are coprime positive integers with aqkQk}\displaystyle\mathcal{S}_{k}(Q)=\left\{\text{$a/q^{k}:a$ and $q$ are coprime positive integers with $a\leq q^{k}\leq Q^{k}$}\right\} (2)

so that

α𝒮k(Q)|n=M+1M+Nzne(nα)|2=q=1Qa=1gcd(a,q)=1qk|n=M+1M+Nzne(na/qk)|2.\sum_{\alpha\in\mathcal{S}_{k}(Q)}\left|\sum_{n=M+1}^{M+N}z_{n}e(n\alpha)\right|^{2}=\sum_{q=1}^{Q}\sum_{\begin{subarray}{c}a=1\\ \gcd(a,q)=1\end{subarray}}^{q^{k}}\left|\sum_{n=M+1}^{M+N}z_{n}e(na/q^{k})\right|^{2}.

This paper is about large sieve inequalities with kthk\textsuperscript{th}-power moduli. These are inequalities of the form

q=1Qa=1gcd(a,q)=1qk|n=M+1M+Nzne(na/qk)|2Δk(Q,N)n=M+1M+N|zn|2,\sum_{q=1}^{Q}\sum_{\begin{subarray}{c}a=1\\ \gcd(a,q)=1\end{subarray}}^{q^{k}}\left|\sum_{n=M+1}^{M+N}z_{n}e(na/q^{k})\right|^{2}\leq\Delta_{k}(Q,N)\sum_{n=M+1}^{M+N}|z_{n}|^{2},

where Δk(Q,N)\Delta_{k}(Q,N) is independent of MM and {zn}\{z_{n}\}. We now let Δk(Q,N)\Delta_{k}(Q,N) be the infimum of such constants so that our large sieve inequalities are just upper bounds on Δk(Q,N)\Delta_{k}(Q,N).

In the first paper on these bounds, Zhao observed two bounds that trivially follow from the general large sieve inequality [Zha04]. Firstly, since the set 𝒮k(Q)\mathcal{S}_{k}(Q) is Q2kQ^{-2k}-spaced modulo 1, we have

Δk(Q,N)Q2k+N1.\displaystyle\Delta_{k}(Q,N)\leq Q^{2k}+N-1. (3)

Secondly, we can apply the general large sieve inequality to the sum over aa, and then sum over qq. This gives

Δk(Q,N)q=1Q(qk+N1)Q(Qk+N1).\displaystyle\Delta_{k}(Q,N)\leq\sum_{q=1}^{Q}(q^{k}+N-1)\leq Q(Q^{k}+N-1). (4)

If NQ2kN\gg Q^{2k}, then bound (3) gives Δk(Q,N)N\Delta_{k}(Q,N)\ll N. If NQkN\ll Q^{k}, then bound (4) gives Δk(Q,N)Qk+1\Delta_{k}(Q,N)\ll Q^{k+1}. Combining these, we have

NQ2k or NQkΔk(Q,N)Qk+1+N.\displaystyle N\gg Q^{2k}\mbox{ or }N\ll Q^{k}\implies\Delta_{k}(Q,N)\ll Q^{k+1}+N. (5)

It’s not hard to see that

Δk(Q,N)Qk+1+N.\displaystyle\Delta_{k}(Q,N)\gg Q^{k+1}+N. (6)

So, in particular, (5) is sharp. If zM+1=1z_{M+1}=1 and every other zn=0z_{n}=0, then we compute that

α𝒮k(Q)|n=M+1M+Nzne(nα)|2=|𝒮k(Q)|n=M+1M+N|zn|2.\sum_{\alpha\in\mathcal{S}_{k}(Q)}\left|\sum_{n=M+1}^{M+N}z_{n}e(n\alpha)\right|^{2}=|\mathcal{S}_{k}(Q)|\sum_{n=M+1}^{M+N}|z_{n}|^{2}.

Therefore

Δk(Q,N)|𝒮k(Q)|=q=1Qφ(qk)=q=1Qqk1φ(q)Qk+1.\displaystyle\Delta_{k}(Q,N)\geq|\mathcal{S}_{k}(Q)|=\sum_{q=1}^{Q}\varphi(q^{k})=\sum_{q=1}^{Q}q^{k-1}\varphi(q)\gg Q^{k+1}. (7)

If each zn=e(nα0)z_{n}=e(-n\alpha_{0}), for a fixed α0𝒮k(Q)\alpha_{0}\in\mathcal{S}_{k}(Q), then we have

α𝒮k(Q)|n=M+1M+Nzne(nα)|2|n=M+1M+Nzne(nα0)|2=Nn=M+1M+N|zn|2.\sum_{\alpha\in\mathcal{S}_{k}(Q)}\left|\sum_{n=M+1}^{M+N}z_{n}e(n\alpha)\right|^{2}\geq\left|\sum_{n=M+1}^{M+N}z_{n}e(n\alpha_{0})\right|^{2}=N\sum_{n=M+1}^{M+N}|z_{n}|^{2}.

Therefore

Δk(Q,N)N.\displaystyle\Delta_{k}(Q,N)\geq N. (8)

Combining bounds (7) and (8), we get bound (6).

In the case k=1k=1, bounds (3) and (6) collectively show that Δ1(Q,N)Q2+N\Delta_{1}(Q,N)\asymp Q^{2}+N. Otherwise, we call

Qk<N<Q2k\displaystyle Q^{k}<N<Q^{2k} (9)

the nontrivial range. This is where many authors [Zha04, BZ05, Bai06, BZ08, Hal12, Hal15, Hal18, Hal20, Mun21, BMS22, McG22] beat the trivial bounds and worked toward Zhao’s conjecture that

Δk(Q,N)Qε(Qk+1+N).\displaystyle\Delta_{k}(Q,N)\ll Q^{\varepsilon}(Q^{k+1}+N).

Baier, Lynch and Zhao showed that the factor of QεQ^{\varepsilon} cannot be removed when k=2k=2 [BLZ19]. Their method extends to all k2k\geq 2.

Our method of attacking the nontrivial range is simple, effective and can easily be applied to more general large sieve inequalities with polynomial moduli. We choose to illustrate our method in this restricted setting of kthk\textsuperscript{th}-power moduli for three reasons. Firstly, these large sieve inequalities have received a lot of attention, and we achieve savings in substantial ranges for all k4k\geq 4. Secondly, they have many (actualised and potential) applications, as listed in the introduction to [BMS22]. Lastly, our method relates these large sieve inequalities to Waring’s problem with kthk\textsuperscript{th}-powers.

For an introduction to Vinogradov’s mean value theorem and its application to Waring’s problem, look to Vaughan’s book [Vau97, Ch. 5]. In the case k=3k=3, Wooley proved a long standing conjectured bound on Vinogradov mean values [Woo16, Thm. 1.1]. Bourgain, Demeter and Guth were the first to prove the conjectured bound for all k3k\geq 3 [BDG16, Thm. 1.1]. We make use of Wooley’s generalised version [Woo18, Thm. 1.1] of Bourgain, Demeter and Guth’s bound. See [Coo+22] for an interesting comparison between the method of Wooley and that of Bourgain, Demeter and Guth.

2 Results

Let Q,N,nQ,N,n and k,s,tk,s,t be positive integers. In light of the introduction, we restrict to the nontrivial range

Qk<N<Q2k.\displaystyle Q^{k}<N<Q^{2k}.

Let Rk,s(n)R_{k,s}(n) be the number of ss-tuples of positive integers (n1,,ns)(n_{1},\ldots,n_{s}) satisfying n=n1k++nskn=n_{1}^{k}+\ldots+n_{s}^{k}. The forthcoming implied constants are independent of Q,N,nQ,N,n. They may depend on k,s,tk,s,t or on an arbitrarily small positive real number ε\varepsilon.

We pass to counting Farey fractions in short intervals in Section 4. This is standard practice. We then lay the foundations of our new method in Section 5, where we also prove the following two lemmata.

Lemma 2.1.

Suppose that, uniformly in positive integers nsQkn\leq sQ^{k}, we have the bound

Rk,s(n)Cε,k,s(Q).\displaystyle R_{k,s}(n)\ll C_{\varepsilon,k,s}(Q).

Then we have

Δk(Q,N)NQε(Cε,k,s(Q)N1Q2k)1/s.\displaystyle\Delta_{k}(Q,N)\ll NQ^{\varepsilon}\left(C_{\varepsilon,k,s}(Q)\cdot N^{-1}Q^{2k}\right)^{1/s}.
Lemma 2.2.

Suppose that, uniformly in subsets 𝒜\mathcal{A} of positive integers Q\leq Q, we have the bound

01|n𝒜e(αnk)|2s𝑑αDε,k,s(Q)|𝒜|s.\displaystyle\int_{0}^{1}\left|\sum_{n\in\mathcal{A}}e(\alpha n^{k})\right|^{2s}d\alpha\ll D_{\varepsilon,k,s}(Q)\cdot|\mathcal{A}|^{s}. (10)

Then we have

Δk(Q,N)NQε(Dε,k,s(Q)N1Q2k)1/s.\displaystyle\Delta_{k}(Q,N)\ll NQ^{\varepsilon}\left(D_{\varepsilon,k,s}(Q)\cdot N^{-1}Q^{2k}\right)^{1/s}.

In Section 6, we recall an elementary divisor bound for Rk,2(n)R_{k,2}(n). Running this through Lemma 2.1 with s=2s=2 recovers Baier and Zhao’s large sieve inequality [BZ05, Thm. 1.1]. We state this large sieve inequality in part (i) of our first theorem.

Also in Section 6, we recall Marmon’s non-elementary bound on Rk,4(n)R_{k,4}(n) [Mar10, Thm. 1.3]. Marc Munsch suggested that we insert this into Lemma 2.1 with s=4s=4 so as to recover Baker, Munsch and Shparlinski’s large sieve inequality [BMS22, Thm. 1.4]. We state this large sieve inequality in part (ii) of our first theorem. In fact, we state the inequality for all k3k\geq 3, while Baker, Munsch and Shparlinski left a void when k=4k=4. McGrath [McG22, Cor. 1.4] filled this void, albeit with a weaker bound than the general formula in kk would suggest. Our result corrects this, filling the void with the appropriate bound.

Theorem 2.3.
  1. (i)

    For all k2k\geq 2, we have the large sieve inequality

    Δk(Q,N)N12Qk+ε.\displaystyle\Delta_{k}(Q,N)\ll N^{\frac{1}{2}}Q^{k+\varepsilon}.
  2. (ii)

    For all k3k\geq 3, we have the large sieve inequality

    Δk(Q,N)N34Qk2+14+12k+ε.\displaystyle\Delta_{k}(Q,N)\ll N^{\frac{3}{4}}Q^{\frac{k}{2}+\frac{1}{4}+\frac{1}{2\sqrt{k}}+\varepsilon}.

Finally, in Section 7, we invoke a recent and high-powered theorem of Wooley [Woo18, Thm. 1.1]. We end up with a family, indexed by positive integers tkt\leq k, of mean value estimates of the form (10). Running this through Lemma 2.2 with s=12t(t+1)s=\frac{1}{2}t(t+1) results in our second theorem.

Theorem 2.4.

For any positive integer tkt\leq k, we have the large sieve inequality

Δk(Q,N)N12t(t+1)Q1+4k2tt(t+1)+ε.\displaystyle\Delta_{k}(Q,N)\ll N^{1-\frac{2}{t(t+1)}}Q^{1+\frac{4k-2t}{t(t+1)}+\varepsilon}. (11)
Remark 2.5.

Write N=QλN=Q^{\lambda} for a real λ\lambda with k<λ<2kk<\lambda<2k. Then the right-hand side of (11) becomes

Qfk,t(λ)+ε,\displaystyle Q^{f_{k,t}(\lambda)+\varepsilon},

where

fk,t(λ)=λ(12t(t+1))+1+4k2tt(t+1)=λ+1+2(2kλ)t(t+1)2t+1.\displaystyle f_{k,t}(\lambda)=\lambda\left(1-\frac{2}{t(t+1)}\right)+1+\frac{4k-2t}{t(t+1)}=\lambda+1+\frac{2(2k-\lambda)}{t(t+1)}-\frac{2}{t+1}.

We minimise fk,t(λ)f_{k,t}(\lambda) by taking

t=min{2(2kλ),k}.t=\min\{\lceil 2(2k-\lambda)\rceil,k\}.

Incidentally, this choice of tt makes fk,t(λ)f_{k,t}(\lambda) continuous in λ\lambda.

As we’ll see in the next section, Theorem 2.4 with t=kt=k is particularly powerful.

Corollary 2.6.

We have the large sieve inequality

Δk(Q,N)N12k(k+1)Q1+2k+1+ε.\displaystyle\Delta_{k}(Q,N)\ll N^{1-\frac{2}{k(k+1)}}Q^{1+\frac{2}{k+1}+\varepsilon}.

To discuss a conditional result, we assume that k3k\geq 3 and sk+1s\geq k+1 throughout the rest of this section. Recall the Hardy-Littlewood singular series

𝔖k,s(n)=q=1a=1gcd(a,q)=1q(1qr=1qe(ark/q))se(na/q).\displaystyle\mathfrak{S}_{k,s}(n)=\sum_{q=1}^{\infty}\sum_{\begin{subarray}{c}a=1\\ \gcd(a,q)=1\end{subarray}}^{q}\left(\frac{1}{q}\sum_{r=1}^{q}e(ar^{k}/q)\right)^{s}e(-na/q).

Then Hardy and Littlewood proved that whenever ss is sufficiently large relative to kk, we have the formula

Rk,s(n)=Γ(1+1k)sΓ(sk)𝔖k,s(n)nsk1+o(nsk1).\displaystyle R_{k,s}(n)=\frac{\Gamma(1+\frac{1}{k})^{s}}{\Gamma(\frac{s}{k})}\mathfrak{S}_{k,s}(n)n^{\frac{s}{k}-1}+o(n^{\frac{s}{k}-1}). (12)

See [Vau97, Ch. 2] for a modern proof of this formula, with s>2ks>2^{k} and a power saving in the error term. We are often interested in obtaining 𝔖k,s(n)1\mathfrak{S}_{k,s}(n)\gg 1 so that the first term on the right-hand side is not swallowed by the error, thereby making (12) a fully-fledged asymptotic formula. This lower-bound on the singular series can be subtle, as covered in [Vau97, §. 4.5]. Fortunately, for our application, the only bound we need on the singular series is a modest upper-bound. Indeed, we have [Vau97, Thm. 4.3, p. 49]

𝔖k,s(n)nε.\mathfrak{S}_{k,s}(n)\ll n^{\varepsilon}.

Therefore, if formula (12) holds, then we have

Rk,s(n)nsk1+ε.\displaystyle R_{k,s}(n)\ll n^{\frac{s}{k}-1+\varepsilon}. (13)

If bound (13) holds, then it follows from Lemma 2.1 that

Δk(Q,N)N11sQ1+ks+ε.\displaystyle\Delta_{k}(Q,N)\ll N^{1-\frac{1}{s}}Q^{1+\frac{k}{s}+\varepsilon}. (14)

Rewriting this large sieve bound as NQ1+ε(N1Qk)1/sNQ^{1+\varepsilon}(N^{-1}Q^{k})^{1/s} and recalling that N>QkN>Q^{k}, it’s optimal to choose ss as small as possible. As luck would have it, this runs with – not against – the difficulty in Waring’s problem! The Hardy-Littlewood asymptotic formula (12) is conjectured to hold with s=k+1s=k+1 whenever k3k\geq 3. If this famous conjecture holds, then large sieve bound (14) holds with s=k+1s=k+1 whenever k3k\geq 3.

3 Comparison with previous results

Let Q,N,kQ,N,k be positive integers. The forthcoming implied constants are independent of QQ and NN, but they may depend on kk or on an arbitrarily small positive real number ε\varepsilon.

The standard way of comparing bounds is to write N=QλN=Q^{\lambda} for a real parameter λ\lambda. Restricting to the nontrivial range (9), we assume that k<λ<2kk<\lambda<2k. It is also customary to introduce clean notation for some functions of kk that appear in exponents. Put

κ=12k1andω=1(k1)(k2)+2.\displaystyle\kappa=\frac{1}{2^{k-1}}\qquad\mbox{and}\qquad\omega=\frac{1}{(k-1)(k-2)+2}.

3.1 k5k\geq 5

In this subsection, we assume that k5k\geq 5. Here is the list of bounds with which we have to contend:
First trivial (3)

Δk(Q,N)Q2k+N,\displaystyle\Delta_{k}(Q,N)\ll Q^{2k}+N, (15)

Second trivial (4)

Δk(Q,N)Q(Qk+N),\displaystyle\Delta_{k}(Q,N)\ll Q(Q^{k}+N), (16)

Zhao [Zha04]

Δk(Q,N)(Qk+1+NQ1κ+N1κQ1+kκ)Qε,\displaystyle\Delta_{k}(Q,N)\ll(Q^{k+1}+NQ^{1-\kappa}+N^{1-\kappa}Q^{1+k\kappa})Q^{\varepsilon}, (17)

Baier and Zhao [BZ05]

Δk(Q,N)(Qk+1+N+N12Qk)Qε,\displaystyle\Delta_{k}(Q,N)\ll(Q^{k+1}+N+N^{\frac{1}{2}}Q^{k})Q^{\varepsilon}, (18)

Halupczok [Hal12, Hal15, Hal18, Hal20]

Δk(Q,N)(Qk+1+min{N1ωQ1+(2k1)ω,NQ11k(k1)+N11k(k1)Qkk1})Qε,\displaystyle\Delta_{k}(Q,N)\ll\left(Q^{k+1}+\min\left\{N^{1-\omega}Q^{1+(2k-1)\omega},NQ^{1-\frac{1}{k(k-1)}}+N^{1-\frac{1}{k(k-1)}}Q^{\frac{k}{k-1}}\right\}\right)Q^{\varepsilon}, (19)

Munsch [Mun21]

Δk(Q,N)N11k(k+1)Q1+1k+1+ε,\displaystyle\Delta_{k}(Q,N)\ll N^{1-\frac{1}{k(k+1)}}Q^{1+\frac{1}{k+1}+\varepsilon}, (20)

Baker, Munsch and Shparlinski [BMS22]

Δk(Q,N)NQ12+N34Qk2+14+12k+ε.\displaystyle\Delta_{k}(Q,N)\ll NQ^{\frac{1}{2}}+N^{\frac{3}{4}}Q^{\frac{k}{2}+\frac{1}{4}+\frac{1}{2\sqrt{k}}+\varepsilon}. (21)

Corollary 2.6 is our main bound. It is sharper than all of the previous bounds for λ<λ0\lambda<\lambda_{0}, where λ0=2k3+O(k12)\lambda_{0}=2k-3+O(k^{-\frac{1}{2}}) and 2k3<λ0<2k12k-3<\lambda_{0}<2k-1. As kk tends to infinity, our main bound tends to improve 100%100\% of the nontrivial range. In particular, when k=5k=5, it already improves more than 69%69\% of the nontrivial range. This percentage is more than 86%86\% when k=16k=16, and it is more than 97%97\% when k=100k=100.

For the remaining range λλ0\lambda\geq\lambda_{0}, (18) and (21) are the strongest of the previous bounds. Theorem 2.3 recovers both of these, and the proofs we give are simpler than the previous proofs. Most notably, Marc Munsch observed that we may completely bypass Baker, Munsch and Shparlinski’s route through asymmetric additive energy; they also start with Marmon’s bound on Rk,4(n)R_{k,4}(n) to prove (21).

By applying Theorem 2.4 with smaller values of tt, we increase the range in which we improve on these two previous bounds. Indeed, Theorem 2.4 with t=3t=3 (or even t=4t=4) beats (18) for λ<2k32\lambda<2k-\frac{3}{2}. The choice of tt that maximises our range of improvement on (21) changes with kk. When 5k<165\leq k<16, we take t=3t=3 to improve on (21) in the range λ<2k3+6k\lambda<2k-3+\frac{6}{\sqrt{k}}. When 16k<10016\leq k<100, we take t=4t=4 to improve on (21) in the range λ<2k73+103k\lambda<2k-\frac{7}{3}+\frac{10}{3\sqrt{k}}. Finally, when k100k\geq 100, we take t=5t=5 to improve on (21) in the range λ<2k2511+3011k\lambda<2k-\frac{25}{11}+\frac{30}{11\sqrt{k}}.

Now let

λ1={2k32 if 5k<162k73+103k if 16k<1002k2511+3011k if k100.\lambda_{1}=\begin{cases}2k-\frac{3}{2}&\mbox{ if }5\leq k<16\\ 2k-\frac{7}{3}+\frac{10}{3\sqrt{k}}&\mbox{ if }16\leq k<100\\ 2k-\frac{25}{11}+\frac{30}{11\sqrt{k}}&\mbox{ if }k\geq 100.\end{cases}

Then Theorem 2.4, taken as one whole, beats all of the previous bounds for λ<λ1\lambda<\lambda_{1}. So Theorem 2.4 improves 70%70\% of the nontrivial range when k=5k=5. This percentage is more than 90%90\% when k=16k=16, and it is exactly 98%98\% when k=100k=100.

3.2 k=4k=4

We have to contest these previous bounds: (15), (16), (17), (18), (19), (20). Indeed, (21) is missing.

Corollary 2.6 beats all of these previous bounds when 214<λ<132\frac{21}{4}<\lambda<\frac{13}{2}. Hence it improves on the previous bounds in over 31%31\% of the nontrivial range. Smaller choices of tt in Theorem 2.4 do not increase our range of improvement. While Theorem 2.3 part (ii) does bring forth (21), it also fails to increase our range of improvement.

In the range λ214\lambda\leq\frac{21}{4}, (17) is the strongest; we cannot even match this. In the range λ132\lambda\geq\frac{13}{2}, (18) is the strongest; Theorem 2.3 part (i) recovers this.

3.3 k=3k=3

In the case of cubes, Baier and Zhao proved the large sieve inequality [BZ05]

Δ3(Q,N)(Q4+N910Q65+NQ67)Qε.\displaystyle\Delta_{3}(Q,N)\ll(Q^{4}+N^{\frac{9}{10}}Q^{\frac{6}{5}}+NQ^{\frac{6}{7}})Q^{\varepsilon}. (22)

This is the strongest bound in the range λ257\lambda\leq\frac{25}{7}. Then we see that (17) is the strongest in the range 257λ92\frac{25}{7}\leq\lambda\leq\frac{9}{2}, and (18) is the strongest in the range λ92\lambda\geq\frac{9}{2}. While we offer no improvement, Theorem 2.3 part (i) does match (18).

3.4 k=2k=2

In the case of squares, Baier and Zhao gave the large sieve inequality [BZ08]

Δ2(Q,N)(Q3+N+min{NQ12+N12Q2})Qε.\Delta_{2}(Q,N)\ll(Q^{3}+N+\min\{NQ^{\frac{1}{2}}+N^{\frac{1}{2}}Q^{2}\})Q^{\varepsilon}.

This is the state of the art. While we offer no improvement, Theorem 2.3 part (i) does match it when λ3\lambda\geq 3.

4 From the large sieve to Farey fractions in short intervals

Let Q,NQ,N and k,s,tk,s,t be positive integers. We also let MM be an integer, and let {zn}\{z_{n}\} be a sequence of complex numbers. The forthcoming implied constants are independent of Q,M,NQ,M,N and {zn}\{z_{n}\}. But they may depend on k,s,tk,s,t or on an arbitrarily small positive real number ε\varepsilon. We assume that

QkNQ2k.\displaystyle Q^{k}\leq N\ll Q^{2k}.

Dividing the summation over qq into dyadic intervals gives

q=1Qa=1gcd(a,q)=1qk|n=M+1M+Nzne(na/qk)|2Qεsup1xQx2<qxa=1gcd(a,q)=1qk|n=M+1M+Nzne(na/qk)|2.\displaystyle\sum_{q=1}^{Q}\sum_{\begin{subarray}{c}a=1\\ \gcd(a,q)=1\end{subarray}}^{q^{k}}\left|\sum_{n=M+1}^{M+N}z_{n}e(na/q^{k})\right|^{2}\ll Q^{\varepsilon}\sup_{1\leq x\leq Q}\sum_{\frac{x}{2}<q\leq x}\sum_{\begin{subarray}{c}a=1\\ \gcd(a,q)=1\end{subarray}}^{q^{k}}\left|\sum_{n=M+1}^{M+N}z_{n}e(na/q^{k})\right|^{2}.

Let xx be a real number in the interval 1xQ1\leq x\leq Q and write

𝒜k(x):={aqk:1aqk,x2<qxandgcd(a,q)=1}\mathcal{A}_{k}(x):=\left\{\frac{a}{q^{k}}:1\leq a\leq q^{k},\ \frac{x}{2}<q\leq x\ \mbox{and}\,\gcd(a,q)=1\right\}

so that

x2<qxa=1gcd(a,q)=1qk|n=M+1M+Nzne(na/qk)|2=α𝒜k(x)|n=M+1M+Nzne(nα)|2.\sum_{\frac{x}{2}<q\leq x}\sum_{\begin{subarray}{c}a=1\\ \gcd(a,q)=1\end{subarray}}^{q^{k}}\left|\sum_{n=M+1}^{M+N}z_{n}e(na/q^{k})\right|^{2}=\sum_{\alpha\in\mathcal{A}_{k}(x)}\left|\sum_{n=M+1}^{M+N}z_{n}e(n\alpha)\right|^{2}.

We want to hit this with the general large sieve inequality (1), leading us to consider the modulo 1 spacing of the set 𝒜k(x)\mathcal{A}_{k}(x). Let δ=δ(x)xk\delta=\delta(x)\leq x^{-k} be a positive real number. Note that min𝒜k(x)xk\min\mathcal{A}_{k}(x)\geq x^{-k} and that max𝒜k(x)1\max\mathcal{A}_{k}(x)\leq 1. Then, for every α,β𝒜k(x)\alpha,\beta\in\mathcal{A}_{k}(x), we have αβ<δ\lVert\alpha-\beta\rVert<\delta if and only if |αβ|<δ|\alpha-\beta|<\delta. Hence, for every α0𝒜k(x)\alpha_{0}\in\mathcal{A}_{k}(x), we have

𝒜k(x,δ,α0):={α𝒜k(x):αα0<δ}={α𝒜k(x):|αα0|<δ}.\mathcal{A}_{k}(x,\delta,\alpha_{0}):=\{\alpha\in\mathcal{A}_{k}(x):\lVert\alpha-\alpha_{0}\rVert<\delta\}=\{\alpha\in\mathcal{A}_{k}(x):|\alpha-\alpha_{0}|<\delta\}.

Now observe that there exists a partition of the set 𝒜k(x)\mathcal{A}_{k}(x) into

supα0𝒜k(x)|𝒜k(x,δ,α0)|\sup_{\alpha_{0}\in\mathcal{A}_{k}(x)}|\mathcal{A}_{k}(x,\delta,\alpha_{0})|

parts so that each part is δ\delta-spaced modulo 1. Thus, for any one of these parts 𝒫\mathcal{P}, say, the general large sieve inequality (1) gives

α𝒫|n=M+1M+Nzne(nα)|2(N1+δ1)n=M+1M+N|zn|2.\sum_{\alpha\in\mathcal{P}}\left|\sum_{n=M+1}^{M+N}z_{n}e(n\alpha)\right|^{2}\leq(N-1+\delta^{-1})\sum_{n=M+1}^{M+N}|z_{n}|^{2}.

This then yields the bound

α𝒜k(x)|n=M+1M+Nzne(nα)|2(supα0𝒜k(x)|𝒜k(x,δ,α0)|)(N1+δ1)n=M+1M+N|zn|2.\sum_{\alpha\in\mathcal{A}_{k}(x)}\left|\sum_{n=M+1}^{M+N}z_{n}e(n\alpha)\right|^{2}\leq\left(\sup_{\alpha_{0}\in\mathcal{A}_{k}(x)}|\mathcal{A}_{k}(x,\delta,\alpha_{0})|\right)(N-1+\delta^{-1})\sum_{n=M+1}^{M+N}|z_{n}|^{2}.

Putting everything together, we may take

Δk(Q,N)Qεsup1xQinf0<δxk((N+δ1)supα0𝒜k(x)|𝒜k(x,δ,α0)|).\displaystyle\Delta_{k}(Q,N)\ll Q^{\varepsilon}\sup_{1\leq x\leq Q}\ \inf_{0<\delta\leq x^{-k}}\left((N+\delta^{-1})\sup_{\alpha_{0}\in\mathcal{A}_{k}(x)}|\mathcal{A}_{k}(x,\delta,\alpha_{0})|\right).

Recall that xkQkNx^{k}\leq Q^{k}\leq N. Therefore 12N12xk\frac{1}{2N}\leq\frac{1}{2x^{k}}, and so we may take

δ=12N\delta=\frac{1}{2N}

in the infimum. Hence, with this choice of δ\delta, we have

Δk(Q,N)QεNsup1xQsupα0𝒜k(x)|𝒜k(x,δ,α0)|.\displaystyle\Delta_{k}(Q,N)\ll Q^{\varepsilon}N\sup_{1\leq x\leq Q}\sup_{\alpha_{0}\in\mathcal{A}_{k}(x)}|\mathcal{A}_{k}(x,\delta,\alpha_{0})|. (23)

5 From Farey fractions in short intervals to Waring’s problem

We keep the notation of the previous section. Recall that xx is a real number in the interval 1xQ1\leq x\leq Q and that we have

δ=12N12xk.\delta=\frac{1}{2N}\leq\frac{1}{2x^{k}}.

Let α0𝒜k(x)\alpha_{0}\in\mathcal{A}_{k}(x). Then we write a0a_{0} and q0q_{0} for the positive integers satisfying

α0=a0q0k,a0q0k,x2<q0xandgcd(a0,q0)=1.\alpha_{0}=\frac{a_{0}}{q_{0}^{k}},\qquad a_{0}\leq q_{0}^{k},\qquad\frac{x}{2}<q_{0}\leq x\qquad\mbox{and}\qquad\gcd(a_{0},q_{0})=1.

Let 𝒜k(x,δ,a0,q0)\mathcal{A}^{*}_{k}(x,\delta,a_{0},q_{0}) be the set of positive integers qq in the dyadic interval x2<qx\frac{x}{2}<q\leq x for which there exists an integer bb satisfying |b|<δx2k|b|<\delta x^{2k} and a0qkbmodq0ka_{0}q^{k}\equiv b\bmod q_{0}^{k}.

Given any α𝒜k(x,δ,α0)\alpha\in\mathcal{A}_{k}(x,\delta,\alpha_{0}), we write α=a/qk\alpha=a/q^{k} in reduced form like we did for α0\alpha_{0}. Then we rewrite the condition |αα0|<δ|\alpha-\alpha_{0}|<\delta as |a0qkaq0k|<δqkq0kδx2k|a_{0}q^{k}-aq_{0}^{k}|<\delta q^{k}q_{0}^{k}\leq\delta x^{2k}. Therefore αq\alpha\mapsto q defines a function

𝒜k(x,δ,α0)𝒜k(x,δ,a0,q0).\mathcal{A}_{k}(x,\delta,\alpha_{0})\hookrightarrow\mathcal{A}^{*}_{k}(x,\delta,a_{0},q_{0}).

Since δ\delta is sufficiently small, this function is injective. To see this, take two fractions α,β𝒜k(x,δ,α0)\alpha,\beta\in\mathcal{A}_{k}(x,\delta,\alpha_{0}) with the same reduced denominator qkq^{k}. Now observe that |αβ||αα0|+|α0β|<2δ|\alpha-\beta|\leq|\alpha-\alpha_{0}|+|\alpha_{0}-\beta|<2\delta. Then we see that α=β\alpha=\beta, because otherwise we would get the contradictory bound |αβ|qkxk2δ|\alpha-\beta|\geq q^{-k}\geq x^{-k}\geq 2\delta. Hence

|𝒜k(x,δ,α0)||𝒜k(x,δ,a0,q0)|.\displaystyle|\mathcal{A}_{k}(x,\delta,\alpha_{0})|\leq|\mathcal{A}^{*}_{k}(x,\delta,a_{0},q_{0})|. (24)

Now we let k,s(x,δ,a0,q0)\mathcal{B}^{*}_{k,s}(x,\delta,a_{0},q_{0}) be the set of positive integers qq in the interval s(x2)k<qsxks(\frac{x}{2})^{k}<q\leq sx^{k} for which there exists an integer bb satisfying

|b|<sδx2kanda0qbmodq0k.\displaystyle|b|<s\delta x^{2k}\qquad\mbox{and}\qquad a_{0}q\equiv b\bmod q_{0}^{k}. (25)

Evidently, if q1,,qs𝒜k(x,δ,a0,q0)q_{1},\ldots,q_{s}\in\mathcal{A}^{*}_{k}(x,\delta,a_{0},q_{0}), then q1k++qskk,s(x,δ,a0,q0)q_{1}^{k}+\ldots+q_{s}^{k}\in\mathcal{B}^{*}_{k,s}(x,\delta,a_{0},q_{0}). This leads us to consider, for each qk,s(x,δ,a0,q0)q\in\mathcal{B}^{*}_{k,s}(x,\delta,a_{0},q_{0}), the number Rk,s(x,δ,a0,q0;q)R^{*}_{k,s}(x,\delta,a_{0},q_{0};q) of ss-tuples (q1,,qs)𝒜k(x,δ,a0,q0)s(q_{1},\ldots,q_{s})\in\mathcal{A}^{*}_{k}(x,\delta,a_{0},q_{0})^{s} satisfying q=q1k++qskq=q_{1}^{k}+\ldots+q_{s}^{k}. We have the formula

|𝒜k(x,δ,a0,q0)|s=qk,s(x,δ,a0,q0)Rk,s(x,δ,a0,q0;q).\displaystyle|\mathcal{A}^{*}_{k}(x,\delta,a_{0},q_{0})|^{s}=\sum_{q\in\mathcal{B}^{*}_{k,s}(x,\delta,a_{0},q_{0})}R^{*}_{k,s}(x,\delta,a_{0},q_{0};q).

We proceed in two ways. First, we take the supremum to get

|𝒜k(x,δ,a0,q0)|s|k,s(x,δ,a0,q0)|supqk,s(x,δ,a0,q0)Rk,s(x,δ,a0,q0;q).\displaystyle|\mathcal{A}^{*}_{k}(x,\delta,a_{0},q_{0})|^{s}\leq|\mathcal{B}^{*}_{k,s}(x,\delta,a_{0},q_{0})|\sup_{q\in\mathcal{B}^{*}_{k,s}(x,\delta,a_{0},q_{0})}R^{*}_{k,s}(x,\delta,a_{0},q_{0};q). (26)

Second, we use Cauchy-Schwarz to get

|𝒜k(x,δ,a0,q0)|2s|k,s(x,δ,a0,q0)|qk,s(x,δ,a0,q0)Rk,s(x,δ,a0,q0;q)2.\displaystyle|\mathcal{A}^{*}_{k}(x,\delta,a_{0},q_{0})|^{2s}\leq|\mathcal{B}^{*}_{k,s}(x,\delta,a_{0},q_{0})|\sum_{q\in\mathcal{B}^{*}_{k,s}(x,\delta,a_{0},q_{0})}R^{*}_{k,s}(x,\delta,a_{0},q_{0};q)^{2}. (27)

Either way, we need a bound on |k,s(x,δ,a0,q0)||\mathcal{B}^{*}_{k,s}(x,\delta,a_{0},q_{0})|.

To count the number of qk,s(x,δ,a0,q0)q\in\mathcal{B}^{*}_{k,s}(x,\delta,a_{0},q_{0}), we first recall condition (25), from which we see that there are O(1+x2kδ)O(1+x^{2k}\delta) choices for a0qmodq0ka_{0}q\bmod q_{0}^{k}. Then, because gcd(a0,q0k)=1\gcd(a_{0},q_{0}^{k})=1, there are O(1+x2kδ)O(1+x^{2k}\delta) choices for qmodq0kq\bmod q_{0}^{k}. Note that qxkq0kq\asymp x^{k}\asymp q_{0}^{k}. Thus, for a fixed residue rr, there are O(1)O(1) choices for qq with qrmodq0kq\equiv r\bmod q_{0}^{k}. Putting these estimates together, we have

|k,s(x,δ,a0,q0)|1+x2kδN1Q2k.\displaystyle|\mathcal{B}^{*}_{k,s}(x,\delta,a_{0},q_{0})|\ll 1+x^{2k}\delta\ll N^{-1}Q^{2k}. (28)

5.1 Proof of Lemma 2.1

Here we continue with the first way.

For each qk,s(x,δ,a0,q0)q\in\mathcal{B}^{*}_{k,s}(x,\delta,a_{0},q_{0}), we have Rk,s(x,δ,a0,q0;q)Rk,s(q)R_{k,s}^{*}(x,\delta,a_{0},q_{0};q)\leq R_{k,s}(q). Furthermore, if qk,s(x,δ,a0,q0)q\in\mathcal{B}^{*}_{k,s}(x,\delta,a_{0},q_{0}), then qsxksQkq\leq sx^{k}\leq sQ^{k}. Therefore

supqk,s(x,δ,a0,q0)Rk,s(x,δ,a0,q0;q)supqk,s(x,δ,a0,q0)Rk,s(q)supqsQkRk,s(q).\displaystyle\sup_{q\in\mathcal{B}^{*}_{k,s}(x,\delta,a_{0},q_{0})}R^{*}_{k,s}(x,\delta,a_{0},q_{0};q)\leq\sup_{q\in\mathcal{B}^{*}_{k,s}(x,\delta,a_{0},q_{0})}R_{k,s}(q)\leq\sup_{q\leq sQ^{k}}R_{k,s}(q).

Combining this with bounds (24), (26) and (28), we have

|𝒜k(x,δ,α0)|s|𝒜k(x,δ,a0,q0)|sN1Q2ksupqsQkRk,s(q).\displaystyle|\mathcal{A}_{k}(x,\delta,\alpha_{0})|^{s}\leq|\mathcal{A}^{*}_{k}(x,\delta,a_{0},q_{0})|^{s}\ll N^{-1}Q^{2k}\sup_{q\leq sQ^{k}}R_{k,s}(q).

We arrive at Lemma 2.1 by running this estimate through (23).

5.2 Proof of Lemma 2.2

Here we continue with the second way.

Note that

qk,s(x,δ,a0,q0)Rk,s(x,δ,a0,q0;q)2\displaystyle\sum_{q\in\mathcal{B}^{*}_{k,s}(x,\delta,a_{0},q_{0})}R^{*}_{k,s}(x,\delta,a_{0},q_{0};q)^{2}

counts the number of solutions to the equation

p1k++psk=q1k++qsk\displaystyle p_{1}^{k}+\ldots+p_{s}^{k}=q_{1}^{k}+\ldots+q_{s}^{k} (29)

with each pi,qi𝒜k(x,δ,a0,q0)p_{i},q_{i}\in\mathcal{A}^{*}_{k}(x,\delta,a_{0},q_{0}). By orthogonality of exponentials, the integral

01|n𝒜k(x,δ,a0,q0)e(αnk)|2s𝑑α\displaystyle\int_{0}^{1}\left|\sum_{n\in\mathcal{A}^{*}_{k}(x,\delta,a_{0},q_{0})}e(\alpha n^{k})\right|^{2s}d\alpha

also counts the number of solutions to (29).

Suppose that, uniformly in subsets 𝒜\mathcal{A} of positive integers Q\leq Q, we have the bound

01|n𝒜e(αnk)|2s𝑑αDε,k,s(Q)|𝒜|s.\displaystyle\int_{0}^{1}\left|\sum_{n\in\mathcal{A}}e(\alpha n^{k})\right|^{2s}d\alpha\ll D_{\varepsilon,k,s}(Q)\cdot|\mathcal{A}|^{s}.

Recall that this is the supposition of Lemma 2.2. If q𝒜k(x,δ,a0,q0)q\in\mathcal{A}^{*}_{k}(x,\delta,a_{0},q_{0}), then qxQq\leq x\leq Q. So this mean value estimate holds with 𝒜=𝒜k(x,δ,a0,q0)\mathcal{A}=\mathcal{A}^{*}_{k}(x,\delta,a_{0},q_{0}). Combining this with bounds (27) and (28), we have

|𝒜k(x,δ,a0,q0)|2sN1Q2kDε,k,s(Q)|𝒜k(x,δ,a0,q0)|s.\displaystyle|\mathcal{A}^{*}_{k}(x,\delta,a_{0},q_{0})|^{2s}\ll N^{-1}Q^{2k}\cdot D_{\varepsilon,k,s}(Q)\cdot|\mathcal{A}^{*}_{k}(x,\delta,a_{0},q_{0})|^{s}.

Hence, by bound (24), we have

|𝒜k(x,δ,α0)|s|𝒜k(x,δ,a0,q0)|sN1Q2kDε,k,s(Q).\displaystyle|\mathcal{A}_{k}(x,\delta,\alpha_{0})|^{s}\leq|\mathcal{A}^{*}_{k}(x,\delta,a_{0},q_{0})|^{s}\ll N^{-1}Q^{2k}\cdot D_{\varepsilon,k,s}(Q).

We arrive at Lemma 2.2 by running this through (23).

6 Proof of Theorem 2.3

Let kk and nn be positive integers. The following implied constants are independent of nn, but they may depend on kk or on an arbitrarily small positive real number ε\varepsilon.

6.1 Part (i)

In this subsection, we assume that k2k\geq 2.

From the epsilonic power estimate on the divisor function, we have the bound

Rk,2(n)nε.\displaystyle R_{k,2}(n)\ll n^{\varepsilon}. (30)
Proof.

Assuming that kk is even, we have Rk,2(n)R2,2(n)R_{k,2}(n)\leq R_{2,2}(n). So, to finish off this case, we merely apply the classical bound R2,2(n)nεR_{2,2}(n)\ll n^{\varepsilon} [Gro85, Ch. 2, §. 4].

Assume that kk is odd, and suppose that aa and bb are positive integers satisfying ak+bk=na^{k}+b^{k}=n. Recalling the factorisation ak+bk=(a+b)(ak1ak2b+abk2+bk1)a^{k}+b^{k}=(a+b)(a^{k-1}-a^{k-2}b+\cdots-ab^{k-2}+b^{k-1}), we see that d=a+bd=a+b divides nn. Because k>1k>1, we have d<n<dkd<n<d^{k}, and thus also 0<dkn<nkn0<d^{k}-n<n^{k}-n. Computing n=ak+bkdkmodan=a^{k}+b^{k}\equiv d^{k}\bmod a, we see that aa divides dknd^{k}-n. Hence, as desired, we have

Rk,2(n)dnd<n<dka(dkn)1dnd<n<dknε/2nε.R_{k,2}(n)\leq\sum_{\begin{subarray}{c}d\mid n\\ d<n<d^{k}\end{subarray}}\sum_{a\mid(d^{k}-n)}1\ll\sum_{\begin{subarray}{c}d\mid n\\ d<n<d^{k}\end{subarray}}n^{\varepsilon/2}\ll n^{\varepsilon}.\qed

To get Theorem 2.3 part (i), we merely insert estimate (30) into Lemma 2.1 with s=2s=2.

6.2 Part (ii)

In this subsection, we assume that k3k\geq 3.

Using arithmetic algebraic geometry, Marmon derived the bound [Mar10, Thm. 1.3]

Rk,4(n)n1k+2kk.\displaystyle R_{k,4}(n)\ll n^{\frac{1}{k}+\frac{2}{k\sqrt{k}}}. (31)

The proof is non-elementary, and we don’t copy it here. As suggested by Marc Munsch, we get Theorem 2.3 part (ii) by inserting estimate (31) into Lemma 2.1 with s=4s=4.

7 Proof of Theorem 2.4

Let QQ and k,s,tk,s,t be positive integers. Let 𝒜\mathcal{A} be a subset of {positive integers Q}\{\text{positive integers $\leq Q$}\}. The forthcoming implied constants are independent of QQ and 𝒜\mathcal{A}, but they may depend on k,s,tk,s,t or on an arbitrarily small positive real number ε\varepsilon.

From Wooley’s recent mean value estimate [Woo18, Thm. 1.1], we get the following family of mean value estimates. For each tkt\leq k, we have

01|n𝒜e(αnk)|t(t+1)𝑑αQ12t(t1)+ε|𝒜|12t(t+1).\displaystyle\int_{0}^{1}\left|\sum_{n\in\mathcal{A}}e(\alpha n^{k})\right|^{t(t+1)}d\alpha\ll Q^{\frac{1}{2}t(t-1)+\varepsilon}|\mathcal{A}|^{\frac{1}{2}t(t+1)}. (32)
Proof.

We assume that tkt\leq k, and we put s=12t(t+1)s=\frac{1}{2}t(t+1). By orthogonality of exponentials, the integral on the left-hand side of (32) counts the number of solutions to the equation

m1k++msk=n1k++nsk\displaystyle m_{1}^{k}+\ldots+m_{s}^{k}=n_{1}^{k}+\ldots+n_{s}^{k} (33)

with each mi,ni𝒜m_{i},n_{i}\in\mathcal{A}. We now inflate this equation to a partial Vinogradov system, a standard technique in the context of Waring’s problem. Namely, we consider the system of tt equations

m1k++msk\displaystyle m_{1}^{k}+\ldots+m_{s}^{k} =n1k++nsk\displaystyle=n_{1}^{k}+\ldots+n_{s}^{k} (34)
m1t1++mst1\displaystyle m_{1}^{t-1}+\ldots+m_{s}^{t-1} =n1t1++nst1\displaystyle=n_{1}^{t-1}+\ldots+n_{s}^{t-1}
\displaystyle\vdots
m1++ms\displaystyle m_{1}+\ldots+m_{s} =n1++ns\displaystyle=n_{1}+\ldots+n_{s}

with each mi,ni𝒜m_{i},n_{i}\in\mathcal{A}. As we explain in Subsection 7.1, when we pass from counting solutions of equation (33) to counting solutions of this partial Vinogradov system (34), we incur an inflationary factor of

j=1t1Qj=Q12t(t1).\displaystyle\ll\prod_{j=1}^{t-1}Q^{j}=Q^{\frac{1}{2}t(t-1)}.

The number of solutions to our partial Vinogradov system is equal to

(0,1]t|n𝒜e(α1n++αt1nt1+αtnk)|2s𝑑α.\displaystyle\int_{(0,1]^{t}}\left|\sum_{n\in\mathcal{A}}e(\alpha_{1}n+\cdots+\alpha_{t-1}n^{t-1}+\alpha_{t}n^{k})\right|^{2s}d\alpha.

So it suffices to show that this last integral is Qε|𝒜|s\ll Q^{\varepsilon}|\mathcal{A}|^{s}, for which we apply [Woo18, Thm. 1.1]. ∎

To get Theorem 2.4, we merely insert estimate (32) into Lemma 2.2 with s=12t(t+1)s=\frac{1}{2}t(t+1).

7.1 Explaining the inflationary factor

Here we introduce some quantities that depend on 𝒜\mathcal{A}. Crucially, the implied constants are independent of 𝒜\mathcal{A}. For each positive integer \ell, let k,s(𝒜,)\mathcal{R}_{k,s}(\mathcal{A},\ell) be the set of ss-tuples (n1,,ns)𝒜s(n_{1},\ldots,n_{s})\in\mathcal{A}^{s} satisfying n1k++nsk=n_{1}^{k}+\ldots+n_{s}^{k}=\ell, and let Rk,s(𝒜,)=|k,s(𝒜,)|R_{k,s}(\mathcal{A},\ell)=|\mathcal{R}_{k,s}(\mathcal{A},\ell)| be the number of these. Let

k,s,t(𝒜,)={(n1++ns,,n1t1++nst1):(n1,,ns)k,s(𝒜,)}\mathcal{B}_{k,s,t}(\mathcal{A},\ell)=\{(n_{1}+\ldots+n_{s},\ldots,n_{1}^{t-1}+\ldots+n_{s}^{t-1}):(n_{1},\ldots,n_{s})\in\mathcal{R}_{k,s}(\mathcal{A},\ell)\}

so that (n1,,ns)(n1++ns,,n1t1++nst1)(n_{1},\ldots,n_{s})\mapsto(n_{1}+\ldots+n_{s},\ldots,n_{1}^{t-1}+\ldots+n_{s}^{t-1}) defines a function

k,s(𝒜,)k,s,t(𝒜,).\mathcal{R}_{k,s}(\mathcal{A},\ell)\to\mathcal{B}_{k,s,t}(\mathcal{A},\ell).

As per usual, we need to consider the size of the fibres of this function. For each (1,,t1)k,s,t(𝒜,)(\ell_{1},\ldots,\ell_{t-1})\in\mathcal{B}_{k,s,t}(\mathcal{A},\ell), let Vk,s,t(𝒜,;1,,t1)V_{k,s,t}(\mathcal{A},\ell;\ell_{1},\ldots,\ell_{t-1}) be the size of the fibre. Then we have the formula

Rk,s(𝒜,)=(1,,t1)k,s,t(𝒜,)Vk,s,t(𝒜,;1,,t1).R_{k,s}(\mathcal{A},\ell)=\sum_{(\ell_{1},\ldots,\ell_{t-1})\in\mathcal{B}_{k,s,t}(\mathcal{A},\ell)}V_{k,s,t}(\mathcal{A},\ell;\ell_{1},\ldots,\ell_{t-1}).

By Cauchy-Schwarz, we have

Rk,s(𝒜,)2|k,s,t(𝒜,)|(1,,t1)k,s,t(𝒜,)Vk,s,t(𝒜,;1,,t1)2.R_{k,s}(\mathcal{A},\ell)^{2}\leq|\mathcal{B}_{k,s,t}(\mathcal{A},\ell)|\sum_{(\ell_{1},\ldots,\ell_{t-1})\in\mathcal{B}_{k,s,t}(\mathcal{A},\ell)}V_{k,s,t}(\mathcal{A},\ell;\ell_{1},\ldots,\ell_{t-1})^{2}.

Now we use the assumption that 𝒜{positive integers Q}\mathcal{A}\subseteq\{\text{positive integers $\leq Q$}\} to get a bound on |k,s,t(𝒜,)||\mathcal{B}_{k,s,t}(\mathcal{A},\ell)|. This gives the inflationary factor. Indeed,

|k,s,t(𝒜,)|j=1t1Qj=Q12t(t1).|\mathcal{B}_{k,s,t}(\mathcal{A},\ell)|\ll\prod_{j=1}^{t-1}Q^{j}=Q^{\frac{1}{2}t(t-1)}.

So we have

Rk,s(𝒜,)2Q12t(t1)(1,,t1)k,s,t(𝒜,)Vk,s,t(𝒜,;1,,t1)2.R_{k,s}(\mathcal{A},\ell)^{2}\ll Q^{\frac{1}{2}t(t-1)}\sum_{(\ell_{1},\ldots,\ell_{t-1})\in\mathcal{B}_{k,s,t}(\mathcal{A},\ell)}V_{k,s,t}(\mathcal{A},\ell;\ell_{1},\ldots,\ell_{t-1})^{2}.

Now we sum over all \ell of the form =n1k++nsk\ell=n_{1}^{k}+\ldots+n_{s}^{k} with n1,,ns𝒜n_{1},\ldots,n_{s}\in\mathcal{A}. This gives

Rk,s(𝒜,)2Q12t(t1)(1,,t1)k,s,t(𝒜,)Vk,s,t(𝒜,;1,,t1)2.\sum_{\ell}R_{k,s}(\mathcal{A},\ell)^{2}\ll Q^{\frac{1}{2}t(t-1)}\cdot\sum_{\ell}\sum_{(\ell_{1},\ldots,\ell_{t-1})\in\mathcal{B}_{k,s,t}(\mathcal{A},\ell)}V_{k,s,t}(\mathcal{A},\ell;\ell_{1},\ldots,\ell_{t-1})^{2}.

Finally, we observe what these sums count. The sum on the left-hand side counts the number of solutions to equation (33). The sums on the right-hand side count the number of solutions to our partial Vinogradov system (34).

References

  • [Bai06] Stephan Baier “On the large sieve with sparse sets of moduli” In Journal of the Ramanujan Mathematical Society 21.3, 2006, pp. 279–295
  • [BDG16] Jean Bourgain, Ciprian Demeter and Larry Guth “Proof of the main conjecture in Vinogradov’s Mean Value Theorem \break for degrees higher than three” In Annals of Mathematics 184.2 Annals of Mathematics, 2016, pp. 633–682 DOI: 10.4007/annals.2016.184.2.7
  • [BLZ19] Stephan Baier, Sean B. Lynch and Liangyi Zhao “A lower bound for the large sieve with square moduli” In Bulletin of the Australian Mathematical Society 100.2 Cambridge University Press, 2019, pp. 225–229 DOI: 10.1017/S0004972719000224
  • [BMS22] Roger C. Baker, Marc Munsch and Igor E. Shparlinski “Additive energy and a large sieve inequality for sparse sequences” In Mathematika 68.2 Wiley, 2022, pp. 362–399 DOI: 10.1112/mtk.12140
  • [BZ05] Stephan Baier and Liangyi Zhao “Large sieve inequality with characters to powerful moduli” In International Journal of Number Theory 01.02 World Scientific Pub Co Pte Lt, 2005, pp. 265–279 DOI: 10.1142/s1793042105000170
  • [BZ08] Stephan Baier and Liangyi Zhao “An improvement for the large sieve for square moduli” In Journal of Number Theory 128.1 Academic Press Inc., 2008, pp. 154–174 DOI: 10.1016/j.jnt.2007.03.004
  • [Coo+22] Brian Cook et al. “A decoupling interpretation of an old argument for Vinogradov’s Mean Value Theorem”, 2022 arXiv:2207.01097 [math.CA]
  • [Gro85] Emil Grosswald “Representations of Integers as Sums of Squares” Springer, 1985
  • [Hal12] Karin Halupczok “A new bound for the large sieve inequality with power moduli” In International Journal of Number Theory 08.03 World Scientific Pub Co Pte Lt, 2012, pp. 689–695 DOI: 10.1142/s179304211250039x
  • [Hal15] Karin Halupczok “Large sieve inequalities with general polynomial moduli” In The Quarterly Journal of Mathematics 66.2 Oxford University Press (OUP), 2015, pp. 529–545 DOI: 10.1093/qmath/hav011
  • [Hal18] Karin Halupczok “Vinogradov’s Mean Value Theorem as an Ingredient in Polynomial Large Sieve Inequalities and Some Consequences” In Irregularities in the Distribution of Prime Numbers Springer International Publishing, 2018, pp. 97–109 DOI: 10.1007/978-3-319-92777-0˙5
  • [Hal20] Karin Halupczok “Bounds for discrete moments of Weyl sums and applications” In Acta Arithmetica 194.1 Institute of Mathematics, Polish Academy of Sciences, 2020, pp. 1–28 DOI: 10.4064/aa181207-23-9
  • [Mar10] Oscar Marmon “Sums and differences of four kth powers” In Monatshefte für Mathematik 164.1 Springer ScienceBusiness Media LLC, 2010, pp. 55–74 DOI: 10.1007/s00605-010-0248-2
  • [McG22] Oliver McGrath “On the asymmetric additive energy of polynomials”, 2022 arXiv:2207.03595 [math.NT]
  • [Mon78] Hugh L. Montgomery “The analytic principle of the large sieve” In Bulletin of the American Mathematical Society 84.4 American Mathematical Society, 1978, pp. 547–567 DOI: 10.1090/S0002-9904-1978-14497-8
  • [Mun21] Marc Munsch “A large sieve inequality for power moduli” In Acta Arithmetica 197.2 Institute of Mathematics, Polish Academy of Sciences, 2021, pp. 207–211 DOI: 10.4064/aa191212-1-6
  • [Vau97] R.. Vaughan “The Hardy-Littlewood Method” Cambridge University Press, 1997
  • [Woo16] Trevor D. Wooley “The cubic case of the main conjecture in Vinogradov’s mean value theorem” In Advances in Mathematics 294 Elsevier BV, 2016, pp. 532–561 DOI: 10.1016/j.aim.2016.02.033
  • [Woo18] Trevor D. Wooley “Nested efficient congruencing and relatives of Vinogradov’s mean value theorem” In Proceedings of the London Mathematical Society 118.4 Wiley, 2018, pp. 942–1016 DOI: 10.1112/plms.12204
  • [Zha04] Liangyi Zhao “Large sieve inequality with characters to square moduli” In Acta Arithmetica 112.3 Institute of Mathematics, Polish Academy of Sciences, 2004, pp. 297–308 DOI: 10.4064/aa112-3-5

Stephan Baier, Department of Mathematics, Ramakrishna Mission Vivekananda Educational Research Institute, G. T. Road, PO Belur Math, Howrah, West Bengal 711202, India

E-mail address: stephanbaier2017@gmail.com

Sean B. Lynch, Department of Pure Mathematics, School of Mathematics and Statistics, UNSW Sydney, Sydney NSW 2052, Australia

E-mail address: s.b.lynch@unsw.edu.au