This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Late-Time Viscous Cosmology in f(R,T)f(R,T) Gravity

Simran Arora 0000-0003-0326-8945 dawrasimran27@gmail.com Department of Mathematics, Birla Institute of Technology and Science-Pilani,
Hyderabad Campus, Hyderabad-500078, India.
   Snehasish Bhattacharjee 0000-0002-7350-7043 snehasish.bhattacharjee.666@gmail.com Department of Astronomy, Osmania University, Hyderabad-500007, India.    P.K. Sahoo 0000-0003-2130-8832 pksahoo@hyderabad.bits-pilani.ac.in Department of Mathematics, Birla Institute of Technology and Science-Pilani,
Hyderabad Campus, Hyderabad-500078, India.
Abstract

Abstract: The article communicates an alternative route to suffice the late-time acceleration considering a bulk viscous fluid with viscosity coefficient ζ=ζ0+ζ1H+ζ2H2\zeta=\zeta_{0}+\zeta_{1}H+\zeta_{2}H^{2}, where ζ0,ζ1,ζ2\zeta_{0},\zeta_{1},\zeta_{2} are constants in the framework of f(R,T)f(R,T) modified gravity. We presume the f(R,T)f(R,T) functional form to be f=R+2αTf=R+2\alpha T where α\alpha is a constant. We then solve the field equations for the Hubble Parameter and study the cosmological dynamics of kinematic variables such as deceleration, jerk, snap and lerk parameters as a function of cosmic time. We observe the deceleration parameter to be highly sensitive to α\alpha and undergoes a signature flipping at around t10t\sim 10 Gyrs for α=0.179\alpha=-0.179 which is favored by observations. The EoS parameter for our model assumes values close to 1-1 at t0=13.7t_{0}=13.7Gyrs which is in remarkable agreement with the latest Planck measurements. Next, we study the evolution of energy conditions and find that our model violate the Strong Energy Condition in order to explain the late-time cosmic acceleration. To understand the nature of dark energy mimicked by the bulk viscous baryonic fluid, we perform some geometrical diagnostics like the {r,s}\{r,s\} and {r,q}\{r,q\} plane. We found the model to mimic the nature of a Chaplygin gas type dark energy model at early times while a Quintessence type in distant future. Finally, we study the violation of continuity equation for our model and show that in order to explain the cosmic acceleration at the present epoch, energy-momentum must violate.

Keywords: f(R,T)f(R,T) gravity; Bulk Viscosity; Energy Conditions; Statefinder parameters

f(R,T)f(R,T) gravity; Equation of State; Bulk Viscosity; Energy Conditions; Statefinder parameters
pacs:
95.36.+x, 04.50.kd, 98.80.Jk.

I Introduction

Multiple observations confirm that at present time, the universe is experiencing a phase of accelerated expansion Riess98 ; Per99 . The enigmatic entity called “Dark Energy” with an EoS parameter ω1\omega\simeq-1 is presumed to be the culprit for such an accelerated expansion. “Dark Energy” possess negative pressure and thence create antigravity effect which permeate in all of spacetime, owing to which cosmic structures separated by Mpcs manages to overcome their mutual gravitational forces and fly apart from each other. Nonetheless, no conclusive evidence have yet emerged to solidify the ominous presence of “Dark Energy”. As a consequence, many alternate models have emerged to explain this conundrum Ratra88 ; cal88 ; Buc00 ; Arm01 ; Tom01 ; Mil03 ; hunt10 ; Eas11 ; Rad12 ; Rad13 ; Pan17 ; Pan19 .
In majority of the cosmological models, the cosmic fluid is presumed to be devoid of any viscous (shear and bulk) which greatly simplifies the field equations. Such simplifications may seem plausible under most circumstances but not at all times. For instance, when fluid motion near solid boundaries is considered Brevik11 . In the context of cosmology, the cosmic fluid to a large extent is spatially isotropic and therefore the shear viscosity plays no role in cosmic dynamics. Having said that, the bulk viscosity could play a very important role in governing the cosmic evolution by modifying the background dynamics Almada20 ; singh . Some of the earliest works in bulk viscous cosmology dates back to 1970’s Misner68 ; Israel ; Murphy ; Belinskii . Around 1980’s, pioneering studies reported the possibility of inflation being driven by bulk viscous fluids Waga ; Barrow86 ; Barrow88 . The phenomenon that “Dark Energy” could be an effect of bulk viscosity in the cosmic medium was reported in singh48 . Bulk viscous fluids have also been reported to be promising candidates for “Dark Matter” singh49 , “Dark Energy” Cataldo05 ; Brevik05 ; Setare10 ; Gagnon11 and unified scenarios Li09 ; Hipolito09 ; Hipolito10 ; Montiel11 ; Fabris11 ; Velten11 . Other interesting studies can be found in Fabris06 ; Kremer12 ; Avelino13 ; singh ; Atreya18 ; Valentino19 (aslo see pan55 for a recent review on bulk viscous cosmology).
In this article we investigate the possibility that an accelerated expansion ought to be possible owing to the presence of a bulk viscous baryonic fluid. We therefore turn our attention to modified gravity theories (MGT) which refute the existence of the “Dark Energy” and “Dark Matter” by presuming them to be purely geometrical in nature. MGTs are simple geometrical extensions of General Relativity. The action here is altered by substituting the Ricci scalar RR with other curvature invariants such as Torsion scalar 𝒯\mathcal{T}, Gauss-Bonnet scalar 𝒢\mathcal{G}, non-metricity 𝒬\mathcal{Q} etc.
In this work we shall work with f(R,T)f(R,T) gravity theory in which the Ricci scalar RR is replaced with a suitable functional form of RR and trace of energy momentum tensor TT harko and therefore is a straightforward conjecture to f(R)f(R) gravity (see cap02 ; cap11 ). f(R,T)f(R,T) gravity have proved to be successful in numerous cosmological sectors such as dark matter in22 dark energy in21 , massive pulsars in23 ; santos19 , super-Chandrasekhar white dwarfs in25 , wormholes Aziz13 ; moraes2017 ; moraes17 ; Yousaf2017 ; Sahoo2018 ; Sahoo18 ; moraes18 ; Elizalde18 ; in26 ; moraes19 ; moraes/19 , gravitational waves Alves ; in36 ; Bhatti20 , bouncing cosmology bounce ; bounce2 , baryogenesis baryo ; baryo2 , Big-Bang nucleosynthesis bang and in varying speed of light scenarios physical .
The article is methodized as follows: In Section II we provide a summary of f(R,T)f(R,T) gravity and solve the field equations assuming a bulk viscous fluid. In Section III we study the temporal evolution of kinematic variables. In Section IV we investigate the evolution of energy-density, effective pressure and EoS parameter. In Section V we study the growth of various energy conditions. Whereas in Section VI we perform some geometrical diagnostics for our model. In Section VII we study the violation of energy-momentum and in Section VIII we conclude with our results.

II Overview of f(R,T)f(R,T) Gravity

The action in f(R,T)f(R,T) gravity is given as (harko, )

S=12d4xg(f(R,T)+2Lm),S=\frac{1}{2}\int d^{4}x\sqrt{-g}(f(R,T)+2L_{m}), (1)

here gg is the metric determinant and LmL_{m} the matter Lagrangian.

Variation of the above action with respect to the metric tensor gives

fR(R,T)Rμν12f(R,T)gμν+(gμνμν)fR(R,T)=TμνfT(R,T)TμνfT(R,T)Θμν,f_{R}(R,T)R_{\mu\nu}-\frac{1}{2}f(R,T)g_{\mu\nu}+(g_{\mu\nu}\square-\nabla_{\mu}\nabla_{\nu})f_{R}(R,T)\\ =T_{\mu\nu}-f_{T}(R,T)T_{\mu\nu}-f_{T}(R,T)\Theta_{\mu\nu}, (2)

where, μ\nabla_{\mu} and ν\nabla_{\nu} represents the covariant derivative and Θμν\Theta_{\mu\nu} is defined by

ΘμνgαβδTαβδgμν.\Theta_{\mu\nu}\equiv g^{\alpha\beta}\frac{\delta T_{\alpha\beta}}{\delta g^{\mu\nu}}. (3)

We shall consider a flat spacetime geometry

ds2=dt2a2(t)[dr2+r2dθ2+r2sin2θdϕ2]ds^{2}=dt^{2}-a^{2}(t)[dr^{2}+r^{2}d\theta^{2}+r^{2}\sin^{2}\theta d\phi^{2}] (4)

where a(t)a(t) is the cosmic scale factor.

the components of four-velocity uμu^{\mu} are uμ=(1,0)u^{\mu}=(1,0) in comoving coordinates. Assume that the cosmic fluid possesses a bulk viscosity ζ\zeta

Tμν=ρuμuνp¯hμν.T_{\mu\nu}=\rho u_{\mu}u_{\nu}-\overline{p}h_{\mu\nu}. (5)

where hμν=gμν+uμuνh_{\mu\nu}=g_{\mu\nu}+u_{\mu}u_{\nu} and p¯=p3ζH\overline{p}=p-3\zeta H is the effective pressure.

If we choose the Lagrangian density as Lm=p¯L_{m}=-\overline{p} then the tensor Θμν\Theta_{\mu\nu} becomes

Θμν=2Tμνp¯gμν.\Theta_{\mu\nu}=-2T_{\mu\nu}-\overline{p}g_{\mu\nu}. (6)

using (5) and (6), the field equation for the bulk viscous fluid become

Rμν12Rgμν=Tμν+2f(T)Tμν+(2p¯f(T)+f(T))gμν.R_{\mu\nu}-\frac{1}{2}Rg_{\mu\nu}=T_{\mu\nu}+2f^{\prime}(T)T_{\mu\nu}+(2\overline{p}f^{\prime}(T)+f(T))g_{\mu\nu}. (7)

For the particular choice of the function f(T)=αTf(T)=\alpha T, where α\alpha is a constant, we get field equations as

3H2=ρ+2α(ρ+p¯)+αT,3H^{2}=\rho+2\alpha(\rho+\overline{p})+\alpha T, (8)
2H˙+3H2=p¯+αT,2\dot{H}+3H^{2}=-\overline{p}+\alpha T, (9)

where T=ρ3p¯T=\rho-3\overline{p}. From Eqs. (8) and (9), we have

2H˙+(1+2α)(p+ρ)3(1+2α)ζH=0.\ 2\dot{H}+(1+2\alpha)(p+\rho)-3(1+2\alpha)\zeta H=0. (10)

II.1 Bulk Viscous Solutions

Note that the Eqs. (8) and (9) contain four unknown parameters viz. ρ,p,ζ&H\rho,p,\zeta\ \&H. To get an exact solution, two more supplementary equations are necessary. Bearing that in mind, we consider the following relationship between pressure and density

p=(γ1)ρ,p=(\gamma-1)\rho, (11)

where 0<γ<10<\gamma<1 is a constant.
Additionally, we assume the bulk viscosity coefficient ζ\zeta as

ζ=ζ0+ζ1H+ζ2H2.\zeta=\zeta_{0}+\zeta_{1}H+\zeta_{2}H^{2}. (12)

ζ0,ζ1,ζ2\zeta_{0},\zeta_{1},\zeta_{2} are constants.

Employing Eqs. (8), (11), (12), the expression of energy density reads

ρ=3((1αζ1)H2αζ0Hαζ2H3)(1+4ααγ).\rho=\frac{3((1-\alpha\zeta_{1})H^{2}-\alpha\zeta_{0}H-\alpha\zeta_{2}H^{3})}{(1+4\alpha-\alpha\gamma)}. (13)

Furthermore, from Eqs. (10), (11), (13), we arrive at the following equation

2H˙3(1+2α)[ζ0(1+4α)(1+4ααγ)]H+3(1+2α)[γ(1+4α)ζ11+4ααγ]H23(1+2α)[ζ2(1+4α)1+4ααγ)]H3=0.2\dot{H}-3(1+2\alpha)\left[\frac{\zeta_{0}(1+4\alpha)}{(1+4\alpha-\alpha\gamma)}\right]H+3(1+2\alpha)\left[\frac{\gamma-(1+4\alpha)\zeta_{1}}{1+4\alpha-\alpha\gamma}\right]H^{2}-3(1+2\alpha)\left[\frac{\zeta_{2}(1+4\alpha)}{1+4\alpha-\alpha\gamma)}\right]H^{3}=0. (14)

Owing to the high non-linearity of the above equation, we restrict ourselves to terms with leading orders in HH which yields

2H˙+[3(1+2α)(1+4α)ζ2(1+4ααγ)]H3=0.2\dot{H}+\left[\frac{3(1+2\alpha)(1+4\alpha)\zeta_{2}}{(1+4\alpha-\alpha\gamma)}\right]H^{3}=0. (15)

Solving for the Hubble parameter HH yields parameter HH as,

H=1k1t+c,H=\frac{1}{\sqrt{k_{1}t+c}}, (16)

where k1=3(1+2α)ζ2(1+4α)1+4ααγk_{1}=\frac{3(1+2\alpha)\zeta_{2}(1+4\alpha)}{1+4\alpha-\alpha\gamma}, with cc being a constant of integration.

From the relation H=a˙aH=\frac{\dot{a}}{a}, we obtain the scale factor as

a(t)=c1e(2/k1)k1t+c,a(t)=c_{1}e^{(2/k_{1})\sqrt{k_{1}t+c}}, (17)

where c1c_{1} is an integrating constant.

The deceleration parameter qq upon using q=1H˙H2q=-1-\frac{\dot{H}}{H^{2}} reads,

q=1+k12k1t+c.q=-1+\frac{k_{1}}{2\sqrt{k_{1}t+c}}. (18)

III Kinematic variables

The evolution of the deceleration parameter (qq) is shown in Fig. 1. We observe qq to be highly sensitive to the model parameter α\alpha and undergoes a change in signature at around t10t\sim 10Gyrs for α=0.179\alpha=-0.179 which is favored by observations. Interestingly, for other values of α\alpha, the signature flipping is not observed. For instance, when α=0.45\alpha=-0.45, our model represents an eternal acceleration whereas for α=0.69\alpha=0.69, q>0q>0 and therefore imply an decelerating universe. Both of these scenarios are highly incompatible with observations.

Behavior of parameters at t=13.7
α\alpha k1k_{1} qq c
α=0.45\alpha=-0.45 k1>0k_{1}>0 q<0q<0 c>0c>0 or c<0c<0
α=0.69\alpha=0.69 k1>0k_{1}>0 q>0q>0 c>0c>0 or c<0c<0
α=0.179\alpha=-0.179 k1>0k_{1}>0 q shows transition c>0c>0 or c<0c<0
α<0.5\alpha<-0.5 k1<0k_{1}<0 not available c>0c>0 or c<0c<0
α=0.5\alpha=-0.5 k1=0k_{1}=0 q=1q=-1 c>0c>0 or c<0c<0
Refer to caption
Figure 1: Time variation of deceleration parameter.

The Taylor’s expansion of scale factor to get the higher order derivatives of deceleration parameter such as jerk (jj), snap (kk) and lerk (ll) are useful in understanding the dynamics of the universe and are defined as follows Visser ; Capozziello ; Mandal/2020

j(t)=1ad3adt3[1adadt]3,j(t)=\frac{1}{a}\frac{d^{3}a}{dt^{3}}\left[\frac{1}{a}\frac{da}{dt}\right]^{-3}, (19)
s(t)=1ad4adt4[1adadt]4,s(t)=\frac{1}{a}\frac{d^{4}a}{dt^{4}}\left[\frac{1}{a}\frac{da}{dt}\right]^{-4}, (20)
l(t)=1ad5adt5[1adadt]5.l(t)=\frac{1}{a}\frac{d^{5}a}{dt^{5}}\left[\frac{1}{a}\frac{da}{dt}\right]^{-5}. (21)

Employing (18) in (19), (20) & (21), the expressions of j(t)j(t), s(t)s(t) & l(t)l(t) reads respectively as

j(t)=k1(6c+k1t3k14t)4c4(c+k1t).\displaystyle j(t)=-\frac{k_{1}\left(6\sqrt{c+k_{1}t}-3k_{1}-4t\right)-4c}{4(c+k_{1}t)}. (22)
s(t)=k1(6k1(5c+k1t4t)+8tc+k1t15k12)+8c(c+k1t3k1)8(c+k1t)3/2.\displaystyle s(t)=\frac{k_{1}\left(6k_{1}\left(5\sqrt{c+k_{1}t}-4t\right)+8t\sqrt{c+k_{1}t}-15k_{1}^{2}\right)+8c\left(\sqrt{c+k_{1}t}-3k_{1}\right)}{8(c+k_{1}t)^{3/2}}. (23)
l(t)=16c2+k12(30k1(7c+k1t6t)+16t(t5c+k1t)+105k12)+4ck1(20c+k1t+45k1+8t)16(c+k1t)2.\displaystyle l(t)=\frac{16c^{2}+k_{1}^{2}\left(-30k_{1}\left(7\sqrt{c+k_{1}t}-6t\right)+16t\left(t-5\sqrt{c+k_{1}t}\right)+105k_{1}^{2}\right)+4ck_{1}\left(-20\sqrt{c+k_{1}t}+45k_{1}+8t\right)}{16(c+k_{1}t)^{2}}. (24)

where k1=3(2α+1)(4α+1)ζ2α(γ)+4α+1k_{1}=-\frac{3(2\alpha+1)(4\alpha+1)\zeta_{2}}{\alpha(-\gamma)+4\alpha+1}.

Refer to caption
Figure 2: Time variation of jerk parameter with α=0.179\alpha=-0.179, γ=0.01\gamma=0.01, ζ2=18.4\zeta_{2}=-18.4, c=14.9.
Refer to caption
Figure 3: Time variation of snap parameter with α=0.179\alpha=-0.179, γ=0.01\gamma=0.01, ζ2=18.4\zeta_{2}=-18.4, c=14.9.
Refer to caption
Figure 4: Time variation of lerk parameter with α=0.179\alpha=-0.179, γ=0.01\gamma=0.01, ζ2=18.4\zeta_{2}=-18.4, c=14.9.

The rate of change of deceleration parameter is represented by the jerk parameter and therefore is a useful parameter to understand the future of the universe. These higher derivatives are also useful in understanding the emergence of sudden future singularities 16 .
In Fig. 2, we show the temporal evolution of jerk parameter where the positivity of jerk parameter ensures an accelerated expansion. In Fig. 3 the snap parameter is observed to undergo a signature flipping at around t8t\sim 8 Gyr. In Fig. 4, we observe a positive lerk parameter for the entire cosmic aeon much like the jerk parameter. Interestingly, both the jerk and lerk are decreasing function of time whereas the snap is clearly an increasing function. We note that the magnitudes and behaviors of all these parameters strongly suggest an accelerating universe at the present epoch (i.e., t=13.7t=13.7 Gyrs).

IV The EoS Parameter

In this section we shall explore the physical evolution of energy density, effective pressure and The equation of state(EoS) parameter.

Substituting (16) into (13), the expression of density ρ\rho reads

ρ=αζ0c3(2α+1)(4α+1)ζ2tα(γ)+4α+1+3(1αζ1)c3(2α+1)(4α+1)ζ2tα(γ)+4α+1αζ2(c3(2α+1)(4α+1)ζ2tα(γ)+4α+1)3/2(1+4ααγ).\displaystyle\rho=\frac{-\frac{\alpha\zeta_{0}}{\sqrt{c-\frac{3(2\alpha+1)(4\alpha+1)\zeta_{2}t}{\alpha(-\gamma)+4\alpha+1}}}+\frac{3(1-\alpha\zeta_{1})}{c-\frac{3(2\alpha+1)(4\alpha+1)\zeta_{2}t}{\alpha(-\gamma)+4\alpha+1}}-\frac{\alpha\zeta_{2}}{\left(c-\frac{3(2\alpha+1)(4\alpha+1)\zeta_{2}t}{\alpha(-\gamma)+4\alpha+1}\right)^{3/2}}}{(1+4\alpha-\alpha\gamma)}. (25)

From the relation p¯=p3ζH\overline{p}=p-3\zeta H, the expression of effective pressure p¯\overline{p} reads

p¯=(γ1)(αζ0c3(2α+1)(4α+1)ζ2tα(γ)+4α+1+3(1αζ1)c3(2α+1)(4α+1)ζ2tα(γ)+4α+1αζ2(c3(2α+1)(4α+1)ζ2tα(γ)+4α+1)3/2)α(γ)+4α+13ζ0c3(2α+1)(4α+1)ζ2tα(γ)+4α+13ζ1c3(2α+1)(4α+1)ζ2tα(γ)+4α+13ζ2(c3(2α+1)(4α+1)ζ2tα(γ)+4α+1)3/2.\displaystyle\overline{p}=\frac{(\gamma-1)\left(-\frac{\alpha\zeta_{0}}{\sqrt{c-\frac{3(2\alpha+1)(4\alpha+1)\zeta_{2}t}{\alpha(-\gamma)+4\alpha+1}}}+\frac{3(1-\alpha\zeta_{1})}{c-\frac{3(2\alpha+1)(4\alpha+1)\zeta_{2}t}{\alpha(-\gamma)+4\alpha+1}}-\frac{\alpha\zeta_{2}}{\left(c-\frac{3(2\alpha+1)(4\alpha+1)\zeta_{2}t}{\alpha(-\gamma)+4\alpha+1}\right)^{3/2}}\right)}{\alpha(-\gamma)+4\alpha+1}-\frac{3\zeta_{0}}{\sqrt{c-\frac{3(2\alpha+1)(4\alpha+1)\zeta_{2}t}{\alpha(-\gamma)+4\alpha+1}}}\\ -\frac{3\zeta_{1}}{c-\frac{3(2\alpha+1)(4\alpha+1)\zeta_{2}t}{\alpha(-\gamma)+4\alpha+1}}-\frac{3\zeta_{2}}{\left(c-\frac{3(2\alpha+1)(4\alpha+1)\zeta_{2}t}{\alpha(-\gamma)+4\alpha+1}\right)^{3/2}}. (26)

Finally, the EoS parameter ω=p¯ρ\omega=\frac{\overline{p}}{\rho} reads.

ω=cζ0(α(γ4)1)(α(2γ11)3)3(α(γ4)1)(3αζ1γ+ζ1+1)c+3(8α2+6α+1)ζ2tα(γ4)1+ζ2(2αγ11α3)(α(γ+6(4α+3)ζ0t4)+3ζ0t1)αcζ0(α(γ4)1)+3α(ζ1(α(γ4)1)γ+4)c+3(8α2+6α+1)ζ2tα(γ4)1+3c+3(8α2+6α+1)ζ2tα(γ4)1+αζ2(α(γ+6(4α+3)ζ0t4)+3ζ0t1).\omega=-\frac{\begin{multlined}c\zeta_{0}(\alpha(\gamma-4)-1)(\alpha(2\gamma-11)-3)-3(\alpha(\gamma-4)-1)(3\alpha\zeta_{1}-\gamma+\zeta_{1}+1)\sqrt{c+\frac{3\left(8\alpha^{2}+6\alpha+1\right)\zeta_{2}t}{\alpha(\gamma-4)-1}}\\ +\zeta_{2}(2\alpha\gamma-11\alpha-3)(\alpha(\gamma+6(4\alpha+3)\zeta_{0}t-4)+3\zeta_{0}t-1)\end{multlined}c\zeta_{0}(\alpha(\gamma-4)-1)(\alpha(2\gamma-11)-3)-3(\alpha(\gamma-4)-1)(3\alpha\zeta_{1}-\gamma+\zeta_{1}+1)\sqrt{c+\frac{3\left(8\alpha^{2}+6\alpha+1\right)\zeta_{2}t}{\alpha(\gamma-4)-1}}\\ +\zeta_{2}(2\alpha\gamma-11\alpha-3)(\alpha(\gamma+6(4\alpha+3)\zeta_{0}t-4)+3\zeta_{0}t-1)}{\begin{multlined}\alpha c\zeta_{0}(\alpha(\gamma-4)-1)+3\alpha(\zeta_{1}(\alpha(\gamma-4)-1)-\gamma+4)\sqrt{c+\frac{3\left(8\alpha^{2}+6\alpha+1\right)\zeta_{2}t}{\alpha(\gamma-4)-1}}+3\sqrt{c+\frac{3\left(8\alpha^{2}+6\alpha+1\right)\zeta_{2}t}{\alpha(\gamma-4)-1}}\\ +\alpha\zeta_{2}(\alpha(\gamma+6(4\alpha+3)\zeta_{0}t-4)+3\zeta_{0}t-1)\end{multlined}\alpha c\zeta_{0}(\alpha(\gamma-4)-1)+3\alpha(\zeta_{1}(\alpha(\gamma-4)-1)-\gamma+4)\sqrt{c+\frac{3\left(8\alpha^{2}+6\alpha+1\right)\zeta_{2}t}{\alpha(\gamma-4)-1}}+3\sqrt{c+\frac{3\left(8\alpha^{2}+6\alpha+1\right)\zeta_{2}t}{\alpha(\gamma-4)-1}}\\ +\alpha\zeta_{2}(\alpha(\gamma+6(4\alpha+3)\zeta_{0}t-4)+3\zeta_{0}t-1)}. (27)

In Fig. 5 & 6, we show the evolution of energy density ρ\rho and effective pressure p¯\overline{p}. For an accelerating universe, the pressure has to be negative. Interestingly, within the framework of general relativity, no known entity posses this feature and therefore to suffice the observations, exotic matter-energy sources must be present. Nonetheless, modified gravity theories provide an alternative route to tackle this enigma by assuming the dark energy to be purely geometrical in nature. The negativity of p¯\overline{p} ensures an accelerating universe at the present epoch. The EoS parameter for our model assumes values close to 1-1 at t0=13.7t_{0}=13.7 Gyrs which is in remarkable agreement with the latest Planck measurements planck .

Refer to caption
Figure 5: Evolution of density with α=0.179\alpha=-0.179, γ=0.01\gamma=0.01, ζ0=0.0076\zeta_{0}=-0.0076, ζ1=0.75\zeta_{1}=0.75, ζ2=18.4\zeta_{2}=-18.4, c=14.9c=14.9.
Refer to caption
Figure 6: Evolution of effective pressure with α=0.179\alpha=-0.179, γ=0.01\gamma=0.01, ζ0=0.0076\zeta_{0}=-0.0076, ζ1=0.75\zeta_{1}=0.75, ζ2=18.4\zeta_{2}=-18.4, c=14.9c=14.9.
Refer to caption
Figure 7: Evolution of EoS parameter with α=0.179\alpha=-0.179, γ=0.01\gamma=0.01, ζ0=0.0076\zeta_{0}=-0.0076, ζ1=0.75\zeta_{1}=0.75, ζ2=18.4\zeta_{2}=-18.4, c=14.9c=14.9.

V Energy Conditions

The energy conditions are useful linear relationships consisting of energy density and pressure constructed from the Raychaudhuri equation. They are important tools to understand the behavior of lightlike, timelike or spacelike curves and singularities sahoo ; non39 and are defined as:

  • Null energy condition (NEC): ρ+p0\rho+p\geq 0

  • Weak energy conditions (WEC): ρ0,ρ+p0\rho\geq 0,\rho+p\geq 0

  • Strong energy conditions (SEC):ρ+p0\rho+p\geq 0, ρ+3p0\rho+3p\geq 0;

  • Dominant energy conditions (DEC): ρ0\rho\geq 0, ρ0,|p|ρ\rho\geq 0,|p|\leq\rho.

Refer to caption
Figure 8: Time variation of ECs with α=0.179\alpha=-0.179, γ=0.01\gamma=0.01, ζ0=0.0076\zeta_{0}=-0.0076, ζ1=0.75\zeta_{1}=0.75, ζ2=18.4\zeta_{2}=-18.4, c=14.9.

In Fig. 8 we can see the evolution of the enrgy conditions SEC, NEC and WEC as functions of cosmic time. In order to explain the late-time cosmic acceleration with ω1\omega\simeq-1, the SEC needs to violate since p=ωρp=\omega\rho. Such a violation of SEC is confirmed from Fig. 8 and therefore ensures the cosmological viability of our bulk viscous model.

VI Statefinder Diagnostics

The Statefinder diagnostics is a useful geometrical diagnostic tool capable of distinguishing a wide range of dark energy models from the standard models such as Λ\LambdaCDM, HDE, CG, SCDM and Quintessence. The tool consists of two parametric plots: one between rr and ss while the other between rr and qq where qq is the deceleration parameter and rr and ss are defined respectively as sahni ; sahni2

r=a˙˙˙aH3,r=\frac{\dddot{a}}{aH^{3}}, (28)
s=r13(q12),(q12).\displaystyle s=\frac{r-1}{3\left(q-\frac{1}{2}\right)},\left(q\neq\frac{1}{2}\right).

The expressions of r and s reads ,

r=3(2α+1)(4α+1)ζ2(9(8α2+6α+1)ζ2α(γ4)1+6c+3(8α2+6α+1)ζ2tα(γ4)14t)1α(γ4)4c4(c+3(8α2+6α+1)ζ2tα(γ4)1).\displaystyle r=-\frac{-\frac{3(2\alpha+1)(4\alpha+1)\zeta_{2}\left(-\frac{9\left(8\alpha^{2}+6\alpha+1\right)\zeta_{2}}{\alpha(\gamma-4)-1}+6\sqrt{c+\frac{3\left(8\alpha^{2}+6\alpha+1\right)\zeta_{2}t}{\alpha(\gamma-4)-1}}-4t\right)}{1-\alpha(\gamma-4)}-4c}{4\left(c+\frac{3\left(8\alpha^{2}+6\alpha+1\right)\zeta_{2}t}{\alpha(\gamma-4)-1}\right)}. (29)
s=1(3(2α+1)(4α+1)ζ2(9(8α2+6α+1)ζ2α(γ4)1+6c+3(8α2+6α+1)ζ2tα(γ4)14t)1α(γ4)+4c)4(c+3(8α2+6α+1)ζ2tα(γ4)1)3(3(2α+1)(4α+1)ζ22(α(γ4)1)c+3(8α2+6α+1)ζ2tα(γ4)11.5).\displaystyle s=-\frac{1-\frac{\left(\frac{3(2\alpha+1)(4\alpha+1)\zeta_{2}\left(-\frac{9\left(8\alpha^{2}+6\alpha+1\right)\zeta_{2}}{\alpha(\gamma-4)-1}+6\sqrt{c+\frac{3\left(8\alpha^{2}+6\alpha+1\right)\zeta_{2}t}{\alpha(\gamma-4)-1}}-4t\right)}{1-\alpha(\gamma-4)}+4c\right)}{4\left(c+\frac{3\left(8\alpha^{2}+6\alpha+1\right)\zeta_{2}t}{\alpha(\gamma-4)-1}\right)}}{3\left(\frac{3(2\alpha+1)(4\alpha+1)\zeta_{2}}{2(\alpha(\gamma-4)-1)\sqrt{c+\frac{3\left(8\alpha^{2}+6\alpha+1\right)\zeta_{2}t}{\alpha(\gamma-4)-1}}}-1.5\right)}. (30)

Different points in this parametric plot corresponds to different dark energy models. In particular,

  • Λ\LambdaCDM corresponds to (s=0,r=1)(s=0,r=1).

  • HDE corresponds to (s=23,r=1)(s=\frac{2}{3},r=1).

  • CG corresponds to (s<0,r>1)(s<0,r>1).

  • SCDM corresponds to (s=1,r=1)(s=1,r=1).

  • Quintessence corresponds to (s>0,r<1)(s>0,r<1).

The rsr-s plane is clearly shown in Fig. 9 where the arrow indicate the temporal evolution of our model. It can be easily observed that our model behaves like a Chaplygin gas at early times where (r>1,s<0)(r>1,s<0). The model then makes a transition from CG to Λ\LambdaCDM and finally stays in the Quintessence region with (r<1,s>0)(r<1,s>0). In Fig. 10 we have shown the rqr-q plane where the red solid line represent the evolution of Λ\LambdaCDM cosmology dividing the plane into two parts. The upper portion belongs to Chaplygin Gas type dark energy models whereas the lower portion corresponding to the Quintessence type dark energy models. The trajectory of our model in the {r,q}\{r,q\} plane reassures the fact that our model behaves like a CG type dark energy at early times. The model predicts a de-Sitter type expansion with r=1,q=1r=1,q=-1 in distant future.

Refer to caption
Figure 9: {r,s}\{r,s\} plane for α=0.179\alpha=-0.179, γ=0.01\gamma=0.01, ζ2=18.4\zeta_{2}=-18.4, c=14.9c=14.9.
Refer to caption
Figure 10: {r,q}\{r,q\} plane for α=0.179\alpha=-0.179, γ=0.01\gamma=0.01, ζ2=18.4\zeta_{2}=-18.4, c=14.9c=14.9.

VII Violation of Energy-Momentum Conservation

The energy-momentum is conserved in general relativity from the following equation of continuity

ρ˙+3H(ρ+p)=0\dot{\rho}+3H(\rho+p)=0 (31)

implying d(ρV)=pdVd(\rho V)=-pdV where ρV\rho V account for the total energy and V=a3V=a^{3} represent the volume of the universe. For a static universe, the total energy remains conserved whereas for an expanding universe, the energy is not conserved and changes with time. Note that according to harko , f(R,T)f(R,T) gravity models do not satisfy the law of conservation of energy momentum. In josset , the non-conservative cosmological evolution have been investigated by considering dark energy effects as a consequence of energy momentum violation. Also in pioneering studies like Riess98 ; Per99 , the cosmic acceleration could itself be a reminiscent of energy-momentum violation on the largest scales. Studies have also been conducted on this subject under f(R,T)f(R,T) gravity shabani .
Taking covariant derivative of Eq (2), we obtain

μTμν=fT(R,T)1fT(R,T)[(Tμν+Θμν)μlnfT(R,T)+μΘμν12gμνμT].\nabla^{\mu}T_{\mu\nu}=\frac{f_{T}(R,T)}{1-f_{T}(R,T)}\left[(T_{\mu\nu}+\Theta_{\mu\nu})\nabla^{\mu}lnf_{T}(R,T)+\nabla^{\mu}\Theta_{\mu\nu}-\frac{1}{2}g_{\mu\nu}\nabla^{\mu}T\right]. (32)

Substituting f(R,T)=R+2αTf(R,T)=R+2\alpha T, yields

μTμν=2α1+2α[μ(pgμν+12gμνμT].\nabla^{\mu}T_{\mu\nu}=\frac{-2\alpha}{1+2\alpha}\left[\nabla^{\mu}(pg_{\mu\nu}+\frac{1}{2}g_{\mu\nu}\nabla^{\mu}T\right]. (33)

We note that for α=0\alpha=0, μTμν=0\nabla^{\mu}T_{\mu\nu}=0 but for α0\alpha\neq 0, there is a violation to the conservation of energy-momentum. Here we estimated the violation of energy-momentum conservation through a deviation factor ϕ\phi,

ϕ=ρ˙+3H(ρ+p).\phi=\dot{\rho}+3H(\rho+p). (34)

in which ϕ=0\phi=0 imply conservation of energy-momentum. ϕ\phi can vary as positive or negative depending on whether the flow of energy is into the matter field or away from it. From Fig.11 we can observe the non-conservation of energy momentum which decreases with cosmic time.

According to the model the ϕ\phi is given as,

ϕ=3((γ1)(αζ0c+k1t+3(1αζ1)c+k1tαζ2(c+k1t)3/2)(1+4ααγ)+αζ0c+k1t+3(1αζ1)c+k1tαζ2(c+k1t)3/2(1+4ααγ)3ζ0c+k1t3ζ1c+k1t3ζ2(c+k1t)3/2)c+k1t+αζ0k12(c+k1t)3/23k1(1αζ1)(c+k1t)2+3αζ2k12(c+k1t)5/2(1+4ααγ).\displaystyle\phi=\frac{3\left(\frac{(\gamma-1)\left(-\frac{\alpha\zeta_{0}}{\sqrt{c+k_{1}t}}+\frac{3(1-\alpha\zeta_{1})}{c+k_{1}t}-\frac{\alpha\zeta_{2}}{(c+k_{1}t)^{3/2}}\right)}{(1+4\alpha-\alpha\gamma)}+\frac{-\frac{\alpha\zeta_{0}}{\sqrt{c+k_{1}t}}+\frac{3(1-\alpha\zeta_{1})}{c+k_{1}t}-\frac{\alpha\zeta_{2}}{(c+k_{1}t)^{3/2}}}{(1+4\alpha-\alpha\gamma)}-\frac{3\zeta_{0}}{\sqrt{c+k_{1}t}}-\frac{3\zeta_{1}}{c+k_{1}t}-\frac{3\zeta_{2}}{(c+k_{1}t)^{3/2}}\right)}{\sqrt{c+k_{1}t}}\\ +\frac{\frac{\alpha\zeta_{0}k_{1}}{2(c+k_{1}t)^{3/2}}-\frac{3k_{1}(1-\alpha\zeta_{1})}{(c+k_{1}t)^{2}}+\frac{3\alpha\zeta_{2}k_{1}}{2(c+k_{1}t)^{5/2}}}{(1+4\alpha-\alpha\gamma)}. (35)

where k1=(3(2α+1)(4α+1)ζ2α(γ)+4α+1)k_{1}=-\left(\frac{3(2\alpha+1)(4\alpha+1)\zeta_{2}}{\alpha(-\gamma)+4\alpha+1}\right).

Refer to caption
Figure 11: Time variation of ϕ\phi with α=0.179\alpha=-0.179, γ=0.01\gamma=0.01, ζ0=0.0076\zeta_{0}=-0.0076, ζ1=0.75\zeta_{1}=0.75, ζ2=18.4\zeta_{2}=-18.4, c=14.9.

VIII Conclusions

In modified gravity theories, dark energy emerges as a result of modified gravitational effects and is purely geometrical in nature. Therefore, a bulk viscous fluid coupled with a modified gravity theory such as f(R,T)f(R,T) gravity could provide an unorthodox way to suffice the cosmic acceleration with just a bulk viscous baryonic fluid.
In this paper we studied the phenomena of late-time acceleration by considering a bulk viscous fluid with viscosity coefficient ζ=ζ0+ζ1H+ζ2H2\zeta=\zeta_{0}+\zeta_{1}H+\zeta_{2}H^{2}, where ζ0,ζ1,ζ2\zeta_{0},\zeta_{1},\zeta_{2} are constants in the framework of f(R,T)f(R,T) modified gravity. We solve the field equations with observing the temporal evolution of some kinematic variables such as deceleration parameter, jerk, snap and lerk parameters as a function of cosmic time. We observe the deceleration parameter to be highly sensitive to the model parameter α\alpha and undergoes a change in signature at around t10t\sim 10Gyrs for α=0.179\alpha=-0.179 which is favored by observations. Interestingly, both the jerk and lerk are decreasing function of time whereas the snap is clearly an increasing function. We note that the magnitudes and behaviors of all these parameters strongly suggest an accelerating universe at the present epoch (i.e., t=13.7t=13.7 Gyrs). The EoS parameter for our model assumes values close to 1-1 at t0=13.7t_{0}=13.7Gyrs which is in remarkable agreement with the latest Planck measurements planck . Our model also show violation of Strong Energy Condition which is required in order to explain the late-time cosmic acceleration with ω1\omega\simeq-1, since p=ωρp=\omega\rho. Next, we perform some geometrical diagnostics of the model in rsr-s and rqr-q plane. We found that the model is representing a Chaplygin gas type dark energy model at early times while a Quintessence type in distant future. Finally, we study the violation of continuity equation for our model and show that in order to explain the cosmic acceleration at the present epoch, energy-momentum must violate.

Acknowledgments

S.A. acknowledges CSIR, Govt. of India, New Delhi, for awarding Junior Research Fellowship. SB thanks Biswajit Pandey for helpful discussions. PKS acknowledges CSIR, New Delhi, India for financial support to carry out the Research project [No.03(1454)/19/EMR-II Dt.02/08/2019].

References

  • (1) Riess, A.G. et al. 1998. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. J., 116, 1009. https://doi.org/10.1086/300499
  • (2) Perlmutter, S. et al. 1999. Measurements of Ω\Omega and Λ\Lambda from 42 High-Redshift Supernovae. Astrophys. J., 517, 565. https://doi.org/10.1086/307221
  • (3) Ratra, B., Peebles, P.J.E. 1988. Cosmological consequences of a rolling homogeneous scalar field. Phys. Rev. D, 37, 3406. https://doi.org/10.1103/PhysRevD.37.3406
  • (4) Caldwell, R. R. et al. 1988. Cosmological Imprint of an Energy Component with General Equation of State. Phys. Rev. Lett., 80, 1582. https://doi.org/10.1103/PhysRevLett.80.1582
  • (5) Buchert, T. 2000. On average properties of inhomogeneous fluids in general relativity I: dust cosmologies. Gen. Relativ. Gravit, 32, 105. https://doi.org/10.1023/A:1001800617177
  • (6) Armendariz-Picon, C. et al. 2001. Essentials of k-essence. Phys. Rev. D, 63, 103510. https://doi.org/10.1103/PhysRevD.63.103510
  • (7) Tomita, K. 2001. A local void and the accelerating Universe. Mon. Not. R. Astron. Soc., 326, 287. https://doi.org/10.1046/j.1365-8711.2001.04597.x
  • (8) Milton, K. A. 2003. Dark Energy as Evidence for Extra Dimensions. Garv. Cosmol., 9, 66. arXiv:hep-ph/0210170
  • (9) Hunt, P., Sarkar, S. 2010. Constraints on large-scale inhomogeneities from WMAP5 and SDSS: confrontation with recent observations. Mon. Not. R. Astron. Soc., 401, 547. https://doi.org/10.1111/j.1365-2966.2009.15670.x
  • (10) Easson, D. et al., 2011. Entropic accelerating universe. Phys. Lett. B, 696, 273. https://doi.org/10.1016/j.physletb.2010.12.025
  • (11) Radicella, N., Pavón, D., 2012. A thermodynamic motivation for dark energy. Gen. Relativ. Gravit, 44, 685. https://doi.org/10.1007/s10714-011-1299-y
  • (12) Pavón, D., Radicella, N., 2013. Does the entropy of the Universe tend to a maximum? Gen. Relativ. Gravit, 45, 63. https://doi.org/10.1007/s10714-012-1457-x
  • (13) Pandey, B., 2017. Does information entropy play a role in the expansion and acceleration of the Universe? Mon. Not. R. Astron. Soc. , 471, L77. https://doi.org/10.1093/mnrasl/slx109
  • (14) Pandey, B., 2019. Configuration entropy of the Cosmic Web: Can voids mimic the dark energy? Mon. Not. R. Astron. Soc. , 485, L73. https://doi.org/10.1093/mnrasl/slz037
  • (15) Brevik, I. et al., 2011. Viscous Little Rip Cosmology. Phys. Rev. D, 84, 103508. https://doi.org/10.1103/PhysRevD.84.103508
  • (16) Almada, A.H. et al., 2020. Stability analysis and constraints on interacting viscous cosmology. Phys. Rev. D, 101, 063516. https://doi.org/10.1103/PhysRevD.101.063516
  • (17) Singh, C. P., Kumar, Pankaj, 2014. Friedmann model with viscous cosmology in modified f(R,T)f(R,T) gravity theory. Eur. Phys. J. C, 74, 3070. https://doi.org/10.1140/epjc/s10052-014-3070-5
  • (18) Misner, W., 1968. The Isotropy of the Universe. Astrophys. J., 151, 431. https://doi.org/10.1086/149448
  • (19) Israel, W., Vardalas, J. N. 1970. Transport coefficients of a relativistic quantum gas. Nuovo Cimento Lett. 4, 887. https://doi.org/10.1007/BF02755172
  • (20) Murphy, G.L., 1973. Big-Bang Model Without Singularities. Phys. Rev. D, 8, 4231. https://doi.org/10.1103/PhysRevD.8.4231
  • (21) Belinskii, V.A., Kalatnikov, I.M., 1974. On the effect of viscosity on the character of the cosmological singularity. Pisma Zh. Eksp. Tekhn. Fiz. 21, 223. http://www.jetpletters.ac.ru/ps/1463/article_22291.shtml
  • (22) Waga, I. et al., 1986. Bulk-viscosity-driven inflationary model. Phys. Rev. D, 33, 1839. https://doi.org/10.1103/PhysRevD.33.1839
  • (23) Barrow, J.D., 1986. The deflationary universe: An instability of the de Sitter universe. Phys. Lett. B. 180, 335. https://doi.org/10.1016/0370-2693(86)91198-6
  • (24) Barrow, J.D., 1988. String-driven inflationary and deflationary cosmological models. Nucl. Phys. B 380, 743. https://doi.org/10.1016/0550-3213(88)90101-0
  • (25) Zimdahl, W. et al., 2001. Cosmic antifriction and accelerated expansion. Phys. Rev. D, 64, 063501. https://doi.org/10.1103/PhysRevD.64.063501
  • (26) Velten, H., Schwarz, D. J., 2012. Dissipation of dark matter. Phys. Rev. D, 86, 083501. https://doi.org/10.1103/PhysRevD.86.083501
  • (27) Cataldo, M. et al., 2005. Viscous dark energy and phantom evolution. Phys. Lett. B 619, 5. https://doi.org/10.1016/j.physletb.2005.05.029
  • (28) Brevik, I., Gorbunova, O., 2005. Dark energy and viscous cosmology. Gen. Relativ. Gravit. 37, 2039. https://doi.org/10.1007/s10714-005-0178-9
  • (29) Setare, M.R., Sheykhi, A., 2010. Viscous dark energy and generalized second law of thermodynamics. Int. J. Mod. Phys. D 19, 1205. https://doi.org/10.1142/S0218271810017202
  • (30) Gagnon J.S., Lesgourgues, J., 2011. Dark goo: bulk viscosity as an alternative to dark energy. J. Cosmol. Astropart. Phys., 09, 026. https://doi.org/10.1088/1475-7516/2011/09/026
  • (31) Li, B., Barrow, J.D., 2009. Does bulk viscosity create a viable unified dark matter model?. Phys. Rev. D, 79, 103521. https://doi.org/10.1103/PhysRevD.79.103521
  • (32) Hipolito-Ricaldi, W.S. et al., 2009. Non-adiabatic dark fluid cosmology. J. Cosmol. Astropart. Phys., 06, 016. https://doi.org/10.1088/1475-7516/2009/06/016
  • (33) Hipolito-Ricaldi, W.S. et al., 2010. The Viscous Dark Fluid Universe. Phys. Rev. D, 82, 063507. https://doi.org/10.1103/PhysRevD.82.063507
  • (34) Montiel, A., Bretn, N., 2011. Probing bulk viscous matter-dominated models with gamma-ray bursts. J. Cosmol. Astropart. Phys., 08, 023. https://doi.org/10.1088/1475-7516/2011/08/023
  • (35) Fabris, J.C., et al., 2011. Constraints on unified models for dark matter and dark energy using H(z). Eur. Phys. J. C 71, 1773. https://doi.org/10.1140/epjc/s10052-011-1773-4
  • (36) Velten, H., Schwarz, D.J., 2011. Constraints on dissipative unified dark matter. J. Cosmol. Astropart. Phys., 09, 016. https://doi.org/10.1088/1475-7516/2011/09/016
  • (37) Fabris, J.C. et al., 2006. Bulk viscosity driving the acceleration of the Universe. Gen. Relativ. Gravit. 38, 495. https://doi.org/10.1007/s10714-006-0236-y
  • (38) Kremer, G.M., Sobreiro, O.A.S., 2012. Bulk viscous cosmological model with interacting dark fluids. Braz. J. Phys. 42, 77. https://doi.org/10.1007/s13538-011-0051-0
  • (39) Avelino, A. et al., 2013. Interacting viscous dark fluids. Phys. Rev. D, 88, 123004. https://doi.org/10.1103/PhysRevD.88.123004
  • (40) Atreya, A et al., 2018. Viscous self interacting dark matter and cosmic acceleration. J. Cosmol. Astropart. Phys., 02, 024. https://doi.org/10.1088/1475-7516/2018/02/024
  • (41) Di Valentino, E. et al., preprint, arXiv:1908.04281
  • (42) Brevik I. et al., 2017. Viscous cosmology for early- and late-time universe. Int. J. Mod. Phys. D 26, 1730024. https://doi.org/10.1142/S0218271817300245
  • (43) Harko, T. et al., 2011. f(R,T) gravity. Phys. Rev. D, 84, 024020. https://doi.org/10.1103/PhysRevD.84.024020
  • (44) Capozziello, S., 2002. Curvature Quintessence. Int. J. Mod. Phys. D 11, 483. https://doi.org/10.1142/S0218271802002025
  • (45) Capozziello, S., Laurentis, M. D., 2011. xtended Theories of Gravity. Phys. Rept. 509, 167. https://doi.org/10.1016/j.physrep.2011.09.003
  • (46) Zaregonbadi, R. et al., 2016. Dark matter from f(R,T) gravity. Phys. Rev. D, 94, 084052. https://doi.org/10.1103/PhysRevD.94.084052
  • (47) Sun, G., Huang, Y.-C., 2016. The cosmology in f(R,τ)f(R,\tau) gravity without dark energy. Int. J. Mod. Phys. D, 25, 1650038. https://doi.org/10.1142/S0218271816500383
  • (48) Moraes, P.H.R.S. et al., 2016. Stellar equilibrium configurations of compact stars in f(R,T) theory of gravity. J. Cosmol. Astropart. Phys., 06, 005. https://doi.org/10.1088/1475-7516/2016/06/005
  • (49) dos Santos, S.I. et al., 2019. A conservative energy-momentum tensor in the f(R,T) gravity and its implications for the phenomenology of neutron stars. Eur. Phys. J. Plus, 134, 398. https://doi.org/10.1140/epjp/i2019-12830-8
  • (50) Rocha, F. et al., preprint, arXiv:1911.08894
  • (51) Azizi, T., 2013. Wormhole Geometries in f(R,T) Gravity. J. Theor. Phys. 52, 3486. https://doi.org/10.1007/s10773-013-1650-z
  • (52) Moraes, P.H.R.S. et al., 2017. Analytical general solutions for static wormholes in f(R,T) gravity. J. Cosmol. Astropart. Phys., 07, 029. https://doi.org/10.1088/1475-7516/2017/07/029
  • (53) Moraes, P.H.R.S., Sahoo, P.K., 2017. Modeling wormholes in f(R,T) gravity. Phys. Rev. D, 96, 044038. https://doi.org/10.1103/PhysRevD.96.044038
  • (54) Yousaf, Z. et al., 2017. Static spherical wormhole models in f (R,T) gravity. Eur. Phys. J. Plus 132, 268. https://doi.org/10.1140/epjp/i2017-11541-6
  • (55) Sahoo, P.K. et al., 2018. Phantom fluid supporting traversable wormholes in alternative gravity with extra material terms. Int. J. Mod. Phys. D, 27, 1950004. https://doi.org/10.1142/S0218271819500044
  • (56) Sahoo, P.K. et al., 2018. Wormholes in R2R^{2} gravity within the f(R,T) formalism. Eur. Phys. J. C, 78, 46. https://doi.org/10.1140/epjc/s10052-018-5538-1
  • (57) Moraes, P.H.R.S., Sahoo, P.K., 2018. Nonexotic matter wormholes in a trace of the energy-momentum tensor squared gravity. Phys. Rev. D, 97, 024007. https://doi.org/10.1103/PhysRevD.97.024007
  • (58) Elizalde, E., Khurshudyan, M., 2018. Wormhole formation in f(R,T) gravity: Varying Chaplygin gas and barotropic fluid. Phys. Rev. D, 98, 123525. https://doi.org/10.1103/PhysRevD.98.123525
  • (59) Elizalde, E., Khurshudyan, M., 2019. Wormholes with ρ(R,R)\rho(R,R^{\prime})b matter in f(R,T) gravity. Phys. Rev. D, 99, 024051. https://doi.org/10.1103/PhysRevD.99.024051
  • (60) Moraes, P.H.R.S., Sahoo, P.K., 2019. Wormholes in exponential f(R,T) gravity. Eur. Phys. J. C 79, 677. https://doi.org/10.1140/epjc/s10052-019-7206-5
  • (61) Moraes, P.H.R.S. et al., 2019. Charged wormholes in f(R,T)-extended theory of gravity. Int. J. Mod. Phys. D, 28, 1950098. https://doi.org/10.1142/S0218271819500986
  • (62) Alves, M.E.S. et al., 2016. Gravitational waves in f(R,T) and f(R,Tϕ)f(R,T^{\phi}) theories of gravity. Phys. Rev. D, 94, 024032. https://doi.org/10.1103/PhysRevD.94.024032
  • (63) Sharif, M., Siddiqa, A., 2019. Propagation of polar gravitational waves in f(R, T) scenario. Gen. Relativ. Gravit, 51, 74. https://doi.org/10.1007/s10714-019-2558-6
  • (64) Bhatti, MZ et al., 2020. Stability of self-gravitating anisotropic fluids in f(R,T) gravity. Phys. Dark. Universe. 28, 100501. https://doi.org/10.1016/j.dark.2020.100501
  • (65) Sahoo, P. et al., 2020. Bouncing scenario in f(R,T) gravity. Mod. Phys. Lett. A, 35, 2050095. https://doi.org/10.1142/S0217732320500959
  • (66) Bhattacharjee, S., Sahoo, 2020. P.K., omprehensive Analysis of a Non-Singular Bounce in f(R,T) Gravitation. Phys. Dark. Universe. 28, 100537. https://doi.org/10.1016/j.dark.2020.100537
  • (67) Sahoo, P.K., Bhattacharjee, S. 2020. Gravitational Baryogenesis in Non-Minimal Coupled f(R,T) Gravity. Int. J. Theor. Phys, 59, 1451. https://doi.org/10.1007/s10773-020-04414-3
  • (68) Bhattacharjee, S., Sahoo, P.K., 2020. Baryogenesis in f(Q,τ)f(Q,\tau) gravity. Phys. J. C. 80, 289. https://doi.org/10.1140/epjc/s10052-020-7844-7
  • (69) Bhattacharjee, S., Sahoo, P.K., 2020. Big bang nucleosynthesis and entropy evolution in f(R,T) gravity. Eur. Phys. J. Plus, 135, 350. https://doi.org/10.1140/epjp/s13360-020-00361-4
  • (70) Bhattacharjee, S., Sahoo, P.K., 2020. Temporally varying universal gravitational constant and speed of light in energy momentum squared gravity. Eur. Phys. J. Plus, 135, 86. https://doi.org/10.1140/epjp/s13360-020-00116-1
  • (71) Visser, M., 2004. Jerk, snap, and the cosmological equation of state. Class. Quant. Gravit., 21, 2603. https://doi.org/10.1088/0264-9381/21/11/006
  • (72) Capozziello, S. et al., 2011. Cosmography in f(T) gravity. Phys. Rev. D, 84, 043527. https://doi.org/10.1103/PhysRevD.84.043527
  • (73) Mandal, S. et al., 2020. Accelerating universe in hybrid and logarithmic teleparallel gravity. Phys. Dark. Universe. 28, 100551. https://doi.org/10.1016/j.dark.2020.100551
  • (74) Pan, S. et al., 2018. Astronomical bounds on a cosmological model allowing a general interaction in the dark sector. Mon. Not. R. Astron. Soc. , 477, 1189. https://doi.org/10.1093/mnras/sty755
  • (75) Planck Collaboration, 2018, preprint, arXiv:1807.06209
  • (76) Moraes, P.H.R.S., Sahoo, P.K., 2017. The simplest non-minimal matter-geometry coupling in the f(R,T) cosmology. Eur. Phys. J. C. 77, 480. https://doi.org/10.1140/epjc/s10052-017-5062-8
  • (77) Wald, R. M. 1984, “General Relativity”, University of Chicago Press, Chicago
  • (78) Alam, U. et al., 2003. Exploring the expanding Universe and dark energy using the statefinder diagnostic. Mon. Not. R. Astron. Soc. 344, 1057. https://doi.org/10.1046/j.1365-8711.2003.06871.x
  • (79) Sahni, V. et al., 2003. Statefinder-A new geometrical diagnostic of dark energy. JETP Lett. 77, 201. https://doi.org/10.1134/1.1574831
  • (80) Josset, T. et al., 2017. Dark Energy from Violation of Energy Conservation. Phys. Rev. Lett., 118, 021102. https://doi.org/10.1103/PhysRevLett.118.021102
  • (81) Shabani, H., Ziaie, A.H., 2017. Consequences of energy conservation violation: late time solutions of Λ\Lambda(T)CDM subclass of f(R,T) gravity using dynamical system approach. Eur. Phys. J. C 77, 282. https://doi.org/10.1140/epjc/s10052-017-4844-3