This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Learning high-order spatial discretisations of PDEs with symmetry-preserving iterative algorithms

J. E. Bunder  and  A. J. Roberts
School of Mathematical Sciences,
University of Adelaide, South Australia
\urlmailto:judith.bunder@adelaide.edu.au, orcid:0000-0001-5355-2288\urlmailto:profajroberts@protonmail.com, orcid:0000-0001-8930-1552
Abstract

Common techniques for the spatial discretisation of pdes on a macroscale grid include finite difference, finite elements and finite volume methods. Such methods typically impose assumed microscale structures on the subgrid fields, so without further tailored analysis are not suitable for systems with subgrid-scale heterogeneity or nonlinearities. We provide a new algebraic route to systematically approximate, in principle exactly, the macroscale closure of the spatially-discrete dynamics of a general class of heterogeneous non-autonomous reaction-advection-diffusion pdes. This holistic discretisation approach, developed through rigorous theory and verified with computer algebra, systematically constructs discrete macroscale models through physics informed by the pde out-of-equilibrium dynamics, thus relaxing many assumptions regarding the subgrid structure. The construction is analogous to recent gray-box machine learning techniques in that predictions are directed by iterative layers (as in neural networks), but informed by the subgrid physics (or ‘data’) as expressed in the pdes. A major development of the holistic methodology, presented herein, is novel inter-element coupling between subgrid fields which preserve self-adjointness of the pde after macroscale discretisation, thereby maintaining the spectral structure of the original system. This holistic methodology also encompasses homogenisation of microscale heterogeneous systems, as shown here with the canonical examples of heterogeneous 1D waves and diffusion.

1 Introduction

The observable macroscale dynamics of a multiscale system are typically driven by coherent structures governed by microscopic agents, such as electrons, molecules, or individuals in a population. While such systems are often well-understood at the microscale, large-scale simulations of the full microscale model are usually infeasible, even on the largest high-performance computers, and in particular for nonlinear system with fluctuations that persist and interact across multiple scales [Nasa2018]. Multiscale modelling aims to overcome this issue by efficiently approximating over the multiple scales to provide an accurate numerical model of the coherent dynamics of the system at the macroscale of interest. Numerous computational schemes have been developed for a wide variety of multiscale systems, from composite materials [Dutra2020] to plasmas [Shohet2020]. However, many of these computational schemes are developed for specific systems and are not easily adaptable to other cases. Furthermore, supporting theory is often only rigorously applicable in the limiting case of infinite scale separation (typically characterised as ϵ0\epsilon\rightarrow 0). Here we further develop the holistic discretisation methodology for multiscale nonlinear systems—a general purpose approach—supported by analytical theory and straightforwardly adaptable to a wide range of spatio-temporal systems at finite scale separation.

To determine a macroscale description of a multiscale system with microscale heterogeneity we seek an homogenisation, or ‘average’, over the microscale which accounts for the heterogeneity without retaining unnecessary fine-scale details [Geers2107]. For example, for composite materials with periodic microstructures, which are common in nature and are increasingly synthesised for novel industrial applications [[, e.g.,]]NematNasser2011,Bargmann2018, asymptotic homogenisation constructs a power series in scale separation ϵ\epsilon with coefficients dependent on a periodic ‘representative volume element’ (e.g., a unit cell) which describes the microscale heterogeneity [Dutra2020, Feppon2020]. However, homogenisation often requires substantial user input in the form of an algebraic analysis of the given microscale system prior to numerical implementation, and theoretical support is often only guaranteed in unphysical circumstances; for example, typically one needs to explicitly identify ‘fast’ and ‘slow’ variables, and also assume an unphysical infinite scale separation between the two [[, e.g.,]]Engquist08. In contrast, the holistic homogenisation methodology, detailed in section 2.1, requires little or no such user input and generally permits an immediate application of the numerical scheme. It is thus more adaptable and accessible than many other common homogenisation methods. Theoretical support for this methodology is provided by centre manifold theory, as discussed in section 2.2, and by the consistency analysis of section 3, and is broadly applicable to many physical scenarios.

The holistic homogenisation methodology was originally developed by [Roberts98a, e.g., ], and has been applied to several different systems [[, e.g.,]]Roberts00a, MacKenzie09b, Roberts2011a, Jarrad2016a. The fundamental idea is to partition the domain of the original system into NN disjoint elements, with these NN elements defining a macroscale grid, and then to discover appropriate microscale fields that are slaved to a useful set of macroscale variables. In this article, the important new development is the preservation of self-adjointness by appropriate design of the coupling between the NN elements, as defined in section 2.1, which ensures that fundamental dynamical features of the multiscale system (specified by the eigenstructure) are maintained—especially for homogenisation as proved in section 2.4. To illustrate the adaptability of this holistic methodology, section 4 considers a pde with periodic heterogeneous diffusion. The problem is firstly embedded in a family of general heterogeneous diffusion pdes, which rephrases the heterogeneity as solely dependent on a ‘phase’ coordinate, where the periodic phase domain is reminiscent of the representative volume element commonly utilised in the asymptotic homogenisation of periodic microstructures. This embedding empowers a straightforward application of the numerical holistic methodology.

In this article, to establish the new homogenisation methodology we mostly consider the spatio-temporal dynamics of a field u(t,x)u(t,x) satisfying non-autonomous reaction-advection-diffusion pdes in the general form

ut=f(x,u,ux)x+αg(t,x,u,ux),u_{t}=-f(x,u,u_{x})_{x}+\alpha g(t,x,u,u_{x})\,, (1)

where subscripts xx and tt denote spatial and temporal derivatives, respectively, and functions ff and gg are characterised by section 1. The homogenisation derives accurate macroscale spatial discretisations of these nonlinear pdes on a specified macroscale grid. The homogenisation accounts for subgrid (i.e., microscale) dynamics and symmetries, and hence automatically leads to stable discretisations, assuming stability of the original system. We also establish that the same approach generates accurate and stable spatial discretisations of 1D first-order wave pdes (section 3.1) and 1D second-order nonlinear wave pdes obtained by replacing utu_{t} in eq. 1 by uttu_{tt} (section 2.3).

With some adaptations, this methodology is also suitable to multi-dimensional space pdes, ut=𝒇(𝒙,u,u)+αg(t,𝒙,u,u)u_{t}=-\text{\boldmath$\nabla$}\cdot{\text{\boldmath$f$}}({\text{\boldmath$x$}},u,\text{\boldmath$\nabla$}u)+\alpha g(t,{\text{\boldmath$x$}},u,\text{\boldmath$\nabla$}u) , and is related to the multidimensional homogenisation (albeit non-self-adjoint) of [Roberts2011a], but we leave multi-dimensional space for future research and here we focus the case of 1D space.

Assumption 1.

Firstly, functions ff and gg on the right-hand side of pde eq. 1 are to be smooth functions of their arguments, and the function gg varies relatively slowly in time tt. Secondly, in the cases of second-order pdes, the function ff, called the flux, is strictly monotonic decreasing in uxu_{x}: that is, for some positive ν\nu, f/uxν<0\mathchoice{\frac{\partial f}{\partial u_{x}}}{{\partial f}/{\partial u_{x}}}{{\partial f}/{\partial u_{x}}}{{\partial f}/{\partial u_{x}}}\leq-\nu<0 with f(x,u,0)=0f(x,u,0)=0 . Lastly, for strict support by existing theory, we assume ff and gg are such that the pde eq. 1, with ‘edge conditions’ eq. 6, satisfies the requirements of the invariant manifold theory by [Hochs2019].

We define smooth (section 1) to mean either infinitely differentiable, CC^{\infty}, or differentiable to an order pp sufficient for the purposes at hand, CpC^{p}. This smoothness requirement still permits microscale heterogeneity where the functions ff and gg vary significantly on a spatial scale of the order of a microscale length dd, such as for heterogeneous diffusion (section 4).

We denote the 1D spatial domain of the pde eq. 1 by 𝕏\mathbb{X}, which in examples is often over the interval (0,𝔏)(0,\mathfrak{L})\subset\mathbb{R} , and consider spatial dependence of field uu in the Hilbert space \mathbb{H} of square integrable, twice differentiable, functions on 𝕏\mathbb{X}, and often in the subspace 𝕃\mathbb{L} of all 𝔏\mathfrak{L}-periodic functions in \mathbb{H} (i.e., we often invoke periodic boundary conditions). We partition the domain 𝕏\mathbb{X} into NN disjoint open interval elements 𝕏j\mathbb{X}_{j} for j𝕁:={1,,N}j\in\mathbb{J}:=\{1,\ldots,N\} and define ~𝕏:=j𝕁𝕏j\tilde{}\mathbb{X}:=\cup_{j\in\mathbb{J}}\mathbb{X}_{j} . Let uj(t,x)u_{j}(t,x) denote subgrid fields which satisfy the pde eq. 1 in 𝕏j\mathbb{X}_{j}: that is, ujt=f(x,uj,ujx)x+αg(t,x,uj,ujx)u_{jt}=-f(x,u_{j},u_{jx})_{x}+\alpha g(t,x,u_{j},u_{jx}), for x𝕏jx\in\mathbb{X}_{j} . Define macroscale, coarse, ‘grid’ values

Uj(t):=𝒰[uj(t,x)]for every j𝕁,U_{j}(t):=\mathcal{U}\big{[}u_{j}(t,x)\big{]}\quad\text{for every }j\in\mathbb{J}, (2)

for some chosen projection 𝒰:C(𝕏j)\mathcal{U}:C(\mathbb{X}_{j})\to\mathbb{R} , a projection that is some measure of the amplitude of the field uju_{j} in the jjth element.111The precise form of 𝒰\mathcal{U} is largely immaterial because the evolution of states in the slow subspace is independent of how we choose to parametrise the subspace [Roberts2014a, Lemma 5.1]. Hence the macroscale projection 𝒰\mathcal{U} may be subjectively chosen according to any reasonable measure of the subgrid field uju_{j} within each element 𝕏j\mathbb{X}_{j}. Consequently, a spatial discretisation of the pde eq. 1 is a closed set of odes for the vector of macroscale grid variables 𝑼:=(U1,,UN){\text{\boldmath$U$}}:=(U_{1},\ldots,U_{N}) in the form

d𝑼dt=𝑮(t,𝑼).\mathchoice{\frac{d{\text{\boldmath$U$}}}{dt}}{{d{\text{\boldmath$U$}}}/{dt}}{{d{\text{\boldmath$U$}}}/{dt}}{{d{\text{\boldmath$U$}}}/{dt}}={\text{\boldmath$G$}}(t,{\text{\boldmath$U$}}). (3)

Four examples discussed herein are the ode systems eqs. 5, 9c, 21b and 36b modelling, respectively, nonlinear wave modulation, spatial diffusion, progressive waves, and homogenised heterogeneous diffusion. section 2.2 uses centre manifold theory (cmt) [[, e.g.,]]Carr81, Haragus2011, Hochs2019 to do three things in support of such a macroscale evolution eq. 3. Firstly, we develop further an approach to proving that in principle there exists an exact macroscale closure eq. 3 to the dynamics of the pde eq. 1. Secondly, cmt establishes that such a closure is emergent from general initial conditions. Thirdly, cmt justifies constructing new systematic approximations to the in-principle closure by learning subgrid field corrections from the pde eq. 1.

Traditional spatial discretisations of pdeeq. 1, whether finite difference, finite element, or finite volume, impose a set of assumed subgrid fields within each element and then derive approximate rules for the macroscale evolution of the parameters of the imposed fit [[, e.g.,]]Efendiev2004, Geers2010. The accuracy of this modelling by discretisation, particularly for nonlinear systems, is strongly dependent on the class of imposed subgrid microstructure and its ability to capture the microscale dynamics which emerge and persist across the macroscale [[, e.g.,]]Aarnes2007, Zhang2020. Our dynamical systems (holistic) approach is to learn the algebraic subgrid fields from the pde eq. 1. Using more general subgrid structures is cognate to the aims of the so-called Generalised/Extended Finite Element Methods [[, e.g.,]]Turner2011b, but crucially we let the pde determine the subgrid structures from the powerful framework of centre manifolds in dynamical systems. The so-called stabilized scheme [[, e.g.,]]Hughes95 appears analogous to the first step of our construction in section 2.2. We learn improved subgrid fields via computer algebra using the governing pde eq. 1, with second and further iterations providing higher-order terms. The resultant holistic discretisation is both accurate and flexible—it naturally captures fine-scale structures which persist across multiple scales, and it does so to a chosen order of accuracy that is routinely achievable via iteration.

A previous alternative holistic approach learns subgrid fields by systematically refining a piecewise constant initial approximation [[, e.g.,]]Roberts98a, Roberts00a, Roberts2011a—an approach that adapts to the multi-scale gap-tooth scheme [[, e.g.,]]Roberts06d, Kevrekidis09a. Our new approach extends and complements previous schemes by systematically preserving self-adjoint symmetries in the learnt macroscale closure.

Example 1 (nls).

As an introductory nontrivial example, consider the nonlinear 1D Schrödinger equation (nls) governing a complex valued field u(t,x)u(t,x):

itu=12x2u+α|u|2u,\operatorname{i}\partial_{t}u=-\tfrac{1}{2}\partial_{x}^{2}u+\alpha|u|^{2}u\,, (4)

with periodic boundary conditions on the spatial domain [π,π][-\pi,\pi]. The real and imaginary parts of the field uu typically evolve to be out-of-phase and each drives persistent oscillations in the other. Common applications include the modulation of light propagating in nonlinear optical fibres and planar waveguides [Kibler2012, e.g.]. The nonlinear wave nature of this example tests our discretisation scheme.

We discretise space into NN elements 𝕏j\mathbb{X}_{j} of uniform width HH centred about grid points XjX_{j}. Then, defining macroscale complex variables Uj(t):=uj(t,Xj)U_{j}(t):=u_{j}(t,X_{j}) (i.e., here the projection 𝒰\mathcal{U} of eq. 2 is the subgrid field uju_{j} at the midpoint XjX_{j} of the jjth element), our holistic homogenisation scheme iteratively derives a macroscale discretisation of eq. 4. The details of the algebraic machinations of the iteration are not important here—computer algebra like that of appendices A, B and C handles the details. The result here is that the macroscale discretisation is, with asterisk superscript denoting complex conjugation,

itUj\displaystyle\operatorname{i}\partial_{t}U_{j} =α|Uj|2Ujγ218H2(Uj+2+Uj22Uj)\displaystyle=\alpha|U_{j}|^{2}U_{j}-\gamma^{2}\tfrac{1}{8H^{2}}(U_{j+2}+U_{j-2}-2U_{j})
+αγ2196[2|Uj|2(Uj+2+Uj24Uj)\displaystyle\quad{}+\alpha\gamma^{2}\tfrac{1}{96}\big{[}2|U_{j}|^{2}(U_{j+2}+U_{j-2}-4U_{j})
4|Uj+2|2(Uj+22Uj)4|Uj2|2(Uj22Uj)\displaystyle\qquad{}-4|U_{j+2}|^{2}(U_{j+2}-2U_{j})-4|U_{j-2}|^{2}(U_{j-2}-2U_{j})
4Uj(Uj+12+Uj12Uj+1Uj1)4Uj(Uj+1Uj1+Uj1Uj+1)\displaystyle\qquad{}-4U_{j}^{*}(U_{j+1}^{2}+U_{j-1}^{2}-U_{j+1}U_{j-1})-4U_{j}(U_{j+1}^{*}U_{j-1}+U_{j-1}^{*}U_{j+1})
+Uj+2(Uj22Uj+12)+Uj2(Uj22Uj12)]+𝒪(α2,γ3),\displaystyle\qquad{}+U_{j+2}^{*}(U_{j}^{2}-2U_{j+1}^{2})+U_{j-2}^{*}(U_{j}^{2}-2U_{j-1}^{2})\big{]}+\mathcal{O}\mathchoice{\big{(}\alpha^{2},\gamma^{3}\big{)}}{\big{(}\alpha^{2},\gamma^{3}\big{)}}{(\alpha^{2},\gamma^{3})}{(\alpha^{2},\gamma^{3})}, (5)

where γ\gamma is a coupling order parameter labelling each inter-element interaction (section 2.1). Set γ=1\gamma=1 to obtain the full inter-element coupling needed to model the pde, and then the first line of the macroscale evolution eq. 5 is a standard discretisation of the nls eq. 4 with the spatial derivatives over a step of 2H2H. The subsequent terms in eq. 5 are the leading terms due to subgrid physical interactions, terms learnt by the algebraic methodology developed in this article.

Refer to caption
Figure 1: Simulations of the nls pde compare predictions of field magnitudes: (left) |u(t,x)||u(t,x)| computed using a fine-scale discretisation of eq. 4; and (right) |U(t,x)||U(t,x)| computed using the coarse scale holistic discretisation eq. 5. The surfaces are coloured according to the arguments of the complex fields, as indicated by the side-bar.

For an example simulation we choose the initial condition u(0,x)=1isechxu(0,x)=1-\operatorname{i}\operatorname{sech}x which produces Kuznetsov–Ma breather solutions of nonlinear localised oscillating peaks on a non-zero background [Zhao2017]. Breathers and solitons arise in nonlinear pde when there is a balance between the dispersion and the nonlinearity. fig. 1 illustrates the success of the holistic homogenisation by comparing a microscale simulation of the nls eq. 4 (left plot) with the evolution of the macroscale discretisation eq. 5 truncated to errors 𝒪(α2,γ4)\mathcal{O}\mathchoice{\big{(}\alpha^{2},\gamma^{4}\big{)}}{\big{(}\alpha^{2},\gamma^{4}\big{)}}{(\alpha^{2},\gamma^{4})}{(\alpha^{2},\gamma^{4})} (right). The microscale simulation of the nls employs a spatial grid of 33003300 points with spacing h=0.0019h=0.0019, whereas the holistic scheme discretises the domain with N=151N=151 elements of width H=0.042H=0.042 , which is over twenty times larger and correspondingly less stiff, and so much quicker computationally. At all times we observe fine-scale simulation errors (via Matlab’s ode solver ode113) which do not appear in the simulation with the holistic discretisation eq. 5 (via a fourth order Runge–Kutta).222Matlab’s ode113 was the only Matlab ode solver which could simulate the fine-scale model (4) and provide reasonable accuracy (time taken: 8 564 s). In contrast, Matlab ode solvers had no trouble accurately simulating the holistic discretisation (5) (e.g., ode113 time was 246 s), but fourth order Runge–Kutta was substantially faster (time 102 s). The fourth order Runge–Kutta could not accurately simulate the fine-scale model.

Remark 1.

Inter-element coupling is crucial. In order to construct an accurate macroscale discretisation the nature of the coupling between adjacent elements 𝕏j\mathbb{X}_{j} is crucial. For example, in the context of material homogenisation, [Abdulle2020b] in their abstract comment that

A naive treatment of these artificial boundary conditions leads to a first order error … . This error dominates all other errors originating from the discretization of the macro and the micro problems, and its reduction is a main issue in today’s engineering multiscale computations.

The “naive treatment” in this comment corresponds to a low-order approximation in the element coupling order parameter γ\gamma, but with our iterative algorithm higher order approximations are straightforward. The problematic “boundary conditions” in the comment we term the edge conditions (or coupling conditions)—it is these edge conditions that define the coupling of elements 𝕏j\mathbb{X}_{j} to form the spatially complete system. section 2.1 develops inter-element edge conditions that in a variety of scenarios (e.g., nls of example 1) provably preserve self-adjointness (section 2.4), and have provable accuracy (sections 3.1 and 3.3). Thus this article develops a valuable approach to addressing a key “issue in today’s engineering multiscale computations”.

Remark 2.

Initial conditions. For any macroscale discrete closure such as eq. 3, initial conditions are nontrivial. The paradox is that, despite the definition eq. 2 that the macroscale grid variable Uj(t):=𝒰[uj(t,x)]U_{j}(t):=\mathcal{U}[u_{j}(t,x)], in order to obtain accurate forecasts over long times, generally the initial grid value Uj(0)𝒰[uj(0,x)]U_{j}(0)\neq\mathcal{U}[u_{j}(0,x)] [Roberts89b, Roberts01a]. In physics, [vanKampen85] termed this phenomena the “initial slip”. There is, in effect, a ‘boundary layer’ in time that accounts for non-trivial rapid transients. Using the geometry of invariant manifolds, [Roberts89b] developed an efficient general method to algebraically learn the correct initial Uj(0)U_{j}(0) for accurate long-time forecasts by reduced dimensional models such as a discretisation of a pde. The method has been applied in various scenarios [[, e.g.,]]Roberts2014a. Further research is needed to form initial conditions for the discretisation framework established herein.

Remark 3.

Analogy with machine learning. The iterative algorithm used to construct the holistic homogenisation of example 1, and the other examples herein, was originally developed by [Roberts96a]. At each iteration the algorithm evaluates residuals of the nonlinear pde within the elements, and improves the resolution of the subgrid fields with a linear correction based upon this subgrid information. We draw an analogy between this iteration and a machine learning algorithm where an AI learns the generic form of the macroscale evolution from many thousands of simulations [[, e.g.,]]GonzalezGarcia98, Frank2020, Linot2020, but here the AI is a ‘smart’ grey-box which is directed by additional algebraic knowledge/data. For example, [BarSinai2018] imposed a conservative form on their learning of a coarse-scale closure to Burgers’ pde, and [Mercer94a] constructed stable schemes to advection-diffusion in pipes that matched the long term evolution to high order. In constructing the holistic discretisation, each iteration is analogous to one layer in a deep neural network: evaluating residuals is analogous to a nonlinear neurone function; and the linear corrections are analogous to using weighted linear combinations of outputs (i.e., activation functions) of one layer as the inputs of the next layer. The analogy requires that, at each execution, the smart neural network is directed by the holistic algorithm to specifically craft the neurones and linear weights to the problem at hand. Being algebraic, this data which directs the algorithm encompasses all points in the state space’s domain, not just sample data as in machine learning. Consequently, we contend that mathematicians have for many decades been doing smart analogues of machine learning. Such algebraic learning empowers the physical interpretation, validation, and verification required by modern science [[, e.g.]]Brenner2021.

2 Self-adjoint preserving coupling

Let the 1D spatial discretisation of the general pde (1) be parametrised by 𝑼=(U1,,UN){\text{\boldmath$U$}}=(U_{1},\ldots,U_{N}) as defined by some projection (2) and satisfy an evolution ode of the form eq. 3. The discretisation is derived from the subgrid fields uj(t,x)u_{j}(t,x) of pde (1) over the NN disjoint elements 𝕏j\mathbb{X}_{j}. To construct the spatial discretisation and ode eq. 3 we must specify uju_{j} at the two edges of element 𝕏j\mathbb{X}_{j}. Specifying the fields uju_{j} at the edges of element 𝕏j\mathbb{X}_{j} defines an inter-element coupling. Such coupling conveys information across space and hence engenders the macroscale dynamics. While there are many possible coupling conditions, here we establish new coupling conditions which both preserve self-adjoint symmetry in the original microscale pde, and also ensure the macroscale dynamics are correctly consistent to an arbitrarily high order of accuracy. As these new coupling conditions constrain fields on the edges of the elements 𝕏j\mathbb{X}_{j}, we refer to them as edge conditions.

We identify the right and left edge-points of the elements by writing the jjth element as the open interval 𝕏j=(Lj,Rj)\mathbb{X}_{j}=(L_{j},R_{j}). Because the elements abut, the right-edge of the jjth element is the left-edge of the (j+1)(j+1)th element, Rj=Lj+1R_{j}=L_{j+1} , and thus, to recover the original pde (1) over the entire domain, we aim to set uj(t,Rj)=uj+1(t,Lj+1)u_{j}(t,R_{j})=u_{j+1}(t,L_{j+1}).333Strictly, such edge values are the limit as xx approaches the edge of the (open) elements. However, to understand and theoretically support the discretisation on the elements, we parameterise a range of inter-element coupling to best control the information flow between elements. We introduce an real-valued inter-element coupling parameter γ\gamma: when γ=0\gamma=0 the elements are uncoupled and form a base for some theory; when γ=1\gamma=1 the elements are fully coupled to recover the original pde problem eq. 1 for field u(t,x)u(t,x). A solution field u(t,x)u(t,x) then arises as the collection of subgrid fields uj(t,x)u_{j}(t,x). Further, we define the order parameter γ\gamma so as to ‘label’ each inter-element communication so that a term in γp\gamma^{p} expresses a composition of interactions between each element and pp pairs of its nearest neighbour elements. Consequently, truncating asymptotic expansions to ‘errors’ o(γp)o\big{(}\gamma^{p}\big{)} naturally and automatically creates local discretisations of stencil width (2p+1)(2p+1) in space.

2.1 Couple the elements

For conciseness, denote the flux in the jjth element as fj(t,x):=f(x,uj,ujx)f_{j}(t,x):=f(x,u_{j},u_{jx}) . Further, use superscripts R,LR,L to denote evaluation at the corresponding right/left edges x=Rj,Ljx=R_{j},L_{j} : for example, ujR(t):=uj(t,Rj)u_{j}^{R}(t):=u_{j}(t,R_{j}) and fjL(t):=fj(t,Lj)f_{j}^{L}(t):=f_{j}(t,L_{j}) . In addition to the inter-element coupling parameter γ\gamma, we introduce a second real-valued parameter θ\theta that flexibly ‘tunes’ the details of inter-element communication; typically |θ|1|\theta|\leq 1 . For example, for advective processes, θ\theta controls the upwind character of the discrete model. At every time and every element jj, we couple elements with the two edge conditions

(112γ)(ujRujL)\displaystyle(1-\tfrac{1}{2}\gamma)(u_{j}^{R}-u_{j}^{L}) =12γ(uj+1Luj1R)+12γθ(ujL+ujR)12γθ(uj+1L+uj1R),\displaystyle=\tfrac{1}{2}\gamma(u_{j+1}^{L}-u_{j-1}^{R})+\tfrac{1}{2}\gamma\theta(u_{j}^{L}+u_{j}^{R})-\tfrac{1}{2}\gamma\theta(u_{j+1}^{L}+u_{j-1}^{R})\,, (6a)
(112γ)(fjRfjL)\displaystyle(1-\tfrac{1}{2}\gamma)(f_{j}^{R}-f_{j}^{L}) =12γ(fj+1Lfj1R)12γθ(fjL+fjR)+12γθ(fj+1L+fj1R).\displaystyle=\tfrac{1}{2}\gamma(f_{j+1}^{L}-f_{j-1}^{R})-\tfrac{1}{2}\gamma\theta(f_{j}^{L}+f_{j}^{R})+\tfrac{1}{2}\gamma\theta(f_{j+1}^{L}+f_{j-1}^{R}). (6b)

When u(t,x)u(t,x) is to be 𝔏\mathfrak{L}-periodic in space we require the periodicity uj+Ne=ujeu^{e}_{j+N}=u^{e}_{j} and fj+Ne=fjef^{e}_{j+N}=f^{e}_{j} for e{L,R}e\in\{L,R\} . section 2.4 proves that these inter-element edge conditions preserve self-adjointness in the pde eq. 1.

  • When parameter γ=0\gamma=0 , the edge conditions eq. 6 reduce to

    ujRujL=0,fjRfjL=0.\displaystyle u_{j}^{R}-u_{j}^{L}=0\,,\quad f_{j}^{R}-f_{j}^{L}=0\,. (7)

    That is, each element is uncoupled from the others when γ=0\gamma=0 . Consequently we find that γ=0\gamma=0 forms a useful base for theory. Denoting the element lengths by Hj:=RjLjH_{j}:=R_{j}-L_{j} , the two conditions (7) specify that the subgrid field uju_{j} is HjH_{j}-periodic. For the forthcoming example 2 on the diffusion pde, ut=uxxu_{t}=u_{xx} , such uncoupled elements evolve in time so that uju_{j}\to{}constant on the cross-element diffusion time scale of 1/Hj21/H_{j}^{2}. Centre manifold theory then supports the existence and emergence of an exact closure to the spatial discretisation, namely (3), in some finite range of γ\gamma about γ=0\gamma=0 (section 2.2).

  • When parameter γ=1\gamma=1 the edge conditions eq. 6 reduce to

    12(1θ)(ujRuj+1L)=12(1+θ)(ujLuj1R),\displaystyle\tfrac{1}{2}(1-\theta)(u_{j}^{R}-u_{j+1}^{L})=\tfrac{1}{2}(1+\theta)(u_{j}^{L}-u_{j-1}^{R}),
    12(1+θ)(fjRfj+1L)=12(1θ)(fjLfj1R).\displaystyle\tfrac{1}{2}(1+\theta)(f_{j}^{R}-f_{j+1}^{L})=\tfrac{1}{2}(1-\theta)(f_{j}^{L}-f_{j-1}^{R}).

    In matrix notation the γ=1\gamma=1 edge condition on field uu is equivalent to V~𝒖=𝟎V\tilde{}{\text{\boldmath$u$}}=\text{\boldmath$0$} for vector ~𝒖:=(u1Ru2L,,uNRu1L)\tilde{}{\text{\boldmath$u$}}:=(u_{1}^{R}-u_{2}^{L},\ldots,u_{N}^{R}-u_{1}^{L}), and for N×NN\times N circulant matrix

    V:=[12(1θ)0012(1+θ)12(1+θ)0000012(1+θ)12(1θ)].V:=\begin{bmatrix}\tfrac{1}{2}(1-\theta)&0&\cdots&0&\tfrac{1}{2}(1+\theta)\\ \tfrac{1}{2}(1+\theta)&\ddots&&\ddots&0\\ 0&\ddots&\ddots&\ddots&\vdots\\ \vdots&\ddots&\ddots&\ddots&0\\ 0&\cdots&0&\tfrac{1}{2}(1+\theta)&\tfrac{1}{2}(1-\theta)\end{bmatrix}.

    The eigenvalues of this circulant matrix are λk=12(1θ)+12(1+θ)e2πik(N1)/N\lambda_{k}=\tfrac{1}{2}(1-\theta)+\tfrac{1}{2}(1+\theta)e^{-2\pi\operatorname{i}k(N-1)/N} for k=0,,N1k=0,\ldots,N-1 [Gray2006, Sec. 3.1, Eq. (3.7)], and thus only in the case k=N/2k=N/2 and θ=0\theta=0 does VV have a zero eigenvalue (is singular). Therefore, the only solution of V~𝒖=𝟎V\tilde{}{\text{\boldmath$u$}}=\text{\boldmath$0$} is ~𝒖=𝟎\tilde{}{\text{\boldmath$u$}}=\text{\boldmath$0$} (except for the case θ=0\theta=0 and NN even, when there are also nontrivial zigzag solutions in the nullspace). A similar argument holds for the flux condition which is equivalent to VT~𝒇=𝟎V^{T}\tilde{}{\text{\boldmath$f$}}=\text{\boldmath$0$} for vector ~𝒇:=(f1LfNR,f2Lf1R,,fNLfN1R)\tilde{}{\text{\boldmath$f$}}:=(f_{1}^{L}-f_{N}^{R},f_{2}^{L}-f_{1}^{R},\ldots,f_{N}^{L}-f_{N-1}^{R}); that is, the only solution is ~𝒇=𝟎\tilde{}{\text{\boldmath$f$}}=\text{\boldmath$0$} (except the case θ=0\theta=0 and NN is even). Therefore, for γ=1\gamma=1, edge conditions eq. 6 are equivalent to

    ujRuj+1L=0,fjRfj+1L=0u_{j}^{R}-u_{j+1}^{L}=0\,,\quad f_{j}^{R}-f_{j+1}^{L}=0 (8)

    (except perhaps for the isolated case θ=0\theta=0 and NN even). Thus γ=1\gamma=1 restores full inter-element coupling by requiring continuity of the field uu and the flux ff between elements.

    Remark 4.

    For the special case of θ=0\theta=0 and even NN, both the continuous edge conditions (8) and a discontinuous zigzag mode, ujRuj+1L(1)ju_{j}^{R}-u_{j+1}^{L}\propto(-1)^{j} and fjRfj+1L(1)jf_{j}^{R}-f_{j+1}^{L}\propto(-1)^{j}, satisfy conditions (6) at γ=1\gamma=1 . Such a macroscale zigzag mode typically occurs with periodic boundary conditions and an even number of grid points. The zigzag mode is physically deficient because it interpolates from the macro-grid as cos[π(xXj)/H]+asin[π(xXj)/H]\cos[\pi(x-X_{j})/H]+a\sin[\pi(x-X_{j})/H] for any arbitrary coefficient aa. All other modes have a unique interpolation in resolved wavenumbers |k|π/H|k|\leq\pi/H . Because of this physical deficiency, when necessary we restrict attention to the co-dimension two space without the zigzag modes. Without the zigzag modes, the edge conditions eq. 6 are equivalent to (8).

For a physically reasonable description of the macroscale dynamics, we need to define some measure of the overall size of the fields uju_{j} in each element 𝕏j\mathbb{X}_{j}, j=1,,Nj=1,\ldots,N, in order to give physical meaning to the macroscale parameters 𝑼=(U1,,UN){\text{\boldmath$U$}}=(U_{1},\ldots,U_{N}), that is, we need to define the projection 𝒰\mathcal{U} invoked by eq. 2. Among many, two possibilities are the mid-element value 𝒰[uj]:=uj(t,(Lj+Rj)/2)\mathcal{U}[u_{j}]:=u_{j}(t,(L_{j}+R_{j})/2) (used in example 1), or the element average 𝒰[uj]:=1HjLjRjuj(t,x)𝑑x\mathcal{U}[u_{j}]:=\frac{1}{H_{j}}\int_{L_{j}}^{R_{j}}u_{j}(t,x)\,dx . Any reasonable choice suffices [Roberts2014a, §5.3.3]. The next example implements the element average.

Example 2 (high-order consistency in discretising diffusion).

Consider the simplest case of pde eq. 1, the case of homogeneous diffusion ut=uxxu_{t}=u_{xx} , which arises when g=0g=0 and the flux f=uxf=-u_{x} . appendix A describes computer algebra code that discretises this diffusion pde via elements, all of size HH, with inter-element coupling controlled by edge conditions eq. 6. The computer algebra analyses the pde to learn the emergent slow manifold model as a power series in the coupling parameter γ\gamma (remark 3). Because of the simplicity of the homogeneous diffusion operator, the algebraically learnt slow manifold is here local polynomials. In terms of subgrid space variable ξ:=(xLj)/H[0,1]\xi:=(x-L_{j})/H\in[0,1] , tuning parameter θ\theta, and centred mean μj\mu_{j} and difference δj\delta_{j} operators on the macroscale grid variables UjU_{j} (table 1), the learnt subgrid structures are, when retaining terms up to quadratic order in γ\gamma,

uj\displaystyle u_{j} =Uj+γ(ξ12)μjδjUj+12γ2(ξ2ξ+16)δj2Uj\displaystyle=U_{j}+\gamma(\xi-\tfrac{1}{2})\mu_{j}\delta_{j}U_{j}+\tfrac{1}{2}\gamma^{2}(\xi^{2}-\xi+\tfrac{1}{6})\delta_{j}^{2}U_{j}
14γ2(1+θ2)(ξ12)μjδj3Uj+18γ2(1θ2)(ξ2ξ+16)δj4Uj\displaystyle\quad{}-\tfrac{1}{4}\gamma^{2}(1+\theta^{2})(\xi-\tfrac{1}{2})\mu_{j}\delta_{j}^{3}U_{j}+\tfrac{1}{8}\gamma^{2}(1-\theta^{2})(\xi^{2}-\xi+\tfrac{1}{6})\delta_{j}^{4}U_{j}
+θ(ξ12)[12(γγ2)δj2Uj+14γ2δj4Uj]+𝒪(γ3).\displaystyle\quad{}+\theta(\xi-\tfrac{1}{2})\big{[}-\tfrac{1}{2}(\gamma-\gamma^{2})\delta_{j}^{2}U_{j}+\tfrac{1}{4}\gamma^{2}\delta_{j}^{4}U_{j}\big{]}+\mathcal{O}\mathchoice{\big{(}\gamma^{3}\big{)}}{\big{(}\gamma^{3}\big{)}}{(\gamma^{3})}{(\gamma^{3})}. (9a)
The corresponding learnt lowest-order evolution equation, the closure eq. 3, is
tUj\displaystyle\partial_{t}U_{j} =γ2H2[(1θ2)μj2+θ2]δj2Uj+𝒪(γ3).\displaystyle=\frac{\gamma^{2}}{H^{2}}\left[(1-\theta^{2})\mu_{j}^{2}+\theta^{2}\right]\delta_{j}^{2}U_{j}+\mathcal{O}\mathchoice{\big{(}\gamma^{3}\big{)}}{\big{(}\gamma^{3}\big{)}}{(\gamma^{3})}{(\gamma^{3})}. (9b)
This is a correct leading discretisation of the original system for every θ\theta—correct as it is consistent with the homogeneous diffusion pde to errors 𝒪(H2)\mathcal{O}\mathchoice{\big{(}H^{2}\big{)}}{\big{(}H^{2}\big{)}}{(H^{2})}{(H^{2})} as H0H\to 0 . But (9b) has two unusual features for holistic discretisation: it only appears at 𝒪(γ2)\mathcal{O}\mathchoice{\big{(}\gamma^{2}\big{)}}{\big{(}\gamma^{2}\big{)}}{(\gamma^{2})}{(\gamma^{2})}; and for tuning θ±1\theta\neq\pm 1 it invokes the next-nearest neighbours, Uj±2U_{j\pm 2} (through μj2δj2\mu_{j}^{2}\delta_{j}^{2}), as well as the two nearest neighbours, Uj±1U_{j\pm 1}.
Table 1: Useful operator identities [npl61, p.65, e.g.] where E1E^{-1} and EE represent a shift to the left and right, respectively, with subscript xx indicating a shift of distance HH, subscript jj indicating a shift of one in this element index, and subscript ξ\xi indicating a shift of one in this dimensionless subgrid variable. For example, δj2Uj=(Ej2+Ej1)Uj=Uj+12Uj+Uj1\delta_{j}^{2}U_{j}=(E_{j}-2+E_{j}^{-1})U_{j}=U_{j+1}-2U_{j}+U_{j-1} and μjδjUj=12(EjEj1)Uj=12[Uj+1Uj1]\mu_{j}\delta_{j}U_{j}=\frac{1}{2}(E_{j}-E_{j}^{-1})U_{j}=\frac{1}{2}[U_{j+1}-U_{j-1}] .
δ=E1/2E1/2μ=12(E1/2+E1/2)δx=2sinh(Hx/2)μx=cosh(Hx/2)δj=2sinh(j/2)μj=cosh(j/2)E±1=1±μδ+12δ2μ2=1+14δ2\begin{array}[]{rlrl}\hline\cr&\delta=E^{1/2}-E^{-1/2^{\vphantom{|}}}&&\mu=\tfrac{1}{2}(E^{1/2}+E^{-1/2})\\ &\delta_{x}=2\sinh(H\partial_{x}/2)&&\mu_{x}=\cosh(H\partial_{x}/2)\\ &\delta_{j}=2\sinh(\partial_{j}/2)&&\mu_{j}=\cosh(\partial_{j}/2)\\ &E^{\pm 1}=1\pm\mu\delta+\tfrac{1}{2}\delta^{2}&&\mu^{2}=1+\tfrac{1}{4}\delta^{2}\\[2.15277pt] \hline\cr\end{array}

section 2.2 details how centre manifold theory supports such truncations as an approximation to an in-principle exact slow manifold that exists, and is exponentially quickly attractive for a wide range of initial conditions. This theoretical support also applies to nonlinear modifications of such linear diffusion.

The algebra of appendix A computes to arbitrarily high-order in coupling parameter γ\gamma, learning more and more subgrid structures of the diffusion pde ut=uxxu_{t}=u_{xx} . Computed to element interaction errors 𝒪(γ6)\mathcal{O}\mathchoice{\big{(}\gamma^{6}\big{)}}{\big{(}\gamma^{6}\big{)}}{(\gamma^{6})}{(\gamma^{6})} we find the macroscale closure eq. 3 is

H2tUj\displaystyle H^{2}\partial_{t}U_{j} =θ2[γ2δj212γ3δj4+14γ4(53δj4+δj6)14γ5(53δj6+12δj8)]Uj\displaystyle=\theta^{2}\big{[}\gamma^{2}\delta_{j}^{2}-\tfrac{1}{2}\gamma^{3}\delta_{j}^{4}+\tfrac{1}{4}\gamma^{4}(\tfrac{5}{3}\delta_{j}^{4}+\delta_{j}^{6})-\tfrac{1}{4}\gamma^{5}(\tfrac{5}{3}\delta_{j}^{6}+\tfrac{1}{2}\delta_{j}^{8})\big{]}U_{j}
+θ2(1θ2)[116γ4(23+13μj2)δj6116γ5(23+13μj2)δj8]Uj\displaystyle\quad{}+\theta^{2}(1-\theta^{2})\big{[}\tfrac{1}{16}\gamma^{4}(\tfrac{2}{3}+\tfrac{1}{3}\mu_{j}^{2})\delta_{j}^{6}-\tfrac{1}{16}\gamma^{5}(\tfrac{2}{3}+\tfrac{1}{3}\mu_{j}^{2})\delta_{j}^{8}\big{]}U_{j}
+(1θ2)[γ2μj2δj212γ3μj2δj4+16γ4(1+118δj2)μj2δj4\displaystyle\quad{}+(1-\theta^{2})\big{[}\gamma^{2}\mu_{j}^{2}\delta_{j}^{2}-\tfrac{1}{2}\gamma^{3}\mu_{j}^{2}\delta_{j}^{4}+\tfrac{1}{6}\gamma^{4}(1+\tfrac{11}{8}\delta_{j}^{2})\mu_{j}^{2}\delta_{j}^{4}
16γ5(1+58δj2)μj2δj6]Uj+𝒪(γ6).\displaystyle\qquad{}-\tfrac{1}{6}\gamma^{5}(1+\tfrac{5}{8}\delta_{j}^{2})\mu_{j}^{2}\delta_{j}^{6}\big{]}U_{j}+\mathcal{O}\mathchoice{\big{(}\gamma^{6}\big{)}}{\big{(}\gamma^{6}\big{)}}{(\gamma^{6})}{(\gamma^{6})}. (9c)

We test how well such discretisations predict the diffusion dynamics by comparing the pde ut=uxxu_{t}=u_{xx} with the equivalent pde of discretisation eq. 9c. To determine the equivalent pde, the macroscale grid fields UjU_{j} over all discrete jj are interpolated to provide a description of UjU_{j} over the continuous variable xx, so that one step in index jj of field UjU_{j} is the same as one step in xx of size HH: δj2Uj=δx2Uj\delta_{j}^{2}U_{j}=\delta_{x}^{2}U_{j} and μjδjUj=μxδxUj\mu_{j}\delta_{j}U_{j}=\mu_{x}\delta_{x}U_{j} , and similarly for higher orders.444Mean operators μj\mu_{j} and μx\mu_{x} and difference operators δj\delta_{j} and δx\delta_{x} are not equivalent; but they give the same results when operating on macroscale fields UjU_{j} because the xx dependence of the macroscale field is defined by an interpolation of the discrete jj field values (remark 5). In contrast, as we show in sections 3.2 and 3.3 (in particular sections 3.2 and 3.3), operators δx\delta_{x} and δj\delta_{j} (and similarly μx\mu_{x} and μj\mu_{j}) are distinctly different when operating on microscale fields uj(t,x)u_{j}(t,x). Upon computing to higher-order errors of 𝒪(γ9)\mathcal{O}\mathchoice{\big{(}\gamma^{9}\big{)}}{\big{(}\gamma^{9}\big{)}}{(\gamma^{9})}{(\gamma^{9})}, the equivalent pde to the discrete model is, by expanding the operator identity that δx=2sinh(Hx/2)\delta_{x}=2\sinh(H\partial_{x}/2) (table 1),

tU\displaystyle\partial_{t}U =γ2x2U+(1θ2)[(13γ212γ3+16γ4)H2x4U\displaystyle=\gamma^{2}\partial_{x}^{2}U+(1-\theta^{2})\left[(\tfrac{1}{3}\gamma^{2}-\tfrac{1}{2}\gamma^{3}+\tfrac{1}{6}\gamma^{4})H^{2}\partial_{x}^{4}U\right.
+(245γ2524γ3+43144γ416γ5+23720γ6)H4x6U\displaystyle\quad\left.{}+(\tfrac{2}{45}\gamma^{2}-\tfrac{5}{24}\gamma^{3}+\tfrac{43}{144}\gamma^{4}-\tfrac{1}{6}\gamma^{5}+\tfrac{23}{720}\gamma^{6})H^{4}\partial_{x}^{6}U\right.
+(1315380γ3+61480γ4316γ5+49360γ623480γ7+111680)H6x8U]\displaystyle\quad\left.{}+(\tfrac{1}{315}-\tfrac{3}{80}\gamma^{3}+\tfrac{61}{480}\gamma^{4}-\tfrac{3}{16}\gamma^{5}+\tfrac{49}{360}\gamma^{6}-\tfrac{23}{480}\gamma^{7}+\tfrac{11}{1680})H^{6}\partial_{x}^{8}U\right]
+θ2[(112γ212γ3+512γ4)H2x4U\displaystyle\quad{}+\theta^{2}\left[(\tfrac{1}{12}\gamma^{2}-\tfrac{1}{2}\gamma^{3}+\tfrac{5}{12}\gamma^{4})H^{2}\partial_{x}^{4}U\right.
+(1360γ2112γ3+2372γ4512γ5+845γ6)H4x6U\displaystyle\quad\left.{}+(\tfrac{1}{360}\gamma^{2}-\tfrac{1}{12}\gamma^{3}+\tfrac{23}{72}\gamma^{4}-\tfrac{5}{12}\gamma^{5}+\tfrac{8}{45}\gamma^{6})H^{4}\partial_{x}^{6}U\right.
+(120160γ21160γ3+13192γ41148γ5+257720γ6415γ7+13168γ8)H6x8U]\displaystyle\quad\left.{}+(\tfrac{1}{20160}\gamma^{2}-\tfrac{1}{160}\gamma^{3}+\tfrac{13}{192}\gamma^{4}-\tfrac{11}{48}\gamma^{5}+\tfrac{257}{720}\gamma^{6}-\tfrac{4}{15}\gamma^{7}+\tfrac{13}{168}\gamma^{8})H^{6}\partial_{x}^{8}U\right]
+θ2(1θ2)[(116γ4116γ6)H4x6U\displaystyle\quad{}+\theta^{2}(1-\theta^{2})\left[(\tfrac{1}{16}\gamma^{4}-\tfrac{1}{16}\gamma^{6})H^{4}\partial_{x}^{6}U\right.
+(148γ4116γ51192γ6+332γ7364γ8)H6x8U]\displaystyle\quad\left.{}+(\tfrac{1}{48}\gamma^{4}-\tfrac{1}{16}\gamma^{5}-\tfrac{1}{192}\gamma^{6}+\tfrac{3}{32}\gamma^{7}-\tfrac{3}{64}\gamma^{8})H^{6}\partial_{x}^{8}U\right]
+θ4(1θ2)[(164γ6164γ8)H6x8U]+𝒪(H8x9U).\displaystyle\quad{}+\theta^{4}(1-\theta^{2})\left[(\tfrac{1}{64}\gamma^{6}-\tfrac{1}{64}\gamma^{8})H^{6}\partial_{x}^{8}U\right]+\mathcal{O}\mathchoice{\big{(}H^{8}\partial_{x}^{9}U\big{)}}{\big{(}H^{8}\partial_{x}^{9}U\big{)}}{(H^{8}\partial_{x}^{9}U)}{(H^{8}\partial_{x}^{9}U)}. (9d)

For full coupling γ=1\gamma=1 and for every tuning θ\theta, all these coefficients evaluate to zero, except for the leading diffusion coefficient which evaluates to one. Thus the discretisation (9c) is consistent with ut=uxxu_{t}=u_{xx} to error 𝒪(H8x9U)\mathcal{O}\mathchoice{\big{(}H^{8}\partial_{x}^{9}U\big{)}}{\big{(}H^{8}\partial_{x}^{9}U\big{)}}{(H^{8}\partial_{x}^{9}U)}{(H^{8}\partial_{x}^{9}U)}.

Inspection of eq. 9d suggests, and section 3.3 proves, that a construction of the slow manifold to errors o(γp)o\big{(}\gamma^{p}\big{)}, for every even pp, learns a discrete model consistent with the diffusion pde to errors 𝒪(Hpxp+2U)\mathcal{O}\mathchoice{\big{(}H^{p}\partial_{x}^{p+2}U\big{)}}{\big{(}H^{p}\partial_{x}^{p+2}U\big{)}}{(H^{p}\partial_{x}^{p+2}U)}{(H^{p}\partial_{x}^{p+2}U)}. That is, the learnt holistic discretisation is consistent with the diffusion pde to arbitrarily high-order.

In application, this systematic consistency means that one controls and estimates errors in the holistic discretisation by varying the order pp of the inter-element coupling.

2.2 Support spatial discretisation with centre manifold theory

We use centre manifold theory [[, e.g.,]]Carr81, Haragus2011, Hochs2019 to establish (theorem 5) the existence and emergence of an exact closure (3) to the spatial discretisation of pdes in the class eq. 1. Centre manifold theory is based upon either an equilibrium or subspace/manifold of equilibria, and primarily follows from the local persistence of a spectral gap in the linearised dynamics [[, e.g.,]Part V]Roberts2014a.

To find useful equilibria we embed the pde eq. 1 into a wider class of problems characterised by parameter γ\gamma. For definiteness of theory, set the macroscale boundary conditions on 𝕏\mathbb{X} to be that the field u(t,x)u(t,x) is 𝔏\mathfrak{L}-periodic in space xx. Recall that uj(t,x)u_{j}(t,x) denotes solutions of the pde eq. 1 on the elements 𝕏j\mathbb{X}_{j} that partition the domain, so we reserve u(t,x)u(t,x), over ~𝕏\tilde{}\mathbb{X}, to denote the union over all elements of such solutions. Then the edge-element conditions eq. 6 couple each element together. The information flow between elements is moderated by the coupling parameter γ\gamma. The parameter γ\gamma connects the original pde over the whole domain, γ=1\gamma=1, to a useful base problem, γ=0\gamma=0 .

Lemma 2 (equilibria).

The pde eq. 1 with section 1 on elements {𝕏j}\{\mathbb{X}_{j}\} with edge conditions eq. 6 possesses an NN-dimensional subspace 𝔼\mathbb{E} of equilibria parametrised by 𝐔=(U1,U2,,UN){\text{\boldmath$U$}}=(U_{1},U_{2},\ldots,U_{N}) with parameter values α=γ=0\alpha=\gamma=0 . Each equilibrium is of a piecewise constant field u(x)u^{*}(x) such that for every j𝕁j\in\mathbb{J}, u(x)=Uju^{*}(x)=U_{j} for x𝕏jx\in\mathbb{X}_{j} .

There usually are other equilibria of eq. 1+eq. 6: this lemma only addresses the subspace 𝔼\mathbb{E}.

Proof.

With advection-reaction coefficient α=0\alpha=0 the pde eq. 1 takes the form ut=f(x,u,ux)xu_{t}=-f(x,u,u_{x})_{x} . For every piecewise constant field u(x)=Uju^{*}(x)=U_{j} in 𝕏j\mathbb{X}_{j} the gradient ux=0u^{*}_{x}=0 , and by section 1 the flux f(x,u,ux)=f(x,Uj,0)=0f(x,u^{*},u_{x}^{*})=f(x,U_{j},0)=0 . Thus 𝑼=(U1,U2,,UN){\text{\boldmath$U$}}=(U_{1},U_{2},\ldots,U_{N}) with α=0\alpha=0 are equilibria of the pde on ~𝕏\tilde{}\mathbb{X}. The equilibria also require coupling γ=0\gamma=0 , for which the right-hand sides of the conditions eq. 6 are zero. The left-hand sides are also zero for fields constant in each element, and so the conditions eq. 6 are satisfied. ∎

We seek solutions u=u(x)+u^(t,x)u=u^{*}(x)+\hat{u}(t,x) of the general pde eq. 1 where u^(t,x)\hat{u}(t,x) denotes a small linearised perturbation of the equilubria in 𝔼\mathbb{E}. Use u^j(t,x)\hat{u}_{j}(t,x) as a synonym for u^(t,x)\hat{u}(t,x) on the jjth element 𝕏j\mathbb{X}_{j}. Then, since parameter α=0\alpha=0 and for small u^\hat{u} flux f(x,u,ux)f(x,u,u^x)f(x,u,u_{x})\approx f(x,u^{*},\hat{u}_{x}) , the pde eq. 1 linearises to

u^t=x[fux(x,u,0)u^x]on 𝕏;\displaystyle\hat{u}_{t}=-\partial_{x}\left[\mathchoice{\frac{\partial f}{\partial u_{x}}}{{\partial f}/{\partial u_{x}}}{{\partial f}/{\partial u_{x}}}{{\partial f}/{\partial u_{x}}}(x,u^{*},0)\hat{u}_{x}\right]\quad\text{on }\mathbb{X};
that is,u^jt=x[κj(x)u^jx]for x𝕏j,\displaystyle\text{that is,}\quad\hat{u}_{jt}=\partial_{x}\big{[}\kappa_{j}(x)\hat{u}_{jx}\big{]}\quad\text{for }x\in\mathbb{X}_{j}\,, (10)

where we define the local diffusivity κj(x):=f(x,Uj,0)/ux\kappa_{j}(x):=-\mathchoice{\frac{\partial f(x,U_{j},0)}{\partial u_{x}}}{{\partial f(x,U_{j},0)}/{\partial u_{x}}}{{\partial f(x,U_{j},0)}/{\partial u_{x}}}{{\partial f(x,U_{j},0)}/{\partial u_{x}}} for x𝕏jx\in\mathbb{X}_{j} . From section 1, κj(x)ν>0\kappa_{j}(x)\geq\nu>0 . The edge conditions eq. 6 are linear, so they apply here with flux fj=κju^jxf_{j}=-\kappa_{j}\hat{u}_{jx} , and uju_{j} replaced by u^j\hat{u}_{j}—for symbolic simplicity let’s omit the hat hereafter.

A spectrum of eigenvalues arises from the general linearised dynamics (10). We turn to determining this spectrum when the coupling parameter γ=0\gamma=0 , namely the diffusion eq. 10 with isolating edge conditions eq. 7. In doing this, the following self-adjointness is crucial.

Lemma 3 (self-adjoint).

The diffusion operator

:=[κj(x)x]x\mathcal{L}:=[\kappa_{j}(x)\partial_{x}\cdot]_{x} (11)

subject to the γ=0\gamma=0 edge conditions eq. 7, is self-adjoint in the Hilbert space 𝕃\mathbb{L} with the usual inner product v,u:=j𝕏jvjuj𝑑x\left<v,u\right>:=\sum_{j}\int_{\mathbb{X}_{j}}v_{j}u_{j}\,dx .

Proof.

Proceed straightforwardly via integration by parts, where for every u𝕃u\in\mathbb{L} the flux fj:=κj(x)ujxf_{j}:=-\kappa_{j}(x)u_{jx} , and likewise for u~\tilde{u} and f~\tilde{f}:

u~,uu~,u\displaystyle\left<\tilde{u},\mathcal{L}u\right>-\left<\mathcal{L}\tilde{u},u\right> =j𝕏ju~j[κj(x)ujx]xuj[κj(x)u~jx]xdx\displaystyle=\sum_{j}\int_{\mathbb{X}_{j}}\tilde{u}_{j}[\kappa_{j}(x)u_{jx}]_{x}-u_{j}[\kappa_{j}(x)\tilde{u}_{jx}]_{x}\,dx
=j[u~jκj(x)ujxujκj(x)u~jx]LjRj\displaystyle=\sum_{j}\big{[}\tilde{u}_{j}\kappa_{j}(x)u_{jx}-u_{j}\kappa_{j}(x)\tilde{u}_{jx}\big{]}_{L_{j}}^{R_{j}}
=j(u~jRfjR+ujRf~jR+u~jLfjLujLf~jL)\displaystyle=\sum_{j}\big{(}-\tilde{u}_{j}^{R}f_{j}^{R}+u_{j}^{R}\tilde{f}_{j}^{R}+\tilde{u}_{j}^{L}f_{j}^{L}-u_{j}^{L}\tilde{f}_{j}^{L}\big{)}
=j(u~jLfjL+ujLf~jL+u~jLfjLujLf~jL)(by eq. 7)\displaystyle=\sum_{j}\big{(}-\tilde{u}_{j}^{L}f_{j}^{L}+u_{j}^{L}\tilde{f}_{j}^{L}+\tilde{u}_{j}^{L}f_{j}^{L}-u_{j}^{L}\tilde{f}_{j}^{L}\big{)}\quad(\text{by }\lx@cref{creftype~refnum}{eqsiecc0})
=0.\displaystyle=0\,.

section 2.4 extends section 2.2 by establishing that the linear operator \mathcal{L}, with inter-element coupling controlled by edge conditions eq. 6 is self-adjoint for every γ\gamma.

By the self-adjointness of \mathcal{L} (11), we need only seek real eigenvalues in the spectrum of (10). Let’s first discuss the zero eigenvalues, and second, the non-zero eigenvalues. For the diffusion operator eq. 11 any eigenfunction corresponding to an eigenvalue of zero must be linear on each 𝕏j\mathbb{X}_{j}. The element-periodicity conditions eq. 7 for γ=0\gamma=0 then require that the eigenfunctions must be constant within every element. That is, the zero-eigenspace of \mathcal{L} when γ=0\gamma=0 is the NN-D subspace of equilibria 𝔼\mathbb{E} (defined in section 2.2). By self-adjointness, there are no generalised eigenfunctions. Hence the operator eq. 11+eq. 7 has NN eigenvalues of zero, and 𝔼\mathbb{E} is the corresponding NN-D slow subspace.

Lemma 4 (exponential dichotomy).

Under section 1, the operator eq. 11, =[κj(x)x]x\mathcal{L}=[\kappa_{j}(x)\partial_{x}\cdot]_{x} subject to eq. 7, in 𝕃\mathbb{L} has NN zero eigenvalues and all other eigenvalues λ\lambda are negative and bounded away from zero by λβ\lambda\leq-\beta where a bound β:=minj𝕁,x𝕏j[4π2κj(x)/Hj2]>0\beta:=\min_{j\in\mathbb{J},\,x\in\mathbb{X}_{j}}\big{[}4\pi^{2}\kappa_{j}(x)/H_{j}^{2}\big{]}>0 .

Proof.

The precisely NN zero eigenvalues are established in the paragraphs preceding section 2.2. Also, section 2.2 establishes all eigenvalues of \mathcal{L} are real. Let λ\lambda be a non-zero eigenvalue and v(x)v(x) be a corresponding eigenfunction. Consequently, and using the usual inner product v,u:=j𝕏jvjuj𝑑x\left<v,u\right>:=\sum_{j}\int_{\mathbb{X}_{j}}v_{j}u_{j}\,dx , we proceed to derive the inequality

(λ)v2\displaystyle(-\lambda)\|v\|^{2} =λv,v=v,λv=v,v=j𝕁𝕏jvj[κj(x)vjx]xdx\displaystyle=-\lambda\left<v,v\right>=\left<v,-\lambda v\right>=\left<v,-\mathcal{L}v\right>=\sum_{j\in\mathbb{J}}\int_{\mathbb{X}_{j}}-v_{j}[\kappa_{j}(x)v_{jx}]_{x}\,dx
=j𝕁[vjκjvjx]LjRj+j𝕁𝕏jvjxκjvjx𝑑x(integrating by parts)\displaystyle=\sum_{j\in\mathbb{J}}\big{[}-v_{j}\kappa_{j}v_{jx}\big{]}_{L_{j}}^{R_{j}}+\sum_{j\in\mathbb{J}}\int_{\mathbb{X}_{j}}v_{jx}\kappa_{j}v_{jx}\,dx\quad(\text{integrating by parts})
=j𝕁0+j𝕁𝕏jκjvjx2𝑑x(using eq. 7)\displaystyle=\sum_{j\in\mathbb{J}}0+\sum_{j\in\mathbb{J}}\int_{\mathbb{X}_{j}}\kappa_{j}v_{jx}^{2}\,dx\quad(\text{using \lx@cref{creftype~refnum}{eqsiecc0}})
β4π2j𝕁𝕏jHj2vjx2𝑑x,\displaystyle\geq\frac{\beta}{4\pi^{2}}\sum_{j\in\mathbb{J}}\int_{\mathbb{X}_{j}}H_{j}^{2}v_{jx}^{2}\,dx\,, (12)

for the bound β\beta defined in terms of the lowest diffusivity of operator \mathcal{L}: κj(x)βHj2/(4π2)\kappa_{j}(x)\geq\beta H_{j}^{2}/(4\pi^{2}) for all x𝕏jx\in\mathbb{X}_{j} , for every j𝕁j\in\mathbb{J} . The bound β>0\beta>0 follows from the monotonicity of ff, section 1, since κj(x)=f/ux(x,Uj,0)ν>0\kappa_{j}(x)=-\mathchoice{\frac{\partial f}{\partial u_{x}}}{{\partial f}/{\partial u_{x}}}{{\partial f}/{\partial u_{x}}}{{\partial f}/{\partial u_{x}}}(x,U_{j},0)\geq\nu>0 for all j𝕁j\in\mathbb{J} , so β/(4π2)=minj𝕁,x𝕏j[κj(x)/Hj2]ν/maxjHj2>0\beta/(4\pi^{2})=\min_{j\in\mathbb{J},\,x\in\mathbb{X}_{j}}\big{[}\kappa_{j}(x)/H_{j}^{2}\big{]}\geq\nu/{\max_{j}H_{j}^{2}}>0 . A first consequence of inequality (12) is that there are no positive eigenvalues λ\lambda.

Secondly, we establish that the non-zero eigenvalues are bounded away from zero by β-\beta. This bound is established by relating inequality (12) for a general eigenvalue λ\lambda and associated eigenvector vv of some heterogeneous problem to the known lowest magnitude eigenvalue λ1\lambda_{1} of a spatially homogeneous problem. Let :=Hj22/x2\mathcal{L}_{*}:=H_{j}^{2}\mathchoice{\frac{\partial^{2}}{\partial x^{2}}}{{\partial^{2}}/{\partial x^{2}}}{{\partial^{2}}/{\partial x^{2}}}{{\partial^{2}}/{\partial x^{2}}} for x𝕏jx\in\mathbb{X}_{j} with edge conditions eq. 7 (that is, the linear operator (11) for the special homogeneous case of κj(x)=Hj2\kappa_{j}(x)=H_{j}^{2}). Then by the reverse argument to that of the previous paragraph, j𝕁𝕏jHj2vx2𝑑x==v,v\sum_{j\in\mathbb{J}}\int_{\mathbb{X}_{j}}H_{j}^{2}v_{x}^{2}\,dx=\cdots=\left<v,-\mathcal{L}_{*}v\right> . By the Rayleigh–Ritz theorem, the smallest magnitude, non-zero, eigenvalue λ1\lambda_{1} of \mathcal{L}_{*} satisfies λ1=minw𝔼w,w/w2-\lambda_{1}=\min_{w\perp\mathbb{E}}\left<w,-\mathcal{L}_{*}w\right>/\|w\|^{2} , and so j𝕁𝕏jHj2vx2𝑑x=v,vλ1v2\sum_{j\in\mathbb{J}}\int_{\mathbb{X}_{j}}H_{j}^{2}v_{x}^{2}\,dx=\left<v,-\mathcal{L}_{*}v\right>\geq-\lambda_{1}\|v\|^{2} . But for \mathcal{L}_{*}, subject to the condition of HjH_{j}-periodicity eq. 7, it is well-known that the smallest magnitude, non-zero eigenvalue is λ1=4π2\lambda_{1}=-4\pi^{2} (corresponding to eigenmodes e±i2πx/Hj\operatorname{e}^{\pm\operatorname{i}2\pi x/H_{j}}). Hence, inequality (12) becomes (λ)v2β4π2j𝕁𝕏jHj2vx2𝑑xβ4π2λ1v2=βv2(-\lambda)\|v\|^{2}\geq\frac{\beta}{4\pi^{2}}\sum_{j\in\mathbb{J}}\int_{\mathbb{X}_{j}}H_{j}^{2}v_{x}^{2}\,dx\geq-\frac{\beta}{4\pi^{2}}\lambda_{1}\|v\|^{2}=\beta\|v\|^{2} . That is, λβ\lambda\leq-\beta for every non-zero eigenvalue λ\lambda. ∎

With section 2.2 proving a spectral gap in the linearised dynamics of eq. 10+eq. 7 with α=γ=0\alpha=\gamma=0 , we are now in a position to discuss the corresponding slow manifold of eq. 1+eq. 6. Inspired by the backwards theory of numerical analysis [[, e.g.,]]Grcar2011, we apply backwards theory to establish the existence and emergence of a slow manifold [Hochs2019, Roberts2018a].

For rigorous theory we notionally adjoin the two trivial dynamical equations αt=γt=0\alpha_{t}=\gamma_{t}=0 to the linearised system eq. 10+eq. 6. Then the equilibria in αγu\alpha\gamma u-space are (0,0,u(x))(0,0,u^{*}(x)) since these equilibria are at α=γ=0\alpha=\gamma=0 . Hence, strictly, there are two extra zero eigenvalues associated with the trivial αt=γt=0\alpha_{t}=\gamma_{t}=0 , and the corresponding slow subspace of each equilibria is (N+2)(N+2)-D. But, except for issues associated with the domain of validity for non-zero α\alpha and γ\gamma, for simplicity, in the following we do not explicitly discuss these two trivial dynamical equations nor their eigenvalues, but consider them implicit.

Theorem 5 (slow manifold).

Consider the generic reaction-advection-diffusion pde eq. 1 with section 1 on domain ~𝕏\tilde{}\mathbb{X} with inter-element edge conditions eq. 6. For every order p2p\geq 2 , there exists a system for u(t,x)u(t,x), namely the following polynomial map υp\upsilon_{p} and pde with polynomial nonlinearity 𝔣p\mathfrak{f}_{p}

u(t,x)=u+υp(t,x,v(t,x))where vt=v+𝔣p(t,x,v),u(t,x)=u^{*}+\upsilon_{p}(t,x,v(t,x))\quad\text{where }v_{t}=\mathcal{L}v+\mathfrak{f}_{p}(t,x,v), (13)

such that the map+pde eq. 13 is 𝒪(u𝔼p+αp+γp)\mathcal{O}\mathchoice{\big{(}\|u-\mathbb{E}\|^{p}+\alpha^{p}+\gamma^{p}\big{)}}{\big{(}\|u-\mathbb{E}\|^{p}+\alpha^{p}+\gamma^{p}\big{)}}{(\|u-\mathbb{E}\|^{p}+\alpha^{p}+\gamma^{p})}{(\|u-\mathbb{E}\|^{p}+\alpha^{p}+\gamma^{p})} close to eq. 1+eq. 6, and that the map+pde eq. 13 has the following properties.

  1. 5(a)

    There exists an open domain \mathcal{E}, in αγu\alpha\gamma u-space, containing the subspace 𝔼\mathbb{E}, such that in \mathcal{E} there exists a constructible slow manifold of eq. 13, polynomial in 𝐔U, α\alpha and γ\gamma of order p1p-1:

    u=u(t,x,𝑼,γ,α)such thatd𝑼dt=𝑮(t,𝑼,γ,α).u=u(t,x,{\text{\boldmath$U$}},\gamma,\alpha)\quad\text{such that}\quad\frac{d{\text{\boldmath$U$}}}{dt}={\text{\boldmath$G$}}(t,{\text{\boldmath$U$}},\gamma,\alpha). (14)
  2. 5(b)

    This slow manifold is emergent in the sense that for all solutions u(t,x)u(t,x) of eq. 13 that stay in \mathcal{E}, there exists a solution 𝑼(t){\text{\boldmath$U$}}(t) of eq. 14 such that u(t,x)=u(t,x,𝑼(t),γ,α)+𝒪(eβt)u(t,x)=u(t,x,{\text{\boldmath$U$}}(t),\gamma,\alpha)+\mathcal{O}\mathchoice{\big{(}e^{-\beta^{\prime}t}\big{)}}{\big{(}e^{-\beta^{\prime}t}\big{)}}{(e^{-\beta^{\prime}t})}{(e^{-\beta^{\prime}t})} for some decay rate 0<β<β0<\beta^{\prime}<\beta (β\beta defined by section 2.2).

In this theorem, and subsequently, asserting a quantity ϵ=𝒪(vp+αq+γr)\epsilon=\mathcal{O}\mathchoice{\big{(}v^{p}+\alpha^{q}+\gamma^{r}\big{)}}{\big{(}v^{p}+\alpha^{q}+\gamma^{r}\big{)}}{(v^{p}+\alpha^{q}+\gamma^{r})}{(v^{p}+\alpha^{q}+\gamma^{r})} is to mean the asymptotic property that ϵ/(vp+αq+γr)\epsilon/(v^{p}+\alpha^{q}+\gamma^{r}) is bounded as (v,α,γ)𝟎(v,\alpha,\gamma)\to\text{\boldmath$0$} [[, e.g.,]]Roberts2014a. Also, the norm u𝔼\|u-\mathbb{E}\| is a measure of the distance of uu from the subspace 𝔼\mathbb{E} of equilibria. Strictly, this measure of distance is a norm in appropriate graded Frechet spaces that are obtained from intersections of compactly nested sequences of Banach spaces [Hochs2019, Defs. 2.2–2.4] (hereafter denoted HR).

Proof.

For every equilibria u𝔼u^{*}\in\mathbb{E} , we invoke the backwards Theorems 2.18 and 2.22 of HR. From section 2.2, the eigenfunctions of the operator =[κj(x)x]x\mathcal{L}=[\kappa_{j}(x)\partial_{x}\cdot]_{x} subject to eq. 7 form an orthonormal basis of the requisite Hilbert space on ~𝕏:=j𝕏j\tilde{}\mathbb{X}:=\cup_{j}\mathbb{X}_{j} (Hilbert–Schmidt theorem). Since ff and gg are smooth (infinitely differentiable) they can be expanded polynomially to any specified order pp as required. Hence, with section 1, the conditions of Theorems 2.18 and 2.22 by HR are satisfied. Thus Corollary 2.23 by HR applies.

For every order pp, and for u(t,x)u(t,x) defined by the map+pde (13), this corollary asserts that u(t,x)u(t,x) satisfies eq. 1+eq. 6 to a residual Rp=𝒪((v,α,γ)p)=𝒪(u𝔼p+αp+γp)R_{p}=\mathcal{O}\mathchoice{\big{(}\|(v,\alpha,\gamma)\|^{p}\big{)}}{\big{(}\|(v,\alpha,\gamma)\|^{p}\big{)}}{(\|(v,\alpha,\gamma)\|^{p})}{(\|(v,\alpha,\gamma)\|^{p})}=\mathcal{O}\mathchoice{\big{(}\|u-\mathbb{E}\|^{p}+\alpha^{p}+\gamma^{p}\big{)}}{\big{(}\|u-\mathbb{E}\|^{p}+\alpha^{p}+\gamma^{p}\big{)}}{(\|u-\mathbb{E}\|^{p}+\alpha^{p}+\gamma^{p})}{(\|u-\mathbb{E}\|^{p}+\alpha^{p}+\gamma^{p})} . In this sense of asymptotic agreement, every such system eq. 13 is close to the system eq. 1+eq. 6.

Also, every system eq. 13 is constructed to have clear invariant subspaces in vv, and so clear invariant manifolds in uu (Definition 2.11 of HR). Further, from the exponential dichotomy of section 2.2 there exists a domain DμD_{\mu}, in αγu\alpha\gamma u-space, in which the system eq. 13 has a slow manifold. Since 0μ<βλ0\leq\mu<\beta\leq-\lambda (Section 2.3.1 of HR) and by Proposition 2.10 of HR, the slow manifold solutions are exponentially quickly attractive, at rate of at least β=βμ>0\beta^{\prime}=\beta-\mu>0 , to all solutions in the domain DμD_{\mu}.

These properties hold when based upon each and every equilibrium uu^{*} in the slow subspace 𝔼\mathbb{E}. By smoothness of the system eq. 1+eq. 6, we can ensure we construct the close systems eq. 13 to be smooth as a function of uu^{*}. Hence the properties hold smoothly in the union of all the domains DμD_{\mu}, to form a global domain, denoted \mathcal{E}, in which the properties hold. This establishes theorem 5.

theorem 5 holds for the pde system eq. 1 on domain ~𝕏\tilde{}\mathbb{X} with edge conditions eq. 6 between elements. The system eq. 1+eq. 6 reverts to the original pde eq. 1 on the domain 𝕏\mathbb{X} when we evaluate eq. 1+eq. 6 on ~𝕏\tilde{}\mathbb{X} at full coupling γ=1\gamma=1 . Thus the evolution equation eq. 14 evaluated at full coupling, namely d𝑼/dt=𝑮(t,𝑼,1,α)d{\text{\boldmath$U$}}/dt={\text{\boldmath$G$}}(t,{\text{\boldmath$U$}},1,\alpha) , is controllably close to a discretisation of the original pde. Further, this evolution is that on a slow manifold which is emergent in the domain 1:=|γ=1\mathcal{E}_{1}:=\mathcal{E}|_{\gamma=1} (which is not empty as 1\mathcal{E}_{1} contains at least the equilibria u=u={}constant and α=0\alpha=0).

Similar slow manifold properties to those of theorem 5 could be established via the forward Theorems 2.9 and 3.22 of [Haragus2011], together with Proposition 3.6 of [Potzsche2006]. The argument for Theorem 6 by [Jarrad2016a] is an example. However, such a forward approach attempts to prove the existence of an invariant manifold for the nonlinear system eq. 1+eq. 6, and in doing so imposes significant constraints on the functions ff and gg, constraints that in applications either are often hard to establish, or are not satisfied. The backwards theory of [Hochs2019], which shows the existence of a system with an invariant manifold arbitrarily close to eq. 1+eq. 6, is less restrictive on the functions ff and gg and so has a wider range of applications.

2.3 The slow manifold of wave-like PDEs

Although this article’s principal scope is the spatial discretisation, or dimensional reduction, of reaction-advection-diffusion pdeeq. 1, much of the approach and theory usefully applies to the spatial discretisation of non-autonomous wave-like pdes in the form

utt=f(x,u,ux)x+αg(t,x,u,ux)u_{tt}=-f(x,u,u_{x})_{x}+\alpha g(t,x,u,u_{x}) (15)

on a domain 𝕏\mathbb{X}, with section 1. The only difference between eqs. 15 and 1 is the number of time derivatives on the left-hand side. This subsection comments on the similarities and differences of the theoretical support for such wave systems.

Partition space into NN elements as described at the beginning of section 2 with the jjth element over the interval 𝕏j=(Lj,Rj)\mathbb{X}_{j}=(L_{j},R_{j}) , and apply the edge conditions eq. 6. Then, for α=γ=0\alpha=\gamma=0 , the subspace 𝔼\mathbb{E} of piecewise linear equilibria of section 2.2 still exists. Upon linearisation of eq. 15 about each of these equilibria, the spatial differential operator =[κj(x)x]x\mathcal{L}=[\kappa_{j}(x)\partial_{x}\cdot]_{x} on ~𝕏=j𝕏j\tilde{}\mathbb{X}=\cup_{j}\mathbb{X}_{j} remains self-adjoint. The exponential dichotomy of the operator \mathcal{L} (section 2.2) still applies, namely that there are NN eigenvalues of zero, and the others areβ{}\leq-\beta . So far, the considerations are the same for both diffusion systems and wave systems.

Differences between wave-like pdeeq. 15 and reaction-advection-diffusion pdeeq. 1 start with the eigenvalues of the right-hand side operator \mathcal{L} with its eigenvalues denoted by λ\lambda. Seeking wave solutions of (15) with frequency ω\omega, then ω=±λ\omega=\pm\sqrt{-\lambda} and all frequencies ω\omega are real as every λ0\lambda\leq 0 . Here the slow manifold dichotomy is now between slow waves with near zero frequency, separated from fast waves with frequenciesβ{}\geq\sqrt{\beta} (section 2.2). Such subcentre slow manifolds (a class of nonlinear normal modes [Shaw94a, e.g.]) are ubiquitous in both geophysical and elastic engineering applications. However, much less is known rigorously about subcentre slow manifolds: even their existence is problematic [Lorenz87]. Nonetheless, inspired by the backwards theory of [Roberts2018a, Hochs2019] we make the following backwards conjecture for the wave pde eq. 15 that is analogous to theorem 5 for dissipative systems.

Conjecture 6.

For every order pp, there exists a (polynomial) coordinate transformation and a (polynomial) pde system in the new variables (𝐔,V(x))({\text{\boldmath$U$}},V(x)) of the form

u=u(t,x,𝑼,V,γ,α),\displaystyle u=u(t,x,{\text{\boldmath$U$}},V,\gamma,\alpha),\quad (16a)
d2𝑼dt2=𝑮(t,𝑼,V,γ,α),2Vt2=H(t,x,𝑼,V,γ,α)V,\displaystyle\mathchoice{\frac{d^{2}{\text{\boldmath$U$}}}{dt^{2}}}{{d^{2}{\text{\boldmath$U$}}}/{dt^{2}}}{{d^{2}{\text{\boldmath$U$}}}/{dt^{2}}}{{d^{2}{\text{\boldmath$U$}}}/{dt^{2}}}={\text{\boldmath$G$}}(t,{\text{\boldmath$U$}},V,\gamma,\alpha),\quad\mathchoice{\frac{\partial^{2}V}{\partial t^{2}}}{{\partial^{2}V}/{\partial t^{2}}}{{\partial^{2}V}/{\partial t^{2}}}{{\partial^{2}V}/{\partial t^{2}}}=H(t,x,{\text{\boldmath$U$}},V,\gamma,\alpha)V, (16b)

such that in the αγu\alpha\gamma u-space the system (16) is the same as the pde eq. 15 to a residual 𝒪(u𝔼p+γp+αp)\mathcal{O}\mathchoice{\big{(}\|u-\mathbb{E}\|^{p}+\gamma^{p}+\alpha^{p}\big{)}}{\big{(}\|u-\mathbb{E}\|^{p}+\gamma^{p}+\alpha^{p}\big{)}}{(\|u-\mathbb{E}\|^{p}+\gamma^{p}+\alpha^{p})}{(\|u-\mathbb{E}\|^{p}+\gamma^{p}+\alpha^{p})}, and such that the subspace 𝔼\mathbb{E} is the tangent space of the manifold V=0V=0 at γ=α=0\gamma=\alpha=0.

  1. 2.3(a)

    Let \mathcal{E} denote a αγu\alpha\gamma u-domain in which the coordinate transform eq. 16a is a diffeomorphism containing 𝔼\mathbb{E}, then V=0V=0 is an exact slow manifold of the dynamics of eq. 16: that is, a slow manifold is

    u=u(t,x,𝑼,0,γ,α)such thatd2𝑼dt2=𝑮(t,𝑼,0,γ,α).u=u(t,x,{\text{\boldmath$U$}},0,\gamma,\alpha)\quad\text{such that}\quad\mathchoice{\frac{d^{2}{\text{\boldmath$U$}}}{dt^{2}}}{{d^{2}{\text{\boldmath$U$}}}/{dt^{2}}}{{d^{2}{\text{\boldmath$U$}}}/{dt^{2}}}{{d^{2}{\text{\boldmath$U$}}}/{dt^{2}}}={\text{\boldmath$G$}}(t,{\text{\boldmath$U$}},0,\gamma,\alpha). (17)
  2. 2.3(b)

    Solutions near, but off the slow manifold with V0V\neq 0 , generally evolve differently (due to wave-wave forcing of mean flow):

    d2𝑼dt2=𝑮(t,𝑼,0,γ,α)+𝒪(V2).\mathchoice{\frac{d^{2}{\text{\boldmath$U$}}}{dt^{2}}}{{d^{2}{\text{\boldmath$U$}}}/{dt^{2}}}{{d^{2}{\text{\boldmath$U$}}}/{dt^{2}}}{{d^{2}{\text{\boldmath$U$}}}/{dt^{2}}}={\text{\boldmath$G$}}(t,{\text{\boldmath$U$}},0,\gamma,\alpha)+\mathcal{O}\mathchoice{\big{(}\|V\|^{2}\big{)}}{\big{(}\|V\|^{2}\big{)}}{(\|V\|^{2})}{(\|V\|^{2})}.

Consequently, we contend that the methodology developed here for learning spatially discrete, finite dimensional, accurate, models of dissipative pdes may be also usefully applied to many wave-like pdeeq. 15, provided we accept the potential for microscale wave-wave interactions be unresolved in the model. In order to resolve such wave-wave forcing of the mean flow, one would have to include the amplitude modulation of the fast waves into the list of macroscale variables of interest.

2.4 Preserving self-adjointness

We now return to reaction-advection-diffusion pdeeq. 1 embedded into spatial elements by the coupling conditions eq. 6 (for general γ\gamma). theorem 5 proves the existence of systems arbitrarily close to eq. 1+eq. 6—systems that have a constructible slow manifold that forms an emergent discretisation of eq. 1. However, theorem 5 does not address how well the constructed slow manifold discretisation models the original pde eq. 1. This article proves two crucial properties of the slow manifold modelling. Firstly, this section establishes that the particular edge conditions eq. 6 preserve self-adjointness and thus preserves this fundamental symmetry in the discretisation. Secondly, section 3 proves that the slow manifold of eq. 1+eq. 6, the discrete model, is consistent to the pde eq. 1.

Self-adjointness is a property of linear operators, but the pde eq. 1 is nonlinear. Consequently, we establish self-adjointness for linear perturbations about a set of base states of eq. 1, with coefficient α=0\alpha=0 to eliminate nonlinearity gg from consideration. That is, as before, we linearise pde eq. 1 about the equilibria uj(t,x)=Uju_{j}(t,x)=U_{j} constant in each element 𝕏j\mathbb{X}_{j} (section 2.2), to obtain the linearised pde (10). section 2.2 established self-adjointness of the diffusion operator \mathcal{L} of (10) subject to the γ=0\gamma=0 edge conditions eq. 7, and the following section 2.4 generalises it to edge conditions eq. 6 with γ0\gamma\neq 0.

Lemma 7 (self-adjoint).

The differential operator of the system eqs. 10 and 6, namely =[κj(x)x]x\mathcal{L}=[\kappa_{j}(x)\partial_{x}\cdot]_{x} on 𝕃\mathbb{L} and subject to eq. 6, and in the usual inner product u~,u:=j𝕁𝕏ju~juj𝑑x\left<\tilde{u},u\right>:=\sum_{j\in\mathbb{J}}\int_{\mathbb{X}_{j}}\tilde{u}_{j}u_{j}\,dx , is self-adjoint for almost every real γ\gamma and θ\theta.

The exception in “almost every” is the isolated case when the number of elements is even, γ=1\gamma=1 , and θ=0\theta=0 that is associated with the unphysical nature of the zigzag mode as discussed by remark 4.

Proof.

Let’s consider the edge conditions of the NN elements as N×NN\times N matrix equations with coupling matrices C±C_{\pm}. For each of the patch right and left edges, e{R,L}e\in\{R,L\} respectively, define the field vector 𝒖e:=(u1e,,uNe){\text{\boldmath$u$}}^{e}:=(u_{1}^{e},\ldots,u_{N}^{e}) and the flux vector 𝒇e:=(f1e,,fNe){\text{\boldmath$f$}}^{e}:=(f_{1}^{e},\ldots,f_{N}^{e}) . Then, using superscript TT to denote matrix transpose, the edge conditions (6) are

C+𝒖R=CT𝒖L,C𝒇R=C+T𝒇L,for circulant matrices\displaystyle C_{+}{\text{\boldmath$u$}}^{R}=C_{-}^{T}{\text{\boldmath$u$}}^{L},\quad C_{-}{\text{\boldmath$f$}}^{R}=C_{+}^{T}{\text{\boldmath$f$}}^{L},\quad\text{for circulant matrices} (18)
C±:=[1γ2(1±θ)00γ2(1±θ)γ2(1±θ)00000γ2(1±θ)1γ2(1±θ)].\displaystyle C_{\pm}:=\begin{bmatrix}1-\tfrac{\gamma}{2}(1\pm\theta)&0&\cdots&0&\tfrac{\gamma}{2}(1\pm\theta)\\ \tfrac{\gamma}{2}(1\pm\theta)&\ddots&\ddots&&0\\ 0&\ddots&\ddots&\ddots&\vdots\\ \vdots&\ddots&\ddots&\ddots&0\\ 0&\cdots&0&\tfrac{\gamma}{2}(1\pm\theta)&1-\tfrac{\gamma}{2}(1\pm\theta)\end{bmatrix}.

We firstly prove that these edge conditions preserve self-adjointness when either C+C_{+} or CC_{-} is invertible, and then secondly when neither is invertible. This proof requires the commutativity

C+TC=CC+T.C_{+}^{T}C_{-}=C_{-}C_{+}^{T}. (19)

This commutativity follows since C±C_{\pm}, and their transposes, are circulant [Gray2006, Thm. 3.1(1)], and holds for any two circulant matrices.

First consider the case when C+C_{+} is invertible. Then C+TC_{+}^{T} is also invertible and circulant, so by commutativity (19), CC+1,T=C+1,TCC_{-}C_{+}^{-1,T}=C_{+}^{-1,T}C_{-} . Now, for every u,u~𝕃u,\tilde{u}\in\mathbb{L} ,

u~,uu~,u\displaystyle\left<\tilde{u},\mathcal{L}u\right>-\left<\mathcal{L}\tilde{u},u\right>
=j𝕁𝕏ju~j[κj(x)ujx]xuj[κj(x)u~jx]xdx\displaystyle=\sum_{j\in\mathbb{J}}\int_{\mathbb{X}_{j}}\tilde{u}_{j}[\kappa_{j}(x)u_{jx}]_{x}-u_{j}[\kappa_{j}(x)\tilde{u}_{jx}]_{x}\,dx
(then integrate by parts)\displaystyle\qquad(\text{then integrate by parts})
=j𝕁[u~jκj(x)ujxujκj(x)u~jx]LjRj\displaystyle=\sum_{j\in\mathbb{J}}\big{[}\tilde{u}_{j}\kappa_{j}(x)u_{jx}-u_{j}\kappa_{j}(x)\tilde{u}_{jx}\big{]}_{L_{j}}^{R_{j}}
(then as flux fj:=κj(x)ujx and f~j:=κj(x)u~jx)\displaystyle\qquad(\text{then as flux }f_{j}:=-\kappa_{j}(x)u_{jx}\text{ and }\tilde{f}_{j}:=-\kappa_{j}(x)\tilde{u}_{jx})
=j𝕁[u~jRfjR+ujRf~jR+u~jLfjLujLf~jL]\displaystyle=\sum_{j\in\mathbb{J}}\big{[}-\tilde{u}_{j}^{R}f_{j}^{R}+u_{j}^{R}\tilde{f}_{j}^{R}+\tilde{u}_{j}^{L}f_{j}^{L}-u_{j}^{L}\tilde{f}_{j}^{L}\big{]}
=𝒖~R,T𝒇R+𝒖R,T𝒇~R+𝒖~L,T𝒇L𝒖L,T𝒇~L\displaystyle=-\tilde{{\text{\boldmath$u$}}}^{R,T}{\text{\boldmath$f$}}^{R}+{\text{\boldmath$u$}}^{R,T}\tilde{{\text{\boldmath$f$}}}^{R}+\tilde{{\text{\boldmath$u$}}}^{L,T}{\text{\boldmath$f$}}^{L}-{\text{\boldmath$u$}}^{L,T}\tilde{{\text{\boldmath$f$}}}^{L}
(then, since C+ is invertible)\displaystyle\qquad(\text{then, since $C_{+}$ is invertible})
=𝒖~R,TC+TC+1,T𝒇R+𝒖~L,T𝒇L+𝒖R,TC+TC+1,T𝒇~R𝒖L,T𝒇~L\displaystyle=-\tilde{{\text{\boldmath$u$}}}^{R,T}C_{+}^{T}C_{+}^{-1,T}{\text{\boldmath$f$}}^{R}+\tilde{{\text{\boldmath$u$}}}^{L,T}{\text{\boldmath$f$}}^{L}+{\text{\boldmath$u$}}^{R,T}C_{+}^{T}C_{+}^{-1,T}\tilde{{\text{\boldmath$f$}}}^{R}-{\text{\boldmath$u$}}^{L,T}\tilde{{\text{\boldmath$f$}}}^{L}
=[C+𝒖~R]TC+1,T𝒇R+𝒖~L,T𝒇L+[C+𝒖R]TC+1,T𝒇~R𝒖L,T𝒇~L\displaystyle=-[C_{+}\tilde{{\text{\boldmath$u$}}}^{R}]^{T}C_{+}^{-1,T}{\text{\boldmath$f$}}^{R}+\tilde{{\text{\boldmath$u$}}}^{L,T}{\text{\boldmath$f$}}^{L}+[C_{+}{\text{\boldmath$u$}}^{R}]^{T}C_{+}^{-1,T}\tilde{{\text{\boldmath$f$}}}^{R}-{\text{\boldmath$u$}}^{L,T}\tilde{{\text{\boldmath$f$}}}^{L}
(apply edge conditions (18))\displaystyle\qquad(\text{apply edge conditions~{}\eqref{eq:LRcc}})
=[CT𝒖~L]TC+1,T𝒇R+𝒖~L,T𝒇L+[CT𝒖L]TC+1,T𝒇~R𝒖L,T𝒇~L\displaystyle=-[C_{-}^{T}\tilde{{\text{\boldmath$u$}}}^{L}]^{T}C_{+}^{-1,T}{\text{\boldmath$f$}}^{R}+\tilde{{\text{\boldmath$u$}}}^{L,T}{\text{\boldmath$f$}}^{L}+[C_{-}^{T}{\text{\boldmath$u$}}^{L}]^{T}C_{+}^{-1,T}\tilde{{\text{\boldmath$f$}}}^{R}-{\text{\boldmath$u$}}^{L,T}\tilde{{\text{\boldmath$f$}}}^{L}
=𝒖~L,TCC+1,T𝒇R+𝒖~L,T𝒇L+𝒖L,TCC+1,T𝒇~R𝒖L,T𝒇~L\displaystyle=-\tilde{{\text{\boldmath$u$}}}^{L,T}C_{-}C_{+}^{-1,T}{\text{\boldmath$f$}}^{R}+\tilde{{\text{\boldmath$u$}}}^{L,T}{\text{\boldmath$f$}}^{L}+{\text{\boldmath$u$}}^{L,T}C_{-}C_{+}^{-1,T}\tilde{{\text{\boldmath$f$}}}^{R}-{\text{\boldmath$u$}}^{L,T}\tilde{{\text{\boldmath$f$}}}^{L}
(apply commutativity (19))\displaystyle\qquad(\text{apply commutativity~{}\eqref{eq:id}})
=𝒖~L,TC+1,TC𝒇R+𝒖~L,T𝒇L+𝒖L,TC+1,TC𝒇~R𝒖L,T𝒇~L\displaystyle=-\tilde{{\text{\boldmath$u$}}}^{L,T}C_{+}^{-1,T}C_{-}{\text{\boldmath$f$}}^{R}+\tilde{{\text{\boldmath$u$}}}^{L,T}{\text{\boldmath$f$}}^{L}+{\text{\boldmath$u$}}^{L,T}C_{+}^{-1,T}C_{-}\tilde{{\text{\boldmath$f$}}}^{R}-{\text{\boldmath$u$}}^{L,T}\tilde{{\text{\boldmath$f$}}}^{L}
(apply edge conditions (18))\displaystyle\qquad(\text{apply edge conditions~{}\eqref{eq:LRcc}})
=𝒖~L,TC+1,TC+T𝒇L+𝒖~L,T𝒇L+𝒖L,TC+1,TC+T𝒇~L𝒖L,T𝒇~L\displaystyle=-\tilde{{\text{\boldmath$u$}}}^{L,T}C_{+}^{-1,T}C_{+}^{T}{\text{\boldmath$f$}}^{L}+\tilde{{\text{\boldmath$u$}}}^{L,T}{\text{\boldmath$f$}}^{L}+{\text{\boldmath$u$}}^{L,T}C_{+}^{-1,T}C_{+}^{T}\tilde{{\text{\boldmath$f$}}}^{L}-{\text{\boldmath$u$}}^{L,T}\tilde{{\text{\boldmath$f$}}}^{L}
=0.\displaystyle=0\,.

Thus \mathcal{L} is self-adjoint when C+C_{+} is invertible.

Second, consider the case when CC_{-} is invertible. The detailed argument directly corresponds to the previous case, so we present a summary:

u~,uu~,u\displaystyle\langle\tilde{u},\mathcal{L}u\rangle-\langle\mathcal{L}\tilde{u},u\rangle
=𝒖~R,T𝒇R+𝒖R,T𝒇~R+𝒖~L,T𝒇L𝒖L,T𝒇~L\displaystyle=-\tilde{{\text{\boldmath$u$}}}^{R,T}{\text{\boldmath$f$}}^{R}+{\text{\boldmath$u$}}^{R,T}\tilde{{\text{\boldmath$f$}}}^{R}+\tilde{{\text{\boldmath$u$}}}^{L,T}{\text{\boldmath$f$}}^{L}-{\text{\boldmath$u$}}^{L,T}\tilde{{\text{\boldmath$f$}}}^{L}
=𝒖~R,T𝒇R+[CT𝒖~L]TC1𝒇L+𝒖R,T𝒇~R[CT𝒖L,T]C1𝒇~L\displaystyle=-\tilde{{\text{\boldmath$u$}}}^{R,T}{\text{\boldmath$f$}}^{R}+[C_{-}^{T}\tilde{{\text{\boldmath$u$}}}^{L}]^{T}C_{-}^{-1}{\text{\boldmath$f$}}^{L}+{\text{\boldmath$u$}}^{R,T}\tilde{{\text{\boldmath$f$}}}^{R}-[C_{-}^{T}{\text{\boldmath$u$}}^{L,T}]C_{-}^{-1}\tilde{{\text{\boldmath$f$}}}^{L}\
=𝒖~R,T𝒇R+[C+𝒖~R]TC1𝒇L+𝒖R,T𝒇~R[C+𝒖R]TC1𝒇~L\displaystyle=-\tilde{{\text{\boldmath$u$}}}^{R,T}{\text{\boldmath$f$}}^{R}+[C_{+}\tilde{{\text{\boldmath$u$}}}^{R}]^{T}C_{-}^{-1}{\text{\boldmath$f$}}^{L}+{\text{\boldmath$u$}}^{R,T}\tilde{{\text{\boldmath$f$}}}^{R}-[C_{+}{\text{\boldmath$u$}}^{R}]^{T}C_{-}^{-1}\tilde{{\text{\boldmath$f$}}}^{L}
=𝒖~R,T𝒇R+𝒖~R,TC1C+T𝒇L+𝒖R,T𝒇~R𝒖R,TC1C+T𝒇~L\displaystyle=-\tilde{{\text{\boldmath$u$}}}^{R,T}{\text{\boldmath$f$}}^{R}+\tilde{{\text{\boldmath$u$}}}^{R,T}C_{-}^{-1}C_{+}^{T}{\text{\boldmath$f$}}^{L}+{\text{\boldmath$u$}}^{R,T}\tilde{{\text{\boldmath$f$}}}^{R}-{\text{\boldmath$u$}}^{R,T}C_{-}^{-1}C_{+}^{T}\tilde{{\text{\boldmath$f$}}}^{L}
=𝒖~R,T𝒇R+𝒖~R,TC1C𝒇R+𝒖R,T𝒇~R𝒖R,TC1C𝒇~R\displaystyle=-\tilde{{\text{\boldmath$u$}}}^{R,T}{\text{\boldmath$f$}}^{R}+\tilde{{\text{\boldmath$u$}}}^{R,T}C_{-}^{-1}C_{-}{\text{\boldmath$f$}}^{R}+{\text{\boldmath$u$}}^{R,T}\tilde{{\text{\boldmath$f$}}}^{R}-{\text{\boldmath$u$}}^{R,T}C_{-}^{-1}C_{-}\tilde{{\text{\boldmath$f$}}}^{R}
=0.\displaystyle=0\,.

Thus \mathcal{L} is self-adjoint when CC_{-} is invertible.

Now consider the case that neither C+C_{+} nor CC_{-} is invertible, so that their determinants are zero. By a first row expansion, detC±=[1γ2(1±θ)]N(1)N[γ2(1±θ)]N\det C_{\pm}=\left[1-\tfrac{\gamma}{2}(1\pm\theta)\right]^{N}-(-1)^{N}\left[\tfrac{\gamma}{2}(1\pm\theta)\right]^{N} . The determinant is zero only when [1γ2(1±θ)]N=[γ2(1±θ)]N\left[1-\tfrac{\gamma}{2}(1\pm\theta)\right]^{N}=\left[-\tfrac{\gamma}{2}(1\pm\theta)\right]^{N} . This cannot occur in the case γ(1±θ)=0\gamma(1\pm\theta)=0 as then the rhs=0\textsc{rhs}=0 and the lhs=1\textsc{lhs}=1: consequently we can divide by the rhs and seek when [12γ(1±θ)]N=1\big{[}1-\frac{2}{\gamma(1\pm\theta)}\big{]}^{N}=1 . For real γ,θ\gamma,\theta, the zero determinant thus can only occurs when NN is even and 12γ(1±θ)=11-\frac{2}{\gamma(1\pm\theta)}=-1 . That is, when NN is even and γ(1±θ)=1\gamma(1\pm\theta)=1 . Hence the previous arguments which depend on either C+C_{+} or CC_{-} being invertible only fail when NN is even and both γ(1±θ)=1\gamma(1\pm\theta)=1 . This last pair of equations is only satisfied when γ=1\gamma=1 and θ=0\theta=0 . Therefore, the operator \mathcal{L} on 𝕃\mathbb{L} is self-adjoint for every real γ\gamma and every real θ\theta, except perhaps for the isolated specific case of even NN, γ=1\gamma=1 and θ=0\theta=0 . ∎

The proofs of this section hold for periodic boundary conditions for u(t,x)u(t,x) on 𝕏\mathbb{X}. We expect further research to establish self-adjointness for other common boundary conditions for u(t,x)u(t,x) on 𝕏\mathbb{X}, such as Dirichlet and Neumann.

3 Prove high-order consistency in 1D space

section 2.2 establishes the in-principle existence and emergence of an exact discrete closure to the dynamics of pdes in the class eq. 1, a closure that also preserves self-adjointness (section 2.4). An issue is whether the systematic approximations, established by theorem 5, are accurate. As evidence for their accuracy, this section proves that the constructed approximate spatially discrete models are consistent to the original pde eq. 1 to any specified order of error.

As a ‘stepping stone’ to the second-order diffusion pde, and because of its interest in its own right, section 3.2 proves consistency of cognate discrete models of a first-order wave pde. section 3.3 then invokes similar arguments to prove consistency of discrete models of diffusion-like pdes. In this section we restrict attention to homogeneous and autonomous pdes, that is, ff and gg are here assumed independent of t,xt,x.

section 4 uses an embedding to extend the consistency proof to the homogenisation of systems with microscale heterogeneity.

3.1 Example: consistent discretion of the first-order wave PDE

As a first step, corresponding to example 2 for diffusion, here we analogously construct discrete models of the first-order wave pde

ut+cux=0.u_{t}+cu_{x}=0\,. (20)

The spatially discrete models are obtained using the elements and coupling introduced in section 2, and are constructed by computer algebra code (appendix B) that applies deep recursive refinement to algebraically learn the spatial discretisations as a slow manifold in a power series in inter-element coupling γ\gamma. The code also verifies the high-order consistency between the discrete model and the wave pde (20). In addition, this example explores the upwind/downwind character induced by the parameter θ\theta in the inter-element coupling edge conditions eq. 6.

A major difference between the diffusion operator =x[κj(x)x]\mathcal{L}=\partial_{x}[\kappa_{j}(x)\partial_{x}] in eq. 11 and the advection operator cx-c\partial_{x} in eq. 20 is that (albeit depending upon boundary conditions) the diffusion operator is self-adjoint and the advection operator is not (it is anti-symmetric). Thus the issue of self-adjointness is not discussed here.

For the wave pde (20) with inter-element edge conditions eq. 6a (flux coupling (6b) does not apply here), the subspace 𝔼\mathbb{E} of piecewise constant equilibria still exists. A proof is a simpler version of that given for section 2.2: for every piecewise constant field u(x)=Uju^{*}(x)=U_{j} in 𝕏j\mathbb{X}_{j} the wave pde (20) is simply ut=0u_{t}=0 and thus 𝑼=(U1,U2,,UN){\text{\boldmath$U$}}=(U_{1},U_{2},\ldots,U_{N}) are equilibria of the pde on ~𝕏\tilde{}\mathbb{X} with conditions eq. 6a satisfied for γ=0\gamma=0 .

For reasons corresponding to those discussed by section 2.3, the spatial discretisation of the wave pde (20) arises as a slow subcentre manifold on coupled elements. Since uj(t,x)u_{j}(t,x) denotes the field u(t,x)u(t,x) on the jjth element, uju_{j} is to satisfy the wave pde (20), namely ujt=cujxu_{jt}=-cu_{jx} on 𝕏j\mathbb{X}_{j}. Let the elements be coupled with edge conditions eq. 6a with arbitrary coupling parameter γ\gamma. Recall that the measure of uj(t,x)u_{j}(t,x) in each element is almost immaterial [Roberts2014a, Lemma 5.1], so here we choose each macroscale parameter Uj(t)U_{j}(t) to be the element average.

For the case of equi-sized elements, Hj=HH_{j}=H , the code of appendix B constructs the slow manifold as a power series in inter-element coupling parameter γ\gamma. The tuning parameter θ\theta provides a range of alternative discrete models for the macroscale dynamics. The code finds the wave pde (20) with inter-element coupling eq. 6a has a slow manifold with evolution governed by the odes

U˙j\displaystyle\dot{U}_{j} =γc2H(Uj+1Uj1)+θγc2H(Uj+12Uj+Uj1)+𝒪(γ2),\displaystyle=-\frac{\gamma c}{2H}(U_{j+1}-U_{j-1})+\theta\frac{\gamma c}{2H}(U_{j+1}-2U_{j}+U_{j-1})+\mathcal{O}\mathchoice{\big{(}\gamma^{2}\big{)}}{\big{(}\gamma^{2}\big{)}}{(\gamma^{2})}{(\gamma^{2})}, (21a)
in terms of the element average values UjU_{j}. At full coupling γ=1\gamma=1 , the parameter θ\theta includes the following alternatives: θ=0\theta=0 gives the anti-symmetric, centred difference, form U˙jc(Uj+1Uj1)/(2H)\dot{U}_{j}\approx-c(U_{j+1}-U_{j-1})/(2H); θ=1\theta=1 gives the upwind (when c>0c>0) difference U˙jc(UjUj1)/H\dot{U}_{j}\approx-c(U_{j}-U_{j-1})/H ; whereas θ=1\theta=-1 gives the downwind (when c>0c>0) difference U˙jc(Uj+1Uj)/H\dot{U}_{j}\approx-c(U_{j+1}-U_{j})/H (and vice versa when c<0c<0).

Such discrete models of the macroscale evolution are learnt in conjunction with the subgrid field structure of the slow manifold. The learnt subgrid field corresponding to the low-order (21a) is the linear uj=Uj+γ(ξ12)(μjδj12θjδj2)Uj+𝒪(γ2)u_{j}=U_{j}+\gamma(\xi-\tfrac{1}{2})(\mu_{j}\delta_{j}-\tfrac{1}{2}\theta_{j}\delta_{j}^{2})U_{j}+\mathcal{O}\mathchoice{\big{(}\gamma^{2}\big{)}}{\big{(}\gamma^{2}\big{)}}{(\gamma^{2})}{(\gamma^{2})} , written in terms of the local subgrid variable ξ:=(xLj)/H\xi:=(x-L_{j})/H, and centred mean μj\mu_{j} and difference δj\delta_{j} operators (table 1). Higher-order models have more detailed subgrid fields representing more effects of both inter-element communication and subgrid scale physics.

The computer algebra of appendix B easily computes to higher-order in γ\gamma. Deep iterative refinement learns that the macroscale evolution (21a) on the slow manifold is refined to the following, where UjU_{j} is omitted for brevity:

Hct\displaystyle\tfrac{H}{c}\partial_{t} =γμjδj+12θγ(1γ)δj2+14γ2[113γ+θ2(1γ)]μjδj3\displaystyle=-\gamma\mu_{j}\delta_{j}+\tfrac{1}{2}\theta\gamma(1-\gamma)\delta_{j}^{2}+\tfrac{1}{4}\gamma^{2}\big{[}1-\tfrac{1}{3}\gamma+\theta^{2}(1-\gamma)\big{]}\mu_{j}\delta_{j}^{3}
18θγ2(1γ)(2γθ2γ)δj4116γ3[43γ+θ2(46γ)θ4γ]μjδj5\displaystyle\quad{}-\tfrac{1}{8}\theta\gamma^{2}(1-\gamma)(2-\gamma-\theta^{2}\gamma)\delta_{j}^{4}-\tfrac{1}{16}\gamma^{3}\big{[}\tfrac{4}{3}-\gamma+\theta^{2}(4-6\gamma)-\theta^{4}\gamma\big{]}\mu_{j}\delta_{j}^{5}
+𝒪(γ5,δj6).\displaystyle\quad{}+\mathcal{O}\mathchoice{\big{(}\gamma^{5},\delta_{j}^{6}\big{)}}{\big{(}\gamma^{5},\delta_{j}^{6}\big{)}}{(\gamma^{5},\delta_{j}^{6})}{(\gamma^{5},\delta_{j}^{6})}. (21b)

The γ\gamma-dependence has the appealing feature that when evaluated at full coupling a derived discrete model such as (21b) is independent of the tuning θ\theta up to some order in δ\delta: here, for example, at γ=1\gamma=1 the evolution (21b) becomes simply Hct=μjδj+16μjδj3+𝒪(δj5)\tfrac{H}{c}\partial_{t}=-\mu_{j}\delta_{j}+\tfrac{1}{6}\mu_{j}\delta_{j}^{3}+\mathcal{O}\mathchoice{\big{(}\delta_{j}^{5}\big{)}}{\big{(}\delta_{j}^{5}\big{)}}{(\delta_{j}^{5})}{(\delta_{j}^{5})} . That such a discrete model is consistent with the wave pde (20) is seen by the equivalent pde to the discrete model. For example, constructing (21b) to next order, errors 𝒪(γ6)\mathcal{O}\mathchoice{\big{(}\gamma^{6}\big{)}}{\big{(}\gamma^{6}\big{)}}{(\gamma^{6})}{(\gamma^{6})}, and substituting expansions for δj=δx=2sinh(Hx/2)\delta_{j}=\delta_{x}=2\sinh(H\partial_{x}/2) and μj=μx=cosh(Hx/2)\mu_{j}=\mu_{x}=\cosh(H\partial_{x}/2) (table 1; when operating on macroscale grid field UjU_{j}), the equivalent pde of the discrete model (21b) is

1ctU\displaystyle\frac{1}{c}\partial_{t}U =γxU+12γ(1γ)θHx2U112γ(1γ)(2γ3θ2γ)H2x3U\displaystyle=-\gamma\partial_{x}U+\tfrac{1}{2}\gamma(1-\gamma)\theta H\partial_{x}^{2}U-\tfrac{1}{12}\gamma(1-\gamma)(2-\gamma-3\theta^{2}\gamma)H^{2}\partial_{x}^{3}U
+124γ(1γ)θ[16γ+3(1+θ2)γ2]H3x4U\displaystyle\quad{}+\tfrac{1}{24}\gamma(1-\gamma)\theta\big{[}1-6\gamma+3(1+\theta^{2})\gamma^{2}\big{]}H^{3}\partial_{x}^{4}U
1240γ(1γ)[2(13+15θ2)γ+12(1+5θ2)γ2\displaystyle\quad{}-\tfrac{1}{240}\gamma(1-\gamma)\big{[}2-(13+15\theta^{2})\gamma+12(1+5\theta^{2})\gamma^{2}
3(1+10θ2+15θ4)γ3]H4x5U+𝒪(H5x6U).\displaystyle\qquad{}-3(1+10\theta^{2}+15\theta^{4})\gamma^{3}\big{]}H^{4}\partial_{x}^{5}U\quad{}+\mathcal{O}\mathchoice{\big{(}H^{5}\partial_{x}^{6}U\big{)}}{\big{(}H^{5}\partial_{x}^{6}U\big{)}}{(H^{5}\partial_{x}^{6}U)}{(H^{5}\partial_{x}^{6}U)}. (21c)

At full coupling γ=1\gamma=1 , due to the factors (1γ)(1-\gamma), this equivalent pde reduces to the required wave pde (20) for every value of θ\theta. The order of error in this consistency appears proportional to the chosen order of coupling in γ\gamma.

Perturbations

One can perturb the wave pde (20) and the computer algebra still constructs a discrete model that is consistent to high-order to the perturbed pde. The code of appendix B caters for perturbations to the first-order wave pde (20) such as

ut+cux=α[c0u+c22ux2+c33ux3+c44ux4].\mathchoice{\frac{\partial u}{\partial t}}{{\partial u}/{\partial t}}{{\partial u}/{\partial t}}{{\partial u}/{\partial t}}+c\mathchoice{\frac{\partial u}{\partial x}}{{\partial u}/{\partial x}}{{\partial u}/{\partial x}}{{\partial u}/{\partial x}}=\alpha\left[c_{0}u+c_{2}\mathchoice{\frac{\partial^{2}u}{\partial x^{2}}}{{\partial^{2}u}/{\partial x^{2}}}{{\partial^{2}u}/{\partial x^{2}}}{{\partial^{2}u}/{\partial x^{2}}}+c_{3}\mathchoice{\frac{\partial^{3}u}{\partial x^{3}}}{{\partial^{3}u}/{\partial x^{3}}}{{\partial^{3}u}/{\partial x^{3}}}{{\partial^{3}u}/{\partial x^{3}}}+c_{4}\mathchoice{\frac{\partial^{4}u}{\partial x^{4}}}{{\partial^{4}u}/{\partial x^{4}}}{{\partial^{4}u}/{\partial x^{4}}}{{\partial^{4}u}/{\partial x^{4}}}\right].

appendix B also codes provision for a microscale lattice version of the advection, namely ut=c[u(t,x+d)u(t,xd)]/(2dH)u_{t}=-c\big{[}u(t,x+d)-u(t,x-d)\big{]}/(2dH) . The computer analysis in both cases learns discrete macroscale models with high-order consistency to the corresponding given perturbed wave system.

Remark 5.

The consistency results of sections 3.2 and 3.3 use deductions expressed in the operator algebra of spatial operators x\partial_{x}, δx\delta_{x} and μx\mu_{x}. The application of these operators evaluates fields at specific spatial points, but exactly how depends on the scale at which they are operating. At the microscale uju_{j} is governed by a given pde (such as (1) in the general case) and this pde justifies the evaluation of such operators. For example, in the context of the wave pde, tuj=cxuj\partial_{t}u_{j}=-c\partial_{x}u_{j} , effectively x=1ct\partial_{x}=-\tfrac{1}{c}\partial_{t} and δx=2sinh[Hx/2]=2sinh[Ht/(2c)]\delta_{x}=2\sinh[H\partial_{x}/2]=-2\sinh[H\partial_{t}/(2c)] (table 1). Thus such spatial operators can be interpreted as transformed to time derivatives via the pde, evaluated at a point, and then transformed back via the pde to spatial operators. Often, when operating at the microscale, we convert to the subgrid variable ξ=(xLi)/H\xi=(x-L_{i})/H with ξ=x/H\partial_{\xi}=\partial_{x}/H , δξ=δx\delta_{\xi}=\delta_{x} and μξ=μx\mu_{\xi}=\mu_{x} . In contrast, the macroscale grid fields UjU_{j} are discrete so there is no formal spatial derivative, but the main aim of this article is to construct an approximate macroscale pde from a discretised evolution equation of macroscale grid fields on elements jj, and to this end we define the spatial derivative at the macroscale in terms of finite-difference equations of element indices jj. For example, to obtain (21c) from (21b) we substitute δj=δx=2sinh(Hx/2)\delta_{j}=\delta_{x}=2\sinh(H\partial_{x}/2) .

3.2 Prove consistency to the first-order wave PDE

As indicated by its equivalent pde (21c), we here prove that the holistic discretisation eq. 21b is consistent to the first-order wave pde eq. 20, for every order of analysis. sections 3.2 and 3.2 establish two key identities for the subsequent consistency theorems 11 and 12, but first we prove coupling identities for derivatives of the subgrid fields which apply in subsequent lemmas.

Lemma 8.

Let the subgrid fields uju_{j} be smooth, satisfy the wave pde eq. 20, and be coupled by eq. 6a. Then the edge conditions eq. 6a hold for all spatial derivatives of uju_{j}.

Proof.

Denote the nnth derivative uj(n):=xnuju_{j}^{(n)}:=\partial_{x}^{n}u_{j} . Proceed via induction. For every n1n\geq 1 consider, recalling superscripts R,LR,L denote evaluation at the right/left edge of an element,

c(112γ)(uj(n)Ruj(n)L)c2γ(uj+1(n)Luj1(n)R)\displaystyle c(1-\tfrac{1}{2}\gamma)(u_{j}^{(n)R}-u_{j}^{(n)L})-\tfrac{c}{2}\gamma(u_{j+1}^{(n)L}-u_{j-1}^{(n)R})
c2γθ(uj(n)L+uj(n)R)+c2γθ(uj+1(n)L+uj1(n)R)\displaystyle{}-\tfrac{c}{2}\gamma\theta(u_{j}^{(n)L}+u_{j}^{(n)R})+\tfrac{c}{2}\gamma\theta(u_{j+1}^{(n)L}+u_{j-1}^{(n)R})
(due to the identity uj(n)=xuj(n1))\displaystyle\quad(\text{due to the identity }u_{j}^{(n)}=\partial_{x}u_{j}^{(n-1)})
=c(112γ)(xuj(n1)Rxuj(n1)L)c2γ(xuj+1(n1)Lxuj1(n1)R)\displaystyle=c(1-\tfrac{1}{2}\gamma)(\partial_{x}u_{j}^{(n-1)R}-\partial_{x}u_{j}^{(n-1)L})-\tfrac{c}{2}\gamma(\partial_{x}u_{j+1}^{(n-1)L}-\partial_{x}u_{j-1}^{(n-1)R})
c2γθ(xuj(n1)L+x2uj(n1)R)+c2γθ(xuj+1(n1)L+xuj1(n1)R)\displaystyle{}-\tfrac{c}{2}\gamma\theta(\partial_{x}u_{j}^{(n-1)L}+\partial_{x}^{2}u_{j}^{(n-1)R})+\tfrac{c}{2}\gamma\theta(\partial_{x}u_{j+1}^{(n-1)L}+\partial_{x}u_{j-1}^{(n-1)R})
(then using the pde as in remark 5)\displaystyle\quad(\text{then using the {pde}\ as in \lx@cref{creftype~refnum}{remcom}})
=(112γ)(tuj(n1)Rtuj(n1)L)+12γ(tuj+1(n1)Ltuj1(n1)R)\displaystyle=-(1-\tfrac{1}{2}\gamma)(\partial_{t}u_{j}^{(n-1)R}-\partial_{t}u_{j}^{(n-1)L})+\tfrac{1}{2}\gamma(\partial_{t}u_{j+1}^{(n-1)L}-\partial_{t}u_{j-1}^{(n-1)R})
+12γθ(tuj(n1)L+tuj(n1)R)12γθ(tuj+1(n1)L+tuj1(n1)R)\displaystyle{}+\tfrac{1}{2}\gamma\theta(\partial_{t}u_{j}^{(n-1)L}+\partial_{t}u_{j}^{(n-1)R})-\tfrac{1}{2}\gamma\theta(\partial_{t}u_{j+1}^{(n-1)L}+\partial_{t}u_{j-1}^{(n-1)R})
=t{(112γ)(uj(n1)Ruj(n1)L)12γ(uj+1(n1)Luj1(n1)R)\displaystyle=-\partial_{t}\left\{(1-\tfrac{1}{2}\gamma)(u_{j}^{(n-1)R}-u_{j}^{(n-1)L})-\tfrac{1}{2}\gamma(u_{j+1}^{(n-1)L}-u_{j-1}^{(n-1)R})\right.
12γθ(uj(n1)L+uj(n1)R)+12γθ(uj+1(n1)L+uj1(n1)R)}\displaystyle{}\left.-\tfrac{1}{2}\gamma\theta(u_{j}^{(n-1)L}+u_{j}^{(n-1)R})+\tfrac{1}{2}\gamma\theta(u_{j+1}^{(n-1)L}+u_{j-1}^{(n-1)R})\right\}
=t{0}=0,\displaystyle=\partial_{t}\left\{0\right\}=0\,,

where the penultimate equality above holds provided uj(n1)u^{(n-1)}_{j} satisfies eq. 6a. By induction, since u(0)u^{(0)} satisfies eq. 6a then so does u(n)u^{(n)} for every n0n\geq 0 . ∎

Now we recast the coupling condition so the spatial difference is on the left-hand side and all coupling terms are on the right-hand side.

Lemma 9.

Let all elements be of length Hj=HH_{j}=H . Define the mid-element locations Xj:=(Rj+Lj)/2X_{j}:=(R_{j}+L_{j})/2 . Then the inter-element edge condition eq. 6a is equivalent to the coupling condition

δxuj=γ(μj12θδj)δj1+12γδj2γθμjδj+14γ2(θ21)δj2ujat x=Xj.\delta_{x}u_{j}=\frac{\gamma(\mu_{j}-\tfrac{1}{2}\theta\delta_{j})\delta_{j}}{\sqrt{1+\tfrac{1}{2}\gamma\delta_{j}^{2}-\gamma\theta\mu_{j}\delta_{j}+\tfrac{1}{4}\gamma^{2}(\theta^{2}-1)\delta_{j}^{2}}}u_{j}\quad\text{at }x=X_{j}\,. (22)

Further, this identity also holds for every spatial derivative xnuj\partial_{x}^{n}u_{j} evaluated at the mid-element point x=Xjx=X_{j} .

Proof.

We first rewrite the edge conditions eq. 6a in terms of mean and difference operators μ\mu and δ\delta. Identities herein involving uju_{j} are evaluated “at x=Xjx=X_{j}”—equivalently “at ξ=1/2\xi=1/2” in terms of the subgrid space variable ξ:=(xLj)/H\xi:=(x-L_{j})/H (as introduced in the subgrid fields (9)) because in this proof we regard uju_{j} as a function of ξ\xi, not directly xx. Using the spatial shift operators EjE_{j} and EξE_{\xi} (table 1), ujR=Eξ1/2uju_{j}^{R}=E_{\xi}^{1/2}u_{j} , ujL=Eξ1/2uju_{j}^{L}=E_{\xi}^{-1/2}u_{j} , uj1R=Ej1Eξ1/2uju_{j-1}^{R}=E_{j}^{-1}E_{\xi}^{1/2}u_{j} , uj+1L=EjEξ1/2uju_{j+1}^{L}=E_{j}E_{\xi}^{-1/2}u_{j} , which we substitute into (6a), and then replace the shift operators with mean and difference operators to obtain after some rearrangement that (6a) is the same as

(1+14γδj212γθμjδj)δξuj=γ(μj12θδj)δjμξuj.(1+\tfrac{1}{4}\gamma\delta_{j}^{2}-\tfrac{1}{2}\gamma\theta\mu_{j}\delta_{j})\delta_{\xi}u_{j}=\gamma(\mu_{j}-\tfrac{1}{2}\theta\delta_{j})\delta_{j}\mu_{\xi}u_{j}\,. (23)

On squaring the operators555 Equation eq. 23 is an operation on uju_{j} evaluated at ξ=12\xi=\frac{1}{2} to define the coupling conditions at element edges ξ=0,1\xi=0,1 . When squaring the operators we must smoothly extend uju_{j} over ξ[12,0),(1,32]\xi\in[-\frac{1}{2},0),(1,\frac{3}{2}] (as defined by the pde) with the new ‘squared operator’ equation defining new coupling conditions at ξ=12,32\xi=-\frac{1}{2},\frac{3}{2} (or equivalently, at x=Xj1,Xj+1x=X_{j-1},X_{j+1} but still in the smooth extension of element jj). For example, δξ2uj(ξ=12)=uj(32)uj(12)\delta^{2}_{\xi}u_{j}(\xi=\frac{1}{2})=u_{j}(\frac{3}{2})-u_{j}(-\frac{1}{2}) and we remain in a smooth extension of element jj.

(1+14γδj212γθμjδj)2δξ2uj=γ2(μj12θδj)2δj2μξ2uj.\displaystyle(1+\tfrac{1}{4}\gamma\delta_{j}^{2}-\tfrac{1}{2}\gamma\theta\mu_{j}\delta_{j})^{2}\delta_{\xi}^{2}u_{j}=\gamma^{2}(\mu_{j}-\tfrac{1}{2}\theta\delta_{j})^{2}\delta_{j}^{2}\mu_{\xi}^{2}u_{j}\,.

Expand both sides, and on the left substitute μj2=1+14δj2\mu_{j}^{2}=1+\frac{1}{4}\delta_{j}^{2} while on the right substitute μξ2=1+14δξ2\mu_{\xi}^{2}=1+\frac{1}{4}\delta_{\xi}^{2} (table 1), to obtain

[1+12γδj2γθμjδj+14γ2(θ21)δj2]δξ2uj=γ2(μj214θ2δj2)2δj2uj.\big{[}1+\tfrac{1}{2}\gamma\delta_{j}^{2}-\gamma\theta\mu_{j}\delta_{j}+\tfrac{1}{4}\gamma^{2}(\theta^{2}-1)\delta_{j}^{2}\big{]}\delta_{\xi}^{2}u_{j}={\gamma^{2}(\mu_{j}^{2}-\tfrac{1}{4}\theta^{2}\delta_{j}^{2})^{2}\delta_{j}^{2}}u_{j}\,.

Since δξ=δx\delta_{\xi}=\delta_{x} on the microscale, dividing the above by the [][\cdot] factor, taking the square root, and recalling that this operator applies to uju_{j} at ξ=12\xi=\tfrac{1}{2} (that is, x=Xjx=X_{j}), we obtain (22).

Lemma 10.

The first-order wave pde eq. 20 on elements with coupling eq. 22 has macroscale dynamics such that

tUj=2cHasinh[12γ(μj12θδj)δj1+12γδj2γθμjδj+14γ2(θ21)δj2]Uj,\partial_{t}U_{j}=-\frac{2c}{H}\operatorname{asinh}\left[\frac{\tfrac{1}{2}\gamma(\mu_{j}-\tfrac{1}{2}\theta\delta_{j})\delta_{j}}{\sqrt{1+\tfrac{1}{2}\gamma\delta_{j}^{2}-\gamma\theta\mu_{j}\delta_{j}+\tfrac{1}{4}\gamma^{2}(\theta^{2}-1)\delta_{j}^{2}}}\right]U_{j}\,, (24)

where macroscale grid field UjU_{j} is a local average of uj(x)u_{j}(x) about the centre of the jjth element; that is, Uj:=12XjXj+w(xXj)uj(x)𝑑xU_{j}:=\tfrac{1}{2\ell}\int_{X_{j}-\ell}^{X_{j}+\ell}w(x-X_{j})u_{j}(x)\,dx for some H/2\ell\leq H/2 and some weight function ww (the macroscale field reduces to the mid-element value Uj:=uj(Xj)U_{j}:=u_{j}(X_{j}) as 0\ell\rightarrow 0 and for weight w(0)=1w(0)=1).

Knowing how spatial differences of pde solutions transform now translates into the corresponding evolution of the macroscale variables.

Proof.

Consider the wave pde eq. 20 in the jjth element and higher order spatial derivatives (and using table 1): for every p=0,1,2,p=0,1,2,\ldots, txpuj=cxxpuj=cH2asinh(δx/2)xpuj\partial_{t}\partial_{x}^{p}u_{j}=-c\partial_{x}\partial_{x}^{p}u_{j}=-\tfrac{c}{H}2\operatorname{asinh}(\delta_{x}/2)\partial_{x}^{p}u_{j} . Inverting the operator asinh(δx/2)\operatorname{asinh}(\delta_{x}/2), this identity is equivalent to 2sinh(Ht/2c)xpuj=δxxpuj2\sinh(-H\partial_{t}/2c)\partial_{x}^{p}u_{j}=\delta_{x}\partial_{x}^{p}u_{j} . Evaluating this at the element mid-point and by the coupling eq. 22,

2sinh(Ht/2c)xpuj|Xj\displaystyle 2\sinh(-H\partial_{t}/2c)\partial_{x}^{p}u_{j}\big{|}_{X_{j}} =δxxpuj|Xj\displaystyle=\delta_{x}\partial_{x}^{p}u_{j}\big{|}_{X_{j}}
=γ(μj12θδj)δj1+12γδj2γθμjδj+14γ2(θ21)δj2xpuj|Xj.\displaystyle=\frac{\gamma(\mu_{j}-\tfrac{1}{2}\theta\delta_{j})\delta_{j}}{\sqrt{1+\tfrac{1}{2}\gamma\delta_{j}^{2}-\gamma\theta\mu_{j}\delta_{j}+\tfrac{1}{4}\gamma^{2}(\theta^{2}-1)\delta_{j}^{2}}}\partial_{x}^{p}u_{j}\big{|}_{X_{j}}\,.

Premultiplying by (xXj)p/p!(x-X_{j})^{p}/p! provides the ppth term in a Taylor expansion of uj(x)u_{j}(x) about x=Xjx=X_{j} (the term (xXj)p=Hp(ξ12)p(x-X_{j})^{p}=H^{p}(\xi-\frac{1}{2})^{p} commutes with t\partial_{t}, δj\delta_{j} and μj\mu_{j} since it is independent of tt and jj, but it does not commute with δx=δξ\delta_{x}=\delta_{\xi} when p>0p>0) and on summing over all p=0,1,2,p=0,1,2,\ldots we obtain

2sinh(Ht/2c)uj(x)=γ(μj12θδj)δj1+12γδj2γθμjδj+14γ2(θ21)δj2uj(x)2\sinh(-H\partial_{t}/2c)u_{j}(x)=\frac{\gamma(\mu_{j}-\tfrac{1}{2}\theta\delta_{j})\delta_{j}}{\sqrt{1+\tfrac{1}{2}\gamma\delta_{j}^{2}-\gamma\theta\mu_{j}\delta_{j}+\tfrac{1}{4}\gamma^{2}(\theta^{2}-1)\delta_{j}^{2}}}u_{j}(x) (25)

in some open interval containing XjX_{j}. Then multiply by the weight function w(xXj)w(x-X_{j}) and integrate over the centre of the jjth element from x=Xjx=X_{j}-\ell to Xj+X_{j}+\ell and finally revert the sinh(Ht/2c)\sinh(-H\partial_{t}/2c) operator to deduce eq. 24; or, for the averaging width 0\ell\rightarrow 0 , set x=Xjx=X_{j} and revert the sinh\sinh operator to deduce eq. 24. ∎

The above proof also shows that eq. 22 holds for uju_{j} evaluated at all x(Xj,Xj+)x\in(X_{j}-\ell,X_{j}+\ell) , not just x=Xjx=X_{j} . To prove this, in eq. 25 substitute 2sinh(Ht/2c)=2sinh(Hx/2)=δx2\sinh(-H\partial_{t}/2c)=2\sinh(H\partial_{x}/2)=\delta_{x} .

Computer algebra readily learns the dynamics (24) in the form of a Taylor series of the coupling parameter γ\gamma. That is, the computer algebra recovers precisely the series eq. 21b to a chosen order of γ\gamma. This recovery of the series verifies sections 3.2, 3.2 and 3.2.

Theorem 11.

At full coupling γ=1\gamma=1 , and for every θ\theta, the holistic discretisation (24), equivalently (21b), is consistent with the first-order wave pde (20).

Proof.

Evaluating eq. 24 at full-coupling γ=1\gamma=1 gives (table 1)

tUj\displaystyle\partial_{t}U_{j} =2cHasinh[12(μj12θδj)δj1+12δj2θμjδj+14(θ21)δj2]Uj\displaystyle=-\frac{2c}{H}\operatorname{asinh}\left[\frac{\tfrac{1}{2}(\mu_{j}-\tfrac{1}{2}\theta\delta_{j})\delta_{j}}{\sqrt{1+\tfrac{1}{2}\delta_{j}^{2}-\theta\mu_{j}\delta_{j}+\tfrac{1}{4}(\theta^{2}-1)\delta_{j}^{2}}}\right]U_{j}
=2cHasinh[12(μj12θδj)δjμj2θμjδj+14θ2δj2]Uj\displaystyle=-\frac{2c}{H}\operatorname{asinh}\left[\frac{\tfrac{1}{2}(\mu_{j}-\tfrac{1}{2}\theta\delta_{j})\delta_{j}}{\sqrt{\mu_{j}^{2}-\theta\mu_{j}\delta_{j}+\tfrac{1}{4}\theta^{2}\delta_{j}^{2}}}\right]U_{j}
=2cHasinh[12(μj12θδj)δj(μj12θδj)2]Uj\displaystyle=-\frac{2c}{H}\operatorname{asinh}\left[\frac{\tfrac{1}{2}(\mu_{j}-\tfrac{1}{2}\theta\delta_{j})\delta_{j}}{\sqrt{(\mu_{j}-\tfrac{1}{2}\theta\delta_{j})^{2}}}\right]U_{j}
=2cHasinh[δj/2]Uj=2cHasinh[δx/2]Uj(remark 5)\displaystyle=-\frac{2c}{H}\operatorname{asinh}\left[\delta_{j}/2\right]U_{j}=-\frac{2c}{H}\operatorname{asinh}\left[\delta_{x}/2\right]U_{j}\quad\text{(\lx@cref{creftype~refnum}{remcom})}
=cHjUj=cxUj.\displaystyle=-\frac{c}{H}\partial_{j}U_{j}=-c\partial_{x}U_{j}\,.

That tUj=cxUj\partial_{t}U_{j}=-c\partial_{x}U_{j} confirms that computing on elements with full coupling recovers macroscale simulations and predictions consistent with the macroscale dynamics of the first-order wave pde eq. 20. ∎

Substituting γ=1\gamma=1 reduces the series eq. 21b, obtained from computer algebra, to the first-order wave pde eq. 20 and verifies theorem 11. However, a practical derivation of the series eq. 21b necessarily truncates to some finite order in the coupling, say to errors o(γp)o\big{(}\gamma^{p}\big{)}. Two important questions concerning this error in γ\gamma and the practical application of this holistic discretisation are: how is this error reinterpreted in terms of a stencil of nearest-element coupling? and how does it affect the consistency of the series eq. 21b with the wave pde eq. 20?

Theorem 12.

Consider constructing, to errors o(γp)o\big{(}\gamma^{p}\big{)}, the slow manifold of the first-order wave pde eq. 20 on elements coupled by eq. 6a. The resulting holistic discretisation (that is, eq. 21b truncated to errors o(γp)o\big{(}\gamma^{p}\big{)}) is

  • a scheme of stencil width (2p1)(2p-1) on the macroscale grid, and

  • consistent with the wave pde to errors o(xp)o\big{(}\partial_{x}^{p}\big{)}.

Proof.

Consider macroscale solutions for which the differences δj\delta_{j} are ‘small’ (i.e., UjU_{j} varies slowly with changes in jj). For such solutions, the Taylor series in δj\delta_{j} of the holistic discretisation eq. 24 is appropriate. But we only need the pattern of powers of γ\gamma, μj\mu_{j} and δj\delta_{j}, so in the derivation we omit almost all details of the coefficients, and use \sim instead of == to denote such omission.

The asinh\operatorname{asinh} term in eq. 24 is

asinh[12(μj12θδj)(γδj)1+12δj(γδj)θμj(γδj)+14(θ21)(γδj)2],\operatorname{asinh}\left[\frac{\tfrac{1}{2}(\mu_{j}-\tfrac{1}{2}\theta\delta_{j})(\gamma\delta_{j})}{\sqrt{1+\tfrac{1}{2}\delta_{j}(\gamma\delta_{j})-\theta\mu_{j}(\gamma\delta_{j})+\tfrac{1}{4}(\theta^{2}-1)(\gamma\delta_{j})^{2}}}\right], (26)

where we pair each instance of γ\gamma with an instance of δj\delta_{j}. As all γ\gamma are paired with a δj\delta_{j}, but not all δj\delta_{j} (or μj\mu_{j}) are paired with a γ\gamma, we conclude that in a Taylor expansion in small δj\delta_{j}, up to a given power δjp\delta_{j}^{p}, every γ\gamma exponent is p\leq p (as in eq. 21b). Furthermore, truncating construction to errors o(γp)o\big{(}\gamma^{p}\big{)} ensures that the terms are all complete and correct for every power of δj\delta_{j} less than pp; that is, the error is o(δjp)o\big{(}\delta_{j}^{p}\big{)}. Since xδj\partial_{x}\sim\delta_{j} when operating on macroscale grid fields, in such a construction the consistency error is o(xp)o\big{(}\partial_{x}^{p}\big{)} as asserted in the theorem.

To determine the width of the stencil it is sufficient to expand

asinh[]\displaystyle\operatorname{asinh}[\cdot] asinh[(μj+δj)(γδj)1+(μj+δj)(γδj)+(γδj)2]\displaystyle\sim\operatorname{asinh}\left[\frac{(\mu_{j}+\delta_{j})(\gamma\delta_{j})}{\sqrt{1+(\mu_{j}+\delta_{j})(\gamma\delta_{j})+(\gamma\delta_{j})^{2}}}\right]
m=0(μj+δj)2m+1(γδj)2m+1[1+(μj+δj)(γδj)+(γδj)2]m1/2\displaystyle\sim\sum_{m=0}^{\infty}(\mu_{j}+\delta_{j})^{2m+1}(\gamma\delta_{j})^{2m+1}[1+(\mu_{j}+\delta_{j})(\gamma\delta_{j})+(\gamma\delta_{j})^{2}]^{-m-1/2}
m=0(μj+δj)2m+1(γδj)2m+1n=0(μj+δj)0:n(γδj)n:2n\displaystyle\sim\sum_{m=0}^{\infty}(\mu_{j}+\delta_{j})^{2m+1}(\gamma\delta_{j})^{2m+1}\sum_{n=0}^{\infty}(\mu_{j}+\delta_{j})^{0:n}(\gamma\delta_{j})^{n:2n}
m,n=0(μj+δj)2m+1:2m+n+1(γδj)2m+n+1:2m+2n+1.\displaystyle\sim\sum_{m,n=0}^{\infty}(\mu_{j}+\delta_{j})^{2m+1:2m+n+1}(\gamma\delta_{j})^{2m+n+1:2m+2n+1}\,.

On expanding to errors o(γp)o\big{(}\gamma^{p}\big{)} we retain up to γp1\gamma^{p-1}. Then, the lowest order γ\gamma which obtains the highest order Ej±1/2μj,δjE_{j}^{\pm 1/2}\sim\mu_{j},\delta_{j} is when p1=2m+n+1p-1=2m+n+1 , so that in the above expansion we have up to Ej[(2m+n+1)+(2m+n+1)]/2Ej±(p1)E_{j}^{[(2m+n+1)+(2m+n+1)]/2}\sim E_{j}^{\pm(p-1)} . So the stencil is of width (2p1)(2p-1). ∎

This completes the proof of the consistency of these fixed-bandwidth holistic discretisations, elements coupled by (6a), to the first-order wave pde eq. 20.

3.3 Holistic discretisation of generalised diffusion is consistent

Recall that example 2 shows that in the case of the diffusion pde, ut=uxxu_{t}=u_{xx} , the holistic discretisation eq. 9c is consistent with the pde to all computed orders of accuracy. The computer algebra (appendix A) deriving the results eq. 9 is easily modified to analyse more general pdes (such as advection-diffusion, ut=cux+uxxu_{t}=-cu_{x}+u_{xx} , or lattice diffusion, ut=u|x+d2u+u|xdu_{t}=u|_{x+d}-2u+u|_{x-d}) and in all cases investigated we found corresponding high-order consistency. Consequently, here we prove consistency for a generalised class of pdes. The proofs in this section are analogous to those in section 3.2 for wave pdes.

The proof of consistency is cognate to an earlier proof [Roberts2011a, §6.1] of high-order consistency emerging from a distinctly different inter-element coupling. However, the new inter-element coupling (6), implemented on element edges in order to preserve important symmetries, requires new proof.

The analysis here explores, for some Hilbert space 𝕌\mathbb{U}, the evolution in time tt of a 𝕌\mathbb{U}-valued field u(t,x)u(t,x) over space x𝕏x\in\mathbb{X} . We restrict attention to smooth 𝕌\mathbb{U}-valued fields uu in the vector space :=Cω(𝕏)\mathbb{C}:=C^{\omega}(\mathbb{X}) , and correspondingly j:=Cω(𝕏j)\mathbb{C}_{j}:=C^{\omega}(\mathbb{X}_{j}) on the spatial elements. The field uu is to satisfy the isotropic, homogenous, generalised diffusion-like pde, the evolution equation,

ut=𝒦0u+𝒦(x2)u,u_{t}=\mathcal{K}_{0}u+\mathcal{K}(\partial_{x}^{2})u\,, (27)

for some linear operators 𝒦k:𝕌𝕌\mathcal{K}_{k}:\mathbb{U}\to\mathbb{U} and isotropic invertible 𝒦:\mathcal{K}:\mathbb{C}\to\mathbb{C} , with inverse 𝒦1\mathcal{K}^{-1}, where 𝒦\mathcal{K} is formally expandable as 𝒦=k=1𝒦kx2k\mathcal{K}=\sum_{k=1}^{\infty}\mathcal{K}_{k}\partial_{x}^{2k} with 𝒦1\mathcal{K}_{1} invertible.

The most basic example of (27) is simple diffusion, ut=uxxu_{t}=u_{xx} , obtained with 𝕌=\mathbb{U}=\mathbb{R} , zero 𝒦0\mathcal{K}_{0}, and identity 𝒦\mathcal{K}. For a second example, with microscale space step dd the difference equation ut=δ2u:=u|x+d2u+u|xdu_{t}=\delta^{2}u:=u|_{x+d}-2u+u|_{x-d} corresponds to (table 1) setting 𝒦0:=0\mathcal{K}_{0}:=0 and 𝒦(x2):=4sinh2(dx/2)=d2x2+112d4x4+1360d6x6+\mathcal{K}(\partial_{x}^{2}):=4\sinh^{2}(d\partial_{x}/2)=d^{2}\partial_{x}^{2}+\tfrac{1}{12}d^{4}\partial_{x}^{4}+\tfrac{1}{360}d^{6}\partial_{x}^{6}+\cdots and so 𝒦1=d2\mathcal{K}_{1}=d^{2} . Further in this second example, the invertibility gives that since δ2=𝒦(x2)\delta^{2}=\mathcal{K}(\partial_{x}^{2}) then x2=𝒦1(δ2)=(4/d2)asinh2(δ/2)=1d2[δ2112δ4+190δ6]\partial_{x}^{2}=\mathcal{K}^{-1}(\delta^{2})=(4/d^{2})\operatorname{asinh}^{2}(\delta/2)=\tfrac{1}{d^{2}}\big{[}\delta^{2}-\tfrac{1}{12}\delta^{4}+\tfrac{1}{90}\delta^{6}-\cdots\big{]}.

sections 3.3, 3.3, 3.3 and 3.3 establish key identities for the subsequent consistency theorems 17 and 18.

Lemma 13.

Define the transformed time-derivative operator 𝒯:=𝒦1(t𝒦0)\mathcal{T}:=\mathcal{K}^{-1}(\partial_{t}-\mathcal{K}_{0}) . Then the evolution equation eq. 27 is equivalent to

𝒯u=uxx.\mathcal{T}u=u_{xx}\,. (28)
Proof.

As in remark 5, and since 𝒦\mathcal{K} is invertible, we rearrange the operator equation t=𝒦0+𝒦(x2)\partial_{t}=\mathcal{K}_{0}+\mathcal{K}(\partial_{x}^{2}) to 𝒦1(t𝒦0)=x2\mathcal{K}^{-1}(\partial_{t}-\mathcal{K}_{0})=\partial_{x}^{2} . Hence, (28) is equivalent to the evolution equation (27). ∎

Lemma 14.

Let the subgrid fields ujju_{j}\in\mathbb{C}_{j} satisfy the evolution equation eq. 27, equivalently (28), and be coupled by edge conditions eq. 6 with flux fj:=ujxf_{j}:=-u_{jx} . Then the edge condition eq. 6a holds for all even spatial derivatives of uju_{j}, and the edge condition eq. 6b holds for all odd spatial derivatives of uju_{j}.

Proof.

Denote the nnth derivative uj(n):=xnuju_{j}^{(n)}:=\partial_{x}^{n}u_{j} . Proceed via induction. From the definition of the flux, multiplying the flux edge condition eq. 6b by 1-1 is the edge condition for the first derivative of uju_{j}, and this coupling is equivalent to eq. 6a with θθ\theta\mapsto-\theta . Then for every n2n\geq 2 consider

(112γ)(uj(n)Ruj(n)L)12γ(uj+1(n)Luj1(n)R)\displaystyle(1-\tfrac{1}{2}\gamma)(u_{j}^{(n)R}-u_{j}^{(n)L})-\tfrac{1}{2}\gamma(u_{j+1}^{(n)L}-u_{j-1}^{(n)R})
12γ(1)nθ(uj(n)L+uj(n)R)+12γ(1)nθ(uj+1(n)L+uj1(n)R)\displaystyle\quad{}-\tfrac{1}{2}\gamma(-1)^{n}\theta(u_{j}^{(n)L}+u_{j}^{(n)R})+\tfrac{1}{2}\gamma(-1)^{n}\theta(u_{j+1}^{(n)L}+u_{j-1}^{(n)R})
(due to the identity uj(n)=x2uj(n2))\displaystyle\quad(\text{due to the identity }u_{j}^{(n)}=\partial_{x}^{2}u_{j}^{(n-2)})
=(112γ)(x2uj(n2)Rx2uj(n2)L)12γ(x2uj+1(n2)Lx2uj1(n2)R)\displaystyle=(1-\tfrac{1}{2}\gamma)(\partial_{x}^{2}u_{j}^{(n-2)R}-\partial_{x}^{2}u_{j}^{(n-2)L})-\tfrac{1}{2}\gamma(\partial_{x}^{2}u_{j+1}^{(n-2)L}-\partial_{x}^{2}u_{j-1}^{(n-2)R})
12γ(1)nθ(x2uj(n2)L+x2uj(n2)R)+12γ(1)nθ(x2uj+1(n2)L+x2uj1(n2)R)\displaystyle\quad{}-\tfrac{1}{2}\gamma(-1)^{n}\theta(\partial_{x}^{2}u_{j}^{(n-2)L}+\partial_{x}^{2}u_{j}^{(n-2)R})+\tfrac{1}{2}\gamma(-1)^{n}\theta(\partial_{x}^{2}u_{j+1}^{(n-2)L}+\partial_{x}^{2}u_{j-1}^{(n-2)R})
(then using (28))\displaystyle\quad(\text{then using \eqref{Xeqrpde}})
=(112γ)(𝒯uj(n2)R𝒯uj(n2)L)12γ(𝒯uj+1(n2)L𝒯uj1(n2)R)\displaystyle=(1-\tfrac{1}{2}\gamma)(\mathcal{T}u_{j}^{(n-2)R}-\mathcal{T}u_{j}^{(n-2)L})-\tfrac{1}{2}\gamma(\mathcal{T}u_{j+1}^{(n-2)L}-\mathcal{T}u_{j-1}^{(n-2)R})
12γ(1)nθ(𝒯uj(n2)L+𝒯uj(n2)R)+12γ(1)nθ(𝒯uj+1(n2)L+𝒯uj1(n2)R)\displaystyle\quad{}-\tfrac{1}{2}\gamma(-1)^{n}\theta(\mathcal{T}u_{j}^{(n-2)L}+\mathcal{T}u_{j}^{(n-2)R})+\tfrac{1}{2}\gamma(-1)^{n}\theta(\mathcal{T}u_{j+1}^{(n-2)L}+\mathcal{T}u_{j-1}^{(n-2)R})
=𝒯{(112γ)(uj(n2)Ruj(n2)L)12γ(uj+1(n2)Luj1(n2)R)\displaystyle=\mathcal{T}\left\{(1-\tfrac{1}{2}\gamma)(u_{j}^{(n-2)R}-u_{j}^{(n-2)L})-\tfrac{1}{2}\gamma(u_{j+1}^{(n-2)L}-u_{j-1}^{(n-2)R})\right.
12γ(1)nθ(uj(n2)L+uj(n2)R)+12γ(1)nθ(uj+1(n2)L+uj1(n2)R)}\displaystyle\left.\quad{}-\tfrac{1}{2}\gamma(-1)^{n}\theta(u_{j}^{(n-2)L}+u_{j}^{(n-2)R})+\tfrac{1}{2}\gamma(-1)^{n}\theta(u_{j+1}^{(n-2)L}+u_{j-1}^{(n-2)R})\right\}
=𝒯{0}=0,\displaystyle=\mathcal{T}\left\{0\right\}=0\,,

where the penultimate equality above holds provided uj(n2)u^{(n-2)}_{j} satisfies eq. 6a when nn is even and eq. 6b when nn is odd. By induction, since u(0)u^{(0)} satisfies eq. 6a then so does u(n)u^{(n)} for every even n0n\geq 0 , and since u(1)u^{(1)} satisfies eq. 6b then so does u(n)u^{(n)} for every odd n0n\geq 0 . ∎

In the case of simple diffusion, the code of appendix A verifies using computer algebra that for the constructed slow manifold discretisation (section 2.2), the field uj(t,x)u_{j}(t,x) satisfies the following identity eq. 29. We now prove this identity more generally. The proof is similar to that of section 3.2, but a little more complex as we now have edge conditions for both field and flux.

Lemma 15.

Recall the mid-element locations Xj:=(Rj+Lj)/2X_{j}:=(R_{j}+L_{j})/2 . For uj(t,x)u_{j}(t,x) as specified in section 3.3, and uju_{j} smoothly extended to being over [Xj1,Xj+1][X_{j-1},X_{j+1}],

δx2uj=γ2(μj214θ2δj2)δj21+12γδj214γ2(θ2+1)δj2ujat x=Xj.\delta_{x}^{2}u_{j}=\frac{\gamma^{2}(\mu_{j}^{2}-\tfrac{1}{4}\theta^{2}\delta_{j}^{2})\delta_{j}^{2}}{1+\tfrac{1}{2}\gamma\delta_{j}^{2}-\tfrac{1}{4}\gamma^{2}(\theta^{2}+1)\delta_{j}^{2}}u_{j}\quad\text{at }x=X_{j}\,. (29)

Further, this identity also holds for every spatial derivative xnuj\partial_{x}^{n}u_{j}.

Proof.

The field and flux edge conditions eq. 6, and their derivatives (section 3.3), imply that, in terms of mean and difference operators, the following holds at x=Xjx=X_{j} , for every integer k=0,1,k=0,1,\ldots ,

[δx+γ(14δjδxμjμx)δj]x2kuj\displaystyle[\delta_{x}+\gamma(\tfrac{1}{4}\delta_{j}\delta_{x}-\mu_{j}\mu_{x})\delta_{j}]\partial_{x}^{2k}u_{j}\quad =12γθ(μjδxδjμx)δjx2kuj,\displaystyle=\phantom{+}\tfrac{1}{2}\gamma\theta(\mu_{j}\delta_{x}-\delta_{j}\mu_{x})\delta_{j}\partial_{x}^{2k}u_{j}\,,
[δx+γ(14δjδxμjμx)δj]x2k+1uj\displaystyle[\delta_{x}+\gamma(\tfrac{1}{4}\delta_{j}\delta_{x}-\mu_{j}\mu_{x})\delta_{j}]\partial_{x}^{2k+1}u_{j} =12γθ(μjδxδjμx)δjx2k+1uj.\displaystyle=-\tfrac{1}{2}\gamma\theta(\mu_{j}\delta_{x}-\delta_{j}\mu_{x})\delta_{j}\partial_{x}^{2k+1}u_{j}\,. (30)

Upon multiplying by appropriate factors, and changing to subgrid variable ξ=(xLj)/H\xi=(x-L_{j})/H , the above set of edge conditions is equivalent to the following set: at ξ=12\xi=\tfrac{1}{2} , for every k=0,1,k=0,1,\ldots

[δξ+γ(14δjδξμjμξ)δj]ξ2kuj22k(2k)!\displaystyle\frac{[\delta_{\xi}+\gamma(\tfrac{1}{4}\delta_{j}\delta_{\xi}-\mu_{j}\mu_{\xi})\delta_{j}]\ \partial_{\xi}^{2k}u_{j}}{2^{2k}(2k)!}\quad =12γθ(μjδξδjμξ)δjξ2kuj22k(2k)!,\displaystyle=\phantom{+}\frac{\tfrac{1}{2}\gamma\theta(\mu_{j}\delta_{\xi}-\delta_{j}\mu_{\xi})\delta_{j}\ \partial_{\xi}^{2k}u_{j}}{2^{2k}(2k)!}\,, (31a)
[δξ+γ(14δjδξμjμξ)δj]ξ2k+1uj22k+1(2k+1)!\displaystyle\frac{[\delta_{\xi}+\gamma(\tfrac{1}{4}\delta_{j}\delta_{\xi}-\mu_{j}\mu_{\xi})\delta_{j}]\ \partial_{\xi}^{2k+1}u_{j}}{2^{2k+1}(2k+1)!} =12γθ(μjδξδjμξ)δjξ2k+1uj22k+1(2k+1)!.\displaystyle=-\frac{\tfrac{1}{2}\gamma\theta(\mu_{j}\delta_{\xi}-\delta_{j}\mu_{\xi})\delta_{j}\ \partial_{\xi}^{2k+1}u_{j}}{2^{2k+1}(2k+1)!}\,. (31b)

Summing each of (31) over k=0,1,2,k=0,1,2,\ldots , and for simplicity here omitting “uju_{j} at ξ=12\xi=\tfrac{1}{2}”, gives

[δξ+γ(14δjδξμjμξ)δj]cosh(12ξ)\displaystyle[\delta_{\xi}+\gamma(\tfrac{1}{4}\delta_{j}\delta_{\xi}-\mu_{j}\mu_{\xi})\delta_{j}]\cosh(\tfrac{1}{2}\partial_{\xi}) =12γθ(μjδξδjμξ)δjcosh(12ξ),\displaystyle=\phantom{+}\tfrac{1}{2}\gamma\theta(\mu_{j}\delta_{\xi}-\delta_{j}\mu_{\xi})\delta_{j}\cosh(\tfrac{1}{2}\partial_{\xi}),
[δξ+γ(14δjδξμjμξ)δj]sinh(12ξ)\displaystyle[\delta_{\xi}+\gamma(\tfrac{1}{4}\delta_{j}\delta_{\xi}-\mu_{j}\mu_{\xi})\delta_{j}]\sinh(\tfrac{1}{2}\partial_{\xi}) =12γθ(μjδξδjμξ)δjsinh(12ξ).\displaystyle=-\tfrac{1}{2}\gamma\theta(\mu_{j}\delta_{\xi}-\delta_{j}\mu_{\xi})\delta_{j}\sinh(\tfrac{1}{2}\partial_{\xi}).

Recall that cosh(12ξ)=μξ\cosh(\tfrac{1}{2}\partial_{\xi})=\mu_{\xi} and sinh(12ξ)=12δξ\sinh(\tfrac{1}{2}\partial_{\xi})=\tfrac{1}{2}\delta_{\xi} (table 1). Consequently the above pair of operator equations are

[δξ+γ(14δjδξμjμξ)δj]μξ\displaystyle[\delta_{\xi}+\gamma(\tfrac{1}{4}\delta_{j}\delta_{\xi}-\mu_{j}\mu_{\xi})\delta_{j}]\mu_{\xi} =12γθ(μjδξδjμξ)δjμξ,\displaystyle=\phantom{+}\tfrac{1}{2}\gamma\theta(\mu_{j}\delta_{\xi}-\delta_{j}\mu_{\xi})\delta_{j}\mu_{\xi}\,,
[δξ+γ(14δjδξμjμξ)δj]δξ\displaystyle[\delta_{\xi}+\gamma(\tfrac{1}{4}\delta_{j}\delta_{\xi}-\mu_{j}\mu_{\xi})\delta_{j}]\delta_{\xi} =12γθ(μjδξδjμξ)δjδξ.\displaystyle=-\tfrac{1}{2}\gamma\theta(\mu_{j}\delta_{\xi}-\delta_{j}\mu_{\xi})\delta_{j}\delta_{\xi}\,.

Each of these equations rearrange, respectively, to

(1+14γδj212γθμjδj)μξδξ\displaystyle(1+\tfrac{1}{4}\gamma\delta_{j}^{2}-\tfrac{1}{2}\gamma\theta\mu_{j}\delta_{j})\mu_{\xi}\delta_{\xi} =γ(μj12θδj)δjμξ2,\displaystyle=\gamma(\mu_{j}-\tfrac{1}{2}\theta\delta_{j})\delta_{j}\mu_{\xi}^{2}\,,
(1+14γδj2+12γθμjδj)δξ2\displaystyle(1+\tfrac{1}{4}\gamma\delta_{j}^{2}+\tfrac{1}{2}\gamma\theta\mu_{j}\delta_{j})\delta_{\xi}^{2}\quad =γ(μj+12θδj)δjμξδξ.\displaystyle=\gamma(\mu_{j}+\tfrac{1}{2}\theta\delta_{j})\delta_{j}\mu_{\xi}\delta_{\xi}\,.

Multiply both sides of the first equation by γ(μj+12θδj)δj\gamma(\mu_{j}+\tfrac{1}{2}\theta\delta_{j})\delta_{j} , then substitute the second to obtain666Here we smoothly extend the jjth element (ξ[0,1]\xi\in[0,1]) to also include ξ[12,0),(1,32]\xi\in[-\frac{1}{2},0),(1,\frac{3}{2}] and the following equation is an additional coupling condition for element jj at ξ=12,32\xi=-\frac{1}{2},\frac{3}{2} , or equivalently x=Xj1,Xj+1x=X_{j-1},X_{j+1} (as in the proof of section 3.2).

(1+14γδj212γθμjδj)(1+14γδj2+12γθμjδj)δξ2\displaystyle(1+\tfrac{1}{4}\gamma\delta_{j}^{2}-\tfrac{1}{2}\gamma\theta\mu_{j}\delta_{j})(1+\tfrac{1}{4}\gamma\delta_{j}^{2}+\tfrac{1}{2}\gamma\theta\mu_{j}\delta_{j})\delta_{\xi}^{2}
=γ2(μj+12θδj)(μj12θδj)δj2.\displaystyle=\gamma^{2}(\mu_{j}+\tfrac{1}{2}\theta\delta_{j})(\mu_{j}-\tfrac{1}{2}\theta\delta_{j})\delta_{j}^{2}\,.

Expand both sides, and on the left substitute μj2=1+14δj2\mu_{j}^{2}=1+\frac{1}{4}\delta_{j}^{2} whereas on the right substitute μξ2=1+14δξ2\mu_{\xi}^{2}=1+\frac{1}{4}\delta_{\xi}^{2} (table 1), to obtain

[1+12γδj214γ2(θ2+1)δj2]δξ2=γ2(μj214θ2δj2)δj2.\big{[}1+\tfrac{1}{2}\gamma\delta_{j}^{2}-\tfrac{1}{4}\gamma^{2}(\theta^{2}+1)\delta_{j}^{2}\big{]}\delta_{\xi}^{2}={\gamma^{2}(\mu_{j}^{2}-\tfrac{1}{4}\theta^{2}\delta_{j}^{2})\delta_{j}^{2}}\,.

Since δξ=δx\delta_{\xi}=\delta_{x} , dividing the above by the [][\cdot] factor, and now explicitly applying to uju_{j} at ξ=12\xi=\tfrac{1}{2} (that is, x=Xjx=X_{j}) gives (29).

Furthermore, to prove that (29) holds for all spatial derivatives xnuj\partial_{x}^{n}u_{j}, adapt (30) for nn even, so that n+2kn+2k is even:

[δx+γ(14δjδxμjμx)δj]x2kxnuj\displaystyle[\delta_{x}+\gamma(\tfrac{1}{4}\delta_{j}\delta_{x}-\mu_{j}\mu_{x})\delta_{j}]\partial_{x}^{2k}\partial_{x}^{n}u_{j}\quad =12γθ(μjδxδjμx)δjx2kxnuj,\displaystyle=\phantom{+}\tfrac{1}{2}\gamma\theta(\mu_{j}\delta_{x}-\delta_{j}\mu_{x})\delta_{j}\partial_{x}^{2k}\partial_{x}^{n}u_{j}\,,
[δx+γ(14δjδxμjμx)δj]x2k+1xnuj\displaystyle[\delta_{x}+\gamma(\tfrac{1}{4}\delta_{j}\delta_{x}-\mu_{j}\mu_{x})\delta_{j}]\partial_{x}^{2k+1}\partial_{x}^{n}u_{j} =12γθ(μjδxδjμx)δjx2k+1xnuj,\displaystyle=-\tfrac{1}{2}\gamma\theta(\mu_{j}\delta_{x}-\delta_{j}\mu_{x})\delta_{j}\partial_{x}^{2k+1}\partial_{x}^{n}u_{j}\,,

and for nn odd, so that n+2kn+2k is odd:

[δx+γ(14δjδxμjμx)δj]x2kxnuj\displaystyle[\delta_{x}+\gamma(\tfrac{1}{4}\delta_{j}\delta_{x}-\mu_{j}\mu_{x})\delta_{j}]\partial_{x}^{2k}\partial_{x}^{n}u_{j}\quad =12γθ(μjδxδjμx)δjx2kxn,\displaystyle=-\tfrac{1}{2}\gamma\theta(\mu_{j}\delta_{x}-\delta_{j}\mu_{x})\delta_{j}\partial_{x}^{2k}\partial_{x}^{n}\,,
[δx+γ(14δjδxμjμx)δj]x2k+1xnuj\displaystyle[\delta_{x}+\gamma(\tfrac{1}{4}\delta_{j}\delta_{x}-\mu_{j}\mu_{x})\delta_{j}]\partial_{x}^{2k+1}\partial_{x}^{n}u_{j} =12γθ(μjδxδjμx)δjx2k+1xnuj.\displaystyle=\phantom{+}\tfrac{1}{2}\gamma\theta(\mu_{j}\delta_{x}-\delta_{j}\mu_{x})\delta_{j}\partial_{x}^{2k+1}\partial_{x}^{n}u_{j}\,.

Then, in the proof of (29) for uju_{j} we replace uju_{j} with xnuj\partial_{x}^{n}u_{j} and θ\theta with (1)nθ(-1)^{n}\theta. Since only θ2\theta^{2} terms arise in (29), it thus also holds for xnuj\partial_{x}^{n}u_{j}. ∎

Lemma 16.

The evolution equation (27), equivalently (28), on equi-sized elements for ujju_{j}\in\mathbb{C}_{j} coupled by eq. 6, has dynamics satisfying both the following two spatially discrete equations:

𝒯Uj=4H2asinh2[μj214θ2δj21+12γδj214γ2(θ2+1)δj2γδj2]Uj,\displaystyle\mathcal{T}U_{j}=\frac{4}{H^{2}}\operatorname{asinh}^{2}\left[\sqrt{\frac{\mu_{j}^{2}-\tfrac{1}{4}\theta^{2}\delta_{j}^{2}}{1+\tfrac{1}{2}\gamma\delta_{j}^{2}-\tfrac{1}{4}\gamma^{2}(\theta^{2}+1)\delta_{j}^{2}}}\frac{\gamma\delta_{j}}{2}\right]U_{j}\,, (32a)
tUj=𝒦0Uj+𝒦{4H2asinh2[μj214θ2δj21+12γδj214γ2(θ2+1)δj2γδj2]}Uj,\displaystyle\partial_{t}U_{j}=\mathcal{K}_{0}U_{j}+\mathcal{K}\left\{\frac{4}{H^{2}}\operatorname{asinh}^{2}\left[\sqrt{\frac{\mu_{j}^{2}-\tfrac{1}{4}\theta^{2}\delta_{j}^{2}}{1+\tfrac{1}{2}\gamma\delta_{j}^{2}-\tfrac{1}{4}\gamma^{2}(\theta^{2}+1)\delta_{j}^{2}}}\frac{\gamma\delta_{j}}{2}\right]\right\}U_{j}\,, (32b)

where macroscale grid field Uj(t)𝕌U_{j}(t)\in\mathbb{U} is a local average of uj(t,x)u_{j}(t,x) about the centre of the jjth element; that is, Uj(t):=12XjXj+w(xXj)uj(t,x)𝑑xU_{j}(t):=\tfrac{1}{2\ell}\int_{X_{j}-\ell}^{X_{j}+\ell}w(x-X_{j})u_{j}(t,x)\,dx for some H/2\ell\leq H/2 and some weight function ww (the macroscale field reduces to the mid-element value Uj(t):=uj(t,Xj)U_{j}(t):=u_{j}(t,X_{j}) as 0\ell\rightarrow 0 and for weight w(0)=1w(0)=1).

Proof.

We adapt the proof of section 3.2. Given (29) of section 3.3, first consider the evolution equation (28) in the elements (and smoothly extended from the elements): for every p=0,1,2,p=0,1,2,\ldots , 𝒯xpuj=x2xpuj=4H2asinh2(δx/2)xpuj=4H2asinh2(δx2/4)uj\mathcal{T}\partial_{x}^{p}u_{j}=\partial_{x}^{2}\partial_{x}^{p}u_{j}=\tfrac{4}{H^{2}}\operatorname{asinh}^{2}(\delta_{x}/2)\partial_{x}^{p}u_{j}=\tfrac{4}{H^{2}}\operatorname{asinh}^{2}(\sqrt{\delta_{x}^{2}/4})u_{j} . Upon inverting the operator asinh2(/4)\operatorname{asinh}^{2}(\sqrt{\cdot/4}), this evolution equation is equivalent to 4sinh2(H𝒯/2)xpuj=δx2xpuj4\sinh^{2}(H\sqrt{\mathcal{T}}/2)\partial_{x}^{p}u_{j}=\delta_{x}^{2}\partial_{x}^{p}u_{j} . Evaluating this form of the evolution equation at the element mid-point, and using eq. 29, gives

4sinh2(H𝒯/2)xpuj|Xj=δx2xpuj|Xj=γ2(μj214θ2δj2)δj21+12γδj214γ2(θ2+1)δj2xpuj|Xj.4\sinh^{2}(H\sqrt{\mathcal{T}}/2)\partial_{x}^{p}u_{j}\big{|}_{X_{j}}=\delta_{x}^{2}\partial_{x}^{p}u_{j}\big{|}_{X_{j}}=\frac{\gamma^{2}(\mu_{j}^{2}-\tfrac{1}{4}\theta^{2}\delta_{j}^{2})\delta_{j}^{2}}{1+\tfrac{1}{2}\gamma\delta_{j}^{2}-\tfrac{1}{4}\gamma^{2}(\theta^{2}+1)\delta_{j}^{2}}\partial_{x}^{p}u_{j}\big{|}_{X_{j}}\,.

Premultiplying by (xXj)p/p!(x-X_{j})^{p}/p! provides the ppth term in a Taylor expansion of the smooth uj(t,x)u_{j}(t,x) about x=Xjx=X_{j} (the term (xXj)p(x-X_{j})^{p} commutes with δt\delta_{t}, δj\delta_{j} and μj\mu_{j}, but not with δx\delta_{x} when p>0p>0). Given ujju_{j}\in\mathbb{C}_{j} , the Taylor series converges in some open interval containing XjX_{j}, and so summing over all pp we obtain

4sinh2(H𝒯/2)uj(t,x)=γ2(μj214θ2δj2)δj21+12γδj214γ2(θ2+1)δj2uj(t,x)4\sinh^{2}(H\sqrt{\mathcal{T}}/2)u_{j}(t,x)=\frac{\gamma^{2}(\mu_{j}^{2}-\tfrac{1}{4}\theta^{2}\delta_{j}^{2})\delta_{j}^{2}}{1+\tfrac{1}{2}\gamma\delta_{j}^{2}-\tfrac{1}{4}\gamma^{2}(\theta^{2}+1)\delta_{j}^{2}}u_{j}(t,x) (33)

in that interval. Then multiply by the weight function w(xXj)w(x-X_{j}) and integrate over the middle of the jjth element from x=Xjx=X_{j}-\ell to Xj+X_{j}+\ell, and revert the sinh(H𝒯/2c)\sinh(-H\mathcal{T}/2c) operator, to deduce eq. 32a; or for the averaging width 0\ell\rightarrow 0 , set x=Xjx=X_{j} and revert the sinh\sinh operator to also deduce eq. 32a.

Finally, from eq. 32a revert the operator 𝒯=𝒦1(t𝒦0)\mathcal{T}=\mathcal{K}^{-1}(\partial_{t}-\mathcal{K}_{0}) to deduce (32b). ∎

The above proof also shows that identity eq. 29 holds for uju_{j} evaluated at all x(Xj,Xj+)x\in(X_{j}-\ell,X_{j}+\ell) , not just x=Xjx=X_{j} . To prove this, in eq. 33 substitute 4sinh2(H𝒯/2)=δx24\sinh^{2}(H\sqrt{\mathcal{T}}/2)=\delta_{x}^{2} . Similarly, the code of appendix A shows that the identity holds for all ξ\xi, not just ξ=1/2\xi=1/2 .

With these lemmas we now prove the consistency of the slow manifold discretisation.

Theorem 17.

At full coupling γ=1\gamma=1 , and for every θ\theta, the holistic discretisation (32) is consistent with the evolution equation (27).

For example, the holistic discretisation eq. 9c is consistent with the simple diffusion pde ut=uxxu_{t}=u_{xx} .

Proof.

Evaluating (32a) at full coupling γ=1\gamma=1 gives (table 1)

𝒯Uj\displaystyle\mathcal{T}U_{j} =4H2asinh2[μj214θ2δj21+14δj214θ2δj2δj2]Uj\displaystyle=\frac{4}{H^{2}}\operatorname{asinh}^{2}\left[\sqrt{\frac{\mu_{j}^{2}-\tfrac{1}{4}\theta^{2}\delta_{j}^{2}}{1+\tfrac{1}{4}\delta_{j}^{2}-\tfrac{1}{4}\theta^{2}\delta_{j}^{2}}}\frac{\delta_{j}}{2}\right]U_{j}
=4H2asinh2[12δj]Uj=1H2j2Uj.\displaystyle=\frac{4}{H^{2}}\operatorname{asinh}^{2}\left[{\tfrac{1}{2}\delta_{j}}\right]U_{j}=\frac{1}{H^{2}}\partial_{j}^{2}U_{j}\,.

Let U(t,x)U(t,x) be a smooth interpolation of Uj(t)U_{j}(t), then 1HjUj=xU\frac{1}{H}\partial_{j}U_{j}=\partial_{x}U , and so the above reduces to 𝒯U=x2U\mathcal{T}U=\partial_{x}^{2}U , that is, 𝒦1(t𝒦0)U=x2U\mathcal{K}^{-1}(\partial_{t}-\mathcal{K}_{0})U=\partial_{x}^{2}U . By reverting the operator 𝒦1\mathcal{K}^{-1}, it follows that tU=𝒦0U+𝒦(x2)U\partial_{t}U=\mathcal{K}_{0}U+\mathcal{K}(\partial_{x}^{2})U . Thus at γ=1\gamma=1 , both equations in (32) are consistent to the evolution equation (27) to all orders. ∎

Of more practical interest is what happens when the inter-element coupling is analysed to some finite order in γ\gamma in order to construct an holistic discretisation of some finite stencil width in space.

Theorem 18.

Consider constructing, to errors o(γp)o\big{(}\gamma^{p}\big{)}, the spatial discretisation of the evolution equation (27) on elements coupled by eq. 6. The resulting holistic discretisation (e.g., eq. 9c truncated to errors o(γp)o\big{(}\gamma^{p}\big{)}) is

  • a scheme of stencil width (2p1)(2p-1) on the macroscale grid, and

  • consistent with the general pde (27) to errors o(xp)o\big{(}\partial_{x}^{p}\big{)}.

Proof.

By section 3.3 the spatial discretisation of the evolution (27) satisfies eq. 32. Consider macroscale solutions of (32) for which the differences δj\delta_{j} are ‘small’: for such solutions, the Taylor series in δj\delta_{j} is appropriate. We expand asinh\operatorname{asinh} in eq. 32 but, similarly to the proof of theorem 12, only retain the powers of γ\gamma, μj\mu_{j} and δj\delta_{j}, omitting all other details:

asinh[]\displaystyle\operatorname{asinh}[\cdot] asinh[(μj2δj2)(γδj)1+δj(γδj)+(γδj)2]\displaystyle\sim\operatorname{asinh}\left[\frac{\sqrt{(\mu_{j}^{2}-\delta_{j}^{2})}(\gamma\delta_{j})}{\sqrt{1+\delta_{j}(\gamma\delta_{j})+(\gamma\delta_{j})^{2}}}\right]
m=0(μj2δj2)m+1/2(γδj)2m+1[1+δj(γδj)+(γδj)2]m1/2\displaystyle\sim\sum_{m=0}^{\infty}(\mu_{j}^{2}-\delta_{j}^{2})^{m+1/2}(\gamma\delta_{j})^{2m+1}[1+\delta_{j}(\gamma\delta_{j})+(\gamma\delta_{j})^{2}]^{-m-1/2}
m=0(μj2δj2)m+1/2(γδj)2m+1n=0δj0:n(γδj)n:2n\displaystyle\sim\sum_{m=0}^{\infty}(\mu_{j}^{2}-\delta_{j}^{2})^{m+1/2}(\gamma\delta_{j})^{2m+1}\sum_{n=0}^{\infty}\delta_{j}^{0:n}(\gamma\delta_{j})^{n:2n}
m,n=0(μj2δj2)m+1/2δj0:n(γδj)2m+n+1:2m+2n+1.\displaystyle\sim\sum_{m,n=0}^{\infty}(\mu_{j}^{2}-\delta_{j}^{2})^{m+1/2}\delta_{j}^{0:n}(\gamma\delta_{j})^{2m+n+1:2m+2n+1}\,.

Thus, since μjδj\mu_{j}\sim\delta_{j} the asinh2\operatorname{asinh}^{2} in eq. 32 expands as

asinh2[]δj2(γδj)2[m,n=0δj2m:2m+n(γδj)2m+n:2m+2n]2.\operatorname{asinh}^{2}[\cdot]\sim\delta_{j}^{2}(\gamma\delta_{j})^{2}\left[\sum_{m,n=0}^{\infty}\delta_{j}^{2m:2m+n}(\gamma\delta_{j})^{2m+n:2m+2n}\right]^{2}.

First establish the theorem’s properties for (32a). For a given power δjp\delta_{j}^{p}, every γ\gamma exponent is p\leq p. Hence, truncating the analysis to errors o(γp)o\big{(}\gamma^{p}\big{)} ensures that the terms are all complete and correct for every power of δj\delta_{j} less than pp; that is, the error is o(δjp)o\big{(}\delta_{j}^{p}\big{)}. Since xδj\partial_{x}\sim\delta_{j} for smooth fields, the consistency error in such analysis is o(xp)o\big{(}\partial_{x}^{p}\big{)}.

The highest power of γ\gamma retained is p1p-1 which could appear in the above sum as γ2+2(2m+n)\gamma^{2+2(2m+n)} . For such a power of γ\gamma, the highest power of the difference is δj2+2+2(2m+n)+2(2m+n)=δj2(p1)\delta_{j}^{2+2+2(2m+n)+2(2m+n)}=\delta_{j}^{2(p-1)} , which involves shifts of (Ej±1/2)2(p1)=Ej±(p1)(E_{j}^{\pm 1/2})^{2(p-1)}=E_{j}^{\pm(p-1)} . That is, a construction to errors o(γp)o\big{(}\gamma^{p}\big{)} results in a macroscale discretisation with stencil width (2p1)(2p-1).

Second, establish the theorem’s properties for (32b). Denote the the right-hand side operator of (32a) as =4H2asinh2()\mathcal{R}=\frac{4}{H^{2}}\operatorname{asinh}^{2}(\cdots) so that (32b) is tUj=𝒦0Uj+𝒦{}Uj\partial_{t}U_{j}=\mathcal{K}_{0}U_{j}+\mathcal{K}\{\mathcal{R}\}U_{j} , and recall that 𝒦()=k=1𝒦kk\mathcal{K}(\mathcal{R})=\sum_{k=1}^{\infty}\mathcal{K}_{k}\mathcal{R}^{k} . From the above analysis we have

kasinh2k[]δj2k(γδj)2k[m,n=0δj2m:2m+n(γδj)2m+n:2m+2n]2k.\mathcal{R}^{k}\sim\operatorname{asinh}^{2k}[\cdot]\sim\delta_{j}^{2k}(\gamma\delta_{j})^{2k}\left[\sum_{m,n=0}^{\infty}\delta_{j}^{2m:2m+n}(\gamma\delta_{j})^{2m+n:2m+2n}\right]^{2k}.

As before, for a given power δjp\delta_{j}^{p}, every γ\gamma exponent is p\leq p so truncating the to errors o(γp)o\big{(}\gamma^{p}\big{)} ensures the error is o(δjp)o\big{(}\delta_{j}^{p}\big{)} and the consistency error is o(xp)o\big{(}\partial_{x}^{p}\big{)}.

When the highest power of γ\gamma retained is p1p-1, then this power could appear in 𝒦\mathcal{K} as γ2k+2k(2m+n)\gamma^{2k+2k(2m+n)} , corresponding to the highest power of the difference operator δj2k+2k+2k(2m+n)+2k(2m+n)=δj2(p1)\delta_{j}^{2k+2k+2k(2m+n)+2k(2m+n)}=\delta_{j}^{2(p-1)} . As before, this involves shifts of (Ej±1/2)2(p1)=Ej±(p1)(E_{j}^{\pm 1/2})^{2(p-1)}=E_{j}^{\pm(p-1)} , and so we conclude that a construction to errors o(γp)o\big{(}\gamma^{p}\big{)} results in a macroscale discretisation with stencil width (2p1)(2p-1). ∎

4 Application to accurate numerical homogenisation

Consider a general heterogeneous diffusion pde, for field u(t,x)u(t,x) in some spatial domain 𝕏\mathbb{X},

ut=x[κ(x)ux],\mathchoice{\frac{\partial u}{\partial t}}{{\partial u}/{\partial t}}{{\partial u}/{\partial t}}{{\partial u}/{\partial t}}=\mathchoice{\frac{\partial}{\partial x}}{{\partial}/{\partial x}}{{\partial}/{\partial x}}{{\partial}/{\partial x}}\left[\kappa(x)\mathchoice{\frac{\partial u}{\partial x}}{{\partial u}/{\partial x}}{{\partial u}/{\partial x}}{{\partial u}/{\partial x}}\right], (34)

where the diffusivity κ(x)\kappa(x) is dd-periodic in xx. The microscale length dd is fixed. We do not invoke the limit d0d\to 0 : dd is some constant that happens to be relatively small compared to the size 𝔏\mathfrak{L} of the the domain of interest. Our approach and results here apply to the physically relevant case of a finite scale separation ratio d/𝔏d/\mathfrak{L}. The results are not restricted to the mathematical limit d/𝔏0d/\mathfrak{L}\to 0 .

After some general considerations, we focus on the specific example case when the diffusivity is κ=1/(1+acoskx)\kappa=1/(1+a\cos kx) for some amplitude aa of the heterogeneity. For dd-periodic heterogeneity, here the wavenumber of the microscale is k:=2π/dk:=2\pi/d.

Figure 2: ‘cylindrical’ domain of the embedding pde eq. 35 for field 𝒰(t,𝒳,z){\cal\mathchoice{\scriptstyle U}{\scriptstyle U}{\scriptscriptstyle U}{\scriptscriptstyle U}}(t,{\cal\mathchoice{\scriptstyle X}{\scriptstyle X}{\scriptscriptstyle X}{\scriptscriptstyle X}},z). Obtain solutions of the heterogeneous diffusion pde eq. 34 on the blue line as uϕ(t,x)=𝒰(t,x,x+ϕ)u_{\phi}(t,x)={\cal\mathchoice{\scriptstyle U}{\scriptstyle U}{\scriptscriptstyle U}{\scriptscriptstyle U}}(t,x,x+\phi) for every constant phase ϕ\phi.
x,𝒳x,{\cal\mathchoice{\scriptstyle X}{\scriptstyle X}{\scriptscriptstyle X}{\scriptscriptstyle X}}zzdd0domain 𝕏×[0,d)\mathbb{X}\times[0,d)ϕ\phi𝒰(t,𝒳,z){\cal\mathchoice{\scriptstyle U}{\scriptstyle U}{\scriptscriptstyle U}{\scriptscriptstyle U}}(t,{\cal\mathchoice{\scriptstyle X}{\scriptstyle X}{\scriptscriptstyle X}{\scriptscriptstyle X}},z)

To make rigorous progress we embed the general heterogeneous diffusion pde eq. 34 in the family of all phase shifts of the dd-periodic diffusion [[, e.g.,]]Roberts2013a, Roberts2016a. Consider the following pde for a field 𝒰(t,𝒳,z){\cal\mathchoice{\scriptstyle U}{\scriptstyle U}{\scriptscriptstyle U}{\scriptscriptstyle U}}(t,{\cal\mathchoice{\scriptstyle X}{\scriptstyle X}{\scriptscriptstyle X}{\scriptscriptstyle X}},z) in the ‘cylindrical’ domain 𝕏×[0,d)\mathbb{X}\times[0,d) (fig. 2):

t𝒰\displaystyle\partial_{t}{\cal\mathchoice{\scriptstyle U}{\scriptstyle U}{\scriptscriptstyle U}{\scriptscriptstyle U}} =(𝒳+z)[κ(z)(𝒰𝒳+𝒰z)]\displaystyle=(\partial_{\cal\mathchoice{\scriptstyle X}{\scriptstyle X}{\scriptscriptstyle X}{\scriptscriptstyle X}}+\partial_{z})\big{[}\kappa(z)({\cal\mathchoice{\scriptstyle U}{\scriptstyle U}{\scriptscriptstyle U}{\scriptscriptstyle U}}_{\cal\mathchoice{\scriptstyle X}{\scriptstyle X}{\scriptscriptstyle X}{\scriptscriptstyle X}}+{\cal\mathchoice{\scriptstyle U}{\scriptstyle U}{\scriptscriptstyle U}{\scriptscriptstyle U}}_{z})\big{]}
=z[κz]𝒰+[2κz+κ]𝒰𝒳+κ𝒰𝒳𝒳,\displaystyle=\partial_{z}[\kappa\partial_{z}]{\cal\mathchoice{\scriptstyle U}{\scriptstyle U}{\scriptscriptstyle U}{\scriptscriptstyle U}}+[2\kappa\partial_{z}+\kappa^{\prime}]{\cal\mathchoice{\scriptstyle U}{\scriptstyle U}{\scriptscriptstyle U}{\scriptscriptstyle U}}_{\cal\mathchoice{\scriptstyle X}{\scriptstyle X}{\scriptscriptstyle X}{\scriptscriptstyle X}}+\kappa{\cal\mathchoice{\scriptstyle U}{\scriptstyle U}{\scriptscriptstyle U}{\scriptscriptstyle U}}_{{\cal\mathchoice{\scriptstyle X}{\scriptstyle X}{\scriptscriptstyle X}{\scriptscriptstyle X}}{\cal\mathchoice{\scriptstyle X}{\scriptstyle X}{\scriptscriptstyle X}{\scriptscriptstyle X}}}\,, (35)

with a boundary condition of dd-periodicity in zz. For every field 𝒰(t,𝒳,z){\cal\mathchoice{\scriptstyle U}{\scriptstyle U}{\scriptscriptstyle U}{\scriptscriptstyle U}}(t,{\cal\mathchoice{\scriptstyle X}{\scriptstyle X}{\scriptscriptstyle X}{\scriptscriptstyle X}},z) that satisfies pde (35), define the field uϕ(t,x):=𝒰(t,x,x+ϕ)u_{\phi}(t,x):={\cal\mathchoice{\scriptstyle U}{\scriptstyle U}{\scriptscriptstyle U}{\scriptscriptstyle U}}(t,x,x+\phi) where the zz-argument, x+ϕx+\phi, is taken modulo dd as indicated in fig. 2. Then from the pde eq. 35, the field uϕu_{\phi} satisfies the heterogeneous diffusion pde tuϕ=x[κ(x+ϕ)xuϕ]\partial_{t}u_{\phi}=\partial_{x}[\kappa(x+\phi)\partial_{x}u_{\phi}] . Hence solutions 𝒰(t,𝒳,z){\cal\mathchoice{\scriptstyle U}{\scriptstyle U}{\scriptscriptstyle U}{\scriptscriptstyle U}}(t,{\cal\mathchoice{\scriptstyle X}{\scriptstyle X}{\scriptscriptstyle X}{\scriptscriptstyle X}},z) of the embedding pde eq. 35 provide solutions of the original heterogeneous pde eq. 34 for every phase shift ϕ\phi of the heterogeneity. For the specific phase shift ϕ=0\phi=0, the field u0(t,x)u_{0}(t,x) solves the specific original pde eq. 34.

The crucial property of the embedding pde eq. 35 is that the pde is homogeneous in the longitudinal coordinate 𝒳{\cal\mathchoice{\scriptstyle X}{\scriptstyle X}{\scriptscriptstyle X}{\scriptscriptstyle X}}. The heterogeneity in eq. 35 appears only in the cross-section coordinate zz. Consequently, theory and techniques developed for the case of systems homogeneous in xx apply to the 𝒳{\cal\mathchoice{\scriptstyle X}{\scriptstyle X}{\scriptscriptstyle X}{\scriptscriptstyle X}}-dependence of the embedding pde eq. 35, and thence to the heterogeneous diffusion eq. 34. This phase-shift embedding also extends to nonlinear systems [[, e.g., §3.3]]Roberts2013a, but here we confine attention to linear homogenisation.

Specifically, theorem 18 indicates that a holistic discretisation constructed via inter-element coupling controlled by edge conditions (6), and constructed to errors o(γp)o\big{(}\gamma^{p}\big{)}, is a spatially discrete scheme with a stencil width of (2p1)(2p-1) that is consistent to the macroscale dynamics of the heterogeneous diffusion eq. 34 to errors o(xp)o\big{(}\partial_{x}^{p}\big{)}. The theorem only “indicates” because in order to apply, the theorem needs to address fields u(t,x)u(t,x) in some Hilbert space of the zz-dependence.

Now consider the specific case of homogenising the specific heterogeneous diffusion κ(x):=1/(1+acoskx)\kappa(x):=1/(1+a\cos kx) . With inter-element edge conditions (6) and tuning θ=0\theta=0 , appendix C lists code that constructs the holistic discretisation, the numerical homogenisation, of the heterogeneous diffusion eq. 34 in this case. The code implicitly assumes dd divides evenly into the element length HH as otherwise various coded means are not correct. For simplicity, we seek the results as a power series in both the coupling γ\gamma and the amplitude aa of the heterogeneity.

In the ensemble of fig. 2, the flux in the 𝒳{\cal\mathchoice{\scriptstyle X}{\scriptstyle X}{\scriptscriptstyle X}{\scriptscriptstyle X}}-direction (as distinct from the flux in the xx-direction) from the ensemble pde eq. 35 is f=2κ𝒰zκ𝒰κ𝒰𝒳f=-2\kappa{\cal\mathchoice{\scriptstyle U}{\scriptstyle U}{\scriptscriptstyle U}{\scriptscriptstyle U}}_{z}-\kappa^{\prime}{\cal\mathchoice{\scriptstyle U}{\scriptstyle U}{\scriptscriptstyle U}{\scriptscriptstyle U}}-\kappa{\cal\mathchoice{\scriptstyle U}{\scriptstyle U}{\scriptscriptstyle U}{\scriptscriptstyle U}}_{{\cal\mathchoice{\scriptstyle X}{\scriptstyle X}{\scriptscriptstyle X}{\scriptscriptstyle X}}} . Since 𝒰{\cal\mathchoice{\scriptstyle U}{\scriptstyle U}{\scriptscriptstyle U}{\scriptscriptstyle U}} satisfies the edge condition eq. 6a, then so does its derivative in the transverse direction 𝒰z{\cal\mathchoice{\scriptstyle U}{\scriptstyle U}{\scriptscriptstyle U}{\scriptscriptstyle U}}_{z}. Hence, the flux edge condition eq. 6b, upon dividing by κ(z)-\kappa(z), is satisfied by the derivative 𝒰𝒳{\cal\mathchoice{\scriptstyle U}{\scriptstyle U}{\scriptscriptstyle U}{\scriptscriptstyle U}}_{\cal\mathchoice{\scriptstyle X}{\scriptstyle X}{\scriptscriptstyle X}{\scriptscriptstyle X}}. This is the second of the two edge conditions coded in appendix C.

Executing the code of appendix C finds that, to low-orders, the subgrid field
𝒰j\displaystyle{\cal\mathchoice{\scriptstyle U}{\scriptstyle U}{\scriptscriptstyle U}{\scriptscriptstyle U}}_{j} =Uj+γ{ξ12+akHsinkz}μjδjUj+γ2{(11212ξ+12ξ2)δj2\displaystyle=U_{j}+\gamma\left\{\xi-\tfrac{1}{2}+\frac{a}{kH}\sin kz\right\}\mu_{j}\delta_{j}U_{j}\quad{}+\gamma^{2}\left\{\vphantom{\frac{1}{2}}(\tfrac{1}{12}-\tfrac{1}{2}\xi+\tfrac{1}{2}\xi^{2})\delta_{j}^{2}\right.
+(1814ξ)μjδj3+(14818ξ+18ξ2)δj4+ak2H2coskz(δj2+14δj4)\displaystyle\quad\left.{}+(\tfrac{1}{8}-\tfrac{1}{4}\xi)\mu_{j}\delta_{j}^{3}+(\tfrac{1}{48}-\tfrac{1}{8}\xi+\tfrac{1}{8}\xi^{2})\delta_{j}^{4}+\frac{a}{k^{2}H^{2}}\cos kz\,(\delta_{j}^{2}+\tfrac{1}{4}\delta_{j}^{4})\right.
akHsinkz[(12ξ)δj2+14μjδj3+(1814ξ)δj4]}Uj+𝒪(γ3,a3)\displaystyle\quad\left.{}-\frac{a}{kH}\sin kz\,\left[(\tfrac{1}{2}-\xi)\delta_{j}^{2}+\tfrac{1}{4}\mu_{j}\delta_{j}^{3}+(\tfrac{1}{8}-\tfrac{1}{4}\xi)\delta_{j}^{4}\right]\right\}U_{j}+\mathcal{O}\mathchoice{\big{(}\gamma^{3},a^{3}\big{)}}{\big{(}\gamma^{3},a^{3}\big{)}}{(\gamma^{3},a^{3})}{(\gamma^{3},a^{3})} (36a)
This shows that the sub-element field has smooth macroscale structures in space through its ξ\xi-dependence, structures that are modified by the heterogeneity via the microscale diffusivity-variations represented by terms in sinkz\sin kz and coskz\cos kz. Since their coefficients involve divisions by wavenumber kk, which are proportional to multiplication by the small microscale periodicity dd, these trigonometric modifications to the field are relatively small. Higher-order terms involve harmonics of these trigonometric functions.

Executing the code of appendix C to higher-order errors we find that the corresponding evolution modifies the homogeneous case eq. 9c to

H2tUj\displaystyle H^{2}\partial_{t}U_{j} =eq. 9c+a22k2H2(γ4γ5δj2)μj4δj4Uj+𝒪(γ6,a7),\displaystyle=\cdots\lx@cref{creftype~refnum}{eqgopdiff}\cdots+\frac{a^{2}}{2k^{2}H^{2}}(\gamma^{4}-\gamma^{5}\delta_{j}^{2})\mu_{j}^{4}\delta_{j}^{4}U_{j}+\mathcal{O}\mathchoice{\big{(}\gamma^{6},a^{7}\big{)}}{\big{(}\gamma^{6},a^{7}\big{)}}{(\gamma^{6},a^{7})}{(\gamma^{6},a^{7})}, (36b)

where the microscale heterogeneity only affects the macroscale evolution through the magnitude aa and the wavenumber kk of the heterogeneity. Alternatively, executing the code to errors 𝒪(γ7,a3)\mathcal{O}\mathchoice{\big{(}\gamma^{7},a^{3}\big{)}}{\big{(}\gamma^{7},a^{3}\big{)}}{(\gamma^{7},a^{3})}{(\gamma^{7},a^{3})}, and evaluated at full coupling γ=1\gamma=1, we compute that this evolution has equivalent pde

Ut\displaystyle\mathchoice{\frac{\partial U}{\partial t}}{{\partial U}/{\partial t}}{{\partial U}/{\partial t}}{{\partial U}/{\partial t}} =2Ux2+a22k24Ux42a2k46Ux6+𝒪(a2H2d4x8U).\displaystyle=\mathchoice{\frac{\partial^{2}U}{\partial x^{2}}}{{\partial^{2}U}/{\partial x^{2}}}{{\partial^{2}U}/{\partial x^{2}}}{{\partial^{2}U}/{\partial x^{2}}}+\frac{a^{2}}{2k^{2}}\mathchoice{\frac{\partial^{4}U}{\partial x^{4}}}{{\partial^{4}U}/{\partial x^{4}}}{{\partial^{4}U}/{\partial x^{4}}}{{\partial^{4}U}/{\partial x^{4}}}-\frac{2a^{2}}{k^{4}}\mathchoice{\frac{\partial^{6}U}{\partial x^{6}}}{{\partial^{6}U}/{\partial x^{6}}}{{\partial^{6}U}/{\partial x^{6}}}{{\partial^{6}U}/{\partial x^{6}}}+\mathcal{O}\mathchoice{\big{(}a^{2}H^{2}d^{4}\partial_{x}^{8}U\big{)}}{\big{(}a^{2}H^{2}d^{4}\partial_{x}^{8}U\big{)}}{(a^{2}H^{2}d^{4}\partial_{x}^{8}U)}{(a^{2}H^{2}d^{4}\partial_{x}^{8}U)}. (36c)

The leading-order homogenisation, the diffusion term 2U/x2\mathchoice{\frac{\partial^{2}U}{\partial x^{2}}}{{\partial^{2}U}/{\partial x^{2}}}{{\partial^{2}U}/{\partial x^{2}}}{{\partial^{2}U}/{\partial x^{2}}}, is exactly the well-known correct harmonic mean of the diffusivity κ(x)\kappa(x). The higher-order terms, 4U/x4\mathchoice{\frac{\partial^{4}U}{\partial x^{4}}}{{\partial^{4}U}/{\partial x^{4}}}{{\partial^{4}U}/{\partial x^{4}}}{{\partial^{4}U}/{\partial x^{4}}}, being divided by powers of k=2π/dk=2\pi/d, vanish in the usual theoretical limit of d0d\to 0 . However, here our analysis is rigorous for finite dd and so these fourth and higher order terms quantify effects due to the physical finite scale separation of the macroscale from a finite sized microscale. These higher-order derivatives depend upon a2a^{2} (recall that aa is the magnitude of the heterogeneity), as appropriate by symmetry in aa.

Consequently, the holistic discretisation (36b) is an accurate, analytically learnt, numerical homogenisation for the heterogeneous diffusion (34).

Numerical homogenisation for waves

Wave propagation (section 2.3) through heterogeneous media can be analysed almost identically to the heterogeneous diffusion of this section. The resultant numerical homogenisation would be (36b) but with t2Uj\partial_{t}^{2}U_{j} on the left-hand side. Its equivalent pde would be (36c) but with 2U/t2\mathchoice{\frac{\partial^{2}U}{\partial t^{2}}}{{\partial^{2}U}/{\partial t^{2}}}{{\partial^{2}U}/{\partial t^{2}}}{{\partial^{2}U}/{\partial t^{2}}} on the left. Consequently, the numerical homogenisation would predict, through the fourth- and sixth-order differences/derivatives in (36), a wave speed dependence upon wavelength (wave dispersion) caused by the microscale heterogeneity at finite scale separation.

Spatial boundaries

The homogenisation (36b) is constructed with periodic diffusivity and is independent of the phase ϕ\phi of the microscale heterogeneity. Macroscale effects of the phase ϕ\phi only arise via correctly determined influences of the boundary conditions on the macroscale domain. The development of homogenisation for general boundary conditions is the subject of ongoing research. For spatial discretisations, such as (36b), one could develop correct discretisations near a boundary by adapting the arguments of [Roberts01b, MacKenzie03].

5 Conclusion

Fine-scale heterogeneity or nonlinearities both complicate the derivation of macroscale discretisation of pdes, with many common methods failing to accurately account for the effects at the macroscale of subgrid physics. Holistic discretisations systematically construct macroscale closures which can accurately account for subgrid structures. In particular, for an accurate homogenisation of a pde, the discretisation must maintain symmetries of pde. Here we developed a new holistic discretisation which is guaranteed to maintain the self-adjointness of a pde through carefully crafted inter-element coupling conditions, thus ensuring that the general spectral structure of the pde  is captured by the discretisation. For both generic 1D waves and diffusion, we show that the homogenisation is consistent with the original pde.

In this article we focus on 1D systems, but simulations of 2D systems indicate that analogous discretisations are possible in 2D. Such 2D systems will be explored and theory developed in future research.

Acknowledgement

This research was funded by the Australian Research Council under grants DP150102385 and DP200103097. We thank Peter Hochs for his comments on earlier versions of this article.

Appendix A High-order consistency for holistic discretisation of advection-diffusion

This is script diffAdvecHolistic.tex— Learns the holistic discretisation of advection-diffusion on elements with self-adjoint preserving coupling. Find on slow manifold both uu and dU/dtdU/dt linear in advection cc, although the code must truncate in cc in order to converge. All code is written in the computer algebra package Reduce.777Reduce [http://reduce-algebra.com/] is a free, fast, general purpose, computer algebra system.

1  2 on div; off allfac; on revpri; 3 factor gamma,hh,c;

Subgrid structures are functions of sub-element variable ξ=(xLj)/H\xi=(x-L_{j})/H

4  5 depend xi,x; let df(xi,x)=>1/hh;

Operator u(1)=u(0)u(1)=u(0) and mean zero.

6  7 operator linv; linear linv; 8 let { linv(xi^~~p,xi)=>(xi^(p+2)-xi+1/2-1/(p+3))/(p+1)/(p+2) 9  , linv(1,xi)=>(xi^2-xi+1/2-1/3)/2 };

Operator to compute mean over an element

10  11 operator mean; linear mean; 12 let { mean(xi^~~p,xi)=>1/(p+1) 13  , mean(1,xi)=>1 };

Parametrise discretisation slow manifold with evolving order parameters

14  15 operator uu; depend uu,t; 16 let df(uu(~k),t)=>sub(j=k,gj);

Initial approximation in jjth element

17  18 uj:=uu(j); gj:=0;

Here specify required orders of errors in the result. Intermediate working needs cc truncated to some order

19  20 let { gamma^3=>0, c^3=>0};

Deep iterative refinement learns emergent slow manifold

21  22 R:= xi=1; L:= xi=0; 23 for iter:=1:99 do begin

Compute residuals for selected one of possible PDEs, the two coupling conditions, and the definition of the order-parameter macroscale variable.

24  25  pde:= -df(uj,t) + (if 1 26  then -c*df(uj,x)+df(uj,x,2) 27  else (sub(xi=xi+d,uj)-2*uj+sub(xi=xi-d,uj))/(d*hh)^2 ); 28  ucc:= -(1-gamma/2)*(sub(R,uj)-sub(L,uj)) 29  +gamma/2*(sub({L,j=j+1},uj)-sub({R,j=j-1},uj)) 30  +gamma*theta/2*(sub(R,uj)+sub(L,uj)) 31  -gamma*theta/2*(sub({L,j=j+1},uj)+sub({R,j=j-1},uj)); 32  ux:=df(uj,x); 33  udc:= -(1-gamma/2)*(sub(R,ux)-sub(L,ux)) 34  +gamma/2*(sub({L,j=j+1},ux)-sub({R,j=j-1},ux)) 35  -gamma*theta/2*(sub(R,ux)+sub(L,ux)) 36  +gamma*theta/2*(sub({L,j=j+1},ux)+sub({R,j=j-1},ux)); 37  amp:=mean(uj,xi)-uu(j);

Trace write lengths of residuals.

38  39  write lengthress:=map(length(~a),{pde,ucc,udc,amp});

Update approximations from the current residuals

40  41  gj:=gj+(gd:=udc/hh-mean(pde,xi)); 42  uj:=uj-hh^2*linv(pde-gd,xi)+(xi-1/2)*ucc;

Exit loop when residuals are zero to specified order of error

43  44  if {pde,ucc,udc,amp}={0,0,0,0} 45  then write "Success: ",iter:=100000+iter; 46 end;%for 47 if {pde,ucc,udc,amp}neq{0,0,0,0} then rederr("iteration fail");

Compute and report equivalent pde of discrete

48  49 in_tex "../convert2EquivalentDE.tex"$

Optionally check some identities, and exit script.

50  51 in "diffTestProof.txt"$ 52 end;

A.1 Convert evolution to equivalent PDE

All algorithms invoke this conversion script

53  54 write "Convert evolution dUjdt=gj to equivalent PDE for 55 U(x,t) via operator form. AJR, from a long time ago.";

Convert to central difference operator form

56  57 rules:={ mu^2=>1+delta^2/4, uu(j)=>1 58  , uu(j+~p)=>(1+sign(p)*mu*delta+delta^2/2)^abs(p)}$ 59 gop:=(gj where rules); 60 uop:=(uj where rules)$

Convert to equivalent pde using Taylor expansion

61  62 remfac gamma; factor df; 63 let hh^10=>0; 64 depend uu,x; 65 rules:={uu(j)=>uu, uu(j+~p)=>uu+(for n:=1:10 sum 66  df(uu,x,n)*(hh*p)^n/factorial(n)) }$ 67 duujdt:=(gj where rules); 68 duujdt1:=sub(gamma=1,duujdt);
69  70 end;

Appendix B High-order consistency for holistic discretisation of simple wave PDE

This is script Holistic discretisation of modified uni-directional wave PDE, with speed c, on elements with ‘self-adjoint’ coupling. The sub-element field is independent of speed c. For error 𝒪(γp)\mathcal{O}\mathchoice{\big{(}\gamma^{p}\big{)}}{\big{(}\gamma^{p}\big{)}}{(\gamma^{p})}{(\gamma^{p})} gives consistency 𝒪(Hp1)\mathcal{O}\mathchoice{\big{(}H^{p-1}\big{)}}{\big{(}H^{p-1}\big{)}}{(H^{p-1})}{(H^{p-1})}. For linear modifications measured by alpha, the slow manifold is linear in alpha, but must truncate in alpha for iteration to terminate!

71  72 on div; off allfac; on revpri; 73 factor gamma,hh,c,alpha,c0,c2,c3,c4;

Subgrid structures are functions of sub-element variable ξ=(xLj)/H\xi=(x-L_{j})/H

74  75 depend xi,x; let df(xi,x)=>1/hh;

Operator

76  77 operator linv; linear linv; 78 let { linv(xi^~~p,xi)=>(xi^(p+1)-1/(p+2))/(p+1) 79  , linv(1,xi)=>(xi-1/2) };

Operator to compute mean over an element

80  81 operator mean; linear mean; 82 let { mean(xi^~~p,xi)=>1/(p+1) 83  , mean(1,xi)=>1 };

Parametrise discretisation slow manifold with evolving order parameters

84  85 operator uu; depend uu,t; 86 let df(uu(~k),t)=>sub(j=k,gj);

Initial approximation in jjth element

87  88 uj:=uu(j); gj:=0;

Here specify required orders of errors in the result.

89  90 let { gamma^6=>0, alpha=>0 };

Deep iterative refinement learns emergent slow manifold

91  92 R:= xi=1; L:= xi=0; 93 for iter:=1:99 do begin

Compute residuals for selected one of possible PDEs, the coupling condition, and the definition of the order-parameter macroscale variable.

94  95  pde:= -df(uj,t) + (if 1 96  then -c*df(uj,x) 97  +alpha*(c0*uj+c2*df(uj,x,2)+c3*df(uj,x,3)+c4*df(uj,x,4)) 98  else -c*(sub(xi=xi+d,uj)-sub(xi=xi-d,uj))/(2*d*hh) ); 99  fx:=c*uj; the ’flux’ 100  ucc:=(1+theta)/2*( -sub(L,fx) 101  +(1-gamma)*sub(R,fx) +gamma*sub({R,j=j-1},fx) ) 102  -(1-theta)/2*(-sub(R,fx) 103  +(1-gamma)*sub(L,fx) +gamma*sub({L,j=j+1},fx) ); 104  amp:=mean(uj,xi)-uu(j);

Trace write lengths of residuals.

105  106  write lengthress:=map(length(~a),{pde,ucc,amp});

Update approximations from the current residuals

107  108  gj:=gj+(gd:=ucc/hh+0*mean(pde,xi)); 109  uj:=uj+hh/c*linv(pde-gd,xi);

Exit loop when residuals are zero to specified order of error

110  111  if {pde,ucc,amp}={0,0,0} 112  then write "Success: ",iter:=100000+iter; 113 end;%for 114 if {pde,ucc,amp}neq{0,0,0} then rederr("iteration fail");

Compute and report equivalent pde, then exit script.

115  116 in_tex "../convert2EquivalentDE.tex"$ 117 end;

Appendix C Holistic discretisation for heterogeneous diffusion and its consistency

This is script Holistic discretisation of heterogeneous diffusion on elements with self-adjoint preserving coupling. Here seek discretisation as series in aa, the amplitude of the heterogeneity.

118  119 on div; off allfac; on revpri; 120 factor gamma,hh,a,k;

Subgrid structures are functions of sub-element variable ξ=(xLj)/H\xi=(x-L_{j})/H

121  122 depend xi,x; let df(xi,x)=>1/hh; 123 depend xi,xz; depend z,xz;

Operator u(1)=u(0)u(1)=u(0), periodic in zz, and mean zero.

124  125 operator linv; linear linv; 126 let { linv(xi^~~p,xz)=>hh^2*(xi^(p+2)-xi+1/2-1/(p+3))/(p+1)/(p+2) 127  , linv(1,xz)=>hh^2*(xi^2-xi+1/2-1/3)/2 128  , linv(sin(~~q*z),xz)=>-1/(q)^2*sin(q*z) 129  , linv(cos(~~q*z),xz)=>-1/(q)^2*cos(q*z) 130  , linv(sin(~~q*z)*xi^~~p,xz)=>-(xi^p-xi)/(q)^2*sin(q*z) 131  , linv(cos(~~q*z)*xi^~~p,xz)=>-(xi^p-xi)/(q)^2*cos(q*z) 132  };

Operator to compute mean over an element, these assume trig functions fit in period

133  134 operator mean; linear mean; 135 let { mean(1,xz)=>1 , mean(xi^~~p,xz)=>1/(p+1) 136  , mean(cos(~~q*z),xz)=>0 , mean(xi^~~p*cos(~~q*z),xz)=>0 137  , mean(sin(~~q*z),xz)=>0 , mean(xi^~~p*sin(~~q*z),xz)=>0 138  };

Parametrise discretisation slow manifold with evolving order parameters

139  140 operator uu; depend uu,t; 141 let df(uu(~k),t)=>sub(j=k,gj);

Initial approximation in jth element

142  143 uj:=uu(j); gj:=0;

Iterative refinement to specified order of error, and using Taylor series of κ(x)\kappa(x) in coefficient aa

144  145 let { gamma^7=>0, a^3=>0 }; 146 kappa:=for n:=0:deg((1+a)^9,a) sum (-a*cos(k*z))^n; 147 for iter:=1:99 do begin

Compute residuals for the PDE, the two coupling conditions, and the definition of the order-parameter macroscale variable.

148  149  flux:=kappa*(df(uj,x)+df(uj,z)); 150  pde:=trigsimp( -df(uj,t)+df(flux,x)+df(flux,z) 151  ,combine); 152  ucc:=(1-gamma/2)*(-sub(xi=+1,uj)+sub(xi=0,uj)) 153  +gamma/2*(sub({xi=0,j=j+1},uj)-sub({xi=1,j=j-1},uj)); 154  ux:=df(uj,x); 155  udc:=(1-gamma/2)*(-sub(xi=+1,ux)+sub(xi=0,ux)) 156  +gamma/2*(sub({xi=0,j=j+1},ux)-sub({xi=1,j=j-1},ux)); 157  amp:=mean(uj,xz)-uu(j);

Trace write lengths of residuals.

158  159  write lengthress:=map(length(~a),{pde,ucc,udc,amp});

Update approximations from the current residuals

160  161  gj:=gj+(gd:=mean(udc,xz)/hh+mean(pde,xz)); 162  uj:=uj-linv(pde-gd,xz)+(xi-1/2)*ucc;

Exit loop when residuals are zero to specified order of error

163  164  if {pde,ucc,udc,amp}={0,0,0,0} 165  then write "Success: ",iter:=100000+iter; 166 end; 167 if {pde,ucc,udc,amp}neq{0,0,0,0} then rederr("iteration fail");

Compute and report equivalent pde, then exit script.

168  169 in_tex "../convert2EquivalentDE.tex"$ 170 end;