This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Least-Squares versus Partial Least-Squares Finite Element Methods: Robust A Priori and A Posteriori Error Estimates of Augmented Mixed Finite Element Methods

Yuxiang Liang and Shun Zhang Department of Mathematics, City University of Hong Kong, Kowloon Tong, Hong Kong, China yuxiliang7-c@my.cityu.edu.hk, shun.zhang@cityu.edu.hk
(Date: March 16, 2025)
Abstract.

In this paper, for the generalized Darcy problem (an elliptic equation with discontinuous coefficients), we study a special partial Least-Squares (Galerkin-least-squares) method, known as the augmented mixed finite element method, and its relationship to the standard least-squares finite element method (LSFEM). Two versions of augmented mixed finite element methods are proposed in the paper with robust a priori and a posteriori error estimates. Augmented mixed finite element methods and the standard LSFEM uses the same a posteriori error estimator: the evaluations of numerical solutions at the corresponding least-squares functionals. As partial least-squares methods, the augmented mixed finite element methods are more flexible than the original LSFEMs. As comparisons, we discuss the mild non-robustness of a priori and a posteriori error estimates of the original LSFEMs. A special case that the L2L^{2}-based LSFEM is robust is also presented for the first time. Extensive numerical experiments are presented to verify our findings.

Key words and phrases:
augmented mixed finite element method; least-squares finite element method; Galerkin-Least-Squares method; robust a priori and a posteriori analysis
This work was supported in part by Research Grants Council of the Hong Kong SAR, China, under the GRF Grant Project No. CityU 11316222

1. Introduction

We consider the following elliptic equation with possible discontinuous coefficients (a generalized Darcy’s problem):

(1.1) {𝝈=g,in Ωthe constitutive equation,Au+𝝈=A𝐟,in Ωthe equilibrium equation,u=0on ΓD𝝈𝐧=0on ΓN,\left\{\begin{array}[]{lllll}\nabla\cdot\mbox{\boldmath$\sigma$}&=&g,&\mbox{in }\Omega\leavevmode\nobreak\ \leavevmode\nobreak\ \mbox{the constitutive equation},\\[2.84526pt] A\nabla u+\mbox{\boldmath$\sigma$}&=&A{\bf f},&\mbox{in }\Omega\leavevmode\nobreak\ \leavevmode\nobreak\ \mbox{the equilibrium equation},\\[2.84526pt] u&=&0&\mbox{on }\Gamma_{D}\\ \mbox{\boldmath$\sigma$}\cdot{\bf n}&=&0&\mbox{on }\Gamma_{N},\end{array}\right.

The domain Ω\Omega is a bounded, open, connected subset of d(d=2 or 3)\mathbb{R}^{d}(d=2\mbox{ or }3) with a Lipschitz continuous boundary Ω\partial\Omega. We partition Ω\partial\Omega into two open subsets ΓD\Gamma_{D} and ΓN\Gamma_{N}, such that Ω=ΓD¯ΓN¯\partial\Omega=\overline{\Gamma_{D}}\cup\overline{\Gamma_{N}} and ΓDΓN=\Gamma_{D}\cap\Gamma_{N}=\emptyset. For simplicity, we assume that ΓD\Gamma_{D} is not empty (i.e., meas(ΓD)0\mbox{meas}(\Gamma_{D})\neq 0 ) and is connected. We assume that the diffusion coefficient matrix AL(Ω)d×dA\in L^{\infty}(\Omega)^{d\times d} is a given d×dd\times d tensor-valued function; the matrix AA is uniformly symmetric positive definite: there exist positive constants 0<Λ0Λ10<\Lambda_{0}\leq\Lambda_{1} such that

(1.2) Λ0𝐲T𝐲𝐲TA𝐲Λ1𝐲T𝐲\Lambda_{0}{\bf y}^{T}{\bf y}\leq{\bf y}^{T}A{\bf y}\leq\Lambda_{1}{\bf y}^{T}{\bf y}

for all 𝐲d{\bf y}\in\mathbb{R}^{d} and almost all xΩx\in\Omega. The righthand sides gL2(Ω)g\in L^{2}(\Omega) and 𝐟L2(Ω)d{\bf f}\in L^{2}(\Omega)^{d}.

There are several variational formulations for (1.1). The standard conforming finite element method tries to approximate uu in the finite element subspace of its natural space H1(Ω)H^{1}(\Omega), see [27, 7, 9]. If a good approximation of 𝝈\sigma in its natural space H(div)H({\rm div}) is sought, then one can use the mixed finite element approximation based on a dual mixed formulation, see for example, [6]. In order to approximate both uu and 𝝈\sigma in their intrinsic spaces H1(Ω)H^{1}(\Omega) and H(div)H({\rm div}), respectively, one natural choice is the least-squares finite element method (LSFEM).

The least-squares variational principle and the corresponding LSFEM based on a first-order system reformulation have been widely used in numerical solutions of partial differential equations; see, for example [17, 19, 36, 5, 20, 18, 13, 39, 38, 42]. Compared to the standard variational formulation and the related finite element methods, the first-order system LSFEMs have several known advantages, such as the discrete problem is stable without the inf-sup condition of the discrete spaces and mesh size restriction; the first-order system is physically meaningful, thus important physical qualities such as displacement, flux, and stress can be approximated in their intrinsic spaces; and the least-squares functional itself is a good built-in a posteriori error estimator. In Section 4 of [46], as an example of an elliptic equation with an H1H^{-1}-righthand side, the first-order system LSFEM is studied for (1.1).

On the other hand, when applying LSFEMs to (1.1), we also face an important issue: robustness. For a coefficient-dependent problem (AA for (1.1)), the robustness of both the a priori and a posteriori estimates, i.e., genetic constants that appeared in the estimates are independent of the coefficients, is of crucial importance. For the a priori error estimate, it is well known that the model problem (1.1) may only have H1+sH^{1+s} regularity, with possibly very small s>0s>0, see for example, Kellogg [37]. In [14], it is noted that the a priori analysis using the global regularity constant ss is not satisfactory since most of the time, the solution only has a low regularity at the elements attached to the singularity but can be very smooth away from the singularity. Thus, we should study the a priori analysis under the local regularity assumption. The a priori error estimate using local regularity is also the base for adaptive finite element methods to achieve an equal-discretization error distribution. For the a posteriori error estimate, we want the a posteriori error estimator with the efficiency constant and the reliability constant to be independent of the parameter of the problem. Unfortunately, both a priori and a posteriori error estimates of the LSFEM applying to (1.1) with discontinuous coefficients are not robust; see our discussion in Sections 5.2 and 6.3. Beside the above mentioned robustness issue, we often need extra regularity for the right-hand side gg in the standard L2L^{2}-based LSFEM since all the errors of the LSFEM are measured in a combined norm. On the other hand, the standard mixed finite element method for (1.1) does not require this, see discussions in [45].

Besides the full bonafide LSFEM, another idea to apply the least-squares philosophy is the so-called Galerkin-Least-Squares (GaLS) method. The GaLS method is a method combining the least-squares and Galerkin methods. Some least-squares terms are added to the original variational formulation to enhance the stability in GaLS methods. We consider a special GaLS method, the augmented mixed finite element method, in this paper. The central idea of the augmented mixed method is adding consistent least-squares terms to the original mixed formulation to guarantee coercivity or stability. The first augmented mixed finite element method is introduced in [40]. Earlier contributions of GaLS methods can be found in [33, 34]. The group of Gatica made many important and seminal contributions on developing the augmented mixed finite element method to many problems, see for example [35, 3, 32, 25, 28, 1].

As a partial least-squares method, the augmented mixed finite element method shares many properties with the classic LSFEM. It is also stable and approximates the physical quantities in their native spaces. Moreover, as we will see later in the paper, the a posteriori error estimator of the augmented mixed finite element method is a least-squares error estimator. Furthermore, since we only partially use the least-squares principle, the system is more flexible and we can show the robustness of both a priori and a posteriori error estimates.

This paper proposes two versions of robust augmented mixed finite element methods with two choices of least-squares terms based on the constitutive equation. The first is a simple L2L^{2} least-squares term and the second is a mesh-weighted least-squares term. We show the robust and local optimal a priori error estimates for both methods. For the mesh-weighted augmented mixed finite element method, we also show that optimal error can be achieved without requiring high regularity of the righthand side. For both methods, we derive robust a posteriori error estimates. In fact, the error estimators of both versions of augmented mixed finite element methods are least-squares error estimators with corresponding least-squares functionals. As comparisons, we discuss the robustness of two corresponding LSFEMs. For the L2L^{2}-based LSFEM, we show that the a priori and a posteriori error estimates are robust only under a very special condition. In general, they are not robust. For the mesh-weighted LSFEM, the results are much worse than those of augmented mixed finite element methods since its coercivity constant depends on the mesh size.

The robust (but not local optimal) a priori and robust residual type a posteriori error estimate for the energy norm was obtained for the conforming FEM [4]. Robust and local optimal a priori error estimates have also been derived for mixed FEM in [45] and nonconforming FEM and discontinuous Galerkin FEM in [14] without a restrictive assumption on the distribution of the coefficients. We also present a detailed discussion of the robust and local optimal a priori error estimate for the conforming FEM in [14]. For recovery-based error estimators, robust a posteriori error estimates are obtained by us in [22, 23, 21]. Robust equilibrated error estimators were developed by us in [24, 11, 12]. Robust residual-type of error estimates without a restrictive assumption on the distribution of the coefficients is developed for nonconforming and DG approximations in [14].

In the original paper [40], both uu and 𝝈\sigma are approximated by continuous finite elements. As mentioned in [22, 14], the flux 𝝈\sigma is not continuous for discontinuous coefficients. Thus the continuous finite element is not a good candidate for the approximation. In [10], a mixed discontinuous Galerkin method is developed using the stabilization in [40]. In [29], several different stabilization formulations are proposed, with one formulation being our first augmented mixed method, although the authors still emphasized using standard conforming finite elements. In [2], H(div)H({\rm div}) and H1H^{1}-conforming finite elements are used. In [2], an a posteriori error estimator is proposed for the first augmented mixed formulation. The error estimator in [2] is actually a least-squares error estimator. The robustness of a priori and a posteriori error estimates are not discussed in all previous papers.

The paper is organized as follows. Section 2 describes notations, the function spaces, and local interpolation results. The generalized Darcy problem and the augmented formulations are presented in Section 3, including the robust Cea’s lemma. In Section 4, we discuss simplified assumptions on the coefficient AA and the quasi-monotonicity assumption and robust quasi-interpolation based on this assumption. In Sections 5 and 6, we present robust a priori and a posteriori error analyses for the first and second augmented mixed formulations, respectively. Connections and comparisons with the corresponding LSFEMs are also discussed in Sections 5 and 6. Numerical experiments are presented in Section 7 to verify the findings in the paper. We make some concluding remarks in Section 8.

2. Preliminaries

We use the standard notations and definitions for the Sobolev spaces Hs(Ω)H^{s}(\Omega) for s0s\geq 0. The standard associated inner product is denoted by (,)s,Ω(\cdot,\,\cdot)_{s,\Omega}, and its norm is denoted by s,Ω\|\cdot\|_{s,\Omega}. The notation ||s,Ω|\cdot|_{s,\Omega} is used for the semi-norm. (We suppress the superscript dd because the dependence on dimension will be clear by context. We also omit the subscript Ω\Omega from the inner product and norm designation when there is no risk of confusion.) For s=0s=0, Hs(Ω)H^{s}(\Omega) coincides with L2(Ω)L^{2}(\Omega). The symbols \nabla\cdot and \nabla stand for the divergence and gradient operators, respectively. Set HD1(Ω):={vH1(Ω):v=0on ΓD}H^{1}_{D}(\Omega):=\{v\in H^{1}(\Omega)\,:\,v=0\,\,\mbox{on }\Gamma_{D}\}. We use the standard H(div;Ω)H({\rm div};\Omega) space equipped with the norm 𝝉H(div;Ω)=(𝝉0,Ω2+𝝉0,Ω2)12.\|\mbox{\boldmath$\tau$}\|_{H({\rm div};\,\Omega)}=\left(\|\mbox{\boldmath$\tau$}\|^{2}_{0,\Omega}+\|\nabla\cdot\mbox{\boldmath$\tau$}\|^{2}_{0,\Omega}\right)^{\frac{1}{2}}. Denote its subspace by HN(div;Ω)={𝝉H(div;Ω):𝝉𝐧|ΓN=0},H_{N}({\rm div};\Omega)=\{\mbox{\boldmath$\tau$}\in H({\rm div};\Omega)\,:\,\mbox{\boldmath$\tau$}\cdot{\bf n}|_{\Gamma_{N}}=0\}, where 𝐧{\bf n} is the unit vectors outward normal to the boundary Ω\partial\Omega. For simplicity, we use the following notation:

(2.1) 𝐗:=HN(div;Ω)×HD1(Ω).{\bf X}:=H_{N}({\rm div};\,\Omega)\times H^{1}_{D}(\Omega).

Let 𝒯={K}{\mathcal{T}}=\{K\} be a triangulation of Ω\Omega using simplicial elements. The mesh 𝒯{\mathcal{T}} is assumed to be regular. Let Pk(K)P_{k}(K) for K𝒯K\in{\mathcal{T}} be the space of polynomials of degree kk on an element KK. Denote the standard linear and quadratic conforming finite element spaces by

S1,D={vHD1(Ω):v|KP1(K),K𝒯}andS2,D={vHD1(Ω):v|TP2(K),K𝒯},S_{1,D}=\{v\in H_{D}^{1}(\Omega):v|_{K}\in P_{1}(K),\leavevmode\nobreak\ \forall\leavevmode\nobreak\ K\in{\mathcal{T}}\}\quad\mbox{and}\quad S_{2,D}=\{v\in H_{D}^{1}(\Omega):v|_{T}\in P_{2}(K),\leavevmode\nobreak\ \forall\leavevmode\nobreak\ K\in{\mathcal{T}}\},

respectively.

Denote the local lowest-order Raviart-Thomas (RT) [43] on element K𝒯K\in{\mathcal{T}} by RT0(K)=P0(K)d+𝐱P0(K)RT_{0}(K)=P_{0}(K)^{d}+{\bf x}\,P_{0}(K). Then the lowest-order H(div;Ω)H({\rm div};\,\Omega) conforming RT space with zero trace on ΓN\Gamma_{N} is defined by

RT0,N={𝝉HN(div;Ω):𝝉|KRT0(K)K𝒯}.RT_{0,N}=\{\mbox{\boldmath$\tau$}\in H_{N}({\rm div};\Omega):\mbox{\boldmath$\tau$}|_{K}\in RT_{0}(K)\,\,\,\,\forall\,\,K\in{\mathcal{T}}\}.

Similarly, the lowest-order H(div;Ω)H({\rm div};\,\Omega)-conforming Brezzi-Douglas-Marini (BDM) space with zero trace on ΓN\Gamma_{N} is defined by

BDM1,N={𝝉HN(div;Ω):𝝉|KP1(K)d,K𝒯}.BDM_{1,N}=\{\mbox{\boldmath$\tau$}\in H_{N}({\rm div};\Omega):\mbox{\boldmath$\tau$}|_{K}\in P_{1}(K)^{d},\leavevmode\nobreak\ \forall\leavevmode\nobreak\ K\in{\mathcal{T}}\}.

We discuss some local approximation results of the standard S1,DS_{1,D} and RT0,NRT_{0,N} spaces. By Sobolev’s embedding theorem, H1+s(Ω)H^{1+s}(\Omega), with s>0s>0 for two dimensions and s>1/2s>1/2 for three dimensions, is embedded in C0(Ω)C^{0}(\Omega). Thus, we can define the nodal interpolation IhnodalI^{nodal}_{h} of a function vH1+s(Ω)v\in H^{1+s}(\Omega) with IhnodalvS1,DI^{nodal}_{h}v\in S_{1,D} and Ihnodalv(z)=v(z)I^{nodal}_{h}v(z)=v(z) for a vertex z𝒩z\in{\mathcal{N}}. It is important to notice that the nodal interpolation is completely element-wisely defined. We have the following local interpolation estimate for the linear nodal interpolation IhnodalI^{nodal}_{h} with local regularity 0<sK10<s_{K}\leq 1 in two dimensions and 1/2<sK11/2<s_{K}\leq 1 in there dimensions [30, 14]:

(2.2) (vIhnodalv)0,KChKsK|v|sK,K.\|\nabla(v-I^{nodal}_{h}v)\|_{0,K}\leq Ch_{K}^{s_{K}}|\nabla v|_{s_{K},K}.

Assume that 𝝉Lr(Ω)dH(div;Ω)\mbox{\boldmath$\tau$}\in L^{r}(\Omega)^{d}\cap H({\rm div};\Omega), and locally 𝝉HsK(K)\mbox{\boldmath$\tau$}\in H^{s_{K}}(K) with the local regularity 1/2<sK11/2<s_{K}\leq 1. Let IhrtI^{rt}_{h} be the canonical RT interpolation from Lr(Ω)dHN(div;Ω)L^{r}(\Omega)^{d}\cap H_{N}({\rm div};\Omega) to RT0,NRT_{0,N}. Then the following local interpolation estimates hold for local regularity 1/2<sK11/2<s_{K}\leq 1 with the constant CrtC_{rt} being unbounded as sK1/2s_{K}\downarrow 1/2 (see Chapter 16 of [31]):

(2.3) 𝝉Ihrt𝝉0,KCrthKsK|𝝉|sK,KK𝒯.\|\mbox{\boldmath$\tau$}-I^{rt}_{h}\mbox{\boldmath$\tau$}\|_{0,K}\leq C_{rt}h_{K}^{s_{K}}|\mbox{\boldmath$\tau$}|_{s_{K},K}\quad\forall K\in{\mathcal{T}}.

Due to the commutative property of the standard RT interpolation, if we further assuming that 𝝉|KHtK(K)\nabla\cdot\mbox{\boldmath$\tau$}|_{K}\in H^{t_{K}}(K), 0<tK10<t_{K}\leq 1, then

(2.4) (𝝉Ihrt𝝉)0,KChKtK|𝝉|tK,KK𝒯.\|\nabla\cdot(\mbox{\boldmath$\tau$}-I^{rt}_{h}\mbox{\boldmath$\tau$})\|_{0,K}\leq Ch_{K}^{t_{K}}|\nabla\cdot\mbox{\boldmath$\tau$}|_{t_{K},K}\quad\forall K\in{\mathcal{T}}.

For vH3(Ω)v\in H^{3}(\Omega), the following local interpolation result in standard for nodal interpolation IhI_{h} in S2,DS_{2,D},

(2.5) (vIhv)0,KChK2|v|3,K.\|\nabla(v-I_{h}v)\|_{0,K}\leq Ch_{K}^{2}|v|_{3,K}.

Also, we have the following standard interpolation result for the BDM1,NBDM_{1,N}, assuming that IhbdmI^{bdm}_{h} is the standard BDM1BDM_{1} interpolation,

(2.6) 𝝉Ihbdm𝝉0,KCbdmhK2|𝝉|2,KK𝒯.\|\mbox{\boldmath$\tau$}-I^{bdm}_{h}\mbox{\boldmath$\tau$}\|_{0,K}\leq C_{bdm}h_{K}^{2}|\mbox{\boldmath$\tau$}|_{2,K}\quad\forall K\in{\mathcal{T}}.

If we further assuming that 𝝉|KHtK(K)\nabla\cdot\mbox{\boldmath$\tau$}|_{K}\in H^{t_{K}}(K), 0<tK10<t_{K}\leq 1, then

(2.7) (𝝉Ihbdm𝝉)0,KChKtK|𝝉|tK,KK𝒯.\|\nabla\cdot(\mbox{\boldmath$\tau$}-I^{bdm}_{h}\mbox{\boldmath$\tau$})\|_{0,K}\leq Ch_{K}^{t_{K}}|\nabla\cdot\mbox{\boldmath$\tau$}|_{t_{K},K}\quad\forall K\in{\mathcal{T}}.

The following mesh-dependent notation is used in the paper: for r0r\geq 0,

(2.8) hrv0=(K𝒯hK2rv0,K2)1/2and(hrv,w)=K𝒯hKr(v,w)K,v,wL2(Ω).\|h^{r}v\|_{0}=\left(\sum_{K\in{\mathcal{T}}}h_{K}^{2r}\|v\|_{0,K}^{2}\right)^{1/2}\quad\mbox{and}\quad(h^{r}v,w)=\sum_{K\in{\mathcal{T}}}h_{K}^{r}(v,w)_{K},\quad\forall v,w\in L^{2}(\Omega).

3. The generalized Darcy problem and the augmented mixed formulations

For the solution uHD1(Ω)u\in H_{D}^{1}(\Omega), the flux 𝝈=A𝐟Au\mbox{\boldmath$\sigma$}=A{\bf f}-A\nabla u is in L2(Ω)dL^{2}(\Omega)^{d}, and 𝝈=g\nabla\cdot\mbox{\boldmath$\sigma$}=g is in L2(Ω)L^{2}(\Omega). Thus, 𝝈HN(divΩ)\mbox{\boldmath$\sigma$}\in H_{N}({\rm div}\;\Omega). Multiplying an arbitrary vHD1(Ω)v\in H_{D}^{1}(\Omega) on both sides of the first equation of (1.1), taking integration by parts, and replacing 𝝈\sigma by A𝐟AuA{\bf f}-A\nabla u, we have the standard variational problem of (1.1): find uHD1(Ω)u\in H^{1}_{D}(\Omega), such that

(3.1) (Au,v)=(g,v)+(A𝐟,v)vHD1(Ω).(A\nabla u,\nabla v)=(g,v)+(A{\bf f},\nabla v)\quad\forall v\in H_{D}^{1}(\Omega).

We have two mixed formulations.

Dual mixed method: Find (𝝈,u)HN(div,Ω)×L2(Ω)(\mbox{\boldmath$\sigma$},u)\in H_{N}({\rm div},\Omega)\times L^{2}(\Omega) such that

(3.2) (A1𝝈,𝝉)(u,𝝉)=(𝐟,τ),𝝉HN(div;Ω),(𝝈,v)=(g,v),vL2(Ω).\begin{split}(A^{-1}\mbox{\boldmath$\sigma$},\mbox{\boldmath$\tau$})-(u,\nabla\cdot\mbox{\boldmath$\tau$})&=({\bf f},\tau),\quad\forall\mbox{\boldmath$\tau$}\in H_{N}({\rm div};\Omega),\\ (\nabla\cdot\mbox{\boldmath$\sigma$},v)&=(g,v),\quad\forall v\in L^{2}(\Omega).\end{split}

Primal mixed method: Find (𝝈,u)L2(Ω)d×HD1(Ω)(\mbox{\boldmath$\sigma$},u)\in L^{2}(\Omega)^{d}\times H_{D}^{1}(\Omega) such that

(3.3) (A1𝝈,𝝉)+(u,𝝉)=(𝐟,𝝉),𝝉L2(Ω)d(𝝈,v)=(g,v),vHD1(Ω).\begin{split}(A^{-1}\mbox{\boldmath$\sigma$},\mbox{\boldmath$\tau$})+(\nabla u,\mbox{\boldmath$\tau$})&=({\bf f},\mbox{\boldmath$\tau$}),\quad\forall\mbox{\boldmath$\tau$}\in L^{2}(\Omega)^{d}\\ -(\mbox{\boldmath$\sigma$},\nabla v)&=(g,v),\quad\forall v\in H_{D}^{1}(\Omega).\end{split}

The finite element approximations of the mixed methods require inf-sup stable finite element pairs.

In the augmented mixed method, we want to approximate uu in its natural space HD1(Ω)H_{D}^{1}(\Omega) and keep the method stable without restricting the choice of finite element subspaces. Testing 𝝉HN(div;Ω)\mbox{\boldmath$\tau$}\in H_{N}({\rm div};\Omega) for the first equation of (1.1) and vHD1(Ω)v\in H_{D}^{1}(\Omega) for the second equation of (1.1), we have

(3.4) (A1𝝈,𝝉)+(u,𝝉)+(𝝈,v)=(𝐟,𝝉)+(g,v),(𝝉,v)𝐗.(A^{-1}\mbox{\boldmath$\sigma$},\mbox{\boldmath$\tau$})+(\nabla u,\mbox{\boldmath$\tau$})+(\nabla\cdot\mbox{\boldmath$\sigma$},v)=({\bf f},\mbox{\boldmath$\tau$})+(g,v),\leavevmode\nobreak\ \forall(\mbox{\boldmath$\tau$},v)\in{\bf X}.

We add two consistent least-squares terms to (3.4):

(3.5) κ(A1𝝈+u,𝝉Av)=κ(𝐟,𝝉Av) from the constitutive equation,-\kappa(A^{-1}\mbox{\boldmath$\sigma$}+\nabla u,\mbox{\boldmath$\tau$}-A\nabla v)=-\kappa({\bf f},\mbox{\boldmath$\tau$}-A\nabla v)\leavevmode\nobreak\ \mbox{ from the constitutive equation},

and

(3.6) μ(α1𝝈,𝝉)=μ(α1g,𝝉) from the equilibrium equation,\mu(\alpha^{-1}\nabla\cdot\mbox{\boldmath$\sigma$},\nabla\cdot\mbox{\boldmath$\tau$})=\mu(\alpha^{-1}g,\nabla\cdot\mbox{\boldmath$\tau$})\leavevmode\nobreak\ \mbox{ from the equilibrium equation},

where

(3.7) α(x)=trace(A(x))/d.\alpha(x)={\rm trace}(A(x))/d.

Note that trace(A){\rm trace}(A) equals to the sum of its eigenvalues. Since it is assumed that AA is symmetric and positive definite, the scalar function α(x)\alpha(x) is between the minimum and maximum of eigenvalues of A(x)A(x) for all xΩx\in\Omega.

Then we obtain the following problem: find (𝝈,u)𝐗(\mbox{\boldmath$\sigma$},u)\in{\bf X}, such that

(3.8) B((𝝈,u),(𝝉,v))=(𝐟,𝝉)+(g,v)κ(𝐟,𝝉Av)+μ(α1g,𝝉)(𝝉,v)𝐗B((\mbox{\boldmath$\sigma$},u),(\mbox{\boldmath$\tau$},v))=({\bf f},\mbox{\boldmath$\tau$})+(g,v)-\kappa({\bf f},\mbox{\boldmath$\tau$}-A\nabla v)+\mu(\alpha^{-1}g,\nabla\cdot\mbox{\boldmath$\tau$})\quad\forall(\mbox{\boldmath$\tau$},v)\in{\bf X}

with the bilinear form BB defined as follows, for (𝝌,w)𝐗(\mbox{\boldmath$\chi$},w)\in{\bf X} and (𝝉,v)𝐗(\mbox{\boldmath$\tau$},v)\in{\bf X},

B((𝝌,w),(𝝉,v)):=(A1𝝌,𝝉)+(w,𝝉)+(𝝌,v)κ(A1𝝌+w,𝝉Av)+μ(α1𝝌,𝝉).B((\mbox{\boldmath$\chi$},w),(\mbox{\boldmath$\tau$},v)):=(A^{-1}\mbox{\boldmath$\chi$},\mbox{\boldmath$\tau$})+(\nabla w,\mbox{\boldmath$\tau$})+(\nabla\cdot\mbox{\boldmath$\chi$},v)-\kappa(A^{-1}\mbox{\boldmath$\chi$}+\nabla w,\mbox{\boldmath$\tau$}-A\nabla v)+\mu(\alpha^{-1}\nabla\cdot\mbox{\boldmath$\chi$},\nabla\cdot\mbox{\boldmath$\tau$}).

Let (𝝈,u)=(𝝉,v)(\mbox{\boldmath$\sigma$},u)=(\mbox{\boldmath$\tau$},v) in B((𝝈,u),(𝝉,v))B((\mbox{\boldmath$\sigma$},u),(\mbox{\boldmath$\tau$},v)), and use the fact that

(3.9) (v,𝝉)+(𝝉,v)=0(𝝉,v)𝐗,(\nabla v,\mbox{\boldmath$\tau$})+(\nabla\cdot\mbox{\boldmath$\tau$},v)=0\quad\forall(\mbox{\boldmath$\tau$},v)\in{\bf X},

We get

B((𝝉,v),(𝝉,v))=(1κ)A1/2𝝉02+μα1/2𝝉02+κA1/2u02.B((\mbox{\boldmath$\tau$},v),(\mbox{\boldmath$\tau$},v))=(1-\kappa)\|A^{-1/2}\mbox{\boldmath$\tau$}\|^{2}_{0}+\mu\|\alpha^{-1/2}\nabla\cdot\mbox{\boldmath$\tau$}\|^{2}_{0}+\kappa\|A^{1/2}\nabla u\|_{0}^{2}.

To have the coercivity, 1κ1-\kappa should be positive. For convenience, we let κ=1/2\kappa=1/2. Then by (3.9), (3.8) can be written as: find (𝝈,u)𝐗(\mbox{\boldmath$\sigma$},u)\in{\bf X}, such that

(3.10) Bθ((𝝈,u),(𝝉,v))=Fθ(𝝉,v)(𝝉,v)𝐗,B_{\theta}((\mbox{\boldmath$\sigma$},u),(\mbox{\boldmath$\tau$},v))=F_{\theta}(\mbox{\boldmath$\tau$},v)\quad\forall(\mbox{\boldmath$\tau$},v)\in{\bf X},

where, for (𝝌,w)𝐗(\mbox{\boldmath$\chi$},w)\in{\bf X} and (𝝉,v)𝐗(\mbox{\boldmath$\tau$},v)\in{\bf X}, the bilinear form BθB_{\theta} and the linear form FθF_{\theta} are defined as follows:

(3.11) Bθ((𝝌,w),(𝝉,v))\displaystyle B_{\theta}((\mbox{\boldmath$\chi$},w),(\mbox{\boldmath$\tau$},v)) =\displaystyle= (A1𝝌,𝝉)+(Aw,v)+(w,𝝉)(𝝌,v)+(θα1𝝌,𝝉)\displaystyle(A^{-1}\mbox{\boldmath$\chi$},\mbox{\boldmath$\tau$})+(A\nabla w,\nabla v)+(\nabla w,\mbox{\boldmath$\tau$})-(\mbox{\boldmath$\chi$},\nabla v)+(\theta\alpha^{-1}\nabla\cdot\mbox{\boldmath$\chi$},\nabla\cdot\mbox{\boldmath$\tau$})
(3.12) =\displaystyle= (A1𝝌+w,𝝉+Av)2(𝝌,v)+(θα1𝝌,𝝉),\displaystyle(A^{-1}\mbox{\boldmath$\chi$}+\nabla w,\mbox{\boldmath$\tau$}+A\nabla v)-2(\mbox{\boldmath$\chi$},\nabla v)+(\theta\alpha^{-1}\nabla\cdot\mbox{\boldmath$\chi$},\nabla\cdot\mbox{\boldmath$\tau$}),
(3.13) Fθ(𝝉,v)\displaystyle F_{\theta}(\mbox{\boldmath$\tau$},v) =\displaystyle= (𝐟,𝝉+Av)+2(g,v)+(θα1g,𝝉).\displaystyle({\bf f},\mbox{\boldmath$\tau$}+A\nabla v)+2(g,v)+(\theta\alpha^{-1}g,\nabla\cdot\mbox{\boldmath$\tau$}).

Note that BθB_{\theta} is not symmetric. We will give an equivalent symmetric version in Section 3.2. We will discuss two choices of θ\theta, θ=1\theta=1 and a mesh dependent θ\theta, such that θ|K=hK2\theta|_{K}=h^{2}_{K} for all K𝒯K\in{\mathcal{T}}.

Remark 3.1.

In fact, we have a third case that θ=0\theta=0. However, unlike the first two cases, this case has no corresponding least-squares formulation. We also cannot associate its a posteriori error estimator with a corresponding least-squares error estimator. Thus, we will not discuss this choice in the paper. Some discussions of the case θ=0\theta=0 can be found in [40, 29].

The formulas (3.11) and (3.12) are two equivalent ways to write the bilinear form.

3.1. Some analysis for the augmented mixed formulations

Define

(3.14) |(𝝉,v)|θ:=(A1/2v02+A1/2𝝉02+θ/α𝝉02)1/2(𝝉,v)𝐗.|\!|\!|(\mbox{\boldmath$\tau$},v)|\!|\!|_{\theta}:=(\|A^{1/2}\nabla v\|^{2}_{0}+\|A^{-1/2}\mbox{\boldmath$\tau$}\|^{2}_{0}+\|\sqrt{\theta/\alpha}\nabla\cdot\mbox{\boldmath$\tau$}\|^{2}_{0})^{1/2}\quad\forall(\mbox{\boldmath$\tau$},v)\in{\bf X}.

By the definition of the bilinear forms BθB_{\theta} in (3.11), we immediately have the coercivity:

(3.15) Bθ((𝝉,v),(𝝉,v))=|(𝝉,v)|θ2(𝝉,v)𝐗.B_{\theta}((\mbox{\boldmath$\tau$},v),(\mbox{\boldmath$\tau$},v))=|\!|\!|(\mbox{\boldmath$\tau$},v)|\!|\!|_{\theta}^{2}\quad\forall(\mbox{\boldmath$\tau$},v)\in{\bf X}.

It is also easy to derive the continuity of BθB_{\theta}:

(3.16) Bθ((𝝌,w),(𝝉,v))\displaystyle B_{\theta}((\mbox{\boldmath$\chi$},w),(\mbox{\boldmath$\tau$},v)) \displaystyle\leq A1/2𝝌0A1/2𝝉0+A1/2w0A1/2v0+A1/2w0A1/2𝝉0\displaystyle\|A^{-1/2}\mbox{\boldmath$\chi$}\|_{0}\|A^{-1/2}\mbox{\boldmath$\tau$}\|_{0}+\|A^{1/2}\nabla w\|_{0}\|A^{1/2}\nabla v\|_{0}+\|A^{1/2}\nabla w\|_{0}\|A^{-1/2}\mbox{\boldmath$\tau$}\|_{0}
+A1/2𝝌0A1/2v0+θ/α𝝌0θ/α𝝉0\displaystyle+\|A^{-1/2}\mbox{\boldmath$\chi$}\|_{0}\|A^{1/2}\nabla v\|_{0}+\|\sqrt{\theta/\alpha}\nabla\cdot\mbox{\boldmath$\chi$}\|_{0}\|\sqrt{\theta/\alpha}\nabla\cdot\mbox{\boldmath$\tau$}\|_{0}
=\displaystyle= (A1/2𝝌0+A1/2w0)(A1/2𝝉0+A1/2v0)+θ/α𝝌0θ/α𝝉0\displaystyle(\|A^{-1/2}\mbox{\boldmath$\chi$}\|_{0}+\|A^{1/2}\nabla w\|_{0})(\|A^{-1/2}\mbox{\boldmath$\tau$}\|_{0}+\|A^{1/2}\nabla v\|_{0})+\|\sqrt{\theta/\alpha}\nabla\cdot\mbox{\boldmath$\chi$}\|_{0}\|\sqrt{\theta/\alpha}\nabla\cdot\mbox{\boldmath$\tau$}\|_{0}
\displaystyle\leq 2|(𝝌,w)|θ|(𝝉,v)|θ,(𝝌,w),(𝝉,v)𝐗\displaystyle 2|\!|\!|(\mbox{\boldmath$\chi$},w)|\!|\!|_{\theta}|\!|\!|(\mbox{\boldmath$\tau$},v)|\!|\!|_{\theta},\quad\forall(\mbox{\boldmath$\chi$},w),(\mbox{\boldmath$\tau$},v)\in{\bf X}

With the coercivity and continuity of the bilinear form BθB_{\theta}, by the Lax-Milgram Lemma, (3.10) has a unique solution (𝝈,u)𝐗(\mbox{\boldmath$\sigma$},u)\in{\bf X}.

Let Σh,NHN(div;Ω)\Sigma_{h,N}\subset H_{N}({\rm div};\Omega) and Vh,DHD1(Ω)V_{h,D}\subset H^{1}_{D}(\Omega) be two finite dimensional subspaces, then we have the following discrete problem: find (𝝈h,uh)Σh,N×Vh,D(\mbox{\boldmath$\sigma$}_{h},u_{h})\in\Sigma_{h,N}\times V_{h,D} such that

(3.17) Bθ((𝝈h,uh),(𝝉h,vh))=Fθ(𝝉h,vh),(𝝉h,vh)Σh,N×Vh,D.B_{\theta}((\mbox{\boldmath$\sigma$}_{h},u_{h}),(\mbox{\boldmath$\tau$}_{h},v_{h}))=F_{\theta}(\mbox{\boldmath$\tau$}_{h},v_{h}),\quad\forall(\mbox{\boldmath$\tau$}_{h},v_{h})\in\Sigma_{h,N}\times V_{h,D}.

Since Σh,N×Vh,D𝐗\Sigma_{h,N}\times V_{h,D}\subset{\bf X}, we have the well-posedness of the discrete problems (3.17). Also, the following Galerkin orthogonality is true:

(3.18) Bθ((𝝈𝝈h,uuh),(𝝉h,vh))=0,(𝝉h,vh)Σh,N×Vh,D.B_{\theta}((\mbox{\boldmath$\sigma$}-\mbox{\boldmath$\sigma$}_{h},u-u_{h}),(\mbox{\boldmath$\tau$}_{h},v_{h}))=0,\quad\forall(\mbox{\boldmath$\tau$}_{h},v_{h})\in\Sigma_{h,N}\times V_{h,D}.

The following Cea’s lemma type of best approximation property is also true.

Theorem 3.2.

Assume that (𝛔h,uh)(\mbox{\boldmath$\sigma$}_{h},u_{h}) is the solution of problem (3.17), and (𝛔,u)(\mbox{\boldmath$\sigma$},u) is the solution of the problem (1.1). The following best-approximation result is true:

(3.19) |(𝝈𝝈h,uuh)|θ\displaystyle|\!|\!|(\mbox{\boldmath$\sigma$}-\mbox{\boldmath$\sigma$}_{h},u-u_{h})|\!|\!|_{\theta} \displaystyle\leq 2inf(𝝉h,vh)Σh,N×Vh,D|(𝝈𝝉h,uvh)|θ.\displaystyle 2\inf_{(\mbox{\boldmath$\tau$}_{h},v_{h})\in\Sigma_{h,N}\times V_{h,D}}|\!|\!|(\mbox{\boldmath$\sigma$}-\mbox{\boldmath$\tau$}_{h},u-v_{h})|\!|\!|_{\theta}.
Proof.

Let (𝝉h,vh)Σh,N×Vh,D(\mbox{\boldmath$\tau$}_{h},v_{h})\in\Sigma_{h,N}\times V_{h,D}. Using the coercivity and the continuity of the bilinear form, the Galerkin orthogonality, and the Cauchy-Schwarz inequality, we have

|(𝝈𝝈h,uuh)|θ2\displaystyle|\!|\!|(\mbox{\boldmath$\sigma$}-\mbox{\boldmath$\sigma$}_{h},u-u_{h})|\!|\!|^{2}_{\theta} =\displaystyle= Bθ((𝝈𝝈h,uuh),(𝝈𝝈h,uuh))=Bθ((𝝈𝝈h,uuh),(𝝈𝝉h,uvh))\displaystyle B_{\theta}((\mbox{\boldmath$\sigma$}-\mbox{\boldmath$\sigma$}_{h},u-u_{h}),(\mbox{\boldmath$\sigma$}-\mbox{\boldmath$\sigma$}_{h},u-u_{h}))=B_{\theta}((\mbox{\boldmath$\sigma$}-\mbox{\boldmath$\sigma$}_{h},u-u_{h}),(\mbox{\boldmath$\sigma$}-\mbox{\boldmath$\tau$}_{h},u-v_{h}))
\displaystyle\leq 2|(𝝈𝝈h,uuh)|θ|(𝝈𝝉h,uvh)|θ,\displaystyle 2|\!|\!|(\mbox{\boldmath$\sigma$}-\mbox{\boldmath$\sigma$}_{h},u-u_{h})|\!|\!|_{\theta}|\!|\!|(\mbox{\boldmath$\sigma$}-\mbox{\boldmath$\tau$}_{h},u-v_{h})|\!|\!|_{\theta},

which implies (3.19). ∎

To derive the a posteriori error estimate, we need the following lemma.

Lemma 3.3.

(Error representation) Let (𝛔,u)(\mbox{\boldmath$\sigma$},u) be the solution of (1.1), (𝛔h,uh)(\mbox{\boldmath$\sigma$}_{h},u_{h}) be the solution of (3.17), and vhVh,Dv_{h}\in V_{h,D} be an arbitrary function in the discrete space Vh,DV_{h,D}. We have the following error representation with 𝐄=𝛔𝛔h{\bf E}=\mbox{\boldmath$\sigma$}-\mbox{\boldmath$\sigma$}_{h} and e=uuhe=u-u_{h}:

(3.20) |(𝐄,e)|θ2=(𝐟A1𝝈huh,𝐄+A(evh))+(θα1(g𝝈h),𝐄)+2(g𝝈h,evh).|\!|\!|({\bf E},e)|\!|\!|^{2}_{\theta}=({\bf f}-A^{-1}\mbox{\boldmath$\sigma$}_{h}-\nabla u_{h},{\bf E}+A\nabla(e-v_{h}))+(\theta\alpha^{-1}(g-\nabla\cdot\mbox{\boldmath$\sigma$}_{h}),\nabla\cdot{\bf E})+2(g-\nabla\cdot\mbox{\boldmath$\sigma$}_{h},e-v_{h}).
Proof.

Let e~=evh\tilde{e}=e-v_{h}. By the fact 𝐄HN(div;Ω){\bf E}\in H_{N}({\rm div};\Omega) and eHD1(Ω)e\in H_{D}^{1}(\Omega), the coercivity (3.15), the Galerkin orthogonality

(3.21) Bθ((𝐄,e),(0,vh))=0,vhVh,D,B_{\theta}(({\bf E},e),(0,v_{h}))=0,\quad\forall v_{h}\in V_{h,D},

the definitions of BθB_{\theta} (3.11) and FθF_{\theta} (3.13), and the integration by parts, we get

|(𝐄,e)|θ2\displaystyle|\!|\!|({\bf E},e)|\!|\!|^{2}_{\theta} =\displaystyle= Bθ((𝐄,e),(𝐄,e))=Bθ((𝐄,e),(𝐄,e~))=Fθ(𝐄,e~)Bθ((𝝈h,uh),(𝐄,e~))\displaystyle B_{\theta}(({\bf E},e),({\bf E},e))=B_{\theta}(({\bf E},e),({\bf E},\tilde{e}))=F_{\theta}({\bf E},\tilde{e})-B_{\theta}((\mbox{\boldmath$\sigma$}_{h},u_{h}),({\bf E},\tilde{e}))
=\displaystyle= (𝐟A1𝝈huh,𝐄+Ae~)+(θα1(g𝝈h),𝐄)+2(g,e~)+2(𝝈h,e~)\displaystyle({\bf f}-A^{-1}\mbox{\boldmath$\sigma$}_{h}-\nabla u_{h},{\bf E}+A\nabla\tilde{e})+(\theta\alpha^{-1}(g-\nabla\cdot\mbox{\boldmath$\sigma$}_{h}),\nabla\cdot{\bf E})+2(g,\tilde{e})+2(\mbox{\boldmath$\sigma$}_{h},\nabla\tilde{e})
=\displaystyle= (𝐟A1𝝈huh,𝐄+Ae~)+(θα1(g𝝈h),𝐄)+2(g𝝈h,e~).\displaystyle({\bf f}-A^{-1}\mbox{\boldmath$\sigma$}_{h}-\nabla u_{h},{\bf E}+A\nabla\tilde{e})+(\theta\alpha^{-1}(g-\nabla\cdot\mbox{\boldmath$\sigma$}_{h}),\nabla\cdot{\bf E})+2(g-\nabla\cdot\mbox{\boldmath$\sigma$}_{h},\tilde{e}).

The lemma is then proved. ∎

3.2. Symmetric formulations

The formulation (3.10) is non-symmetric. In many situations, for example, eigenvalues problems or developing efficient linear solvers, symmetric formulations are always preferred. Also, we can always associate a Ritz-minimization variational principle to a symmetric problem. Luckily, the method (3.10) is equivalent to a symmetric GLS formulation by adding least-squares residuals

12(A1𝝈+u,𝝉+Av)=12(𝐟,𝝉+Av)and12(α1𝝈,𝝉)=12(α1g,𝝉)-\displaystyle\frac{1}{2}(A^{-1}\mbox{\boldmath$\sigma$}+\nabla u,\mbox{\boldmath$\tau$}+A\nabla v)=-\displaystyle\frac{1}{2}({\bf f},\mbox{\boldmath$\tau$}+A\nabla v)\quad\mbox{and}\quad\displaystyle\frac{1}{2}(\alpha^{-1}\nabla\cdot\mbox{\boldmath$\sigma$},\nabla\cdot\mbox{\boldmath$\tau$})=\displaystyle\frac{1}{2}(\alpha^{-1}g,\nabla\cdot\mbox{\boldmath$\tau$})

to the following symmetric saddle point mixed formulation: find (𝝈,u)𝐗(\mbox{\boldmath$\sigma$},u)\in{\bf X}, such that

(A1𝝈,𝝉)(𝝉,u)(𝝈,v)=(𝐟,𝝉)(g,v),(𝝉,v)𝐗.(A^{-1}\mbox{\boldmath$\sigma$},\mbox{\boldmath$\tau$})-(\nabla\cdot\mbox{\boldmath$\tau$},u)-(\nabla\cdot\mbox{\boldmath$\sigma$},v)=({\bf f},\mbox{\boldmath$\tau$})-(g,v),\leavevmode\nobreak\ \forall(\mbox{\boldmath$\tau$},v)\in{\bf X}.

We have the following symmetric formulation: find (𝝈,u)𝐗(\mbox{\boldmath$\sigma$},u)\in{\bf X}, such that

(3.22) Bsym,θ((𝝈,u),(𝝉,v))=Fsym,θ(𝝉,v),(𝝉,v)𝐗,B_{sym,\theta}((\mbox{\boldmath$\sigma$},u),(\mbox{\boldmath$\tau$},v))=F_{sym,\theta}(\mbox{\boldmath$\tau$},v),\quad\forall(\mbox{\boldmath$\tau$},v)\in{\bf X},

with the forms are defined for (𝝌,w)𝐗(\mbox{\boldmath$\chi$},w)\in{\bf X} and (𝝉,v)𝐗(\mbox{\boldmath$\tau$},v)\in{\bf X},

(3.23) Bsym,θ((𝝌,w),(𝝉,v))\displaystyle B_{sym,\theta}((\mbox{\boldmath$\chi$},w),(\mbox{\boldmath$\tau$},v)) :=\displaystyle:= (A1𝝌,𝝉)+(w,𝝉)+(𝝌,v)(Aw,v)+(θα1𝝌,𝝉).\displaystyle(A^{-1}\mbox{\boldmath$\chi$},\mbox{\boldmath$\tau$})+(\nabla w,\mbox{\boldmath$\tau$})+(\mbox{\boldmath$\chi$},\nabla v)-(A\nabla w,\nabla v)+(\theta\alpha^{-1}\nabla\cdot\mbox{\boldmath$\chi$},\nabla\cdot\mbox{\boldmath$\tau$}).
(3.24) Fsym,θ(𝝉,v)\displaystyle F_{sym,\theta}(\mbox{\boldmath$\tau$},v) :=\displaystyle:= (𝐟,𝝉Av)2(g,v)+(θα1g,𝝉).\displaystyle({\bf f},\mbox{\boldmath$\tau$}-A\nabla v)-2(g,v)+(\theta\alpha^{-1}g,\nabla\cdot\mbox{\boldmath$\tau$}).

Let Σh,NHN(div;Ω)\Sigma_{h,N}\subset H_{N}({\rm div};\Omega) and Vh,DHD1(Ω)V_{h,D}\subset H^{1}_{D}(\Omega) be two finite dimensional subspaces, then we have the following discrete problem corresponding to (3.22): find (𝝈h,uh)Σh,N×Vh,D(\mbox{\boldmath$\sigma$}_{h},u_{h})\in\Sigma_{h,N}\times V_{h,D} such that

(3.25) Bsym,θ((𝝈h,uh),(𝝉h,vh))=Fsum,θ(𝝉h,vh),(𝝉h,vh)Σh,N×Vh,D.B_{sym,\theta}((\mbox{\boldmath$\sigma$}_{h},u_{h}),(\mbox{\boldmath$\tau$}_{h},v_{h}))=F_{sum,\theta}(\mbox{\boldmath$\tau$}_{h},v_{h}),\quad\forall(\mbox{\boldmath$\tau$}_{h},v_{h})\in\Sigma_{h,N}\times V_{h,D}.

It is easy to see that (3.10) and (3.22) are equivalent since replacing the test function vv by v-v in one formulation leads to the other formulation. By doing so, we know that (3.10) and (3.22) and their corresponding finite element formulations (3.17) and (3.25) produce identical solutions. Thus all the analysis of the non-symmetric formulations can be applied to the symmetric versions.

Alternatively, we can establish the inf-sup stability of the symmetric formulation directly.

Lemma 3.4.

The following robust inf-sup stability with the stability constant being 11 holds:

(3.26) inf(𝝌,w)𝐗sup(𝝉,v)𝐗Bsym,θ((𝝌,w),(𝝉,v))|(𝝌,w)|θ|(𝝉,v)|θ=inf(𝝉,v)𝐗sup(𝝌,w)𝐗Bsym,θ((𝝌,w),(𝝉,v))|(𝝌,w)|θ|(𝝉,v)|θ1.\inf_{(\mbox{\boldmath$\chi$},w)\in{\bf X}}\sup_{(\mbox{\boldmath$\tau$},v)\in{\bf X}}\displaystyle\frac{B_{sym,\theta}((\mbox{\boldmath$\chi$},w),(\mbox{\boldmath$\tau$},v))}{|\!|\!|(\mbox{\boldmath$\chi$},w)|\!|\!|_{\theta}|\!|\!|(\mbox{\boldmath$\tau$},v)|\!|\!|_{\theta}}=\inf_{(\mbox{\boldmath$\tau$},v)\in{\bf X}}\sup_{(\mbox{\boldmath$\chi$},w)\in{\bf X}}\displaystyle\frac{B_{sym,\theta}((\mbox{\boldmath$\chi$},w),(\mbox{\boldmath$\tau$},v))}{|\!|\!|(\mbox{\boldmath$\chi$},w)|\!|\!|_{\theta}|\!|\!|(\mbox{\boldmath$\tau$},v)|\!|\!|_{\theta}}\geq 1.
Proof.

Due to the fact Bsym,θB_{sym,\theta} is symmetric, we only need to show one inf-sup condition in (3.26). Let (𝝉,v)=(𝝌,w)(\mbox{\boldmath$\tau$},v)=(\mbox{\boldmath$\chi$},-w) and using the facts that Bθ((𝝌,w),(𝝌,w)=Bsym,θ((𝝌,w),(𝝌,w))B_{\theta}((\mbox{\boldmath$\chi$},w),(\mbox{\boldmath$\chi$},w)=B_{sym,\theta}((\mbox{\boldmath$\chi$},w),(\mbox{\boldmath$\chi$},-w)) and (3.15) then

sup(𝝉,v)𝐗Bsym,θ((𝝌,w),(𝝉,v))|(𝝉,v)|θ\displaystyle\sup_{(\mbox{\boldmath$\tau$},v)\in{\bf X}}\displaystyle\frac{B_{sym,\theta}((\mbox{\boldmath$\chi$},w),(\mbox{\boldmath$\tau$},v))}{|\!|\!|(\mbox{\boldmath$\tau$},v)|\!|\!|_{\theta}} \displaystyle\geq Bsym,θ((𝝌,w),(𝝌,w))|(𝝌,w)|θ=Bθ((𝝌,w),(𝝌,w))|(𝝌,w)|θ=|(𝝌,w)|θ2|(𝝌,w)|θ=|(𝝌,w)|θ.\displaystyle\displaystyle\frac{B_{sym,\theta}((\mbox{\boldmath$\chi$},w),(\mbox{\boldmath$\chi$},-w))}{|\!|\!|(\mbox{\boldmath$\chi$},w)|\!|\!|_{\theta}}=\displaystyle\frac{B_{\theta}((\mbox{\boldmath$\chi$},w),(\mbox{\boldmath$\chi$},w))}{|\!|\!|(\mbox{\boldmath$\chi$},w)|\!|\!|_{\theta}}=\displaystyle\frac{|\!|\!|(\mbox{\boldmath$\chi$},w)|\!|\!|_{\theta}^{2}}{|\!|\!|(\mbox{\boldmath$\chi$},w)|\!|\!|_{\theta}}=|\!|\!|(\mbox{\boldmath$\chi$},w)|\!|\!|_{\theta}.

Similarly, we have the following robust discrete inf-sup stability with 𝐗h=Σh,N×Vh,D{\bf X}_{h}=\Sigma_{h,N}\times V_{h,D}:

(3.27) inf(𝝌h,wh)𝐗hsup(𝝉h,vh)𝐗hBsym,θ((𝝌h,wh),(𝝉h,vh))|(𝝌h,wh)|θ|(𝝉h,vh)|θ=inf(𝝉h,vh)𝐗hsup(𝝌h,wh)𝐗hBsym,θ((𝝌h,wh),(𝝉h,vh))|(𝝌h,wh)|θ|(𝝉h,vh)|θ1.\inf_{(\mbox{\boldmath$\chi$}_{h},w_{h})\in{\bf X}_{h}}\sup_{(\mbox{\boldmath$\tau$}_{h},v_{h})\in{\bf X}_{h}}\displaystyle\frac{B_{sym,\theta}((\mbox{\boldmath$\chi$}_{h},w_{h}),(\mbox{\boldmath$\tau$}_{h},v_{h}))}{|\!|\!|(\mbox{\boldmath$\chi$}_{h},w_{h})|\!|\!|_{\theta}|\!|\!|(\mbox{\boldmath$\tau$}_{h},v_{h})|\!|\!|_{\theta}}=\inf_{(\mbox{\boldmath$\tau$}_{h},v_{h})\in{\bf X}_{h}}\sup_{(\mbox{\boldmath$\chi$}_{h},w_{h})\in{\bf X}_{h}}\displaystyle\frac{B_{sym,\theta}((\mbox{\boldmath$\chi$}_{h},w_{h}),(\mbox{\boldmath$\tau$}_{h},v_{h}))}{|\!|\!|(\mbox{\boldmath$\chi$}_{h},w_{h})|\!|\!|_{\theta}|\!|\!|(\mbox{\boldmath$\tau$}_{h},v_{h})|\!|\!|_{\theta}}\geq 1.

Also, it is easy to show the continuity of Bsym,θB_{sym,\theta} as in (3.16):

(3.28) Bsym,θ((𝝌,w),(𝝉,v))2|(𝝌,w)|θ|(𝝉,v)|θ,(𝝌,w),(𝝉,v)𝐗.B_{sym,\theta}((\mbox{\boldmath$\chi$},w),(\mbox{\boldmath$\tau$},v))\leq 2|\!|\!|(\mbox{\boldmath$\chi$},w)|\!|\!|_{\theta}|\!|\!|(\mbox{\boldmath$\tau$},v)|\!|\!|_{\theta},\quad\forall(\mbox{\boldmath$\chi$},w),(\mbox{\boldmath$\tau$},v)\in{\bf X}.

Using the theorem in [44], we immediately have following robust best approximation theorem, which is identical to Theorem 3.2.

Theorem 3.5.

Assume that (𝛔h,uh)(\mbox{\boldmath$\sigma$}_{h},u_{h}) is the solution of problem (3.25), and (𝛔,u)(\mbox{\boldmath$\sigma$},u) is the solution of the problem (1.1). The following robust best-approximation result is true:

(3.29) |(𝝈𝝈h,uuh)|θ\displaystyle|\!|\!|(\mbox{\boldmath$\sigma$}-\mbox{\boldmath$\sigma$}_{h},u-u_{h})|\!|\!|_{\theta} \displaystyle\leq 2inf(𝝉h,vh)Σh,N×Vh,D|(𝝈𝝉h,uvh)|θ.\displaystyle 2\inf_{(\mbox{\boldmath$\tau$}_{h},v_{h})\in\Sigma_{h,N}\times V_{h,D}}|\!|\!|(\mbox{\boldmath$\sigma$}-\mbox{\boldmath$\tau$}_{h},u-v_{h})|\!|\!|_{\theta}.
Remark 3.6.

The formulation (3.22) (with θ=1\theta=1 and 0) can be found in Section 4.1 (Symmetric stabilizations in H(div;Ω)×H1(Ω)H({\rm div};\Omega)\times H^{1}(\Omega)) of [29]. The paper [29] mainly wanted to use continuous finite elements to approximate both 𝛔\sigma and uu. It did mention the possible usage of H(div)H({\rm div})-conforming finite elements. Robust a priori error estimate with respect to the coefficient matrix AA is not sought in [29]. A posteriori error estimate is not discussed in [29].

4. Assumptions on the coefficient matrix AA and Robust Interpolations

In the remaining part of the paper, for simplicity of the presentation, we assume the following assumption on AA:

Assumption 4.1.

Piecewise constant assumption on AA. We assume that A=α(x)IA=\alpha(x)I where α(x)\alpha(x) is positive and piecewise constant function in Ω\Omega with possible large jumps across subdomain boundaries (interfaces):

α(x)=αi>0 in Ωi\alpha(x)=\alpha_{i}>0\mbox{ in }\Omega_{i}

for i=1,,ni=1,\cdots,n. Here, {Ωi}i=1n\{\Omega_{i}\}_{i=1}^{n} is a partition of the domain Ω\Omega with Ωi\Omega_{i} being an open polygonal domain.

Remark 4.2.

For the more general cases of AA, the analysis in this paper will still be valid. However, the genetic constants appeared in the paper will depend on the ratio λmax,K/λmin,K\lambda_{\max,K}/\lambda_{\min,K}, for all K𝒯K\in{\mathcal{T}}, where λmax,K\lambda_{\max,K} and λmin,K\lambda_{\min,K} are the respective maximal and minimal eigenvalues of AK:=A|KA_{K}:=A|_{K}. See discussion in [4, 15].

We then discuss the quasi-monotonicity assumption and robust quasi-interpolation based on this assumption.

Assumption 4.3.

Quasi-monotonicity assumption (QMA). Assume that any two different subdomains Ω¯i\overline{\Omega}_{i} and Ω¯i\overline{\Omega}_{i}, which share at least one point, have a connected path passing from Ω¯i\overline{\Omega}_{i} to Ω¯j\overline{\Omega}_{j} through adjacent subdomains such that the diffusion coefficient α(x)\alpha(x) is monotone along this path.

It is also common to use Clément-type interpolation operators (see, e.g., [4, 41]) for establishing the reliability bound of a posteriori error estimators. Following [4], one can define the interpolation operator Ircl:L2(Ω)SD1I_{rcl}:L^{2}(\Omega)\rightarrow S^{1}_{D} (see [22] for more details) so that the following estimates are true under Assumption 4.3 (QMA):

(4.1) αK12(vIrclv)0,K+hKαK12(vIrclv)0,KChKα12v0,ΔKK𝒯,vHD1(Ω),\|\alpha_{K}^{\frac{1}{2}}(v-I_{rcl}v)\|_{0,K}+h_{K}\|\alpha_{K}^{\frac{1}{2}}\nabla(v-I_{rcl}v)\|_{0,K}\leq C\,h_{K}\|\alpha^{\frac{1}{2}}\nabla v\|_{0,\Delta_{K}}\quad\forall K\in{\mathcal{T}},v\in H^{1}_{D}(\Omega),

where ΔK\Delta_{K} is the union of all elements that share at least one vertex with K,

In general, we do not have the following robust Poincaré-Friedrichs inequality

(4.2) α1/2v0Cα1/2v0,vHD1(Ω),\|\alpha^{1/2}v\|_{0}\leq C\|\alpha^{1/2}\nabla v\|_{0},\quad v\in H^{1}_{D}(\Omega),

where C>0C>0 is independent of α\alpha.

For the following special case, (4.2) does holds.

Lemma 4.4.

Assume that each Ωi\Omega_{i} in the Assumption 4.1 has a part of the Dirichlet boundary condition with a positive measure, i.e.,

measure{ΓDi}>0, where ΓDi=ΩiΓDfor i=1,n,\mbox{measure}\{\Gamma_{D}^{i}\}>0,\mbox{ where }\Gamma_{D}^{i}=\partial\Omega_{i}\cap\Gamma_{D}\quad\mbox{for }i=1,\cdots n,

then the robust Poincaré inequality (4.2) is true with C>0C>0 being independent of α\alpha.

The proof is strghtforward since vi=v|Ωi{wH1(Ωi),w|ΓDi=0}v_{i}=v|_{\Omega_{i}}\in\{w\in H^{1}(\Omega_{i}),w|_{\Gamma_{D}^{i}}=0\}, and α\alpha in Ωi\Omega_{i} is αi\alpha_{i}, a single constant, we have

αi1/2vi0,ΩiCαi1/2vi0,Ωi,\|\alpha_{i}^{1/2}v_{i}\|_{0,\Omega_{i}}\leq C\|\alpha_{i}^{1/2}\nabla v_{i}\|_{0,\Omega_{i}},

with C>0C>0 independent of αi\alpha_{i}. Summing up all the subdomains we get the robust Poincaré-Friedrichs inequality for this special case.

5. The first augmented mixed formulation: θ=1\theta=1

In this section, we consider that case that θ=1\theta=1. For simplicity, we consider the finite element approximation in RT0,N×S1,D𝐗RT_{0,N}\times S_{1,D}\subset{\bf X}. The discrete problem is: find (𝝈1,h,u1,h)RT0,N×S1,D(\mbox{\boldmath$\sigma$}_{1,h},u_{1,h})\in RT_{0,N}\times S_{1,D} such that

(5.1) B1((𝝈1,h,u1,h),(𝝉h,vh))=F1(𝝉h,vh),(𝝉h,vh)RT0,N×S1,D,B_{1}((\mbox{\boldmath$\sigma$}_{1,h},u_{1,h}),(\mbox{\boldmath$\tau$}_{h},v_{h}))=F_{1}(\mbox{\boldmath$\tau$}_{h},v_{h}),\quad\forall(\mbox{\boldmath$\tau$}_{h},v_{h})\in RT_{0,N}\times S_{1,D},

where B1B_{1} and F1F_{1} are the corresponding forms (3.11) and (3.13) with θ=1\theta=1. Based on the discussions in Section 3.1, we have the well-posedness of discrete problem (5.1). Let |(,)|1|\!|\!|(\cdot,\cdot)|\!|\!|_{1} be the norm defined in (3.14) with θ=1\theta=1. We have the following locally robust and optimal a priori error estimate.

Theorem 5.1.

Let (𝛔,u)(\mbox{\boldmath$\sigma$},u) be the solution of (1.1) and (𝛔1,h,u1,h)(\mbox{\boldmath$\sigma$}_{1,h},u_{1,h}) be the solution of problem (5.1), respectively. We have the following a priori estimate:

(5.2) |(𝝈𝝈1,h,uu1,h)|1\displaystyle|\!|\!|(\mbox{\boldmath$\sigma$}-\mbox{\boldmath$\sigma$}_{1,h},u-u_{1,h})|\!|\!|_{1} \displaystyle\leq 2inf(𝝉h,vh)RT0,N×S1,D|(𝝈𝝉h,uvh)|1.\displaystyle 2\inf_{(\mbox{\boldmath$\tau$}_{h},v_{h})\in RT_{0,N}\times S_{1,D}}|\!|\!|(\mbox{\boldmath$\sigma$}-\mbox{\boldmath$\tau$}_{h},u-v_{h})|\!|\!|_{1}.

Under Assumption 4.1 on the coefficients, if we further assume that u|KH1+sK(K)u|_{K}\in H^{1+s_{K}}(K), (u𝐟)|KHqK(K)d(\nabla u-{\bf f})|_{K}\in H^{q_{K}}(K)^{d}, g|KHtK(K)g|_{K}\in H^{t_{K}}(K) for K𝒯K\in{\mathcal{T}}, where the local regularity indexes sKs_{K}, qKq_{K}, and tKt_{K} satisfy the following assumptions: 0<sK10<s_{K}\leq 1 in two dimensions and 1/2<sK11/2<s_{K}\leq 1 in there dimensions, 1/2<qK11/2<q_{K}\leq 1 with the constant Crt>0C_{rt}>0 being unbounded as qK1/2q_{K}\downarrow 1/2, and 0<tK10<t_{K}\leq 1, then the following local robust and local optimal a priori error estimate holds: there exists a constant CC independent of α\alpha and the mesh-size, such that

(5.3) |(𝝈𝝈1,h,uu1,h)|1CK𝒯αK1/2(hKsK|u|sK,K+CrthKqK|u𝐟|qK,K+αK1hKtK|g|tK,K).|\!|\!|(\mbox{\boldmath$\sigma$}-\mbox{\boldmath$\sigma$}_{1,h},u-u_{1,h})|\!|\!|_{1}\leq C\sum_{K\in{\mathcal{T}}}\alpha_{K}^{1/2}\left(h_{K}^{s_{K}}|\nabla u|_{s_{K},K}+C_{rt}h_{K}^{q_{K}}|\nabla u-{\bf f}|_{q_{K},K}+\alpha_{K}^{-1}h_{K}^{t_{K}}|g|_{t_{K},K}\right).
Proof.

The result (5.2) is from (3.19). The result of (5.3) can be derived from regularity assumptions and interpolation results (2.2), (2.3), and (2.7). ∎

Remark 5.2.

In theorem 5.1, when 𝐟=0{\bf f}=0, then sK=qKs_{K}=q_{K} for each K𝒯K\in{\mathcal{T}}. When 𝐟𝟎{\bf f}\neq{\bf 0}, the local regularity of 𝛔\sigma and u\nabla u can be different, and the regularity of gg (which is 𝛔\nabla\cdot\mbox{\boldmath$\sigma$}) is also independent of that of uu.

5.1. A least-squares a posteriori error estimator for the first augmented mixed formulation

We discuss a posteriori error estimator for the first augmented mixed formulation in this subsection.

Define an indicator on each K𝒯K\in{\mathcal{T}}:

η1,K(𝝈1,h,u1,h)\displaystyle\eta_{1,K}(\mbox{\boldmath$\sigma$}_{1,h},u_{1,h}) =\displaystyle= {α1/2(g𝝈1,h)0,K2+α1/2(𝐟u1,hα1𝝈1,h)0,K2}1/2.\displaystyle\Big{\{}\|\alpha^{-1/2}(g-\nabla\cdot\mbox{\boldmath$\sigma$}_{1,h})\|^{2}_{0,K}+\|\alpha^{1/2}({\bf f}-\nabla u_{1,h}-\alpha^{-1}\mbox{\boldmath$\sigma$}_{1,h})\|^{2}_{0,K}\Big{\}}^{1/2}.

Define the corresponding global a posteriori error estimator:

(5.4) η1(𝝈1,h,u1,h)={α1/2(g𝝈1,h)02+α1/2(𝐟u1,hα1𝝈1,h)02}1/2.\eta_{1}(\mbox{\boldmath$\sigma$}_{1,h},u_{1,h})=\Big{\{}\|\alpha^{-1/2}(g-\nabla\cdot\mbox{\boldmath$\sigma$}_{1,h})\|^{2}_{0}+\|\alpha^{1/2}({\bf f}-\nabla u_{1,h}-\alpha^{-1}\mbox{\boldmath$\sigma$}_{1,h})\|^{2}_{0}\Big{\}}^{1/2}.

Note that the error estimator η1(𝝈1,h,u1,h)\eta_{1}(\mbox{\boldmath$\sigma$}_{1,h},u_{1,h}) is actually a least-squares error estimator, see discussion below in section 5.2.

Theorem 5.3.

Let (𝛔,u)(\mbox{\boldmath$\sigma$},u) be the solution of (1.1) and (𝛔1,h,u1,h)(\mbox{\boldmath$\sigma$}_{1,h},u_{1,h}) be the solution of problem (5.1), repectively. Assume that Assumption 4.1 on the coefficients and Assumption 4.3 (QMA) are true, then there exists positive constants CC independent of α\alpha and the mesh-size such that the following reliability holds:

(5.5) |(𝝈𝝈1,h,uu1,h)|1Cη1(𝝈1,h,u1,h).|\!|\!|(\mbox{\boldmath$\sigma$}-\mbox{\boldmath$\sigma$}_{1,h},u-u_{1,h})|\!|\!|_{1}\leq C\eta_{1}(\mbox{\boldmath$\sigma$}_{1,h},u_{1,h}).
Proof.

Let 𝐄1=𝝈𝝈1,h{\bf E}_{1}=\mbox{\boldmath$\sigma$}-\mbox{\boldmath$\sigma$}_{1,h} and e1=uu1,he_{1}=u-u_{1,h}. In (3.20), let θ=1\theta=1 and vh=Ircle1v_{h}=I_{rcl}e_{1}, we have

|(𝐄1,e1)|12=(𝐟α1𝝈1,hu1,h,𝐄1+α(e1Ircle1))+(g𝝈1,h,α1𝐄1+2(e1Ircle1)).|\!|\!|({\bf E}_{1},e_{1})|\!|\!|^{2}_{1}=({\bf f}-\alpha^{-1}\mbox{\boldmath$\sigma$}_{1,h}-\nabla u_{1,h},{\bf E}_{1}+\alpha\nabla(e_{1}-I_{rcl}e_{1}))+(g-\nabla\cdot\mbox{\boldmath$\sigma$}_{1,h},\alpha^{-1}\nabla\cdot{\bf E}_{1}+2(e_{1}-I_{rcl}e_{1})).

Applying Cauchy-Schwarz and triangle inequalities, we get

|(𝐄1,e1)|12\displaystyle|\!|\!|({\bf E}_{1},e_{1})|\!|\!|^{2}_{1} \displaystyle\leq α1/2(𝐟α1𝝈1,hu1,h)0(α1/2𝐄10+α1/2(e1Ircle1)0)\displaystyle\|\alpha^{1/2}({\bf f}-\alpha^{-1}\mbox{\boldmath$\sigma$}_{1,h}-\nabla u_{1,h})\|_{0}(\|\alpha^{-1/2}{\bf E}_{1}\|_{0}+\|\alpha^{1/2}\nabla(e_{1}-I_{rcl}e_{1})\|_{0})
+α1/2(g𝝈1,h)0(α1/2𝐄10+2α1/2(e1Ircle1)0.\displaystyle+\|\alpha^{-1/2}(g-\nabla\cdot\mbox{\boldmath$\sigma$}_{1,h})\|_{0}(\|\alpha^{-1/2}\nabla\cdot{\bf E}_{1}\|_{0}+2\|\alpha^{1/2}(e_{1}-I_{rcl}e_{1})\|_{0}.

By the robust Clément interpolation result (4.1) under Assumption 4.3 and the fact that the mesh-size is bounded, we have the following robust results,

α1/2(e1Ircle1)0Cα1/2e10andα1/2(e1Ircle1)0Cα1/2he10Cα1/2e10.\|\alpha^{1/2}\nabla(e_{1}-I_{rcl}e_{1})\|_{0}\leq C\|\alpha^{1/2}\nabla e_{1}\|_{0}\quad\mbox{and}\quad\|\alpha^{1/2}(e_{1}-I_{rcl}e_{1})\|_{0}\leq C\|\alpha^{1/2}h\nabla e_{1}\|_{0}\leq C\|\alpha^{1/2}\nabla e_{1}\|_{0}.

Substitute these two robust results into (5.1), we get

|(𝐄1,e1)|12\displaystyle|\!|\!|({\bf E}_{1},e_{1})|\!|\!|^{2}_{1} \displaystyle\leq C(α1/2(𝐟α1𝝈1,hu1,h)0+α1/2(g𝝈1,h)0)\displaystyle C(\|\alpha^{1/2}({\bf f}-\alpha^{-1}\mbox{\boldmath$\sigma$}_{1,h}-\nabla u_{1,h})\|_{0}+\|\alpha^{-1/2}(g-\nabla\cdot\mbox{\boldmath$\sigma$}_{1,h})\|_{0})
(α1/2𝐄10+α1/2𝐄10+α1/2e10)\displaystyle(\|\alpha^{-1/2}{\bf E}_{1}\|_{0}+\|\alpha^{-1/2}\nabla\cdot{\bf E}_{1}\|_{0}+\|\alpha^{1/2}\nabla e_{1}\|_{0})
\displaystyle\leq Cη1(𝝈1,h,u1,h)|(𝐄1,e1)|1.\displaystyle C\eta_{1}(\mbox{\boldmath$\sigma$}_{1,h},u_{1,h})|\!|\!|({\bf E}_{1},e_{1})|\!|\!|_{1}.

The robust reliability result (5.5) is proved. ∎

The efficiency of the proposed error indicator is the same as the standard least-squares a posteriori error estimator.

Theorem 5.4.

Let (𝛔,u)(\mbox{\boldmath$\sigma$},u) be the solution of (1.1) and (𝛔1,h,u1,h)(\mbox{\boldmath$\sigma$}_{1,h},u_{1,h}) be the solution of problem (5.1), respectively. Assume that Assumption 4.1 on the coefficients is true, we have the following efficiency:

(5.7) η1,K(𝝈1,h,u1,h)2|(𝝈𝝈1,h,uu1,h)|1,KK𝒯.\eta_{1,K}(\mbox{\boldmath$\sigma$}_{1,h},u_{1,h})\leq\sqrt{2}|\!|\!|(\mbox{\boldmath$\sigma$}-\mbox{\boldmath$\sigma$}_{1,h},u-u_{1,h})|\!|\!|_{1,K}\quad\forall K\in{\mathcal{T}}.
Proof.

By the triangle inequality and the first-order system (1.1), for any K𝒯K\in{\mathcal{T}}, we have

η1,K2(𝝈1,h,u1,h)\displaystyle\eta_{1,K}^{2}(\mbox{\boldmath$\sigma$}_{1,h},u_{1,h}) =\displaystyle= α1/2(g𝝈1,h)0,K2+α1/2𝐟α1/2𝝈1,hα1/2u1,h0,K2\displaystyle\|\alpha^{-1/2}(g-\nabla\cdot\mbox{\boldmath$\sigma$}_{1,h})\|^{2}_{0,K}+\|\alpha^{1/2}{\bf f}-\alpha^{-1/2}\mbox{\boldmath$\sigma$}_{1,h}-\alpha^{1/2}\nabla u_{1,h}\|^{2}_{0,K}
=\displaystyle= α1/2(𝝈𝝈1,h)0,K2+α1/2(𝝈𝝈1,h)+α1/2(uu1,h)0,K2\displaystyle\|\alpha^{-1/2}(\nabla\cdot\mbox{\boldmath$\sigma$}-\nabla\cdot\mbox{\boldmath$\sigma$}_{1,h})\|^{2}_{0,K}+\|\alpha^{-1/2}(\mbox{\boldmath$\sigma$}-\mbox{\boldmath$\sigma$}_{1,h})+\alpha^{1/2}\nabla(u-u_{1,h})\|^{2}_{0,K}
\displaystyle\leq α1/2(𝝈𝝈1,h)0,K2+2(α1/2(𝝈𝝈1,h)0,K2+α1/2(uu1,h)0,K2)\displaystyle\|\alpha^{-1/2}\nabla\cdot(\mbox{\boldmath$\sigma$}-\mbox{\boldmath$\sigma$}_{1,h})\|^{2}_{0,K}+2(\|\alpha^{-1/2}(\mbox{\boldmath$\sigma$}-\mbox{\boldmath$\sigma$}_{1,h})\|^{2}_{0,K}+\|\alpha^{1/2}\nabla(u-u_{1,h})\|^{2}_{0,K}\big{)}
=\displaystyle= 2|(𝝈𝝈1,h,uu1,h)|1,K2.\displaystyle 2|\!|\!|(\mbox{\boldmath$\sigma$}-\mbox{\boldmath$\sigma$}_{1,h},u-u_{1,h})|\!|\!|^{2}_{1,K}.

The theorem is proved. ∎

Remark 5.5.

Note that Assumption 4.3 (QMA) is not required for the robustness of the efficiency bound.

5.2. Comparison with the L2L^{2}-based LSFEM

For the first-order system (1.1), the L2L^{2}-based least-squares functional is

(5.8) J(𝝉,v;𝐟,g):=α1/2v+α1/2𝝉α1/2𝐟02+α1/2(𝝉g)02,(𝝉,v)𝐗.J(\mbox{\boldmath$\tau$},v;{\bf f},g):=\|\alpha^{1/2}\nabla v+\alpha^{-1/2}\mbox{\boldmath$\tau$}-\alpha^{1/2}{\bf f}\|_{0}^{2}+\|\alpha^{-1/2}(\nabla\cdot\mbox{\boldmath$\tau$}-g)\|_{0}^{2},\quad(\mbox{\boldmath$\tau$},v)\in{\bf X}.

Then the L2L^{2}-based least-squares minimization problem is: find (𝝈,u)𝐗(\mbox{\boldmath$\sigma$},u)\in{\bf X}, such that

(5.9) J(𝝈,u;𝐟,g)=inf(𝝉,v)𝐗J(𝝉,v;𝐟,g).J(\mbox{\boldmath$\sigma$},u;{\bf f},g)=\inf_{(\mbox{\boldmath$\tau$},v)\in{\bf X}}J(\mbox{\boldmath$\tau$},v;{\bf f},g).

Equivalently, it can be written in a weak form as: find (𝝈,u)𝐗(\mbox{\boldmath$\sigma$},u)\in{\bf X}, such that

(5.10) b((𝝈,u),(𝝉,v))=(𝐟,𝝉+αv)+(α1g,𝝉),(𝝉,v)𝐗,b((\mbox{\boldmath$\sigma$},u),(\mbox{\boldmath$\tau$},v))=({\bf f},\mbox{\boldmath$\tau$}+\alpha\nabla v)+(\alpha^{-1}g,\nabla\cdot\mbox{\boldmath$\tau$}),\quad\forall(\mbox{\boldmath$\tau$},v)\in{\bf X},

where the least-squares bilinear form bb is defined as follows:

(5.11) b((𝝌,w),(𝝉,v))=(α1𝝌+w,𝝉+αv)+(α1𝝌,𝝉),(𝝌,w),(𝝉,v)𝐗.b((\mbox{\boldmath$\chi$},w),(\mbox{\boldmath$\tau$},v))=(\alpha^{-1}\mbox{\boldmath$\chi$}+\nabla w,\mbox{\boldmath$\tau$}+\alpha\nabla v)+(\alpha^{-1}\nabla\cdot\mbox{\boldmath$\chi$},\nabla\cdot\mbox{\boldmath$\tau$}),\quad\forall(\mbox{\boldmath$\chi$},w),(\mbox{\boldmath$\tau$},v)\in{\bf X}.

The lowest-order least-squares finite element method (LSFEM) is: find (𝝈hls,uhls)RT0,N×S1,D(\mbox{\boldmath$\sigma$}_{h}^{ls},u_{h}^{ls})\in RT_{0,N}\times S_{1,D}, such that

(5.12) J(𝝈hls,uhls;𝐟,g)=inf(𝝉,v)RT0,N×S1,DJ(𝝉,v;𝐟,g).J(\mbox{\boldmath$\sigma$}^{ls}_{h},u^{ls}_{h};{\bf f},g)=\inf_{(\mbox{\boldmath$\tau$},v)\in RT_{0,N}\times S_{1,D}}J(\mbox{\boldmath$\tau$},v;{\bf f},g).

Or, equivalently, find (𝝈hls,uhls)RT0,N×S1,D(\mbox{\boldmath$\sigma$}_{h}^{ls},u_{h}^{ls})\in RT_{0,N}\times S_{1,D}, such that,

(5.13) b((𝝈hls,uhls),(𝝉,v))=(𝐟,𝝉+αv)+(α1g,𝝉),(𝝉,v)RT0,N×S1,D.b((\mbox{\boldmath$\sigma$}_{h}^{ls},u_{h}^{ls}),(\mbox{\boldmath$\tau$},v))=({\bf f},\mbox{\boldmath$\tau$}+\alpha\nabla v)+(\alpha^{-1}g,\nabla\cdot\mbox{\boldmath$\tau$}),\quad\forall(\mbox{\boldmath$\tau$},v)\in RT_{0,N}\times S_{1,D}.

The key ingredient to establish a priori and a posteriori error estimates of the LSFEM (5.12) or (5.13) is the following norm equivalence:

(5.14) Ccoe|(𝝉,v)|12J(𝝉,v;0,0)Ccon|(𝝉,v)|12,(𝝉,v)𝐗,C_{coe}|\!|\!|(\mbox{\boldmath$\tau$},v)|\!|\!|_{1}^{2}\leq J(\mbox{\boldmath$\tau$},v;0,0)\leq C_{con}|\!|\!|(\mbox{\boldmath$\tau$},v)|\!|\!|_{1}^{2},\quad\forall(\mbox{\boldmath$\tau$},v)\in{\bf X},

for some positive constants CcoeC_{coe} and CconC_{con}. The first inequality of (5.14) is the coercivity of the least-squares bilinear form (5.10):

(5.15) b((𝝉,v),(𝝉,v))Ccoe|(𝝉,v)|12(𝝉,v)𝐗.b((\mbox{\boldmath$\tau$},v),(\mbox{\boldmath$\tau$},v))\geq C_{coe}|\!|\!|(\mbox{\boldmath$\tau$},v)|\!|\!|_{1}^{2}\quad\forall(\mbox{\boldmath$\tau$},v)\in{\bf X}.

The second inequality of (5.14) is equivalent to the continuity of the least-squares bilinear form (5.10) since it is symmetric:

(5.16) b((𝝌,w),(𝝉,v))Ccon|(𝝌,w)|1|(𝝉,v)|1,(𝝌,w),(𝝉,v)𝐗.b((\mbox{\boldmath$\chi$},w),(\mbox{\boldmath$\tau$},v))\leq C_{con}|\!|\!|(\mbox{\boldmath$\chi$},w)|\!|\!|_{1}|\!|\!|(\mbox{\boldmath$\tau$},v)|\!|\!|_{1},\quad\forall(\mbox{\boldmath$\chi$},w),(\mbox{\boldmath$\tau$},v)\in{\bf X}.

With the coercivity and continuity, we can easily get the a priori error estimate of the LSFEM (5.13):

(5.17) |(𝝈𝝈hls,uuhls)|1CconCcoeinf(𝝉h,vh)RT0,N×S1,D|(𝝈𝝉h,uvh)|1.|\!|\!|(\mbox{\boldmath$\sigma$}-\mbox{\boldmath$\sigma$}_{h}^{ls},u-u_{h}^{ls})|\!|\!|_{1}\leq\displaystyle\frac{C_{con}}{C_{coe}}\inf_{(\mbox{\boldmath$\tau$}_{h},v_{h})\in RT_{0,N}\times S_{1,D}}|\!|\!|(\mbox{\boldmath$\sigma$}-\mbox{\boldmath$\tau$}_{h},u-v_{h})|\!|\!|_{1}.

By the triangle inequality, it is easy to prove that continuity constant CconC_{con} is a constant independent of α\alpha (actually, Ccon=2C_{con}=2 for this case, see arguments of the proof in Theorem 5.4). On the other hand, the coercivity constant CcoeC_{coe} usually depends α\alpha. The reason is that the proof of the coercivity of the least-squares bilinear form (5.10) requires the Poincaré inequality, which is usually not robust with respect to α\alpha. For the special case discussed in Lemma 4.4, we have the following result:

Theorem 5.6.

Assume that each Ωi\Omega_{i} in the Assumption 4.1 has a part of the Dirichlet boundary condition with a positive measure, then the coercivity constant CcoeC_{coe} the norm equivalence (5.14) and the coercivity (5.15) is independent of α\alpha.

Proof.

For a vHD1(Ω)v\in H^{1}_{D}(\Omega), let 𝝉\tau be an arbitrary vector in HN(div;Ω)H_{N}({\rm div};\Omega), then

α1/2v02\displaystyle\|\alpha^{1/2}\nabla v\|_{0}^{2} =\displaystyle= (αv,v)=(αv+𝝉,v)(𝝉,v)=(αv+𝝉,v)+(𝝉,v)\displaystyle(\alpha\nabla v,\nabla v)=(\alpha\nabla v+\mbox{\boldmath$\tau$},\nabla v)-(\mbox{\boldmath$\tau$},\nabla v)=(\alpha\nabla v+\mbox{\boldmath$\tau$},\nabla v)+(\nabla\cdot\mbox{\boldmath$\tau$},v)
\displaystyle\leq α1/2v+α1/2𝝉0α1/2v0+α1/2𝝉0α1/2v0.\displaystyle\|\alpha^{1/2}\nabla v+\alpha^{-1/2}\mbox{\boldmath$\tau$}\|_{0}\|\alpha^{1/2}\nabla v\|_{0}+\|\alpha^{-1/2}\nabla\cdot\mbox{\boldmath$\tau$}\|_{0}\|\alpha^{1/2}v\|_{0}.

By lemma 4.4, for the special setting of the theorem, a robust Poincaré inequality α1/2v0Cα1/2v0\|\alpha^{1/2}v\|_{0}\leq C\|\alpha^{1/2}\nabla v\|_{0} for vHD1(Ω)v\in H^{1}_{D}(\Omega) is true. Thus, we have

(5.18) α1/2v0α1/2v+α1/2𝝉0+Cα1/2𝝉0,(𝝉,v)𝐗,\|\alpha^{1/2}\nabla v\|_{0}\leq\|\alpha^{1/2}\nabla v+\alpha^{-1/2}\mbox{\boldmath$\tau$}\|_{0}+C\|\alpha^{-1/2}\nabla\cdot\mbox{\boldmath$\tau$}\|_{0},\quad\forall(\mbox{\boldmath$\tau$},v)\in{\bf X},

with the constant CC independent of α\alpha. It is also simple to see that, for (𝝉,v)𝐗(\mbox{\boldmath$\tau$},v)\in{\bf X},

(5.19) α1/2𝝉0α1/2v+α1/2𝝉0+α1/2v02α1/2v+α1/2𝝉0+Cα1/2𝝉0.\|\alpha^{-1/2}\mbox{\boldmath$\tau$}\|_{0}\leq\|\alpha^{1/2}\nabla v+\alpha^{-1/2}\mbox{\boldmath$\tau$}\|_{0}+\|\alpha^{1/2}\nabla v\|_{0}\leq 2\|\alpha^{1/2}\nabla v+\alpha^{-1/2}\mbox{\boldmath$\tau$}\|_{0}+C\|\alpha^{-1/2}\nabla\cdot\mbox{\boldmath$\tau$}\|_{0}.

Thus, we prove that robust coercivity. ∎

From the above proof, we also confirm that the weight α1/2\alpha^{-1/2} in α1/2𝝉0\|\alpha^{-1/2}\nabla\cdot\mbox{\boldmath$\tau$}\|_{0} in (5.8) is the right choice.

From (5.17), except in the special cases where the robust version of Poincaré inequality holds, the a priori error estimate of the LSFEM (5.12), (5.13) in general is not robust with respect to α\alpha.

Let (𝝈a,ua)𝐗(\mbox{\boldmath$\sigma$}_{a},u_{a})\in{\bf X}, we can define the following least-squares based a posteriori error estimator:

(5.20) ηls(𝝈a,ua)=(α1/2(g𝝈a)02+α1/2(𝐟uaα1𝝈a)02)1/2=J(𝝈a,ua;𝐟,g)1/2.\eta_{ls}(\mbox{\boldmath$\sigma$}_{a},u_{a})=\Big{(}\|\alpha^{-1/2}(g-\nabla\cdot\mbox{\boldmath$\sigma$}_{a})\|^{2}_{0}+\|\alpha^{1/2}({\bf f}-\nabla u_{a}-\alpha^{-1}\mbox{\boldmath$\sigma$}_{a})\|^{2}_{0}\Big{)}^{1/2}=J(\mbox{\boldmath$\sigma$}_{a},u_{a};{\bf f},g)^{1/2}.

Let 𝐄a=𝝈𝝈a{\bf E}_{a}=\mbox{\boldmath$\sigma$}-\mbox{\boldmath$\sigma$}_{a} and ea=uuae_{a}=u-u_{a}. Using the facts that 𝐟=u+α1𝝈{\bf f}=\nabla u+\alpha^{-1}\mbox{\boldmath$\sigma$} and g=𝝈g=\nabla\cdot\mbox{\boldmath$\sigma$} from (1.1), we have the following identity:

J(𝝈a,ua;𝐟,g)\displaystyle J(\mbox{\boldmath$\sigma$}_{a},u_{a};{\bf f},g) =\displaystyle= α1/2(g𝝈a)02+α1/2(𝐟uaα1𝝈a)02\displaystyle\|\alpha^{-1/2}(g-\nabla\cdot\mbox{\boldmath$\sigma$}_{a})\|^{2}_{0}+\|\alpha^{1/2}({\bf f}-\nabla u_{a}-\alpha^{-1}\mbox{\boldmath$\sigma$}_{a})\|^{2}_{0}
=\displaystyle= α1/2(𝝈𝝈a)02+α1/2(u+α1𝝈uaα1𝝈a)02=J(𝐄a,ea;0,0).\displaystyle\|\alpha^{-1/2}(\nabla\cdot\mbox{\boldmath$\sigma$}-\nabla\cdot\mbox{\boldmath$\sigma$}_{a})\|^{2}_{0}+\|\alpha^{1/2}(\nabla u+\alpha^{-1}\mbox{\boldmath$\sigma$}-\nabla u_{a}-\alpha^{-1}\mbox{\boldmath$\sigma$}_{a})\|^{2}_{0}=J({\bf E}_{a},e_{a};0,0).

By (5.14), the following reality and efficiency bounds are true,

(5.21) Ccoe|(𝐄a,ea)|12J(𝐄a,ea;0,0)=J(𝝈a,ua;𝐟,g)Ccon|(𝐄a,ea)|12.C_{coe}|\!|\!|({\bf E}_{a},e_{a})|\!|\!|_{1}^{2}\leq J({\bf E}_{a},e_{a};0,0)=J(\mbox{\boldmath$\sigma$}_{a},u_{a};{\bf f},g)\leq C_{con}|\!|\!|({\bf E}_{a},e_{a})|\!|\!|_{1}^{2}.

An important fact of (5.21) is that (𝝈a,ua)𝐗(\mbox{\boldmath$\sigma$}_{a},u_{a})\in{\bf X} does not need to be the numerical solution of the LSFEM problem (5.12). In fact, the pair can be any functions in 𝐗{\bf X}. Let (𝝈hls,uhls)RT0,N×S1,D𝐗(\mbox{\boldmath$\sigma$}_{h}^{ls},u_{h}^{ls})\in RT_{0,N}\times S_{1,D}\subset{\bf X} be the numerical solution of the LSFEM problem (5.13), we immediately have the reliability and efficiency of the least-squares error estimator for the LSFEM approximation (5.13),

(5.22) Ccoe|(𝝈𝝈hls,uuhls)|12ηls(𝝈hls,uhls)2=J(𝝈hls,uhls;𝐟,g)Ccon|(𝝈𝝈hls,uuhls)|12.C_{coe}|\!|\!|(\mbox{\boldmath$\sigma$}-\mbox{\boldmath$\sigma$}_{h}^{ls},u-u_{h}^{ls})|\!|\!|_{1}^{2}\leq\eta_{ls}(\mbox{\boldmath$\sigma$}_{h}^{ls},u_{h}^{ls})^{2}=J(\mbox{\boldmath$\sigma$}_{h}^{ls},u_{h}^{ls};{\bf f},g)\leq C_{con}|\!|\!|(\mbox{\boldmath$\sigma$}-\mbox{\boldmath$\sigma$}_{h}^{ls},u-u_{h}^{ls})|\!|\!|_{1}^{2}.

Of course, since CcoeC_{coe} depends on α\alpha, the a posteriori error estimator ηls(𝝈hls,uhls)\eta_{ls}(\mbox{\boldmath$\sigma$}_{h}^{ls},u_{h}^{ls}) is not robust for the LSFEM approximation (5.13).

If the robustness of the estimator is not our goal, we can have the non-robust reliability and robust efficiency of the a posteriori error estimator η1(𝝈1,h,u1,h)\eta_{1}(\mbox{\boldmath$\sigma$}_{1,h},u_{1,h}) of the first augmented mixed method (5.4) by using the fact that (𝝈1,h,u1,h)RT0,N×S1,D𝐗(\mbox{\boldmath$\sigma$}_{1,h},u_{1,h})\in RT_{0,N}\times S_{1,D}\subset{\bf X} and (5.21):

(5.23) Ccoe|(𝐄1,e1)|12η1(𝝈1,h,u1,h)2=ηls(𝝈1,h,u1,h)2Ccon|(𝐄1,e1)|12.C_{coe}|\!|\!|({\bf E}_{1},e_{1})|\!|\!|_{1}^{2}\leq\eta_{1}(\mbox{\boldmath$\sigma$}_{1,h},u_{1,h})^{2}=\eta_{ls}(\mbox{\boldmath$\sigma$}_{1,h},u_{1,h})^{2}\leq C_{con}|\!|\!|({\bf E}_{1},e_{1})|\!|\!|_{1}^{2}.

This result is weaker than that of Theorem 5.3.

Remark 5.7.

It is interesting to see that for the first augmented mixed method (5.1) and the LSFEM (5.12) or (5.13), their a posteriori error estimators are the same. However, one is robust, and the other one is not. The subtle difference is that the numerical solution in the a posteriori error estimator (5.4) is obtained by the robust first augmented mixed method (5.1), and the Galerkin orthogonality (3.21) is used in the error representation Lemma 3.3. On the other hand, the reliability and efficiency of a general least-squares a posteriori error estimator do not require that the approximations are the numerical solutions of the corresponding LSFEM or augmented mixed method.

Remark 5.8.

We take a comparison of the least-squares problem (5.10) and the augmented problem (3.10) with θ=1\theta=1 with the bilinear form in the form of (3.12). The first augmented mixed method can be viewed as adding a consistent term,

2(𝝈,v)=2(𝝈,v)=(g,v)vHD1(Ω)-2(\mbox{\boldmath$\sigma$},\nabla v)=2(\nabla\cdot\mbox{\boldmath$\sigma$},v)=(g,v)\quad\forall v\in H^{1}_{D}(\Omega)

to the least-squares problem (5.10). The extra term makes the new formulation lose the least-squares energy minimization principle, but 2(𝛕,v)-2(\mbox{\boldmath$\tau$},\nabla v) cancels the cross-term in A1/2𝛕+A1/2v02\|A^{-1/2}\mbox{\boldmath$\tau$}+A^{1/2}\nabla v\|_{0}^{2}, thus the new augmented mixed method is robust in the energy norms.

Remark 5.9.

We also need to mention that the non-robustness of the L2L^{2}-LSFEM is mild. Take a close look at the proof of the robustness in Theorem 5.6, a robust Poincaré inequality for any vHD1(Ω)v\in H^{1}_{D}(\Omega) is needed. In general, the robust Poincaré inequality is not true. But, for the robust error analysis of LSFEM (5.22), we only need the fact

(5.24) α1/2(uuhls)0Cα1/2(uuhls)0,\|\alpha^{1/2}(u-u^{ls}_{h})\|_{0}\leq C\|\alpha^{1/2}\nabla(u-u^{ls}_{h})\|_{0},

for a constant C>0C>0 independent of α\alpha. Assuming that we have some L2L^{2}-error bound uuhls0Chr(uuhls)0\|u-u^{ls}_{h}\|_{0}\leq Ch^{r}\|\nabla(u-u^{ls}_{h})\|_{0} for some regularity r>0r>0 and hh being the maximum size of the mesh, see discussions in [16], then α1/2(uuhls)0Cα1/2(uuhls)0\|\alpha^{1/2}(u-u^{ls}_{h})\|_{0}\leq C\|\alpha^{1/2}\nabla(u-u^{ls}_{h})\|_{0} for CC independent of α\alpha is possible with a small enough hh. The situation of a non-uniform mesh and a solution with a low regularity is less clear, but realizing that (5.24) for the error uuhlsu-u^{ls}_{h} is what we needed is helpful to explain the mildness of non-robustness of the LSFEM.

Remark 5.10.

In [2], the same error estimator is proposed for the first augmented mixed method. In the proof of [2], the same technique as the coercivity proof of the LSFEM (5.15) is used. Since the Galerkin orthogonality (3.21) is not used, the analysis in [2] is not robust.

6. The second augmented mixed formulation: a mesh-weighted version

6.1. The second augmented mixed formulation

In this formulation, we choose θ\theta to be a piecewisely defined function such that θ|K=hK2\theta|_{K}=h^{2}_{K}, for K𝒯K\in{\mathcal{T}}.

We consider the finite element approximation in two pairs: RT0,N×S1,D𝐗RT_{0,N}\times S_{1,D}\subset{\bf X} and BDM1,N×S2,D𝐗BDM_{1,N}\times S_{2,D}\subset{\bf X}. The notation Σh,N×Vh,D\Sigma_{h,N}\times V_{h,D} is used to represent these two choices. The discrete problem is: find (𝝈2,h,u2,h)Σh,N×Vh,D(\mbox{\boldmath$\sigma$}_{2,h},u_{2,h})\in\Sigma_{h,N}\times V_{h,D} such that

(6.1) B2((𝝈2,h,u2,h),(𝝉h,vh))=F2(𝝉h,vh),(𝝉h,vh)Σh,N×Vh,D,B_{2}((\mbox{\boldmath$\sigma$}_{2,h},u_{2,h}),(\mbox{\boldmath$\tau$}_{h},v_{h}))=F_{2}(\mbox{\boldmath$\tau$}_{h},v_{h}),\quad\forall(\mbox{\boldmath$\tau$}_{h},v_{h})\in\Sigma_{h,N}\times V_{h,D},

where B2B_{2} and F2F_{2} are the corresponding forms (3.11) and (3.13) with θ|K=hK2\theta|_{K}=h_{K}^{2} for any K𝒯K\in{\mathcal{T}}. Based on the discussions in Section 3.1, we have the well-posedness of discrete problem (6.1). Let |(,)|2|\!|\!|(\cdot,\cdot)|\!|\!|_{2} be the norm defined in (3.14) with θ|K=hK2\theta|_{K}=h^{2}_{K}, for K𝒯K\in{\mathcal{T}}. We also have the following locally robust and optimal a priori error estimate.

Theorem 6.1.

Let (𝛔,u)(\mbox{\boldmath$\sigma$},u) be the solution of (1.1) and (𝛔2,h,u2,h)(\mbox{\boldmath$\sigma$}_{2,h},u_{2,h}) be the solution of problem (6.1), respectively. The following best approximation result is true:

(6.2) |(𝝈𝝈2,h,uu2,h)|2\displaystyle|\!|\!|(\mbox{\boldmath$\sigma$}-\mbox{\boldmath$\sigma$}_{2,h},u-u_{2,h})|\!|\!|_{2} \displaystyle\leq 2inf(𝝉h,vh)Σh,N×Vh,D|(𝝈𝝉h,uvh)|2.\displaystyle 2\inf_{(\mbox{\boldmath$\tau$}_{h},v_{h})\in\Sigma_{h,N}\times V_{h,D}}|\!|\!|(\mbox{\boldmath$\sigma$}-\mbox{\boldmath$\tau$}_{h},u-v_{h})|\!|\!|_{2}.

For the RT0,N×S1,DRT_{0,N}\times S_{1,D} approximation, under Assumption 4.1 on the coefficients, if we further assume that u|KH1+sK(K)u|_{K}\in H^{1+s_{K}}(K), (u𝐟)|KHqK(K)d(\nabla u-{\bf f})|_{K}\in H^{q_{K}}(K)^{d}, g|KHtK(K)g|_{K}\in H^{t_{K}}(K) for K𝒯K\in{\mathcal{T}}, where the local regularity indexes sKs_{K}, qKq_{K}, and tKt_{K} satisfy the following assumptions: 0<sK10<s_{K}\leq 1 in two dimensions and 1/2<sK11/2<s_{K}\leq 1 in three dimensions, 1/2<qK11/2<q_{K}\leq 1 with the constant Crt>0C_{rt}>0 being unbounded as qK1/2q_{K}\downarrow 1/2, and 0<tK10<t_{K}\leq 1, then the following local robust and local optimal a priori error estimate holds: there exists a constant CC independent of α\alpha and the mesh-size, such that

(6.3) |(𝝈𝝈2,h,uu2,h)|2CK𝒯αK1/2(hKsK|u|sK,K+CrthKqK|u𝐟|qK,K+αK1hK1+tK|g|tK,K).|\!|\!|(\mbox{\boldmath$\sigma$}-\mbox{\boldmath$\sigma$}_{2,h},u-u_{2,h})|\!|\!|_{2}\leq C\sum_{K\in{\mathcal{T}}}\alpha_{K}^{1/2}\left(h_{K}^{s_{K}}|\nabla u|_{s_{K},K}+C_{rt}h_{K}^{q_{K}}|\nabla u-{\bf f}|_{q_{K},K}+\alpha_{K}^{-1}h_{K}^{1+t_{K}}|g|_{t_{K},K}\right).

For the BDM1,N×S2,DBDM_{1,N}\times S_{2,D} approximation, under Assumption 4.1 on the coefficients, if we further assume that uH3(Ω)u\in H^{3}(\Omega), (u𝐟)|KH2(K)d(\nabla u-{\bf f})|_{K}\in H^{2}(K)^{d}, and g|KH1(K)g|_{K}\in H^{1}(K) for K𝒯K\in{\mathcal{T}}, then the following local robust and local optimal a priori error estimate holds: there exists a constant CC independent of α\alpha and the mesh-size, such that

(6.4) |(𝝈𝝈2,h,uu2,h)|2CK𝒯αK1/2hK2(|u|2,K+|u𝐟|2,K+αK1|g|1,K).|\!|\!|(\mbox{\boldmath$\sigma$}-\mbox{\boldmath$\sigma$}_{2,h},u-u_{2,h})|\!|\!|_{2}\leq C\sum_{K\in{\mathcal{T}}}\alpha_{K}^{1/2}h_{K}^{2}\left(|\nabla u|_{2,K}+|\nabla u-{\bf f}|_{2,K}+\alpha_{K}^{-1}|g|_{1,K}\right).

The proof of the theorem is almost identical to that of Theorem 5.1 with some necessary changes due to the extra factor hh.

Remark 6.2.

We give some explanations that why the mesh-weighted second augmented mixed formulation is suggested. In the standard mixed formulation (3.2) for Darcy’s equation, the divergence of the flux 𝛔=g\nabla\cdot\mbox{\boldmath$\sigma$}=g is a known quantity. For the standard dual mixed formulation (3.2), we can easily derive the robust best approximation in the L2L^{2}-norm of the flux alone without invoking the approximation of the divergence of 𝛔\sigma and the smoothness of gg, see for example, Theorems 2 and 3 of [45]. On the contrary, for the first augmented mixed formulation (5.1), its a priori error estimate (5.3) is done for the combined norm ||||||1|\!|\!|\cdot|\!|\!|_{1}. Thus, the error of the flux measured in the L2L^{2}-norm is influenced by the approximation of the divergence of 𝛔\sigma, which depends on the regularity of gg on the element K𝒯K\in{\mathcal{T}}. For example, for the case 𝐟=0{\bf f}=0 and uH2(Ω)u\in H^{2}(\Omega), we get sK=qK=1s_{K}=q_{K}=1 for all K𝒯K\in{\mathcal{T}} in (5.3). However, if the regularity of gg is low (<1<1), then the error of the flux measured in the L2L^{2}-norm is dominated by the bad approximation of the divergence of 𝛔\sigma, which is worse than the standard mixed formulation. Such sub-optimal result also appears in the LSFEM (5.13) since all the terms are also coupled in (5.13).

On the other hand, for the second augmented mixed method, the convergence order of α1/2(uu2,h)0\|\alpha^{1/2}\nabla(u-u_{2,h})\|_{0} and α1/2𝛔𝛔2,h)0\|\alpha^{-1/2}\mbox{\boldmath$\sigma$}-\mbox{\boldmath$\sigma$}_{2,h})\|_{0} can still be optimal, even if the regularity of gg is low. For example, for the case 𝐟=0{\bf f}=0 and uH2(Ω)u\in H^{2}(\Omega), as long as the regularity of g|Kg|_{K} on each element K𝒯K\in{\mathcal{T}}, tK>0t_{K}>0, we can still get order hh convergence in (6.3) for the RT0,N×S1,DRT_{0,N}\times S_{1,D} approximation. For the BDM1,N×S2,DBDM_{1,N}\times S_{2,D} approximation, assuming that uH3(Ω)u\in H^{3}(\Omega) and (u𝐟)|KH3(K)d(\nabla u-{\bf f})|_{K}\in H^{3}(K)^{d}, we only requires g|KH1(K)g|_{K}\in H^{1}(K) to get the optimal convergence.

6.2. A posteriori error analysis

Define the global a posteriori error estimator:

(6.5) η2(𝝈2,h,u2,h)={α1/2h(g𝝈2,h)02+α1/2(𝐟u2,hα1𝝈2,h)02}1/2,\eta_{2}(\mbox{\boldmath$\sigma$}_{2,h},u_{2,h})=\Big{\{}\|\alpha^{-1/2}h(g-\nabla\cdot\mbox{\boldmath$\sigma$}_{2,h})\|^{2}_{0}+\|\alpha^{1/2}({\bf f}-\nabla u_{2,h}-\alpha^{-1}\mbox{\boldmath$\sigma$}_{2,h})\|^{2}_{0}\Big{\}}^{1/2},

and its local indicator

η2,K(𝝈2,h,u2,h)\displaystyle\eta_{2,K}(\mbox{\boldmath$\sigma$}_{2,h},u_{2,h}) =\displaystyle= {α1/2hK(g𝝈2,h)0,K2+α1/2(𝐟u2,hα1𝝈2,h)0,K2}1/2.\displaystyle\Big{\{}\|\alpha^{-1/2}h_{K}(g-\nabla\cdot\mbox{\boldmath$\sigma$}_{2,h})\|^{2}_{0,K}+\|\alpha^{1/2}({\bf f}-\nabla u_{2,h}-\alpha^{-1}\mbox{\boldmath$\sigma$}_{2,h})\|^{2}_{0,K}\Big{\}}^{1/2}.
Theorem 6.3.

Let (𝛔,u)(\mbox{\boldmath$\sigma$},u) be the solution of (1.1) and (𝛔2,h,u2,h)(\mbox{\boldmath$\sigma$}_{2,h},u_{2,h}) be the solution of problem (6.1), respectively. Assume that Assumption 4.1 on the coefficients and Assumption 4.3 (QMA) are true, then there exists positive constants CC independent of α\alpha and the mesh-size such that the following reliability holds:

(6.6) |(𝝈𝝈2,h,uu2,h)|2Cη2(𝝈2,h,u2,h).|\!|\!|(\mbox{\boldmath$\sigma$}-\mbox{\boldmath$\sigma$}_{2,h},u-u_{2,h})|\!|\!|_{2}\leq C\eta_{2}(\mbox{\boldmath$\sigma$}_{2,h},u_{2,h}).
Proof.

Let 𝐄2=𝝈𝝈2,h{\bf E}_{2}=\mbox{\boldmath$\sigma$}-\mbox{\boldmath$\sigma$}_{2,h} and e2=uu2,he_{2}=u-u_{2,h}. In (3.20), let θ|K=hK2\theta|_{K}=h^{2}_{K} and vh=Ircle2v_{h}=I_{rcl}e_{2}, we have

|(𝐄2,e2)|22=(𝐟α1𝝈2,hu2,h,𝐄2+α(e2Ircle2))+(g𝝈2,h,α1h2𝐄2+2(e2Ircle2)).|\!|\!|({\bf E}_{2},e_{2})|\!|\!|^{2}_{2}=({\bf f}-\alpha^{-1}\mbox{\boldmath$\sigma$}_{2,h}-\nabla u_{2,h},{\bf E}_{2}+\alpha\nabla(e_{2}-I_{rcl}e_{2}))+(g-\nabla\cdot\mbox{\boldmath$\sigma$}_{2,h},\alpha^{-1}h^{2}\nabla\cdot{\bf E}_{2}+2(e_{2}-I_{rcl}e_{2})).

Applying Cauchy-Schwarz and triangle inequalities, we get

|(𝐄2,e2)|22\displaystyle|\!|\!|({\bf E}_{2},e_{2})|\!|\!|^{2}_{2} \displaystyle\leq α1/2(𝐟α1𝝈2,hu2,h)0(α1/2𝐄20+α1/2(e2Ircle2)0)\displaystyle\|\alpha^{1/2}({\bf f}-\alpha^{-1}\mbox{\boldmath$\sigma$}_{2,h}-\nabla u_{2,h})\|_{0}(\|\alpha^{-1/2}{\bf E}_{2}\|_{0}+\|\alpha^{1/2}\nabla(e_{2}-I_{rcl}e_{2})\|_{0})
+hα1/2(g𝝈2,h)0(hα1/2𝐄20+2h1α1/2(e2Ircle2)0.\displaystyle+\|h\alpha^{-1/2}(g-\nabla\cdot\mbox{\boldmath$\sigma$}_{2,h})\|_{0}(\|h\alpha^{-1/2}\nabla\cdot{\bf E}_{2}\|_{0}+2\|h^{-1}\alpha^{1/2}(e_{2}-I_{rcl}e_{2})\|_{0}.

By the robust Clément interpolation result (4.1) under Assumption 4.3. we have the following robust results,

α1/2(e2Ircle2)0Cα1/2e20andα1/2(e2Ircle2)0Chα1/2e20.\|\alpha^{1/2}\nabla(e_{2}-I_{rcl}e_{2})\|_{0}\leq C\|\alpha^{1/2}\nabla e_{2}\|_{0}\quad\mbox{and}\quad\|\alpha^{1/2}(e_{2}-I_{rcl}e_{2})\|_{0}\leq C\|h\alpha^{1/2}\nabla e_{2}\|_{0}.

Substitute these two robust results into (6.2), we get

|(𝐄2,e2)|22\displaystyle|\!|\!|({\bf E}_{2},e_{2})|\!|\!|^{2}_{2} \displaystyle\leq C(α1/2(𝐟α1𝝈2,hu2,h)0+hα1/2(g𝝈2,h)0)\displaystyle C(\|\alpha^{1/2}({\bf f}-\alpha^{-1}\mbox{\boldmath$\sigma$}_{2,h}-\nabla u_{2,h})\|_{0}+\|h\alpha^{-1/2}(g-\nabla\cdot\mbox{\boldmath$\sigma$}_{2,h})\|_{0})
(α1/2𝐄20+hα1/2𝐄20+α1/2e20)\displaystyle(\|\alpha^{-1/2}{\bf E}_{2}\|_{0}+\|h\alpha^{-1/2}\nabla\cdot{\bf E}_{2}\|_{0}+\|\alpha^{1/2}\nabla e_{2}\|_{0})
\displaystyle\leq Cη2(𝝈2,h,u2,h)|(𝐄2,e2)|2.\displaystyle C\eta_{2}(\mbox{\boldmath$\sigma$}_{2,h},u_{2,h})|\!|\!|({\bf E}_{2},e_{2})|\!|\!|_{2}.

The robust reliability result (6.6) is proved. ∎

Then using similar techniques of the proof of Theorem 5.4, we give the efficiency for the error estimators or indicators of η2,K(𝝈2,h,u2,h)\eta_{2,K}(\mbox{\boldmath$\sigma$}_{2,h},u_{2,h}).

Theorem 6.4.

Let (𝛔,u)(\mbox{\boldmath$\sigma$},u) be the solution of (1.1) and (𝛔2,h,u2,h)(\mbox{\boldmath$\sigma$}_{2,h},u_{2,h}) be the solution of problem (6.1), respectively.. Assume that Assumption 4.1 on the coefficients is true, we have the following efficiency:

(6.8) η2,K(𝝈2,h,u2,h)2|(𝝈𝝈2,h,uu2,h)|2,K,K𝒯.\eta_{2,K}(\mbox{\boldmath$\sigma$}_{2,h},u_{2,h})\leq\sqrt{2}|\!|\!|(\mbox{\boldmath$\sigma$}-\mbox{\boldmath$\sigma$}_{2,h},u-u_{2,h})|\!|\!|_{2,K},\quad\forall K\in{\mathcal{T}}.

6.3. Comparison with the mesh-weighted LSFEM

We have a corresponding mesh-weighted least-squares method for the second augmented mixed formulation. Define the mesh-weighted least-squares functional as

(6.9) Jh(𝝉,v;𝐟,g):=α1/2v+α1/2𝝉α1/2𝐟02+hα1/2(𝝉g)02,(𝝉,v)𝐗.J_{h}(\mbox{\boldmath$\tau$},v;{\bf f},g):=\|\alpha^{1/2}\nabla v+\alpha^{-1/2}\mbox{\boldmath$\tau$}-\alpha^{1/2}{\bf f}\|_{0}^{2}+\|h\alpha^{-1/2}(\nabla\cdot\mbox{\boldmath$\tau$}-g)\|_{0}^{2},\quad(\mbox{\boldmath$\tau$},v)\in{\bf X}.

Then the mesh-weighted L2L^{2}-based least-squares minimization problem is: find (𝝈,u)𝐗(\mbox{\boldmath$\sigma$},u)\in{\bf X}, such that

(6.10) Jh(𝝈,u;𝐟,g)=inf(𝝉,v)𝐗Jh(𝝉,v;𝐟,g).J_{h}(\mbox{\boldmath$\sigma$},u;{\bf f},g)=\inf_{(\mbox{\boldmath$\tau$},v)\in{\bf X}}J_{h}(\mbox{\boldmath$\tau$},v;{\bf f},g).

Equivalently, it can be written in a weak form as: find (𝝈,u)𝐗(\mbox{\boldmath$\sigma$},u)\in{\bf X}, such that

(6.11) bh((𝝈,u),(𝝉,v))=(𝐟,𝝉+αv)+(h2α1g,𝝉),(𝝉,v)𝐗,b_{h}((\mbox{\boldmath$\sigma$},u),(\mbox{\boldmath$\tau$},v))=({\bf f},\mbox{\boldmath$\tau$}+\alpha\nabla v)+(h^{2}\alpha^{-1}g,\nabla\cdot\mbox{\boldmath$\tau$}),\quad\forall(\mbox{\boldmath$\tau$},v)\in{\bf X},

where the mesh-weighted least-squares bilinear form bhb_{h} is defined as follows:

(6.12) bh((𝝌,w),(𝝉,v))=(𝝌+w,𝝉+αv)+(h2α1𝝌,𝝉),(𝝌,w),(𝝉,v)𝐗.b_{h}((\mbox{\boldmath$\chi$},w),(\mbox{\boldmath$\tau$},v))=(\mbox{\boldmath$\chi$}+\nabla w,\mbox{\boldmath$\tau$}+\alpha\nabla v)+(h^{2}\alpha^{-1}\nabla\cdot\mbox{\boldmath$\chi$},\nabla\cdot\mbox{\boldmath$\tau$}),\quad\forall(\mbox{\boldmath$\chi$},w),(\mbox{\boldmath$\tau$},v)\in{\bf X}.

This kind of least-squares method is called the weighted L2L^{2}-discrete-least-squares principle; see Section 5.6.1 of [5].

Using the same approximation as the second augmented mixed formulation, the mesh-weighted least-squares finite element method is: find (𝝈hhls,uhhls)Σh,N×Vh,D(\mbox{\boldmath$\sigma$}_{h}^{hls},u_{h}^{hls})\in\Sigma_{h,N}\times V_{h,D}, such that

(6.13) Jh(𝝈hhls,uhhls;𝐟,g)=inf(𝝉,v)Σh,N×Vh,DJh(𝝉,v;𝐟,g).J_{h}(\mbox{\boldmath$\sigma$}^{hls}_{h},u^{hls}_{h};{\bf f},g)=\inf_{(\mbox{\boldmath$\tau$},v)\in\Sigma_{h,N}\times V_{h,D}}J_{h}(\mbox{\boldmath$\tau$},v;{\bf f},g).

Or, equivalently, find (𝝈hhls,uhhls)Σh,N×Vh,D(\mbox{\boldmath$\sigma$}_{h}^{hls},u_{h}^{hls})\in\Sigma_{h,N}\times V_{h,D}, such that,

(6.14) b2(𝝈hhls,uhhls,(𝝉,v))=(α1𝐟,𝝉+αv)+(h2α1g,𝝉),(𝝉,v)Σh,N×Vh,D.b_{2}(\mbox{\boldmath$\sigma$}_{h}^{hls},u_{h}^{hls},(\mbox{\boldmath$\tau$},v))=(\alpha^{-1}{\bf f},\mbox{\boldmath$\tau$}+\alpha\nabla v)+(h^{2}\alpha^{-1}g,\nabla\cdot\mbox{\boldmath$\tau$}),\quad\forall(\mbox{\boldmath$\tau$},v)\in\Sigma_{h,N}\times V_{h,D}.

The mathematical theory of the mesh-weighted LSFEM (6.13) or (6.14) is much less satisfactory. Most importantly, we only have the following quasi-norm equivalence with C1C_{1} and C2C_{2} independent of the mesh size:

(6.15) C1hmin2|(𝝉,v)|22Jh(𝝉,v;0,0)C2|(𝝉,v)|22,(𝝉,v)𝐗,C_{1}h_{min}^{2}|\!|\!|(\mbox{\boldmath$\tau$},v)|\!|\!|_{2}^{2}\leq J_{h}(\mbox{\boldmath$\tau$},v;0,0)\leq C_{2}|\!|\!|(\mbox{\boldmath$\tau$},v)|\!|\!|_{2}^{2},\quad\forall(\mbox{\boldmath$\tau$},v)\in{\bf X},

where hmin=min{hK,K𝒯}h_{min}=\min\{h_{K},K\in{\mathcal{T}}\}. The coercivity can be easily derived from (5.14) and the definition of the norm. With only (6.15) available, we can not expect mesh-independent a priori and a posteriori error estimates in the standard norm ||||||2|\!|\!|\cdot|\!|\!|_{2}.

Another way to establish the analysis for the mesh-weighted LSFEM (6.14) is to adopt the non-standard least-squares norm. Define

(6.16) |(𝝉,v)|hls=Jh1/2(𝝉,v;0,0)=(α1/2v+α1/2𝝉02+hα1/2𝝉02)1/2,(𝝉,v)𝐗.|\!|\!|(\mbox{\boldmath$\tau$},v)|\!|\!|_{hls}=J_{h}^{1/2}(\mbox{\boldmath$\tau$},v;0,0)=(\|\alpha^{1/2}\nabla v+\alpha^{-1/2}\mbox{\boldmath$\tau$}\|_{0}^{2}+\|h\alpha^{-1/2}\nabla\cdot\mbox{\boldmath$\tau$}\|_{0}^{2})^{1/2},\quad(\mbox{\boldmath$\tau$},v)\in{\bf X}.

It is easy to see that

|(𝝉,v)|hls2|(𝝉,v)|2.|\!|\!|(\mbox{\boldmath$\tau$},v)|\!|\!|_{hls}\leq\sqrt{2}|\!|\!|(\mbox{\boldmath$\tau$},v)|\!|\!|_{2}.

Then we can establish the following best approximation a priori error estimate for the least-squares induced norm |(𝝉,v)|hls|\!|\!|(\mbox{\boldmath$\tau$},v)|\!|\!|_{hls}:

(6.17) |(𝝈𝝈hhls,uuhhls)|hls=inf(𝝉h,vh)Σh,N×Vh,D|(𝝈𝝉h,uvh)|hls2inf(𝝉h,vh)Σh,N×Vh,D|(𝝈𝝉h,uvh)|2.|\!|\!|(\mbox{\boldmath$\sigma$}-\mbox{\boldmath$\sigma$}_{h}^{hls},u-u_{h}^{hls})|\!|\!|_{hls}=\inf_{(\mbox{\boldmath$\tau$}_{h},v_{h})\in\Sigma_{h,N}\times V_{h,D}}|\!|\!|(\mbox{\boldmath$\sigma$}-\mbox{\boldmath$\tau$}_{h},u-v_{h})|\!|\!|_{hls}\leq\sqrt{2}\inf_{(\mbox{\boldmath$\tau$}_{h},v_{h})\in\Sigma_{h,N}\times V_{h,D}}|\!|\!|(\mbox{\boldmath$\sigma$}-\mbox{\boldmath$\tau$}_{h},u-v_{h})|\!|\!|_{2}.

Then we can get similar convergence results as in Theorem 6.1.

Let (𝝈a,ua)𝐗(\mbox{\boldmath$\sigma$}_{a},u_{a})\in{\bf X}, we can define the following mesh-weighted least-squares a posteriori error estimator:

(6.18) ηhls(𝝈a,ua):=(hα1/2(g𝝈a)02+α1/2(𝐟uaα1𝝈a)02)1/2=Jh(𝝈a,ua;𝐟,g)1/2.\eta_{hls}(\mbox{\boldmath$\sigma$}_{a},u_{a}):=\Big{(}\|h\alpha^{-1/2}(g-\nabla\cdot\mbox{\boldmath$\sigma$}_{a})\|^{2}_{0}+\|\alpha^{1/2}({\bf f}-\nabla u_{a}-\alpha^{-1}\mbox{\boldmath$\sigma$}_{a})\|^{2}_{0}\Big{)}^{1/2}=J_{h}(\mbox{\boldmath$\sigma$}_{a},u_{a};{\bf f},g)^{1/2}.

Let 𝐄a=𝝈𝝈a{\bf E}_{a}=\mbox{\boldmath$\sigma$}-\mbox{\boldmath$\sigma$}_{a} and ea=uuae_{a}=u-u_{a}. We have the following identity:

(6.19) ηhls2(𝝈a,ua)=Jh(𝝈a,ua;𝐟,g)=Jh(𝐄a,ea;0,0)=|(𝝈𝝈a,uua)|hls2.\displaystyle\eta_{hls}^{2}(\mbox{\boldmath$\sigma$}_{a},u_{a})=J_{h}(\mbox{\boldmath$\sigma$}_{a},u_{a};{\bf f},g)=J_{h}({\bf E}_{a},e_{a};0,0)=|\!|\!|(\mbox{\boldmath$\sigma$}-\mbox{\boldmath$\sigma$}_{a},u-u_{a})|\!|\!|_{hls}^{2}.

Thus, if we are satisfied with the non-traditional mesh-weighted least-squares norm ||||||hls|\!|\!|\cdot|\!|\!|_{hls}, then we can use ηhls2(𝝈hhls,uhhls)\eta_{hls}^{2}(\mbox{\boldmath$\sigma$}_{h}^{hls},u_{h}^{hls}) as the a posteriori error estimator for the method (6.14).

In summary, we have robust and local optimal a priori error estimates for the mesh-weighted augmented mixed formulation with less regularity requirement on gg. The mesh-weighted least-squares a posteriori error estimator is a robust error estimator for the method. This is an improvement for the mesh-weighted least-squares formulation where neither the a priori nor a posteriori error estimates are mesh-size and coefficient robust with respect to the standard norms.

Remark 6.5.

The mesh-weighted least-squares formulation can be viewed as a practical version of the H1H^{-1}-least-squares method, see [8]. Define the H1H^{-1} least-squares functional as

(6.20) J1(𝝉,v;𝐟,g):=α1/2v+α1/2𝝉α1/2𝐟02+α1/2(𝝉g)12,(𝝉,v)𝐗.J_{-1}(\mbox{\boldmath$\tau$},v;{\bf f},g):=\|\alpha^{1/2}\nabla v+\alpha^{-1/2}\mbox{\boldmath$\tau$}-\alpha^{1/2}{\bf f}\|_{0}^{2}+\|\alpha^{-1/2}(\nabla\cdot\mbox{\boldmath$\tau$}-g)\|_{-1}^{2},\quad(\mbox{\boldmath$\tau$},v)\in{\bf X}.

A multilevel preconditioner of the Laplace operator is proposed to replace the H1H^{-1} norm in [8]. To avoid the multilevel computation, a very coarse replacement is to replace the H1H^{-1}-norm with the mesh-weighted norm. Of course, we can only get a mesh-dependent norm-equivalence (6.15).

7. Numerical Experiments

In this section, we present serval numerical experiments to verify our findings in previous sections. Our main test problem is the interface problem with discontinuous coefficients from [37, 26, 22]. Let Ω=(1,1)2\Omega=(-1,1)^{2} and let u~(r,θ)=rγμ(θ)\widetilde{u}(r,\theta)=r^{\gamma}\mu(\theta) in polar coordinates with

(7.1) μ(θ)={cos((π/2ϕ)γ)((θπ/2+ρ)γ) if 0θπ/2,cos(ργ)cos((θπ+ϕ)γ) if π/2θπ,cos(ρϕ)cos((θπρ)γ) if πθ3π/2,cos((π/2ρ)γ)((θ3π/2ϕ)γ) if 3π/2θ2π.\mu(\theta)=\left\{\begin{array}[]{ll}\cos((\pi/2-\phi)\gamma)\cdot((\theta-\pi/2+\rho)\gamma)&\mbox{ if }0\leq\theta\leq\pi/2,\\ \cos(\rho\gamma)\cdot\cos((\theta-\pi+\phi)\gamma)&\mbox{ if }\pi/2\leq\theta\leq\pi,\\ \cos(\rho\phi)\cdot\cos((\theta-\pi-\rho)\gamma)&\mbox{ if }\pi\leq\theta\leq 3\pi/2,\\ \cos((\pi/2-\rho)\gamma)\cdot((\theta-3\pi/2-\phi)\gamma)&\mbox{ if }3\pi/2\leq\theta\leq 2\pi.\end{array}\right.

The coefficient α\alpha is

α(x)={R in (0,1)2(1,0)2,1 in Ω\([0,1]2[1,0]2).\alpha(x)=\left\{\begin{array}[]{ll}R&\mbox{ in }(0,1)^{2}\cup(-1,0)^{2},\\ 1&\mbox{ in }\Omega\backslash([0,1]^{2}\cup[-1,0]^{2}).\end{array}\right.

We choose the numbers γ\gamma, ρ\rho, ϕ\phi, and RR such that (αu~)=0\nabla\cdot(\alpha\nabla\widetilde{u})=0 in Ω\Omega. The following nonlinear relations of γ\gamma, ρ\rho, ϕ\phi, and RR can be found in [26]:

(7.2) {R=tan((π/2ϕ)γ)cot(ργ),1/R=tan(ργ)cot(ϕγ),R=tan(ϕγ)cot((π/2ρ)γ),0<γ<2,max(0,πγπ)<2γρ<min(πγ,π),max(0,ππγ)<2γϕ<min(π,2ππγ).\left\{\begin{array}[]{l}R=-\tan((\pi/2-\phi)\gamma)\cdot\cot(\rho\gamma),\\ 1/R=-\tan(\rho\gamma)\cdot\cot(\phi\gamma),\\ R=-\tan(\phi\gamma)\cdot\cot((\pi/2-\rho)\gamma),\\ 0<\gamma<2,\\ \max(0,\pi\gamma-\pi)<2\gamma\rho<\min(\pi\gamma,\pi),\\ \max(0,\pi-\pi\gamma)<-2\gamma\phi<\min(\pi,2\pi-\pi\gamma).\end{array}\right.

The function u~(r,θ)H1+γϵ(Ω),\widetilde{u}(r,\theta)\in H^{1+\gamma-\epsilon}(\Omega), for any ϵ>0\epsilon>0. The regularity index γ\gamma is less than 11, The function u~\widetilde{u} is singular at the origin. We give serval examples of the coefficients α\alpha and the corresponding numbers γ\gamma, ρ\rho, and ϕ\phi in Table 1. These numbers can be computed by solving (7.2) using Newton’s method. Some of them can also be found in [26].

Table 1. Numbers of ϕ,γ\phi,\gamma and RR with ρ=π/4.\rho=\pi/4.
ϕ\phi γ\gamma RR
Data1\mbox{Data}1 2.3561944901923448-2.3561944901923448 0.500.50 5.828427124746195.82842712474619
Data2\mbox{Data}2 7.06858347058882-7.06858347058882 0.200.20 39.863458188453339.8634581884533
Data3\mbox{Data}3 9.68657734859297-9.68657734859297 0.150.15 71.384880130459071.3848801304590
Data4\mbox{Data}4 14.92256510455152-14.92256510455152 0.100.10 161.447638797588161.447638797588

Let u:=u~+u0u:=\widetilde{u}+u_{0} with u0(x,y)={x+1,x0,1x>0.u_{0}(x,y)=\left\{\begin{array}[]{ll}x+1,&x\leq 0,\\ 1&x>0.\end{array}\right. Then uu is the solution of the following generalized Darcy’s problem

(7.3) {𝝈=0in Ω,αu+𝝈=αu0in Ω.\left\{\begin{array}[]{lllll}\nabla\cdot\mbox{\boldmath$\sigma$}&=&0&\mbox{in }\Omega,\\[2.84526pt] \alpha\nabla u+\mbox{\boldmath$\sigma$}&=&\alpha\nabla u_{0}&\mbox{in }\Omega.\end{array}\right.

This will be our main problem to do numerical tests.

We propose the following criteria to test the robustness of the methods with respect to α\alpha. Let (𝝈h,uh)(\mbox{\boldmath$\sigma$}_{h},u_{h}) be the numerical solutions computed by the numerical methods (augmented mixed methods and LSFEMs) discussed in the paper; we want to compare the ratio of the error in the energy norm and its corresponding a posteriori error estimator. For the first kind augmented mixed methods and the L2L^{2}-LSFEM, we measure the error in |(𝝈𝝈h,uuh)|1|\!|\!|(\mbox{\boldmath$\sigma$}-\mbox{\boldmath$\sigma$}_{h},u-u_{h})|\!|\!|_{1} (the definition in (3.14) with θ=1\theta=1) and the a posteriori error estimator is the one based on the L2L^{2}-LS-functional ηls(𝝈h,uh)=J1/2(𝝈h,uh;0,0)\eta_{ls}(\mbox{\boldmath$\sigma$}_{h},u_{h})=J^{1/2}(\mbox{\boldmath$\sigma$}_{h},u_{h};0,0). For the second kind augmented mixed methods and mesh-weighted LSFEM, we measure the error in |(𝝈𝝈h,uuh)|2|\!|\!|(\mbox{\boldmath$\sigma$}-\mbox{\boldmath$\sigma$}_{h},u-u_{h})|\!|\!|_{2} (the definition in (3.14) with θ=hK2\theta=h_{K}^{2}) and the a posteriori error estimator is the one based on the mesh-weighted LS-functional ηhls(𝝈h,uh)=Jh1/2(𝝈h,uh;0,0)\eta_{hls}(\mbox{\boldmath$\sigma$}_{h},u_{h})=J^{1/2}_{h}(\mbox{\boldmath$\sigma$}_{h},u_{h};0,0).

If the a posteriori error estimator is robust, then for different α\alpha, the ratio or the so-called effectivity index

(7.4) eff-index=|(𝝈𝝈h,uuh)|η\mbox{eff-index}=\displaystyle\frac{|\!|\!|(\mbox{\boldmath$\sigma$}-\mbox{\boldmath$\sigma$}_{h},u-u_{h})|\!|\!|}{\eta}

should be a constant.

The standard adaptive finite element method is based on the following loop: SOLVE, ESTIMATE, MARK, and REFINE. We use the Dörfler’s bulk marking strategy. The relative error is computed by rel-err=|(𝝈𝝈h,uuh)|/|(𝝈,u)|\mbox{rel-err}=|\!|\!|(\mbox{\boldmath$\sigma$}-\mbox{\boldmath$\sigma$}_{h},u-u_{h})|\!|\!|/|\!|\!|(\mbox{\boldmath$\sigma$},u)|\!|\!|.

We do not seek numerical examples to check the robust a priori error estimates.

7.1. Convergence tests for adaptive augmented mixed methods with pure Dirichlet boundary conditions

In this subsection, we use Data4 in Table 1. The main purpose is to show the convergence history and the final adaptive mesh for the augmented mixed methods. We choose the pure Dirichlet boundary condition. The parameter in Dörfler’s bulk marking strategy is 0.30.3 and the stopping criteria is rel-err0.010\mbox{rel-err}\leq 0.010.

In Figure 1, we present the numerical test of the first adaptive augmented mixed method (5.1), with RT0,N×S1,DRT_{0,N}\times S_{1,D} being the finite element space. On the left of Figure 1, we show the reference line Dofs1/2\mbox{Dofs}^{-1/2}, the decay of the error estimator, and the error measured in |(,)|1|\!|\!|(\cdot,\cdot)|\!|\!|_{1}. On the right of Figure 1, the final mesh generated by η1(𝝈1,h,u1,h)\eta_{1}(\mbox{\boldmath$\sigma$}_{1,h},u_{1,h}) is presented after 7575 loops of bisection. The final DOF is 49214921. The convergence and the final mesh are both optimal, and the final mesh is similar to the results presented in [26, 22].

Refer to caption
Refer to caption
Figure 1. Adaptive convergence results and final mesh for the first adaptive augmented mixed method (5.1)

In Figure 2, we present the numerical test of the second (mesh-weighted) adaptive augmented mixed method (6.1), with RT0,N×S1,DRT_{0,N}\times S_{1,D} being the finite element space. On the left of Figure 2, we show the reference line Dofs1/2\mbox{Dofs}^{-1/2}, the decay of the error estimator, and the error measured in |(,)|2|\!|\!|(\cdot,\cdot)|\!|\!|_{2}. On the right of Figure 2, the final mesh generated by η2(𝝈2,h,u2,h)\eta_{2}(\mbox{\boldmath$\sigma$}_{2,h},u_{2,h}) is presented after 8686 loops of bisection. The final DOF is 46214621. The convergence and the final mesh are both optimal, and the final mesh is similar to the results presented in [26, 22].

Refer to caption
Refer to caption
Figure 2. Adaptive convergence results and final mesh for the second (mesh-weighted) adaptive augmented mixed method using RT0,N×S1,DRT_{0,N}\times S_{1,D}

In Figure 3, we present the numerical test of the second (mesh-weighted) adaptive augmented mixed method (6.1), with BDM1,N×S2,DBDM_{1,N}\times S_{2,D}. The reference line in this case is Dofs1\mbox{Dofs}^{-1}. The final DOFs is 19971997 after 4949 times of bisection.

Refer to caption
Refer to caption
Figure 3. Adaptive convergence results and final mesh for the second (mesh-weighted) adaptive augmented mixed method using BDM1,N×S2,DBDM_{1,N}\times S_{2,D}

7.2. Robustness tests for adaptive augmented mixed methods with pure Dirichlet boundary conditions

In this subsection, we present the numerical results of the effectivity index for adaptive augmented mixed methods with pure Dirichlet boundary conditions for different α\alpha to check the robustness of the methods. The same marking strategy and stopping criteria of the previous subsection are used. From Table 2 to Table 4, we show the eff-indexes for different α\alpha for the first and second augmented methods. As seen from these tables, the eff-index is almost a constant for different α\alpha; this verifies least-squares a posteriori error estimators for both augmented mixed methods are robust.

Table 2. The first adaptive augmented mixed method for different α\alpha, pure Dirichlet BC: eff-index, number of refinements kk, number of elements nn, the final η1(𝝈1,h,u1,h)\eta_{1}(\mbox{\boldmath$\sigma$}_{1,h},u_{1,h}), and the final error |(𝝈𝝈1,h,uu1,h)|1|\!|\!|(\mbox{\boldmath$\sigma$}-\mbox{\boldmath$\sigma$}_{1,h},u-u_{1,h})|\!|\!|_{1}
eff-index kk nn η1(𝝈1,h,u1,h)\eta_{1}(\mbox{\boldmath$\sigma$}_{1,h},u_{1,h}) |(𝝈𝝈1,h,uu1,h)|1|\!|\!|(\mbox{\boldmath$\sigma$}-\mbox{\boldmath$\sigma$}_{1,h},u-u_{1,h})|\!|\!|_{1}
Data1\mbox{Data}1 1.00061.0006 3434 1582415824 0.02500.0250 0.02500.0250
Data2\mbox{Data}2 1.00751.0075 6464 72167216 0.06210.0621 0.06160.0616
Data3\mbox{Data}3 1.01791.0179 7171 46484648 0.08420.0842 0.08280.0828
Data4\mbox{Data}4 1.06051.0605 7575 24482448 0.13400.1340 0.12640.1264
Table 3. The second (mesh-weighted) adaptive augmented mixed method using RT0,N×S1,DRT_{0,N}\times S_{1,D} for different α\alpha, pure Dirichlet BC: eff-index, number of refinements kk, number of elements nn, the final η2(𝝈2,h,u2,h)\eta_{2}(\mbox{\boldmath$\sigma$}_{2,h},u_{2,h}), and the final error |(𝝈𝝈2,h,uu2,h)|2|\!|\!|(\mbox{\boldmath$\sigma$}-\mbox{\boldmath$\sigma$}_{2,h},u-u_{2,h})|\!|\!|_{2}
eff-index kk nn η2(𝝈2,h,u2,h)\eta_{2}(\mbox{\boldmath$\sigma$}_{2,h},u_{2,h}) |(𝝈𝝈2,h,uu2,h)|2|\!|\!|(\mbox{\boldmath$\sigma$}-\mbox{\boldmath$\sigma$}_{2,h},u-u_{2,h})|\!|\!|_{2}
Data1\mbox{Data}1 0.99630.9963 3535 1518415184 0.02540.0254 0.02550.0255
Data2\mbox{Data}2 0.99660.9966 7070 70887088 0.06160.0616 0.06180.0618
Data3\mbox{Data}3 0.99490.9949 8080 45244524 0.08230.0823 0.08270.0827
Data4\mbox{Data}4 0.98470.9847 8686 23002300 0.12360.1236 0.12560.1256
Table 4. The second (mesh-weighted) adaptive augmented mixed method using BDM1,N×S2,DBDM_{1,N}\times S_{2,D} for different α\alpha, pure Dirichlet BC: eff-index, number of refinements kk, number of elements nn, the final η2(𝝈2,h,u2,h)\eta_{2}(\mbox{\boldmath$\sigma$}_{2,h},u_{2,h}), and the final error |(𝝈𝝈2,h,uu2,h)|2|\!|\!|(\mbox{\boldmath$\sigma$}-\mbox{\boldmath$\sigma$}_{2,h},u-u_{2,h})|\!|\!|_{2}
eff-index kk nn η2(𝝈2,h,u2,h)\eta_{2}(\mbox{\boldmath$\sigma$}_{2,h},u_{2,h}) |(𝝈𝝈2,h,uu2,h)|2|\!|\!|(\mbox{\boldmath$\sigma$}-\mbox{\boldmath$\sigma$}_{2,h},u-u_{2,h})|\!|\!|_{2}
Data1\mbox{Data}1 1.07281.0728 2020 320320 0.02620.0262 0.02440.0244
Data2\mbox{Data}2 1.07921.0792 4343 416416 0.06590.0659 0.06110.0611
Data3\mbox{Data}3 1.10681.1068 4747 380380 0.09290.0929 0.08390.0839
Data4\mbox{Data}4 1.10141.1014 4949 396396 0.13830.1383 0.12560.1256

7.3. Convergence and robustness tests for the adaptive L2L^{2}-LSFEM with pure Dirichlet boundary conditions

In this subsection, we present the numerical results of convergence result of the adaptive L2L^{2}-LSFEM (5.10) with pure Dirichlet boundary conditions and the effectivity index for different α\alpha.

In Figure 4, we present the numerical test of the adaptive L2L^{2}-LSFEM (5.10) with pure Dirichlet boundary condition with Data4. The convergence and the final mesh are both optimal with enough mesh grids, and the final mesh is similar to the results presented in [26, 22].

Refer to caption
Refer to caption
Figure 4. Adaptive convergence results and final mesh for the L2L^{2}-LSFEM with pure Dirichlet BC

We show the eff-indexes for different α\alpha for the L2L^{2}-LSFEM with pure Dirichlet BC in Table 5. As seen from these tables, the eff-index is almost a constant for different α\alpha, this verifies that for this special case that each subdomain has a non-empty Dirichlet boundary condition, the L2L^{2}-LSFEM is robust.

Table 5. The L2L^{2}-LSFEM for different α\alpha, pure Dirichlet BC: eff-index, number of refinements kk, number of elements nn, the final ηls(𝝈hls,uhls)\eta_{ls}(\mbox{\boldmath$\sigma$}^{ls}_{h},u^{ls}_{h}), and the final error |(𝝈𝝈hls,uuhls)|1|\!|\!|(\mbox{\boldmath$\sigma$}-\mbox{\boldmath$\sigma$}^{ls}_{h},u-u^{ls}_{h})|\!|\!|_{1}
eff-index kk nn ηls(𝝈hls,uhls)\eta_{ls}(\mbox{\boldmath$\sigma$}^{ls}_{h},u^{ls}_{h}) |(𝝈𝝈hls,uuhls)|1|\!|\!|(\mbox{\boldmath$\sigma$}-\mbox{\boldmath$\sigma$}^{ls}_{h},u-u^{ls}_{h})|\!|\!|_{1}
Data1\mbox{Data}1 1.00191.0019 3131 1447614476 0.02630.0263 0.02620.0262
Data2\mbox{Data}2 1.01711.0171 5858 77727772 0.06280.0628 0.06170.0617
Data3\mbox{Data}3 1.04061.0406 6363 54005400 0.08710.0871 0.08370.0837
Data4\mbox{Data}4 1.12161.1216 6565 37443744 0.13950.1395 0.12440.1244

7.4. Robustness tests for adaptive augmented mixed methods with mixed boundary conditions

In this subsection, we present the numerical results of the effectivity index of adaptive augmented mixed methods with mixed boundary conditions with different α\alpha to check the robustness of the methods.

The mixed boundary are chosen as follows: ΓD={(x,y)Ω;x(1,1),y=1}\Gamma_{D}=\{(x,y)\in\partial\Omega;x\in(-1,1),y=-1\} and ΓN=ΩΓD\Gamma_{N}=\partial\Omega\setminus\Gamma_{D}. The boundary conditions gDg_{D} and gNg_{N} are given by the true solution.

From Table 6 to Table 8, we show the eff-indexes for different α\alpha for the first and second augmented methods. As seen from these tables, the eff-index is almost a constant for different α\alpha; this verifies least-squares a posteriori error estimators for augmented mixed methods are robust for the general mixed boundary condition case.

Table 6. The first adaptive augmented mixed method for different α\alpha, mixed BC: eff-index, number of refinements kk, number of elements nn, the final η1(𝝈1,h,u1,h)\eta_{1}(\mbox{\boldmath$\sigma$}_{1,h},u_{1,h}), and the final error |(𝝈𝝈1,h,uu1,h)|1|\!|\!|(\mbox{\boldmath$\sigma$}-\mbox{\boldmath$\sigma$}_{1,h},u-u_{1,h})|\!|\!|_{1}
eff-index kk nn η1(𝝈1,h,u1,h)\eta_{1}(\mbox{\boldmath$\sigma$}_{1,h},u_{1,h}) |(𝝈𝝈1,h,uu1,h)|1|\!|\!|(\mbox{\boldmath$\sigma$}-\mbox{\boldmath$\sigma$}_{1,h},u-u_{1,h})|\!|\!|_{1}
Data1\mbox{Data}1 1.00061.0006 3737 4103141031 0.01560.0156 0.01550.0155
Data2\mbox{Data}2 1.00581.0058 7373 1997019970 0.03750.0375 0.03730.0373
Data3\mbox{Data}3 1.01381.0138 8484 1362213622 0.04970.0497 0.04900.0490
Data4\mbox{Data}4 1.04971.0497 9393 76057605 0.07950.0795 0.07580.0758
Table 7. The second (mesh-weighted) adaptive augmented mixed method using RT0,N×S1,DRT_{0,N}\times S_{1,D} for different α\alpha, mixed BC: eff-index, number of refinements kk, number of elements nn, the final η2(𝝈2,h,u2,h)\eta_{2}(\mbox{\boldmath$\sigma$}_{2,h},u_{2,h}), and the final error |(𝝈𝝈2,h,uu2,h)|2|\!|\!|(\mbox{\boldmath$\sigma$}-\mbox{\boldmath$\sigma$}_{2,h},u-u_{2,h})|\!|\!|_{2}
eff-index kk nn η2(𝝈2,h,u2,h)\eta_{2}(\mbox{\boldmath$\sigma$}_{2,h},u_{2,h}) |(𝝈𝝈2,h,uu2,h)|2|\!|\!|(\mbox{\boldmath$\sigma$}-\mbox{\boldmath$\sigma$}_{2,h},u-u_{2,h})|\!|\!|_{2}
Data1\mbox{Data}1 0.99650.9965 3939 4535545355 0.01470.0147 0.01470.0147
Data2\mbox{Data}2 0.99660.9966 7979 1910319103 0.03740.0374 0.03750.0375
Data3\mbox{Data}3 0.99620.9962 9393 1247812478 0.04920.0492 0.04940.0494
Data4\mbox{Data}4 0.99000.9900 108108 60466046 0.07480.0748 0.07560.0756
Table 8. The second (mesh-weighted) adaptive augmented mixed method using BDM1,N×S2,DBDM_{1,N}\times S_{2,D} for different α\alpha, mixed BC: eff-index, number of refinements kk, number of elements nn, the final η2(𝝈2,h,u2,h)\eta_{2}(\mbox{\boldmath$\sigma$}_{2,h},u_{2,h}), and the final error |(𝝈𝝈2,h,uu2,h)|2|\!|\!|(\mbox{\boldmath$\sigma$}-\mbox{\boldmath$\sigma$}_{2,h},u-u_{2,h})|\!|\!|_{2}
eff-index kk nn η2(𝝈2,h,u2,h)\eta_{2}(\mbox{\boldmath$\sigma$}_{2,h},u_{2,h}) |(𝝈𝝈2,h,uu2,h)|2|\!|\!|(\mbox{\boldmath$\sigma$}-\mbox{\boldmath$\sigma$}_{2,h},u-u_{2,h})|\!|\!|_{2}
Data1\mbox{Data}1 1.07351.0735 2323 560560 0.01540.0154 0.01440.0144
Data2\mbox{Data}2 1.07751.0775 5151 704704 0.03860.0386 0.03580.0358
Data3\mbox{Data}3 1.08311.0831 5959 670670 0.05290.0529 0.04890.0489
Data4\mbox{Data}4 1.05531.0553 7070 573573 0.08000.0800 0.07580.0758

7.5. Non-robustness for L2L^{2}-LSFEM with mixed boundary conditions

We present the non-robustness of the L2L^{2}-LSFEM (5.10) with mixed boundary conditions. We use the same mixed boundary setting as the previous subsection.

As we can see from Table 9, the eff-index is not a constant. This verifies the conclusion that the L2L^{2}-LSFEM is not robust with respect to α\alpha. On the other hand, as we can see, the eff-index does not change as strongly as α\alpha; this is explained in Remark 5.9.

Table 9. The L2L^{2}-LSFEM for different α\alpha, mixed BC: eff-index, number of refinements kk, number of elements nn, the final ηls(𝝈hls,uhls)\eta_{ls}(\mbox{\boldmath$\sigma$}^{ls}_{h},u^{ls}_{h}), and the final error |(𝝈𝝈hls,uuhls)|1|\!|\!|(\mbox{\boldmath$\sigma$}-\mbox{\boldmath$\sigma$}^{ls}_{h},u-u^{ls}_{h})|\!|\!|_{1}
eff-index kk nn ηls(𝝈hls,uhls)\eta_{ls}(\mbox{\boldmath$\sigma$}^{ls}_{h},u^{ls}_{h}) |(𝝈𝝈hls,uuhls)|1|\!|\!|(\mbox{\boldmath$\sigma$}-\mbox{\boldmath$\sigma$}^{ls}_{h},u-u^{ls}_{h})|\!|\!|_{1}
Data1\mbox{Data}1 0.99720.9972 8080 1443414434 0.02590.0259 0.02600.0260
Data2\mbox{Data}2 0.86410.8641 9191 95429542 0.05280.0528 0.06110.0611
Data3\mbox{Data}3 0.70790.7079 110110 87138713 0.05900.0590 0.08330.0833
Data4\mbox{Data}4 0.47870.4787 139139 1175411754 0.05960.0596 0.12440.1244

In Figure 5, we can also see that even for a fixed α\alpha, the eff-index is not a constant when mesh is refined, which means it is not even robust with respect to the mesh-size. In contract, in Figure 4, the eff-index is almost a constant for a fixed α\alpha for the special case of L2L^{2}-LSFEM where the robust Poincaré inequality holds.

Refer to caption
Figure 5. Adaptive convergence results for the L2L^{2}-LSFEM with mixed boundary conditions with Data3.

7.6. Numerical tests for mesh-weighted LSFEMs

For the mesh-weighted LSFEM (6.14), there are no rigorous a priori and a posteriori error estimates with respect to standard norms. We show the convergence result of adaptive convergence history for the problem with pure Dirichlet boundary conditions with Data4 using RT0,N×S1,DRT_{0,N}\times S_{1,D} with 3939 times of refinement in Figure 6. The error measured in norm |(,)|2|\!|\!|(\cdot,\cdot)|\!|\!|_{2} (the blue line in Figure 6) does not decay as the a posteriori error estimator do. Also, the final mesh it obtained is skewed, which is a non-optimal case as discussed in [26, 22]. This suggests that this method may not be a good choice for this class of problem.

Refer to caption
Refer to caption
Figure 6. Adaptive convergence results and final mesh for the mesh-weighted LSFEM with pure Dirichlet boundary conditions.

8. Final Comments

In this paper, for the generalized Darcy problem, we study a special Galerkin-Least-Squares method, the augmented mixed finite element method, and its relationship to the standard least-squares finite element method (LSFEM). One of the paper’s main contributions is to connect the augmented mixed finite element method and the bonafide LSFEM and discuss their shared properties and differences. Both methods share some good properties: both methods are based on the physically meaningful first-order system. Thus, important physical qualities can be approximated in their intrinsic spaces; both methods are coercive and stable, and their finite element discrete problems are coercive and stable as long as the discrete spaces are subspaces of the abstract spaces of the variational problems. Thus, no inf-sup condition of the discrete spaces and mesh size restriction are needed; both methods can use the least-squares functional as the build-in a posteriori error estimator. On the other hand, the augmented mixed methods and the LSFEMs have their advantages. For the augmented mixed finite element methods, we show that the a priori and a posteriori error estimates are robust with respect to the coefficients of the problem. In contrast, we discuss the non-robustness of standard least-squares finite element methods. With the flexibility of being a partial least-squares method, it is possible that the augmented mixed finite element method can have better numerical properties than the bona-fide least-squares method. However, being a partial least-squares method, the augmented mixed method also loses one main property of the bonafide least-squares method, which may be very useful for minimization-based methods: the minimization of the least-squares energy, even though we can always associate a Ritz-minimization variational principle to the symmetric version of the augmented mixed method.

References

  • [1] Javier A. Almonacid, Gabriel N. Gatica, and Ricardo Ruiz-Baier. Ultra-weak symmetry of stress for augmented mixed finite element formulations in continuum mechanics. Calcolo, 57(2), 2020.
  • [2] Tomas P. Barrios, J. Manuel Cascon, and Maria Gonzalezlez. A posteriori error analysis of an augmented mixed finite element method for darcy flow. Computer Methods in Applied Mechanics and Engineering, 283:909–922, 2015.
  • [3] Tomas P. Barrios, Gabriel N. Gatica, Maria Gonzalez, and Norbert Heuer. A residual based a posteriori error estimator for an augmented mixed finite element method in linear elasticity. ESAIM: Mathematical Modelling and Numerical Analysis, 40(5):843–869, 2006.
  • [4] Christine Bernardi and Rüdiger Verfürth. Adaptive finite element methods for elliptic equations with non-smooth coefficients. Numer. Math., 85:579–608, 2000.
  • [5] Pavel B. Bochev and Max D Gunzburger. Least-Squares Finite Element Methods. Applied Mathematical Sciences, 166. Springer, 2009.
  • [6] Daniele Boffi, Franco Brezzi, and Michel Fortin. Mixed Finite Element Methods and Applications, volume 44 of Springer Series in Computational Mathematics. Springer, 2013.
  • [7] Dietrich Braess. Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics. Cambridge University Press, 2007.
  • [8] James H. Bramble, Raytcho D. Lazarov, and Joseph E. Pasciak. A least-squares approach based on a discrete minus one inner product for first order systems. Mathematics of Computation, 66(219):935–055, 1997.
  • [9] Susanne Brenner and Ridgway Scott. The Mathematical Theory of Finite Element Methods, volume 15 of Texts in Applied Mathematics. Springer, third edition, 2008.
  • [10] Franco Brezzi, Thomas J.R. Hughes, L. Donatella Marini, and Arif Masud. Mixed discontinuous galerkin methods for darcy flow. Journal of Scientific Computing, 84:119–145, 2005.
  • [11] Difeng Cai, Zhiqiang Cai, and Shun Zhang. Robust equilibrated a posteriori error estimator for higher order finite element approximations to diffusion problems. Numer. Math., 144(1):1–21, 2020.
  • [12] Difeng Cai, Zhiqiang Cai, and Shun Zhang. Robust equilibrated error estimator for diffusion problems: Mixed finite elements in two dimensions. Journal of Scientific Computing, 83(1), 2020.
  • [13] Zhiqiang Cai, Rob Falgout, and Shun Zhang. Div first-order system LL* (FOSLL*) least-squares for second-order elliptic partial differential equations. SIAM J. Numer. Anal., 53(1):405–420, 2015.
  • [14] Zhiqiang Cai, Cuiyu He, and Shun Zhang. Discontinuous finite element methods for interface problems: Robust a priori and a posteriori error estimates. SIAM J. Numer. Anal., 55:400–418, 2017.
  • [15] Zhiqiang Cai, Cuiyu He, and Shun Zhang. Improved zz a posteriori error estimators for diffusion problems: Discontinuous element. Applied Numerical Mathematics, 159:174–189, 2021.
  • [16] Zhiqiang Cai and JaEun Ku. The L2L^{2} norm error estimates for the div least-squares methods. SIAM J. Numer. Anal., 44(4):1721–1734, 2006.
  • [17] Zhiqiang Cai, R. Lazarov, T. Manteuffel, and S. McCormick. First order system least-squares for second order partial differential equations: Part I. SIAM J. Numer. Anal., 31:1785–1799, 1994.
  • [18] Zhiqiang Cai, Barry Lee, and Ping Wang. Least-squares methods for incompressible newtonian fluid flow: linear stationary problems,. SIAM J. Numer. Anal., 42:843–859, 2004.
  • [19] Zhiqiang Cai, Tom Manteuffel, and Stephen F. McCormick. First-order system least squares for second-order partial differential equations: Part ii. SIAM J. Numer. Anal., 34(2):425–454, 1997.
  • [20] Zhiqiang Cai and Gerhard Starke. Least-squares methods for linear elasticity. SIAM J. Numer. Anal., 42:826–842, 2004.
  • [21] Zhiqiang Cai, Xiu Ye, and Shun Zhang. Discontinuous galerkin finite element methods for interface problems: a priori and a posteriori error estimations. SIAM J. Numer. Anal., 49(5):1761–1787, 2011.
  • [22] Zhiqiang Cai and Shun Zhang. Recovery-based error estimator for interface problems: Conforming linear elements. SIAM J. Numer. Anal., 47(3):2132–2156, 2009.
  • [23] Zhiqiang Cai and Shun Zhang. Recovery-based error estimators for interface problems: Mixed and nonconforming finite elements. SIAM J. Numer. Anal., 48(1):30–52, 2010.
  • [24] Zhiqiang Cai and Shun Zhang. Robust equilibrated residual error estimator for diffusion problems: conforming elements. SIAM J. Numer. Anal., 50:151–170, 2012.
  • [25] Jessika Camano, Gabriel N. Gatica, Ricardo Oyarzua, and Giordano Tierra. An augmented mixed finite element method for the navier–stokes equations with variable viscosity. SIAM J. Numer. Anal., 54(2):1069–1092, 2016.
  • [26] Zhiming Chen and Shibin Dai. On the efficiency of adaptive finite element methods for elliptic problems with discontinuous coefficients. SIAM J. Sci. Comput., 24(2):443–462, 2002.
  • [27] Philippe G. Ciarlet. The Finite Element Method for Elliptic Problems, volume 40 of Classics in Applied Mathematics. SIAM, 2002.
  • [28] Eligio Colmenares, Gabriel N. Gatica, and Ricardo Oyarzúa. An augmented fully-mixed finite element method for the stationary boussinesq problem. Calcolo, 54:167–205, 2017.
  • [29] Maicon R. Correa and Abimael F D Loula. Unconditionally stable mixed finite element methods for darcy flow. Comput. Methods Appl. Mech. Engrg., 197:1525–1540, 2008.
  • [30] T. Dupont and R. Scott. Polynomial approximation of functions in sobolev spaces. Math. Comp., 34:441–463, 1980.
  • [31] Alexandre Ern and Jean-Luc Guermond. Finite Elements I: Approximation and Interpolation, volume 72 of Texts in Applied Mathematics. Springer, 2021.
  • [32] Leonardo E. Figuero, Gabriel N. Gatica, and Antonio Marquez. Augmented mixed finite element methods for the stationary stokes equations. SIAM J. Sci. Comput., 31(2):1082–1119, 2008.
  • [33] L. P. Franca. New Mixed Finite Element Methods. PhD thesis, Stanford University, 1987.
  • [34] L. P. Franca and T.J.R. Hughes. Two classes of finite element methods. Computer Methods in Applied Mechanics and Engineering, 69:89–129, 1988.
  • [35] Gabriel N. Gatica. Analysis of a new augmented mixed finite element method for linear elasticity allowing rt0-p1-p0 approximation. Math. Model. Numer. Anal., 40(1):1–28, 2006.
  • [36] Bo-nan Jiang. The Least-Squares Finite Element Method Theory and Applications in Computational Fluid Dynamics and Electromagnetics. Scientifc Computation. Springer, 1998.
  • [37] R. Bruce kellogg. On the poisson equation with intersecting interfaces on the poisson equation with intersecting interfaces. Applicable Analysis, 4(2):101–129, 1974.
  • [38] Qunjie Liu and Shun Zhang. Adaptive flux-only least-squares finite element methods for linear transport equations. Journal of Scientific Computing, 84:26, 2020.
  • [39] Qunjie Liu and Shun Zhang. Adaptive least-squares finite element methods for linear transport equations based on an H(div) flux reformulation. Comput. Methods Appl. Mech. Engrg., 366:113041, 2020.
  • [40] Arif Masud and Thomas J.R. Hughes. A stabilized mixed finite element method for darcy flow. Computer Methods in Applied Mechanics and Engineering, 191:4341–4370, 2002.
  • [41] M. Petzoldt. A posteriori error estimators for elliptic equations with discontinuous coefficients. Adv. Comput. Math., 16:47–75, 2002.
  • [42] Weifeng Qiu and Shun Zhang. Adaptive first-order system least-squares finite element methods for second order elliptic equations in non-divergence form. SIAM J. Numer. Anal., 58(6):3286–3308, 2020.
  • [43] P. A. Raviart and J. M. Thomas. A mixed finite element method for second order elliptic problems. In I. Galligani and E. Magenes, editors, Mathematical Aspects of the Finite Element Method, volume 606 of Lectures Notes in Mathematics,. Springer, 1977.
  • [44] Jinchao Xu and Ludmil Zikatanov. Some observations on Babuška and Brezzi theories. Numer. Math., 94:195–202, 2003.
  • [45] Shun Zhang. Robust and local optimal a priori error estimates for interface problems with low regularity: Mixed finite element approximations. Journal of Scientific Computing, 84(40), 2020.
  • [46] Shun Zhang. A simple proof of coerciveness of first-order system least-squares methods for general second-order elliptic pdes. Computers & Mathematics with Applications, pages 98–104, 2023.